TW201248987A - Bandpass filter using thin film microstrip line - Google Patents

Bandpass filter using thin film microstrip line Download PDF

Info

Publication number
TW201248987A
TW201248987A TW100118523A TW100118523A TW201248987A TW 201248987 A TW201248987 A TW 201248987A TW 100118523 A TW100118523 A TW 100118523A TW 100118523 A TW100118523 A TW 100118523A TW 201248987 A TW201248987 A TW 201248987A
Authority
TW
Taiwan
Prior art keywords
thin film
microstrip line
film microstrip
filter
deposited
Prior art date
Application number
TW100118523A
Other languages
Chinese (zh)
Other versions
TWI474551B (en
Inventor
Hung-Wei Wu
Ru-Yuan Yang
Yan-Kuin Su
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW100118523A priority Critical patent/TWI474551B/en
Publication of TW201248987A publication Critical patent/TW201248987A/en
Application granted granted Critical
Publication of TWI474551B publication Critical patent/TWI474551B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The present invention discloses a filter using thin film microstrip line, comprising a semiconductor substrate, an oxidation layer, a metal layer, a dielectric layer and at least four ground electrode pads. The filter according to the invention is used the low-k dielectric material for a substrate. The filter can apply on the design of filtering device in millimeter wave devices.

Description

201248987 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關於一種濾波器,其特別有關於一種製作在 低介電常數薄膜上之微帶線帶通濾波器。 [先前技術] [0002] 近年來,在單石微波積體電路(Monol ithic microwave integrated circuit, MMIC)中’將深次微米BiCMOS 主動元件與被動元件的整合,已是被認為朝向高效能與 低成本1C技術的最佳解決方案,亦是達到系統級晶片 Ο (System on chip,S0C)的終極目標。為了要整合龐大 數量的被動元件與降低元件間的串音(Crosstalk)效應 ;特別是主動與被動元件間的分散式阻抗匹配網路與傳 輸線。基板的損失與平均功率承載能力(Average power handling capability,APHC)必需謹慎的評估。 [0003]射頻積體電路(Radio frequency integrated circuit, RFIC) 之主動元件皆製作在具半導性之基板上, 例如:標準矽晶與砷化鎵(GaAs) ^在低成本的考量上, 標準矽晶為之首選。然而,標準矽晶在RF頻段具有極大 的損失與極低的APHC。因此,目前約有四種方案在解決 標準矽晶在RF頻段的損失問題:(1)將被動元件製作在厚 介電層上(>50 μηι),使元件遠離標準矽晶以降低損失; (2)使用高阻值石夕晶(High resistivUy silicQn, HRS),用崎低基板中載子傳輪現象,並提升傳輸線與 基板間的抗耗合能力;(3)使用MeV以上的質子佈植技術 ’將⑽轉換為刪;以及⑷使用微機電(Micro 1002031199-0 100118523 表單編號A0101 第3頁/共14頁 201248987 electro mechanical systems,MEMS)製程技術,將 基板的背面去除或是深钮刻導體線下方,來達到降低標 準石夕晶的RF損失。HRS最主要的缺點在於需要高能量的栽 子植入技術,這並不相容於標準CM〇s製程,故會増加製 造成本與元件效能的不穩定性;MEMS技術則具有機械應 力、高複雜度製程與低操作壽命的缺點。 [0004] [0005] [0006].201248987 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a filter, and more particularly to a microstrip line bandpass filter fabricated on a low dielectric constant film. [Prior Art] [0002] In recent years, integration of deep submicron BiCMOS active components with passive components in a monolithic microwave integrated circuit (MMIC) has been considered to be toward high performance and low efficiency. The best solution for cost 1C technology is also the ultimate goal of achieving system-on-chip (S0C). In order to integrate a large number of passive components and reduce the crosstalk effect between components; especially the distributed impedance matching network and transmission line between active and passive components. Substrate loss and Average power handling capability (APHC) must be carefully evaluated. [0003] Active components of a radio frequency integrated circuit (RFIC) are fabricated on a substrate having semi-conductivity, such as standard twinning and gallium arsenide (GaAs). Twine is the first choice. However, standard twins have significant losses in the RF band with extremely low APHC. Therefore, there are currently about four solutions to solve the problem of loss of standard twins in the RF band: (1) The passive components are fabricated on a thick dielectric layer (>50 μηι) to keep the components away from standard twins to reduce losses; (2) Use high resistivUy silicQn (HRS) to reduce the carrier's ability to pass between the transmission line and the substrate, and to improve the resistance between the transmission line and the substrate. (3) Use a proton cloth above MeV. Plant Technology 'converts (10) to delete; and (4) uses MEMS (Micro 1002031199-0 100118523 Form No. A0101 Page 3 of 14 201248987 electro mechanical systems, MEMS) process technology to remove the back side of the substrate or deep button Below the conductor line, to reduce the RF loss of the standard Shi Xijing. The main disadvantage of HRS is that it requires high-energy implant technology, which is not compatible with the standard CM〇s process, which will increase the manufacturing cost and component performance instability; MEMS technology has mechanical stress and high complexity. The disadvantages of the process and low operating life. [0004] [0006].

[0007] 100118523 在 MMIC 中,低介電常數(l〇w dielectric constant,[0007] 100118523 In MMIC, low dielectric constant (l〇w dielectric constant,

Low-k)材料常用來作為邏輯閘元件的介電層與内連接元 件。這是因為Low-k材料具有高傳播迷率、低損失、高絕 緣性與高熱導性的優點。同樣地,在射頻與微波元件的 封裝體(Packing)中,若被動元件欲與主動元件整合. 其被動元件需先製作在高絕緣性的薄膜上,聚亞酿胺 (Polyimide)是較廣泛使用的L〇w_k材料之一。 因此’為了達到系統級晶片的目標並解決上述問題,需 提供-種薄膜微帶線帶通渡波器以克服先前技術的缺點 【發明内容】 本發明之主要目的在提供—種薄频帶線料濾波器, 係製作於低介電常數之薄膜上之微帶線帶通滤波器,。 應用於單石微波積體電路(MMIC)中。 為達上述之主要目的,本發明提出一種薄膜微帶線帶明 濾'波器,其包含一半導體基板、一氧化層、一金屬層、 -介電層、至少四個接地電極與器單元。該氧^ 層之厚度約為2 nm~i〇 nm並沈積於該半導體基板上。Low-k) materials are commonly used as dielectric and interconnect components for logic gate components. This is because Low-k materials have the advantages of high propagation margin, low loss, high insulation and high thermal conductivity. Similarly, in the packaging of RF and microwave components, if the passive component is to be integrated with the active component, the passive component must be fabricated on a highly insulating film. Polyimide is widely used. One of the L〇w_k materials. Therefore, in order to achieve the goal of the system-level wafer and solve the above problems, it is necessary to provide a thin-film microstrip line pass-through waver to overcome the disadvantages of the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a thin-band wire material. The filter is a microstrip line bandpass filter fabricated on a low dielectric constant film. Used in single stone microwave integrated circuits (MMIC). To achieve the above main object, the present invention provides a thin film microstrip line filter device comprising a semiconductor substrate, an oxide layer, a metal layer, a dielectric layer, and at least four ground electrodes and a cell. The oxygen layer has a thickness of about 2 nm to about 〇 nm and is deposited on the semiconductor substrate.

度約為G.5 _㈣並沈積於該氧化層J 衣单編號A0101 第4頁/共14頁 201248987 。該介電層之厚度約為15 /zm~20 #ηι並沈積於該金屬 層上。該接地電極係以半導體製程定義並沈積於該介電 層上並電性連接至該金屬層。該濾波器單元具有一第一 信號輸出入埠與一第二信號輸出入埠,並以半導體製程 定義並沈積於該介電層上。其中,該金屬層作為該薄膜 微帶線帶通濾波器之接地面。該介電層作為該薄膜微帶 線帶通濾波器之承載本體。該第一信號輸出入埠與該第 二信號輸出入埠與該接地電極係以共平面波導結構配置 於該介電層上。 [0008] 根據本發明之一種薄膜微帶線帶通濾波器之一特徵,其 中該半導體基板係為矽半導體。 [0009] 根據本發明之一種薄膜微帶線帶通濾波器之一特徵,其 中該金屬層係使用鋁。 [0010] 根據本發明之一種薄膜微帶線帶通濾波器之一特徵,其 中該介電層係為低介電常數材料,其介電常數約在1.5〜 3之間。 ) [0011] 根據本發明之一種薄膜微帶線帶通濾波器之一特徵,其 中該濾波器單元係由複數個二分之一波長耦合線共振器 所組成。 [0012] 為讓本發明之上述和其他目的、特徵、和優點能更明顯 易懂,下文特舉數個較佳實施例,並配合所附圖式,作 詳細說明如下。 【實施方式】 [0013] 雖然本發明可表現為不同形式之實施例,但附圖所示者 100118523 表單編號 Α0101 第 5 頁/共 14 頁 1002031199-0 201248987 ;下文中A明者係為本發明可之較佳實施例並請了 解本文所揭7F者係考量為本發明之__範例,且並非意圖 用以將本發明限制於圖示及/或所描述之特定實施例中。 [0014] [0015] 本發明之目的在於達到低成本、高集積度與完全整合主 被動元件的終極目標°因此’在MMIC的渡波元件中,薄 膜微帶線(Thin Film Mierostrip Line,TFML)是最 好的解決方案;特別是在V頻帶(V-band,50〜75 GHz) 以上’薄膜微帶線結構是射頻系統級晶片的最佳候選人 之一。它具有下列優點:(1)約2〇 μιη厚的p〇lyimide在 餘刻與馨孔製程皆相當容易,亦符合標準CMOS製程, (2)TFML具有相當小的尺寸,可大幅提昇關1(:的元件集 積度,(3)TFML的接地面將p〇iyimide與碎晶隔絕,可 有效降低元件操作時的雜訊與基板串音(Cr〇sstalk)效 應’(4)Polyimide是低介電係數與高絕緣性的材料’可 有效降低關1(:内連接元件的色散效應(dispersion ef -fects) ° 請參照第1圖並配合第2圖,其所示為薄膜微帶線帶通濾 波器1 00之側視圖與上視圖。該薄膜微帶線帶通濾波器 100包含一半導體基板11()、一氧化層丨2〇、〆金屬層1 30 、一介電層140、至少四個接地電極150與一濾波器單元 160。該半導體基板11〇係為矽半導體。該氧化層12〇係 為二乳化梦薄膜,其厚度約為2 nm~10 nmii使用藏鍵 沈積於該半導體基板110上◊該金屬層130係使用銘’其 厚度約為0.5 //m〜2 並沈積於該氧化層12〇上°該介 3 電層140係為低介電常數材料,其介電常數約在1. 5 ~ 100118523 表單編號A0101 第6頁/共14頁 1002031199-0 201248987The degree is about G.5 _(4) and is deposited on the oxide layer J. A No. A0101 Page 4 of 14 201248987. The dielectric layer has a thickness of about 15 /zm to 20 #ηι and is deposited on the metal layer. The ground electrode is defined by a semiconductor process and deposited on the dielectric layer and electrically connected to the metal layer. The filter unit has a first signal input port and a second signal input port, and is defined by a semiconductor process and deposited on the dielectric layer. Wherein, the metal layer serves as a ground plane of the thin strip line pass filter of the thin film. The dielectric layer acts as a carrier body for the thin film microstrip line pass filter. The first signal output port and the second signal input port and the ground electrode are disposed on the dielectric layer in a coplanar waveguide structure. A feature of a thin film microstrip line bandpass filter according to the present invention, wherein the semiconductor substrate is a germanium semiconductor. A feature of a thin film microstrip line bandpass filter according to the present invention, wherein the metal layer is aluminum. A feature of a thin film microstrip line bandpass filter according to the present invention, wherein the dielectric layer is a low dielectric constant material having a dielectric constant of between about 1.5 and about 3. [0011] A feature of a thin film microstrip line bandpass filter according to the present invention, wherein the filter unit is comprised of a plurality of one-half wavelength coupled line resonators. The above and other objects, features, and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] [0013] Although the present invention can be embodied in different forms of embodiments, the figures shown in the drawings are 100118523, form number Α 0101, page 5 / page 14 1002031199-0 201248987; The preferred embodiment is to be understood as being limited to the illustrated embodiment and/or described in the specific embodiments. [0015] The object of the present invention is to achieve low cost, high integration and the ultimate goal of fully integrating active and passive components. Therefore, in the MMIC wave-wave component, the Thin Film Mierostrip Line (TFML) is The best solution; especially in the V-band (V-band, 50~75 GHz) or more 'thin microstrip line structure is one of the best candidates for RF system-level chips. It has the following advantages: (1) about 2 〇μιη thick p〇lyimide is quite easy in the remaining and melamine process, and also conforms to the standard CMOS process, (2) TFML has a relatively small size, which can greatly improve the off 1 ( : The component accumulation degree, (3) The ground plane of TFML isolates p〇iyimide from the fragmentation crystal, which can effectively reduce the noise and substrate crosstalk (Cr〇sstalk) effect during component operation. (4) Polyimide is low dielectric The coefficient and the high insulating material' can effectively reduce the dispersion 1 (: dispersion ef -fects of the inner connecting element ° Please refer to Fig. 1 and with Fig. 2, which shows the thin film microstrip line pass filtering Side view and top view of the device 100. The thin film microstrip line pass filter 100 comprises a semiconductor substrate 11 (), an oxide layer 2, a germanium metal layer 130, a dielectric layer 140, at least four The ground electrode 150 is connected to the filter unit 160. The semiconductor substrate 11 is a germanium semiconductor. The oxide layer 12 is a double emulsion film having a thickness of about 2 nm to 10 nmii deposited on the semiconductor substrate 110 using a Tibetan bond. The upper layer of the metal layer 130 is used to have a thickness of about 0.5 //m~2 And deposited on the oxide layer 12〇. The dielectric layer 140 is a low dielectric constant material having a dielectric constant of about 1. 5 ~ 100118523 Form No. A0101 Page 6 of 14 1002031199-0 201248987

其厚度約為15心〜20 Am並沈積於該金屬層•^人、接地電極15G係為紹,以半導體製程定義並洗穑 :電層⑷上並電性連接至該金屬_。錢器單^ 系由複數個一分之—波長輕合線共振器163所叙成, 有-第一信號輪出入埠m與-第二信號輸出入埠 ’據波H單元16〇以半_製程定義並沈積於該 層14〇上。装中,_^人 電 波器1〇〇之接地面=作為該薄膜微帶線帶通據 。亥"電層140作為該薄膜微帶線帶 濾波器1〇〇之承載本體。該第一信號輸出入埠ΐ6ι與該第 二信镜輸出入槔162與該接地電極150係以共平面波導梦 構配置於該介電層14〇上。 。 [0016] 〇 使用矽基板110的好處在設計絲元料是錢置疑的。 然而’在實現射頻被動科树基板上時,因為基板山 的低絕緣性產生的嚴重損失而難以實現1此,射頻被 動元件需藉由切基板11G上沈積一層厚度約在2()心之 低介電常數材料薄膜,並以一金屬層13〇作為接地面用 以隔絕該介電層140與石夕基板11〇。該金屬層13〇的存在 可避免在該介電層140中的電磁力線受到石夕基板ιι〇之電 特性影響而產生相關的介電損失效應。 [0017] 在製程上’該氧化層120之厚度係為二氧化石夕薄膜,其係 使用減舰沈積㈣半導體基板UQ上1金屬層13〇、係 使用鋁,其係使用濺鍍法沈積在該氧化層12〇上,厚度約 為2 μιη。該介電層14〇係使用低介電材料〜聚亞醯胺 (P〇lyimide)ur - 2.2 at 刚 ΜΗζ),係使用旋锻 法沈積於該金屬層130上。該接地電極15()錢_锻法 100118523 表箪煸號Α0101 第7 1/共U 1 1002031199-0 201248987 沈積在該介電層丨4〇上並配合電感耦合式電漿 (IndUctively coupled Plasma,Icp)蝕刻法定義該 接地電極150之位置。 [0018] 請參照第3圖,其所示為薄膜微帶線帶通濾波器1〇〇之濾 波器單元之結構圖,為本發明之最佳實施例。濾波器單 元160係為平行耦合線濾波器結構,規格為中心 0 2〇 GHz、漣波為〇. 5 dB、頻寬百分比BWR = 〇.丨,頻 率在21. 65 GHz時衰減量應小於20 dB。因此,由下The thickness is about 15 centimeters to 20 Am and is deposited on the metal layer. The ground electrode 15G is defined by a semiconductor process and washed: the electrical layer (4) is electrically connected to the metal. The money unit is composed of a plurality of one-wavelength light-receiving line resonators 163, and has a first signal wheel in and out of the 埠m and a second signal output 埠' according to the wave H unit 16 〇 The process is defined and deposited on this layer 14〇. In the middle of the installation, the ground plane of the _^ human wave device is used as the microstrip line of the film. The "Electrical Layer" 140 serves as a carrier body of the thin film microstrip line filter 1 . The first signal output port 6 and the second mirror output port 162 and the ground electrode 150 are arranged on the dielectric layer 14A in a coplanar waveguide. . [0016] The benefit of using the ruthenium substrate 110 is unquestionable in designing the silk material. However, when implementing the RF passive tree substrate, it is difficult to achieve the serious loss due to the low insulation of the substrate mountain. The RF passive component needs to be deposited on the substrate 11G to a thickness of about 2 (). The dielectric constant material film is formed by a metal layer 13 〇 as a ground plane for isolating the dielectric layer 140 from the XI XI substrate 11 〇. The presence of the metal layer 13〇 prevents the electromagnetic force lines in the dielectric layer 140 from being affected by the electrical characteristics of the stone substrate to produce an associated dielectric loss effect. [0017] In the process, the thickness of the oxide layer 120 is a dioxide thin film, which uses a reduced ship deposition (four) semiconductor substrate UQ on a metal layer 13 〇, using aluminum, which is deposited by sputtering The oxide layer 12 has a thickness of about 2 μm. The dielectric layer 14 is made of a low dielectric material, P〇lyimide ur - 2.2 at, which is deposited on the metal layer 130 by swaging. The grounding electrode 15 () money _ forging 100118523 table Α Α 0101 7 1 / a total of U 1 1002031199-0 201248987 deposited on the dielectric layer 丨 4 并 and with inductively coupled plasma (IndUctively coupled Plasma, Icp The etching method defines the position of the ground electrode 150. Referring to FIG. 3, there is shown a structural diagram of a filter unit of a thin film microstrip line band pass filter, which is a preferred embodiment of the present invention. The filter unit 160 is a parallel coupled line filter structure with a center of 0 2 GHz, a chopping of 〇. 5 dB, a bandwidth percentage of BWR = 〇.丨, and the attenuation should be less than 20 at a frequency of 21. 65 GHz. dB. Therefore, by

D 式可求得低通原型濾波器的頻率響應轉換到帶通濾波器 的頻率響應: 故The D equation can be used to determine the frequency response of the low-pass prototype filter to the frequency response of the bandpass filter:

ω ( \ a 1 ( =— 0.1\ 1.65 2 :10 X—0.387 = —3.87 (1)ω ( \ a 1 ( =− 0.1\ 1.65 2 :10 X—0.387 = —3.87 (1)

1=2,87 ’經由查表可得知級數Ν > 2會有20 dB 以上的衰減。故選擇級數N = 2 .的柴比雪夫0.5 dB 等漣波低通濾波器原型,其原型低通電路之元件值由查 表得g0 = l、gl = 1.4209、g2 = 0.7071 與g3 = 〇 1. 9841。其中’第一信號輸出入埠161與第二信號輸出 入埠162之特性阻抗係選為50Ω。進一步可求得知每個導 納轉換器之值:1=2,87 ’After looking up the table, it is known that the series Ν > 2 will have an attenuation of more than 20 dB. Therefore, the chopper low-pass filter prototype with a Chebyshev 0.5 dB equal to the number of stages N = 2 is selected. The component values of the prototype low-pass circuit are obtained by looking up g0 = l, gl = 1.4209, g2 = 0.7071 and g3 = 〇 1. 9841. The characteristic impedance of the 'first signal output port 161' and the second signal output port 162 is selected to be 50 Ω. Further to find out the value of each admittance converter:

A 70 J2-FO J3-FOA 70 J2-FO J3-FO

ΙπΒΨΚ ] nBWR 0.33249 UBWR 1 2^3 0.15671 0.33461 耦合線的奇、偶模態特性阻抗可為 100118523 表單編號A0101 第8頁/共14頁 1002031199-0 201248987 N = 1 Ζ〇Λ = z0[l + JNxZ0 + (JN X Z0)2] = 38.9 = Z0[l - JN x Z0 + x Z0)2] = 72.2 N = 2 = z0[l + JN X z0 + X z0)2] = 43.3 z〇, = ^〇[l - Λ x Z0 + (JN x Z0)2] = 59.1 N = 3 〇 Z0〇 = [1 + ^ X z0 + X z0)2] = 38.9 Z〇e = AP - *4 x ^ + (A x 4)2 ] = 72.3 待計算出耦合線的奇、偶模態特性阻抗後,可決定每一 對二分之一波長耦合線共振器163之尺寸,再透過全波電 磁模擬軟體進行濾波器的特性分析。 [0019]综上所述,本發明揭示一種薄膜微帶線帶通濾波器1〇〇, 其包含一半導體基板110、一氧化層12〇、一金屬層13〇 ^ 、一介電層140、至少四個接地電極150與一濾波器單元 160。該薄膜微帶線帶通濾波器1〇〇係使用低介電常數之 介電層140作為承載本體,適合操作在釐米波之濾波器元 件。 闕賴本發明已以前述較佳實施例揭示,然其並非用以限 定本發明’任何熟習此技藝者,在不脫離本發明之精神 和範圍内’當可作各種之更動與修改。如上述的解釋, 都可以作各型式的修正與變化,而不會破壞此發明的精 100118523 表單編號A0101 第9頁/共14頁 1002031199-0 201248987 神。因此本發明之保護範圍當視後附之申請專利範圍所 界定者為準。 【圖式簡單說明】 [0021] [0022] 第1圖顯示為薄膜微帶線帶通濾波器之側視圖。 第2圖顯示為薄膜微帶線帶通濾波器之上視圖。 第3圖顯示為薄膜微帶線帶通濾波器之濾波器單元之結構 圖。 【主要元件符號說明】 100薄膜微帶線帶通濾波器 110半導體基板 120氧化層 130金屬層 140介電層 15 0接地電極 160濾波器單元 161 第一信號輸出入埠 162 第二信號輸出入埠 〇 163 二分之一波長耦合線共振器 100118523 表單編號A0101 第10頁/共14頁 1002031199-0ΙπΒΨΚ ] nBWR 0.33249 UBWR 1 2^3 0.15671 0.33461 The odd and even modal characteristic impedance of the coupled line can be 100118523 Form No. A0101 Page 8 of 14 1002031199-0 201248987 N = 1 Ζ〇Λ = z0[l + JNxZ0 + (JN X Z0)2] = 38.9 = Z0[l - JN x Z0 + x Z0)2] = 72.2 N = 2 = z0[l + JN X z0 + X z0)2] = 43.3 z〇, = ^ 〇[l - Λ x Z0 + (JN x Z0)2] = 59.1 N = 3 〇Z0〇= [1 + ^ X z0 + X z0)2] = 38.9 Z〇e = AP - *4 x ^ + ( A x 4)2 ] = 72.3 After the odd and even mode characteristic impedances of the coupled line are calculated, the size of each pair of half-wavelength coupled line resonators 163 can be determined, and then filtered by the full-wave electromagnetic simulation software. Characteristic analysis of the device. In summary, the present invention discloses a thin film microstrip line bandpass filter 1A including a semiconductor substrate 110, an oxide layer 12, a metal layer 13, and a dielectric layer 140. At least four ground electrodes 150 and a filter unit 160. The thin film microstrip line bandpass filter 1 uses a low dielectric constant dielectric layer 140 as a carrier body, and is suitable for operation in a centimeter wave filter element. The present invention has been disclosed in the foregoing preferred embodiments, and is not intended to limit the scope of the invention, and various modifications and changes may be made without departing from the spirit and scope of the invention. As explained above, all types of corrections and changes can be made without destroying the essence of the invention. 100118523 Form No. A0101 Page 9 of 14 1002031199-0 201248987 God. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0022] Fig. 1 is a side view showing a thin film microstrip line band pass filter. Figure 2 shows a top view of the thin film microstrip linepass filter. Figure 3 shows the structure of a filter unit for a thin-film microstrip linepass filter. [Major component symbol description] 100 thin film microstrip line band pass filter 110 semiconductor substrate 120 oxide layer 130 metal layer 140 dielectric layer 15 0 ground electrode 160 filter unit 161 first signal input and output 埠 162 second signal output 埠〇163 Half-wavelength coupled line resonator 100118523 Form No. A0101 Page 10/Total 14 Page 1002031199-0

Claims (1)

201248987 七、申請專利範圍: 1 . 一種薄膜微帶線帶通濾波器,其包含: 一半導體基板; 一氧化層,係沈積於該半導體基板上,其厚度約為2 nm~10 nm之間; 一金屬層,係沈積於該氧化層上,其厚度約為0.5 /zm〜2 之間,作為該薄膜微帶線帶通濾波器之接地面; 一介電層,係沈積於該金屬層上,其厚度約為15 /zm〜20 /zm之間,作為該薄膜微帶線帶通濾波器之承載本體; 〇 至少四個接地電極,係以半導體製程定義並沈積於該介電 層上並電性連接至該金屬層;以及 一濾波器單元,其具有一第一信號輸出入埠與一第二信號 輸出入埠,係以半導體製程定義並沈積於該介電層上; 其中,該第一信號輸出入埠與該第二信號輸出入埠與該些 接地電極以共平面波導結構配置於該介電層上。 2 .如申請專利範圍第1項所述之薄膜微帶線帶通濾波器,其 中該半導體基板係為梦半導體。 〇 3 .如申請專利範圍第1項所述之薄膜微帶線帶通濾波器,其 中該氧化層係為二氧化矽薄膜,並使用濺鍍法沈積於該半 導體基板上。 4 .如申請專利範圍第1項所述之薄膜微帶線帶通濾波器,其 中該金屬層係使用鋁、鉑與金所組成族群中之一種材料。 5 .如申請專利範圍第4項所述之薄膜微帶線帶通濾波器,其 中該金屬層係使用鋁。 6 .如申請專利範圍第1項所述之薄膜微帶線帶通濾波器,其 100118523 表單編號A0101 第11頁/共14頁 1002031199-0 201248987 中該介電層係為低介電常數材料,其介電常數約在1.5 ~ 3之間。 7 .如申請專利範圍第1項所述之薄膜微帶線帶通濾波器,其 中該接地電極係為鋁。 8 .如申請專利範圍第1項所述之薄膜微帶線帶通濾波器,其 中該濾波器單元係由複數個二分之一波長耗合線共振器所 組成。201248987 VII. Patent application scope: 1. A thin film microstrip line band pass filter, comprising: a semiconductor substrate; an oxide layer deposited on the semiconductor substrate, the thickness of which is between about 2 nm and 10 nm; a metal layer deposited on the oxide layer having a thickness of about 0.5 /zm~2 as a ground plane of the thin strip line pass filter of the thin film; a dielectric layer deposited on the metal layer a thickness of about 15 /zm~20 /zm, as the carrier body of the thin-film microstrip line bandpass filter; 〇 at least four ground electrodes, defined by a semiconductor process and deposited on the dielectric layer Electrically connected to the metal layer; and a filter unit having a first signal input port and a second signal input port, defined by a semiconductor process and deposited on the dielectric layer; wherein A signal output port and the second signal input port and the ground electrodes are disposed on the dielectric layer in a coplanar waveguide structure. 2. The thin film microstrip line band pass filter of claim 1, wherein the semiconductor substrate is a dream semiconductor. The thin film microstrip line band pass filter of claim 1, wherein the oxide layer is a ceria film and is deposited on the semiconductor substrate by sputtering. 4. The thin film microstrip line bandpass filter of claim 1, wherein the metal layer is one of a group consisting of aluminum, platinum and gold. 5. The thin film microstrip line band pass filter of claim 4, wherein the metal layer is aluminum. 6. The thin film microstrip line bandpass filter of claim 1, wherein the dielectric layer is a low dielectric constant material, 100118523 Form No. A0101, page 11 / 14 pages 1002031199-0 201248987, Its dielectric constant is between 1.5 and 3. 7. The thin film microstrip line band pass filter of claim 1, wherein the ground electrode is aluminum. 8. The thin film microstrip line bandpass filter of claim 1, wherein the filter unit is comprised of a plurality of one-half wavelength constrained line resonators. 100118523 表單編號A0101 第12頁/共14頁 1002031199-0100118523 Form No. A0101 Page 12 of 14 1002031199-0
TW100118523A 2011-05-26 2011-05-26 Bandpass filter using thin film microstrip line TWI474551B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100118523A TWI474551B (en) 2011-05-26 2011-05-26 Bandpass filter using thin film microstrip line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100118523A TWI474551B (en) 2011-05-26 2011-05-26 Bandpass filter using thin film microstrip line

Publications (2)

Publication Number Publication Date
TW201248987A true TW201248987A (en) 2012-12-01
TWI474551B TWI474551B (en) 2015-02-21

Family

ID=48138881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118523A TWI474551B (en) 2011-05-26 2011-05-26 Bandpass filter using thin film microstrip line

Country Status (1)

Country Link
TW (1) TWI474551B (en)

Also Published As

Publication number Publication date
TWI474551B (en) 2015-02-21

Similar Documents

Publication Publication Date Title
TWI521645B (en) Semiconductor device and method of forming high-attenuation balanced band-pass filter
CN107819180B (en) Substrate integrated waveguide device and substrate integrated waveguide filter
TWI540786B (en) Semiconductor device and method of forming directional rf coupler with ipd for additional rf signal processing
EP2096767B1 (en) Method and system for processing signals via diplexers embedded in an integrated circuit package
TWI531108B (en) A duplexer and a circuit structure of the same and a radio frequency transceiver device
WO2021135009A1 (en) Semiconductor structure having stacking unit, manufacturing method, and electronic device
TW201220349A (en) Semiconductor device and method of forming RF FEM with LC filter and IPD filter over substrate
KR20110133039A (en) Reactance filter having a steep edge
WO1995006336A1 (en) Thin-film multilayer electrode of high frequency electromagnetic field coupling
CN109802216B (en) Broadband miniaturized Wilkinson power divider based on thin film integrated passive device process and preparation method thereof
WO2018132742A1 (en) Monolithic single chip integrated radio frequency front end module configured with single crystal acoustic filter devices
US20140252916A1 (en) Acoustic wave device
JP2020058027A (en) Acoustic wave device with multi-layer interdigital transducer electrode
CN106575957B (en) Integrated circuit provided with a crystal acoustic resonator device
US9343789B2 (en) Compact microstrip bandpass filter with multipath source-load coupling
CN109981071A (en) A kind of three-dimensional low-pass filter based on coaxial through-silicon via and spiral inductance
JP2010093398A (en) Filter, duplexer and method of manufacturing filter
TW201248987A (en) Bandpass filter using thin film microstrip line
Chaudhary et al. Compact negative group delay circuit using defected ground structure
CN109755697B (en) Substrate integrated folded waveguide filter based on silicon through hole and preparation method thereof
CN103138705A (en) Band-pass filter
JP2008160654A (en) Integrated demultiplexer
CN107710605A (en) Mutual Inductance Coupling wave filter and Wireless Fidelity WiFi modules
TW201014030A (en) Coplanar waveguide low-pass filter
CN101694989B (en) Monolithic filter component based on acoustic interface waves and integrated with MEMS switches and manufacture method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees