TWI378908B - Ceramic composite material with both dielectric and magnetic properties - Google Patents

Ceramic composite material with both dielectric and magnetic properties Download PDF

Info

Publication number
TWI378908B
TWI378908B TW97136065A TW97136065A TWI378908B TW I378908 B TWI378908 B TW I378908B TW 97136065 A TW97136065 A TW 97136065A TW 97136065 A TW97136065 A TW 97136065A TW I378908 B TWI378908 B TW I378908B
Authority
TW
Taiwan
Prior art keywords
dielectric
magnetic
sintering
composite
dielectric ceramic
Prior art date
Application number
TW97136065A
Other languages
Chinese (zh)
Other versions
TW201012775A (en
Inventor
Hsing I Hsiang
Tai How Chen
Yu Lun Chang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97136065A priority Critical patent/TWI378908B/en
Publication of TW201012775A publication Critical patent/TW201012775A/en
Application granted granted Critical
Publication of TWI378908B publication Critical patent/TWI378908B/en

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種複合材料,尤指一種磁性介 電陶瓷複合材料。 【先前技術】 由於無線通訊發展日新月異,使得射頻元件不斷 往向頻化、積體化及模組化趨勢發展,而且對抗電磁 波干擾性能之要求也越來越高。因此如何開發出具高 性能、小體積之高頻(80〇·2〇〇〇ΜΗζ)複合式L/C EMI 渡波器,就成為重要之研究課題.但目前製作高頻複 合式L/C ΕΜΙ濾波器之方式多採用將多層不同功能的 介電及磁性層’以疊層技術堆疊共燒成複合元件。由 於此項技術牽涉到介電、磁性、導電材料之共燒行為, 而共燒不匹配性將引起介面反應及介面擴散,同時導 致元件内部產生極大之内應力,進而產生層裂 (delamination)、翹曲(camber)之現象。因此限制了此 類元件之開發速度。 由於利用堆疊多層不同功能的介電及磁性層來製 備L/C EMI複合元件,需考慮電感及電容材料之相容 ί·生使製備之困難度提高。倘若能製作同時擁有優異 南頻特性之磁及介電性質之複合材料,則可使高頻 ΕΜΙ濾波器之製程簡化並提昇複合式元件設計之自由 度及產品之良率。目前在製作複合式元件方面,使用 的方法多採用多層不同功能之介電及磁性層以積層低 5 1378908 共燒陶竟(LTCC)技術。由於不同材料間惊全士 J境、、。的不協 調(incompatibility)及燒結速率上的 的不一致 (densification rate mismatch),使得積層低溫共燒陶是 系統中易存在共燒缺陷、去敏密化、生成裂縫和起曲。 為了避免燒結缺陷之生成’可藉由添加助燒結 劑、低軟化點玻璃或是液相燒結於介電和磁性陶瓷系 統中,使燒結收縮速率的不一致情況降低到最小並降 低在熱處理時所產生的張應力。近年來出現另外一種 解決燒結時收縮速率不-狀方法,纟將介電與磁性 的陶曼粉末進行混和,該複合粉末經過燒結後為變成 為具有磁性與介電性質之複合陶瓷體。此方法可以避 免不同陶瓷材料系統層在燒結時的收縮速率不一致問 題,但仍然需要顧慮介電粉末與磁性粉末在燒結時的 協調性。IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to a composite material, and more particularly to a magnetic dielectric ceramic composite material. [Prior Art] Due to the rapid development of wireless communication, RF components are constantly moving toward frequency, integration and modularization, and the requirements for anti-electromagnetic interference performance are getting higher and higher. Therefore, how to develop a high-performance, small-volume high-frequency (80〇·2〇〇〇ΜΗζ) composite L/C EMI waver has become an important research topic. However, high-frequency composite L/C ΕΜΙ filtering is currently being produced. The method of the device is to use a plurality of dielectric and magnetic layers of different functions to be stacked and co-fired into a composite component by a lamination technique. Since this technology involves the co-firing behavior of dielectric, magnetic, and conductive materials, co-firing mismatch will cause interface reaction and interface diffusion, and at the same time cause great internal stress inside the component, resulting in delamination, The phenomenon of camber. This limits the speed of development of such components. Since L/C EMI composite components are fabricated by stacking multiple layers of dielectric and magnetic layers, it is necessary to consider the compatibility of the inductor and capacitor materials. If a composite material with both magnetic and dielectric properties of excellent south frequency characteristics can be produced, the process of the high frequency ΕΜΙ filter can be simplified and the freedom of composite component design and product yield can be improved. At present, in the production of composite components, the methods used are mostly multi-layer dielectric and magnetic layers with different functions to laminate low-level 1 1378908 co-fired ceramics (LTCC) technology. Because of the difference between different materials, the J. The incompatibility and the densification rate mismatch make the laminated low temperature co-fired ceramics susceptible to co-firing defects, de-sensitization, crack formation and initiation. In order to avoid the formation of sintering defects, the inconsistency of the sintering shrinkage rate can be minimized and reduced during the heat treatment by adding a sintering aid, a low softening point glass or a liquid phase sintering in a dielectric and magnetic ceramic system. The tensile stress. In recent years, another method for solving the shrinkage rate during sintering has been developed. The dielectric is mixed with a magnetic Tauman powder which is sintered to become a composite ceramic body having magnetic and dielectric properties. This method can avoid the inconsistency of the shrinkage rate of different ceramic material system layers during sintering, but still needs to consider the coordination of the dielectric powder and the magnetic powder during sintering.

Mitsubishi及Samsung即推出利用同時擁有介電 與性質之複合粉末’以分佈常數型(distHbuted e〇n_ 咖)線路方式料EMI渡波器。另外也可以利用不 同混和比例之陶瓷複合粉末作為低溫共燒陶瓷中介電 層與磁性層之緩衝層(buffer Uyer) ’使之成為積層元 件中介電層與磁性層之間的第三基質—stance)層, 來減緩因為燒結速率不一致而可能產生之缺陷及介電 層與磁性層之間的化學反應,進而得到可在低溫共燒 之材料,並同時具有介電與磁性之性質。t用之介電 鐵磁複合材料[丨,2]有Ti〇2-NiCuZn ferrites、 6 1378908Mitsubishi and Samsung are introducing EMI filters using a distributed constant type (distHbuted e〇n_ 咖) line method using a composite powder with both dielectric and properties. In addition, it is also possible to use ceramic composite powders of different mixing ratios as a buffer layer of a low-temperature co-fired ceramic dielectric layer and a magnetic layer to make it a third matrix between the dielectric layer and the magnetic layer of the build-up element. The layer is used to slow down the defects which may occur due to the inconsistent sintering rate and the chemical reaction between the dielectric layer and the magnetic layer, thereby obtaining a material which can be co-fired at a low temperature, and has both dielectric and magnetic properties. Dielectric ferromagnetic composite [丨, 2] has Ti〇2-NiCuZn ferrites, 6 1378908

Pb(MgW3Nb2/3)03-Pb(Zn1/3Nb2/3)03-PbTi03 、 (PMZNT)+Ni〇 2Cu〇 2Zn0 6Fe204 、Pb(MgW3Nb2/3)03-Pb(Zn1/3Nb2/3)03-PbTi03, (PMZNT)+Ni〇 2Cu〇 2Zn0 6Fe204,

BaTi03+NiG 2Cu0 2Zn0 6Fe丨 9604 ' 石榴石鐵酸鹽(garnet ferrite) + Pb(Zr〇 52Ti。48)〇3 與 Ba3C〇2Fe24041 + ZnTi〇3, 並可藉由調整介電材料與鐵磁材料之比例來改變性 質。BaTi03+NiG 2Cu0 2Zn0 6Fe丨9604 ' Garnet ferrite + Pb(Zr〇52Ti.48)〇3 and Ba3C〇2Fe24041 + ZnTi〇3, and can be adjusted by adjusting dielectric materials and ferromagnetic materials The ratio changes the nature.

目前文獻中所報導之介電材料系統多屬於強介電 性,在高頻區段(800-2000 MHz)多無法使用。此外, 其中之PMZNT及PZT皆為性質優異之介電材料,但 由於近年推行無鉛材料,所以已逐漸減少使用。常見 取而代之的介電材料為BaTi〇3與Ba0 · Nd2〇3. Ti〇2, 但燒結溫度常在950 以上,因此開發可在低溫燒結 並具有可調節性之介電·鐵磁複合材料,為目前相當 具有潛力的研究方向。 【發明内容.】The dielectric material systems reported in the literature are mostly ferroelectric and cannot be used in the high frequency section (800-2000 MHz). In addition, PMZNT and PZT are both excellent dielectric materials, but they have been gradually reduced in use due to the introduction of lead-free materials in recent years. The dielectric materials commonly used are BaTi〇3 and Ba0 · Nd2〇3. Ti〇2, but the sintering temperature is often above 950. Therefore, a dielectric/ferromagnetic composite material which can be sintered at a low temperature and has an adjustable property is developed. There is currently quite a potential research direction. [Summary of the Invention.]

有鑑於現有磁性介電陶瓷複合材料在高燒結溫度 :,往往對於材料性質造成缺陷,本發明之目的在於 提供一種磁性介電陶瓷複合材料,藉由混合介電與磁 瓷畚末以及適量的玻璃燒結助劑於低溫下進行燒 氣作出同時具備介電與磁性之複合材料。 為達成以上的目的,本發明之磁性介電陶瓷複合 材料係包含 )丨$陶曼材料,其成分係包含有鋇(Ba)、鈥 d)、叙(Bi)及欽(Ti)’其莫耳比例為知:出:们 7 !378908 =1 : 1.6 : 0.4 : 4 ; 燒,,。助劑,其成分係包含鉍(Bi)、硼(b)、矽(Si) * 及鋅(Zn),其莫耳比例為 Bi : B : Si : Zn = 25 : 30 : 35 . . 10,⑽結助劑佔彳電陶瓷材料與燒結助劑之總和的 25 wt% ;以及 一鐵氧磁體材料,其成分係為包含鎳(Ni)、鋼 (Cu)、辞(Zn)及鐵(Fe),其莫耳比例為Ni: Cu: & • Fe = 〇_58 : 0.12 : 〇·3 : K98。 較佳的Λ,該彳電陶瓷材料與燒結助劑之總和佔 整體磁性介電陶究複合材料的含量範圍& 2〇糾%至 8〇 wt%,該鐵氧磁體材料佔整體磁性介電陶究複合材 料之含量範圍從20_/〇至8〇wt%,該介電陶究材料、 燒結助劑與鐵氧磁體材料之總和構成該磁性介電陶兗 複合村料的100 wt%。 本發明可達成的具體功效包括: # 1 ·本發明開發出一能於低溫燒結(S 95〇。(^且 同時擁有優異高頻介電、磁性質複合材料’使得高頻 L/C ΕΜΙ複合元件之製程簡化並同時提昇複合式元件 設計之自由度及產品之良率。 2 .由於本發明之成分並不含鉛,所以為一環保 的無錯複合材料。 ’' 【實施方式】 本發明之磁性介電陶瓷複合材料係包含—介電陶 瓷材料、一燒結助劑與—鐵氧磁體材料,該介電陶瓷 1378908 材料之成分係包含有鋇(Ba)、鈥(Nd)、鉍(Bi)及鈦(Ti), 其莫耳比例為 Ba : Nd : Bi : Ti = 1 : 1.6 : 0.4 : 4,該 燒結助劑之成分係包含鉍(Bi)、硼(B)、矽(Si)及鋅 (Zn) ’ 其莫耳比例為 Bi : B : Si : Zn = 25 : 30 : 35 : 10, 該燒結助劑佔介電陶瓷材料與燒結助劑之總和(以下 簡稱B)的25wt°/。’該鐵氧磁體材料之成分係為包含鎳 (Nl)、銅(Cu)、辞(zn)及鐵(Fe),其莫耳比例為Ni: Cu :In view of the fact that existing magnetic dielectric ceramic composites are at high sintering temperatures: often causing defects in material properties, the object of the present invention is to provide a magnetic dielectric ceramic composite material by mixing dielectric and magnetic porcelain and a suitable amount of glass. The sintering aid is fired at a low temperature to produce a composite material having both dielectric and magnetic properties. In order to achieve the above object, the magnetic dielectric ceramic composite material of the present invention comprises: 丨$Taowman material, the composition of which includes bismuth (Ba), 鈥d), ruthenium (Bi) and chin (Ti) The ear ratio is known: out: we 7!378908 =1 : 1.6 : 0.4 : 4 ; burn,,. The auxiliary component contains bismuth (Bi), boron (b), bismuth (Si)* and zinc (Zn), and the molar ratio thereof is Bi:B:Si:Zn = 25:30:35 . . 10, (10) The auxiliaries account for 25 wt% of the sum of the cerium ceramic material and the sintering aid; and a ferrite magnet material whose composition is composed of nickel (Ni), steel (Cu), bis (Zn) and iron (Fe) ), the Mohr ratio is Ni: Cu: & • Fe = 〇_58 : 0.12 : 〇·3 : K98. Preferably, the sum of the electric ceramic material and the sintering aid accounts for the content range of the overall magnetic dielectric ceramic composite material & 2% correction to 8〇wt%, the ferrite magnet material accounts for the overall magnetic dielectric The content of the ceramic composite material ranges from 20_/〇 to 8〇wt%, and the sum of the dielectric ceramic material, the sintering aid and the ferrite magnet material constitutes 100 wt% of the magnetic dielectric ceramic composite material. Specific efficacies that can be achieved by the present invention include: #1 · The present invention develops a high-temperature L/C ΕΜΙ composite that can be sintered at a low temperature (S 95 〇. (and at the same time has excellent high-frequency dielectric, magnetic composite material' The process of the component simplifies and simultaneously increases the freedom of design of the composite component and the yield of the product. 2. Since the component of the present invention does not contain lead, it is an environmentally-friendly and error-free composite material. ''Embodiment> The present invention The magnetic dielectric ceramic composite material comprises a dielectric ceramic material, a sintering aid and a ferrite magnet material, and the composition of the dielectric ceramic 1378908 material comprises barium (Ba), strontium (Nd), and bismuth (Bi). And titanium (Ti), the molar ratio of Ba: Nd : Bi : Ti = 1 : 1.6 : 0.4 : 4, the composition of the sintering aid contains bismuth (Bi), boron (B), bismuth (Si) And zinc (Zn) 'the molar ratio is Bi : B : Si : Zn = 25 : 30 : 35 : 10 , the sintering aid accounts for 25wt ° of the sum of the dielectric ceramic material and the sintering aid (hereinafter referred to as B) The composition of the ferrite magnet material is nickel (Nl), copper (Cu), rhenium (zn) and iron (Fe). Ear ratio of Ni: Cu:

Zn . Fe = 〇·58 : 〇 12 : 〇 3 : i 98 (以下簡稱 n),上述 磁性介電陶瓷複合材料簡稱為BxNy,其中X為介電 陶瓷材料與燒結助劑之總和的含量,範圍從2 至8 (80wt%),y為鐵氧磁體材料之含量,範圍從2 (20wt%)至 8 (8〇wt%),x+y=i〇。 用來指示實施本發明的方法及材料,本發明的範圍岸 以所附之申請專利範圍為準。 實例一:介電陶瓷材料的製備Zn. Fe = 〇·58 : 〇12 : 〇3 : i 98 (hereinafter referred to as n), the above-mentioned magnetic dielectric ceramic composite material is abbreviated as BxNy, wherein X is the sum of the content of the dielectric ceramic material and the sintering aid, and the range From 2 to 8 (80 wt%), y is the content of the ferrite magnet material, ranging from 2 (20 wt%) to 8 (8 wt%), x + y = i 〇. The method and materials used to describe the invention are intended to be within the scope of the appended claims. Example 1: Preparation of Dielectric Ceramic Materials

^以下特舉幾個實例以使本發明之特徵及優點更為 /月楚仁以下之實例並非用來限制發明的範圍,而是The following examples are given to make the features and advantages of the present invention more in no way to limit the scope of the invention, but rather

Ti〇2為起始原料, 〇3 · 4Ti〇2之比例製 球磨濕混方式將依劑量配置Ti〇2 is the starting material, and the proportion of 〇3 · 4Ti〇2 is determined.

配置之原料粉末混 1* 至 12〇〇。〇:並 而得到一粉末,· 9 (3)粉末經XRD鏗定為純相之BaNd (44-0061) ’請參見第—圖所示(圖 BaNd2Ti4〇12)。 實例一.燒結助劑的製備 以H3B〇3、Bi203、Si〇2及Zn〇為起始原料 上述原料依 Bi: B: Si: Zn = 25: 30: 35: ίο# # a υ〈莫耳 比例製備為玻璃質燒結助劑粉末,製備過程如下.The raw material powder is mixed 1* to 12〇〇. 〇: and a powder is obtained, and 9 (3) powder is determined by XRD to be pure phase BaNd (44-0061) ‘see the figure-picture (Fig. BaNd2Ti4〇12). Example 1. Preparation of sintering aids Starting from H3B〇3, Bi203, Si〇2 and Zn〇 The above raw materials are based on Bi: B: Si: Zn = 25: 30: 35: ίο# # a υ The ratio is prepared as a glass sintering aid powder, the preparation process is as follows.

(1) 以瑪腦研缽利用加入酒精的方式將原料粉末 進行濕式混合,乾燥後得一樣品; 乃 (2) 將樣品置入白金坩鍋中以1〇 〇c/ ± + 又升溫 速率升至1000 〇C,持溫30分鐘後取出並於水中進行 淬冷’得到一玻璃質粉末; (3) 得到之玻璃粉末以球磨方式進行細化48 時; +(1) Wet mixing the raw material powder by adding alcohol to the horse brain mortar, and drying to obtain a sample; (2) placing the sample in a white gold crucible at a temperature of 1〇〇c/± + Raised to 1000 〇C, taken out after 30 minutes of holding temperature and quenched in water to obtain a vitreous powder; (3) The obtained glass powder is refined by ball milling for 48 hours;

1 6Bl〇4Ti4〇i2 中標示為 (4) 利用比重瓶量測玻璃粉末之密度約為 6.58 g/cm3 ; (5) 利用DTA量得玻璃粉末之熔點約為 641 0C。 實例三:鐵氧磁體材料之製備 以NiO、CuO、ZnO及Fe203為起始原料,將上 述原料依 Ni : Cu : Zn : Fe = 0.58 : 0.12 : 〇.3 : 1 A · y 〇 之莫耳比例製備鐵氧磁體材料粉末,製備過程如下. (1)以球磨濕混方式將依劑量配置之原料粉末〉、昆 合24小時,乾燥後得一樣品; 10 1378908 (2)樣品以4Y/min之升溫速率升至74〇(>c並持 溫2小時’隨後以自然爐冷方式降溫。 實例四:磁性介電陶瓷之製備1 6Bl〇4Ti4〇i2 is marked as (4) The density of the glass powder measured by the pycnometer is about 6.58 g/cm3; (5) The melting point of the glass powder by DTA is about 641 0C. Example 3: Preparation of ferrite magnet material NiO, CuO, ZnO and Fe203 were used as starting materials, and the above raw materials were made of Ni:Cu : Zn : Fe = 0.58 : 0.12 : 〇.3 : 1 A · y Proportionally prepared ferrite magnet material powder, the preparation process is as follows. (1) The raw material powder according to the dosage is arranged in a ball-wet wet mixing method, and the mixture is dried for 24 hours, and dried to obtain a sample; 10 1378908 (2) The sample is 4Y/min. The heating rate was raised to 74 〇 (>c and held for 2 hours) and then cooled by natural furnace cooling. Example 4: Preparation of Magnetic Dielectric Ceramics

將製得之介電陶瓷粉末加入玻璃質燒結助劑(以 下將介電陶絲末與玻璃質燒結助劑合稱為B),其中 燒結助劑佔B之25wt%,再將B與鐵氧磁體粉末(以 下簡稱N)以不同比例互相混和,混合後之樣品表示為 BxNy ’其中介電陶㈣料與燒結助劑之總和佔整 體樣品的含量比例,範圍從2(20抓)至8(8〇wt%), y為鐵氧磁體之佔整體樣品的含量比例,範圍從2 (20 Wt%)至 8 (80 wt%),其中 100 wt%) ’製備過程與材料性質量 x+y=io (亦即為 測結果如下:The prepared dielectric ceramic powder is added to the glass sintering aid (hereinafter, the dielectric ceramic fiber and the glass sintering aid are collectively referred to as B), wherein the sintering aid accounts for 25 wt% of B, and then B and ferrite The magnet powder (hereinafter referred to as N) is mixed with each other in different proportions, and the mixed sample is expressed as BxNy 'where the sum of the dielectric ceramic (four) material and the sintering aid accounts for the content ratio of the whole sample, ranging from 2 (20 scratches) to 8 ( 8〇wt%), y is the proportion of ferrite magnets in the whole sample, ranging from 2 (20 Wt%) to 8 (80 wt%), of which 100 wt%) 'Preparation process and material quality x+y =io (that is, the test results are as follows:

⑴將混合後之#品加入黏結劑(pvA,6m%)混 合均勻進:造粒’將造完粒之粉末填入13随之模具 】用單軸加壓成型機以70 Mpa持壓90秒製得生 ^,並再以冷均壓加駐⑽MPa以提升生胚密度, 另外:據以上方法製備量測電性所需t 20 mm之生 坏’里測磁性質所f之生坏則使用特別規格之環形 (生i Μ)胚體模具以單轴加廢至3GGMPa製得環形 ()燒結測試之進行同樣在 900 °C下進行,若 體有不夠敏密之情 丨月况’再嘗試以950。(:燒結,燒社 得到之樣品進行相對旦、 現、,、。 ί选、度之里測,體密度是先將樣 放入純水中連續考漉 瓦'弗8小時,再進行以阿基米梓 11 1378908 測,而相對密度=(體密度/理論密度)x丄〇〇%,其中, 複合材料之密度使用混合法則(mixing ruie)進行計 算:(1) Add the mixed ###################################################################################################### The raw material is produced, and the (10) MPa is added by cold equalization to increase the density of the green embryo. In addition, according to the above method, the t 20 mm of the measured electrical property is required to be used. The special specification of the ring (raw i Μ) embryo body mold is uniaxially added to 3GGMPa to make the ring () sintering test. It is also carried out at 900 °C. If the body is not sensitive enough, then the situation will be repeated. Take 950. (: Sintering, the sample obtained by the company is relatively dan, now,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Kemi 梓 11 1378908, and relative density = (body density / theoretical density) x 丄〇〇%, where the density of the composite is calculated using the mixing ruie:

_ WB+WN • ~^Db+Wn/Dn • WB .介電陶瓷材料與燒結助劑之總和重量; wN:鐵氧磁體材料之重量; DB :介電陶究材料與燒結助劑之總和的密度; 鲁 DN:鐵氧磁體材料之密度。 (3)對於900 °C下燒結之樣品而言,僅B6N4與 B8N2之相對密度達9〇%以上;於95〇 %下燒結之樣 。《而s ’除了 B2N8外’其於樣品之相對密度皆大於 90〇/〇 °對於B2N8而言’於9〇〇 〇c與950 〇c下燒結之 樣品其相對密度可由75%提昇至89%,顯示燒結溫度 的增加’燒結體的相對密度可有效地提升,請參見第 二圖所示; • (4)由微結構觀察得之,隨著X含量增加,晶粒 大小也隨著增加,請參見第三圖所示,上述微結構之 觀察係以掃描式電子顯微鏡(Hitachi,4100)觀察燒 結體之顯微結構’先將燒結體進行拋光,再將樣品置 於去離子水中以超音波震盪10分鐘,在低於燒結溫 -度50 °C的溫度下,持溫3〇分鐘進行熱蝕刻將樣品 以奴膠帶附著於載台上並塗佈導電銀膠; (5)由繞射結果得知不同比例之樣品中,主要為 12 1378908 NCZ之鐵氧磁體相及相’其中B2N8樣品即使額外増 加大量之玻璃助燒結劑,也並無新的二次相生成,上 述結晶相之鑑定以XRD (Siemems D5000,Cu-Ka)進 行相態之鑑定。掃瞄速度為0.04 Vsec.,掃瞒角度 0 )為 20。至 50。; (6) 對於950 °C下燒結之樣品而言,在較低之頻 率10 MHz至60 MHz之間介電常數呈現較低且較不 穩定之趨勢,在60 MHz至1000 MHz之間則可維持 一固定之相對介電常數’當樣品中之x含量增加,相 對介電常數也隨之上升,其相對介電常數 (10〜1000MHz)可在1〇至46之間作調整,請參見第四 圖所示; (7) 對於900 〇C下燒結之樣品而言,在頻率1〇 至100 MHz的區間中,初導磁係數可維持在一穩定之 數值,其數值(10至1〇〇 MHz)可以在2至14之間作 調整;超過100MHz之後.,初導磁係數隨著頻率呈現 連續變化,先達到一最大值然後持續下降,請參見第 五圖所示,上述電性與磁性之量測係利用lCr meter(YHP 4291A,YHP Co. Ltd.)在頻率 i MHz 至 1 GHz間量測環型樣品之初導磁係數及圓柱狀胚體之 介電常數》 綜上所述,本發明經9〇〇。(:燒結之樣品隨著介電 陶瓷材料含量的增加,相對介電常數(1〇至l〇〇〇MHz) 可在1 0至46之間作調整,初導磁係數(丨〇至!⑼μ沿) 13 I从在2 1 14之間作調整,磁性f之共振頻率可 门至100 MHz左右’因此為一可在低溫下燒結並具有 可調節性之磁性介電陶瓷複合材料。 ^ 【圖式簡單說明】 第-圖係為於12GG°C 了燒結所獲得之介電陶竟 材料粉末樣品的XRD圖譜。 第一圖係為各組成之磁性介電陶瓷複合材料樣品 的相對密度。 第二圖係為各組成之磁性介電陶瓷複合材料樣品 的SEM微結構(⑷MN8、⑻b4N0、⑷B0m、⑷ B8N2)。 第四圖係為950。(:下燒結所獲得之各組成之磁性 "電陶究複合材料的相對介電常數隨頻率之變化。 第五圖係為950。(:下燒結所獲得之各組成之磁性 介電陶瓷複合材料的初導磁係數隨頻率之變化。 【主要元件符號說明】 【參考文獻】 !· T.M. Peng, R.T. Hsu, and J.H. Jean, tlLow-fire processing and properties of ferrite + dielectric ceramic composite,” j. Am. Ceram. Soc.,89, 2822,(2006) 2. R.T. Hsu,T.M. Peng, and J.H. Jean,“Electrical properties of low-fire ferroelectric + ferromagnetic ceramic composite,” Jpn. J. Appl_ Phy·, 45,5841, (2006)_ WB+WN • ~^Db+Wn/Dn • WB. Total weight of dielectric ceramic material and sintering aid; wN: weight of ferrite magnet material; DB: sum of dielectric ceramic material and sintering aid Density; Lu DN: Density of ferrite magnet material. (3) For the sample sintered at 900 °C, only the relative density of B6N4 and B8N2 is more than 9〇%; the sample is sintered at 95〇%. "And s ' except for B2N8', the relative density of the samples is greater than 90 〇 / 〇 ° For B2N8 'the relative density of samples sintered at 9 〇〇〇 c and 950 〇 c can be increased from 75% to 89% , showing an increase in sintering temperature 'The relative density of the sintered body can be effectively improved, see the second figure; • (4) Observed by the microstructure, as the X content increases, the grain size also increases. Referring to the third figure, the observation of the above microstructure is carried out by scanning electron microscopy (Hitachi, 4100) to observe the microstructure of the sintered body. 'The sintered body is polished first, and then the sample is placed in deionized water to supersonicize. After shaking for 10 minutes, heat-etching was carried out for 3 〇 minutes at a temperature lower than the sintering temperature of 50 ° C. The sample was attached to the stage with a tape and coated with a conductive silver paste; (5) by diffraction results It is known that the samples of different proportions are mainly 12 1378908 NCZ ferrite magnet phase and phase 'B2N8 sample, even if a large amount of glass sintering aid is added, no new secondary phase is formed, and the above crystal phase is identified. XRD (Siemems D5000, Cu-Ka) Identification of the phase states. The scanning speed is 0.04 Vsec. and the broom angle 0) is 20. To 50. (6) For samples sintered at 950 °C, the dielectric constant is lower and less stable between 10 MHz and 60 MHz at lower frequencies, between 60 MHz and 1000 MHz. Maintaining a fixed relative dielectric constant' When the x content in the sample increases, the relative dielectric constant also increases, and the relative dielectric constant (10~1000MHz) can be adjusted from 1〇 to 46, see section (4) For samples sintered at 900 〇C, the initial permeability can be maintained at a stable value in the range of 1 〇 to 100 MHz, and the value (10 to 1 〇〇) (MHz) can be adjusted between 2 and 14; after 100MHz, the initial magnetic coefficient changes continuously with frequency, first reaches a maximum value and then continues to decrease, see the fifth figure, the above electrical and magnetic The measurement system uses the lCr meter (YHP 4291A, YHP Co. Ltd.) to measure the initial magnetic permeability of the ring sample and the dielectric constant of the cylindrical body between the frequencies i MHz and 1 GHz. The present invention has been passed through 9 〇〇. (: The sample with sintering increases with the content of dielectric ceramic material, and the relative dielectric constant (1〇 to l〇〇〇MHz) can be adjusted between 10 and 46. The initial magnetic permeability (丨〇到!(9)μ Between 13 I is adjusted between 2 1 14 and the resonance frequency of magnetic f can be gated to around 100 MHz. Therefore, it is a magnetic dielectric ceramic composite that can be sintered at low temperature and has adjustable properties. Brief description of the formula] The first figure is the XRD pattern of the powder sample of the dielectric ceramic material obtained by sintering at 12 GG ° C. The first figure is the relative density of the sample of the magnetic dielectric ceramic composite of each composition. The figure is the SEM microstructure of the magnetic dielectric ceramic composite sample of each composition ((4) MN8, (8) b4N0, (4) B0m, (4) B8N2). The fourth figure is 950. (: Magnetic composition of each composition obtained by sintering) The relative dielectric constant of the composite material varies with frequency. The fifth figure is 950. (The initial magnetic permeability of the magnetic dielectric ceramic composite of each composition obtained by sintering under the frequency changes. Description] [References] !· TM Peng, RT Hsu, and JH Jean, tlLow-fire processing and properties of ferrite + dielectric ceramic composite,” j. Am. Ceram. Soc., 89, 2822, (2006) 2. RT Hsu, TM Peng, and JH Jean "Electrical properties of low-fire ferroelectric + ferromagnetic ceramic composite," Jpn. J. Appl_ Phy·, 45, 5841, (2006)

Claims (1)

1378908 十、申請專利範圍: 1 · 一種磁性介電H複合㈣,其係包含 一介電陶瓷材料,Α Λ ”成分係包含有鋇(Ba)、鈦 _、錢(,鈦⑼,其莫耳比例為mi - = 1 : 1.6 : 0.4 : 4 ; -燒結助劑,其成分係包含鉍叫硼⑻矽⑻ 及鋅(Zn),其莫耳比例為Bi:B:si:Znm5: • 1〇’該燒結_介電陶竞材料與燒結助劑之總和的 2 5 wt% ;以及 -鐵氧磁體材料’其成分係為包含錄㈣、銅 _、鋅㈣及鐵㈣,其莫耳比例為m m: Fe = 0.58 : 0.12 : 0.3 : 1.98。 2 .如申請專利範圍第1項所述之磁性介電陶究 材料,其中該介電陶究材料與繞結助劑之總和佔 整體磁性介電陶免複合材料的含量範圍從2〇 • 8〇Wt%,該鐵氧磁體材料佔整體磁性介電 二 料之含量範圍從W至80wt%,該介電陶:是材:柯 燒結助劑與鐵氧磁體材料之總和構成該磁性、 複合材料的1 00 wt%。 I 十一、圖式: 如次頁 151378908 X. Patent application scope: 1 · A magnetic dielectric H composite (4), which contains a dielectric ceramic material, Α ”" component contains barium (Ba), titanium _, money (, titanium (9), its molar The ratio is mi - = 1 : 1.6 : 0.4 : 4 ; - sintering aid, the composition of which contains barium (8) bismuth (8) and zinc (Zn), and the molar ratio is Bi:B:si:Znm5: • 1〇 'The sintering_25 wt% of the sum of the dielectric materials and the sintering aids; and the ferrite magnet material's composition is the inclusion of (4), copper, zinc (tetra) and iron (four), the molar ratio of which is Mm: Fe = 0.58 : 0.12 : 0.3 : 1.98. 2. The magnetic dielectric ceramic material according to claim 1, wherein the sum of the dielectric ceramic material and the wrapping aid occupies the overall magnetic dielectric The content of the ceramic composite material ranges from 2〇•8〇Wt%, and the ferrite magnet material accounts for the content of the whole magnetic dielectric material from W to 80wt%. The dielectric ceramic material is: Ke sintering additive and The sum of the ferrite magnet materials constitutes 100% of the magnetic and composite materials. I XI, Schema: as shown in the next page 15
TW97136065A 2008-09-19 2008-09-19 Ceramic composite material with both dielectric and magnetic properties TWI378908B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97136065A TWI378908B (en) 2008-09-19 2008-09-19 Ceramic composite material with both dielectric and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97136065A TWI378908B (en) 2008-09-19 2008-09-19 Ceramic composite material with both dielectric and magnetic properties

Publications (2)

Publication Number Publication Date
TW201012775A TW201012775A (en) 2010-04-01
TWI378908B true TWI378908B (en) 2012-12-11

Family

ID=44829125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97136065A TWI378908B (en) 2008-09-19 2008-09-19 Ceramic composite material with both dielectric and magnetic properties

Country Status (1)

Country Link
TW (1) TWI378908B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810237A (en) * 2017-02-13 2017-06-09 哈尔滨工业大学 A kind of single-phase many iron ceramic materials and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668569B2 (en) * 2011-03-28 2015-02-12 Tdk株式会社 Dielectric porcelain composition and electronic component
TW201600489A (en) * 2014-06-30 2016-01-01 Walsin Technology Corp Low temperature heterogeneous co-fired magnetic dielectric ceramic composite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810237A (en) * 2017-02-13 2017-06-09 哈尔滨工业大学 A kind of single-phase many iron ceramic materials and preparation method thereof
CN106810237B (en) * 2017-02-13 2019-10-01 哈尔滨工业大学 Single-phase more iron ceramic materials of one kind and preparation method thereof

Also Published As

Publication number Publication date
TW201012775A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
CN106297957B (en) Dielectric combination and electronic unit
JP2003531808A (en) Low-temperature sintering low-loss dielectric ceramic composition for high frequency and method for producing the same
CN108424000B (en) Glass ceramic sintered body and coil electronic component
JP2023520615A (en) Frequency stable low dielectric microwave dielectric ceramic material and its preparation method
CN105541299B (en) Dielectric combination and electronic unit
KR20160098066A (en) Glass ceramics composition and coil electric device
TWI378908B (en) Ceramic composite material with both dielectric and magnetic properties
TWI586626B (en) Dielectric composition and electronic component
KR100808472B1 (en) Dielectric ceramic compositions and manufacturing method thereof
CN108975913B (en) ZnO-TiO2-Nb2O5Base LTCC material and preparation method thereof
CN102122557A (en) Low magnetic ferrite material and manufacturing method thereof
JP5454833B2 (en) Ceramic substrate and manufacturing method thereof
JP6575185B2 (en) Dielectric composition and electronic component
JP2017071523A (en) Dielectric composition and electronic component
JP4204329B2 (en) Method for producing oxide magnetic material
CN101357848A (en) Electronic ceramic composite preparation method by laser sintering
TWI377187B (en) Sintering additive and microwave dielectric ceramic using the same
Guo et al. Synthesis, dielectric and ferroelectric properties of BCZTL/BCZTM bilayer ceramics for energy storage applications
JP2004196652A (en) High-strength low-temperature firing ceramic composition, its manufacturing method, and laminated electronic component using it
JP5570205B2 (en) Magnetic sintered body, composite sintered body of magnetic body and dielectric, manufacturing method thereof, and electronic component using the same
JP5566183B2 (en) Dielectric powder and sintered body and capacitor using the same
JP2006156499A (en) Multiple-pattern substrate and glass ceramic board
TWI447089B (en) Ferrite composite and method for manufacturing the same
JP2010100511A (en) Composite sintered compact of magnetic substance and dielectric substance, and lc composite electronic component
TW201010960A (en) A low-fire dielectric-magnetic composition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees