TW201247585A - Glass substrate for liquid crystal lens - Google Patents

Glass substrate for liquid crystal lens Download PDF

Info

Publication number
TW201247585A
TW201247585A TW101114412A TW101114412A TW201247585A TW 201247585 A TW201247585 A TW 201247585A TW 101114412 A TW101114412 A TW 101114412A TW 101114412 A TW101114412 A TW 101114412A TW 201247585 A TW201247585 A TW 201247585A
Authority
TW
Taiwan
Prior art keywords
less
glass substrate
liquid crystal
cao
mgo
Prior art date
Application number
TW101114412A
Other languages
Chinese (zh)
Other versions
TWI583649B (en
Inventor
Takashi Murata
Takahiro Kawaguchi
Original Assignee
Nippon Electric Glass Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co filed Critical Nippon Electric Glass Co
Publication of TW201247585A publication Critical patent/TW201247585A/en
Application granted granted Critical
Publication of TWI583649B publication Critical patent/TWI583649B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/54Arrangements for reducing warping-twist

Abstract

This invention relates to a glass substrate which is for liquid crystal lens and has a glass composition (by mole%), including 45% to 75% of SiO2, 5% to 15% of Al2O3, 0% to 15% of B2O3, 0% to 15% of MgO, and 0% to 15% of CaO, and has a thickness equal to or less than 400 μ m.

Description

201247585 42467pif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種可適用於二 C three-dimensiona卜3D )顯示器的視域控制部等的液曰' 鏡用玻璃基板。 <日0透 【先前技術】 近年來,市場上開始出現無需佩戴眼鏡的3D顯示。。 裝置。作為無需佩戴眼鏡的3D的顯示方式,提出了^見态 屏障(Parallax Barrier)式及使用透鏡的方式。葙 二差 是藉由設定為適當的間隔的條紋狀的屏障來覆蓋顯示 從而形成兩眼視差的方式。最近,還出現—種 =來製作屏障的類型,可在2 D貞3 D之間進行切換。 =型因必須利用-麵障來隱藏至少晝面的—部分' 存在顯示器的亮度下降的問題。 敌 方面’使用透鏡的方式的基本原理類似於 f,疋代替屏障而藉由塑膠膜( ; 眼視差的方式。該方式中,因不合遮住金面形成兩 持顯示器的亮度,但存在盖法在丈可各易維 問題。 綠‘,、、去在2D與3D之間進行切換的 視域控制正研究使用液晶透鏡進行 光膜、導電下方式:對存在於形成著偏 晶的配向發生板間的液晶施加電場,而使液 可進行立體觀和而種Τ的作用,從而 μ方式中,不會如視差屏障式那 201247585 42467pif 樣遮住晝素,且亦可在2D與3D之間進行切換,因而可期 待作為下一代的3D顯示器的視域控制機構。 然而,在使用液晶透鏡來進行視域控制的方式中,在 將液晶透鏡配置在顯示器裝置的晝素上的情況下,存在晝 素-透鏡間的距離變長,3D的視野角變窄的問題。 該問題是因為如下情況所造成:在液晶顯示器(Liquid Crystal Display,LCD )或有機發光二極體(〇rganic Light-Emitting Diode,OLED)的顯示部,前面侧已存在 0·5 mm〜0.7 mm的玻璃基板,進而附加液晶透鏡的玻璃基 板的厚度。 另一方面,若減小液晶透鏡用玻璃基板的板厚,則能 夠改善上述問題。然而,先前的玻璃基板若減小板厚,則 谷易撓曲。若玻璃基板撓曲,則會產生無法在玻璃的表面 上進行所期望的成膜(例如透明導電膜等的成膜)的問題。 【發明内容】 因此,本發明的技術性課題在於,藉由提供即便板厚 減小亦不易撓曲的玻璃基板,而實現晝素-透鏡間的距離短 且具有適當的透明導電膜等的3D顯示器的視域控制部。 本發明者等人反覆進行了各種實驗,結果發現,通過 嚴格限制玻璃基板的玻璃組成、尺寸,而能夠解決上述技 術性課題’從而提出了本發明。亦即,本發明的液晶透鏡 用玻璃基板的特徵在於:作為玻璃組成,以莫耳%計,含 有 45%〜75%的 Si02、5%〜15%的 Al2〇3、〇〇/0〜15%的 B2〇3、0%〜15%的MgO、及〇%〜15%的CaO,且板厚為 201247585 42467pif 400 μηι 以下。 若如上述般限制玻璃組成,則可提高耐失透性、比楊 氏模量(specific Y〇ungis modulus)。若耐失透性高,則容 易成形為板厚400 μηι以下,若比揚氏模量大,則即便在 板厚為400 μηι以下的情況下,玻璃基板亦不易撓曲。而 且,若如上述般限制玻璃組成,則亦可降低密度、高溫黏 性。 ° 而且,若如上述般將玻璃基板的板厚限制為4〇〇 以下,則可擴大3D顯示器中可立體觀看的視野角。而且, 能夠對玻璃基板賦予可撓性,從而可將玻璃基板 狀而製作_捲。糾玻璃基板設為玻璃捲的狀態、,,^能 夠連續地進行透明導電朗形成或偏光膜賴附,從而液 晶透鏡的生產效率得到飛躍性提高。 第二,本發明的液晶透鏡用玻璃基板較佳為比揚氏模 量為f GPa/ ( gW )以上。此處,「比揚氏模量」為將楊 氏模$除^度的值所得的值。「楊氏模量」是指利用周知 的共振法等測定所得的值。「密度」可利關知 法等來測定。 @ 第三,本發明的液晶透鏡用玻璃基板較佳為應變點 (strain point)為650°C以上。此處,「應變點」是指根據ASTM C336而測定的值。 第四’本發明的液晶透制玻璃基板較佳為密度為2 7 g/cm3以下。 第五本發明的液晶透鏡用玻璃基板較佳為l〇25dpa 201247585 42467pif • s時的溫度為1650X:以下。此處,「l〇25dPa · s時的溫度」 相當於熔融溫度,是指利用鈾球提拉法測定所得的值。 第六,本發明的液晶透鏡用玻璃基板較佳為液相黏度 為104GdPa · s以上。此處’「液相黏度」是指利用鉑球提 拉法測定液相溫度下的玻璃的黏度所得的值。「液相溫度」 是指將通過標準篩30目(500 μηι)而殘留於5〇目(3〇〇 μπι) 的玻璃粉末加入至翻舟之後,將該翻舟在溫度梯度爐中保 持24小時,測定結晶析出的溫度所得到的值。 苐七’本發明的液晶透鏡用玻璃基板較佳為〜 3 8 0°C時的熱膨脹係數為3 0 X10_7/°C〜5 0 X1 〇-Vc。此處,「熱 膨脹係數」是利用膨脹計測定所得的值,且是指30°c〜 380°C的溫度範圍下的平均值。 第八,本發明的液晶透鏡用玻璃基板較佳為利用溢流 下拉法成形。此處,「溢流下拉法」亦被稱作熔融法,是使 熔融玻璃從耐熱性的槽狀構造物的兩側溢出,一邊使溢出 的熔融玻璃於槽狀構造物的下端合流,一邊向下方延伸成 形而成形為玻璃基板。 第九,本發明的液晶透鏡用玻璃基板的特徵在於:作 為玻璃組成,以莫耳%計,含有45%〜75%的Si02、5%〜 15%的 Al2〇3、0%〜15%的 B2〇3、〇%〜15%的 MgO、及 0%〜15%的CaO,莫耳比MgO/CaO為0〜1.5,莫耳比 (SrO+BaO) / (MgO+CaO)為 〇〜1,莫耳比 Mg0/Al203 為0〜卜莫耳比CaO/Al203為〇〜3,莫耳比B203/Si02為 0〜0.3,實質上不含有鹼金屬氧化物(Li20、Na20、K20)、201247585 42467pif VI. [Technical Field] The present invention relates to a liquid crystal mirror glass substrate which can be applied to a viewing area control unit of a two-C three-dimensiona 3D display. <Day 0 Transparency [Prior Art] In recent years, 3D display without glasses has begun to appear on the market. . Device. As a display method of 3D that does not require glasses, a Parallel Barrier type and a method of using a lens have been proposed.葙 Two differences are a way of covering the display by a stripe-shaped barrier set to an appropriate interval to form a binocular parallax. Recently, there has also been a type of = to create a barrier that can be switched between 2 D 贞 3 D. The = type has to use the - face barrier to hide at least the inside - part of the 'there is a problem of brightness degradation of the display. The basic principle of the enemy's way of using the lens is similar to f, which replaces the barrier by the plastic film (the method of parallax. In this way, the brightness of the two holding displays is formed because the gold surface is not covered, but there is a cover method In the field of Yiwei, Green's, and the field of view control to switch between 2D and 3D are studying the use of liquid crystal lenses for light film and conduction: the presence of alignment plates in the formation of partial crystals The liquid crystal is applied between the liquid crystals, so that the liquid can perform the stereoscopic observation and the seeding effect, so that the μ method does not cover the halogen as in the parallax barrier type 201247585 42467pif, and can also be performed between 2D and 3D. Switching is expected as a field of view control mechanism for a next-generation 3D display. However, in a method of performing viewing area control using a liquid crystal lens, in the case where a liquid crystal lens is disposed on a pixel of a display device, there is a flaw. The distance between the prime and the lens becomes longer, and the viewing angle of 3D becomes narrower. This problem is caused by the following conditions: liquid crystal display (LCD) or organic light emission. In the display portion of the 〇rganic Light-Emitting Diode (OLED), the glass substrate of 0. 5 mm to 0.7 mm is present on the front side, and the thickness of the glass substrate to which the liquid crystal lens is added is added. On the other hand, if the liquid crystal lens is reduced When the thickness of the glass substrate is used, the above problem can be improved. However, when the thickness of the glass substrate is reduced, the valley is easily deflected. If the glass substrate is deflected, it is impossible to perform the desired effect on the surface of the glass. The problem of film formation (for example, film formation of a transparent conductive film, etc.) [Technical Problem] Therefore, a technical object of the present invention is to provide a halogen substrate by providing a glass substrate which is less likely to be deflected even if the thickness is reduced. The field of view control unit of the 3D display having a short distance between the lenses and having a suitable transparent conductive film. The inventors of the present invention have repeatedly conducted various experiments and found that the glass composition and size of the glass substrate can be strictly limited. The present invention has been made in view of the above technical problem. That is, the glass substrate for a liquid crystal lens of the present invention is characterized in that it is a glass composition and is expressed in mol%. Containing 45%~75% of SiO2, 5%~15% of Al2〇3, 〇〇/0~15% of B2〇3, 0%~15% of MgO, and 〇%~15% of CaO, and the plate The thickness is 201247585 42467pif 400 μηι or less. If the glass composition is limited as described above, the devitrification resistance and the specific Young's modulus can be improved. If the devitrification resistance is high, the thickness is easily formed into a plate thickness. When the thickness is less than 400 μm, the glass substrate is less likely to be deflected even when the thickness is 400 μm or less. Further, if the glass composition is limited as described above, the density and high temperature viscosity can be lowered. Sex. Further, if the thickness of the glass substrate is limited to 4 Å or less as described above, the viewing angle which can be stereoscopically viewed in the 3D display can be expanded. Further, the glass substrate can be made flexible, and the glass substrate can be formed into a roll. When the glass-correcting substrate is in the state of a glass roll, the transparent conductive slab or the polarizing film can be continuously applied, and the production efficiency of the liquid crystal lens is drastically improved. Second, the glass substrate for a liquid crystal lens of the present invention preferably has a specific Young's modulus of f GPa/(gW) or more. Here, "Bian Young's modulus" is a value obtained by dividing the Young's modulus by the value of ^. The "Young's modulus" is a value measured by a known resonance method or the like. "Density" can be measured by knowing the knowledge. @ Third, the glass substrate for a liquid crystal lens of the present invention preferably has a strain point of 650 ° C or higher. Here, the "strain point" means a value measured in accordance with ASTM C336. The fourth liquid crystal transparent glass substrate of the present invention preferably has a density of 27 g/cm3 or less. The glass substrate for liquid crystal lens of the fifth invention is preferably 1650X: or less at a temperature of 10〇25dpa 201247585 42467pif • s. Here, "the temperature at 10 Pa25 dPa · s" corresponds to the melting temperature, and is a value measured by a uranium ball pulling method. Sixth, the glass substrate for a liquid crystal lens of the present invention preferably has a liquidus viscosity of 104 GdPa · s or more. Here, "liquid phase viscosity" means a value obtained by measuring the viscosity of glass at a liquidus temperature by a platinum ball pulling method. "Liquid phase temperature" means that the glass powder remaining in the 5 mesh (3 〇〇μπι) through a standard sieve of 30 mesh (500 μηι) is added to the boat, and the boat is kept in a temperature gradient furnace for 24 hours. The value obtained by measuring the temperature at which crystals are precipitated. The glass substrate for a liquid crystal lens of the present invention preferably has a thermal expansion coefficient of 3 0 X10_7/°C to 5 0 X1 〇-Vc at a temperature of 380 °C. Here, the "thermal expansion coefficient" is a value measured by a dilatometer, and means an average value in a temperature range of 30 ° C to 380 ° C. Eighth, the glass substrate for liquid crystal lenses of the present invention is preferably formed by an overflow down-draw method. Here, the "overflow down-draw method" is also referred to as a melting method, and the molten glass is caused to overflow from both sides of the heat-resistant groove-like structure, and the molten glass that has overflowed is merged at the lower end of the groove-like structure. The lower side is stretched and formed into a glass substrate. Ninth, the glass substrate for liquid crystal lenses of the present invention is characterized in that, as a glass composition, 45% to 75% of SiO 2 , 5% to 15% of Al 2 〇 3, and 0% to 15% are contained in terms of mol%. B2〇3, 〇%~15% of MgO, and 0%~15% of CaO, molar ratio MgO/CaO is 0~1.5, and molar ratio (SrO+BaO) / (MgO+CaO) is 〇~1 , Mohr ratio Mg0 / Al203 is 0 ~ Bu Mo Er ratio CaO / Al203 is 〇 ~ 3, Mo Er ratio B203 / Si02 is 0 ~ 0.3, substantially does not contain alkali metal oxides (Li20, Na20, K20),

6 S 201247585 42467pif AS2C>3、3Sb2〇3、pb〇 以及 Bi2〇,比揚氏模量為 29 GPa/ (g/cm3)以上,3(rc〜38(rc時的熱膨脹係數為3〇χ1〇_7/Χ: 〜5〇\1〇7/(3’密度為26§/(:1113以下,液相黏度為1〇50伽 • s以上,寬度尺寸為500 mm以上,長度尺寸為5〇〇 mm 以上,板厚為伽μηα以下。此處,「SrO+BaO」是指SrO 與Ba0的合量。「MgO+CaO」是指MgO與CaO的合量。 「實質上不含有〜」是指玻璃組成中的對象成分的含量小 於〇.1莫耳%的情況。例如,「實質上不含有As203」是指 玻璃組成中的As2〇3的含量小於〇.1莫耳%的情況。 第十’本發明的液晶透鏡用玻璃基板的特徵在於:作 為玻璃組成’以莫耳%計,含有45%〜75%的Si02、5%〜 15%的 Al2〇3、〇%〜15%的 BA、〇%〜15%的 Mg〇 及 〇% 〜15%的CaO,莫耳比MgO/CaO為〇〜1.5,莫耳比 (SrO+BaO) / (MgO+CaO)為 0〜1,莫耳比 Mg〇/Al203 為0〜卜莫耳比Ca0/Al2〇3為〇〜3,莫耳比B2〇3/Si〇2為 0〜0.3’實質上不含有驗金屬氧化物、八82〇3、处2〇3、卩|3〇、 以及Bi2〇3 ’比楊氏模量為29 GPa/ (g/cm3)以上,3〇〇c〜 380°C時的熱膨脹係數為3〇xlO_7/°C〜5〇xl〇-7/°c,密度為 2.6 g/cm3以下’液相黏度為i〇5.Q(iPa · s以上,板厚為4〇〇 μιη以下。 第十一,本發明的液晶透鏡的特徵在於:包括上述任 一液晶透鏡用玻璃基板。 第十二’本發明的玻璃基板的特徵在於:板厚為4〇〇 μιη以下,且比楊氏模量為29 GPa/ ( g/cm3)以上。另外, 201247585 42467pif 本發明的玻璃基板特別適用於液晶透鏡用途,但亦可適用 於液晶透鏡以外的有機電致發光(electroluminescence,EL ) 顯示器的基板用途等。 第十三,本發明的玻璃基板較佳為用於液晶透鏡。 [發明的效果] 根據以上的本發明,可提供一種即便板厚小亦不易撓 曲的玻璃基板。因此,若使用該玻璃基板,則可製造晝素_ 透鏡間的距離短且具有適當的透明導電膜等的3D顯示器 的視域控制部。 【實施方式】 本發明的實施形態的液晶透鏡用玻璃基板,作為玻璃 組成,以莫耳%計,含有45%〜75%的Si02、5%〜15%的 A1203、〇%〜15%的 B203、〇%〜15%的 MgO、及 0%〜15% 的CaO。以下表示如上述般限定各成分的含有範圍的理由。6 S 201247585 42467pif AS2C>3, 3Sb2〇3, pb〇 and Bi2〇, the ratio of Young's modulus is 29 GPa/(g/cm3) or more, 3 (rc~38 (the thermal expansion coefficient of rc is 3〇χ1〇) _7/Χ: ~5〇\1〇7/(3' density is 26§/(:1113 or less, liquid viscosity is 1〇50 ga·s or more, width size is 500 mm or more, and length dimension is 5〇) 〇mm or more, the sheet thickness is gamma ηα or less. Here, "SrO+BaO" means the sum of SrO and Ba0. "MgO+CaO" means the sum of MgO and CaO. "Substantially does not contain ~" The case where the content of the target component in the glass composition is less than 0.1% by mole. For example, "substantially no inclusion of As203" means a case where the content of As2〇3 in the glass composition is less than 0.1% by mole. The glass substrate for liquid crystal lens of the present invention is characterized in that it contains 45% to 75% of SiO 2 , 5% to 15% of Al 2 〇 3 , 〇 % to 15% of BA as a glass composition. 〇%~15% of Mg〇 and 〇%~15% of CaO, Moh ratio of MgO/CaO is 〇~1.5, Moer ratio (SrO+BaO) / (MgO+CaO) is 0~1, Moer The ratio of Mg〇/Al203 is 0 to Bumor ratio Ca0/Al2〇3 〇~3, Moer than B2〇3/Si〇2 is 0~0.3', which does not contain metal oxide, 八82〇3, 2〇3, 卩|3〇, and Bi2〇3' The modulus is 29 GPa/(g/cm3) or more, and the coefficient of thermal expansion at 3〇〇c~380°C is 3〇xlO_7/°C~5〇xl〇-7/°c, and the density is 2.6 g/cm3. In the following, the liquid crystal lens of the present invention includes a glass substrate for any of the liquid crystal lenses described above. The liquid crystal lens of the present invention is characterized in that it has a thickness of 4 Å or less. The glass substrate of the present invention is characterized in that the thickness of the glass substrate is 4 μm or less and the Young's modulus is 29 GPa/(g/cm 3 ) or more. Further, 201247585 42467pif The glass substrate of the present invention is particularly suitable for use in Though it is used for a liquid crystal lens, it can be applied to a substrate of an organic electroluminescence (EL) display other than a liquid crystal lens, etc. The thirteenth, the glass substrate of the present invention is preferably used for a liquid crystal lens. [Effect of the Invention] According to the above invention, it is possible to provide a glass substrate which is less likely to be deflected even if the thickness is small. In the glass substrate, the viewing area control unit of the 3D display having a short distance between the lenses and the lens and having a suitable transparent conductive film can be manufactured. [Embodiment] The glass substrate for a liquid crystal lens according to the embodiment of the present invention is composed of glass. In terms of mol%, it contains 45% to 75% of SiO 2 , 5% to 15% of A1203, 〇% to 15% of B203, 〇% to 15% of MgO, and 0% to 15% of CaO. The reason for limiting the content range of each component as described above is shown below.

Si02的含量為45%〜75%,較佳為50%〜73%,更佳 為55%〜72%,進而更佳為60%〜70%。若Si02的含量過 夕’則難以實現低密度化。另一方面’若Si〇2的含量過多, 則高溫黏度會不當地變高’炼融性降低,除此以外,玻璃 中谷易產生失透結晶(白珍石(cristobalite))等的缺陷。The content of SiO 2 is from 45% to 75%, preferably from 50% to 73%, more preferably from 55% to 72%, still more preferably from 60% to 70%. If the content of SiO 2 is too late, it is difficult to achieve a low density. On the other hand, when the content of Si〇2 is too large, the high-temperature viscosity is undesirably high, and the smelting property is lowered. In addition, defects such as devitrified crystals (cristobalite) are likely to occur in the glass.

Al2〇3的含量為5%〜15%。若ai2〇3的含量過少,則 難以提高揚氏模量或耐熱性,且高溫黏性會不當地變高, 炫融性容易降低。因此’ Al2〇3的較佳的下限範圍為7〇/〇以 上、9%以上、10%以上、η%以上,尤佳為12%以上。另 一方面,若Al2〇3的含量過多,則液相溫度變高,耐失透The content of Al2〇3 is 5% to 15%. If the content of ai2〇3 is too small, it is difficult to increase the Young's modulus or heat resistance, and the high-temperature viscosity will be undesirably high, and the blooming property is liable to be lowered. Therefore, the preferred lower limit range of 'Al2〇3' is 7 Å/〇 or more, 9% or more, 10% or more, η% or more, and particularly preferably 12% or more. On the other hand, if the content of Al2〇3 is too large, the liquidus temperature becomes high and resistance to devitrification

S 8 201247585 42467pif 性容易降低。因此,Ai2〇3的較佳的上限範圍為145%以 下、14%以下、13,5%以下,尤佳為13%以下。 B2〇3作為熔劑而發揮作用,且是降低高溫黏性並提高 熔融性的成分。4〇3的含量為0%〜15%。若b2〇3的含量 過多,則因揚氏模量的降低,而難以提高比揚氏模量,且 耐熱性或耐候性容易降低。因此,B2〇3的較佳的上限範圍 為11%以下、8%以下、5%以下、3%以下、1%以下,尤佳 為0.5%以下。另外,若Β2〇3的含量少,則存在高溫黏性 增高、氣泡品質下降的傾向,進而存在密度上升的傾向。S 8 201247585 42467pif sex is easy to reduce. Therefore, the preferred upper limit of Ai2〇3 is 145% or less, 14% or less, 13,5% or less, and particularly preferably 13% or less. B2〇3 acts as a flux and is a component that lowers high-temperature viscosity and improves meltability. The content of 4〇3 is 0% to 15%. When the content of b2〇3 is too large, the Young's modulus is lowered, and it is difficult to increase the specific Young's modulus, and heat resistance or weather resistance is liable to lower. Therefore, the preferred upper limit of B2〇3 is 11% or less, 8% or less, 5% or less, 3% or less, or 1% or less, and particularly preferably 0.5% or less. Further, when the content of Β2〇3 is small, there is a tendency that the high-temperature viscosity is increased and the bubble quality is lowered, and the density tends to increase.

MgO的含量為〇%〜lsycMgO是如下的成分。亦即, MgO是不會使應變點降低,而降低高溫黏性並提高熔融性 的成分。而且,MgO是鹼土類金屬氧化物中降低密度的效 果最大的成分。進而,是提高揚氏模量的效果大的成分。 然而,若MgO的含量過多,則液相溫度上升而耐失透性 容易降低。因此’MgO的較佳的上限範圍為12%以下、1〇% 以下,尤佳為9%以下,MgO的較佳的下限範圍為1%以 上、1.5%以上、3%以上、3.5%以上、4%以上、6%以上, 尤佳為7.5%以上。The content of MgO is 〇%~lsycMgO is a component as follows. That is, MgO is a component which does not lower the strain point and lowers the high temperature viscosity and improves the meltability. Further, MgO is the most effective component for reducing density in alkaline earth metal oxides. Further, it is a component having a large effect of increasing the Young's modulus. However, if the content of MgO is too large, the liquidus temperature rises and the devitrification resistance is liable to lower. Therefore, the preferred upper limit range of 'MgO is 12% or less and 1% or less, and particularly preferably 9% or less. The preferred lower limit of MgO is 1% or more, 1.5% or more, 3% or more, and 3.5% or more. 4% or more, 6% or more, and particularly preferably 7.5% or more.

CaO的含罝為0%〜15%。CaO是不會使應變點降低, 而降低向溫黏性並顯者提高溶融性的成分。而且,在驗土 類金屬氧化物中,若使CaO的含量相對增加,則容易導致 玻璃低後度化。然而’右CaO的含量過多,則熱膨脹係數 或密度會不當地變高,且玻璃組成的成分平衡性被破壞, 從而耐失透性容易降低。因此,CaO的較佳的上限範圍為 201247585 42467pif 13%以下、12%以下、11%以下、1〇 5%以下、9%以下,尤 佳為8%以下。而且’ CaO的較佳的下限範圍為1%以上、 3%以上、4%以上、5%以上,尤佳為5 5%以上。 除上述成分以外,例如亦可添加以下的成分。The cerium content of CaO is 0% to 15%. CaO is a component which does not lower the strain point and lowers the viscosity to the temperature and significantly improves the meltability. Further, in the case of the soil-based metal oxide, if the content of CaO is relatively increased, the glass tends to be lowered. However, if the content of the right CaO is too large, the coefficient of thermal expansion or density will be undesirably high, and the balance of the composition of the glass composition is destroyed, so that the devitrification resistance is liable to lower. Therefore, the preferred upper limit of CaO is 201247585 42467pif 13% or less, 12% or less, 11% or less, 1% 5% or less, 9% or less, and particularly preferably 8% or less. Further, a preferred lower limit range of 'CaO is 1% or more, 3% or more, 4% or more, 5% or more, and particularly preferably 55% or more. In addition to the above components, for example, the following components may be added.

SrO是不會使應變點降低,而降低高溫黏性並提高熔 融性的成分,但若SrO的含量增多,則密度或熱膨脹係數 容易上升。而且,若SrO的含量增多,則為了與si的熱膨 脹係數匹配,而必須使CaO或MgO的含量相對降低。而 且,因該CaO或Mg0的含量的降低,會容易導致耐失透 性降低、或者楊氏模量降低、而高溫黏性上升的事態。因 此,SrO的含量較佳為〇%〜、〇%〜、〇%〜、〇% 〜1.8%、0%〜1.4%、〇〇/〇〜1%,尤佳為 〇%〜〇 5%。SrO is a component which does not lower the strain point and lowers the high temperature viscosity and improves the meltability. However, if the content of SrO is increased, the density or the coefficient of thermal expansion tends to increase. Further, when the content of SrO is increased, in order to match the coefficient of thermal expansion of si, it is necessary to relatively reduce the content of CaO or MgO. Further, when the content of CaO or MgO is lowered, the devitrification resistance is likely to be lowered, or the Young's modulus is lowered, and the high-temperature viscosity is increased. Therefore, the content of SrO is preferably 〇%~, 〇%~, 〇%~, 〇%~1.8%, 0%~1.4%, 〇〇/〇~1%, and particularly preferably 〇%~〇 5%.

BaO是不會使應變點降低,而降低高溫黏性並提高熔 融性,或者提高耐失透性的成分。若BaO的含量增多,則 雄、度或熱膨脹係數容易上升。而且,若BaO的含量增多, 則為了與Si的熱膨脹係數匹配,而必須使ca〇或MgO的 含量相對降低。結果,會容易導致耐失透性降低、或者揚 氏模量降低、而高溫黏性上升的事態。因此,BaO的含量 較佳為0%〜10%。BaO的較佳的上限範圍為8%以下、6〇/0 以下、5%以下,尤佳為3%以下。而且,BaO的較佳的下 限範圍為0.5%以上、1%以上、1.5%以上,尤佳為2%以上。 莫耳比MgO/CaO較佳為〇〜1.5。存在該值越大,則 %氏模量變尚且南溫黏性降低的傾向,而若該值過大,則 玻璃越容易失透。因此,莫耳比MgO/CaO的較佳的上限 201247585 42467pif 範圍為1_4以下,較佳的下限範圍為0.2以上、0.4以上、 0.6以上、0.8以上,尤佳為1以上。 莫耳比(SrO+Ba〇) / (MgO+CaO)較佳為〇〜;1。存 在該值越大,則耐失透性提高的傾向,而若該值過大,則 有高溫黏性、密度、熱膨脹係數變得過高,或者比揚氏模 量降低之虞。因此,莫耳比(SrO+BaO) / (MgO+CaO) 的較佳的上限範圍為0.8以下、0.6以下、〇·5以下、〇,45 以下、0.4以下,尤佳為〇.35以下。而且,莫耳比(Sr〇+BaC):) /(MgO+CaO)的較佳的下限範圍為〇.〇5以上、〇1%以上、 0.15以上、0.2以上、0.25以上,尤佳為〇 3以上。 莫耳比MgO/Al2〇3較佳為〇〜〗。存在該值越大,則揚 氏模量變高且高溫黏性降低的傾向,而若該值過大,則耐 失透性降低,或者密度或熱膨脹係數變得過高。因此,莫 耳比MgO/Al2〇3的較佳的上限範圍為〇 9以下、〇 8以下、 0.75以下’尤佳為〇.7以下 而且,莫耳比Mg0/Al203 1 較佳的下限範圍為0.2以上、〇·3以上,尤佳為〇 $以上 莫耳比CaO/Al2〇3較佳為〇〜3。存在該值越大,則; 氏模量變高且高溫祕降低的傾向,而若該值過大,則: 相黏度變得極高,奸或熱雜賴變得過高。莫七 CaO/AhO3的較佳的上限範圍為2以下、丨5以 以 二以了,尤佳為0.6以下’較佳的下限範圍為〇1以上 0.2以上、G.3以上、〇.4以上,尤佳為q $以上。 ht=2CVSiQ2較佳為G〜G.3。存在該值越大,i 心黏度降低、躲性提高或密度降低或液相溫度降低( 201247585 42467pif 傾向。然而若該值過大,則應變點、楊氏模量容易降低。 因此,莫耳比B203/Si02的較佳的上限範圍為0.25以下、 0.2以下、0.15以下,尤佳為0.1以下。BaO is a component which does not lower the strain point, lowers the high temperature viscosity and improves the meltability, or improves the resistance to devitrification. If the content of BaO is increased, the male, degree or thermal expansion coefficient tends to increase. Further, when the content of BaO is increased, in order to match the coefficient of thermal expansion of Si, it is necessary to relatively reduce the content of ca〇 or MgO. As a result, the devitrification resistance is lowered, or the Young's modulus is lowered, and the high temperature viscosity is increased. Therefore, the content of BaO is preferably from 0% to 10%. A preferred upper limit of BaO is 8% or less, 6 Å/0 or less, 5% or less, and particularly preferably 3% or less. Further, a preferred lower limit of BaO is 0.5% or more, 1% or more, 1.5% or more, and particularly preferably 2% or more. The molar ratio MgO/CaO is preferably 〇~1.5. If the value is larger, the % modulus is increased and the south temperature viscosity tends to decrease, and if the value is too large, the glass is more likely to devitrify. Therefore, the preferred upper limit of the molar ratio MgO/CaO is 201247585 42467pif, and the preferred lower limit range is 0.2 or more, 0.4 or more, 0.6 or more, 0.8 or more, and particularly preferably 1 or more. The molar ratio (SrO+Ba〇) / (MgO+CaO) is preferably 〇~;1. If the value is larger, the devitrification resistance tends to be improved, and if the value is too large, the high-temperature viscosity, the density, the thermal expansion coefficient become too high, or the Young's modulus is lowered. Therefore, the preferable upper limit range of the molar ratio (SrO+BaO) / (MgO+CaO) is 0.8 or less, 0.6 or less, 〇·5 or less, 〇, 45 or less, 0.4 or less, and particularly preferably 〇.35 or less. Further, a preferred lower limit range of the molar ratio (Sr〇+BaC):)/(MgO+CaO) is 〇.5 or more, 〇1% or more, 0.15 or more, 0.2 or more, or 0.25 or more, and particularly preferably 〇. 3 or more. The molar ratio MgO/Al2〇3 is preferably 〇~〗. When the value is larger, the Young's modulus becomes higher and the high-temperature viscosity tends to decrease. If the value is too large, the devitrification resistance is lowered, or the density or the thermal expansion coefficient is excessively high. Therefore, the preferred upper limit range of the molar ratio MgO/Al2〇3 is 〇9 or less, 〇8 or less, 0.75 or less, and particularly preferably 〇.7 or less, and the lower limit range of the molar ratio Mg0/Al203 1 is 0.2 or more, 〇·3 or more, and particularly preferably 〇$ or more, the molar ratio of CaO/Al2〇3 is preferably 〇3. If the value is larger, the modulus is increased and the temperature is lowered, and if the value is too large, the viscosity is extremely high, and the traitor or heat is too high. The preferred upper limit range of Mo7 CaO/AhO3 is 2 or less, 丨5 is ii, and particularly preferably 0.6 or less. The preferred lower limit range is 〇1 or more and 0.2 or more, G.3 or more, 〇.4 or more. , especially good for q $ above. Ht = 2CVSiQ2 is preferably G to G.3. The larger the value, the lower the i-core viscosity, the lower the hiding property or the lower the density or the lower the liquidus temperature (201247585 42467pif tendency. However, if the value is too large, the strain point and Young's modulus are easy to decrease. Therefore, Mobi B203 A preferred upper limit of /Si02 is 0.25 or less, 0.2 or less, 0.15 or less, and particularly preferably 0.1 or less.

MgO+CaO+SrO+BaO是降低液相溫度,且在玻璃中不 易產生結晶異物的成分,而且是提高熔融性或成形性的成 分。MgO+CaO+SrO+BaO的含量較佳為〇%〜25%、3%〜 20〇/〇、5%〜19%、10%〜19%、12%〜19%、12.5%〜19%, 尤佳為14%〜19%。若MgO+CaO+SrO+BaO的含量過少, 則無法充分發揮作為熔劑的作用,熔融性容易降低,此外, 熱膨脹係數變得過低,而難以與Si的熱膨脹係數匹配。另 一方面’若MgO+CaO+SrO+BaO的含量過多,則有密度上 升,難以實現低密度化,此外比揚氏模量容易降低,進而 熱膨脹係數不當變高之虞。另外,「MgO+CaO+SrO+BaO」 為MgO、CaO、SrO以及BaO的合量。 澄清劑是為了提高氣泡品質而使用的成分。先前,作 為澄清劑,使用AsW3、Sb2〇3。然而,As203、Sb203是對 環境造成負荷的物質’自環境的觀點考慮,較理想的是削 減該些成分的使用量。因此,若使用Sn02作為澄清劑, 則既顧及環境的要求亦可提高氣泡品質。Sn02是在高溫域 下發揮良好澄清作用的成分,並且是降低高溫黏性的成 分。Sn02的含量較佳為0%〜1%、0.001%〜1%、0.01%〜 0.5%,尤佳為〇_〇5%〜0.3%。若Sn02的含量過多,則Sn〇2 的失透結晶容易在玻璃中析出。另外,若Sn02的含量少 於0.001% ’則難以享有上述的效果。MgO + CaO + SrO + BaO is a component which lowers the liquidus temperature and which does not easily generate crystal foreign matter in the glass, and is a component which improves meltability or formability. The content of MgO+CaO+SrO+BaO is preferably 〇%~25%, 3%~20〇/〇, 5%~19%, 10%~19%, 12%~19%, 12.5%~19%, Especially good is 14%~19%. When the content of MgO+CaO+SrO+BaO is too small, the function as a flux cannot be sufficiently exhibited, the meltability is liable to lower, and the thermal expansion coefficient is too low, so that it is difficult to match the thermal expansion coefficient of Si. On the other hand, when the content of MgO+CaO+SrO+BaO is too large, the density is increased, and it is difficult to achieve a low density, and the Young's modulus is liable to lower, and the thermal expansion coefficient is not increased. Further, "MgO+CaO+SrO+BaO" is a combination of MgO, CaO, SrO, and BaO. A clarifying agent is a component used to improve the quality of bubbles. Previously, as a clarifying agent, AsW3, Sb2〇3 was used. However, As203 and Sb203 are substances that cause a load on the environment. From the viewpoint of the environment, it is desirable to reduce the amount of use of these components. Therefore, if Sn02 is used as the clarifying agent, the bubble quality can be improved regardless of the environmental requirements. Sn02 is a component which exerts a good clarifying action in a high temperature range, and is a component which lowers high temperature viscosity. The content of Sn02 is preferably 0% to 1%, 0.001% to 1%, 0.01% to 0.5%, and particularly preferably 〇_〇 5% to 0.3%. When the content of SnO 2 is too large, the devitrified crystal of Sn 〇 2 is easily precipitated in the glass. Further, when the content of SnO 2 is less than 0.001%, it is difficult to enjoy the above effects.

12 201247585 42467pif 亦有效地作為澄清_發揮作用,本實 :並非兀全排除該些成分的含有,但自環境的觀 黑思、,較佳為將該些成分的含量分別限制為小於〇以, 於0:05%。另外,F、C1等的函素具有使炫融溫 ^低>孤化亚且促進澄清劑㈣㈣效果。因此,若添加齒 則可實現溶融成本低廉化且玻璃製造爐的長壽命化。 然而’右f、α的含量㈣’财時會使形成在液晶透鏡 用玻璃基板上的金屬的配_紐生腐钱 。因此,F、C1 的含量較佳為各自為1%以下、〇 5%以下,小於〇1%、〇聰 以下’尤佳為0.01%以下。 在不破壞玻璃特性的範圍内,作為澄清劑,亦可添加 Ce02、S03、C、金屬粉末(例如a卜si等)。 —ZnO是提高熔融性的成分,但若其含量過多,則玻璃 谷易失透,並且應變點容易降低,而且密度亦容易上升。 因此,ZnO的含量較佳為〇%〜1〇%、〇%〜5%、〇%〜3〇/。、 0%〜0.5%、G%〜G.3%,尤佳為 G%〜〇.1%。12 201247585 42467pif is also effective as a clarification. It is true that it is not intended to exclude the inclusion of these ingredients, but it is better to limit the content of these ingredients to less than 〇, respectively. At 0:05%. In addition, the elements such as F and C1 have the effect of making the cooling temperature low and the clarification agent (four) (four). Therefore, when the teeth are added, the melting cost can be reduced and the life of the glass manufacturing furnace can be extended. However, the content of the right f and α (fourth) will cause the formation of the metal on the glass substrate for the liquid crystal lens. Therefore, the content of F and C1 is preferably 1% or less, 〇 5% or less, less than 〇1%, and less than or equal to 0.01%. Ce02, S03, C, and metal powder (e.g., ab, etc.) may be added as a clarifying agent in a range that does not impair the characteristics of the glass. —ZnO is a component that improves the meltability. However, if the content is too large, the glass valley is easily devitrified, and the strain point is liable to lower, and the density is also likely to increase. Therefore, the content of ZnO is preferably 〇% to 1%, 〇% to 5%, 〇% to 3 〇/. 0%~0.5%, G%~G.3%, especially preferably G%~〇.1%.

Zr〇2是提高耐候性的成分,但若其含量過多,則耐失 透性容易降低,此外介電率或介電正切(dielectric tangent) 谷易上升。因此’ Zr02的含量較佳為〇〇/〇〜504、〇〇/。〜、 0%〜0.5%,尤佳為〇·〇ι%〜〇 2%。另外,在以耐失透性的 提高為優先的情況下,較佳為將Zr〇2的含量限制為〇 〇1% 以下。Zr〇2 is a component which improves weather resistance. However, if the content is too large, the resistance to devitrification is liable to lower, and the dielectric constant or dielectric tangent is liable to increase. Therefore, the content of 'Zr02 is preferably 〇〇/〇~504, 〇〇/. ~, 0% ~ 0.5%, especially good for 〇·〇ι%~〇 2%. Further, in the case where the improvement in devitrification resistance is prioritized, it is preferred to limit the content of Zr 〇 2 to 〇 〇 1% or less.

Ti〇2是降低高溫黏性且提高熔融性的成分,並且是抑 制曝曬作用(solarization)的成分,但若在玻璃組成中較 13 201247585 42467pif 多地添加Tl〇2,則玻璃會著色,且透過率容易降低。因此, Τι02的含量較佳為〇%〜5%、〇%〜3%、〇%〜1%,尤佳為 0%〜0.02%。 Ρ2〇5是提高耐失透性的成分,但若在玻璃組成中較多 地添加Ρ2〇5,則有在玻璃中容易產生分相、乳白,此外耐 水性顯著降低之虞。因此,Ρ2〇5的含量較佳為〇%〜5%、 0°/〇〜1%,尤佳為〇%〜0 5%。 Y2〇3、Nb2〇5 ’ La2〇3具有提高應變點的作用,但若該 些成分的含量過多,則密度容易上升。因此,Y2〇3、Nb2〇5,Ti〇2 is a component that lowers the viscosity of high temperature and improves the meltability, and is a component that inhibits solarization. However, if Tl〇2 is added in more than 13 201247585 42467pif in the glass composition, the glass will be colored and permeated. The rate is easy to reduce. Therefore, the content of Τι02 is preferably 〇% to 5%, 〇% to 3%, 〇% to 1%, and particularly preferably 0% to 0.02%. Ρ2〇5 is a component which improves the devitrification resistance. However, when ruthenium 2〇5 is added to the glass composition, the phase separation and the milkiness are likely to occur in the glass, and the water resistance is remarkably lowered. Therefore, the content of Ρ2〇5 is preferably 〇% to 5%, 0°/〇1%, and particularly preferably 〇% to 5%. Y2〇3, Nb2〇5 'La2〇3 has an effect of increasing the strain point, but if the content of these components is too large, the density tends to increase. Therefore, Y2〇3, Nb2〇5,

LaA的含量各自較佳為〇%〜3%、〇%〜1%,尤佳為〇% 〜0.1%。 若鹼金屬氧化物的含量增多,則熱膨脹係數變高’或 者應變點降低,或者薄膜電晶體(thin fihn transistor,TFT ) 的特性劣化。因此’鹼金屬氧化物的含量較佳為〇%〜6〇/〇、 〇%〜3%、〇%〜1%,尤佳為〇〇/。〜〇 1〇/〇。進而理想的是, 實質上不含有驗金屬氧化物。 自環境的觀點考慮,較佳為實質上不含有Pb0、Bi203。 當然可適當選擇各成分的較佳的含有範圍,而構築較 佳的玻璃組成範圍’其中,自耐失透性、密度、比楊氏模 量、高溫黏性、環境的要求等的觀點考慮,尤佳為以下的 玻璃組成範圍。 (1 )以莫耳%計,含有50%〜75%的Si02、7%〜15% 的 A12〇3、0o/0〜11% 的 B2〇3、0%〜10% 的 MgO 及 0%〜12% 的CaO,莫耳比MgO/CaO為0〜1.5,莫耳比(SrO+BaO) 201247585 42467pif / (MgO+CaO)為 〇〜0.5,莫耳比 Mg0/Al203 4 0〜0.8, 莫耳比CaO/Al2〇3為〇〜1.5,莫耳比B203/Si02為〇〜0.2, 且實質上不含有驗金屬氧化物、As2〇3、Sb2〇3、PbO以及 Β!2〇3 0 (2) 以莫耳%計,含有55%〜73%的Si02、9%〜15% 的 Al2〇3、0%〜8%的 B2〇3、1_5%〜10%的 Mg〇 及 3%〜 10.5%的CaO,莫耳比MgO/CaO為0.2〜1.4,莫耳比 (SrO+BaO)/(MgO+CaO)為 0.1 〜0.5,莫耳比 Mg0/Al203 為 0.2^〜'0.8,莫耳比 CaO/Al2〇3 為 0.2〜1,莫耳比 B2〇3/Si〇2 為0〜0.2 ’實質上不含有鹼金屬氧化物、As2〇3、sb2〇3、 PbO 以及 Bi203。The content of LaA is preferably 〇% to 3%, 〇% to 1%, and particularly preferably 〇% to 0.1%. When the content of the alkali metal oxide is increased, the coefficient of thermal expansion becomes high or the strain point is lowered, or the characteristics of the thin film transistor (TFT) are deteriorated. Therefore, the content of the alkali metal oxide is preferably 〇% to 6〇/〇, 〇% to 3%, 〇% to 1%, and particularly preferably 〇〇/. ~〇 1〇/〇. Further preferably, the metal oxide is not substantially contained. From the viewpoint of the environment, it is preferred that substantially no Pb0 or Bi203 is contained. Of course, a preferable range of the content of each component can be appropriately selected, and a preferable glass composition range can be constructed from the viewpoints of resistance to devitrification, density, specific Young's modulus, high temperature viscosity, and environmental requirements. It is especially preferred for the following glass composition range. (1) In terms of mole %, containing 50% to 75% of SiO 2 , 7% to 15% of A12 〇 3, 0o / 0 to 11% of B2 〇 3, 0% to 10% of MgO and 0% 〜 12% CaO, molar ratio MgO/CaO is 0~1.5, molar ratio (SrO+BaO) 201247585 42467pif / (MgO+CaO) is 〇~0.5, molar ratio Mg0/Al203 4 0~0.8, Moer The ratio CaO/Al2〇3 is 〇~1.5, the molar ratio B203/SiO2 is 〇~0.2, and it does not contain metal oxide, As2〇3, Sb2〇3, PbO and Β!2〇3 0 (2). % by mole, containing 55% to 73% of SiO 2 , 9% to 15% of Al 2 〇 3, 0% to 8% of B 2 〇 3, 1 _ 5% to 10% of Mg 〇 and 3% to 10.5% CaO, molar ratio MgO/CaO is 0.2~1.4, molar ratio (SrO+BaO)/(MgO+CaO) is 0.1~0.5, molar ratio Mg0/Al203 is 0.2^~'0.8, Moer ratio CaO /Al2〇3 is 0.2 to 1, and the molar ratio B2〇3/Si〇2 is 0 to 0.2'. It does not substantially contain an alkali metal oxide, As2〇3, sb2〇3, PbO, and Bi203.

(3) 以莫耳%計,含有60%〜73%的Si02、10%〜15% 的 Al2〇3、0%〜5%的 B203、2%〜1〇%的 MgO 及 3%〜8% 的CaO,莫耳比MgO/CaO為0.6〜1.4,莫耳比(SrO+BaO) / (MgO+CaO)為 0.15〜0.45,莫耳比 Mg0/Al203 為 0.2〜 0.8,莫耳比 Ca0/Al203 為 0.2〜0.6,莫耳比 B2〇3/Si02 為 0 〜0.2,實質上不含有鹼金屬氧化物、As2〇3、Sb203、PbO 以及Bi2〇3。 (4) 以莫耳%計’含有60%〜73%的Si02、11%〜15% 的 Al2〇3、0%〜3%的 B2〇3、3%〜9%的 MgO 及 3%〜8% 的CaO’莫耳比MgO/CaO為〇.8〜1.4,莫耳比(SrO+BaO) /(]^0^0)為〇.15〜0.4’莫耳比]^0/入1203 為0.3〜 0·75,莫耳比 Ca0/Al203 為 0.3〜0.6,莫耳比 B203/Si02 為 0〜0.15 ’實質上不含有鹼金屬氧化物、細〇3、sb2〇3、pb〇 15 201247585 42467pif 以及Bi2〇3。 (5) 以莫耳%計,含有60%〜72%的Si02、12%〜15% 的 Al2〇3、〇%〜3〇/〇的 B2〇3、6%〜9%的 MgO 及 5%〜8% 的CaO ’莫耳比MgO/CaO為1〜1.4,莫耳比(SrO+BaO) / (MgO+CaO)為 0.15〜0.3,莫耳比 Mg0/Al203 為 0·5〜 0.75,莫耳比 Ca0/Al203 為 0.4〜0.6,莫耳比 B2〇3/Si02 為 0〜0.1,實質上不含有鹼金屬氧化物、As2〇3、Sb203、PbO 以及Bi2〇3。 (6) 以莫耳%計,含有60%〜72%的Si02、12%〜15% 的 Al2〇3、〇%〜3%的 B2〇3、7.5%〜9%的 MgO 及 5%〜8% 的CaO,莫耳比MgO/CaO為1〜1.4,莫耳比(SrO+BaO) / (MgO+CaO)為 0.15〜0·3,莫耳比 MgO/Al203 為 0.5〜 0.7,莫耳比 Ca0/Al203 為 〇_4〜0.6,莫耳比 B203/Si02 為 0 〜0.1,實質上不含有鹼金屬氧化物、As203、Sb203、PbO 以及 。 本實施形態的液晶透鏡用玻璃基板中,板厚較佳為 400 μιη以下、300 μιη以下、200 μηι以下,尤佳為100 μιη 以下。板厚越小’則3D顯示器中可立體觀看的視野角越 廣,並且玻璃基板越輕量,因而可使裝置輕量化。進而, 玻璃基板的可撓性提高,因而可容易對裝置賦予可撓性, 捲對捲(roll to roll)製程中亦可製造液晶透鏡。 本實施形態的液晶透鏡用玻璃基板中,長度、寬度尺 寸的各自的下限值較佳為500 mm以上、700 mm以上,尤 佳為1000mm以上。另外,長度、寬度尺寸的各自的上限(3) In terms of mole %, containing 60% to 73% of SiO 2 , 10% to 15% of Al 2 〇 3, 0% to 5% of B203, 2% to 1% by weight of MgO and 3% to 8% CaO, molar ratio MgO/CaO is 0.6~1.4, molar ratio (SrO+BaO) / (MgO+CaO) is 0.15~0.45, molar ratio Mg0/Al203 is 0.2~0.8, molar ratio Ca0/Al203 It is 0.2 to 0.6, and the molar ratio of B2〇3/SiO 2 is 0 to 0.2, and substantially does not contain an alkali metal oxide, As2〇3, Sb203, PbO, and Bi2〇3. (4) In terms of mole %, contains 60% to 73% of SiO 2 , 11% to 15% of Al 2 〇 3, 0% to 3% of B 2 〇 3, 3% to 9% of MgO, and 3% to 8 The CaO' molar ratio of MgO/CaO is 〇.8~1.4, and the molar ratio (SrO+BaO) /(]^0^0) is 〇.15~0.4' Mo Erbi]^0/ into 1203 0.3~0·75, the molar ratio Ca0/Al203 is 0.3~0.6, and the molar ratio B203/SiO2 is 0~0.15'. It does not substantially contain alkali metal oxide, fine 〇3, sb2〇3, pb〇15 201247585 42467pif And Bi2〇3. (5) In terms of mol%, containing 60% to 72% of SiO 2 , 12% to 15% of Al 2 〇 3, 〇 % 〜 3 〇 / 〇 of B 2 〇 3, 6% to 9% of MgO and 5% ~8% CaO 'Mole ratio MgO/CaO is 1 to 1.4, molar ratio (SrO+BaO) / (MgO+CaO) is 0.15~0.3, and molar ratio Mg0/Al203 is 0·5~0.75, Mo The ear ratio is 0.4 to 0.6 for Ca0/Al203, and the molar ratio B2〇3/SiO 2 is 0 to 0.1, and substantially does not contain an alkali metal oxide, As2〇3, Sb203, PbO, and Bi2〇3. (6) In terms of mol%, it contains 60%~72% of SiO2, 12%~15% of Al2〇3, 〇%~3% of B2〇3, 7.5%~9% of MgO and 5%~8 % CaO, molar ratio MgO/CaO is 1 to 1.4, molar ratio (SrO+BaO) / (MgO+CaO) is 0.15~0·3, molar ratio MgO/Al203 is 0.5~0.7, molar ratio Ca0/Al203 is 〇_4~0.6, and the molar ratio B203/SiO2 is 0 to 0.1, and substantially does not contain an alkali metal oxide, As203, Sb203, PbO and. In the glass substrate for a liquid crystal lens of the present embodiment, the thickness is preferably 400 μm or less, 300 μm or less, or 200 μm or less, and more preferably 100 μm or less. The smaller the plate thickness is, the wider the viewing angle that can be stereoscopically viewed in the 3D display, and the lighter the glass substrate, the lighter the device. Further, since the flexibility of the glass substrate is improved, flexibility can be easily imparted to the device, and a liquid crystal lens can be produced in a roll-to-roll process. In the glass substrate for liquid crystal lens of the present embodiment, the lower limit of each of the length and the width is preferably 500 mm or more and 700 mm or more, and more preferably 1000 mm or more. In addition, the respective upper limits of the length and width dimensions

S 16 201247585 42467pif 值較佳為3000 mm以下,尤佳為2500 mm以下。長度、 寬度尺寸越大’則越可製作大型3D顯示器,但若長度、 寬度尺寸過大,則撓曲量變得過大,從而玻璃基板容易破 本實施形態的液晶透鏡用玻璃基板中,表面粗糙度Ra 較佳為50埃(A)以下、30埃(A)以下、10埃(人)以下、5埃 (人)以下、3埃(A)以下,尤佳為2埃(A)以下。若表面粗糙 度Ra大’則有形成於玻璃基板上的氧化銦錫(indium dn oxide ’ ITO)等的膜的品質降低,從而引起裝置顯示不良 之虞。此處’「表面粗糙度Ra」是指藉由依據JIS Β〇6〇1 : 2〇〇1的方法測定所得的值。 本實施形態的液晶透鏡用玻璃基板中,密度較佳為2二 g/cm3 以下、2.68 g/cm3 以下、2.66 g/cm3 以下、2.63 g/cm: 以下、2.61 g/cm3 以下、2.59 g/cm3 以下、2.57 g/cm3 以下, 尤佳為2.55 g/cm3以下。若密度大,則難以使玻璃輕量化。 本實施形態的液晶透鏡用玻璃基板中,熱膨脹係數較 佳為 3〇xl〇-7/°c 〜5〇xl〇-7/〇C、32χ1〇-7/ΐ 〜5〇xl〇-Vc、 3 5 X10'7/C>C 〜5〇 x 1 〇-7/°C、3 7 χ 10.7/〇C 〜50 χ 1 〇-7/°C、3 8 χ 1 〇-7/〇c 〜49M0々°C,尤佳為38xl(T7/°C〜46xl〇-7/°C。若熱膨脹係 數處於上述範圍外,則由於與透明導電膜或圖案化等的膜 的熱膨脹係數差,而玻璃基板上容易產生翹曲。而且,難 以與顯示器裝置侧的基板進行貼合。 、 本實施形態的液晶透鏡用玻璃基板中,應變點較佳為 65〇C 以上、67(TC 以上、69(TC 以上、70(TC 以上、715。(:以 17 201247585 42467pif 上、720°C以上,尤佳為730。(:以上。若應變點變高,則即 便在玻璃基板上進行導電膜的圖案化等的情況下,玻璃基 板的尺寸變化亦減小。因此,能夠在玻璃基板的兩面進行 南精度的圖案化。 本實施形態的液晶透鏡用玻璃基板中,液相温度較佳 為 1320°C 以下、129(TC 以下、125(TC 以下、1220。(:以下、 1190 C以下,尤佳為ii7〇°C以下。這樣,玻璃中難以產生 失透結晶,因而藉由溢流下拉法等,容易成形板 以下的玻璃基板。結果,可提高玻璃基板的表面品質,且 使玻璃基板的製造成本低廉化。另外,液相溫度為耐失透 性的指標。液相溫度越低,則耐失透性越優異。 本實施形態的液晶透鏡用玻璃基板中,液相黏度較佳 為^O^Pa · s 以上、104_3dpa · s 以上、1〇4.5dpa · s 以上、 10 dPa · s 以上、i〇50dpa · s 以上、1〇5.3dPa · s 以上尤 佳為1055dPa · s以上。這樣,成形時在玻璃中不易產生失 透結晶,因而藉由溢流下拉法等,容易成形板厚4〇〇 以了的玻璃基板。結果,可提高液晶透鏡用玻璃基板的表 面°〇質,且使液晶透鏡用玻璃基板的製造成本低廉化。另 外,液相黏度為成形性的指標,液相黏度越高,成形性越 優異。 、一般而言,高溫熔融會使玻璃熔融爐的負擔增加。玻 j熔融爐中所使㈣氧化喊氧化料的财火物 ,越為高 μ,則越激烈地侵蝕熔融玻璃。若耐火物的侵蝕量增多, 則玻璃炫融爐的生命週期(脱c㈣)變短,因而玻璃基 201247585 42467pif 板的製造成本高漲。而且,在高溫熔融的情況下,因破璃 炼融爐的構成構件中必須使用高耐熱性的構成構件,故玻 璃熔融爐的構成構件比例增高,結果,熔融成本高漲。進 而,高溫熔融必須將玻璃熔融爐的内部保持為高溫,因而 與低溫熔融相比,運轉成本高漲Q因此,l〇2.5dpa · s時的 溫度較佳為165(TC以下、1640°C以下、1620°C以下、16〇〇。〇 以下,尤佳為1580 C以下。若1025dPa · s時的溫度變得過 高,則玻璃基板的製造成本高漲,此外氣泡品質容易降低 ^ 本實施形態的液晶透鏡用玻璃基板中,比楊氏模量較 佳為 29 GPa/ (g/cm3)以上、30 GPa/ (g/cm3)以上、3〇 5 GPa/( g/cm3)以上、3! GPa/( g/cm3)以上,尤佳為 3 i 5 (g/cm3)以上。比楊氏模量越高,則大型、薄壁的破璃基 板越不易因自身重量而挽曲。 作為3D顯示器的構成,可考慮LCD與液晶透鏡、 OLED與液晶透鏡的組合等。該情況下,較佳 作各個裝置後將彼此貼合的製程义樣,能^ H 裝置的不良品去除,從而可提高3D顯示器個 另-方面’這樣,因附加了 LCD、qLEd的對向基板 度’故有3D的視野角變窄之虞。該情況下,較佳為在對 本實施形態的液晶透鏡用玻璃基板進行透鏡裝置的圖案化 後,在該玻璃基板的背面形成CF等之後, OLED的_基板。若植輯造,财素·透^的1 = 實質上成為液晶透鏡用玻璃基板的厚度,從而可提高3D 顯示器的視野角。 201247585 42467pif 本貫施形態的液晶透鏡用玻璃基板可藉由如下而製 作:將調配成規定的玻璃組成的玻璃配料投入至連續式玻 璃炫融爐後,對該玻璃配料進行加熱熔融後,將所獲得的 熔融玻璃澄清’之後供給至成形裝置而成形為薄板形狀等。 本貫施形態的液晶透鏡用玻璃基板較佳為利用溢流下 拉法而成形。這樣,可製作未研磨而表面品質便良好的玻 璃基板。其理由在於,在溢流下拉法的情況下,玻璃基板 的應成為表面的面不與槽狀耐火物接觸,而以自由表面的 狀態來成形。槽狀構造物的構造或材質只要可實現所期望 的尺寸或表面品質即可,不作特別限定。另外,在朝向下 方進行延伸成形時,對玻璃施加力的方法只要可實現所期 差的尺寸或表面品質,則不作特別限定。例如,可採用如 下方法,即,使具有充分大的寬度的耐熱性捲在與玻璃接 觸的狀態下旋轉而延伸的方法,或者使多對耐熱性捲僅與 玻璃的寬度方向端面附近接觸而延伸的方法。另外,液相 溫度越低,或者液相黏度越高,則藉由溢流下拉法,越容 易成形板厚400 μηι以下的玻璃基板。 除溢流下拉法以外,亦可採用其他成形方法。例如, 可採用流孔下引(slot down draw)法、再拉法、浮動法等。 本發明的實施形態的玻璃基板的特徵在於:板厚為 400 μιη以下,且比楊氏模量為29 Gpa/ (g/cm3)以上,較 佳為用於液晶透鏡中。本實施形態的玻璃基板的技術性特 徵j較佳的組成、較佳的特性、效果)與已說明的本實施 形態的液晶透鏡用玻璃基板的技術性特徵相同,因而省略S 16 201247585 42467pif value is preferably 3000 mm or less, and particularly preferably 2500 mm or less. When the length and the width are larger, the larger the 3D display can be produced. However, if the length and the width are too large, the amount of deflection becomes too large, and the glass substrate is likely to break the glass substrate for the liquid crystal lens of the embodiment. It is preferably 50 angstroms (A) or less, 30 angstroms (A) or less, 10 angstroms or less, 5 angstroms or less, 3 angstroms (A) or less, and more preferably 2 angstroms (A) or less. When the surface roughness Ra is large, the quality of a film such as indium dn oxide (ITO) formed on a glass substrate is lowered, which causes a display failure of the device. Here, "surface roughness Ra" means a value measured by a method according to JIS Β〇 6〇1 : 2〇〇1. In the glass substrate for liquid crystal lens of the present embodiment, the density is preferably 2 g/cm 3 or less, 2.68 g/cm 3 or less, 2.66 g/cm 3 or less, 2.63 g/cm: or less, 2.61 g/cm 3 or less, and 2.59 g/. Below cm3, it is 2.57 g/cm3 or less, and particularly preferably 2.55 g/cm3 or less. If the density is large, it is difficult to reduce the weight of the glass. In the glass substrate for liquid crystal lens of the present embodiment, the coefficient of thermal expansion is preferably 3〇xl〇-7/°c to 5〇xl〇-7/〇C, 32χ1〇-7/ΐ~5〇xl〇-Vc, 3 5 X10'7/C>C 〜5〇x 1 〇-7/°C, 3 7 χ 10.7/〇C ~50 χ 1 〇-7/°C, 3 8 χ 1 〇-7/〇c 〜 49M0 々 ° C, particularly preferably 38xl (T7 / ° C ~ 46xl 〇 -7 / ° C. If the coefficient of thermal expansion is outside the above range, due to the difference in thermal expansion coefficient of the film with a transparent conductive film or patterned, and glass In the glass substrate for a liquid crystal lens of the present embodiment, the strain point is preferably 65 〇 C or more and 67 (TC or more, 69 (TC), and the substrate is likely to be warped on the substrate. 70 (TC or more, 715. (: 17, 17, 47, 585, 42,467 pif, 720 ° C or more, and more preferably 730. (: Above. If the strain point becomes high, even if the conductive film is patterned on a glass substrate, etc. In the case of the glass substrate for the liquid crystal lens, the liquid crystal can be patterned on both surfaces of the glass substrate. The phase temperature is preferably 1320 ° C or less, 129 (TC or less, 125 (TC or less, 1220 ° (hereinafter: 1190 C or less, and particularly preferably ii 7 ° C or less. Thus, devitrification crystals are hard to be generated in the glass, and thus The glass substrate below the plate can be easily formed by an overflow down-draw method or the like. As a result, the surface quality of the glass substrate can be improved, and the production cost of the glass substrate can be reduced. The liquidus temperature is an indicator of devitrification resistance. When the phase temperature is lower, the devitrification resistance is more excellent. In the glass substrate for a liquid crystal lens of the present embodiment, the liquidus viscosity is preferably ^O^Pa·s or more, 104_3dpa·s or more, and 1〇4.5dpa·s or more. 10 dPa · s or more, i 〇 50 dpa · s or more, 1 〇 5.3 dPa · s or more is preferably 1055 dPa · s or more. Thus, devitrification crystals are less likely to occur in the glass during molding, and thus an overflow down-draw method is used. It is easy to form a glass substrate having a thickness of 4 Å. As a result, the surface of the glass substrate for liquid crystal lens can be improved, and the manufacturing cost of the glass substrate for liquid crystal lens can be reduced. Indicator, liquid The higher the viscosity, the more excellent the formability. In general, the high temperature melting increases the burden on the glass melting furnace. The more the high-purity of the oxidized oxidized material in the glass furnace, the more intense it is. The ground erodes the molten glass. If the amount of refractory erosion increases, the life cycle of the glass smelting furnace (de-c(4)) becomes shorter, so the manufacturing cost of the glass-based 201247585 42467pif board is high. Further, in the case of melting at a high temperature, it is necessary to use a member having high heat resistance in the constituent members of the glass frit furnace, so that the proportion of constituent members of the glass melting furnace is increased, and as a result, the melting cost is high. Further, since high-temperature melting is required to maintain the inside of the glass melting furnace at a high temperature, the operating cost is higher than that of low-temperature melting. Therefore, the temperature at l〇2.5 dpa·s is preferably 165 (TC or less, 1640 ° C or less, 1620 ° C or less, 16 〇〇. The following is particularly preferably 1580 C. If the temperature at 1025 dPa · s is too high, the manufacturing cost of the glass substrate is high, and the bubble quality is liable to lower. In the glass substrate for a lens, the Young's modulus is preferably 29 GPa/(g/cm3) or more, 30 GPa/(g/cm3) or more, 3〇5 GPa/(g/cm3) or more, and 3! GPa/. (g/cm3) or more, particularly preferably 3 i 5 (g/cm3) or more. The higher the Young's modulus, the more difficult it is to bend the large-sized, thin-walled glass substrate due to its own weight. The configuration can be considered in combination with an LCD, a liquid crystal lens, an OLED and a liquid crystal lens, etc. In this case, it is preferable to remove the defective products of the device by the process of attaching the respective devices to each other, thereby improving the 3D display. Another aspect is that, because of the addition of the LCD and qLEd to the opposite substrate degree, there is a 3D field of view. In this case, it is preferable to form a lens device after the lens device is patterned on the glass substrate for a liquid crystal lens of the present embodiment, and then form a CF or the like on the back surface of the glass substrate. 1 = The thickness of the glass substrate for liquid crystal lens is substantially the thickness of the liquid crystal lens, and the viewing angle of the 3D display can be improved. 201247585 42467pif The glass substrate for liquid crystal lens of the present embodiment can be produced by: After the glass batch having a predetermined glass composition is put into a continuous glass melting furnace, the glass batch is heated and melted, and the obtained molten glass is clarified, and then supplied to a molding apparatus to be formed into a thin plate shape or the like. The glass substrate for a liquid crystal lens of the form is preferably formed by an overflow down-draw method. Thus, a glass substrate which is not polished and has a good surface quality can be produced. The reason is that in the case of the overflow down-draw method, the glass substrate should be The surface to be the surface is not in contact with the groove-shaped refractory, but is formed in a state of a free surface. The structure or material of the groove-shaped structure is only required The desired size or surface quality is not particularly limited, and the method of applying a force to the glass when extending to the lower side is not particularly limited as long as the dimensional difference or surface quality can be achieved. A method in which a heat-resistant roll having a sufficiently large width is rotated and extended in a state of being in contact with glass, or a method in which a plurality of pairs of heat-resistant rolls are brought into contact with only the vicinity of the end face in the width direction of the glass can be employed. Further, the lower the liquidus temperature or the higher the liquidus viscosity, the easier it is to form a glass substrate having a thickness of 400 μm or less by the overflow down-draw method. In addition to the overflow down-draw method, other forming methods can also be used. For example, a slot down draw method, a re-drawing method, a floating method, or the like can be employed. The glass substrate according to the embodiment of the present invention has a thickness of 400 μm or less and a Young's modulus of 29 GPa/(g/cm 3 or more, and is preferably used in a liquid crystal lens. The technical characteristics, preferable characteristics, and effects of the glass substrate of the present embodiment are the same as those of the glass substrate for a liquid crystal lens of the present embodiment, and thus are omitted.

S 20 201247585 42467pif 詳細說明。 [實例1] 以下,對本發明的實例進行說明。另外,以下的實例 僅為例示。本發明不受以下的實例任何限定。 表1〜表5表示本發明的實例(試樣No.l〜試樣 No.35)。 [表1]S 20 201247585 42467pif Detailed description. [Example 1] Hereinafter, an example of the present invention will be described. In addition, the following examples are merely illustrative. The invention is not limited by the following examples. Tables 1 to 5 show examples of the present invention (sample No. 1 to sample No. 35). [Table 1]

No.l No.2 Νο.3 Νο.4 Νο.5 Νο.6 Νο.7 玻璃組成 (mol% ) Si〇2 71.5 72.4 70.9 71.6 71.3 70.4 71.1 Al2〇3 10.6 10.7 10.5 10.6 10.5 10.7 10.0 B203 - - - - - 2.0 2.0 MgO - - 3.3 3.4 - - -' CaO 13.8 11.5 11.3 9.0 13.7 11.5 11.5 SrO - 1.3 - 1.3 1.3 1.3 1.3 BaO 4.0 4.0 3.9 4.0 3.1 4.0 4.0 Sn〇2 0.1 0·1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0.30 0.38 0 0 0 (SiO+BaO) / (MgO+CaO) 0.29 0.46 0.27 0.43 0.32 0.47 0.47 Mg0/Al203 0 0 0.32 0.32 0 0 0 Ca0/Al203 1.30 1.07 1.08 0.85 1.30 1.08 1.15 B2O3/S1O2 0 0 0 0 0 0.03 0-03 ρΓκ/cml 2.64 2.65 2.64 2.64 2.63 2.64 2.63 a『xKTV°Cl 45 45 44 43 46 45 45 PsfCl 750 754 738 741 749 716 712 TapCl 804 809 793 798 802 772 768 TsfC] 1027 1039 1020 1032 1023 1002 1000 104dPa.s[°C] 1348 1367 1340 1363 1335 1327 1329 103dPa.s[°C] 1519 1541 1508 1533 1503 1498 1503 1025dPa*s[〇C] 1628 1653 1614 1640 1610 1607 1615 TL[°C1 1212 1215 1217 1221 1215 1170 1187 log10Tl[dPa«s] 5.2 5.3 5.1 5.2 5.0 5.4 5.2 楊氏模量[GPa] 未測定 82 未測定 80 81 79 78 比楊氏模量 [GPa/ (g/cm3)] 未測定 31.0 未測定 30.4 30.9 30.0 29.8 剛性率[GPa] 未測定 34 未測定 33 34 33 33 表面粗韓:度Ra[nm] 未測定 未測定 未測定 未測定 未測定 0.2 未測定 21 201247585 42467pif [表2] N0.8 No.9 No. 10 No.ll No. 12 No. 13 No. 14 玻璃組成 (mol% ) Si02 69.8 72.0 70.6 71.0 70.9 71.4 70.5 AI2O3 11.1 10.7 10.8 10.9 10.8 10.9 11.1 B2O3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 CaO 11.6 10.4 10.4 9.2 10.4 9.2 10.9 SrO 1.3 1.2 2.0 2.7 1.3 1.4 1.3 BaO 4.1 3.6 4.1 4.1 4.5 5.0 4.1 Sn〇2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0 0 0 0 (SrO+BaO) / (MgO+CaO) 0.47 0.46 0.58 0.74 0.56 0.69 0.49 Mg0/Al203 0 0 〇 0 0 0 0 Ca0/Al203 1.04 0.97 0.96 0.85 0.96 0.85 0.99 B2O3/S1O2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 Pifi/cml 2.64 2.60 2.64 2.65 2.64 2.65 2.63 αΓχ1〇'7Π 45 43 44 44 44 44 44 Ps[°Cl 718 726 716 719 717 720 720 Ta[°Cl 774 784 773 111 775 779 777 TsfCI 1003 1026 1008 1016 1011 1020 1011 104dPa.s[°C] 1326 1362 1338 1347 1345 1360 1342 103dPa-s[°C] 1496 1538 1512 1522 1520 1536 1515 HPdPa.src] 1604 1648 1621 1633 1628 1648 1623 TL[°C1 1186 1229 1170 1179 1158 1159 1190 l〇g】〇T)[dPa«s] 5.2 5.1 5.5 5.5 5.6 5.8 5.3No.l No.2 Νο.3 Νο.4 Νο.5 Νο.6 Νο.7 Glass composition (mol%) Si〇2 71.5 72.4 70.9 71.6 71.3 70.4 71.1 Al2〇3 10.6 10.7 10.5 10.6 10.5 10.7 10.0 B203 - - - - - 2.0 2.0 MgO - - 3.3 3.4 - - -' CaO 13.8 11.5 11.3 9.0 13.7 11.5 11.5 SrO - 1.3 - 1.3 1.3 1.3 1.3 BaO 4.0 4.0 3.9 4.0 3.1 4.0 4.0 Sn〇2 0.1 0·1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0.30 0.38 0 0 0 (SiO+BaO) / (MgO+CaO) 0.29 0.46 0.27 0.43 0.32 0.47 0.47 Mg0/Al203 0 0 0.32 0.32 0 0 0 Ca0/Al203 1.30 1.07 1.08 0.85 1.30 1.08 1.15 B2O3/ S1O2 0 0 0 0 0 0.03 0-03 ρΓκ/cml 2.64 2.65 2.64 2.64 2.63 2.64 2.63 a『xKTV°Cl 45 45 44 43 46 45 45 PsfCl 750 754 738 741 749 716 712 TapCl 804 809 793 798 802 772 768 TsfC] 1027 1039 1020 1032 1023 1002 1000 104dPa.s[°C] 1348 1367 1340 1363 1335 1327 1329 103dPa.s[°C] 1519 1541 1508 1533 1503 1498 1503 1025dPa*s[〇C] 1628 1653 1614 1640 1610 1607 1615 TL [°C1 1212 1215 1217 1221 1215 1170 1187 log10Tl[dPa«s] 5.2 5.3 5.1 5.2 5.0 5.4 5.2 Young's modulus [GPa] Not determined 82 Not measured 80 81 79 78 Specific Young's modulus [GPa/(g/cm3)] Not determined 31.0 Not determined 30.4 30.9 30.0 29.8 Rigidity [GPa] Not determined 34 Not measured 33 34 33 33 Surface roughness: Degree Ra [ Nm] Not measured Not measured Not measured Not measured Not measured 0.2 Not measured 21 201247585 42467pif [Table 2] N0.8 No.9 No. 10 No. 11 No. 12 No. 13 No. 14 Glass composition (mol%) Si02 69.8 72.0 70.6 71.0 70.9 71.4 70.5 AI2O3 11.1 10.7 10.8 10.9 10.8 10.9 11.1 B2O3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 CaO 11.6 10.4 10.4 9.2 10.4 9.2 10.9 SrO 1.3 1.2 2.0 2.7 1.3 1.4 1.3 BaO 4.1 3.6 4.1 4.1 4.5 5.0 4.1 Sn〇2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0 0 0 0 (SrO+BaO) / (MgO+CaO) 0.47 0.46 0.58 0.74 0.56 0.69 0.49 Mg0/Al203 0 0 〇0 0 0 0 Ca0/Al203 1.04 0.97 0.96 0.85 0.96 0.85 0.99 B2O3/S1O2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 Pifi/cml 2.64 2.60 2.64 2.65 2.64 2.65 2.63 αΓχ1〇'7Π 45 43 44 44 44 44 44 Ps[°Cl 718 726 716 719 717 720 720 Ta[° Cl 774 784 773 111 775 779 777 TsfCI 1003 1026 1008 1016 1011 1020 1011 104dPa.s[° C] 1326 1362 1338 1347 1345 1360 1342 103dPa-s[°C] 1496 1538 1512 1522 1520 1536 1515 HPdPa.src] 1604 1648 1621 1633 1628 1648 1623 TL[°C1 1186 1229 1170 1179 1158 1159 1190 l〇g]〇 T)[dPa«s] 5.2 5.1 5.5 5.5 5.6 5.8 5.3

22 201247585 42467pif [表3]22 201247585 42467pif [Table 3]

No. 15 No_16 No.17 No. 18 No. 19 No.20 No.21 玻璃組成 (mol% ) Si02 70.2 70.6 71.0 71.1 71.2 71.0 70.6 AI2O3 11.1 11.5 10.8 10.9 10.8 10.8 10.8 B2O3 2.0 2.0 1.4 1.4 1.4 1.4 1.4 MgO - - - - - - 0.9 CaO 11.3 10.4 10.4 9.8 10.4 10.4 10.4 SrO 1.3 1.3 1.3 1.7 1.3 1.3 1.0 BaO 4.0 4.1 4.5 4.5 4.5 4.5 4.5 ZnO - - 0.5 0.5 - 0.3 - p2〇5 - - - - 0.3 0.2 0.3 Sn〇2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0 0 0 0.08 (SrO+BaO) / (MgO+CaO) 0.46 0.52 0.56 0.63 0.56 0.56 0.49 Mg0/Al203 0 0 0 0 0 0 0.08 Ca0/Al203 1.02 0.9 0.96 0.9 0.96 0.96 0.96 B2O3/S1O2 0.03 0.03 0.02 0.02 0.02 0.02 0.02 Piff/cm勹 2.63 2.63 2.66 2.66 2,65 2.65 2.64 ar><10'7〇Cl 45 43 45 44 44 45 44 Ps[°C] 720 728 721 722 728 724 723 TafCl 111 785 778 780 786 782 780 TsrCl 1009 1024 1013 1017 1022 1018 1015 104dPa-s[°C] 1338 1353 1342 1350 1355 1352 1344 10JdPa-s[°C] 1509 1524 1516 1524 1529 1526 1518 1025dPa.s[°C] 1617 1632 1630 1636 1640 1636 1633 TLpCl 1196 1215 1184 1183 1175 1177 1177 logi〇T)[dPa*s] 5.2 5.2 5.4 5.4 5.6 5.5 5.5 楊氏模量[GPa] 未測定 未測定 未測定 未測定 79 未測定 79 比楊氏模量 [GPa/ (g/cm3)] 未測定 未測定 未測定 未測定 29.8 未測定 30.1 剛性率[GPa] 未測定 未測定 未測定 未測定 33 未測定 30 c 23 201247585 42467pif [表4] N0.22 Νο.23 Νο.24 Νο.25 Νο.26 Νο.27 Νο.28 玻璃組成 (mol% ) Si02 70.7 70.3 69.9 70.2 70.1 69.6 69.5 AI2O3 10.9 11.2 11.6 12.4 11.2 11.1 11.1 B2〇3 1·4 1.4 1.4 4.1 ΙΑ 1.4 1.4 MgO - - - 4.1 [7 1.7 1.7 CaO 10.4 10.5 10.5 6.0 9.2 10.4 10.3 SrO 1.4 1.4 1.4 1.3 1.3 0.7 1.3 BaO 4.6 4.6 4.6 1.9 4.5 4.5 4.1 p2〇5 0.5 0.5 0.5 - 0.5 0.5 0.5 Sn〇2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0.68 0.19 0.17 0.17 (SrO+BaO) / (MgO+CaO) 0.57 0.56 0.56 0.32 0.54 0.43 0.45 Mg0/Al203 0 0 0 0.33 0.15 0.15 0.15 Ca0/Al203 0.96 0.93 0.90 0.48 0.82 0.93 0.93 B2O3/S1O2 0.02 0.02 0.02 0.06 0.02 0.02 0.02 p[g/cm3] 2.65 2.65 2,65 未測定 未測定 未測定 未測定 a[xlO'7/°C] 45 45 44 未測定 43 44 44 Ps[°C] 728 731 733 未測定 722 720 720 Ta[°C] 786 788 790 未測定 780 777 777 Ts[°C] 1022 1023 1024 未測定 1017 1011 1009 104dPa*s[°C] 1352 1352 1350 未測定 1344 1335 1330 103dPa-s[°C] 1525 1523 1519 未測定 1516 1504 1498 1025dPa.s[°C] 1637 1633 1627 未測定 1624 1611 1605 TL[°C] 1176 1182 1190 未測定 1179 1182 1191 log10ri[dPa.s] 5.6 5.5 5.4 未測定 5.5 5.4 5.2 楊氏模量[GPa] 未測定 79 未測定 未測定 79 未測定 未測定 比楊氏模量 [GPa/ (g/cm3)] 未測定 29.7 未測定 未測定 未測定 未測定 未測定 剛性率[GPa] 未測定 33 未測定 未測定 33 未測定 未測定 24 s 201247585 42467pif [表5]No. 15 No.16 No.16 No. 18 No.19 No.21 No.21 Glass composition (mol%) Si02 70.2 70.6 71.0 71.1 71.2 71.0 70.6 AI2O3 11.1 11.5 10.8 10.9 10.8 10.8 10.8 B2O3 2.0 2.0 1.4 1.4 1.4 1.4 1.4 MgO - - - - - - 0.9 CaO 11.3 10.4 10.4 9.8 10.4 10.4 10.4 SrO 1.3 1.3 1.3 1.7 1.3 1.3 1.0 BaO 4.0 4.1 4.5 4.5 4.5 4.5 4.5 ZnO - - 0.5 0.5 - 0.3 - p2〇5 - - - - 0.3 0.2 0.3 Sn 〇2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0 0 0 0.08 (SrO+BaO) / (MgO+CaO) 0.46 0.52 0.56 0.63 0.56 0.56 0.49 Mg0/Al203 0 0 0 0 0 0 0.08 Ca0/Al203 1.02 0.9 0.96 0.9 0.96 0.96 0.96 B2O3/S1O2 0.03 0.03 0.02 0.02 0.02 0.02 0.02 Piff/cm勹2.63 2.63 2.66 2.66 2,65 2.65 2.64 ar><10'7〇Cl 45 43 45 44 44 45 44 Ps[°C ] 720 728 721 722 728 724 723 TafCl 111 785 778 780 786 782 780 TsrCl 1009 1024 1013 1017 1022 1018 1015 104dPa-s[°C] 1338 1353 1342 1350 1355 1352 1344 10JdPa-s[°C] 1509 1524 1516 1524 1529 1526 1518 1025dPa.s[°C] 1617 1632 1630 1636 1640 1636 1633 TLpCl 1196 1215 1184 1183 1175 1177 1177 log i〇T)[dPa*s] 5.2 5.2 5.4 5.4 5.6 5.5 5.5 Young's modulus [GPa] Not determined Not determined Not measured Not measured 79 Not measured 79 Specific Young's modulus [GPa/(g/cm3)] Measurement not measured Not measured Not measured 29.8 Not measured 30.1 Rigidity rate [GPa] Not measured Not measured Not measured Not measured 33 Not measured 30 c 23 201247585 42467pif [Table 4] N0.22 Νο.23 Νο.24 Νο.25 Νο. 26 Νο.27 Νο.28 Glass composition (mol%) Si02 70.7 70.3 69.9 70.2 70.1 69.6 69.5 AI2O3 10.9 11.2 11.6 12.4 11.2 11.1 11.1 B2〇3 1·4 1.4 1.4 4.1 ΙΑ 1.4 1.4 MgO - - - 4.1 [7 1.7 1.7 CaO 10.4 10.5 10.5 6.0 9.2 10.4 10.3 SrO 1.4 1.4 1.4 1.3 1.3 0.7 1.3 BaO 4.6 4.6 4.6 1.9 4.5 4.5 4.1 p2〇5 0.5 0.5 0.5 - 0.5 0.5 0.5 Sn〇2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0.68 0.19 0.17 0.17 (SrO+BaO) / (MgO+CaO) 0.57 0.56 0.56 0.32 0.54 0.43 0.45 Mg0/Al203 0 0 0 0.33 0.15 0.15 0.15 Ca0/Al203 0.96 0.93 0.90 0.48 0.82 0.93 0.93 B2O3/S1O2 0.02 0.02 0.02 0.06 0.02 0.02 0.02 p[g/cm3] 2.65 2.65 2,65 Not determined Not determined Not determined Not determined a[xl O'7/°C] 45 45 44 Not determined 43 44 44 Ps[°C] 728 731 733 Not determined 722 720 720 Ta[°C] 786 788 790 Not determined 780 777 777 Ts[°C] 1022 1023 1024 Not Determination 1017 1011 1009 104dPa*s[°C] 1352 1352 1350 Not determined 1344 1335 1330 103dPa-s[°C] 1525 1523 1519 Not determined 1516 1504 1498 1025dPa.s[°C] 1637 1633 1627 Not determined 1624 1611 1605 TL [°C] 1176 1182 1190 Not determined 1179 1182 1191 log10ri[dPa.s] 5.6 5.5 5.4 Not measured 5.5 5.4 5.2 Young's modulus [GPa] Not determined 79 Not determined Not determined 79 Unmeasured unmeasured Young's modulus [GPa/ (g/cm3)] Not determined 29.7 Not measured Not measured Not measured Not measured Unmeasured rigidity rate [GPa] Not measured 33 Not measured Not measured 33 Not measured Not measured 24 s 201247585 42467pif [Table 5]

No.29 No.30 No.31 Νο.32 Νο.33 Νο.34 No.35 Si〇2 68.7 70.0 70.5 70.4 67.2 67.3 67.5 Al2〇3 11.2 11.2 11.1 11.0 12.3 12.2 12.3 B2〇3 1.4 1.4 ΙΑ 1.4 2.8 2.8 2.8 MgO 5.4 0.9 2.6 3.4 8.2 7.9 7.9 CaO 8.1 10.4 8.6 8.5 6.3 6.2 6.2 SrO 1.1 1.0 0.7 0.3 0.6 1.3 0.6 BaO 3.5 4.5 4.5 4.0 2.2 2.2 2.6 ZnO - - - 0.4 - - - P2〇5 0.5 0.5 0.5 0.5 0.3 - - Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0.66 0.08 0.30 0.40 1.31 1.28 1.28 (SrO+BaO) / (MgO+CaO) 0.34 0.49 0.46 0,36 0.19 0.24 0.23 Mg0/Al203 0.48 0.08 0.23 0.31 0.67 0.65 0.65 Ca0/Al203 0.73 0.93 0.78 0.78 0.51 0.50 0.50 B2O3/S1O2 0.02 0.02 0,02 0.02 0.04 0.04 0.04 p[g/cm3] 未測定 未測定 未測定 未測定 2.56 2.57 2.57 a[xlO'7/°C] 41 未測定 未測定 未測定 38 '39 38 PsfCl 718 725 725 722 718 718 719 TarCI 774 782 784 780 774 774 774 Ts[°C] 1006 1016 1024 1022 998 998 1000 104dPa-s[°C] 1321 1341 1358 1350 1301 1298 1303 10JdPa.s[°C] 1484 1509 1530 1520 1458 1454 1460 10A5dPa*s[°C] 1589 1618 1637 1628 1555 1555 1561 TL[°C1 1190 1182 1187 1206 1219 1181 1182 logi〇q[dPa*s] 5.2 5.4 5.5 5.2 4J 5.1 5.1 楊氏模量[GPa] 未測定 80 80 80 83 83 84 比楊氏模量 [GPa/ (g/cm3)] 未測定 未測定 未測定 未測定 32.5 32.5 32.5 剛性率[GPa] 未測定 33 33 33 34 34 34 表面粗縫度Ra[nm] 未測定 未測定 未測定 未測定 未測定 0.2 未測定 以如下般製作試樣No.l〜試樣No.35。首先,將已調 配成表中的玻璃組成的玻璃配料加入至鉑坩堝中,以 1600°C熔融24小時後,流出於碳板上而成形為平形板狀。 其次,對於所獲得的各試樣,評估密度p、熱膨脹係數α、 應變點Ps、緩冷點Ta、軟化點Ts、104dPa · s時的溫度、 103dPa · s時的溫度、102 5dPa · s時的溫度、液相溫度TL、 25 201247585 42467pif 液相黏度log^ifTL、揚氏模量、比楊氏模量、剛性率。 密度P是利用周知的阿基米德法测定所得的值。 熱膨脹係數α是利用膨脹計測定所得的值,且是3〇它 〜380°C的溫度範圍下的平均值。 應變點Ps、緩冷點Ta、軟化點Ts是基於ASTM C336 測定所得的值。 104()dPa · s 時的溫度、i〇3〇dPa · s 時的溫度、1〇2.5dpa • s時的溫度是利用鉑球提拉法測定所得的值。 液相溫度TL是將通過標準篩3〇目(5〇〇μιη)而殘留 在50目(300 μιη)的玻璃粉末加入至麵舟後,將該鈾舟 在溫度梯度爐中保持24小時,測定結晶析出的溫度所得的 值。 液相黏度logioilTL是利用翻球提拉法測定液相溫度 TL下的玻璃的黏度所得的值。 揚氏模量、剛性率為利用周知的共振法測定所得的值。 如表1〜表5可知,試樣No.l〜試樣No.35中,將玻 璃組成限制在規定範圍内,因此密度p為2.66 g/cm3以下, 熱膨脹係數α為38χ1〇-7/°〇〜46xlO-7/°C’應變點卩8為712°c 以上,1025dPa · s時的溫度為1653°C以下,液相溫度TL 為1229°C以下’液相黏度l〇g1Gr|TL為4.7以上,揚氏模量 為78 GPa以上,比楊氏模量為29.7 GPa/ (g/cm3)以上。 尤其,試樣No.l〜試樣No.35的耐失透性良好,因而容易 成形為板厚400 μηι以下,進而比楊氏模量大,因此即便 在板厚為400 μιη以下的情況下,玻璃基板亦不易撓曲。No.29 No.30 No.31 Νο.32 Νο.33 Νο.34 No.35 Si〇2 68.7 70.0 70.5 70.4 67.2 67.3 67.5 Al2〇3 11.2 11.2 11.1 11.0 12.3 12.2 12.3 B2〇3 1.4 1.4 ΙΑ 1.4 2.8 2.8 2.8 MgO 5.4 0.9 2.6 3.4 8.2 7.9 7.9 CaO 8.1 10.4 8.6 8.5 6.3 6.2 6.2 SrO 1.1 1.0 0.7 0.3 0.6 1.3 0.6 BaO 3.5 4.5 4.5 4.0 2.2 2.2 2.6 ZnO - - - 0.4 - - - P2〇5 0.5 0.5 0.5 0.5 0.3 - - Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0.66 0.08 0.30 0.40 1.31 1.28 1.28 (SrO+BaO) / (MgO+CaO) 0.34 0.49 0.46 0,36 0.19 0.24 0.23 Mg0/Al203 0.48 0.08 0.23 0.31 0.67 0.65 0.65 Ca0 /Al203 0.73 0.93 0.78 0.78 0.51 0.50 0.50 B2O3/S1O2 0.02 0.02 0,02 0.02 0.04 0.04 0.04 p[g/cm3] Not determined Not measured Not measured Not measured 2.56 2.57 2.57 a[xlO'7/°C] 41 Not determined Not determined not determined 38 '39 38 PsfCl 718 725 725 722 718 718 719 TarCI 774 782 784 780 774 774 774 Ts [°C] 1006 1016 1024 1022 998 998 1000 104dPa-s[°C] 1321 1341 1358 1350 1301 1298 1303 10JdPa.s[°C] 1484 1509 1530 1520 1458 1454 1460 10A5dPa*s[°C] 1589 1618 1637 162 8 1555 1555 1561 TL[°C1 1190 1182 1187 1206 1219 1181 1182 logi〇q[dPa*s] 5.2 5.4 5.5 5.2 4J 5.1 5.1 Young's modulus [GPa] Not determined 80 80 80 83 83 84 Specific Young's modulus [GPa/(g/cm3)] Not measured Not measured Not measured Not measured 32.5 32.5 32.5 Rigidity rate [GPa] Not measured 33 33 33 34 34 34 Surface roughness Ra [nm] Not measured Not measured Not measured Not measured Not measured Measurement 0.2 Not measured Sample No. 1 to Sample No. 35 were prepared as follows. First, a glass batch which has been formulated into a glass composition in the table is added to a platinum crucible, melted at 1600 ° C for 24 hours, and then discharged onto a carbon plate to be formed into a flat plate shape. Next, for each of the obtained samples, the density p, the coefficient of thermal expansion α, the strain point Ps, the slow cooling point Ta, the softening point Ts, the temperature at 104 dPa · s, the temperature at 103 dPa · s, and the time at 102 5 dPa · s were evaluated. Temperature, liquidus temperature TL, 25 201247585 42467pif liquid viscosity log^ifTL, Young's modulus, specific Young's modulus, rigidity rate. The density P is a value measured by a well-known Archimedes method. The coefficient of thermal expansion α is a value measured by a dilatometer and is an average value of a temperature range of 3 380 °C. The strain point Ps, the slow cooling point Ta, and the softening point Ts are values measured based on ASTM C336. The temperature at 104 () dPa · s, the temperature at i 〇 3 〇 dPa · s, and the temperature at 1 〇 2.5 dpa • s are values measured by a platinum ball pulling method. The liquidus temperature TL is obtained by adding glass powder remaining at 50 mesh (300 μm) through a standard sieve (3 μm) to a boat, and the uranium boat is kept in a temperature gradient furnace for 24 hours. The value obtained by the temperature at which the crystals are precipitated. The liquid phase viscosity logioil TL is a value obtained by measuring the viscosity of the glass at a liquidus temperature TL by a tumbling pulling method. The Young's modulus and the rigidity are values measured by a well-known resonance method. As shown in Tables 1 to 5, in Sample No. 1 to Sample No. 35, since the glass composition was limited to a predetermined range, the density p was 2.66 g/cm3 or less, and the thermal expansion coefficient α was 38χ1〇-7/°. 〇~46xlO-7/°C' strain point 卩8 is 712°c or more, temperature at 1025dPa·s is below 1653°C, liquidus temperature TL is below 1229°C, 'liquidus viscosity l〇g1Gr|TL is 4.7 or more, the Young's modulus is 78 GPa or more, and the Young's modulus is 29.7 GPa/(g/cm3) or more. In particular, since Sample No. 1 to Sample No. 35 have good resistance to devitrification, they are easily formed into a sheet thickness of 400 μm or less and further have a Young's modulus, and therefore, even when the sheet thickness is 400 μm or less, The glass substrate is also not easily deflected.

26 201247585 42467pif ,此^可認為試樣Να1〜試樣N〇.35作為液晶透鏡用玻璃 土板較佳。另外,試樣N(U〜試樣版35在玻璃組成中不 含有As2〇3、Sb2〇3,而含有Sn〇2,因此氣泡品質良好。 [實例2] 在試驗熔融爐中將與試樣N〇.6、試樣N〇 34相對應的 玻埚配料熔融後,藉由溢流下拉法,成形板寬15〇〇瓜瓜、 板厚250 μπι的液晶透鏡用玻璃基板.結果,液晶透鏡用 玻璃基板的表面粗糙度Ra為20埃(人)以下(參照表!、表 5)。另外,成形時,藉由適當調整拉伸輥的速度、冷卻輥 的速度、加熱裝置的溫度分佈、熔融玻璃的溫度、溶融玻 璃的流量、板提拉速度,攪拌器的轉數等,來調節液晶透 鏡用玻璃基板的表面品質。 【圖式簡單說明】 無。 【主要元件符號說明】 無0 2726 201247585 42467pif , it is considered that the sample Να1 to N 〇.35 are preferable as the glass plate for liquid crystal lens. Further, the sample N (U to the sample plate 35 does not contain As2〇3, Sb2〇3 in the glass composition, and contains Sn〇2, so the bubble quality is good. [Example 2] In the test melting furnace, the sample is tested. N〇.6, after the glass crucible of the sample N〇34 is melted, a glass substrate for a liquid crystal lens having a width of 15 guaguas and a thickness of 250 μm is formed by an overflow down-draw method. As a result, the liquid crystal lens The surface roughness Ra of the glass substrate is 20 angstroms or less (refer to Table!, Table 5). Further, at the time of molding, the speed of the stretching rolls, the speed of the cooling rolls, the temperature distribution of the heating device, and the temperature distribution of the heating device are appropriately adjusted. The temperature of the molten glass, the flow rate of the molten glass, the pulling speed of the plate, the number of revolutions of the stirrer, etc., to adjust the surface quality of the glass substrate for liquid crystal lens. [Simplified description of the drawing] None. [Description of main component symbols] None 0 27

Claims (1)

201247585 42467pif 七、申請專利範圍: 1. 一種液晶透鏡用玻璃基板,其特徵在於: 作為玻璃組成’以莫耳%計,含有45%〜75%的Si〇2、 5%〜15%的 Al2〇3、〇〇/〇〜15%的 b203、0%〜15%的 MgO 及〇%〜15%的CaO ’且板厚為400 μιη以下。 2. 如申請專利範圍第1項所述之液晶透鏡用玻璃基 板,其中比楊氏模量為29 GPa/ ( g/cm3)以上。 3. 如申請專利範圍第1項或第2項所述液晶透鏡用玻 璃基板,其中應變點為650°C以上。 4. 如申請專利範圍第1項至第3項中任一項所述之液 晶透鏡用玻璃基板’其中密度為2.7 g/cm3以下。 5. 如申請專利範圍第1項至第4項中任一項所述之液 晶透鏡用玻璃基板,其中1025dPa.s時的溫度為1650°C以 下。 6. 如申請專利範圍第1項至第5項中任一項所述之液 晶透鏡用玻璃基板’其中液相黏度為l〇4_0(iPa · s以上。 7·如申請專利範圍第1項至第6項中任一項所述之液 晶透鏡用玻璃基板,其中在30°C〜380°C的熱膨脹係數為 3〇x1(T7/°C 〜5〇xl〇-7/°C。 8. 如申請專利範圍第1項至第7項中任一項所述之液 晶透鏡用玻璃基板,其利用溢流下拉法而成形。 9. 一種液晶透鏡用玻璃基板,其特徵在於: 作為玻璃組成,以莫耳%計,含有45%〜75%的Si02、 5%〜15%的 A1203、0%〜15%的 B2〇3、〇%〜15%的 MgO、 28 S 201247585 4Z40/pif 及0%〜15%的CaO,莫耳比Mg0/Ca0為〇〜〗5,莫耳比 (SrO+BaO) / (MgO+CaO)為 〇〜1,莫耳比 Mg0/Al203 為0〜1,莫耳比CaO/Al2〇3為〇〜3,莫耳比B203/Si02為 0〜0.3,實質上不含有驗金屬氧化物、As203、Sb203、PbO 以及Bi2〇3 ’比揚氏模量為29 GPa/ (g/cm3)以上,在3〇°c 〜380°C的熱膨脹係數為3〇xl〇-7/°C〜5〇xl(T7/°c,密度為 2.6g/cm3以下,液相黏度為1〇5.〇dPa · s以上,寬度尺寸為 500 mm以上,長度尺寸為5〇〇 mm以上,板厚為4〇〇 以下。 10,一種液晶透鏡用玻璃基板,其特徵在於: 作為玻璃組成’以莫耳%計,含有45%〜75%的Si〇2、 5%〜15%的 A1203、〇%〜15%的 B2〇3、0%〜15%的 MgO、 及0◦/〇〜15%的CaO,莫耳比MgO/CaO為0〜1.5,莫耳比 (SrO+Ba〇) / (Mg〇+Ca〇)為 oy,莫耳比 Mg〇/Al2〇3 為0〜1 ’莫耳比CaO/Al2〇3為〇〜3,莫耳比B2〇3/siQ2為 〇〜〇.3 ’實質上不含有驗金屬氧化物、As2〇3、sb办、pb〇 以及Bi2〇3 ’比楊氏模量為29 GPa/ ( g/cm3)以上,在3〇。〇 〜380°c的熱膨脹係數為3〇xl〇-7/°c〜5〇xl〇_7/〇c,密度為 2.6g/cm3以下,液相黏度為i〇5.〇dPa· s以上,板厚為 μιη以下。 11.—種液晶透鏡,其特徵在於包括如申請專利範圍 第1項至第ίο項中任一項所述之液晶透鏡用玻璃基板。 12· —種玻璃基板,其特徵在於: 板厚為400 μιη以下,且比揚氏模量為29 GPa/( g/cm3) 29 201247585 42467pif 以上。 13.如申請專利範圍第12項所述之玻璃基板,其用於 液晶透鏡中。 30 S 201247585 42467pif 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無。 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無。 S 201247585 修正曰期:1〇1年8月16日 爲第lonmi2號中文說明書無劃線修^# 登里專利說明書 (本說明書格式、順序,請勿任意更動,※記號部分請勿填寫) ※申請案號: c〇^cV^S (2006.01) ^7(2006.01) ^/v^\ (2006.01) ^4^(2006.01) ※申請日: 分類: 一、發明名稱··(中文/英文) 液晶透鏡用玻璃基板 GLASS SUBSTRATE FOR LIQUID CRYSTAL LENS ° 二、中文發明摘要: 本發明的液晶透鏡用玻璃基板,作為玻璃組成,以莫 耳%計,含有 45%〜75%的 Si02、5%〜15%的 Al2〇3、0% 〜15%的 B2〇3、〇%〜15%的 MgO、及 0%〜15%的 CaO, 且板厚為400 μιη以下。 三、英文發明摘要: This invention relates to a glass substrate which is for liquid crystal lens and has a glass composition (by mole%), including 45% to 75% of Si〇2,5% to 15% of AI2O3,〇% to 15% of B2〇3, 0% to 15% of MgO, and 0% to 15% of CaO, and has a thickness equal to or less than 400 μηι. 201247585 I Aar t N/ / 爲第l〇m4412號中文說明書無劃線修正本 正曰期:1。1年8月16日 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種可適用於=維 (three-dimensional ’ 3D )顯示器的視域控制部等的液'曰. 鏡用玻璃基板。 【先前技術】201247585 42467pif VII. Patent application scope: 1. A glass substrate for liquid crystal lens, characterized in that: as a glass composition, 45% by mole of Al2〇, 5% to 15% of Al2〇 3. 〇〇/〇~15% of b203, 0%~15% of MgO and 〇%~15% of CaO' and the plate thickness is 400 μm or less. 2. The glass substrate for liquid crystal lenses according to claim 1, wherein the specific Young's modulus is 29 GPa/(g/cm3) or more. 3. The glass substrate for a liquid crystal lens according to claim 1 or 2, wherein the strain point is 650 ° C or higher. 4. The glass substrate for liquid crystal lens of any one of the above-mentioned claims, wherein the density is 2.7 g/cm3 or less. 5. The glass substrate for a liquid crystal lens according to any one of claims 1 to 4, wherein the temperature at 1025 dPa.s is 1650 ° C or less. 6. The glass substrate for liquid crystal lens of any one of Claims 1 to 5, wherein the liquidus viscosity is l〇4_0 (iPa·s or more. 7) as claimed in claim 1 The glass substrate for liquid crystal lenses according to any one of the preceding claims, wherein a thermal expansion coefficient at 30 ° C to 380 ° C is 3 〇 x 1 (T7 / ° C to 5 〇 x l 〇 -7 / ° C. The glass substrate for liquid crystal lenses of any one of Claims 1 to 7 is formed by an overflow down-draw method. 9. A glass substrate for liquid crystal lenses, which is characterized by a glass composition. In terms of mole %, containing 45% to 75% of SiO 2 , 5% to 15% of A 1203, 0% to 15% of B 2 〇 3, 〇 % to 15% of MgO, 28 S 201247585 4Z40/pif and 0% ~15% CaO, Mohr ratio Mg0/Ca0 is 〇~〗 5, Mohr ratio (SrO+BaO) / (MgO+CaO) is 〇~1, Mohr ratio Mg0/Al203 is 0~1, Moer The ratio CaO/Al2〇3 is 〇~3, and the molar ratio B203/SiO2 is 0~0.3, which does not substantially contain metal oxide, As203, Sb203, PbO and Bi2〇3' than Young's modulus is 29 GPa/ (g/cm3) or more, heat at 3 ° ° C ~ 380 ° C The expansion coefficient is 3〇xl〇-7/°C~5〇xl (T7/°c, the density is 2.6g/cm3 or less, the liquidus viscosity is 1〇5.〇dPa·s or more, and the width dimension is 500mm or more. The length is 5 〇〇mm or more and the thickness is 4 〇〇 or less. 10. A glass substrate for a liquid crystal lens, characterized in that: as a glass composition, 45% to 75% of Si 以 is contained in % by mole 2, 5% ~ 15% of A1203, 〇% ~ 15% of B2 〇 3, 0% ~ 15% of MgO, and 0 ◦ / 〇 ~ 15% of CaO, Mo ratio MgO / CaO is 0 ~ 1.5, Mohr ratio (SrO+Ba〇) / (Mg〇+Ca〇) is oy, Mohr ratio Mg〇/Al2〇3 is 0~1 'Mo Er ratio CaO/Al2〇3 is 〇~3, Mo Erbi B2〇3/siQ2 is 〇~〇.3 'Substantially does not contain metal oxide, As2〇3, sb, pb〇 and Bi2〇3' than Young's modulus is 29 GPa/(g/cm3) or more , at 3〇. The thermal expansion coefficient of 〇~380°c is 3〇xl〇-7/°c~5〇xl〇_7/〇c, the density is below 2.6g/cm3, and the liquid viscosity is i〇5. 〇dPa·s or more, the sheet thickness is below μιη. 11. A liquid crystal lens characterized by including the first to the ίο The crystal according to any one of a glass lens substrate. A glass substrate having a thickness of 400 μm or less and a Young's modulus of 29 GPa/(g/cm3) 29 201247585 42467pif or more. 13. The glass substrate of claim 12, which is used in a liquid crystal lens. 30 S 201247585 42467pif IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the component symbols of this representative figure: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: None. S 201247585 Correction period: 1〇1年年16月16日第lonmi2号 Chinese manual No underline repair^# 登里专利手册 (The format and order of this manual, please do not change it arbitrarily, please do not fill in the ※ part) ※ Application No.: c〇^cV^S (2006.01) ^7(2006.01) ^/v^\ (2006.01) ^4^(2006.01) ※Application Date: Classification: 1. Invention Name··(Chinese/English) LCD Glass substrate for lens GLASS SUBSTRATE FOR LIQUID CRYSTAL LENS ° II. Abstract: The glass substrate for liquid crystal lens of the present invention contains, as a glass composition, 45% to 75% of SiO 2 , 5% to 15% by mol% Al2〇3, 0% to 15% of B2〇3, 〇%~15% of MgO, and 0%~15% of CaO, and the plate thickness is 400 μm or less. 3. Inventive Abstract: This invention relates to a glass substrate which is for liquid crystal lens and has a glass composition (by mole%), including 45% to 75% of Si〇2, 5% to 15% of AI2O3,〇 % to 15% of B2〇3, 0% to 15% of MgO, and 0% to 15% of CaO, and has a thickness equal to or less than 400 μη. 201247585 I Aar t N/ / is the l〇m4412 No. Chinese manual, no slash correction, this period: 1.1, August 16th, sixth, invention description: [Technical field of invention] The present invention relates to a three-dimensional '3D Liquid 曰. Mirror glass substrate for the viewing area control unit of the display. [Prior Art] 〇 近年來,市場上開始出現無需佩戴眼鏡的3D顯示器 裝置。作為無需佩戴眼鏡的3D的顯示方式,提出了 屏障(Parallax Barrier)式及使用透鏡的方式。視差屏^ 是藉由設定為適當的間隔的條紋狀的屏障來覆蓋顯示 晝素,從而形成兩眼視差的方式。最近,還出現—的 晶來製作屏障的類型,可在2D與3D之間進行切換。然而液 該類型因必須利用一些屏障來隱藏至少晝面的—部分、、,而故 存在顯示器的亮度下降的問題。 另一方面,使用透鏡的方式的基本原理類似於視差 式,是代替屏障而藉由塑膠膜(plastic film)透;^ 眼視差的方式。該方式中,因不會遮住晝面,故 =示器的亮度,但存在無法在20與3〇之間進行切換的 問崎。 、 、、作為解決該些問題的方法,正研究使驗晶透 視域控制的方式。該方式為如下方式:對存在於形成著偏 光膜電膜的2塊玻璃基板間的液晶施加電場,而使液 晶的配向發生變化,藉此赋予如一種透鏡般的作用,從= 可進行立觀看。而且,該方式中,不會如視差屏障=那 3 201247585 ίϋΪΗ412修正日期:轉8月16日 樣遮住晝素,且亦可在2D與3D之間進行切換,因而可期 待作為下一代的3D顯示器的視域控制機構。 然而,在使用液晶透鏡來進行視域控制的方式中,在 將液晶透鏡配置在顯示器裝置的晝素上的情況下,存在晝 素-透鏡間的距變長,3 D的視野角變窄的問題。 該問題是因為如下情況所造成:在液晶顯示器(Uquid Crystal Display,LCD )或有機發光二極體( Light-Emitting Diode ’ OLED)的顯示部,前面側已存在 0.5 mm〜0.7 mm的玻璃基板,進而附加液晶透鏡的玻璃基 板的厚度。 另一方面,若減小液晶透鏡用玻璃基板的板厚,則能 夠改善上述問題。然而,先前的玻璃基板若減小板厚,則 容易撓曲。若玻璃基板撓曲,則會產生無法在玻璃的表面 上進行所期望的成膜(例如透明導電膜等的成膜)的問題。 【發明内容】 因此,本發明的技術性課題在於,藉由提供即便板厚 減小亦不祕曲的玻義板,而實現畫素_魏_距離短 且具有適當的透明導電膜等的3D顯示器的視域控制部。 。本發明者等人反覆進行了各種實驗,結果發現,通過 嚴格限制玻璃基板的玻璃組成、尺寸,而能夠解決上述技 術性課題’從而提出了本發明。亦即,本發明的液晶透鏡 用玻璃基板的特徵在於:作為玻璃組成,以莫耳。乂叶,含 有45%〜75%的Si〇2、5%〜15%的Al2〇3、〇%〜⑽的 b2o3、〇%〜15%的Mg0、及〇%〜15%的Ca〇,且板厚為 χΠ 201247585 修正日期:101年8月16日 爲第1011Μ412號中文說明書無劃線修正本 400 μηι 以下。 若如上述般限制玻璃組成,則可提高耐失透性、比楊 氏模量(specific Young’s modulus)。若耐失透性高,則容 易成形為板厚400 μιη以下,若比楊氏模量大,則即便在 板厚為400 μιη以下的情況下,玻璃基板亦不易撓曲。而 且,若如上述般限制玻璃組成,則亦可降低密度、高溫黏 性。 Ο 〇 而且,若如上述般將玻璃基板的板厚限制為4〇〇 μιη 以下,則可擴大3D顯示器_可立體觀看的視野角。而且, 能夠對玻璃基板賦何撓性,從而可將玻璃基板捲繞為捲 狀而製作玻璃捲。若將玻璃基板設為玻璃捲的狀態,則能 夠連續地進行透明導魏的形成或偏細_附,從而液 晶透鏡的生產效率得到飛躍性提高。 第二,本發明的液晶透鏡用玻璃基板較佳為比揚氏模 量為29 GPa/ ( gW )以上。此處,「比揚氏模量」為將揚 氏模量除以密度的值所得的值。「揚氏模量」是指利用周知 的共振法等測定所得的值。「密度」可利關知 法等來測定。 仏 第 本^月的液晶透鏡用玻璃基板較佳為應變點 (strain point)為65(TC以上。此處,「應變點」是指根據AS· C336而測定的值。 第四’本發明的液晶透鏡用玻璃基板較佳為密度為2 7 g/cm3 以下。 . 第五,本發明的液晶透鏡用玻璃基板較佳為l〇25dPa 201247585 .. r ^μ,λ. 1 修正日期:1〇1年8月16日 爲第101114412號中文說明書無劃線修正本 • s時的溫度為165(TC以下。此處,「U)25dPa· s時的溫度」 相當於k融溫度,是指利用始球提拉法測定所得的值。 第六,本發明的液晶透鏡用玻璃基板較佳為液相黏度 為1040dPa· s以上。此處’「液相黏度」是指利用翻球提 拉法測定液相溫度下的玻璃的黏度所得的值。「液相溫度 疋才日將通過4示準師30目(500 μιη)而殘留於5〇目(3〇〇 gm) 的玻璃粉末加入至鉑舟之後,將該鉑舟在溫度梯度爐中保 持24小時’測定結晶析出的溫度所得到的值。 第七,本發明的液晶透鏡用玻璃基板較佳為3〇°c〜 380 C時的熱膨服係數為3〇xl(T7/°C〜5〇xl〇'7/°c。此處,「熱 膨脹係數」是利用膨脹計測定所得的值,且是指3(rc〜 380°C的溫度範圍下的平均值。 第八,本發明的液晶透鏡用玻璃基板較佳為利用溢流 下拉法成形。此處,「溢流下拉法」亦被稱作熔融法,是使 溶融玻璃從耐熱性的槽狀構造物的兩側溢出,一邊使溢出 的熔融玻璃於槽狀構造物的下端合流,一邊向下方延伸成 形而成形為玻璃基板。 第九’本發明的液晶透鏡用玻璃基板的特徵在於:作 為玻璃組成’以莫耳%計’含有45%〜75%的Si02、5%〜 15%的 Al2〇3、0%〜15%的 B2〇3、0%〜15%的 MgO、及 〇%〜15%的CaO ’莫耳比MgO/CaO為0〜1.5,莫耳比 (SrO+BaO) / (MgO+CaO)為 〇〜1 ’ 莫耳比 Mg0/Al203 為0〜卜莫耳比CaO/Al2〇3為〇〜3,莫耳比B203/Si02為 0〜0.3,實質上不含有鹼金屬氧化物(Li2〇、Na20、K20)、 201247585 ~r^^r\j f 修正曰期:1〇1年8月16日 爲第101114412號中文說明書無畫丨彳線修正本 As203、^2〇3、PbO 以及 Bi20,比揚氏模量為 29 Gpa/ (g/cm3)以上,30¾〜38(TC時的熱膨脹係數為3〇xl〇-7/°C 〜50父107/(:’密度為2.6§/(;1113以下,液相黏度為1〇5.〇(11^ • s以上,寬度尺寸為5〇〇mm以上,長度尺寸為5〇〇mm 以上,板厚為400 μηι以下。此處,「SrO+BaO」是指SrO 與BaO的合量JMg0+Ca0」是指皿8〇與Ca〇的合量。 「實質上不含有〜」是指玻璃組成中的對象成分的含量小 於0.1莫耳%的情況。例如,「實質上不含有As2〇3」是指 玻璃組成中的As2〇3的含量小於01莫耳%的情況。 第十,本發明的液晶透鏡用玻璃基板的特徵在於:作 為玻璃組成’以莫耳%計,含有45%〜75%的Si〇2、5%〜 15%的 Al2〇3、〇〇/〇〜15%的 b2〇3、〇%〜15%的 Mg〇 及 〇% 〜15%的CaO,莫耳比MgO/CaO為〇〜1.5,莫耳比 (SrO+BaO) / (MgO+CaO)為 〇〜卜莫耳比 Mg〇/Al2〇3 為0〜1 ’莫耳比CaO/Al2〇3為0〜3,莫耳比B2〇3/Si〇2為 0〜0.3 ’實質上不含有驗金屬氧化物、aS2〇3、sb2〇3、:pbO、 〇 以及Bi2〇3 ’比揚氏模量為29 GPa/ ( g/cm3)以上,30°C〜 380°C時的熱膨脹係數為3〇xl(T7/°C〜50><10_7/。〇,密度為 2.6g/cm3以下,液相黏度為l〇5°dPa · s以上,板厚為4〇〇 μηι以下。 第十一,本發明的液晶透鏡的特徵在於:包括上述任 一液晶透鏡用玻璃基板。 第十二,本發明的玻璃基板的特徵在於:板厚為4〇〇 μηι以下’且比楊氏模量為29 GPa/ ( g/cm3)以上。另外, 7 201247585 • ** > W ( Λ. 爲第101114412號中文說明書無劃線修正本修正日期·丨〇丨年8月16日 本發明的玻璃基板特別適用於液晶透鏡用途,但亦可適用 於液晶透鏡以外的有機電致發光(electroluminescence,EL ) 顯示器的基板用途等。 第十三,本發明的玻璃基板較佳為用於液晶透鏡。 [發明的效果] 根據以上的本發明’可提供一種即便板厚小亦不易撓 曲的玻璃基板。因此,若使用該玻璃基板,則可製造晝素_ 透鏡間的距離短且具有適當的透明導電膜等的3D顯示器 的視域控制部。 【實施方式】 本發明的實施形態的液晶透鏡用玻璃基板,作為玻璃 紅成,以莫耳%計,含有45%〜75%的Si02、5%〜15〇/0的 Al2〇3、〇〇/0〜15%的 b2〇3、0%〜15%的 Mg〇、及 〇%〜15% 的CaO。以下表示如上述般限定各成分的含有範圍的理由。 Si〇2的含量為45%〜75%,較佳為50%〜73%,更佳 為55%〜72%,進而更佳為60%〜7〇%。若Si〇2的含量過 少,則難以實現低密度化。另一方面,若Si〇2的含量過多, 則高溫黏度會不當地變高,熔融性降低,除此以外,玻璃 中谷易產生失透結晶(白梦石(crist〇baiite))等的缺陷。 Al2〇3的含量為5%〜15%。若Al2〇3的含量過少,則 難以提咼揚氏模量或耐熱性,且高溫黏性會不當地變高, 熔融性容易降低。因此,ΑΙΑ的較佳的下限範圍為7%以 上、9%以上、10%以上、11%以上,尤佳為12%以上。另 —方面,若Al2〇3的含量過多,則液相溫度變高,耐失透 8 201247585 ~r^~TKJ / L/iil 爲第101114412號中文說明書無劃線修正本 修正日期:丨〇1年8月16日 性容易降低。因此,A丨2〇3的較佳的上限範圍為145〇/〇以 下、14%以下、13.5%以下,尤佳為13%以下。 o Βζ〇3作為熔劑而發揮作用’且是降低高溫黏性並提高 溶融性的成分。B2〇3的含量為〇%〜15%。若B2〇3的含^ 過多,則因楊氏模量的降低,而難以提高比揚氏模量,= 耐熱性或财候性容易降低。因此’ha的較佳的上限範圍 為11%以下、8%以下、5%以下、3%以下、1%以下,尤佳 為0.5%以下。另外,若B2〇3的含量少,則存在高溫黏性 增高、氣泡品質下降的傾向,進而存在密度上升的傾向。 MgO的含量為0%〜15%〇Mg〇是如下的成分。亦即, MgO是不會使應變點降低,而降低高溫黏性並提高熔融性 的成分。而且,MgO是鹼土類金屬氧化物中降低密度的效 果最大的成分。進而,是提高揚氏模量的效果大的成分。 然而,若MgO的含量過多,則液相溫度上升而耐失透性 容易降低。因此,MgO的較佳的上限範圍為12%以下、1〇% 以下,尤佳為9%以下,MgO的較佳的下限範圍為1%以 上、1.5%以上、3%以上、3.5%以上、4%以上、6%以上, 尤佳為7.5%以上。 CaO的含量為〇%〜15%QCa〇是不會使應變點降低, 而降低鬲溫黏性並顯著提高溶融性的成分。而且,在鹼土 類金屬氧化物中,若使Ca〇的含量相對增加,則容易導致 玻,低密度化。然而,若Ca0的含量過多,則熱膨脹係數 或费度會不當地變高,且玻璃組成的成分平衡性被破壞, 從而耐失透性容易降低。因此,Ca〇的較佳的上限範圍為 201247585 ~ΓΑ»~Γν/ / J^XXA 修正曰期:1〇1年8月16日 爲第101114412號中文說明書無劃線修正本 13%以下、12%以下、ιι〇/〇以下、1〇 5〇/〇以下、9〇/〇以下,尤 佳為8%以下。而且,CaO的較佳的下限範圍為1%以上、 3%以上、4%以上、5%以上,尤佳為5 5%以上。 除上述成分以外,例如亦可添加以下的成分。 SrO是不會使應變點降低,而降低高溫黏性並提高熔 2性的成分,但若SrO的含量增多,則密度或熱膨脹係數 合易上升。而且,若SrO的含量增多,則為了與si的熱膨 脹係數匹配,而必須使Ca0或Mg〇的含量相對降低。而 且,因該CaO或MgO的含量的降低,會容易導致耐失透 性降低 '或者楊氏模量降低、而高溫黏性上升的事態。因 此,SrO的含量較佳為〇%〜1〇0/。、〇%〜5%、〜、〇% 〜1.8%、〇%〜ι·4%、〇%〜1%,尤佳為 〇%〜〇 。 _ Ba〇是不會使應變點降低,而降低高溫黏性並提高熔 ,性,或者提高耐失透性的成分。若Ba〇的含量增多,則 後度或熱膨脹係數容易上升。而且,若Ba〇的含量增多, 則,了與Si的熱膨脹係數匹配’而必須使CaO或MgO的 含量相對降低。結果,會容易導致耐失透性降低、或者楊 氏模里降低、而尚溫黏性上升的事態。因此,的含量 較佳為〇%〜10〇/〇。Ba〇的較佳的上限範圍為以下、6% 以下、5%以下,尤佳為3%以下。而且,Ba〇的較佳的下 限範圍為0.5%以上、1%以上、u%以上,尤佳為2%以上。 θ莫耳比Mg0/Ca0較佳為〇〜1.5。存在該值越大,則 楊氏模夏變咼且高溫黏性降低的傾向,而若該值過大,則 玻璃越容易失透。因此,莫耳比Mg〇/Ca〇的較佳的上限 201247585 τζ,τυ / JJl/1 修正日期:1〇丨年8月16日 爲第101114412號中文說明書無劃線修正本 範圍為1·4以下,較佳的下限範圍為〇·2以上、0.4以上、 0.6以上、0.8以上,尤佳為i以上。 莫耳比(SrO+BaO) / (Mg0+Ca〇)較佳為〇〜卜存 在該值越大,則耐失透性提高的傾向,而若該值過大,則 有高溫黏性、密度'熱膨脹係數變得過高,或者比楊氏模 量降低之虞。因此’莫耳比(SrO+BaO) / (MgO+CaO) 的較佳的上限範圍為0.8以下、0.6以下、0.5以下、0.45 以下、0.4以下,尤佳為0.35以下。而且,莫耳比(Sr〇+Ba〇) /(MgO+CaO)的較佳的下限範圍為〇 〇5以上、〇1以上、 0.15以上、0.2以上、0.25以上,尤佳為〇·3以上。 莫耳比MgO/Al2〇3較佳為〇〜1。存在該值越大,則揚 氏模量變尚且尚溫黏性降低的傾向,而若該值過大,則耐 失透性降低,或者密度或熱膨脹係數變得過高。因此,莫 耳比MgO/Al2〇3的較佳的上限範圍為〇 9以下、〇 8以下、 0.75以下,尤佳為0.7以下。而且,莫耳比Mg〇/Al2〇3的 較佳的下限範圍為0.2以上、〇.3以上,尤佳為〇 5以上。 莫耳比CaO/AbO3較佳為〇〜3。存在該值越大,則楊 氏模量變高且高溫黏性降低的傾向,而若該值過大,則液 相黏度變得極高,密度或熱膨脹係數變得過高。莫耳比 CaO/Al2〇3的較佳的上限範圍為2以下、丨5以下、丨以下、 〇_8以下,尤佳為0.6以下,較佳的下限範圍為〇1以上、 0.2以上、0.3以上、0.4以上,尤佳為〇 5以上。 莫耳比B2〇3/Si〇2較佳為〇〜〇.3。存在該值越大,則 高溫黏度降低、熔融性提高或密度降低或液相溫度降低的 11 201247585 Γ ^ I t Λ 爲第101114412號中文說明書無劃線修正本修正日期:101年8月16日 傾向。然而若該值過大,則應變點、揚氏模量容易降低。 因此,莫耳比B203/Si02的較佳的上限範圍為0.25以下、 0.2以下、0.15以下,尤佳為0.1以下。 MgO+CaO+SrO+BaO是降低液相溫度,且在玻璃中不 易產生結晶異物的成分’而且是提高熔融性或成形性的成 分。MgO+CaO+SrO+BaO的含量較佳為〇〇/〇〜25%、3%〜 20%、5%〜19%、10%〜19%、12%〜19%、12.5%〜19%, 尤佳為14%〜19%。若MgO+CaO+SrO+BaO的含量過少, 則無法充分發揮作為熔劑的作用,熔融性容易降低,此外, 〇 熱膨脹係數變得過低’而難以與Si的熱膨脹係數匹配。另 一方面,若MgO+CaO+SrO+BaO的含量過多,則有密度上 升,難以實現低密度化,此外比楊氏模量容易降低,進而 熱膨服係數不當變南之虞。另外,「MgO+CaO+SrO+BaO」 為MgO、CaO、SrO以及BaO的合量。 澄清劑是為了提高氣泡品質而使用的成分。先前,作 為澄清劑’使用As2〇3、St>2〇3。然而,As203、Sb203是對 環境造成負荷的物質,自環境的觀點考慮,較理想的是削 ◎ 減該些成分的使用量。因此,若使用Sn〇2作為澄清劑, 則既顧及環境的要求亦可提高氣泡品質。Sn〇2是在高溫域 下發揮良好澄清作用的成分,並且是降低高溫黏性的成 分。Sn02的含量較佳為〇%〜1〇/〇、〇 〇〇1%〜1%、〇 〇1%〜 〇.5%,尤佳為0.05%〜〇.3%。若Sn〇2的含量過多,則Sn〇2 的失透結晶容易在玻璃中析出。另外,若Sn〇2的含量少 於0.001%,則難以享有上述的效果。 12 201247585 修正日期:10丨年8月丨6日 爲第1(H114412號中文說明書無劃線修正本 知〇3、Sb203 /対贱作為澄清綱發揮側,本實 施开凡、巾並非凡全排除該些成分的含有,但自環境的觀 點考慮,較佳為將該些成分的含量分別限制為小於01%, 尤佳為小於0.05%。另外,F、C1等的鹵素具有使溶融溫 度低溫化並且促進澄清劑的作用的效果。因此,若添加函 素’則可實現炫融成本低廉化且玻璃製造爐的長壽命化。 然而,右F、C1的含量過乡,則有時會使形成在液晶透鏡 〇 帛玻,基板上的金屬的配線圖案發生腐蚀。因此,F、C1 的含量較佳為各自為1 %以下、〇 5%以下,小於〇」%、〇 〇5% 以下’尤佳為0.01%以下。 在不破壞玻璃特性的範圍内,作為澄清劑,亦可添加 Ce02、S03、C、金屬粉末例如A1、Si等)。 ZnO是提高熔融性的成分,但若其含量過多,則玻璃 容易失透,並且應變點容易降低,而且密度亦容易上升。 因此,ZnO的含量較佳為〇%〜1〇%、〇%〜5%、〇〇/。〜、 0%〜0.5%、〇%〜〇.3%,尤佳為 〇%〜〇 1%。 〇 Zr〇2是提高耐候性的成分,但若其含量過多,則耐失 ,性容糾低’此外介電钱介電正鄉ideetrie tangent) 谷易上升β因此’ Zr〇2的含量較佳為〇〇/〇〜5%、〇0/〇〜3%、 〇%〜0.5%,尤佳為0.01%〜0.2%。另外,在以耐失透性的 提高為優先的情況下,較佳為將Zr〇2的含量限制為〇 〇1% 以下。 TiCb是降低高溫黏性且提高熔融性的成分,並且是抑 制曝曬作用(s〇larization)的成分,但若在玻璃組成中較 13 201247585 爲第聊娜纖_粧本 粧晒:丨_ 8月16日 多地添加Ti02 ’則_會著色,且透過率容易降低。因此, Ti〇2的含量較佳為0%〜5%、0%〜3%、〇%〜1%,尤佳為 0%〜0.02%。 * P2〇5疋提间耐失透性的成分,但若在玻璃組成中較多 地添加P205,則有在玻璃中容易產生分相、乳白此外耐 水性顯著降低之虞。因此,执的含錄佳為Q%〜5%、 0%〜1% ’尤佳為〇%〜0 5〇/〇。 Y2〇3、Nb2〇5 ’ La2〇3具有提高應變點的作用,但若該 些成分的含量過多,則密度容易上升。因此,Y2〇3、Nb2〇5, 〇 La203的含量各自較佳為〇%〜3%、〇%〜1%,尤佳為〇% 〜0.1%。 若鹼金屬氧化物的含量增多,則熱膨脹係數變高,或 者應變點降低,或者薄膜電晶體(thin fiim transist〇r,τρτ) 的特性劣化。因此’鹼金屬氧化物的含量較佳為〇%〜6%、 〇%〜3%、〇%〜1%,尤佳為〇%〜〇 1%。進而理想的是, 實質上不含有驗金屬氧化物。 自環境的觀點考慮’較佳為實質上不含有此0、則2〇3。 〇 虽然可適當選擇各成分的較佳的含有範圍,而構築較 佳的玻璃組成範圍,其中,自耐失透性、密度、比揚氏模 量、高溫黏性、環境的要求等的觀點考慮,尤佳為以下的 玻璃組成範圍。 (1 )以莫耳%計,含有50%〜75%的Si02、7%〜15% 的 A12〇3、0〇/o〜11% 的 B2〇3、〇0/〇〜1〇% 的 Mg〇 及 〇%〜12〇/〇 的CaO ’莫耳比Mg0/Ca0為〇〜丨5,莫耳比(Sr〇+Ba〇) 14 201247585 -T^-r\J / pil l 爲第101114412號中文說明書無畫!腺修正本修正日期:101年8月16日 / (MgO+CaO)為 0〜0.5,莫耳比 Mg0/Al203 為 0〜0.8, 莫耳比Ca0/Al203為0〜1.5,莫耳比B203/Si02為0〜0.2, 且實質上不含有鹼金屬氧化物、As203、Sb2〇3、PbO以及 Bi2〇3 0 (2) 以莫耳%計,含有55%〜73%的Si02、9%〜15% 的 Al2〇3、0%〜8%的 B203、1.5%〜10%的 MgO 及 3%〜 10.5%的CaO,莫耳比MgO/CaO為0.2〜1.4,莫耳比 ❹ (SrO+BaO)/(MgO+CaO)為 0.1 〜0.5,莫耳比 MgO/Al203 為0.2〜0.8’莫耳比Ca0/Al203為0.2〜1,莫耳比B203/Si02 為0〜0.2,實質上不含有鹼金屬氧化物、As203、Sb203、 PbO 以及 Bi203。 (3) 以莫耳%計,含有60%〜73%的SiO2、10%〜15% 的 Al2〇3、0%〜5%的 B2〇3、2%〜10%的 MgO 及 3%〜8% 的CaO,莫耳比MgO/CaO為0.6〜1.4,莫耳比(SrO+BaO ) / (MgO+CaO)為 0.15〜0.45,莫耳比 Mg0/Al203 為 0.2〜 0.8 ’ 莫耳比 CaO/Al203 為 0.2〜0.6,莫耳比 B203/Si02 為 0 〇 〜0.2,實質上不含有鹼金屬氧化物、As203、Sb203、PbO 以及Bi2〇3。 (4) 以莫耳%計,含有60%〜73%的Si02、11%〜15% 的 Al2〇3、0%〜3%的 B2〇3、3%〜9%的 MgO 及 3%〜8% 的CaO’莫耳比MgO/CaO為0.8〜1.4,莫耳比(SrO+BaO) / (MgO+CaO)為 〇·ΐ5〜0.4,莫耳比 Mg0/Al203 為 0.3〜 0.75 ’ 莫耳比 Ca0/Al203 為 0.3〜0.6,莫耳比 B203/Si02 為 0〜0.15,實質上不含有鹼金屬氧化物、As203、Sb203、PbO 15 201247585 -TZ-r-TV/ / jJlX X 爲第101114412號中文說明書無畫U線修正本修正曰期:101年8月16日 以及Bi2〇3。 (5) 以莫耳%計,含有60%〜72%的Si02、12%〜15% 的 Al2〇3、0%〜3%的 B2〇3、6%〜9%的 MgO 及 5%〜8% 的CaO,莫耳比MgO/CaO為1〜1.4,莫耳比(SrO+BaO) / (MgO+CaO)為 0.15〜0.3,莫耳比 Mg0/Al203 為 0.5〜 0.75,莫耳比 Ca0/Al203 為 0.4〜0.6,莫耳比 B203/Si02 為 0〜0.1,實質上不含有鹼金屬氧化物、As203、Sb203、PbO 以及。 (6) 以莫耳%計,含有60%〜72%的Si02、12%〜15% ❹ 的八12〇3、0%〜3%的32〇3、7.5%〜9%的1^〇及5%〜8% 的CaO,莫耳比MgO/CaO為1〜1.4,莫耳比(SrO+BaO) / (Mg〇+Ca〇)為 0.15〜0.3,莫耳比 Mg0/Al203 為 〇·5〜 0.7 ’ 莫耳比 Ca0/Al203 為 0.4〜0_6,莫耳比 B203/Si〇2 為 〇 〜0.1,實質上不含有驗金屬氧化物、As2〇3、Sb2〇3、PbO 以及 。 本貫施形悲'的液晶透鏡用玻璃基板中,板厚較佳為 400 μιη 以下、300 μηι 以下、200 μιη 以下,尤佳為 1〇〇 μηι q 以下。板厚越小,則3D顯示器中可立體觀看的視野角越 廣’並且玻璃基板越輕量,因而可使裝置輕量化。進而, 玻璃基板的可撓性提高’因而可容易對裝置賦予可挽性, 捲對捲(roll to roll)製程中亦可製造液晶透鏡。 本實施形態的液晶透鏡用玻璃基板中,長度、寬产尺 寸的各自的下限值較佳為500 mm以上、7〇〇 mm以上,尤 佳為1000mm以上。另外,長度、寬度尺寸的各自的上限 16 201247585 ~r^~TW / piiT 爲第101114412號中文說明書無劃線修正本 修正曰期:丨〇丨年8月16日 值較佳為3000 mm以下,尤佳為2500 mm以下。長度、 寬度尺寸越大,則越可製作大型3D顯示器,但若長度、 寬度尺寸過大’則撓曲量變得過大,從而玻璃基板容易破 損。 本實施形態的液晶透鏡用玻璃基板中,表面粗糖度Ra 較佳為5〇埃(人)以下、3〇埃(A)以下、10埃(A)以下、5埃 (A)以下、3埃(A)以下’尤佳為2埃(人)以下。若表面粗糙 ❹ 度Ra大’則有形成於玻璃基板上的氧化銦錫(indium tin oxide,ITO)等的膜的品質降低,從而引起裝置顯示不良 之虞。此處’「表面粗糙度Ra」是指藉由依據jiSB0601 : 2001的方法測定所得的值。 本實施形態的液晶透鏡用玻璃基板中,密度較佳為2.7 g/cm3 以下、2.68 g/cm3 以下、2.66 g/cm3 以下、2.63 g/cm3 以下、2.61 g/cm3 以下、2.59 g/cm3 以下、2.57 g/cm3 以下, 尤佳為2.55 g/cm3以下。若密度大,則難以使玻璃輕量化。 本實施形態的液晶透鏡用玻璃基板中,熱膨脹係數較 〇 佳為 3〇xl〇-7/°C 〜5〇xl(T7/°C、32><1〇.7/。〇〜5〇x1(T7/°c、 35xl0-7/〇C^50xl0-7/〇C'37xl0-7/〇C-50xl0-7/〇C'38xl0-7/〇C 〜49xl〇-7/〇C,尤佳為38xl〇-7rc〜46xl〇-Vc。若熱膨服係 數處於上述範圍外,則由於與透明導電膜或圖案化等的膜 的熱膨脹係數差,而玻璃基板上容易產生翹曲。而且,難 以與顯示器裝置侧的基板進行貼合。 本實施形態的液晶透鏡用玻璃基板中,應變點較佳為 650〇C 以上、67(TC 以上、69(TC 以上、70(rc 以上、715t 以 17 201247585 -rx- «ν / 爲第101114412號中文說明書無畫臟修正本 修正日期:1〇1年8月16日 上 720°C以上 兀仏為730 C以上。若應變點變高,則 便在玻璃基板上進行導電__鱗的情況下,玻 尺寸變化亦減小。因此,能夠在玻璃基板的兩面^ 间精度的圖案化。 本實施形態的液晶透鏡用玻璃基板中,液相溫度較佳 為1320C以下、1290°C以下、1250。〇以下、122(TC以下、 119(TC以下,尤佳^㈣t以下。這樣,玻璃中難以產生 失透結晶,因而藉由溢流下拉法等,容易成形板厚4〇〇_ 以下的玻璃基板。結果,可提高玻璃基板的表面品質,且 使玻璃基㈣製造成本低廉化。另外,液相溫度為耐失透 性的指標。液相溫度越低,則耐失透性越優異。〇 In recent years, 3D display devices that do not require glasses have appeared on the market. As a 3D display method that does not require glasses, a barrier (Parallax Barrier) type and a method of using a lens have been proposed. The parallax screen ^ is a method of covering the display pixels by a stripe-shaped barrier set to an appropriate interval to form a binocular parallax. Recently, there has also been a type of crystal to create a barrier that can be switched between 2D and 3D. However, the type of liquid has to use some barriers to hide at least the portion of the face, and there is a problem that the brightness of the display is lowered. On the other hand, the basic principle of the method of using a lens is similar to the parallax type, which is a method of dispersing a plastic film by a plastic film instead of a barrier. In this method, the brightness of the indicator is not blocked because the surface is not blocked, but there is a question that cannot be switched between 20 and 3 inches. As a way to solve these problems, we are studying ways to control the field of view. In this embodiment, an electric field is applied to the liquid crystal between the two glass substrates on which the polarizing film is formed, and the alignment of the liquid crystal is changed, thereby imparting a lens-like action. . Moreover, in this way, it will not be as the parallax barrier = that 3 201247585 ϋΪΗ 412 correction date: turn to August 16 to cover the pixel, and can also switch between 2D and 3D, so can be expected as the next generation of 3D The viewing area control mechanism of the display. However, in the aspect in which the liquid crystal lens is used for the viewing area control, when the liquid crystal lens is disposed on the pixel of the display device, the distance between the pixels and the lens becomes long, and the viewing angle of 3 D becomes narrow. problem. This problem is caused by a situation in which a glass substrate of 0.5 mm to 0.7 mm is present on the front side of a display portion of a liquid crystal display (LCD) or a light-emitting diode (OLED). Further, the thickness of the glass substrate of the liquid crystal lens is added. On the other hand, if the thickness of the glass substrate for liquid crystal lenses is made small, the above problem can be improved. However, if the previous glass substrate is reduced in thickness, it is easily deflected. When the glass substrate is deflected, there is a problem that a desired film formation (for example, film formation of a transparent conductive film or the like) cannot be performed on the surface of the glass. SUMMARY OF THE INVENTION Therefore, a technical object of the present invention is to provide a 3D which has a short transparent plate and a transparent conductive film, etc., by providing a glass plate which is not secreted even if the thickness is reduced. The viewport control section of the display. . As a result of various experiments, the inventors of the present invention have found that the above-mentioned technical problems can be solved by strictly limiting the glass composition and size of the glass substrate. That is, the glass substrate for liquid crystal lenses of the present invention is characterized in that it has a glass composition and is a molar. Eucalyptus leaves, containing 45% to 75% of Si〇2, 5%~15% of Al2〇3, 〇%~(10) of b2o3, 〇%~15% of Mg0, and 〇%~15% of Ca〇, and The thickness of the plate is χΠ 201247585 Revision date: August 16, 2011 is the 1011Μ412 Chinese manual without a slash correction 400 μηι or less. If the glass composition is restricted as described above, the devitrification resistance and the specific Young's modulus can be improved. When the resistance to devitrification is high, the thickness is preferably 400 μm or less. When the thickness is larger than the Young's modulus, the glass substrate is less likely to be bent even when the thickness is 400 μm or less. Further, if the glass composition is restricted as described above, the density and high-temperature viscosity can be lowered. Ο 〇 Furthermore, if the thickness of the glass substrate is limited to 4 μm or less as described above, the viewing angle of the 3D display can be enlarged. Further, it is possible to impart flexibility to the glass substrate, and the glass substrate can be wound into a roll to form a glass roll. When the glass substrate is in the state of a glass roll, the formation of the transparent guide or the thinning can be continuously performed, and the production efficiency of the liquid crystal lens is drastically improved. Second, the glass substrate for a liquid crystal lens of the present invention preferably has a specific Young's modulus of 29 GPa/(gW) or more. Here, "Bian Young's modulus" is a value obtained by dividing the Young's modulus by the value of the density. "Young's modulus" means a value measured by a known resonance method or the like. "Density" can be measured by knowing the knowledge. The glass substrate for liquid crystal lenses of the first month is preferably a strain point of 65 (TC or more. Here, the "strain point" means a value measured according to AS·C336. The fourth 'the present invention The glass substrate for a liquid crystal lens preferably has a density of 2 7 g/cm 3 or less. Fifth, the glass substrate for a liquid crystal lens of the present invention preferably has a wavelength of 10 〇 25 dPa 201247585 .. r ^μ, λ. 1 Revision date: 1〇 On August 16th, 1st, the Chinese manual No. 101114412 has no scribe line correction. The temperature at s (s) is 165 (TC or less. Here, the temperature at "U) 25dPa·s is equivalent to the k-thaw temperature. The liquid crystal lens for a liquid crystal lens of the present invention preferably has a liquidus viscosity of 1040 dPa·s or more. Here, "liquid phase viscosity" means a liquid using a tumbling method. The value obtained by the viscosity of the glass at the phase temperature. "The liquid phase temperature will be added to the platinum boat by the glass powder of 5 mesh (3 μgm) remaining at 30 mesh (500 μm). The platinum boat was kept in a temperature gradient furnace for 24 hours to determine the temperature at which the crystal was precipitated. In the seventh embodiment, the glass substrate for a liquid crystal lens of the present invention preferably has a thermal expansion coefficient of 3 〇 x 1 (T7 / ° C 〜 5 〇 xl 〇 '7 / ° c) at a temperature of 3 ° C to 380 ° C. Here, the "thermal expansion coefficient" is a value measured by a dilatometer, and is an average value in a temperature range of 3 (rc to 380 ° C.) Eighth, the glass substrate for a liquid crystal lens of the present invention preferably uses an overflow. Here, the "downflow down-draw method" is also called a melting method, and the molten glass is allowed to overflow from both sides of the heat-resistant groove-like structure, and the molten glass which overflows is formed in the groove-like structure. The glass substrate for liquid crystal lens of the present invention is characterized in that the glass composition '% by mole' contains 45% to 75% of SiO 2 and 5% as a glass substrate. ~ 15% Al2〇3, 0%~15% B2〇3, 0%~15% MgO, and 〇%~15% CaO 'Mo Erbi MgO/CaO is 0~1.5, Mo Erbi ( SrO+BaO) / (MgO+CaO) is 〇~1 ' Mohr ratio Mg0/Al203 is 0~ Bumor ratio CaO/Al2〇3 is 〇~3, Moer than B203/Si02 is 0~0.3, real Does not contain alkali metal oxides (Li2〇, Na20, K20), 201247585 ~r^^r\jf Correction period: 1〇1年8月16日第101114412号 Chinese manual no painting line correction this As203 , ^2〇3, PbO and Bi20, the Young's modulus is 29 Gpa/(g/cm3) or more, 303⁄4~38 (the thermal expansion coefficient of TC is 3〇xl〇-7/°C~50 parent 107/ (: 'The density is 2.6 § / (; 1113 or less, the liquid viscosity is 1 〇 5. 以上 (11 ^ • s or more, the width dimension is 5 〇〇 mm or more, the length dimension is 5 〇〇 mm or more, and the thickness is 400 μηι or less. Here, "SrO+BaO" means that the combined amount of SrO and BaO JMg0+Ca0" means the sum of the 8〇 and Ca〇. The phrase "substantially does not contain ~" means that the content of the target component in the glass composition is less than 0.1 mol%. For example, "substantially does not contain As2〇3" means that the content of As2〇3 in the glass composition is less than 01% by mole. Tenth, the glass substrate for liquid crystal lenses of the present invention is characterized in that it contains 45% to 75% of Si 2 , 5% to 15% of Al 2 〇 3 , 〇〇 / 作为 as a glass composition. ~15% b2〇3, 〇%~15% Mg〇 and 〇%~15% CaO, Mohr ratio MgO/CaO is 〇~1.5, Mo Er ratio (SrO+BaO) / (MgO+CaO) 〇 卜 卜 卜 卜 卜 M M M M M 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca The metal oxide, aS2〇3, sb2〇3, :pbO, 〇 and Bi2〇3' have a modulus of elasticity of 29 GPa/(g/cm3) or more, and the coefficient of thermal expansion at 30 °C to 380 °C is 3〇xl (T7/°C~50><10_7/.〇, density is 2.6g/cm3 or less, liquid viscosity is l〇5°dPa·s or more, and plate thickness is 4〇〇μηι or less. A liquid crystal lens according to the present invention includes the above-described glass substrate for a liquid crystal lens. The twelfth aspect of the present invention is characterized in that the glass substrate of the present invention has a thickness of 4 〇〇μηι or less and a Young's modulus is 29 GPa/ (g/cm3) or more. In addition, 7 201247585 • ** > W ( Λ For the Chinese manual No. 101114412, there is no slash correction. The date of this revision is August 16th. The glass substrate of the invention of Japan is particularly suitable for liquid crystal lens applications, but it can also be applied to organic electroluminescence other than liquid crystal lenses. EL) The use of the substrate of the display, etc. Thirteenth, the glass substrate of the present invention is preferably used for a liquid crystal lens. [Effects of the Invention] According to the present invention, a glass substrate which is less likely to be deflected even if the thickness is small can be provided. Therefore, when the glass substrate is used, it is possible to manufacture a viewing area control unit of a 3D display having a short distance between the pixels and the lens and having a suitable transparent conductive film. [Embodiment] The liquid crystal lens of the embodiment of the present invention is used. The glass substrate is made of glass red, containing 45% to 75% of SiO 2 , 5% to 15 〇 / 0 of Al 2 〇 3, 〇〇 / 0 to 15% of b 2 〇 3, 0% 〜 15% of Mg〇 and 〇% to 15% of CaO. The following is a reason for limiting the content range of each component as described above. The content of Si〇2 is 45% to 75%, preferably 50% to 73%, More preferably 55% to 72%, and even more preferably 60% When the content of Si〇2 is too small, it is difficult to achieve a low density. On the other hand, when the content of Si〇2 is too large, the high-temperature viscosity is undesirably high, and the meltability is lowered. Zhonggu is prone to defects such as devitrification crystals (crist〇baiite). The content of Al2〇3 is 5% to 15%. When the content of Al2〇3 is too small, it is difficult to increase the Young's modulus or heat resistance, and the high-temperature viscosity is undesirably high, and the meltability is liable to lower. Therefore, the preferred lower limit range of ruthenium is 7% or more, 9% or more, 10% or more, 11% or more, and particularly preferably 12% or more. On the other hand, if the content of Al2〇3 is too large, the liquidus temperature becomes high, and the devitrification resistance is resistant. 201224585 ~r^~TKJ / L/iil is No. 101114412 Chinese manual without straight line correction This revision date: 丨〇1 On August 16th, sex is easy to reduce. Therefore, the preferred upper limit of A 丨 2 〇 3 is 145 〇 / 〇 or less, 14% or less, 13.5% or less, and particularly preferably 13% or less. o Βζ〇3 acts as a flux' and is a component that lowers high temperature viscosity and improves meltability. The content of B2〇3 is 〇% to 15%. If the content of B2〇3 is too large, it is difficult to increase the Young's modulus due to the decrease in Young's modulus, and the heat resistance or the property can be easily lowered. Therefore, the preferred upper limit range of 'ha' is 11% or less, 8% or less, 5% or less, 3% or less, or 1% or less, and particularly preferably 0.5% or less. Further, when the content of B2〇3 is small, there is a tendency that the high-temperature viscosity is increased and the bubble quality is lowered, and the density tends to increase. The content of MgO is 0% to 15%, and Mg is the following component. That is, MgO is a component which does not lower the strain point and lowers the high temperature viscosity and improves the meltability. Further, MgO is the most effective component for reducing density in alkaline earth metal oxides. Further, it is a component having a large effect of increasing the Young's modulus. However, if the content of MgO is too large, the liquidus temperature rises and the devitrification resistance is liable to lower. Therefore, a preferred upper limit range of MgO is 12% or less and 1% by mole or less, and particularly preferably 9% or less, and a preferred lower limit range of MgO is 1% or more, 1.5% or more, 3% or more, and 3.5% or more. 4% or more, 6% or more, and particularly preferably 7.5% or more. The content of CaO is 〇% to 15%. QCa〇 is a component which does not lower the strain point and lowers the temperature viscosity and significantly improves the meltability. Further, in the alkaline earth metal oxide, when the content of Ca 相对 is relatively increased, it is likely to cause glassiness and low density. However, if the content of Ca0 is too large, the coefficient of thermal expansion or the cost will be undesirably high, and the balance of the composition of the glass composition is destroyed, so that the devitrification resistance is liable to lower. Therefore, the preferred upper limit of Ca〇 is 201247585 ~ΓΑ»~Γν/ / J^XXA Revision period: 1〇1年16月16日第101114412 Chinese manual no underline correction 13% or less, 12 % or less, ιι〇/〇 below, 1〇5〇/〇 or less, 9〇/〇 or less, and particularly preferably 8% or less. Further, a preferred lower limit range of CaO is 1% or more, 3% or more, 4% or more, 5% or more, and particularly preferably 55% or more. In addition to the above components, for example, the following components may be added. SrO is a component which does not lower the strain point and lowers the high temperature viscosity and improves the melting property. However, if the content of SrO is increased, the density or the thermal expansion coefficient tends to increase. Further, when the content of SrO is increased, in order to match the coefficient of thermal expansion of si, it is necessary to relatively reduce the content of Ca0 or Mg〇. Further, due to a decrease in the content of CaO or MgO, the devitrification resistance is likely to be lowered, or the Young's modulus is lowered, and the high-temperature viscosity is increased. Therefore, the content of SrO is preferably 〇%~1〇0/. 〇%~5%, ~, 〇%~1.8%, 〇%~ι·4%, 〇%~1%, especially preferably 〇%~〇. _ Ba〇 is a component that does not lower the strain point, but lowers the high temperature viscosity and improves the melting property, or improves the resistance to devitrification. If the content of Ba〇 is increased, the degree of post-or the coefficient of thermal expansion tends to increase. Further, if the content of Ba〇 is increased, the coefficient of thermal expansion of Si is matched, and the content of CaO or MgO must be relatively lowered. As a result, it is easy to cause a decrease in the resistance to devitrification, or a decrease in the Young's mold, and the temperature is still sticky. Therefore, the content is preferably 〇% to 10〇/〇. The preferred upper limit of Ba〇 is hereinafter, 6% or less, 5% or less, and particularly preferably 3% or less. Further, a preferred lower limit of Ba 为 is 0.5% or more, 1% or more, u% or more, and particularly preferably 2% or more. The θ molar ratio Mg0/Ca0 is preferably 〇~1.5. If the value is larger, the Young's mold tends to become hazy and the viscosity at high temperature is lowered, and if the value is too large, the glass is more likely to devitrify. Therefore, the preferred upper limit of the molar ratio Mg〇/Ca〇 201247585 τζ, τυ / JJl/1 Revision date: August 16th of the following year is the 101111412 Chinese manual without a slash correction. The range is 1-4. Hereinafter, a preferred lower limit range is 〇·2 or more, 0.4 or more, 0.6 or more, or 0.8 or more, and particularly preferably i or more. The molar ratio (SrO+BaO) / (Mg0+Ca〇) is preferably 〇~b. If the value is larger, the devitrification resistance tends to be improved, and if the value is too large, the high temperature viscosity and density are high. The coefficient of thermal expansion becomes too high, or is lower than the Young's modulus. Therefore, a preferable upper limit range of the molar ratio of SrO + BaO / (MgO + CaO) is 0.8 or less, 0.6 or less, 0.5 or less, 0.45 or less, 0.4 or less, and particularly preferably 0.35 or less. Further, a preferred lower limit range of the molar ratio (Sr〇+Ba〇) /(MgO+CaO) is 〇〇5 or more, 〇1 or more, 0.15 or more, 0.2 or more, 0.25 or more, and particularly preferably 〇·3 or more. . The molar ratio MgO/Al2〇3 is preferably 〇~1. When the value is larger, the Young's modulus is increased and the viscosity is lowered, and if the value is too large, the devitrification resistance is lowered, or the density or the thermal expansion coefficient is excessively high. Therefore, the preferred upper limit range of the molar ratio MgO/Al2〇3 is 〇9 or less, 〇8 or less, 0.75 or less, and particularly preferably 0.7 or less. Further, a preferred lower limit of the molar ratio Mg 〇 / Al 2 〇 3 is 0.2 or more, 〇. 3 or more, and particularly preferably 〇 5 or more. The molar ratio CaO/AbO3 is preferably 〇~3. When the value is larger, the Young's modulus becomes higher and the high-temperature viscosity tends to decrease, and if the value is too large, the liquid phase viscosity becomes extremely high, and the density or thermal expansion coefficient becomes excessively high. The preferred upper limit of the molar ratio CaO/Al2〇3 is 2 or less, 丨5 or less, 丨5 or less, 〇8 or less, and particularly preferably 0.6 or less. A preferred lower limit range is 〇1 or more, 0.2 or more, and 0.3. The above, 0.4 or more, and particularly preferably 〇5 or more. The molar ratio B2〇3/Si〇2 is preferably 〇~〇.3. If the value is larger, the high temperature viscosity is lowered, the meltability is increased, or the density is lowered or the liquidus temperature is lowered. 11 201247585 Γ ^ I t Λ is the 101114412 Chinese manual without a slash correction. Amendment date: August 16, 101 tendency. However, if the value is too large, the strain point and the Young's modulus are liable to lower. Therefore, the preferred upper limit range of the molar ratio B203/SiO2 is 0.25 or less, 0.2 or less, 0.15 or less, and particularly preferably 0.1 or less. MgO + CaO + SrO + BaO is a component which lowers the liquidus temperature and which does not easily generate crystal foreign matter in the glass, and is a component which improves meltability or formability. The content of MgO+CaO+SrO+BaO is preferably 〇〇/〇~25%, 3%~20%, 5%~19%, 10%~19%, 12%~19%, 12.5%~19%, Especially good is 14%~19%. When the content of MgO+CaO+SrO+BaO is too small, the function as a flux is not sufficiently exhibited, the meltability is liable to lower, and the thermal expansion coefficient of 〇 is too low, and it is difficult to match the thermal expansion coefficient of Si. On the other hand, when the content of MgO+CaO+SrO+BaO is too large, the density is increased, and it is difficult to achieve a low density, and the Young's modulus is liable to lower, and the thermal expansion coefficient is not changed. Further, "MgO+CaO+SrO+BaO" is a combination of MgO, CaO, SrO, and BaO. A clarifying agent is a component used to improve the quality of bubbles. Previously, as a clarifying agent, As2〇3, St>2〇3 was used. However, As203 and Sb203 are substances that cause a load on the environment. From the viewpoint of the environment, it is desirable to reduce the amount of these components. Therefore, if Sn 〇 2 is used as the clarifying agent, the quality of the bubble can be improved in consideration of environmental requirements. Sn〇2 is a component which exerts a good clarifying action in a high temperature range and is a component which lowers high temperature viscosity. The content of Sn02 is preferably 〇%~1〇/〇, 〇1%~1%, 〇1%~ 〇.5%, and particularly preferably 0.05% 〇.3%. When the content of Sn 〇 2 is too large, the devitrified crystal of Sn 〇 2 is easily precipitated in the glass. Further, when the content of Sn 〇 2 is less than 0.001%, it is difficult to enjoy the above effects. 12 201247585 Revision date: August 1st, August 6th is the 1st (H114412 Chinese manual without a slash correction.) 3, Sb203 / 対贱 as a clarification function play side, this implementation is open, the towel is not completely excluded The content of the components is preferably limited to less than 01%, and more preferably less than 0.05%, from the viewpoint of the environment, and halogens such as F and C1 have a low melting temperature. Further, the effect of the action of the clarifying agent is promoted. Therefore, if the element is added, the cost of the smelting and melting can be reduced, and the life of the glass-making furnace can be extended. However, if the content of the right F and C1 is too high, the formation may sometimes occur. In the liquid crystal lens, the wiring pattern of the metal on the substrate is corroded. Therefore, the content of F and C1 is preferably 1% or less and 5% or less, and less than 〇% or 5% or less. It is preferably 0.01% or less. Ce02, S03, C, a metal powder such as A1, Si, or the like may be added as a clarifying agent in a range that does not impair the glass characteristics. ZnO is a component which improves the meltability. However, if the content is too large, the glass is easily devitrified, and the strain point is liable to lower, and the density is also likely to increase. Therefore, the content of ZnO is preferably 〇% to 1%, 〇% to 5%, 〇〇/. ~, 0%~0.5%, 〇%~〇.3%, especially preferably 〇%~〇 1%. 〇Zr〇2 is a component that improves weather resistance, but if it is too much, it is resistant to loss, and the tolerance is reduced. 'In addition, the dielectric dielectric dielectric is ideetrie tangent. 谷易升β, so the content of 'Zr〇2 is better. It is 5%/〇~5%, 〇0/〇~3%, 〇%~0.5%, and particularly preferably 0.01%~0.2%. Further, in the case where the improvement in devitrification resistance is prioritized, it is preferred to limit the content of Zr 〇 2 to 〇 〇 1% or less. TiCb is a component that lowers the viscosity of high temperature and improves the meltability, and is a component that suppresses the slarting effect, but if it is in the glass composition, 13 201247585 is the first chattering _ makeup makeup sun: 丨 _ August Adding Ti02 ' more on the 16th will color, and the transmittance will be easily reduced. Therefore, the content of Ti〇2 is preferably 0% to 5%, 0% to 3%, 〇% to 1%, and particularly preferably 0% to 0.02%. * P2〇5疋 is a component that is resistant to devitrification. However, when P205 is added to the glass composition, it is easy to cause phase separation in the glass, and the water resistance is remarkably lowered. Therefore, the inclusion of the record is preferably Q%~5%, 0%~1% ’, especially 〇%~0 5〇/〇. Y2〇3, Nb2〇5 'La2〇3 has an effect of increasing the strain point, but if the content of these components is too large, the density tends to increase. Therefore, the contents of Y2〇3, Nb2〇5, and 〇La203 are each preferably 〇% to 3%, 〇% to 1%, and particularly preferably 〇% to 0.1%. When the content of the alkali metal oxide is increased, the coefficient of thermal expansion becomes high, or the strain point is lowered, or the characteristics of the thin film transistor (thin fiim transist 〇r, τρτ) are deteriorated. Therefore, the content of the alkali metal oxide is preferably 〇% to 6%, 〇% to 3%, 〇% to 1%, and particularly preferably 〇% to 〇1%. Further preferably, the metal oxide is not substantially contained. From the viewpoint of the environment, it is preferable that it does not substantially contain this 0, then 2〇3. 〇Although the preferable range of each component can be appropriately selected, a preferable glass composition range can be constructed, from the viewpoints of resistance to devitrification, density, specific Young's modulus, high temperature viscosity, and environmental requirements. , especially for the following glass composition range. (1) Mg containing 50% to 75% of SiO 2 , 7% to 15% of A12 〇 3, 0 〇 / o 〜 11% of B2 〇 3, 〇 0 / 〇 ~ 1 〇 % 〇 and 〇%~12〇/〇 of CaO 'Mo Erbi Mg0/Ca0 is 〇~丨5, Moer than (Sr〇+Ba〇) 14 201247585 -T^-r\J / pil l is No. 101114412 Chinese manual without painting! Gland correction date of revision: August 16th, 2011 / (MgO + CaO) is 0~0.5, Moh ratio is 0~0.8 for Mg0/Al203, Moh ratio is 0~1.5 for Ca0/Al203, Mobi is B203/ SiO2 is 0 to 0.2, and does not substantially contain an alkali metal oxide, As203, Sb2〇3, PbO, and Bi2〇3 0 (2) in terms of mol%, containing 55% to 73% of SiO 2 , 9% to 15 % Al2〇3, 0%~8% B203, 1.5%~10% MgO and 3%~10.5% CaO, molar ratio MgO/CaO is 0.2~1.4, Moer than ❹(SrO+BaO) /(MgO+CaO) is 0.1 to 0.5, the molar ratio of MgO/Al203 is 0.2 to 0.8', the molar ratio of Ca0/Al203 is 0.2 to 1, and the molar ratio of B203/SiO 2 is 0 to 0.2, and substantially no alkali metal is contained. Oxide, As203, Sb203, PbO and Bi203. (3) In terms of mole %, containing 60% to 73% of SiO2, 10% to 15% of Al2〇3, 0%~5% of B2〇3, 2%~10% of MgO and 3%~8 % CaO, molar ratio MgO/CaO is 0.6~1.4, molar ratio (SrO+BaO) / (MgO+CaO) is 0.15~0.45, and molar ratio Mg0/Al203 is 0.2~0.8 ' Moer ratio CaO/ Al203 is 0.2 to 0.6, and molar ratio B203/SiO2 is 0 〇 to 0.2, and substantially does not contain an alkali metal oxide, As203, Sb203, PbO, and Bi2〇3. (4) In terms of mole %, containing 60% to 73% of SiO 2 , 11% to 15% of Al 2 〇 3, 0% to 3% of B 2 〇 3, 3% to 9% of MgO and 3% to 8 The CaO' molar ratio of MgO/CaO is 0.8 to 1.4, the molar ratio (SrO+BaO) / (MgO+CaO) is 〇·ΐ5 to 0.4, and the molar ratio of Mg0/Al203 is 0.3 to 0.75 'Mo Erbi Ca0/Al203 is 0.3~0.6, and the molar ratio B203/SiO2 is 0~0.15, which does not contain alkali metal oxide, As203, Sb203, PbO 15 201247585 -TZ-r-TV/ / jJlX X is 101111412 The specification has no U-line correction. The revision period is: August 16th, 2011 and Bi2〇3. (5) In terms of mole %, containing 60% to 72% of SiO 2 , 12% to 15% of Al 2 〇 3, 0% to 3% of B 2 〇 3, 6% to 9% of MgO and 5% to 8 % CaO, molar ratio MgO/CaO is 1 to 1.4, molar ratio (SrO+BaO) / (MgO+CaO) is 0.15 to 0.3, molar ratio Mg0/Al203 is 0.5 to 0.75, and molar ratio Ca0/ Al203 is 0.4 to 0.6, and molar ratio B203/SiO2 is 0 to 0.1, and substantially does not contain an alkali metal oxide, As203, Sb203, or PbO. (6) In terms of mol%, containing 80% to 72% of SiO 2 , 12% to 15% ❹ of 8 12 〇 3, 0% to 3% of 32 〇 3, 7.5% to 9% of 1 〇 and 5% to 8% of CaO, the molar ratio of MgO/CaO is 1 to 1.4, the molar ratio (SrO+BaO) / (Mg〇+Ca〇) is 0.15 to 0.3, and the molar ratio of Mg0/Al203 is 〇·5. ~ 0.7 ' Moer ratio Ca0 / Al203 is 0.4 ~ 0_6, Mo Er ratio B203 / Si 〇 2 is 〇 ~ 0.1, substantially does not contain metal oxide, As2 〇 3, Sb2 〇 3, PbO and. In the glass substrate for a liquid crystal lens of the present invention, the thickness of the glass substrate is preferably 400 μm or less, 300 μη or less, or 200 μmη or less, and more preferably 1 μm or less. The smaller the plate thickness, the wider the viewing angle that can be stereoscopically viewed in the 3D display' and the lighter the glass substrate, so that the device can be made lighter. Further, the flexibility of the glass substrate is improved, so that the device can be easily provided with a handleability, and a liquid crystal lens can be produced in a roll-to-roll process. In the glass substrate for liquid crystal lens of the present embodiment, the lower limit of each of the length and the wide production size is preferably 500 mm or more and 7 mm or more, and more preferably 1000 mm or more. In addition, the upper limit of the length and width dimensions is 16 201247585 ~r^~TW / piiT is the 101111412 Chinese manual without a slash correction. The revised period: August 16th, the value is preferably 3000 mm or less. Especially preferred is 2500 mm or less. The larger the length and the width, the larger the 3D display can be produced. However, if the length and the width are too large, the amount of deflection becomes too large, and the glass substrate is easily broken. In the glass substrate for liquid crystal lens of the present embodiment, the surface roughness S is preferably 5 angstroms (human) or less, 3 angstroms (A) or less, 10 angstroms (A) or less, 5 angstroms (A) or less, or 3 angstroms. (A) The following 'extra is 2 angstroms (person) or less. When the surface roughness Ra is large, the quality of a film such as indium tin oxide (ITO) formed on a glass substrate is lowered, which causes a display failure of the device. Here, "surface roughness Ra" means a value measured by a method according to jiSB0601:2001. In the glass substrate for liquid crystal lens of the present embodiment, the density is preferably 2.7 g/cm 3 or less, 2.68 g/cm 3 or less, 2.66 g/cm 3 or less, 2.63 g/cm 3 or less, 2.61 g/cm 3 or less, or 2.59 g/cm 3 or less. It is 2.57 g/cm3 or less, and particularly preferably 2.55 g/cm3 or less. If the density is large, it is difficult to reduce the weight of the glass. In the glass substrate for liquid crystal lens of the present embodiment, the coefficient of thermal expansion is preferably 3 〇 x l 〇 -7 / ° C to 5 〇 x 1 (T7 / ° C, 32 > < 1 〇. 7 / 〇 〇 5 〇 X1(T7/°c, 35xl0-7/〇C^50xl0-7/〇C'37xl0-7/〇C-50xl0-7/〇C'38xl0-7/〇C~49xl〇-7/〇C, More preferably, it is 38xl〇-7rc~46xl〇-Vc. If the coefficient of thermal expansion is outside the above range, warpage is likely to occur on the glass substrate due to a difference in thermal expansion coefficient of the film such as a transparent conductive film or a pattern. In the glass substrate for liquid crystal lens of the present embodiment, the strain point is preferably 650 〇C or more and 67 (TC or more, 69 (TC or more, 70 (rc or more, 715 t or more). 17 201247585 -rx- «ν / For the 101111412 Chinese manual, no picture is dirty. This revision date: 1 8 1 August 16th, above 720°C 兀仏 is 730 C or more. If the strain point becomes higher, then When the conductive __ scale is formed on the glass substrate, the change in the glass size is also reduced. Therefore, the pattern can be accurately formed on both surfaces of the glass substrate. In the glass substrate, the liquidus temperature is preferably 1320 C or less, 1290 ° C or less, and 1250. 〇 or less, 122 (TC or less, 119 (TC or less, particularly preferably ^4) t or less. Thus, devitrification crystals are hard to be generated in the glass. By the overflow down-draw method or the like, it is easy to form a glass substrate having a thickness of 4 Å or less. As a result, the surface quality of the glass substrate can be improved, and the production cost of the glass substrate (IV) can be reduced. Indicator of Sex. The lower the liquidus temperature, the more excellent the devitrification resistance. 本實施形態的液晶透鏡用玻璃基板中,液相黏度較佳 為 1040dpa · S 以上、1〇4.3dPa · s 以上、1〇4_5dpa · s 以上 1047(1Ρ35·5 S 以上、l〇5.〇dPa · s 以上、1〇5.3dpa · s 以上尤 佳為105’5dPa· s以上。這樣,成形時在玻璃中不易產生失 透結晶,因而藉由溢流下拉法等,容易成形板厚働叫 以下的玻璃基板。結果,可提高液晶透鏡用玻璃基板的表 面品質,且使液晶透鏡用玻璃基板的製造成本低廉化。另 外,液相減為成形性的純,液她度越高,成形性越 優異。In the glass substrate for liquid crystal lens of the present embodiment, the liquidus viscosity is preferably 1040 dPa·s or more, 1〇4.3 dPa·s or more, 1〇4_5 dPa·s or more and 1047 (1Ρ35·5 S or more, l〇5.〇dPa). · s or more, 1〇5.3dpa · s or more is preferably 105'5dPa·s or more. In this way, devitrified crystals are less likely to be formed in the glass during molding, so the thickness of the sheet can be easily formed by the overflow down-draw method or the like. As a result, the surface quality of the glass substrate for liquid crystal lenses can be improved, and the manufacturing cost of the glass substrate for liquid crystal lenses can be reduced, and the liquid phase can be reduced to the purity of the moldability, and the liquidity is higher, and the formability is higher. Excellent. 一般而§,高溫熔融會使玻璃熔融爐的負擔增加。玻 璃熔融爐中所使用的氧化鋁或氧化鍅等的耐火物,越為高 溫,則越激烈地侵蝕熔融玻璃。若耐火物的侵蝕量增多, 則玻璃熔融爐的生命週期(life cycle)變短,因而玻璃基 18 201247585 I l \J t 爲第101114412號中文說明書無劃線修正本 修正日期:丨〇1年8月丨6日 板的製造成本高漲。而且,在高溫熔融的情況下,因玻璃 熔融爐的構成構件中必須使用高耐熱性的構成構件,故玻 璃炼融爐的構成構件比例增高,結果,炼融成本高漲。進 而,高溫熔融必須將玻璃熔融爐的内部保持為高溫,因而 與低溫溶融相比,運轉成本高漲:。因此,l〇25dPa · s時的 溫度較佳為1650°C以下、1640°C以下、1620。(:以下、1600°C 以下,尤佳為1580°C以下。若l〇25dPa · s時的溫度變得過 0 高’則玻璃基板的製造成本高漲,此外氣泡品質容易降低。 本貫施形態的液晶透鏡用玻璃基板中,比揚氏模量較 佳為 29 GPa/ (g/cm3)以上、30 GPa/ (g/cm3)以上、3〇 5 GPa/( g/cm3)以上、31 GPa/( g/cm3)以上,尤佳為 3 ! 5 Gpa/ (g/cm3)以上。比楊氏模量越高,則大型、薄壁的玻璃基 板越不易因自身重量而挽曲。 作為3D顯示器的構成,可考慮LCD與液晶透鏡、 OLED與液晶透鏡的組合等。該情況下,較佳為採用在製 作各個裝置後將彼此貼合的製程。這樣,能夠事先將各個 G 裝置的不良品去除’從而可提高3D顯示器的製造良率。 另一方面,這樣,因附加了 LCD、OLED的對向基板的厚 度’故有3D的視野角變窄之虞。該情況下,較佳為在對 本實施形態的液晶透鏡用玻璃基板進行透鏡裝置的圖案化 後’在該玻璃基板的背面形成CF等之後,形成為LCD或 OLED的對向基板。若為此種構造’則晝素_透鏡間的距離 實質上成為液晶透鏡用玻璃基板的厚度,從而可提高3D 顯示器的視野角。 201247585 爲第101114412號中文說明書無劃線修正本修正曰期:1〇1年8月16日 本實施形態的液晶透鏡用玻璃基板可藉由如下而製 作.將調配成規定的玻璃組成的玻璃配料投入至連續式玻 璃熔融爐後,對該玻璃配料進行加熱熔融後,將所獲得的 溶融玻璃澄清’之後供給至成形裝置而成形為薄板形狀等。 本實施形態的液晶透鏡用玻璃基板較佳為利用溢流下 拉法而成形。這樣,可製作未研磨而表面品質便良好的玻 璃基板。其理由在於,在溢流下拉法的情況下,玻璃基板 的應成為表面的面不與槽狀耐火物接觸,而以自由表面的 狀態來成形。槽狀構造物的構造或材質只要可實現所期望 〇 的尺寸或表面品質即可,不作特別限定。另外,在朝向下 方進行延伸成形時,對玻璃施加力的方法只要可實現所期 望的尺寸或表面品質,則不作特別限定。例如,可採用如 下方法,即,使具有充分大的寬度的耐熱性捲在與玻璃接 觸的狀態下旋轉而延伸的方法,或者使多對耐熱性捲僅與 玻璃的見度方向端面附近接觸而延伸的方法。另外,液相 溫度越低,或者液相黏度越高,則藉由溢流下拉法,越容 易成形板厚400 μηι以下的玻璃基板。 除溢流下拉法以外,亦可採用其他成形方法。例如, 可採用流孔下引(sl〇t down draw )法、再拉法、浮動法等。 本發明的實施形態的玻璃基板的特徵在於:板厚為 〇从m以下’且比揚氏模量為29 GPa/ ( g/cm3)以上,^ 佳為用於液晶透鏡中。本實施形態的玻璃基板的技術性特 徵/較佳的組成、較佳的特性、效果)與已說明的本實施 形態的液晶透鏡用玻璃基板的技術性特徵相同,因而省略 20 201247585 AW I / ▲丄 1 爲第101114412號中文說明書無劃線修正本修正日期:1〇i年8月16日 詳細說明。 [實例1] 以下,對本發明的實例進行說明。另外,以下的實例 僅為例示。本發明不受以下的實例任何限定。 表1〜表5表示本發明的實例(試樣No. 1〜試樣 No.35)。 Ο [表 1] No.l No.2 No.3 Νο.4 Νο.5 Νο·6 Νο.7 玻璃組成 (mol% ) Si02 71.5 72.4 70·9 71.6 71.3 70.4 71.1 Al2〇3 10.6 10.7 10.5 10.6 10.5 10.7 10.0 B203 - - - - - 2.0 2.0 MgO - - 3.3 3.4 - - CaO 13.8 11.5 11.3 9.0 13.7 11.5 11.5 SrO - 1.3 - 1.3 1.3 1.3 1.3 BaO 4.0 4.0 3.9 4.0 3.1 4.0 4.0 Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0.30 0.38 0 0 0 (SrO+BaO ) / (MgO+CaO) 0.29 0.46 0.27 0.43 0.32 0.47 0.47 Mg0/Al203 0 0 0.32 0.32 0 0 0 CaO/Al2〇3 1.30 1.07 1.08 0.85 1.30 1.08 1.15 B2O3/S1O2 0 0 0 0 0 0.03 0.03 p「g/cm勹 2.64 2.65 2.64 2.64 2.63 2.64 2.63 ar><10_7〇Cl 45 45 44 43 46 45 45 PspCl 750 754 738 741 749 716 712 TapCl 804 809 793 798 802 772 768 TspCl 1027 1039 1020 1032 1023 1002 1000 104dPa-s[°C] 1348 1367 1340 1363 1335 1327 1329 103dPa-s[°C] 1519 1541 1508 1533 1503 1498 1503 10A5dPa-s[°C] 1628 1653 1614 1640 1610 1607 1615 TLPC1 1212 1215 1217 1221 1215 1170 1187 log10ri[dPa· s] 5.2 5.3 5.1 5.2 5.0 5.4 5.2 楊氏模量[GPa] 未測定 82 未測定 80 81 79 78 比楊氏模量 [GPa/ (g/cm3)] 未測定 31.0 未測定 30.4 30.9 30.0 29.8 剛性率[GPa] 未測定 34 未測定 33 34 33 33 表面粗链度Ra[nm] 未測定 未測定 未測定 未測定 未測定 0.2 未測定 21 201247585 ft ^ ΛΛ,-Μ. 修正日期:1〇1年8月16日 爲第101114412號中文說明書無劃線修正本 [表2] N0.8 No.9 No. 10 No.ll No.12 No.13 No. 14 玻璃組成 (mol%) Si02 69.8 72.0 70.6 71.0 70.9 71.4 70.5 ai2o3 11.1 10/7 10.8 10.9 10.8 10.9 11.1 B2O3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 CaO 11.6 10.4 10.4 9.2 10.4 9.2 10.9 SrO 1.3 1.2 2.0 2.7 1.3 1.4 1.3 BaO 4.1 3.6 4.1 4.1 4.5 5.0 4.1 Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0 0 0 0 (SrO+BaO) / (MgO+CaO) 0.47 0.46 0.58 0.74 0.56 0.69 0.49 MgO/Al203 0 0 0 0 0 0 0 Ca0/Al203 1.04 0.97 0.96 0.85 0.96 0.85 0.99 B2O3/S1O2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 p[g/cmJ] 2.64 2.60 2.64 2.65 2.64 2.65 2.63 a[xl〇-7°Cl 45 43 44 44 44 44 44 PspCl 718 726 716 719 717 720 720 TapCl 774 784 773 777 775 779 ΊΊΊ TsfCl 1003 1026 1008 1016 1011 1020 1011 104dPa*s[°C] 1326 1362 1338 1347 1345 1360 1342 103dPa-s[°C] 1496 1538 1512 1522 1520 1536 1515 102-5dPa.s[t:] 1604 1648 1621 1633 1628 1648 1623 TLr°Cl 1186 1229 1170 1179 1158 1159 1190 log10ri[dPa.s] 5.2 5.1 5.5 5.5 5.6 5.8 5.3 22 201247585 Λ 爲第101114412號中文說明書無畫ϊ線修正本 修正日期:1〇1年8月16日 [表3]In general, §, high temperature melting increases the burden on the glass melting furnace. The higher the temperature of the refractory such as alumina or cerium oxide used in the glass melting furnace, the more aggressive the molten glass is. If the amount of erosion of the refractory material increases, the life cycle of the glass melting furnace becomes shorter, so the glass base 18 201247585 I l \J t is the 101111412 Chinese manual without a slash correction. The correction date: 丨〇 1 year The manufacturing cost of the board in August 6th was high. Further, in the case of melting at a high temperature, since a constituent member having high heat resistance is required in the constituent members of the glass melting furnace, the proportion of constituent members of the glass refining furnace is increased, and as a result, the cost of refining is increased. Further, the high-temperature melting must maintain the inside of the glass melting furnace at a high temperature, so that the running cost is high as compared with the low-temperature melting: Therefore, the temperature at 10 Pa 25 dPa · s is preferably 1650 ° C or lower, 1640 ° C or lower, and 1620. (: hereinafter, 1600 ° C or lower, particularly preferably 1580 ° C or lower. If the temperature at 10 Pa 25 dPa · s becomes 0 high, the manufacturing cost of the glass substrate is high, and the bubble quality is liable to lower. In the glass substrate for liquid crystal lens, the Young's modulus is preferably 29 GPa/(g/cm3) or more, 30 GPa/(g/cm3) or more, 3〇5 GPa/(g/cm3) or more, and 31 GPa. /( g/cm3) or more, especially preferably 3! 5 Gpa/(g/cm3) or more. The higher the Young's modulus, the more difficult it is to bend the large-sized, thin-walled glass substrate due to its own weight. In the configuration of the display, a combination of an LCD, a liquid crystal lens, an OLED, and a liquid crystal lens can be considered. In this case, it is preferable to use a process in which each device is bonded to each other, so that defective products of the respective G devices can be used in advance. In addition, the manufacturing yield of the 3D display can be improved. On the other hand, since the thickness of the counter substrate of the LCD or OLED is added, the viewing angle of 3D is narrowed. In this case, it is preferable to After the lens device is patterned on the glass substrate for liquid crystal lens of the present embodiment, After the CF or the like is formed on the back surface of the glass substrate, the substrate is formed as an opposite substrate of the LCD or the OLED. If the structure is such a structure, the distance between the pixels and the lens becomes substantially the thickness of the glass substrate for the liquid crystal lens, thereby improving the 3D display. 201247585 Japanese No. 101114412 No slash correction This revision period: January, 1st, August 16th The glass substrate for liquid crystal lens of the Japanese embodiment can be produced as follows. It is formulated into a predetermined glass composition. After the glass batch is charged into the continuous glass melting furnace, the glass batch is heated and melted, and the obtained molten glass is clarified, and then supplied to a molding apparatus to be formed into a thin plate shape or the like. The glass substrate for a liquid crystal lens of the present embodiment is more It is preferably formed by an overflow down-draw method. Thus, a glass substrate which is not polished and has a good surface quality can be produced. The reason is that in the case of the overflow down-draw method, the surface of the glass substrate which should be the surface is not grooved. The refractory is in contact and is formed in a state of a free surface. The structure or material of the groove-like structure can achieve the desired enthalpy In addition, the method of applying a force to the glass when extending to the lower side is not particularly limited as long as the desired size or surface quality can be achieved. For example, the following method can be employed. In other words, a method in which a heat-resistant roll having a sufficiently large width is rotated and extended in contact with the glass, or a method in which a plurality of pairs of heat-resistant rolls are brought into contact with only the vicinity of the end surface of the glass in the visibility direction, and the liquid is extended. The lower the phase temperature or the higher the viscosity of the liquid phase, the easier it is to form a glass substrate having a thickness of 400 μm or less by the overflow down-draw method. In addition to the overflow down-draw method, other forming methods can also be used. For example, a sllow down draw method, a re-drawing method, a floating method, or the like can be employed. The glass substrate according to the embodiment of the present invention is characterized in that the thickness is m from m or less and the Young's modulus is 29 GPa/(g/cm3) or more, which is preferably used in a liquid crystal lens. The technical characteristics, preferable composition, preferable characteristics, and effects of the glass substrate of the present embodiment are the same as those of the glass substrate for a liquid crystal lens of the present embodiment, and thus 20 201247585 AW I / ▲ is omitted.丄1 is the Chinese manual of No. 101114412. There is no slash correction. The date of this revision: 1〇i, August 16th. [Example 1] Hereinafter, an example of the present invention will be described. In addition, the following examples are merely illustrative. The invention is not limited by the following examples. Tables 1 to 5 show examples of the present invention (Sample No. 1 to Sample No. 35). Ο [Table 1] No.l No.2 No.3 Νο.4 Νο.5 Νο·6 Νο.7 Glass composition (mol%) Si02 71.5 72.4 70·9 71.6 71.3 70.4 71.1 Al2〇3 10.6 10.7 10.5 10.6 10.5 10.7 10.0 B203 - - - - - 2.0 2.0 MgO - - 3.3 3.4 - - CaO 13.8 11.5 11.3 9.0 13.7 11.5 11.5 SrO - 1.3 - 1.3 1.3 1.3 1.3 BaO 4.0 4.0 3.9 4.0 3.1 4.0 4.0 Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO /CaO 0 0 0.30 0.38 0 0 0 (SrO+BaO ) / (MgO+CaO) 0.29 0.46 0.27 0.43 0.32 0.47 0.47 Mg0/Al203 0 0 0.32 0.32 0 0 0 CaO/Al2〇3 1.30 1.07 1.08 0.85 1.30 1.08 1.15 B2O3 /S1O2 0 0 0 0 0 0.03 0.03 p"g/cm勹2.64 2.65 2.64 2.64 2.63 2.64 2.63 ar><10_7〇Cl 45 45 44 43 46 45 45 PspCl 750 754 738 741 749 716 712 TapCl 804 809 793 798 802 772 768 TspCl 1027 1039 1020 1032 1023 1002 1000 104dPa-s[°C] 1348 1367 1340 1363 1335 1327 1329 103dPa-s[°C] 1519 1541 1508 1533 1503 1498 1503 10A5dPa-s[°C] 1628 1653 1614 1640 1610 1607 1615 TLPC1 1212 1215 1217 1221 1215 1170 1187 log10ri[dPa· s] 5.2 5.3 5.1 5.2 5.0 5.4 5.2 Young's modulus [GPa ] Not measured 82 Not measured 80 81 79 78 Specific Young's modulus [GPa/(g/cm3)] Not determined 31.0 Not determined 30.4 30.9 30.0 29.8 Rigidity rate [GPa] Not determined 34 Not measured 33 34 33 33 Surface thick chain Degree Ra [nm] Not determined Not measured Not measured Not measured Not measured 0.2 Not measured 21 201247585 ft ^ ΛΛ, -Μ. Corrected date: 1 August 1st, August 16th is No. 101114412 Chinese manual without scribe correction [ Table 2] N0.8 No.9 No. 10 No.11 No.12 No.13 No.14 Glass composition (mol%) Si02 69.8 72.0 70.6 71.0 70.9 71.4 70.5 ai2o3 11.1 10/7 10.8 10.9 10.8 10.9 11.1 B2O3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 CaO 11.6 10.4 10.4 9.2 10.4 9.2 10.9 SrO 1.3 1.2 2.0 2.7 1.3 1.4 1.3 BaO 4.1 3.6 4.1 4.1 4.5 5.0 4.1 Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MgO/CaO 0 0 0 0 0 0 0 (SrO +BaO) / (MgO+CaO) 0.47 0.46 0.58 0.74 0.56 0.69 0.49 MgO/Al203 0 0 0 0 0 0 0 Ca0/Al203 1.04 0.97 0.96 0.85 0.96 0.85 0.99 B2O3/S1O2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 p[g/ cmJ] 2.64 2.60 2.64 2.65 2.64 2.65 2.63 a[xl〇-7°Cl 45 43 44 44 44 44 44 PspCl 718 726 716 719 717 720 720 TapCl 774 784 773 777 775 779 ΊΊΊ TsfCl 1003 1026 1008 1016 1011 1020 1011 104dPa*s[°C] 1326 1362 1338 1347 1345 1360 1342 103dPa-s[°C] 1496 1538 1512 1522 1520 1536 1515 102-5dPa. s[t:] 1604 1648 1621 1633 1628 1648 1623 TLr°Cl 1186 1229 1170 1179 1158 1159 1190 log10ri[dPa.s] 5.2 5.1 5.5 5.5 5.6 5.8 5.3 22 201247585 Λ No. 101114412 Chinese manual without drawing line correction Amendment date: August 16, 2011 [Table 3] No.15 No. 16 Νο.17 No. 18 No. 19 No.20 No.21 玻璃組成 (mol%) Si02 70.2 70·6 71.0 71.1 71.2 71.0 70.6 A1203 11.1 11.5 10,8 10.9 10.8 10.8 10.8 B2O3 2.0 2.0 1.4 1.4 1.4 1.4 1.4 MgO - - - - - - 0.9 CaO 11.3 10.4 10.4 9.8 10.4 10.4 10.4 SrO 1.3 1.3 1.3 1.7 1.3 1.3 1.0 BaO 4.0 4.1 4.5 4.5 4.5 4.5 4.5 ZnO - - 0.5 0.5 - 0.3 p2〇5 - - - - 0.3 0.2 0.3 Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MR〇/CaO 0 0 0 0 0 0 0.08 (SrO+BaO ) / (MgO+CaO) 0.46 0.52 0.56 0.63 0.56 0.56 0.49 MgO/Al203 0 0 0 0 0 0 0.08 CaO/Al203 1.02 0.9 0.96 0.9 0.96 0.96 0.96 B203/Si02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 pfg/cm 勹 2.63 2.63 2.66 2.66 2.65 2.65 2.64 arxlO'Vri 45 43 45 44 44 45 44 PsPCl 720 728 721 722 728 724 723 TapCl 111 785 778 780 786 782 780 TsfCl 1009 1024 1013 1017 1022 1018 1015 104dPa-s[°C] 1338 1353 1342 1350 1355 1352 1344 10JdPa-s[°C] 1509 1524 1516 1524 1529 1526 1518 102idPa-s[°C] 1617 1632 1630 1636 1640 1636 1633 TL[°C1 1196 1215 1184 1183 1175 1177 1177 log10il[dPa.s] 5.2 5.2 5.4 5.4 5.6 5.5 5.5 楊氏模量[GPa] 未測定 未測定 未測定 未測定 79 未測定 79 比楊氏模量 [GPa/ (g/cm3)] 未測定 未測定 未測定 未測定 29.8 未測定 30.1 剛性率[GPa] 未測定 未測定 未測定 未測定 33 未測定 30 23 201247585 修正日期:1〇1年8月16日 爲第101114412號中文說明書無劃線修正本 [表4] No.22 Νο.23 Νο.24 Νο.25 Νο.26 Νο.27 Νο.28 玻璃組成 (mol%) Si〇2 70·7 70.3 69.9 70.2 70.1 69.6 69.5 ai2o3 10.9 11.2 11.6 12.4 11.2 11.1 11.1 B2〇3 1.4 1.4 1.4 4.1 1.4 1.4 1.4 MgO - - - 4.1 1/7 1.7 1.7 CaO 10.4 10.5 10.5 6.0 9.2 10.4 10.3 SrO 1.4 1.4 1.4 1.3 1.3 0.7 1.3 BaO 4.6 4.6 4.6 1.9 4.5 4.5 4.1 p2〇5 0.5 0.5 0.5 - 0.5 0.5 0.5 Sn〇2 0.1 0.1 0.1 0.1 0,1 0.1 0.1 MgO/CaO 0 0 0 0.68 0.19 0.Π 0.17 (SrO+BaO ) / (MgO+CaO) 0.57 0.56 0.56 0.32 0.54 0.43 0.45 Mg0/Al203 0 0 0 0.33 0.15 0.15 0.15 Ca0/Al203 0.96 0.93 0.90 0.48 0.82 0.93 0.93 B2O3/S1O2 0.02 0.02 0.02 0.06 0.02 0.02 0.02 p[g/cmJ] 2.65 2.65 2.65 未測定 未測定 未測定 未測定 a[xlO'7/〇C] 45 45 44 未測定 43 44 44 Ps[°C] 728 731 733 未測定 722 720 720 TapC] 786 788 790 未測定 780 777 777 Ts[°C] 1022 1023 1024 未測定 1017 1011 1009 104dPa-s[°C] 1352 1352 1350 未測定 1344 1335 1330 103dPa-s[°C] 1525 1523 1519 未測定 1516 1504 1498 102idPa-s[°C] 1637 1633 1627 未測定 1624 1611 1605 TL[°C] 1176 1182 1190 未測定 1179 1182 1191 log10ri[dPa-s] 5.6 5.5 5.4 未測定 5.5 5.4 5.2 楊氏模量[GPa] 未測定 79 未測定 未測定 79 未測定 未測定 比楊氏模量 [GPa/ (g/cm3)] 未測定 29.7 未測定 未測定 未測定 未測定 未測定 剛性率[GPa] 未測定 33 未測定 未測定 33 未測定 未測定 24 201247585 ·“ · vr t j^rxxT 修正曰期:101年8月16日 爲第l〇m4412號中文說明書無劃線修正本 [表5] No.29 No.30 No.31 _No.32 No.33 No.34 Ν〇35~Ί Si02 68.7 70.0 70.5 70,4 67.2 67.3 A】2〇3 11.2 11.2 11,1 11.0 12.3 12.2 f 12?~ B2O3 1.4 1.4 1.4 1.4 2.8 2,8 2~8~~ MgO 5.4 0.9 2.6 3.4 8.2 7.9 7.9— ~~62' ------ 0.6 CaO 8.1 10.4 8.6 8.5 6.3 6.2 — SrO 1.1 1.0 0.7 0.3 0.6 1.3 BaO 3.5 4.5 4.5 1 4.0 22~1 2.2叫 — -2 ft ZnO - - - 0.4 P2O5 0.5 0.5 0.5 0.5 0.3 - — Sn02 0.1 0.1 0.1 0.1 0.1 0.1 (TP'' MgO/CaO 0.66 0.08 0.30 0.40 1.31 1.28 1.28 ----- 0.23 (SiO+BaO) / (MgO+CaO) 0.34 0.49 0.46 0.36 0.19 0.24 MgO/Al2〇3 0.48 0.08 0.23 0.31 0.67 0.65 0.65 ~〇5〇— CaO/Al2〇3 0.73 0.93 0.78 0.78 0.51 0.50 _ B2O3/S1O2 0.02 Γ 0.02 0.02 0.02 0.04 0.04 〇 04一 p[g/cm ] 未測定 未測定 未測定 未測定 2.56 2.57 2 57 a[xlO'7°C] 41 未測定 未測定 未測定 38 39 38 Psf C] 718 725 725 722 718 718 71〇 TafCl 774 782 784 780 774 774 ~~~774~~; 1 nnn Ts[ Cl 1006 1016 1024 1022 卜998 卜998 10 dPa*s[C] 1321 1341 1358 1350 1301 1298 1303 10 dPa.s[C] 1484 1509 Γ1530 1520 1458 1454 1460 10^dPa*s[°C] TLf°Cl 1589 1190 1618 ιΐδ9 1637 1628 Ϊ555 1555 156P~ logu^dPa.s] 5.2 「5.4 11〇 / 5.5 1206 5.2 1219 4.7 1181 5.1 1182 5 1 揚氏摸量[GPd] 未測定 80 80 80 83 83 84 比 '氏·IE [GPa/ (g/cm3)] 未測定 未測定 未測定 未測定 32.5 32.5 32.5 剛性率[GPa] 未測定 33 33 33 34 34 34 表面粗糖度Ra[nm] 未測定 未測定 未測定 未測定 未測定 0.2 未測定 以如下般製作試樣No.l〜試樣n〇.35。首先,將已調 配成表中的玻璃組成的玻璃配料加入至鉑掛禍中,以 1600°C熔融24小時後,流出於碳板上而成形為平形板狀。 其次,對於所獲得的各試樣,評估密度p、熱膨脹係數α、 應變點Ps、緩冷點Ta、軟化點Ts、i〇4dPa · s時的溫度、 103dPa· s時的溫度、102 5dPa· s時的溫度、液相溫度肛、 25 201247585 修正日期:1〇1年8月16日 爲第101114412號中文說明書無劃線修正本 液相黏度log1()r|TL、楊氏模量、比揚氏模量、剛性率。 欲度P是利用周知的阿基米德法測定所得的值。 熱膨脹係數α疋利用膨脹計測定所得的值,且是。 〜380°C的溫度範圍下的平均值。 應變點Ps、缓冷點Ta、軟化點Ts是基於ASTM 測定所得的值。 l〇40dPa · s時的溫度、103.〇dPa · s時的溫度、1〇2.5迚& • s時的溫度是利用鉑球提拉法測定所得的值。No.15 No. 16 Νο.17 No. 18 No. 19 No.20 No.21 Glass composition (mol%) Si02 70.2 70·6 71.0 71.1 71.2 71.0 70.6 A1203 11.1 11.5 10,8 10.9 10.8 10.8 10.8 B2O3 2.0 2.0 1.4 1.4 1.4 1.4 1.4 MgO - - - - - - 0.9 CaO 11.3 10.4 10.4 9.8 10.4 10.4 10.4 SrO 1.3 1.3 1.3 1.7 1.3 1.3 1.0 BaO 4.0 4.1 4.5 4.5 4.5 4.5 4.5 ZnO - - 0.5 0.5 - 0.3 p2〇5 - - - - 0.3 0.2 0.3 Sn02 0.1 0.1 0.1 0.1 0.1 0.1 0.1 MR〇/CaO 0 0 0 0 0 0 0.08 (SrO+BaO ) / (MgO+CaO) 0.46 0.52 0.56 0.63 0.56 0.56 0.49 MgO/Al203 0 0 0 0 0 0 0.08 CaO/Al203 1.02 0.9 0.96 0.9 0.96 0.96 0.96 B203/Si02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 pfg/cm 勹 2.63 2.63 2.66 2.66 2.65 2.65 2.64 arxlO'Vri 45 43 45 44 44 45 44 PsPCl 720 728 721 722 728 724 723 TapCl 111 785 778 780 786 782 780 TsfCl 1009 1024 1013 1017 1022 1018 1015 104dPa-s[°C] 1338 1353 1342 1350 1355 1352 1344 10JdPa-s[°C] 1509 1524 1516 1524 1529 1526 1518 102idPa-s[°C ] 1617 1632 1630 1636 1640 1636 1633 TL[°C1 1196 1215 1184 1183 1175 1177 1177 log10il[dPa .s] 5.2 5.2 5.4 5.4 5.6 5.5 5.5 Young's modulus [GPa] Not determined Not measured Not measured Not measured 79 Not measured 79 Specific Young's modulus [GPa/(g/cm3)] Not determined Not determined Not measured Measurement 29.8 Not measured 30.1 Rigidity rate [GPa] Not measured Not measured Not measured Not measured 33 Not measured 30 23 201247585 Amendment date: August 1, 2016, No. 101114412 Chinese specification No underline correction [Table 4] No.22 Νο.23 Νο.24 Νο.25 Νο.26 Νο.27 Νο.28 Glass composition (mol%) Si〇2 70·7 70.3 69.9 70.2 70.1 69.6 69.5 ai2o3 10.9 11.2 11.6 12.4 11.2 11.1 11.1 B2〇3 1.4 1.4 1.4 4.1 1.4 1.4 1.4 MgO - - - 4.1 1/7 1.7 1.7 CaO 10.4 10.5 10.5 6.0 9.2 10.4 10.3 SrO 1.4 1.4 1.4 1.3 1.3 0.7 1.3 BaO 4.6 4.6 4.6 1.9 4.5 4.5 4.1 p2〇5 0.5 0.5 0.5 - 0.5 0.5 0.5 Sn〇2 0.1 0.1 0.1 0.1 0,1 0.1 0.1 MgO/CaO 0 0 0 0.68 0.19 0.Π 0.17 (SrO+BaO ) / (MgO+CaO) 0.57 0.56 0.56 0.32 0.54 0.43 0.45 Mg0/Al203 0 0 0 0.33 0.15 0.15 0.15 Ca0/Al203 0.96 0.93 0.90 0.48 0.82 0.93 0.93 B2O3/S1O2 0.02 0.02 0.02 0.06 0.02 0.02 0.02 p[g/cmJ] 2.65 2.65 2.65 Not determined Not measured Not measured not measured a[xlO'7/〇C] 45 45 44 Not determined 43 44 44 Ps[°C] 728 731 733 Not measured 722 720 720 TapC] 786 788 790 Not determined 780 777 777 Ts[°C] 1022 1023 1024 Not determined 1017 1011 1009 104dPa-s[°C] 1352 1352 1350 Not determined 1344 1335 1330 103dPa-s[°C] 1525 1523 1519 Not determined 1516 1504 1498 102idPa-s[°C] 1637 1633 1627 Not determined 1624 1611 1605 TL[°C] 1176 1182 1190 Not determined 1179 1182 1191 log10ri[dPa-s] 5.6 5.5 5.4 Not determined 5.5 5.4 5.2 Young's modulus [GPa] Measurement 79 Not measured Not measured 79 Unmeasured unmeasured ratio Young's modulus [GPa/(g/cm3)] Not measured 29.7 Not measured Not measured Not measured Not measured Unmeasured unmeasured rigidity rate [GPa] Not measured 33 Not measured Not measured 33 Not measured and not measured 24 201247585 · " · vr tj^rxxT Correction period: August 16th, 2011 is the first instruction of the Chinese version of the 〇m4412 without scribe correction [Table 5] No.29 No.30 No.31 _No.32 No.33 No.34 Ν〇35~Ί Si02 68.7 70.0 70.5 70,4 67.2 67.3 A]2〇3 11.2 11.2 11,1 11.0 12.3 12.2 f 12?~ B2O3 1.4 1.4 1.4 1.4 2.8 2,8 2~8~~ MgO 5.4 0.9 2.6 3.4 8.2 7.9 7.9 — ~~62' ------ 0.6 CaO 8.1 10.4 8.6 8.5 6.3 6.2 — SrO 1.1 1.0 0.7 0.3 0.6 1.3 BaO 3.5 4.5 4.5 1 4.0 22~1 2.2 - 2 ft ZnO - - - 0.4 P2O5 0.5 0.5 0.5 0.5 0.3 - — Sn02 0.1 0.1 0.1 0.1 0.1 0.1 (TP'' MgO/CaO 0.66 0.08 0.30 0.40 1.31 1.28 1.28 ----- 0.23 (SiO+BaO) / (MgO+CaO) 0.34 0.49 0.46 0.36 0.19 0.24 MgO/Al2〇3 0.48 0.08 0.23 0.31 0.67 0.65 0.65 ~〇5〇—CaO/Al2〇3 0.73 0.93 0.78 0.78 0.51 0.50 _ B2O3/S1O2 0.02 Γ 0.02 0.02 0.02 0.04 0.04 〇04-p[g/cm ] Not determined Not determined Not determined Not determined 2.56 2.57 2 57 a[xlO'7°C] 41 Not determined not measured Determination 38 39 38 Psf C] 718 725 725 722 718 718 71〇TafCl 774 782 784 780 774 774 ~~~774~~; 1 nnn Ts[ Cl 1006 1016 1024 1022 998 998 998 10 dPa*s[C] 1321 1341 1358 1350 1301 1298 1303 10 dPa.s[C] 1484 1509 Γ1530 1520 1458 1454 1460 10^dPa*s[°C] TLf°Cl 1589 1190 1618 ιΐδ9 1637 1628 Ϊ555 1555 156P~ logu^dPa.s] 5.2 "5.4 11〇 / 5.5 1206 5.2 1219 4.7 1181 5.1 1182 5 1 Young's touch [GPd] not determined 80 80 80 83 83 84 than '··IE [GPa/ (g/cm3)] not determined not determined Measurement not measured 32.5 32.5 32.5 Rigidity rate [GPa] Not measured 33 33 33 34 34 34 Surface roughness Brix Ra [nm] Not measured Not measured Not measured Not measured Not measured 0.2 Not measured Sample No. 1 was prepared as follows Sample n〇.35. First, a glass batch which has been formulated into a glass composition in the table is added to a platinum bomb, melted at 1600 ° C for 24 hours, and then flowed out onto a carbon plate to form a flat plate shape. Next, for each of the obtained samples, the density p, the coefficient of thermal expansion α, the strain point Ps, the slow cooling point Ta, the softening point Ts, the temperature at i〇4dPa·s, the temperature at 103 dPa·s, and the temperature of 102 5 dPa· were evaluated. s temperature, liquid temperature anal, 25 201247585 Revision date: 1〇1月16日日第101114412号 Chinese manual no slash correction liquid phase viscosity log1()r|TL, Young's modulus, ratio Young's modulus, rigidity rate. The degree of desire P is a value measured by a well-known Archimedes method. The coefficient of thermal expansion α疋 was measured by a dilatometer and was. Average value over a temperature range of ~380 °C. The strain point Ps, the slow cooling point Ta, and the softening point Ts are values obtained based on ASTM measurement. l 〇 40dPa · s temperature, 103. 〇dPa · s temperature, 1 〇 2.5 迚 & • s temperature is measured by the platinum ball pull method. 液相溫度TL是將通過標準_3G目(5叫m)而殘留 在50目(300㈣的玻璃粉末加入至翻舟後將該舶舟 在溫度梯度爐中雜24小時,測定結晶析㈣溫度所得的 值。 液相黏度ι〇_τχ是利用翻球提拉法測定液相溫 TL下的玻璃的黏度所得的值。The liquidus temperature TL is obtained by adding the glass powder remaining at 50 mesh (300 (4)) through the standard _3G mesh (5 m) to the boat, and then burying the ship in a temperature gradient furnace for 24 hours to determine the temperature of the crystallization (4). The liquid phase viscosity ι〇_τχ is a value obtained by measuring the viscosity of the glass at a liquidus temperature TL by a tumbling method. 揚氏模量、剛性率為彻周知的共振法測稍得則 如表i〜表5可知,試樣N〇1〜試樣Ν〇 35中將 璃組成_祕絲_,叫蚊ρ為2说Μ〆以] ^^a^38xl〇-7rc^46xl〇-7rC,m^fiPs^712 =12: ^ S時的溫度為1653ΐ以下,液相溫度丨 =29C以下,液相黏度1〇_孔為* 7以上,揚氏模 為二8 GPa以上,比楊氏模量為Μ g = 的耐失透性良好,因而容 = =〇〇μΠ1以下,進而比揚氏模量大,因此即 在板异為以下的情死下,破璃基板亦不易挽曲 26 201247585 • W I I ^*·*· i- 修正日期:101年8月16日 爲第101114412號中文說明書無劃線修正本 因此,可認為試樣No.l〜試樣N〇 35作為液晶透鏡用玻璃 基板較佳。另外,试樣No.l〜試樣N〇 35在玻璃組成中不 含有AsA、SbA ’而含有Sn〇2,因此氣泡品質良好。 [實例2] 在试驗熔融爐中將與試樣N〇 6、試樣N〇 34相對應的 玻璃配料熔融後,藉由溢流下拉法,成形板寬 1500 mm、 板厚250 μιη的液晶透鏡用玻璃基板。結果,液晶透鏡用 玻璃基板的表面粗糙度Ra為20埃(入)以下(參照表1、表 5)。另外,成形時’藉由適當調整拉伸輥的速度、冷卻報 的速度、加熱裝置的溫度分佈、熔融玻璃的溫度、熔融玻 璃的流量、板提拉速度,攪拌器的轉數等,來調節液晶透 鏡用玻璃基板的表面品質。 【圖式簡單說明】 無。 【主要元件符號說明】 無0 27 201247585 修正曰期:1〇1年8月16日 爲第lonmi2號中文說明書無劃線修^# 登里專利說明書 (本說明書格式、順序,請勿任意更動,※記號部分請勿填寫) ※申請案號: c〇^cV^S (2006.01) ^7(2006.01) ^/v^\ (2006.01) ^4^(2006.01) ※申請日: 分類: 一、發明名稱··(中文/英文) 液晶透鏡用玻璃基板 GLASS SUBSTRATE FOR LIQUID CRYSTAL LENS ° 二、中文發明摘要: 本發明的液晶透鏡用玻璃基板,作為玻璃組成,以莫 耳%計,含有 45%〜75%的 Si02、5%〜15%的 Al2〇3、0% 〜15%的 B2〇3、〇%〜15%的 MgO、及 0%〜15%的 CaO, 且板厚為400 μιη以下。 三、英文發明摘要: This invention relates to a glass substrate which is for liquid crystal lens and has a glass composition (by mole%), including 45% to 75% of Si〇2,5% to 15% of AI2O3,〇% to 15% of B2〇3, 0% to 15% of MgO, and 0% to 15% of CaO, and has a thickness equal to or less than 400 μηι. 20124758¾ 爲第101114412號中文說明書無劃線修正本 修正日期:丨01年8月16日 七、申請專利範圍: 1. 一種液晶透鏡用玻璃基板,其特徵在於: 作為玻璃組成,以莫耳%計,含有45%〜75%的Si02、 5%〜15%的 Al2〇3、〇%〜15%的 b2〇3、0%〜15%的 MgO 及0%〜15%的CaO,且板厚為400 μπι以下。 2. 如申請專利範圍第1項所述之液晶透鏡用玻璃基 板’其中比楊氏模量為29 GPa/ ( g/cm3)以上。 3. 如申請專利範圍第丨項或第2項所述液晶透鏡用玻 璃基板,其中應變點為65(TC以上。 4. 如申請專利範圍第1項所述之液晶透鏡用玻璃基 板’其中推度為2.7 g/cm3以下。 5. 如申請專利範圍第1項所述之液晶透鏡用玻璃基板, 其中1025dPa · s時的溫度為i650°C以下。 6. 如申請專利範圍第1項所述之液晶透鏡用玻璃基板, 其中液相黏度為l〇40dPa · s以上。 7. 如申請專利範圍第1項所述之液晶透鏡用玻璃基 板’其中在30°C〜38CTC的熱膨脹係數為3〇χ1(Γ7Α:〜 5〇xlO_7/°C。 8. 如申請專利範圍第1項所述之液晶透鏡用玻璃基 板,其利用溢流下拉法而成形。 9· 一種液晶透鏡用玻璃基板,其特徵在於: 作為玻璃組成,以莫耳%計,含有45%〜75%的Si02、 5%〜15%的 Al2〇3、〇%〜15%的 B2〇3、0%〜15%的 MgO、 及0%〜15%的CaO,莫耳比MgO/CaO為0〜1.5,莫耳比 201247585 呼zH〇/pifl 爲第101114412號中文說明書無劃線修正本修正曰期:⑻年8月“启 (SrO+BaO) / (MgO+CaO)為 0〜1,莫耳比 MgO/Al2〇3 為0〜1,莫耳比Ca0/Al2〇3為〇〜3,莫耳比B2〇3/Si〇2為 0〜0.3 ’實質上不含有驗金屬氧化物、aS2〇3、奶必、pb〇 以及Bi2〇3 ’比楊氏模量為29GPa/(g/cm3)以上,在30¾ 〜380°C的熱膨脹係數為3〇xl〇-7/°C〜5〇xl〇_7/°c,密度為 2.6g/cm3以下,液相黏度為i〇5.〇dPa· s以上,寬度尺寸為 500 mm以上,長度尺寸為500 mm以上,板厚為4〇〇 μιη 〇 以下。 —種液晶透鏡用玻璃基板,其特徵在於: 作為玻璃組成,以莫耳%計,含有45%〜75%的Si02、 5〇/〇〜15%的 Al2〇3、〇%〜15〇/〇的 B2〇3、0%〜15%的 MgO、 及0%〜15%的CaO,莫耳比MgO/CaO為〇〜1.5,莫耳比 (SrO+BaO) / (MgO+CaO)為 〇〜卜莫耳比 Mg〇/Al2〇3 為0〜卜莫耳比Ca0/A12〇^ 〇〜3,莫耳比B2(Vsi〇2為 〇〜〇.3,實質上不含有鹼金屬氧化物、AS2〇3、Sb2〇3、Pb〇 以及Bi2〇3 ’比揚氏模量為29 GPa/ (g/cm3)以上,在3(rc U 〜380°C的熱膨脹係數為3〇xl〇-7/t:〜5〇xl〇-7/t:,密产為 2.6g/cm3以下’液相黏度為妒㈣· s以上,板厚為^ μιη以下。 斤1 一種液晶透鏡,其特徵在於包括如申請專利範圍 弟1項至第1G項中任—項所述之液晶透編玻璃基板。 12· 一種玻璃基板,其特徵在於: 以上板厚為400 μηι以下,且比揚氏模量為29 Gpa/( My ) 29 201247585 Η·厶Ηυ / jJliJL 爲第101114412號中文說明書無劃線修正本 修正日—ΙΟΙ年8月16日 13.如申請專利範圍第12項所述之玻璃基板,其用於 液晶透鐃中。 30 201247585 , I X·/ f A 爲第101114412號中文說明書無劃線修正本 修正日— 101年8月16日 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無。 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無0Young's modulus and rigidity are well-known resonance methods. As shown in Table i to Table 5, the sample N〇1~sample Ν〇35 is composed of glass _ secret wire _, called mosquito ρ is 2 Say Μ〆] ^^a^38xl〇-7rc^46xl〇-7rC,m^fiPs^712 =12: ^ S when the temperature is below 1653ΐ, liquid temperature 丨=29C, liquid viscosity 1〇_ The hole is *7 or more, the Young's mode is two 8 GPa or more, and the Young's modulus is Μ g =. The resistance to devitrification is good, so the capacity ==〇〇μΠ1 or less, and thus the Young's modulus is larger, so Under the singularity of the board, the broken glass substrate is not easy to be released. 26 201247585 • WII ^*·*· i- Date of revision: August 16, 2011 is the 101111412 Chinese manual without a slash correction. It is considered that the sample No. 1 to the sample N 〇 35 are preferable as the glass substrate for liquid crystal lenses. Further, Sample No. 1 to Sample N 〇 35 contained SnA2 without containing AsA and SbA' in the glass composition, and therefore the bubble quality was good. [Example 2] After melting the glass batch corresponding to the sample N〇6 and the sample N〇34 in the test melting furnace, the liquid crystal having a plate width of 1500 mm and a plate thickness of 250 μm was formed by an overflow down-draw method. A glass substrate for lenses. As a result, the surface roughness Ra of the glass substrate for liquid crystal lens was 20 Å or less (see Tables 1 and 5). In addition, at the time of molding, the temperature of the stretching roller, the speed of the cooling report, the temperature distribution of the heating device, the temperature of the molten glass, the flow rate of the molten glass, the pulling speed of the plate, the number of revolutions of the agitator, and the like are adjusted. The surface quality of the glass substrate for liquid crystal lenses. [Simple description of the diagram] None. [Main component symbol description] None 0 27 201247585 Correction period: 1〇1年8月16日的第lonmi2号 Chinese manual No underline repair^#登里专利手册 (This manual format, order, please do not change, ※Please do not fill in the number of the mark. ※Application number: c〇^cV^S (2006.01) ^7(2006.01) ^/v^\ (2006.01) ^4^(2006.01) ※Application date: Classification: 1. Name of the invention ··(Chinese/English) Glass substrate for liquid crystal lens GLASS SUBSTRATE FOR LIQUID CRYSTAL LENS ° II. Abstract: The glass substrate for liquid crystal lens of the present invention contains, as a glass composition, 45% to 75% by mol% SiO 2 , 5% to 15% of Al 2 〇 3, 0% to 15% of B 2 〇 3, 〇 % to 15% of MgO, and 0% to 15% of CaO, and a plate thickness of 400 μm or less. 3. Inventive Abstract: This invention relates to a glass substrate which is for liquid crystal lens and has a glass composition (by mole%), including 45% to 75% of Si〇2, 5% to 15% of AI2O3,〇 % to 15% of B2〇3, 0% to 15% of MgO, and 0% to 15% of CaO, and has a thickness equal to or less than 400 μηι. 201247583⁄4 is the 101114412 Chinese manual without a slash correction Amendment date: August 16, 2011 VII. Patent application scope: 1. A glass substrate for liquid crystal lens, characterized in that: as a glass composition, it contains 45% to 75% of SiO 2 , 5% by mol % 〜15% Al2〇3, 〇%~15% b2〇3, 0%~15% MgO, and 0%~15% CaO, and the plate thickness is 400 μπι or less. 2. The glass substrate for liquid crystal lens according to claim 1, wherein the Young's modulus is 29 GPa/(g/cm3) or more. 3. The glass substrate for a liquid crystal lens according to the second or second aspect of the invention, wherein the strain point is 65 (TC or more. 4. The glass substrate for liquid crystal lens according to claim 1 of the invention) The temperature is 2.7 g/cm3 or less. 5. The glass substrate for liquid crystal lens according to claim 1, wherein the temperature at 1025 dPa · s is i650 ° C or less. 6. As described in claim 1 The glass substrate for a liquid crystal lens, wherein the liquid crystal viscosity is 10 〇 40 dPa · s or more. 7. The glass substrate for liquid crystal lens according to claim 1, wherein the thermal expansion coefficient at 30 ° C to 38 CTC is 3 〇. Χ1 (Γ7Α: 〜5〇xlO_7/°C. 8. The glass substrate for liquid crystal lens according to claim 1 is formed by an overflow down-draw method. 9. A glass substrate for a liquid crystal lens, characterized by In the glass composition, in terms of mole %, containing 45% to 75% of SiO 2 , 5% to 15% of Al 2 〇 3, 〇 % to 15% of B 2 〇 3, 0% to 15% of MgO, and 0%~15% CaO, molar ratio MgO/CaO is 0~1.5, Moer than 201247585 call zH〇/pifl is 101114412 Chinese manual without slash correction This revision period: (8) August "SrO+BaO" / (MgO + CaO) is 0~1, Moer than MgO/Al2〇3 is 0~1, Moer The ratio Ca0/Al2〇3 is 〇~3, and the molar ratio B2〇3/Si〇2 is 0~0.3 'substantially does not contain metal oxide, aS2〇3, milk, pb〇 and Bi2〇3' The Young's modulus is above 29 GPa/(g/cm3), and the thermal expansion coefficient at 303⁄4 to 380 °C is 3〇xl〇-7/°C~5〇xl〇_7/°c, and the density is 2.6g/cm3. Hereinafter, the liquidus viscosity is i〇5.〇dPa·s or more, the width dimension is 500 mm or more, the length dimension is 500 mm or more, and the plate thickness is 4 〇〇μιη 〇 or less. The glass substrate for liquid crystal lens is characterized. In the glass composition, in terms of mole %, containing 45% to 75% of SiO 2 , 5 〇 / 〇 ~ 15% of Al 2 〇 3, 〇 % ~ 15 〇 / 〇 B2 〇 3, 0% ~ 15% MgO, and 0%~15% CaO, molar ratio MgO/CaO is 〇~1.5, molar ratio (SrO+BaO) / (MgO+CaO) is 〇~Bu Moer than Mg〇/Al2〇3 0 to Bumor ratio Ca0/A12〇^ 〇~3, Mobi ratio B2 (Vsi〇2 is 〇~〇.3, substantially no alkali The oxides, AS2〇3, Sb2〇3, Pb〇, and Bi2〇3' have a modulus of 29 GPa/(g/cm3) or more, and have a thermal expansion coefficient of 3 at rc U 380 °C. Xl〇-7/t: ~5〇xl〇-7/t:, dense production is 2.6g/cm3 or less 'liquid viscosity is 妒(4)·s or more, and the thickness is below ^μηη. A liquid crystal lens comprising a liquid crystal transmissive glass substrate according to any one of the claims 1 to 1G. 12· A glass substrate characterized in that the above plate thickness is 400 μηι or less, and the Young's modulus is 29 Gpa/(My) 29 201247585 Η·厶Ηυ / jJliJL is the 101114412 Chinese manual without a slash correction Amendment Day—August 16th of the following year. 13. The glass substrate of claim 12, which is used in a liquid crystal lens. 30 201247585 , I X· / f A is the Chinese manual of No. 101114412 without a slash correction. Amendment date – August 16, 101. IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the component symbols of this representative figure: None. 5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: No 0
TW101114412A 2011-04-25 2012-04-23 Glass substrate for liquid crystal lens TWI583649B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096695 2011-04-25

Publications (2)

Publication Number Publication Date
TW201247585A true TW201247585A (en) 2012-12-01
TWI583649B TWI583649B (en) 2017-05-21

Family

ID=47072136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101114412A TWI583649B (en) 2011-04-25 2012-04-23 Glass substrate for liquid crystal lens

Country Status (6)

Country Link
US (1) US20140049708A1 (en)
JP (1) JP5935471B2 (en)
KR (1) KR20130138304A (en)
CN (1) CN103492333A (en)
TW (1) TWI583649B (en)
WO (1) WO2012147615A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614227B (en) 2012-02-29 2018-02-11 康寧公司 Low cte alkali-free boroaluminosilcate glass compositions and glass articles comprising the same
US9440878B2 (en) 2013-02-28 2016-09-13 Corning Incorporated Fusion formable lithium aluminosilicate glass ceramic
US9527767B2 (en) * 2013-05-09 2016-12-27 Corning Incorporated Alkali-free phosphoborosilicate glass
JP6365826B2 (en) * 2013-07-11 2018-08-01 日本電気硝子株式会社 Glass
CN105764865A (en) 2013-08-15 2016-07-13 康宁股份有限公司 Alkali-doped and alkali-free boroaluminosilicate glass
WO2015023561A2 (en) 2013-08-15 2015-02-19 Corning Incorporated Intermediate to high cte glasses and glass articles comprising the same
US10209419B2 (en) * 2013-09-17 2019-02-19 Corning Incorporated Broadband polarizer made using ion exchangeable fusion drawn glass sheets
JP7060915B2 (en) * 2014-12-12 2022-04-27 日本電気硝子株式会社 Alkaline-free glass
JP7004488B2 (en) 2015-03-10 2022-01-21 日本電気硝子株式会社 Glass substrate
JP7182871B2 (en) 2015-04-03 2022-12-05 日本電気硝子株式会社 glass
JP7219538B2 (en) * 2015-04-03 2023-02-08 日本電気硝子株式会社 glass
US10351466B2 (en) 2015-06-02 2019-07-16 Nippon Electric Glass Co., Ltd. Glass
EP3950616A1 (en) 2015-06-02 2022-02-09 Corning Incorporated Laminated glass article with tinted layer
TWI714698B (en) * 2016-01-12 2021-01-01 日商日本電氣硝子股份有限公司 glass
TWI822657B (en) 2016-05-04 2023-11-21 美商康寧公司 Tinted aluminosilicate glass compositions and glass articles including same
JP7056558B2 (en) * 2016-05-25 2022-04-19 Agc株式会社 Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk
JP7044064B2 (en) * 2016-08-05 2022-03-30 Agc株式会社 Alkaline-free glass substrate, laminated substrate, and manufacturing method of glass substrate
CN109890771B (en) * 2016-11-02 2022-03-22 Agc株式会社 Alkali-free glass and method for producing same
KR20240016446A (en) * 2016-12-20 2024-02-06 니폰 덴키 가라스 가부시키가이샤 Glass
JP6787872B2 (en) * 2017-11-28 2020-11-18 日本電気硝子株式会社 Non-alkali glass plate
JP6631942B2 (en) * 2017-11-28 2020-01-15 日本電気硝子株式会社 Alkali-free glass plate
JP7418947B2 (en) * 2018-01-31 2024-01-22 日本電気硝子株式会社 glass
EP3810558B1 (en) * 2018-06-19 2023-04-26 Corning Incorporated High strain point and high young's modulus glasses
KR102183706B1 (en) 2018-08-14 2020-11-27 주식회사 엘지화학 Optical Device
JP7389400B2 (en) * 2018-10-15 2023-11-30 日本電気硝子株式会社 Alkali-free glass plate
JP2020063168A (en) * 2018-10-17 2020-04-23 日本電気硝子株式会社 Alkali-free glass plate
CN114873911A (en) 2019-01-18 2022-08-09 康宁股份有限公司 Low dielectric loss glass for electronic devices
US11117828B2 (en) 2019-01-18 2021-09-14 Corning Incorporated Low dielectric loss glasses for electronic devices
JP2021195293A (en) * 2020-06-18 2021-12-27 日本電気硝子株式会社 Alkali-free glass plate

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348247A (en) * 2000-05-31 2001-12-18 Asahi Glass Co Ltd Alkaline-free glass
US6819044B2 (en) * 2002-04-10 2004-11-16 Tdk Corporation Thin-film EL device and composite substrate
CN1764610A (en) * 2003-03-31 2006-04-26 旭硝子株式会社 Alkali free glass
FR2856055B1 (en) * 2003-06-11 2007-06-08 Saint Gobain Vetrotex GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS, COMPOSITES COMPRISING SAME AND COMPOSITION USED THEREFOR
FR2879591B1 (en) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS
EP1899275A1 (en) * 2005-06-28 2008-03-19 Corning Incorporated Fining of boroalumino silicate glasses
KR101399745B1 (en) * 2006-02-10 2014-05-26 코닝 인코포레이티드 Glass composition having high thermal and chemical stability and methods of making thereof
EP1994767B1 (en) * 2006-03-03 2011-02-23 Koninklijke Philips Electronics N.V. Autostereoscopic display device using controllable liquid crystal lens array for 3d/2d mode switching
DE102006016256B4 (en) * 2006-03-31 2013-12-12 Schott Ag Aluminoborosilicate glass and its use
CN101454252A (en) * 2006-05-25 2009-06-10 日本电气硝子株式会社 Tempered glass and process for producing the same
JP5359271B2 (en) * 2006-07-13 2013-12-04 旭硝子株式会社 Non-alkali glass substrate, method for producing the same, and liquid crystal display panel
CN102718401B (en) * 2006-10-10 2015-04-01 日本电气硝子株式会社 Reinforced glass substrate
JP2008197640A (en) * 2007-01-16 2008-08-28 Asahi Glass Co Ltd Optical device and optical head device
JP2008201654A (en) * 2007-02-23 2008-09-04 Hitachi Ltd Display
JP5435394B2 (en) * 2007-06-08 2014-03-05 日本電気硝子株式会社 Tempered glass substrate and manufacturing method thereof
US7851318B2 (en) * 2007-11-01 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
JP5327702B2 (en) * 2008-01-21 2013-10-30 日本電気硝子株式会社 Manufacturing method of glass substrate
JP2009229963A (en) * 2008-03-25 2009-10-08 Citizen Holdings Co Ltd Liquid crystal optical element
JP2010132532A (en) * 2008-10-01 2010-06-17 Nippon Electric Glass Co Ltd Glass roll and method for producing the same
CN102471134B (en) * 2009-07-02 2015-04-15 旭硝子株式会社 Alkali-free glass and method for producing same

Also Published As

Publication number Publication date
JP5935471B2 (en) 2016-06-15
CN103492333A (en) 2014-01-01
WO2012147615A1 (en) 2012-11-01
US20140049708A1 (en) 2014-02-20
JP2012236759A (en) 2012-12-06
KR20130138304A (en) 2013-12-18
TWI583649B (en) 2017-05-21

Similar Documents

Publication Publication Date Title
TW201247585A (en) Glass substrate for liquid crystal lens
JP6604405B2 (en) UV transmitting glass
JP7392914B2 (en) glass
JP6365826B2 (en) Glass
US8399370B2 (en) Glass composition
US8785336B2 (en) Alkali-free glass
JP6801651B2 (en) Glass
TW201233654A (en) Reinforced glass and reinforced glass sheet
TW201242922A (en) Alkali free glass
JP6532218B2 (en) Glass
TWI543953B (en) Alkali-free glass
JP7110981B2 (en) Glass substrates, semiconductor devices and display devices
US11572304B2 (en) Glass
US20230146789A1 (en) Glass
US11066326B2 (en) Glass
JP2024045688A (en) Glass
US20200130325A1 (en) Carrier glass and method for producing same
JP6354943B2 (en) Glass
JP2018177556A (en) Glass substrate
TW202104119A (en) Display compositions containing phosphorous and low ionic field strength modifiers
JP2017227753A (en) Screen substrate
JP2017227752A (en) Screen substrate