JP6413861B2 - Dielectric porcelain composition and electronic component - Google Patents

Dielectric porcelain composition and electronic component Download PDF

Info

Publication number
JP6413861B2
JP6413861B2 JP2015054966A JP2015054966A JP6413861B2 JP 6413861 B2 JP6413861 B2 JP 6413861B2 JP 2015054966 A JP2015054966 A JP 2015054966A JP 2015054966 A JP2015054966 A JP 2015054966A JP 6413861 B2 JP6413861 B2 JP 6413861B2
Authority
JP
Japan
Prior art keywords
subcomponent
composition
main
dielectric ceramic
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015054966A
Other languages
Japanese (ja)
Other versions
JP2016175781A (en
Inventor
大輔 大津
大輔 大津
松巳 渡辺
松巳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015054966A priority Critical patent/JP6413861B2/en
Priority to KR1020160010289A priority patent/KR101767672B1/en
Priority to CN201610135925.6A priority patent/CN105985111B/en
Publication of JP2016175781A publication Critical patent/JP2016175781A/en
Application granted granted Critical
Publication of JP6413861B2 publication Critical patent/JP6413861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Power Engineering (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

本発明は、誘電体磁器組成物および電子部品に関する。   The present invention relates to a dielectric ceramic composition and an electronic component.

近年、急速に進む電気機器の高性能化に伴い、電気回路の小型化、複雑化もまた急速に進んでいる。そのため、電子部品にもより一層の小型化、高性能化が求められている。すなわち、良好な温度特性を維持しつつ、小型化しても静電容量を維持するために比誘電率が高く、さらに高電圧下で使用するために交流破壊電圧が高い誘電体磁器組成物および電子部品が求められている。   In recent years, along with rapid progress in performance of electrical equipment, miniaturization and complexity of electrical circuits are also progressing rapidly. For this reason, electronic components are required to be further reduced in size and performance. That is, a dielectric ceramic composition and an electron having a high relative dielectric constant in order to maintain capacitance even when miniaturized while maintaining good temperature characteristics, and also having a high AC breakdown voltage for use under a high voltage Parts are required.

従来、磁器コンデンサ、積層コンデンサ、高周波用コンデンサ、高電圧用コンデンサ等として広く利用されている高誘電率誘電体磁器組成物として、特許文献1〜3のようにBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物を主成分としたものが知られている。 Conventionally, as a high dielectric constant dielectric ceramic composition widely used as a ceramic capacitor, a multilayer capacitor, a high frequency capacitor, a high voltage capacitor, etc., BaTiO 3 —BaZrO 3 —CaTiO 3 — A material mainly composed of a SrTiO 3 -based dielectric ceramic composition is known.

従来のBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物は、強誘電性であるため、高い静電容量、低い誘電損失を維持したまま、高い交流破壊電圧を確保することが困難であった。また、従来のBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物には所望の特性を得るために様々な希土類元素が添加されるが、希土類元素はコストが高く使用量の低減が従来から求められている。 Since the conventional BaTiO 3 —BaZrO 3 —CaTiO 3 —SrTiO 3 based dielectric ceramic composition is ferroelectric, it must ensure high AC breakdown voltage while maintaining high capacitance and low dielectric loss. It was difficult. In addition, various rare earth elements are added to the conventional BaTiO 3 —BaZrO 3 —CaTiO 3 —SrTiO 3 based dielectric ceramic composition in order to obtain desired characteristics. Reduction is conventionally required.

特開1994−302219号公報JP-A-1994-302219 特開2003−104774号公報JP 2003-104774 A 特開2004−238251号公報JP 2004-238251 A

本発明は、このような実状に鑑みてなされ、比誘電率および交流破壊電圧が高く、誘電損失が低く、温度特性および焼結性が良好な誘電体磁器組成物を提供することを目的とする。また、本発明は、このような誘電体磁器組成物により構成される誘電体層を有する電子部品を提供することも目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a dielectric ceramic composition having a high relative dielectric constant and AC breakdown voltage, a low dielectric loss, and good temperature characteristics and sinterability. . Another object of the present invention is to provide an electronic component having a dielectric layer composed of such a dielectric ceramic composition.

本発明者等は、上記目的を達成するために、鋭意検討を行った結果、主成分として1種類の誘電体磁器組成物のみを用いるのではなく、主成分として2種類の誘電体磁器組成物を所定の比率で混合して構成し、さらに、副成分として少なくとも酸化亜鉛と酸化ビスマスとを含有させることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have not used only one type of dielectric ceramic composition as the main component, but two types of dielectric ceramic composition as the main component. It was found that the above-mentioned object can be achieved by mixing at a predetermined ratio and further containing at least zinc oxide and bismuth oxide as subcomponents, thereby completing the present invention.

すなわち、上記課題を解決する本発明に係る誘電体磁器組成物は、
(Ba1−x−y ,Ca,Sr(Ti1−z−a ,Zr,Sn)Oの組成式で表される第1主組成物と、
(Ba1−α,SrαTiOの組成式で表わされる第2主組成物と、
酸化ビスマスからなる第1副成分と、を含有する誘電体磁器組成物であって、
0.01≦x≦0.30
0<y≦0.1
0.04≦z≦0.2
0≦a≦0.2
0.04≦z+a≦0.3
0≦α≦0.1
であり、
前記第1主組成物の含有量と前記第2主組成物の含有量との和を100重量部とし、前記第2主組成物の含有量をA重量部、前記第1副成分の含有量をB重量部とする場合に、
5≦A≦40
0.97≦{(100−A)×m+A×n}×0.01≦1.03
0.3≦B≦3
である。
That is, the dielectric ceramic composition according to the present invention for solving the above problems is
And (Ba 1-x-y, Ca x, Sr y) m (Ti 1-z-a, Zr z, Sn a) a first main composition represented by the composition formula of O 3,
A second main composition represented by a composition formula of (Ba 1-α , Sr α ) n TiO 3 ;
A dielectric ceramic composition comprising a first subcomponent comprising bismuth oxide,
0.01 ≦ x ≦ 0.30
0 <y ≦ 0.1
0.04 ≦ z ≦ 0.2
0 ≦ a ≦ 0.2
0.04 ≦ z + a ≦ 0.3
0 ≦ α ≦ 0.1
And
The sum of the content of the first main composition and the content of the second main composition is 100 parts by weight, the content of the second main composition is A parts by weight, and the content of the first subcomponent Is 1 part by weight of B,
5 ≦ A ≦ 40
0.97 ≦ {(100−A) × m + A × n} × 0.01 ≦ 1.03
0.3 ≦ B 1 ≦ 3
It is.

以下、(Ba1−x−y ,Ca,Sr(Ti1−z−a ,Zr,Sn)O(x≠0、z≠0)の組成式で表される誘電体磁器組成物をBCTZ系の誘電体磁器組成物と呼ぶことがある。また、(Ba1−α,SrαTiO(α≠1)の組成式で表わされる誘電体磁器組成物をBT系の誘電体磁器組成物と呼ぶことがある。 Hereinafter, the dielectric represented by the composition formula of (Ba 1-x-y, Ca x, Sr y) m (Ti 1-z-a, Zr z, Sn a) O 3 (x ≠ 0, z ≠ 0) The body ceramic composition may be referred to as a BCTZ-based dielectric ceramic composition. A dielectric ceramic composition represented by a composition formula of (Ba 1−α , Sr α ) n TiO 3 (α ≠ 1) may be referred to as a BT-based dielectric ceramic composition.

本発明では、BCTZ系の誘電体磁器組成物である第1主組成物とBT系の誘電体磁器組成物である第2主組成物とを所定の比率で含有し、さらに酸化ビスマスからなる第1副成分を含有することを特徴とする。本発明によれば、比誘電率および交流破壊電圧が高く、誘電損失が低く、温度特性および焼結性が良好な誘電体磁器組成物を提供することができる。   In the present invention, the first main composition, which is a BCTZ-based dielectric ceramic composition, and the second main composition, which is a BT-based dielectric ceramic composition, are contained in a predetermined ratio, and are further made of bismuth oxide. 1 subcomponent is contained, It is characterized by the above-mentioned. According to the present invention, it is possible to provide a dielectric ceramic composition having a high relative dielectric constant and AC breakdown voltage, low dielectric loss, and good temperature characteristics and sinterability.

本発明に係る誘電体磁器組成物は、さらに5≦A≦30であることが好ましい。   The dielectric ceramic composition according to the present invention preferably further satisfies 5 ≦ A ≦ 30.

本発明に係る誘電体磁器組成物は、さらに0.3≦B≦1.5であることが好まししい。 The dielectric ceramic composition according to the present invention preferably further satisfies 0.3 ≦ B 1 ≦ 1.5.

本発明に係る誘電体磁器組成物は、さらに酸化亜鉛からなる第2副成分を含有し、前記第2副成分の含有量をB重量部とする場合に、0.45≦B≦10であることが好ましい。 The dielectric ceramic composition according to the present invention further contains a second subcomponent made of zinc oxide, and when the content of the second subcomponent is B 2 parts by weight, 0.45 ≦ B 2 ≦ 10. It is preferable that

本発明に係る誘電体磁器組成物は、さらにLa、Ce、Pr、Pm、Nd、Sm、Eu、Gd、Yからなる群のうち少なくとも1種以上の酸化物からなる第3副成分を含有し、前記第3副成分の含有量を酸化物換算でB重量部とする場合に、0<B≦0.3であることが好ましい。 The dielectric ceramic composition according to the present invention further includes a third subcomponent composed of at least one oxide selected from the group consisting of La, Ce, Pr, Pm, Nd, Sm, Eu, Gd, and Y. When the content of the third subcomponent is B 3 parts by weight in terms of oxide, it is preferable that 0 <B 3 ≦ 0.3.

本発明に係る誘電体磁器組成物は、さらにAl、Ga、Si、Mg、In、Niからなる群のうち少なくとも1種以上の酸化物からなる第4副成分を含有し、前記第4副成分の含有量を酸化物換算でB重量部とする場合に、0.02≦B≦1.5であることが好ましい。 The dielectric ceramic composition according to the present invention further includes a fourth subcomponent made of at least one oxide selected from the group consisting of Al, Ga, Si, Mg, In, and Ni. When the content of B is 4 parts by weight in terms of oxide, it is preferable that 0.02 ≦ B 4 ≦ 1.5.

本発明に係る誘電体磁器組成物は、さらにMn、Crからなる群のうち少なくとも1種以上の酸化物からなる第5副成分を含有し、前記第5副成分の含有量を酸化物換算でB重量部とする場合に、0.01≦B≦0.6であることが好ましい。 The dielectric ceramic composition according to the present invention further includes a fifth subcomponent consisting of at least one oxide from the group consisting of Mn and Cr, and the content of the fifth subcomponent in terms of oxide. In the case of 5 parts by weight of B, it is preferable that 0.01 ≦ B 5 ≦ 0.6.

本発明に係る電子部品は、前記誘電体磁器組成物で構成される誘電体を有する。   The electronic component according to the present invention has a dielectric composed of the dielectric ceramic composition.

本発明に係る電子部品の種類に特に限定はない。例えば単板型セラミックコンデンサ、貫通型コンデンサ、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品、リングバリスタ、ESD保護デバイス等が挙げられる。   There is no limitation in particular in the kind of electronic component which concerns on this invention. For example, single plate ceramic capacitors, feedthrough capacitors, multilayer ceramic capacitors, piezoelectric elements, chip inductors, chip varistors, chip thermistors, chip resistors, other surface mount (SMD) chip type electronic components, ring varistors, ESD protection devices, etc. Can be mentioned.

本発明の一実施形態に係るセラミックコンデンサの概略図である。It is the schematic of the ceramic capacitor which concerns on one Embodiment of this invention. 試料4の誘電体の要部拡大断面図の概略図である。6 is a schematic view of an enlarged cross-sectional view of a main part of a dielectric of a sample 4. FIG.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

セラミックコンデンサ2
図1に示すように、本発明の実施形態に係るセラミックコンデンサ2は、誘電体4と、その対向表面に形成された一対の電極6、8とを有する構成となっている。セラミックコンデンサの形状は、目的や用途に応じて適宜決定すればよいが、誘電体4が円板形状となっている円板型のコンデンサであることが好ましい。また、そのサイズは、目的や用途に応じて適宜決定すればよい。
Ceramic capacitor 2
As shown in FIG. 1, the ceramic capacitor 2 according to the embodiment of the present invention has a configuration including a dielectric 4 and a pair of electrodes 6 and 8 formed on the opposing surface thereof. The shape of the ceramic capacitor may be appropriately determined according to the purpose and application, but is preferably a disk-type capacitor in which the dielectric 4 has a disk shape. Further, the size may be appropriately determined according to the purpose and application.

電極6、8
電極6、8は、導電材で構成される。端子電極6、8に用いられる導電材は、特に限定されず、用途等に応じて適宜決定すればよい。前記導電材としては、たとえば、Ag、Cu、Ni等が挙げられる。
Electrodes 6 and 8
The electrodes 6 and 8 are made of a conductive material. The conductive material used for the terminal electrodes 6 and 8 is not particularly limited, and may be determined as appropriate according to the application. Examples of the conductive material include Ag, Cu, Ni, and the like.

誘電体4
セラミックコンデンサ2の誘電体4は、本発明の実施形態に係る誘電体磁器組成物により構成される。誘電体4の厚みは、特に限定されず、用途等に応じて適宜決定すれば良い。
Dielectric 4
The dielectric 4 of the ceramic capacitor 2 is composed of a dielectric ceramic composition according to an embodiment of the present invention. The thickness of the dielectric 4 is not particularly limited, and may be appropriately determined according to the application.

本発明の実施形態に係る誘電体磁器組成物は、(Ba1−x−y,Ca,Sr(Ti1−z−a,Zr,Sn)Oの組成式で表わされる第1主組成物と、(Ba1−α,SrαTiOの組成式で表わされる第2主組成物と、第1副成分と、第2副成分と、第3副成分と、第4副成分と、第5副成分とを有する誘電体磁器組成物である。なお、本発明では第2〜第5副成分は含有しなくてもよい。 The dielectric ceramic composition according to an embodiment of the present invention is represented by a composition formula of (Ba 1-x-y, Ca x, Sr y) m (Ti 1-z-a, Zr z, Sn a) O 3 A first main composition, a second main composition represented by a composition formula of (Ba 1-α , Sr α ) n TiO 3, a first subcomponent, a second subcomponent, and a third subcomponent , A dielectric ceramic composition having a fourth subcomponent and a fifth subcomponent. In the present invention, the second to fifth subcomponents may not be contained.

前記組成式中のxは、第1主組成物のAサイト原子に占めるCa原子の比率を表し、その範囲は0.01≦x≦0.30である。また、xの範囲は、好ましくは0.03≦x≦0.17、さらに好ましくは0.08≦x≦0.16である。Caが上記の範囲で含有されることにより、交流破壊電圧および容量温度特性が良好になる傾向がある。また、xが小さすぎると交流破壊電圧および容量温度特性が悪化する傾向にあり、xが大きすぎると比誘電率が低下する傾向にある。   X in the composition formula represents the ratio of Ca atoms to the A site atoms of the first main composition, and the range is 0.01 ≦ x ≦ 0.30. The range of x is preferably 0.03 ≦ x ≦ 0.17, more preferably 0.08 ≦ x ≦ 0.16. When Ca is contained in the above range, the AC breakdown voltage and the capacity-temperature characteristic tend to be improved. If x is too small, the AC breakdown voltage and capacity-temperature characteristics tend to deteriorate, and if x is too large, the relative permittivity tends to decrease.

前記組成式中のyは、第1主組成物のAサイト原子に占めるSrの比率を表し、その範囲は0<y≦0.1である。また、yの範囲は、好ましくは0.006≦y≦0.04である。Srが上記の範囲で含有されることにより、比誘電率が向上する傾向がある。また、yが小さすぎると比誘電率が悪化する傾向にあり、yが大きすぎると比誘電率および高温側の容量温度特性が悪化する傾向にある。   Y in the composition formula represents the ratio of Sr to the A site atom of the first main composition, and the range is 0 <y ≦ 0.1. The range of y is preferably 0.006 ≦ y ≦ 0.04. When Sr is contained in the above range, the relative permittivity tends to be improved. Further, if y is too small, the relative permittivity tends to deteriorate, and if y is too large, the relative permittivity and the capacity-temperature characteristics on the high temperature side tend to deteriorate.

前記組成式中のzは、第1主組成物のBサイト原子に占めるZrの比率を表し、その範囲は0.04≦z≦0.2である。また、zの範囲は、好ましくは0.06≦z≦0.15である。Zrが上記の範囲で含有されることにより、比誘電率および低温側の容量温度特性が良好になる傾向がある。zが小さすぎると比誘電率および低温側の容量温度特性が悪化する傾向にあり、zが大きすぎると比誘電率および高温側の容量温度特性が悪化する傾向にある。   Z in the composition formula represents the ratio of Zr to the B site atoms of the first main composition, and the range is 0.04 ≦ z ≦ 0.2. The range of z is preferably 0.06 ≦ z ≦ 0.15. When Zr is contained in the above range, the relative dielectric constant and the capacitance-temperature characteristic on the low temperature side tend to be good. If z is too small, the relative permittivity and the low temperature side capacity-temperature characteristic tend to deteriorate, and if z is too large, the relative dielectric constant and the high temperature side capacity-temperature characteristic tend to deteriorate.

前記組成式中のaは、第1主組成物のBサイト原子に占めるSnの比率を表し、その範囲は0≦a≦0.2である。また、aの範囲は、好ましくは0≦a≦0.15である。Snが上記の範囲で含有されることにより、比誘電率の向上および低温側の容量温度特性の改善に効果がある。なお、Snは含有しなくともよい。すなわち、a=0でもよい。aが大きすぎると、比誘電率、交流破壊電圧および高温側の容量温度特性が悪化する傾向にある。   In the composition formula, a represents the ratio of Sn in the B site atoms of the first main composition, and the range is 0 ≦ a ≦ 0.2. The range of a is preferably 0 ≦ a ≦ 0.15. By containing Sn in the above range, there is an effect in improving the relative dielectric constant and improving the capacitance-temperature characteristics on the low temperature side. Sn may not be contained. That is, a = 0 may be used. If a is too large, the relative permittivity, the AC breakdown voltage, and the capacity-temperature characteristics on the high temperature side tend to deteriorate.

前記組成式中のz+aは、第1主組成物のBサイト原子に占めるZrとSnの合計比率を表し、その範囲は0.04≦z+a≦0.3である。また、z+aの範囲は、好ましくは0.06≦z+a≦0.2である。ZrおよびSnが上記の範囲で含有されることにより、比誘電率および高温側の温度特性が改善する傾向となる。z+aが小さすぎると比誘電率、誘電損失、交流破壊電圧および低温側の容量温度特性が悪化する傾向にある。z+aが大きすぎると比誘電率および高温側の容量温度特性が悪化する傾向にある。   Z + a in the composition formula represents the total ratio of Zr and Sn in the B site atom of the first main composition, and the range is 0.04 ≦ z + a ≦ 0.3. The range of z + a is preferably 0.06 ≦ z + a ≦ 0.2. When Zr and Sn are contained in the above ranges, the relative permittivity and the temperature characteristics on the high temperature side tend to be improved. If z + a is too small, the relative permittivity, dielectric loss, AC breakdown voltage, and low-temperature capacity-temperature characteristics tend to deteriorate. If z + a is too large, the relative permittivity and the capacity-temperature characteristics on the high temperature side tend to deteriorate.

前記組成式中のmは第1主組成物のAサイト原子であるBa、Ca、Srと、第1主組成物のBサイト成分であるTi、Zr、Snとのモル比を表わす。   M in the composition formula represents a molar ratio of Ba, Ca, and Sr that are A site atoms of the first main composition and Ti, Zr, and Sn that are B site components of the first main composition.

前記組成式中のαは、第2主組成物のAサイト原子に占めるSr原子の比率を表し、その範囲は0≦α≦0.1である。なお、Srは含有しなくともよい。すなわち、α=0でもよい。αが大きすぎると、比誘電率および高温側の容量温度特性が悪化する傾向にある。   Α in the composition formula represents the ratio of Sr atoms to the A site atoms of the second main composition, and the range is 0 ≦ α ≦ 0.1. Note that Sr may not be contained. That is, α = 0 may be used. If α is too large, the relative dielectric constant and the capacity-temperature characteristic on the high temperature side tend to deteriorate.

前記組成式中のnは第2主組成物のAサイト原子であるBa、Srと、第2主組成物のBサイト成分であるTiとのモル比を表わす。  N in the composition formula represents a molar ratio between Ba and Sr which are A site atoms of the second main composition and Ti which is a B site component of the second main composition.

第1主組成物と第2主組成物とを合わせて主成分とする。主成分の含有量を100重量部として、前記第2主組成物の含有割合をA重量部とする。本実施形態に係る誘電体磁器組成物は、5≦A≦40である。また、Aの範囲は、好ましくは5≦A≦30である。Aが小さすぎると、容量温度特性が悪化する傾向にある。Aが大きすぎると、比誘電率が悪化する傾向にある。   The first main composition and the second main composition are combined as a main component. The content of the main component is 100 parts by weight, and the content ratio of the second main composition is A parts by weight. The dielectric ceramic composition according to the present embodiment satisfies 5 ≦ A ≦ 40. The range of A is preferably 5 ≦ A ≦ 30. When A is too small, the capacity-temperature characteristic tends to deteriorate. If A is too large, the dielectric constant tends to deteriorate.

また、本実施形態に係る誘電体磁器組成物は、第1主組成物の組成式中のm、第2主組成物の組成式中のn、上記Aが0.97≦{(100−A)×m+A×n}×0.01≦1.03を満たす。好ましくは、0.97≦{(100−A)×m+A×n}×0.01≦1.01を満たす。{(100−A)×m+A×n}×0.01が小さすぎると比誘電率および交流破壊電圧が低下する傾向にある。{(100−A)×m+A×n}×0.01が大きすぎると焼結性が悪化し比誘電率が低下する傾向にある。   The dielectric ceramic composition according to the present embodiment includes m in the composition formula of the first main composition, n in the composition formula of the second main composition, and A is 0.97 ≦ {(100−A ) × m + A × n} × 0.01 ≦ 1.03. Preferably, 0.97 ≦ {(100−A) × m + A × n} × 0.01 ≦ 1.01 is satisfied. If {(100−A) × m + A × n} × 0.01 is too small, the relative permittivity and the AC breakdown voltage tend to decrease. If {(100−A) × m + A × n} × 0.01 is too large, the sinterability tends to deteriorate and the relative permittivity tends to decrease.

第1副成分は、酸化ビスマスである。本実施形態に係る誘電体磁器組成物は、前記第1副成分を前記主成分100重量部に対して0.3〜3重量部含有する。前記第1副成分の含有量を上記の範囲内とすることにより、比誘電率、交流破壊電圧および容量温度特性が向上する。前記第1副成分の含有量が少なすぎると低温側の容量温度特性が悪化する。前記第1副成分の含有量が多すぎると比誘電率、交流破壊電圧および高温側の容量温度特性が悪化する。   The first subcomponent is bismuth oxide. The dielectric ceramic composition according to the present embodiment contains 0.3 to 3 parts by weight of the first subcomponent with respect to 100 parts by weight of the main component. By setting the content of the first subcomponent within the above range, the dielectric constant, AC breakdown voltage, and capacity-temperature characteristics are improved. When the content of the first subcomponent is too small, the capacity-temperature characteristic on the low temperature side is deteriorated. If the content of the first subcomponent is too large, the relative dielectric constant, the AC breakdown voltage, and the capacity-temperature characteristics on the high temperature side are deteriorated.

第2副成分は、酸化亜鉛である。本実施形態に係る誘電体磁器組成物は、前記第2副成分の含有量に特に制限はなく、前記第2副成分を含有しなくてもかまわない。前記第2副成分を前記主成分100重量部に対して0.45〜10重量部含有することが好ましい。前記第2副成分の含有量を上記の範囲内とすることにより、交流破壊電圧、容量温度特性および焼結性が向上する。   The second subcomponent is zinc oxide. In the dielectric ceramic composition according to the present embodiment, the content of the second subcomponent is not particularly limited, and the second subcomponent may not be included. It is preferable to contain 0.45-10 weight part of said 2nd subcomponent with respect to 100 weight part of said main components. By setting the content of the second subcomponent within the above range, the AC breakdown voltage, the capacity-temperature characteristic, and the sinterability are improved.

第3副成分は、La、Ce、Pr、Pm、Nd、Sm、Eu、Gd、Yからなる群のうち少なくとも1種以上の酸化物である。好ましくはY、Gd、La、Sm、Ndからなる群のうち少なくとも1種以上の酸化物である。本実施形態に係る誘電体磁器組成物は、前記第3副成分の含有量に特に制限はなく、前記第3副成分を含有しなくてもかまわない。前記第3副成分を前記主成分100重量部に対して0〜0.3重量部(0重量部を含まない)含有することが好ましい。特に好ましくは、0.01〜0.09重量部である。前記第3副成分の含有量を上記の範囲内とすることにより、耐還元性、比誘電率、交流破壊電圧および容量温度特性が向上する。   The third subcomponent is at least one oxide selected from the group consisting of La, Ce, Pr, Pm, Nd, Sm, Eu, Gd, and Y. Preferably, it is at least one oxide selected from the group consisting of Y, Gd, La, Sm, and Nd. In the dielectric ceramic composition according to the present embodiment, the content of the third subcomponent is not particularly limited, and the third subcomponent may not be included. The third subcomponent is preferably contained in an amount of 0 to 0.3 parts by weight (excluding 0 parts by weight) with respect to 100 parts by weight of the main component. Especially preferably, it is 0.01-0.09 weight part. By setting the content of the third subcomponent within the above range, reduction resistance, relative dielectric constant, AC breakdown voltage, and capacity-temperature characteristics are improved.

第4副成分は、Al、Ga、Si、Mg、In、Niからなる群のうち少なくとも1種以上の酸化物である。好ましくはAl、Ga、Mg、Siからなる群のうち少なくとも1種以上の酸化物である。本実施形態に係る誘電体磁器組成物は、前記第4副成分の含有量に特に制限はなく、前記第4副成分を含有しなくてもかまわない。前記第4副成分を前記主成分100重量部に対して0.02〜1.5重量部含有することが好ましい。特に好ましくは、0.05〜1.2重量部である。前記第4副成分の含有量を上記の範囲内とすることにより、比誘電率および交流破壊電圧が向上する。   The fourth subcomponent is at least one oxide selected from the group consisting of Al, Ga, Si, Mg, In, and Ni. Preferably, it is at least one oxide selected from the group consisting of Al, Ga, Mg, and Si. In the dielectric ceramic composition according to the present embodiment, the content of the fourth subcomponent is not particularly limited, and may not include the fourth subcomponent. It is preferable to contain 0.04 to 1.5 parts by weight of the fourth subcomponent with respect to 100 parts by weight of the main component. Particularly preferred is 0.05 to 1.2 parts by weight. By setting the content of the fourth subcomponent within the above range, the relative permittivity and the AC breakdown voltage are improved.

第5副成分は、Mn、Crからなる群のうち少なくとも1種以上の酸化物である。本実施形態に係る誘電体磁器組成物は、前記第5副成分の含有量に特に制限はなく、前記第5副成分を含有しなくてもかまわない。前記第5副成分を前記主成分100重量部に対して0.01〜0.6重量部含有することが好ましい。特に好ましくは、0.02〜0.2重量部である。前記第5副成分の含有量を上記の範囲内とすることにより、比誘電率、交流破壊電圧、容量温度特性および高温時の信頼性が向上する。   The fifth subcomponent is at least one oxide selected from the group consisting of Mn and Cr. In the dielectric ceramic composition according to this embodiment, the content of the fifth subcomponent is not particularly limited, and may not include the fifth subcomponent. The fifth subcomponent is preferably contained in an amount of 0.01 to 0.6 parts by weight with respect to 100 parts by weight of the main component. Particularly preferred is 0.02 to 0.2 parts by weight. By setting the content of the fifth subcomponent within the above range, the relative permittivity, the AC breakdown voltage, the capacity-temperature characteristic, and the reliability at high temperatures are improved.

セラミックコンデンサ2の製造方法
次に、セラミックコンデンサ2の製造方法について説明する。
まず、焼成後に図1に示す誘電体4を形成することとなる誘電体磁器組成物粉末を製造する。
Manufacturing method of ceramic capacitor 2
Next, a method for manufacturing the ceramic capacitor 2 will be described.
First, a dielectric ceramic composition powder that forms the dielectric 4 shown in FIG. 1 after firing is manufactured.

主成分(第1主組成物および第2主組成物)の原料および第1副成分〜第5副成分の原料を準備する。主成分の原料としては、Ba、Ca、Sr、Ti、Zr、Snの各酸化物および/または焼成により酸化物となる原料や、これらの複合酸化物などが挙げられる。たとえば、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化スズ(SnO)などを用いることができるが上記の化合物に限られない。たとえば上記の金属元素の水酸化物など、焼成後に酸化物やチタン化合物となる種々の化合物を用いることも可能である。 A raw material for the main component (first main composition and second main composition) and a raw material for the first subcomponent to the fifth subcomponent are prepared. Examples of the main component material include Ba, Ca, Sr, Ti, Zr, and Sn oxides and / or materials that become oxides upon firing, and composite oxides thereof. For example, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), and the like can be used. It is not limited to the above compounds. For example, it is also possible to use various compounds that become oxides and titanium compounds after firing, such as hydroxides of the above metal elements.

また、主成分の原料の製造方法に特に制限はない。たとえば、固相法により製造してもよいし、水熱合成法や蓚酸塩法などの液相法により製造してもよい。なお、製造コストの面からは固相法により製造することが好ましい。   Moreover, there is no restriction | limiting in particular in the manufacturing method of the raw material of a main component. For example, it may be produced by a solid phase method or a liquid phase method such as a hydrothermal synthesis method or an oxalate method. From the viewpoint of manufacturing cost, it is preferable to manufacture by a solid phase method.

第1副成分〜第5副成分の原料には特に制限はない。焼成により上記の酸化物となる各種化合物、たとえば炭酸塩、硝酸塩、水酸化物、有機金属化合物などから適宜選択して用いることができる。   There is no restriction | limiting in particular in the raw material of a 1st subcomponent-a 5th subcomponent. Various compounds that become the above oxides upon firing, for example, carbonates, nitrates, hydroxides, organometallic compounds, and the like can be appropriately selected and used.

本発明の実施形態に係る誘電体磁器組成物の製造方法としては、まず第1主組成物仮焼粉および第2主組成物仮焼粉を別々に製造する。   As a method for producing a dielectric ceramic composition according to an embodiment of the present invention, first and second main composition calcined powders are first produced separately.

第1主組成物仮焼粉および第2主組成物仮焼粉は、いずれも、各主組成物の原料を配合し、混合する。混合方法に特に制限はない。例えば湿式混合により混合することができる。また、湿式混合に用いる器具にも特に制限はない。たとえばボールミルなどを用いることができる。湿式混合により混合を行う場合には、湿式混合後に脱水乾燥を行い、脱水乾燥の後に仮焼成を行う。仮焼成により各原料を化学反応させることで、前記各主組成物仮焼粉を得ることができる。なお、仮焼温度は1100〜1300℃、仮焼雰囲気は空気中とすることが好ましい。   The first main composition calcined powder and the second main composition calcined powder are both mixed and mixed with the raw materials of each main composition. There is no particular limitation on the mixing method. For example, they can be mixed by wet mixing. Moreover, there is no restriction | limiting in particular also in the instrument used for wet mixing. For example, a ball mill can be used. In the case of mixing by wet mixing, dehydration drying is performed after wet mixing, and temporary baking is performed after dehydration drying. Each main composition calcined powder can be obtained by chemically reacting each raw material by calcining. The calcining temperature is preferably 1100 to 1300 ° C. and the calcining atmosphere is preferably in the air.

得られた第1主組成物仮焼粉および第2主組成物仮焼粉をたとえばボールミル、気流粉砕機などで粗粉砕した後に、第1主組成物仮焼粉、第2主組成物仮焼粉、および第1副成分〜第5副成分の原料を混合する。   The obtained first main composition calcined powder and second main composition calcined powder are coarsely pulverized by, for example, a ball mill, an airflow pulverizer or the like, and then the first main composition calcined powder and the second main composition calcined powder. Powder and raw materials of the first to fifth subcomponents are mixed.

なお、第2副成分および第3副成分に関しては、あらかじめ前記主組成物原料と混合・仮焼して、前記主組成物仮焼粉に含まれる化合物という形で添加してもよく、第2副成分および第3副成分を混合・仮焼して反応させた仮焼粉として添加してもよく、第2副成分および/または第3副成分をそれぞれ単独で仮焼させ、仮焼粉とした後に添加してもよい。   The second subcomponent and the third subcomponent may be added in the form of a compound contained in the main composition calcined powder by mixing and calcining with the main composition raw material in advance. The sub-component and the third sub-component may be added as a calcined powder that has been reacted by mixing and calcining, and the second sub-component and / or the third sub-component are calcined separately, It may be added after.

前記主組成物仮焼粉および前記第1副成分〜第5副成分の原料を混合した後に微粉砕を行う。微粉砕の方法には特に制限はない。例えばポットミルなどを用いて微粉砕を行うことが可能である。微粉砕後の平均粒径にも特に制限はない。平均粒径が0.5〜2μm程度になるように微粉砕を行うことが好ましい。  The main composition calcined powder and the raw materials of the first to fifth subcomponents are mixed and then pulverized. There is no particular limitation on the method of pulverization. For example, fine pulverization can be performed using a pot mill or the like. There is no particular limitation on the average particle size after pulverization. It is preferable to pulverize so that the average particle size is about 0.5 to 2 μm.

微粉砕後に脱水乾燥を行い、脱水乾燥後に有機結合剤を添加する。有機結合剤に特に制限はなく、本技術分野で通常用いられる有機結合剤を用いることができる。有機結合剤の一例としてポリビニルアルコール(PVA)が挙げられる。  After pulverization, dehydration and drying are performed, and after dehydration and drying, an organic binder is added. There is no restriction | limiting in particular in an organic binder, The organic binder normally used in this technical field can be used. An example of the organic binder is polyvinyl alcohol (PVA).

前記有機結合剤を添加後に造粒および整粒を行い、顆粒粉末を得る。得られた顆粒粉末を成形し、成形物を得る。   After adding the organic binder, granulation and sizing are performed to obtain a granular powder. The obtained granular powder is molded to obtain a molded product.

得られた成形物を本焼成し、誘電体磁器組成物の焼結体(誘電体4)を得る。焼成雰囲気に特に制限はないが、空気中で焼成することが好ましい。焼成温度、焼成時間に特に制限はない。焼成温度は1150〜1300℃で行うことが好ましい。   The obtained molded product is finally fired to obtain a sintered body (dielectric 4) of the dielectric ceramic composition. There is no particular limitation on the firing atmosphere, but firing in air is preferable. There are no particular limitations on the firing temperature and firing time. The firing temperature is preferably 1150 to 1300 ° C.

得られた誘電体磁器組成物の焼結体(誘電体4)の所定の表面に電極を印刷し、必要に応じて焼き付けし、電極6、8を形成することにより、図1に示すセラミックコンデンサ2を得る。   The ceramic capacitor shown in FIG. 1 is formed by printing electrodes on a predetermined surface of the sintered body (dielectric 4) of the obtained dielectric ceramic composition and baking it as necessary to form the electrodes 6 and 8. Get 2.

このようにして製造された本発明のセラミックコンデンサ2は、たとえばリード端子を介してプリント基板上などに実装され、各種電子機器等に使用される。   The ceramic capacitor 2 of the present invention manufactured as described above is mounted on a printed circuit board through lead terminals, for example, and used for various electronic devices.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々異なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, it can implement in a various aspect within the range which does not deviate from the summary of this invention. .

また、本発明の誘電体磁器組成物は、従来のBaTiO−BaZrO−CaTiO−SrTiO系の誘電体磁器組成物と比較して希土類元素の使用量を低減することができる。 Further, the dielectric ceramic composition of the present invention can reduce the amount of rare earth elements used as compared with the conventional BaTiO 3 —BaZrO 3 —CaTiO 3 —SrTiO 3 based dielectric ceramic composition.

上述した実施形態では、本発明に係る電子部品として誘電体層が単層である単板型セラミックコンデンサを例示したが、本発明に係る電子部品としては、単板型セラミックコンデンサに限定されない。たとえば、上記した誘電体磁器組成物を含む誘電体ペーストおよび電極ペーストを用いた通常の印刷法やシート法により作製される積層型セラミックコンデンサであってもよく、上記した誘電体磁器組成物を用いた貫通型コンデンサであってもよく、その他の電子部品であってもよい。   In the above-described embodiment, the single-plate ceramic capacitor having a single dielectric layer is exemplified as the electronic component according to the present invention. However, the electronic component according to the present invention is not limited to the single-plate ceramic capacitor. For example, it may be a multilayer ceramic capacitor produced by a normal printing method or sheet method using a dielectric paste and an electrode paste containing the above dielectric ceramic composition, and the above dielectric ceramic composition is used. The feedthrough capacitor may be used, or other electronic components may be used.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

主組成物原料として、炭酸バリウム(BaCO)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)および酸化スズ(SnO)を、それぞれ準備した。さらに、第1副成分原料として酸化ビスマス(Bi)を、第2副成分原料として酸化亜鉛(ZnO)を、第3副成分の原料としてLa、Pr、Pm、Nd、Sm、Eu、Gdからなる群から選択される1種以上の元素の酸化物を、第4副成分の原料としてAl、Ga、Si、Mg、In、Niからなる群から選択される1種以上の元素の酸化物を、第5副成分の原料としてMnおよび/またはCrの酸化物を、それぞれ準備した。 As the main composition material, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ) and tin oxide (SnO 2 ), respectively, Got ready. Furthermore, bismuth oxide (Bi 2 O 3 ) as the first subcomponent raw material, zinc oxide (ZnO) as the second subcomponent raw material, La, Pr, Pm, Nd, Sm, Eu, Oxidation of one or more elements selected from the group consisting of Gd and oxidation of one or more elements selected from the group consisting of Al, Ga, Si, Mg, In, Ni as the fourth subcomponent material The oxides of Mn and / or Cr were prepared as materials for the fifth subcomponent.

第1主組成物
焼成後の組成が表1、表2に示す組成となるように、前記主組成物原料を秤量した。秤量後に各原料を配合した。配合は、ボールミルで湿式混合撹拌を3時間行うことで実施した。湿式混合撹拌後の配合物を脱水乾燥した。脱水乾燥後に1170〜1210℃で仮焼成し、第1主組成物仮焼粉を得た。
The main composition raw materials were weighed so that the compositions after firing the first main composition were the compositions shown in Tables 1 and 2. After weighing, each raw material was blended. The blending was performed by performing wet mixing and stirring for 3 hours in a ball mill. The mixture after the wet mixing and stirring was dehydrated and dried. After dehydration and drying, it was calcined at 1170-1210 ° C. to obtain a first main composition calcined powder.

第2主組成物
焼成後の組成が表1、表2に示す組成となるように、前記主組成物原料を秤量した。秤量後に各原料を配合した。配合は、ボールミルで湿式混合撹拌を3時間行うことで実施した。湿式混合撹拌後の配合物を脱水乾燥した。脱水乾燥後に1170〜1210℃で仮焼成し、第2主組成物仮焼粉を得た。
The main composition raw materials were weighed so that the compositions after firing the second main composition were the compositions shown in Tables 1 and 2. After weighing, each raw material was blended. The blending was performed by performing wet mixing and stirring for 3 hours in a ball mill. The mixture after the wet mixing and stirring was dehydrated and dried. After dehydration and drying, calcined at 1170 to 1210 ° C. to obtain a calcined powder of the second main composition.

前記第1主組成物仮焼粉と前記第2主組成物仮焼粉とを粗粉砕した。その後、粗粉砕した前記第1主組成物仮焼粉、粗粉砕した前記第2主組成物仮焼粉、および前記第1〜第5副成分原料(必要に応じて粗粉砕を行う)を、焼成後の組成が表1、2に示す組成となるように秤量し、混合した。そして、ポットミルで平均粒径0.5μm〜2μm程度に微粉砕した。微粉砕した原料粉末を脱水乾燥した。脱水乾燥後の原料粉末に有機結合剤としてポリビニルアルコール(PVA)を添加し、造粒および整粒を行い、顆粒粉末とした。   The first main composition calcined powder and the second main composition calcined powder were coarsely pulverized. Thereafter, the coarsely pulverized first main composition calcined powder, the coarsely pulverized second main composition calcined powder, and the first to fifth subcomponent raw materials (coarsely pulverized as necessary), It measured so that the composition after baking might become a composition shown in Table 1, 2, and mixed. And it grind | pulverized by the pot mill to the average particle diameter of about 0.5 micrometer-2 micrometers. The finely pulverized raw material powder was dehydrated and dried. Polyvinyl alcohol (PVA) was added as an organic binder to the raw material powder after dehydration and drying, and granulation and sizing were performed to obtain a granular powder.

前記顆粒粉末を300MPaの圧力で成形し、直径16.5mm、厚さ1.15mmの円板状の成形物を得た。   The granule powder was molded at a pressure of 300 MPa to obtain a disk-shaped molded product having a diameter of 16.5 mm and a thickness of 1.15 mm.

前記円板状の成形物を空気中、1150℃〜1300℃で本焼成し、焼結体を得た。   The disk-shaped molded product was subjected to main firing at 1150 ° C. to 1300 ° C. in the air to obtain a sintered body.

なお、焼成後の組成は蛍光X線分析により確認した。そして、焼成後の組成は焼成前の主成分および副成分の混合時の組成とほぼ一致することを確認した。   The composition after firing was confirmed by fluorescent X-ray analysis. And it confirmed that the composition after baking substantially corresponded with the composition at the time of the mixing of the main component and subcomponent before baking.

前記焼結体の両面に銀(Ag)ペーストを焼付けて電極を形成し、磁器コンデンサを得た。このようにして得られた表1、2の試料番号1〜137の各磁器コンデンサの電気的特性を測定した。   A silver (Ag) paste was baked on both surfaces of the sintered body to form electrodes, and a ceramic capacitor was obtained. The electrical characteristics of the porcelain capacitors of sample numbers 1 to 137 in Tables 1 and 2 thus obtained were measured.

以下、各電気的特性の測定方法および評価方法について説明する。   Hereinafter, a measurement method and an evaluation method of each electrical characteristic will be described.

(焼結性(焼結体密度))
前記焼結体の寸法および重量から、焼結体密度を算出した。焼結体密度が5.5g/cm以上の場合を焼結性が良好であるとした。表1、2では、焼結体密度が5.5g/cm以上の場合を○、5.5g/cm未満の場合を×とした。基準を5.5g/cmとしたのは、焼結体密度が5.5g/cm未満の場合に焼結体素地の強度が著しく低下してしまうためである。なお、焼結体密度が5.5g/cm未満の試料については、以下の測定は不要であるとして実施しなかった。
(Sinterability (sintered body density))
The density of the sintered body was calculated from the size and weight of the sintered body. When the sintered body density was 5.5 g / cm 3 or more, the sinterability was considered good. In Tables 1 and 2, the case where the sintered body density was 5.5 g / cm 3 or more was evaluated as ◯, and the case where it was less than 5.5 g / cm 3 was evaluated as x. The reason why the standard is 5.5 g / cm 3 is that the strength of the sintered body is significantly lowered when the density of the sintered body is less than 5.5 g / cm 3 . In addition, about the sample whose sintered compact density is less than 5.5 g / cm < 3 >, the following measurement was not implemented because it was unnecessary.

(比誘電率(ε))
比誘電率εは、前記コンデンサ試料に対し、基準温度20℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1.0Vrmsの条件下で測定された静電容量から算出した(単位なし)。比誘電率は高いほうが好ましく、本実施例では、8000以上を良好とした。
(Relative permittivity (ε))
The relative dielectric constant ε was calculated from the capacitance measured with the digital LCR meter under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms with respect to the capacitor sample at a reference temperature of 20 ° C. (No unit). It is preferable that the relative dielectric constant is high. In this example, 8000 or more was considered good.

(誘電損失(tanδ))
誘電損失(tanδ)は、前記コンデンサ試料に対し、基準温度20℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1.0Vrmsの条件下で測定した。誘電損失は低いほうが好ましく、本実施例では1.5%以下を良好とした。
(Dielectric loss (tan δ))
The dielectric loss (tan δ) was measured with respect to the capacitor sample at a reference temperature of 20 ° C. with a digital LCR meter under conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1.0 Vrms. The dielectric loss is preferably as low as possible. In this example, 1.5% or less was considered good.

(交流破壊電圧(AC−Eb))
交流破壊電圧(AC−Eb)は、前記コンデンサの試料の両端に交流電界を100V/sで徐々に印加し、100mAのもれ電流が流れた時点での電圧を測定し、単位厚み当たりの交流破壊電圧を求めた。交流破壊電圧は高いほうが好ましく、本実施例では、4.0kV/mm以上を良好とした。
(AC breakdown voltage (AC-Eb))
For AC breakdown voltage (AC-Eb), an AC electric field is gradually applied to both ends of the capacitor sample at 100 V / s, and the voltage at the time when a leakage current of 100 mA flows is measured. The breakdown voltage was determined. It is preferable that the AC breakdown voltage is high. In this example, 4.0 kV / mm or more was considered good.

(温度特性(E特性))
前記コンデンサ試料に対し、−25℃〜85℃において、デジタルLCRメータにて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの条件で静電容量を測定し、基準温度20℃における静電容量に対する−25℃での静電容量の変化率および85℃での静電容量の変化率を算出した。本実施例ではE特性を満たす+20%〜−55%を好ましい範囲とした。
(Temperature characteristics (E characteristics))
The capacitance of the capacitor sample is measured at −25 ° C. to 85 ° C. with a digital LCR meter under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms. The rate of change in capacitance at −25 ° C. and the rate of change in capacitance at 85 ° C. were calculated. In this example, + 20% to -55% satisfying the E characteristic was set as a preferable range.

(信頼性)
前記コンデンサ試料を、温度170℃雰囲気中で50Hzの交流電圧を誘電体1mmあたり3kV印加される状態にした。この状態で24時間保持した後に、上記の比誘電率、誘電損失、交流破壊電圧、温度特性を測定した。
(reliability)
The capacitor sample was put in a state where an AC voltage of 50 Hz was applied at 3 kV per 1 mm of dielectric in an atmosphere of 170 ° C. After maintaining in this state for 24 hours, the above-mentioned relative dielectric constant, dielectric loss, AC breakdown voltage, and temperature characteristics were measured.

24時間保持後の上記各特性が24時間保持前の上記各特性と同等程度である場合に信頼性が良好であるとした。すなわち、各特性の試験前の値を母数として、各特性の試験後の値と試験前の値との差が20%以下である場合を良好とした。表1、2では、全ての特性が上記の良好範囲内である場合に○、上記の良好範囲外の特性がある場合に△とした。信頼性が△であっても、他の特性が良好であれば、十分に本願発明の目的を達成することができる。   The reliability was determined to be good when the characteristics after holding for 24 hours were comparable to the characteristics before holding for 24 hours. That is, the value before each test of each characteristic was used as a parameter, and the case where the difference between the value after the test of each characteristic and the value before the test was 20% or less was considered good. In Tables 1 and 2, ◯ is given when all the characteristics are within the above-mentioned favorable range, and Δ is given when there are characteristics outside the above-mentioned good range. Even if the reliability is Δ, the object of the present invention can be sufficiently achieved if other characteristics are good.

(EPMA)
試料4について焼結品を鏡面研磨し、EPMAで観察し、Ba、Ca、Ti、Zr、Zn、Bi等のマッピング分析を行った。EPMAの測定結果をもとに作成した試料4の誘電体の要部拡大断面図の概略図が図2である。BaおよびTiが存在する部分のうち、CaおよびZrが存在する部分を第1主組成物12が存在する部分とした。BaおよびTiが存在する部分のうち、CaおよびZrが存在しない部分を第2主組成物14が存在する部分とした。第1主組成物12、第2主組成物14のいずれとも異なる部分をその他の組成物16が存在する部分とした。その他の組成物16としては、たとえば副成分の偏析粒子等が挙げられる。なお、図2では粒界の記載を省略した。
(EPMA)
The sample 4 was mirror-polished and observed with EPMA, and mapping analysis of Ba, Ca, Ti, Zr, Zn, Bi, etc. was performed. FIG. 2 is a schematic diagram of an enlarged cross-sectional view of a main part of the dielectric material of the sample 4 prepared based on the measurement result of EPMA. Of the portion where Ba and Ti are present, the portion where Ca and Zr are present is defined as the portion where the first main composition 12 is present. Of the portion where Ba and Ti are present, the portion where Ca and Zr are not present is defined as the portion where the second main composition 14 is present. A portion different from both the first main composition 12 and the second main composition 14 was a portion where the other composition 16 was present. Examples of the other composition 16 include segregated particles of subcomponents. In FIG. 2, the description of the grain boundary is omitted.

Figure 0006413861
Figure 0006413861

Figure 0006413861
Figure 0006413861

(評価)
試料1〜8より、第1主組成物の組成式中のx(Caの含有量)が0.01≦x≦0.30の場合(試料2〜7)は、xが0の場合(試料1)に比べ、交流破壊電圧および温度特性が良好になることが確認できた。またxが0.40の場合(試料8)に比べ、比誘電率が良好になることが確認できた。
(Evaluation)
From Samples 1 to 8, when x (Ca content) in the composition formula of the first main composition is 0.01 ≦ x ≦ 0.30 (Samples 2 to 7), when x is 0 (Sample Compared to 1), it was confirmed that the AC breakdown voltage and temperature characteristics were improved. It was also confirmed that the relative dielectric constant was better than when x was 0.40 (Sample 8).

試料4、11〜17より、第1主組成物の組成式中のy(Srの含有量)が0.001≦y≦0.100の場合(試料4、12〜16)には、yが0、すなわち第1主組成物にSrを含有しない場合(試料11)に比べ、比誘電率が良好になることが確認できた。また、組成式中のyが0.155の場合(試料17)に比べ、比誘電率および温度特性が良好になることが確認できた。   From sample 4, 11-17, when y (content of Sr) in the composition formula of the first main composition is 0.001 ≦ y ≦ 0.100 (sample 4, 12-16), y is It was confirmed that the relative dielectric constant was better than 0, that is, when the first main composition did not contain Sr (sample 11). In addition, it was confirmed that relative permittivity and temperature characteristics were improved as compared with the case where y in the composition formula was 0.155 (sample 17).

試料21〜27より、第1主組成物の組成式中のa(Snの含有量)が0でz(Zrの含有量)が0.04≦z≦0.20の場合(試料22〜26)は、zが0.03の場合(試料21)に比べ、比誘電率、誘電損失、交流破壊電圧および温度特性が良好になることが確認できた。また、組成式中のzが0.25の場合(試料27)に比べ、比誘電率および温度特性が良好になることが確認できた。   From Samples 21 to 27, when a (Sn content) in the composition formula of the first main composition is 0 and z (Zr content) is 0.04 ≦ z ≦ 0.20 (Samples 22 to 26) ), It was confirmed that relative permittivity, dielectric loss, AC breakdown voltage and temperature characteristics were improved as compared with the case where z was 0.03 (sample 21). In addition, it was confirmed that relative permittivity and temperature characteristics were improved as compared with the case where z in the composition formula was 0.25 (sample 27).

試料28〜31より、第1主組成物の組成式中のzが0でaが0.04≦a≦0.20の場合(試料28〜30)は、aが0.25の場合(試料31)に比べ、比誘電率、交流破壊電圧および温度特性が良好になることが確認できた。   From samples 28 to 31, when z in the composition formula of the first main composition is 0 and a is 0.04 ≦ a ≦ 0.20 (samples 28 to 30), when a is 0.25 (sample Compared to 31), it was confirmed that the relative dielectric constant, the AC breakdown voltage, and the temperature characteristics were improved.

試料4、21、22、32〜36より、第1主組成物の組成式中のz+aが0.04≦z+a≦0.30の場合(試料4、22、32〜35)は、z+aが0.03の場合(試料21)に比べ、比誘電率、誘電損失、交流破壊電圧および温度特性が良好になることが確認できた。また、組成式中のz+aが0.40の場合(試料36)に比べ、比誘電率および温度特性が良好になることが確認できた。   From Samples 4, 21, 22, 32-36, when z + a in the composition formula of the first main composition is 0.04 ≦ z + a ≦ 0.30 (samples 4, 22, 32-35), z + a is 0. It was confirmed that relative permittivity, dielectric loss, AC breakdown voltage, and temperature characteristics were improved as compared with 0.03 (sample 21). In addition, it was confirmed that relative permittivity and temperature characteristics were improved as compared with the case where z + a in the composition formula was 0.40 (sample 36).

試料4、41〜43より、第2主組成物の組成式中のαが0.00≦α≦0.100の場合(試料4、41、42)は、αが0.150の場合(試料43)に比べ、比誘電率および温度特性が良好になることが確認できた。   From samples 4, 41 to 43, when α in the composition formula of the second main composition is 0.00 ≦ α ≦ 0.100 (samples 4, 41, and 42), when α is 0.150 (sample Compared to 43), it was confirmed that the relative dielectric constant and temperature characteristics were improved.

試料4、51〜56より、主組成物全体の重量(主成分の重量)に対する第2主組成物の割合A(重量部)が5.00≦A≦40.00の場合(試料4、53〜55)は、第2主組成物を含有しない従来のBCTZ系の場合(試料51)、およびAが4.00の場合(試料52)に比べ、温度特性が良好になることが確認できた。また、Aが50.00の場合(試料56)に比べ、比誘電率が良好になることが確認できた。   From the samples 4, 51 to 56, when the ratio A (parts by weight) of the second main composition to the weight of the entire main composition (weight of the main component) is 5.00 ≦ A ≦ 40.00 (samples 4, 53 ~ 55), it was confirmed that the temperature characteristics were better than in the case of the conventional BCTZ system not containing the second main composition (sample 51) and in the case where A was 4.00 (sample 52). . It was also confirmed that the relative dielectric constant was better than when A was 50.00 (sample 56).

試料4、61〜66より、第1主組成物の組成式中のm、第2主組成物の組成式中のn、上記Aが0.97≦{(100−A)×m+A×n}×0.01≦1.03を満たす場合(試料4、62〜65)は、{(100−A)×m+A×n}×0.01が0.96の場合(試料61)に比べ、比誘電率および交流破壊電圧が良好になることが確認できた。また、{(100−A)×m+A×n}×0.01が1.04の場合(試料66)には、焼結性が悪化した。   From Samples 4, 61 to 66, m in the composition formula of the first main composition, n in the composition formula of the second main composition, and A is 0.97 ≦ {(100−A) × m + A × n}. When x 0.01 ≦ 1.03 is satisfied (sample 4, 62 to 65), the ratio of {(100−A) × m + A × n} × 0.01 is 0.96 (sample 61). It was confirmed that the dielectric constant and the AC breakdown voltage were good. In addition, when {(100−A) × m + A × n} × 0.01 was 1.04 (sample 66), the sinterability deteriorated.

試料71〜137は試料4の副成分含有量を変化させた試料である。   Samples 71 to 137 are samples in which the subcomponent content of sample 4 is changed.

試料71〜75は第2副成分である酸化亜鉛の含有量を変化させた試料である。いずれの試料も全ての特性が良好であることが確認できた。   Samples 71 to 75 are samples in which the content of zinc oxide as the second subcomponent is changed. All of the samples were confirmed to have good characteristics.

試料81〜86は第1副成分である酸化ビスマスの含有量を変化させた試料である。主成分100重量部に対して0.30〜3.00重量部の間で変化させた試料82〜85は、0.20重量部とした試料81と比べ、温度特性が良好になることが確認できた。また、4.00重量部とした試料86に比べ、比誘電率、交流破壊電圧および温度特性が良好になることが確認できた。   Samples 81 to 86 are samples in which the content of bismuth oxide, which is the first subcomponent, is changed. It was confirmed that the samples 82 to 85 changed between 0.30 to 3.00 parts by weight with respect to 100 parts by weight of the main component have better temperature characteristics than the sample 81 having 0.20 parts by weight. did it. In addition, it was confirmed that the relative dielectric constant, the AC breakdown voltage, and the temperature characteristics were improved as compared with the sample 86 having 4.00 parts by weight.

試料91〜107は第3副成分の種類および/または含有量を試料4から変化させた試料である。第3副成分の種類を変化させた試料91〜98、および2種類の第3副成分を含有する試料99は、いずれの試料も全ての特性が良好であることが確認できた。   Samples 91 to 107 are samples in which the type and / or content of the third subcomponent is changed from that of the sample 4. It was confirmed that all of the samples 91 to 98 in which the type of the third subcomponent was changed and the sample 99 containing two types of the third subcomponent had good characteristics.

第3副成分を含有しない試料101および第3副成分(Nd)の含有量を試料4から変化させた試料102〜107は、いずれの試料も全ての特性が良好であることが確認できた。 It is confirmed that all of the samples 101 to 107 that do not contain the third subcomponent and the samples 102 to 107 in which the content of the third subcomponent (Nd 2 O 3 ) is changed from the sample 4 have good characteristics. did it.

第3副成分を0.005〜0.300重量部含有する試料4、91〜99、102〜107は、第3副成分を含有しない試料101と比較して交流破壊電圧が良好であることが確認できた。  Samples 4, 91 to 99, and 102 to 107 containing 0.005 to 0.300 parts by weight of the third subcomponent may have better AC breakdown voltage than Sample 101 that does not contain the third subcomponent. It could be confirmed.

試料111〜128は第4副成分の種類および/または含有量を試料4から変化させた試料である。いずれの試料も全ての特性が良好であることが確認できた。   Samples 111 to 128 are samples in which the type and / or content of the fourth subcomponent is changed from that of sample 4. All of the samples were confirmed to have good characteristics.

第4副成分を0.02〜1.50重量部含有する試料4、112〜128は、第4副成分を含有しない試料111と比較して交流破壊電圧が良好であることが確認できた。   It was confirmed that Samples 4 and 112 to 128 containing 0.02 to 1.50 parts by weight of the fourth subcomponent had better AC breakdown voltage than Sample 111 containing no fourth subcomponent.

試料131〜137は第5副成分の種類および/または含有量を試料4から変化させた試料である。いずれの試料も全ての特性が良好であることが確認できた。   Samples 131 to 137 are samples in which the type and / or content of the fifth subcomponent is changed from the sample 4. All of the samples were confirmed to have good characteristics.

第5副成分を0.01〜0.60重量部含有する試料4、132〜137は、第5副成分を含有しない試料131と比較して信頼性が良好であることが確認できた。   It was confirmed that the samples 4 and 132 to 137 containing 0.01 to 0.60 parts by weight of the fifth subcomponent had better reliability than the sample 131 containing no fifth subcomponent.

EPMAの結果(図2)より、本願発明に係る誘電体磁器組成物は、主組成物が、BCTZ系の誘電体磁器組成物からなる第1主組成物12と、BT系の誘電体磁器組成物からなる第2主組成物14と、の二種類の主組成物からなることが確認できた。同時に、本願発明に係る誘電体磁器組成物の主組成物は、単一種類の主組成物とはなっていないことが確認できた。   From the results of EPMA (FIG. 2), the dielectric ceramic composition according to the present invention is composed of a first main composition 12 whose main composition is a BCTZ-based dielectric ceramic composition, and a BT-based dielectric ceramic composition. It was confirmed that the composition was composed of two main compositions, a second main composition 14 made of a product. At the same time, it was confirmed that the main composition of the dielectric ceramic composition according to the present invention was not a single type of main composition.

副成分に関しては、第1副成分の酸化ビスマスは、第1主組成物12に大部分が固溶していることが確認できた。第2副成分の酸化亜鉛が粒界(図示せず)およびその他の組成物16に含まれていることが確認できた。  Regarding the subcomponent, it was confirmed that the first subcomponent bismuth oxide was mostly dissolved in the first main composition 12. It was confirmed that the zinc oxide as the second subcomponent was contained in the grain boundary (not shown) and the other composition 16.

2… セラミックコンデンサ
4… 誘電体
6、8… 電極
12… 第1主組成物
14… 第2主組成物
16… その他の組成物
2 ... Ceramic capacitor 4 ... Dielectric 6, 8 ... Electrode 12 ... First main composition 14 ... Second main composition 16 ... Other compositions

Claims (8)

(Ba1−x−y ,Ca,Sr(Ti1−z−a ,Zr,Sn)Oの組成式で表される第1主組成物と、
(Ba1−α,SrαTiOの組成式で表わされる第2主組成物と、
酸化ビスマスからなる第1副成分と、を含有する誘電体磁器組成物であって、
0.01≦x≦0.30
0<y≦0.1
0.04≦z≦0.2
0≦a≦0.2
0.04≦z+a≦0.3
0≦α≦0.1
であり、
前記第1主組成物の含有量と前記第2主組成物の含有量との和を100重量部とし、前記第2主組成物の含有量をA重量部、前記第1副成分の含有量をB重量部とする場合に、
5≦A≦40
0.97≦{(100−A)×m+A×n}×0.01≦1.03
0.3≦B≦3
であることを特徴とする誘電体磁器組成物。
And (Ba 1-x-y, Ca x, Sr y) m (Ti 1-z-a, Zr z, Sn a) a first main composition represented by the composition formula of O 3,
A second main composition represented by a composition formula of (Ba 1-α , Sr α ) n TiO 3 ;
A dielectric ceramic composition comprising a first subcomponent comprising bismuth oxide,
0.01 ≦ x ≦ 0.30
0 <y ≦ 0.1
0.04 ≦ z ≦ 0.2
0 ≦ a ≦ 0.2
0.04 ≦ z + a ≦ 0.3
0 ≦ α ≦ 0.1
And
The sum of the content of the first main composition and the content of the second main composition is 100 parts by weight, the content of the second main composition is A parts by weight, and the content of the first subcomponent Is 1 part by weight of B,
5 ≦ A ≦ 40
0.97 ≦ {(100−A) × m + A × n} × 0.01 ≦ 1.03
0.3 ≦ B 1 ≦ 3
A dielectric porcelain composition comprising:
5≦A≦30である請求項1に記載の誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein 5 ≦ A ≦ 30. 0.3≦B≦1.5である請求項1または2に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein 0.3 ≦ B 1 ≦ 1.5. 酸化亜鉛からなる第2副成分を含有し、前記第2副成分の含有量をB重量部とする場合に、
0.45≦B≦10である請求項1〜3のいずれかに記載の誘電体磁器組成物。
When the second subcomponent consisting of zinc oxide is contained and the content of the second subcomponent is B 2 parts by weight,
The dielectric ceramic composition according to claim 1, wherein 0.45 ≦ B 2 ≦ 10.
La、Ce、Pr、Pm、Nd、Sm、Eu、Gd、Yからなる群のうち少なくとも1種以上の酸化物からなる第3副成分を含有し、前記第3副成分の含有量を酸化物換算でB重量部とする場合に、
0<B≦0.3である請求項1〜4のいずれかに記載の誘電体磁器組成物。
A third subcomponent comprising at least one oxide selected from the group consisting of La, Ce, Pr, Pm, Nd, Sm, Eu, Gd, and Y, and the content of the third subcomponent being an oxide When converted to 3 parts by weight of B,
The dielectric ceramic composition according to claim 1, wherein 0 <B 3 ≦ 0.3.
Al、Ga、Si、Mg、In、Niからなる群のうち少なくとも1種以上の酸化物からなる第4副成分を含有し、前記第4副成分の含有量を酸化物換算でB重量部とする場合に、
0.02≦B≦1.5である請求項1〜5のいずれかに記載の誘電体磁器組成物。
A fourth subcomponent composed of at least one oxide selected from the group consisting of Al, Ga, Si, Mg, In, and Ni. The content of the fourth subcomponent is 4 parts by weight in terms of oxide. If
The dielectric ceramic composition according to claim 1 is 0.02 ≦ B 4 ≦ 1.5.
Mn、Crからなる群のうち少なくとも1種以上の酸化物からなる第5副成分を含有し、前記第5副成分の含有量を酸化物換算でB重量部とする場合に、
0.01≦B≦0.6である請求項1〜6のいずれかに記載の誘電体磁器組成物。
When the fifth subcomponent consisting of at least one oxide in the group consisting of Mn and Cr is contained, and the content of the fifth subcomponent is 5 parts by weight in terms of oxide,
The dielectric ceramic composition according to claim 1, wherein 0.01 ≦ B 5 ≦ 0.6.
請求項1〜7のいずれかに記載の誘電体磁器組成物を含む電子部品。   The electronic component containing the dielectric ceramic composition in any one of Claims 1-7.
JP2015054966A 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component Active JP6413861B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015054966A JP6413861B2 (en) 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component
KR1020160010289A KR101767672B1 (en) 2015-03-18 2016-01-27 Dielectric ceramic composition and electronic component
CN201610135925.6A CN105985111B (en) 2015-03-18 2016-03-10 Dielectric ceramic compositions and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054966A JP6413861B2 (en) 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
JP2016175781A JP2016175781A (en) 2016-10-06
JP6413861B2 true JP6413861B2 (en) 2018-10-31

Family

ID=57044474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054966A Active JP6413861B2 (en) 2015-03-18 2015-03-18 Dielectric porcelain composition and electronic component

Country Status (3)

Country Link
JP (1) JP6413861B2 (en)
KR (1) KR101767672B1 (en)
CN (1) CN105985111B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107244898B (en) * 2017-06-14 2020-10-16 陕西师范大学 Barium strontium titanate doped barium zirconate titanate calcium-based piezoelectric ceramic material and preparation method thereof
CN109133913B (en) * 2018-07-27 2021-03-26 广东工业大学 High-dielectric-constant barium titanium stannate-calcium acid, and preparation method and application thereof
JP7315902B2 (en) * 2020-03-25 2023-07-27 Tdk株式会社 Dielectric porcelain composition and electronic parts
CN112397643B (en) * 2020-11-17 2023-04-18 武汉理工大学 Thin film material with high electrocaloric effect near room temperature and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302219A (en) 1993-04-15 1994-10-28 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
JPH09110526A (en) * 1995-10-11 1997-04-28 Sakai Chem Ind Co Ltd Composition for producing dielectric porcelain
JP2003104774A (en) 2001-09-27 2003-04-09 Murata Mfg Co Ltd Dielectric porcelain composition and capacitor using the same
JP4043013B2 (en) * 2001-12-20 2008-02-06 日本化学工業株式会社 Method for producing high purity barium carbonate
JP2004238251A (en) 2003-02-06 2004-08-26 Murata Mfg Co Ltd Dielectric ceramic composition and ceramic electronic component
JP4354224B2 (en) * 2003-06-30 2009-10-28 京セラ株式会社 Dielectric porcelain and multilayer electronic components
JP2005206456A (en) * 2003-12-22 2005-08-04 Showa Denko Kk High purity calcium carbonate and its manufacturing method
JP2008285373A (en) * 2007-05-18 2008-11-27 Tdk Corp Dielectric ceramic composition and electronic component
JP5272754B2 (en) * 2008-02-05 2013-08-28 Tdk株式会社 Dielectric porcelain composition and electronic component
JP2011162397A (en) * 2010-02-09 2011-08-25 Tdk Corp Method for producing dielectric ceramic composition and method for producing electronic component
JPWO2012023406A1 (en) * 2010-08-18 2013-10-28 株式会社村田製作所 Multilayer ceramic electronic components
JP5664228B2 (en) * 2010-12-28 2015-02-04 Tdk株式会社 Dielectric porcelain composition and electronic component
JP5910317B2 (en) * 2012-05-28 2016-04-27 Tdk株式会社 Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
KR101767672B1 (en) 2017-08-11
CN105985111B (en) 2018-12-21
JP2016175781A (en) 2016-10-06
KR20160112931A (en) 2016-09-28
CN105985111A (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP5272754B2 (en) Dielectric porcelain composition and electronic component
JP5278682B2 (en) Dielectric porcelain composition and electronic component
JP5910317B2 (en) Dielectric porcelain composition and electronic component
JP6413861B2 (en) Dielectric porcelain composition and electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
KR101178952B1 (en) Dielectric ceramic composition and electronic component
US11524923B2 (en) Dielectric ceramic composition and ceramic electronic components
JP5012932B2 (en) Dielectric porcelain composition and electronic component
JP4946822B2 (en) Dielectric porcelain composition and electronic component
US11702368B2 (en) Dielectric ceramic composition and ceramic electronic component
JP6413862B2 (en) Dielectric porcelain composition and electronic component
JP6132668B2 (en) Dielectric porcelain composition and electronic component
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP5668569B2 (en) Dielectric porcelain composition and electronic component
JP6020068B2 (en) Dielectric porcelain composition and electronic component
US20230260702A1 (en) Dielectric ceramic composition and single layer capacitor
JP5035278B2 (en) Dielectric porcelain composition and electronic component
JP2007153710A (en) Dielectric porcelain composition and electronic component
JP2023117898A (en) Dielectric ceramic composition
KR20130087419A (en) Dielectric ceramic composition and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150