JP5012932B2 - Dielectric porcelain composition and electronic component - Google Patents

Dielectric porcelain composition and electronic component Download PDF

Info

Publication number
JP5012932B2
JP5012932B2 JP2010040793A JP2010040793A JP5012932B2 JP 5012932 B2 JP5012932 B2 JP 5012932B2 JP 2010040793 A JP2010040793 A JP 2010040793A JP 2010040793 A JP2010040793 A JP 2010040793A JP 5012932 B2 JP5012932 B2 JP 5012932B2
Authority
JP
Japan
Prior art keywords
weight
dielectric
oxide
terms
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010040793A
Other languages
Japanese (ja)
Other versions
JP2011173776A (en
Inventor
大輔 佐藤
松巳 渡辺
亮 工藤
優貴 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010040793A priority Critical patent/JP5012932B2/en
Priority to CN201110043312.7A priority patent/CN102190489B/en
Publication of JP2011173776A publication Critical patent/JP2011173776A/en
Application granted granted Critical
Publication of JP5012932B2 publication Critical patent/JP5012932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は、電子部品の誘電体層などに用いられる誘電体磁器組成物に係り、さらに詳しくは、高周波数領域において誘電損失を低くすることができ、さらに高い比誘電率を示しながら温度特性が良好である誘電体磁器組成物およびそれを用いた電子部品に関する。   The present invention relates to a dielectric ceramic composition used for a dielectric layer of an electronic component. More specifically, the dielectric loss can be reduced in a high frequency region, and the temperature characteristic is exhibited while exhibiting a higher relative dielectric constant. The present invention relates to an excellent dielectric ceramic composition and an electronic component using the same.

近年、急速に進む電気機器の高性能化に伴い、電気回路の小型化、複雑化もまた急速に進んでいる。そのため、電子部品もより一層の小型化、高性能化が求められており、たとえば、所定の温度域において誘電率(容量)の温度特性が良好な誘電体磁器組成物が求められている。   In recent years, along with rapid progress in performance of electrical equipment, miniaturization and complexity of electrical circuits are also progressing rapidly. For this reason, electronic components are required to be further reduced in size and performance. For example, a dielectric ceramic composition having a good temperature characteristic of dielectric constant (capacitance) in a predetermined temperature range is required.

誘電率温度特性は要求される特性に応じて種々の規格が存在するが、たとえばJIS規格のSL特性がある。このSL特性を満足する誘電体磁器組成物としては、SrTiO−CaTiO−Bi−TiO系の誘電体磁器組成物などが挙げられるが、比誘電率が200〜300程度と低く、小型化、高性能化には対応できないという問題があった。 There are various standards for the dielectric temperature characteristics depending on the required characteristics. For example, there are SL characteristics of JIS standards. Examples of the dielectric ceramic composition satisfying this SL characteristic include SrTiO 3 —CaTiO 3 —Bi 2 O 3 —TiO 2 based dielectric ceramic compositions, etc., but the relative dielectric constant is as low as about 200 to 300. However, there is a problem that it cannot cope with downsizing and high performance.

一方、特許文献1には、SrTiO−Bi−TiO−MgO系の誘電体磁器組成物が記載されている。この誘電体磁器組成物は、比誘電率は比較的高いものの、誘電率温度特性が劣る傾向にあった。 On the other hand, Patent Document 1 describes a dielectric ceramic composition based on SrTiO 3 —Bi 2 O 3 —TiO 2 —MgO. This dielectric ceramic composition has a relatively high dielectric constant, but tends to have a poor dielectric constant temperature characteristic.

特開昭50−68000号公報Japanese Patent Laid-Open No. 50-68000

本発明は、このような実状に鑑みてなされ、その目的は、セラミックコンデンサなどの電子部品の誘電体層に用いられ、高周波数領域において誘電損失を低くすることができ、しかも誘電率温度特性に優れ、高い比誘電率を有する誘電体磁器組成物を提供することである。また、本発明は、このような誘電体磁器組成物を用いて得られる電子部品を提供することも目的とする。   The present invention has been made in view of such a situation, and its object is to be used for a dielectric layer of an electronic component such as a ceramic capacitor, which can reduce dielectric loss in a high frequency region, and has a dielectric constant temperature characteristic. An object of the present invention is to provide an excellent dielectric ceramic composition having a high relative dielectric constant. Another object of the present invention is to provide an electronic component obtained using such a dielectric ceramic composition.

上記目的を達成するために、本発明に係る誘電体磁器組成物は、
酸化ストロンチウムを、SrTiO換算で、29.34〜44.70重量%、
酸化ビスマスを、Bi換算で、22.56〜28.48重量%、
酸化チタンを、TiO換算で、26.36〜30.27重量%、
酸化マグネシウムを、MgO換算で、3.61〜5.56重量%、
酸化ネオジムを、Nd換算で、1.86〜3.42重量%、
酸化マンガンを、MnO換算で、0.21〜0.99重量%、
酸化ケイ素を、SiO換算で、0.06〜0.50重量%含有することを特徴とする。
In order to achieve the above object, the dielectric ceramic composition according to the present invention comprises:
Strontium oxide is 29.34 to 44.70% by weight in terms of SrTiO 3 ,
Bismuth oxide, 22.56 to 28.48% by weight in terms of Bi 2 O 3 ,
Titanium oxide, in terms of TiO 2 , 26.36-30.27% by weight,
Magnesium oxide in terms of MgO, 3.61 to 5.56% by weight,
1.86 to 3.42% by weight of neodymium oxide in terms of Nd 2 O 3 ,
Manganese oxide is 0.21 to 0.99% by weight in terms of MnO,
Silicon oxide, in terms of SiO 2, characterized in that it contains 0.06 to 0.50 wt%.

本発明に係る誘電体磁器組成物は、各成分を上記の組成および含有量とすることにより、高周波数領域において誘電損失を低くしつつ、高い比誘電率および良好な温度特性を有する誘電体磁器組成物を得ることができる。   The dielectric ceramic composition according to the present invention has a high dielectric constant and good temperature characteristics while reducing dielectric loss in a high frequency region by setting each component to the above composition and content. A composition can be obtained.

本発明によれば、上記の誘電体磁器組成物で構成してある誘電体層を有する電子部品が提供される。本発明に係る電子部品としては、特に限定されないが、たとえば液晶パネルのバックライト用部品や樹脂モールドされた表面実装部品などが例示される。   According to the present invention, there is provided an electronic component having a dielectric layer made of the above dielectric ceramic composition. Although it does not specifically limit as an electronic component which concerns on this invention, For example, the components for backlight of a liquid crystal panel, the surface mounting components resin-molded, etc. are illustrated.

本発明の誘電体磁器組成物は、各成分の比率を上記所定の範囲としている。その結果、高い周波数領域において誘電損失を低くすることができ、しかも、誘電率温度特性に優れ、比誘電率が高い誘電体磁器組成物を得ることができる。   In the dielectric ceramic composition of the present invention, the ratio of each component is in the predetermined range. As a result, it is possible to obtain a dielectric ceramic composition having a low dielectric loss in a high frequency region and having excellent dielectric constant temperature characteristics and a high relative dielectric constant.

このような本発明の誘電体磁器組成物を、セラミックコンデンサなどの電子部品の誘電体層に用いることにより、高性能でありながら、小型化(低背化)を実現する電子部品を提供することができる。   By using such a dielectric ceramic composition of the present invention in a dielectric layer of an electronic component such as a ceramic capacitor, an electronic component that achieves miniaturization (low profile) while achieving high performance is provided. Can do.

図1(A)は本発明の一実施形態に係るセラミックコンデンサの正面図、図1(B)は本発明の一実施形態に係るセラミックコンデンサの側面断面図である。FIG. 1A is a front view of a ceramic capacitor according to an embodiment of the present invention, and FIG. 1B is a side sectional view of the ceramic capacitor according to an embodiment of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

セラミックコンデンサ2
図1(A)、図1(B)に示すように、本実施形態に係るセラミックコンデンサ2は、誘電体層10と、その対向表面に形成された一対の端子電極12,14と、この端子電極12,14に、それぞれ接続されたリード端子6,8とを有する構成となっており、これらは保護樹脂4に覆われている。セラミックコンデンサ2の形状は、目的や用途に応じて適宜決定すればよいが、本実施形態では、誘電体層10が円板形状となっている円板型のコンデンサである。また、そのサイズも目的や用途に応じて適宜決定すればよいが、通常、直径が2.5〜14.5mm程度、好ましくは3.0〜4.0mm程度である。
Ceramic capacitor 2
As shown in FIGS. 1A and 1B, a ceramic capacitor 2 according to this embodiment includes a dielectric layer 10, a pair of terminal electrodes 12 and 14 formed on the opposing surface thereof, and the terminals. The lead terminals 6 and 8 are respectively connected to the electrodes 12 and 14, and these are covered with the protective resin 4. The shape of the ceramic capacitor 2 may be appropriately determined according to the purpose and application. In the present embodiment, the ceramic capacitor 2 is a disk-type capacitor in which the dielectric layer 10 has a disk shape. Further, the size may be appropriately determined depending on the purpose and application, but the diameter is usually about 2.5 to 14.5 mm, preferably about 3.0 to 4.0 mm.

誘電体層10
誘電体層10は、本実施形態に係る誘電体磁器組成物から構成されており、本実施形態に係る誘電体磁器組成物は、酸化ストロンチウムと、酸化ビスマスと、酸化チタンと、酸化マグネシウムと、酸化ネオジムと、酸化マンガンと、酸化ケイ素とを含有する。各成分の含有量は以下の通りである。
Dielectric layer 10
The dielectric layer 10 is composed of a dielectric ceramic composition according to the present embodiment, and the dielectric ceramic composition according to the present embodiment includes strontium oxide, bismuth oxide, titanium oxide, magnesium oxide, Contains neodymium oxide, manganese oxide, and silicon oxide. The content of each component is as follows.

酸化ストロンチウムは、SrTiO換算で、29.34〜44.70重量%、好ましくは33.12〜41.62重量%、より好ましくは37.83〜37.99重量%含有される。 Strontium oxide is contained in an amount of 29.34 to 44.70% by weight, preferably 33.12 to 41.62% by weight, more preferably 37.83 to 39.99% by weight in terms of SrTiO 3 .

酸化ビスマスは、Bi換算で、22.56〜28.48重量%、好ましくは23.66〜27.30重量%、より好ましくは26.06〜26.15重量%含有される。 Bismuth oxide is contained in an amount of 22.56 to 28.48% by weight, preferably 23.66 to 27.30% by weight, more preferably 26.06 to 26.15% by weight in terms of Bi 2 O 3 .

酸化チタンは、TiO換算で、26.36〜30.27重量%、好ましくは27.18〜29.52重量%、より好ましくは27.86〜27.99重量%含有される。 Titanium oxide is contained in an amount of 26.36 to 30.27% by weight, preferably 27.18 to 29.52% by weight, more preferably 27.86 to 27.99% by weight in terms of TiO 2 .

酸化マグネシウムは、MgO換算で、3.61〜5.56重量%、好ましくは4.19〜5.14重量%、より好ましくは4.71〜4.75重量%含有される。   Magnesium oxide is contained in an amount of 3.61 to 5.56% by weight, preferably 4.19 to 5.14% by weight, more preferably 4.71 to 4.75% by weight in terms of MgO.

酸化ネオジムは、Nd換算で、1.86〜3.42重量%、好ましくは2.13〜3.02重量%、より好ましくは2.62〜2.64重量%含有される。 Neodymium oxide is contained in an amount of 1.86 to 3.42% by weight, preferably 2.13 to 3.02% by weight, more preferably 2.62 to 2.64% by weight in terms of Nd 2 O 3 .

酸化マンガンは、MnO換算で、0.21〜0.99重量%、好ましくは0.29〜0.99重量%、より好ましくは0.38〜0.39重量%含有される。   Manganese oxide is contained in an amount of 0.21 to 0.99% by weight, preferably 0.29 to 0.99% by weight, more preferably 0.38 to 0.39% by weight in terms of MnO.

酸化ケイ素は、SiO換算で、0.06〜0.50重量%、好ましくは0.10〜0.49重量%、より好ましくは0.19〜0.21重量%含有される。 Silicon oxide in terms of SiO 2, 0.06 to 0.50 wt%, preferably from 0.10 to 0.49 wt%, more preferably containing 0.19 to 0.21 wt%.

上記のような組成で各成分を含有する誘電体磁器組成物は、比較的高い比誘電率(たとえば、650以上)を示すとともに、高周波領域において誘電損失が小さく(たとえば100KHzにおいて0.30%以下)、誘電率温度特性に優れる(たとえば、JIS規格のSL特性を満足)。   The dielectric ceramic composition containing each component with the above composition exhibits a relatively high relative dielectric constant (for example, 650 or more) and has a small dielectric loss in a high frequency region (for example, 0.30% or less at 100 KHz). ) Excellent dielectric constant temperature characteristics (for example, satisfying JIS standard SL characteristics).

誘電体層10の厚みは、特に限定されず、用途等に応じて適宜決定すれば良いが、好ましくは0.3〜2mmである。   The thickness of the dielectric layer 10 is not particularly limited, and may be appropriately determined according to the use or the like, but is preferably 0.3 to 2 mm.

端子電極12,14
端子電極12,14は、導電材で構成される。端子電極12,14に用いられる導電材は、たとえば、Cu、Cu合金、Ag、Ag合金、In−Ga合金等を主成分として含む。これらの中では、Cu、Cu合金が好ましい。また、端子電極12,14は、これらの金属または合金の単層構造でもあってもよく、複層構造であってもよい。
Terminal electrodes 12, 14
The terminal electrodes 12 and 14 are made of a conductive material. The conductive material used for the terminal electrodes 12 and 14 includes, for example, Cu, Cu alloy, Ag, Ag alloy, In—Ga alloy or the like as a main component. In these, Cu and Cu alloy are preferable. The terminal electrodes 12 and 14 may have a single layer structure of these metals or alloys, or may have a multilayer structure.

セラミックコンデンサの製造方法
次に、本実施形態に係るセラミックコンデンサの製造方法について説明する。まず、焼成後に図1に示す誘電体層10を形成することとなる誘電体磁器組成物の粉末を製造する。
Next, a method for manufacturing a ceramic capacitor according to this embodiment will be described. First, a dielectric ceramic composition powder that will form the dielectric layer 10 shown in FIG. 1 after firing is manufactured.

まず、誘電体磁器組成物を構成する各成分の原料を準備する。各成分の原料としては、特に限定されず、上記した各成分の酸化物や複合酸化物、または焼成によりこれら酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、硝酸塩、水酸化物、有機金属化合物などから適宜選択して用いることができる。たとえば、MnCO 、MgCOなどの炭酸化物や、TiO などの酸化物を用いることができる。また、チタン酸ストロンチウムの原料は、固相法により製造してもよいし、水熱合成法や蓚酸塩法などの液相法により製造してもよいが、製造コストの面から、固相法により製造することが好ましい。 First, raw materials for each component constituting the dielectric ceramic composition are prepared. The raw material of each component is not particularly limited, and the above-described oxides and complex oxides of each component, or various compounds that become these oxides and complex oxides upon firing, such as carbonates, nitrates, hydroxides, organics It can be appropriately selected from metal compounds and the like. For example, a carbonate such as MnCO 3 or MgCO 3 or an oxide such as TiO 2 can be used. In addition, the raw material of strontium titanate may be manufactured by a solid phase method or a liquid phase method such as a hydrothermal synthesis method or an oxalate method. It is preferable to manufacture by.

次いで、各成分の原料を、上記した所定の組成となるように配合し、水を分散媒として75重量%程度の濃度において、ボールミルなどを用いて、湿式混合する。湿式混合後のスラリーを乾燥して、誘電体磁器組成物の粉末を得る。   Next, the raw materials of each component are blended so as to have the above-described predetermined composition, and wet-mixed using water as a dispersion medium at a concentration of about 75% by weight using a ball mill or the like. The slurry after wet mixing is dried to obtain a dielectric ceramic composition powder.

次いで、得られた誘電体磁器組成物粉末にバインダなどを添加して造粒し、得られた造粒物を、所定の大きさを有する円板状に成形することにより、グリーン成形体とする。そして、得られたグリーン成形体を、焼成することにより、焼結体としての誘電体磁器組成物を得る。なお、焼成の条件としては、特に限定されないが、保持温度が好ましくは1200〜1340℃であり、焼成雰囲気を空気中とすることが好ましい。   Subsequently, a binder or the like is added to the obtained dielectric ceramic composition powder and granulated, and the obtained granulated product is formed into a disk shape having a predetermined size to obtain a green molded body. . And the dielectric ceramic composition as a sintered compact is obtained by baking the obtained green molded object. The firing conditions are not particularly limited, but the holding temperature is preferably 1200 to 1340 ° C., and the firing atmosphere is preferably in the air.

そして、得られた誘電体磁器組成物の焼結体の主表面に、端子電極を印刷し、必要に応じて焼き付けすることにより、端子電極12,14を形成する。その後、端子電極12,14に、ハンダ付等により、リード端子6,8を接合し、最後に、素子本体を保護樹脂4で覆うことにより、図1(A)、図1(B)に示すような単板型セラミックコンデンサを得る。   And terminal electrodes 12 and 14 are formed by printing a terminal electrode on the main surface of the sintered body of the obtained dielectric ceramic composition, and baking it as necessary. Thereafter, the lead terminals 6 and 8 are joined to the terminal electrodes 12 and 14 by soldering or the like, and finally, the element main body is covered with the protective resin 4 so as to be shown in FIGS. 1 (A) and 1 (B). Such a single plate type ceramic capacitor is obtained.

このようにして製造された本発明のセラミックコンデンサは、リード端子6,8を介してプリント基板上などに実装され、各種電子機器等に使用される。   The ceramic capacitor of the present invention thus manufactured is mounted on a printed circuit board or the like via lead terminals 6 and 8, and is used for various electronic devices.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々異なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, it can implement in a various aspect within the range which does not deviate from the summary of this invention. .

たとえば、上述した実施形態では、本発明に係る電子部品として単板型セラミックコンデンサを例示したが、本発明に係る電子部品としては、単板型セラミックコンデンサに限定されず、上記した誘電体磁器組成物粉末を含む誘電体ペーストおよび電極ペーストを用いた通常の印刷法やシート法により作製される積層型セラミックコンデンサであっても良い。   For example, in the above-described embodiment, the single plate type ceramic capacitor is exemplified as the electronic component according to the present invention. However, the electronic component according to the present invention is not limited to the single plate type ceramic capacitor, and the dielectric ceramic composition described above. A multilayer ceramic capacitor manufactured by a normal printing method or a sheet method using a dielectric paste containing an object powder and an electrode paste may be used.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1
まず、原料としてSrTiO、Bi、TiO、MgCO、Nd(OH)、MnCOおよびSiOをそれぞれ準備した。準備した原料を、表1に示す重量組成となるように、それぞれ秤量し、分散媒として水を用いてボールミルにより湿式混合し、スラリーを調製した。スラリーの固形分濃度は75重量%とした。このスラリーを乾燥して誘電体磁器組成物の粉末を得た。
Example 1
First, SrTiO 3 , Bi 2 O 3 , TiO 2 , MgCO 3 , Nd (OH) 3 , MnCO 3 and SiO 2 were prepared as raw materials. The prepared raw materials were each weighed so as to have the weight composition shown in Table 1, and wet-mixed with a ball mill using water as a dispersion medium to prepare a slurry. The solid content concentration of the slurry was 75% by weight. This slurry was dried to obtain a dielectric ceramic composition powder.

なお、MgCO、Nd(OH)およびMnCOは、焼成後にそれぞれ酸化物として含有されることになる。 In addition, MgCO 3 , Nd (OH) 3 and MnCO 3 will be contained as oxides after firing.

次いで、得られた誘電体磁器組成物の粉末に、バインダとしてポリビニルアルコール水溶液を、固形分濃度が1.93重量%となるように添加、混合し、スプレードライヤーにより造粒して、メッシュパスを通して造粒粉を得た。その後、得られた造粒粉を3t/cmの圧力で成形することにより、直径12mm、厚さ約1.2mmの円盤状のグリーン成形体を得た。 Next, an aqueous polyvinyl alcohol solution as a binder is added and mixed to the obtained dielectric ceramic composition powder so as to have a solid content concentration of 1.93% by weight, granulated by a spray dryer, and passed through a mesh pass. Granulated powder was obtained. Thereafter, the obtained granulated powder was molded at a pressure of 3 t / cm 2 to obtain a disk-shaped green molded body having a diameter of 12 mm and a thickness of about 1.2 mm.

次いで、得られたグリーン成形体を、空気中、1200〜1340℃、2時間の条件で焼成することにより、円盤状の焼結体を得た。そして、得られた焼結体の主表面にAg電極を塗布し、さらに空気中、650℃で20分間焼付け処理を行うことによって、図1に示すような円盤状のセラミックコンデンサの試料を得た。得られたコンデンサ試料の誘電体層10の厚みは約1mmであった。そして、得られた各コンデンサ試料について、以下の方法により、比誘電率、誘電損失および誘電率温度特性をそれぞれ評価した。評価結果を表1に示す。   Next, the obtained green molded body was fired in air at 1200 to 1340 ° C. for 2 hours to obtain a disk-shaped sintered body. And the Ag electrode was apply | coated to the main surface of the obtained sintered compact, and also the sample of the disk-shaped ceramic capacitor as shown in FIG. 1 was obtained by performing the baking process in air at 650 degreeC for 20 minutes. . The thickness of the dielectric layer 10 of the obtained capacitor sample was about 1 mm. Each of the obtained capacitor samples was evaluated for dielectric constant, dielectric loss, and dielectric constant temperature characteristics by the following methods. The evaluation results are shown in Table 1.

比誘電率ε
比誘電率εは、コンデンサ試料に対し、基準温度25℃において、デジタルLCRメータ(YHP社製4274A)にて、周波数1kHz,入力信号レベル(測定電圧)1.0Vrmsの条件下で測定された静電容量から算出した(単位なし)。比誘電率は高いほうが好ましく、本実施例では、650以上を良好とした。結果を表1に示す。
Dielectric constant ε
The relative dielectric constant ε was measured on a capacitor sample at a reference temperature of 25 ° C. using a digital LCR meter (4274A manufactured by YHP) under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms. Calculated from the electric capacity (no unit). It is preferable that the relative dielectric constant is high. In this example, 650 or more was considered good. The results are shown in Table 1.

誘電損失(tanδ)
誘電損失(tanδ)は、コンデンサ試料に対し、基準温度25℃において、デジタルLCRメータ(YHP社製4274A)にて、周波数1kHzおよび100kHz,入力信号レベル(測定電圧)1.0Vrmsの条件下で測定した。誘電損失は低いほうが好ましく、本実施例では、周波数100kHzで0.30%以下を良好とした。結果を表1に示す。
Dielectric loss (tan δ)
Dielectric loss (tan δ) is measured with a digital LCR meter (YHP 4274A) at a reference temperature of 25 ° C. and at a frequency of 1 kHz and 100 kHz and an input signal level (measurement voltage) of 1.0 Vrms with respect to a capacitor sample. did. The dielectric loss is preferably as low as possible. In this example, 0.30% or less was considered good at a frequency of 100 kHz. The results are shown in Table 1.

誘電率温度特性
コンデンサ試料に対し、−25〜85℃の温度範囲で1Vの電圧での静電容量を測定し、+20℃での静電容量に対する誘電率の変化率(単位はppm/℃)を算出した。本実施例では、変化率が+350〜−1000ppm/℃の範囲にあるものを良好とした(JIS規格のSL特性)。結果を表1に示す。なお、表1では85℃での変化率を示しており、この変化率が上記の範囲にある試料は全てSL特性を満足していた。
Dielectric constant temperature characteristics Capacitor samples were measured for capacitance at a voltage of 1 V in the temperature range of −25 to 85 ° C., and the change rate of dielectric constant with respect to the capacitance at + 20 ° C. (unit: ppm / ° C.) Was calculated. In this example, a sample having a change rate in the range of +350 to −1000 ppm / ° C. was regarded as good (SL characteristic of JIS standard). The results are shown in Table 1. Table 1 shows the change rate at 85 ° C., and all the samples having this change rate in the above range satisfied the SL characteristics.

Figure 0005012932
Figure 0005012932

表1より、誘電体磁器組成物の組成が、本発明の範囲内である場合(試料番号2〜4、7〜10、13〜16、19〜21、24〜26、29〜32、36〜40)には、比誘電率650以上、誘電損失(100kHz)0.30%以下、−25℃〜85℃の全範囲において20℃に対する誘電率変化率+350〜−1000ppm/℃(JIS規格のSL特性)を満足していることが確認できた。   From Table 1, when the composition of the dielectric ceramic composition is within the scope of the present invention (sample numbers 2 to 4, 7 to 10, 13 to 16, 19 to 21, 24 to 26, 29 to 32, 36 to 40) includes a relative dielectric constant of 650 or more, a dielectric loss (100 kHz) of 0.30% or less, and a change rate of dielectric constant with respect to 20 ° C. in the entire range of −25 ° C. to 85 ° C. + 350 to −1000 ppm / ° C. (SL of JIS standard) It was confirmed that the characteristics were satisfied.

これに対し、誘電体磁器組成物の組成が、本発明の範囲外である場合(試料番号1、5、6、11、12、17、18、22、23、27、28、33〜35および41)には、比誘電率、誘電損失(100kHz)、誘電率温度特性の少なくとも1つが、悪化していることが確認できた。   On the other hand, when the composition of the dielectric ceramic composition is out of the scope of the present invention (sample numbers 1, 5, 6, 11, 12, 17, 18, 22, 23, 27, 28, 33-35 and 41), it was confirmed that at least one of the dielectric constant, dielectric loss (100 kHz), and dielectric constant temperature characteristic was deteriorated.

実施例2
Ndの代わりに、表2に示す酸化物を表2に示す量で含有させた以外は、実施例1と同様にして、コンデンサの試料を作製し、実施例1と同様の特性評価を行った。結果を表2に示す。
Example 2
A capacitor sample was prepared in the same manner as in Example 1 except that the oxide shown in Table 2 was contained in the amount shown in Table 2 instead of Nd 2 O 3 , and the same characteristic evaluation as in Example 1 was performed. Went. The results are shown in Table 2.

Figure 0005012932
Figure 0005012932

表2より、Ndの代わりに、表2に示す酸化物を用いた場合(試料番号51〜66)、比誘電率、誘電損失(100kHz)、誘電率温度特性の少なくとも1つが、大幅に悪化していることが確認できた。この傾向は酸化物の含有量を変化させても同様であった。 From Table 2, when using the oxide shown in Table 2 instead of Nd 2 O 3 (Sample Nos. 51 to 66), at least one of relative dielectric constant, dielectric loss (100 kHz), and dielectric constant temperature characteristics is significantly It was confirmed that it was getting worse. This tendency was the same even when the oxide content was changed.

2… セラミックコンデンサ
4… 保護樹脂
6,8… リード端子
10… 誘電体層
12,14… 端子電極
2 ... Ceramic capacitor 4 ... Protective resin 6, 8 ... Lead terminal 10 ... Dielectric layer 12, 14 ... Terminal electrode

Claims (2)

酸化ストロンチウムを、SrTiO換算で、29.34〜44.70重量%、
酸化ビスマスを、Bi換算で、22.56〜28.48重量%、
酸化チタンを、TiO換算で、26.36〜30.27重量%、
酸化マグネシウムを、MgO換算で、3.61〜5.56重量%、
酸化ネオジムを、Nd換算で、1.86〜3.42重量%、
酸化マンガンを、MnO換算で、0.21〜0.99重量%、
酸化ケイ素を、SiO換算で、0.06〜0.50重量%含有することを特徴とする誘電体磁器組成物。
Strontium oxide is 29.34 to 44.70% by weight in terms of SrTiO 3 ,
Bismuth oxide, 22.56 to 28.48% by weight in terms of Bi 2 O 3 ,
Titanium oxide, in terms of TiO 2 , 26.36-30.27% by weight,
Magnesium oxide in terms of MgO, 3.61 to 5.56% by weight,
1.86 to 3.42% by weight of neodymium oxide in terms of Nd 2 O 3 ,
Manganese oxide is 0.21 to 0.99% by weight in terms of MnO,
A dielectric ceramic composition comprising 0.06 to 0.50% by weight of silicon oxide in terms of SiO 2 .
請求項1に記載の誘電体磁器組成物で構成してある誘電体層を有する電子部品。   The electronic component which has a dielectric material layer comprised with the dielectric material ceramic composition of Claim 1.
JP2010040793A 2010-02-25 2010-02-25 Dielectric porcelain composition and electronic component Active JP5012932B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010040793A JP5012932B2 (en) 2010-02-25 2010-02-25 Dielectric porcelain composition and electronic component
CN201110043312.7A CN102190489B (en) 2010-02-25 2011-02-18 Dielectric ceramic composition and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040793A JP5012932B2 (en) 2010-02-25 2010-02-25 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
JP2011173776A JP2011173776A (en) 2011-09-08
JP5012932B2 true JP5012932B2 (en) 2012-08-29

Family

ID=44599462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040793A Active JP5012932B2 (en) 2010-02-25 2010-02-25 Dielectric porcelain composition and electronic component

Country Status (2)

Country Link
JP (1) JP5012932B2 (en)
CN (1) CN102190489B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061508B1 (en) 2013-09-05 2020-01-02 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101659143B1 (en) 2014-04-16 2016-09-22 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101548864B1 (en) 2014-04-18 2015-08-31 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR102115523B1 (en) 2014-12-08 2020-05-26 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN104837309B (en) * 2015-04-16 2018-01-23 北京赛乐米克材料科技有限公司 A kind of black ceramic part for electronic equipment and preparation method thereof
CN114380590B (en) * 2022-01-25 2022-10-28 山东国瓷功能材料股份有限公司 Titanium oxide-based ceramic filler with high dielectric property and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520609B2 (en) * 1973-10-23 1980-06-04
JPS62295304A (en) * 1986-06-14 1987-12-22 株式会社村田製作所 Dielectric ceramic composition
JP4785107B2 (en) * 2003-07-24 2011-10-05 株式会社村田製作所 Dielectric ceramic composition and ceramic electronic component
DE102004033652B4 (en) * 2004-07-12 2011-11-10 Schott Ag Use of a borosilicate glass for the production of gas discharge lamps
CN100519472C (en) * 2004-09-30 2009-07-29 Tdk株式会社 Dielectric porcelain composition and method for production thereof
JP2007091551A (en) * 2005-09-29 2007-04-12 Tdk Corp Dielectric ceramic composition
CN101033132B (en) * 2007-02-13 2010-10-13 电子科技大学 Middle-temperature sintering high temperature stabilization type ceramic capacitor dielectric material

Also Published As

Publication number Publication date
CN102190489B (en) 2014-11-05
JP2011173776A (en) 2011-09-08
CN102190489A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5272754B2 (en) Dielectric porcelain composition and electronic component
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP5278682B2 (en) Dielectric porcelain composition and electronic component
JP3940424B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP5835011B2 (en) Dielectric porcelain composition and electronic component
JP5012932B2 (en) Dielectric porcelain composition and electronic component
JP5835012B2 (en) Dielectric porcelain composition and electronic component
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
JP5910317B2 (en) Dielectric porcelain composition and electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
JP5418323B2 (en) Dielectric porcelain composition and electronic component
JP2008254935A (en) Dielectric ceramic composition, composite electronic component, and laminated ceramic capacitor
JP6413861B2 (en) Dielectric porcelain composition and electronic component
JP4946822B2 (en) Dielectric porcelain composition and electronic component
JP2007161538A (en) Reduction resistant dielectric ceramic composition, electronic component and laminated ceramic capacitor
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP2008162862A (en) Dielectric porcelain composition and electronic component
JP6132668B2 (en) Dielectric porcelain composition and electronic component
JP5668569B2 (en) Dielectric porcelain composition and electronic component
JP7419703B2 (en) Dielectric compositions and electronic components
JP5035278B2 (en) Dielectric porcelain composition and electronic component
JP6020068B2 (en) Dielectric porcelain composition and electronic component
KR101429034B1 (en) Dielectric ceramic composition and electronic component
JP2007153710A (en) Dielectric porcelain composition and electronic component
JP2013523574A (en) Dielectric ceramic composition, method for producing dielectric ceramic composition, and electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250