TW201244822A - Preparation of ruthenium supported on mesoporous MCM-41 and its application in hydrogenation of p-xylene - Google Patents

Preparation of ruthenium supported on mesoporous MCM-41 and its application in hydrogenation of p-xylene Download PDF

Info

Publication number
TW201244822A
TW201244822A TW100117028A TW100117028A TW201244822A TW 201244822 A TW201244822 A TW 201244822A TW 100117028 A TW100117028 A TW 100117028A TW 100117028 A TW100117028 A TW 100117028A TW 201244822 A TW201244822 A TW 201244822A
Authority
TW
Taiwan
Prior art keywords
bar
mcm
catalyst
ruthenium
temperature
Prior art date
Application number
TW100117028A
Other languages
English (en)
Other versions
TWI418405B (zh
Inventor
Chung-Sung Tan
Yu-Wen Chen
Hsin-Wei Lin
Clive Hsu Yen
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW100117028A priority Critical patent/TWI418405B/zh
Priority to US13/405,613 priority patent/US20120289740A1/en
Publication of TW201244822A publication Critical patent/TW201244822A/zh
Application granted granted Critical
Publication of TWI418405B publication Critical patent/TWI418405B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/043Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/19Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
    • C07C29/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings in a non-condensed rings substituted with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

201244822 and the conversion method, this process is very efficient of p-xylene is improved significantly. 四、指定代表圖: 無指定代表圖 五、本案若有化學式時’請揭示最能顯示發明特徵的化學式 六、發明說明: 【發明所屬之技術領域】 本發明係關於運用超臨界流體(supercritiea]l nuid& SCF)技術製備奈米金屬觸媒,尤其有關將釕奈米金屬沉積在一種 中孔洞二氧化矽MCM-41做為觸媒的方法,本發明揭示一種以化 流體沉積法製備釕承載於中孔洞MCM_41之奈米金屬觸媒,及於 =二曱苯氫化反應之方法;其包括製備奈米觸媒方法一:選用金屬 前驅物為乙醯丙酮釕(Ruthenium Acetylacetonate,Ru(acac)〇 而觸媒擔體為MCM-41,製備1 wt·%至1〇 wt.%奈米釕觸媒,先以 適量之溶劑(例如:四氫呋喃)將配好的金屬前驅物與擔體於超音 波震盪,再將溶劑抽乾後,即得到分散良好的粉末;將此粉末置 入高壓反應器中,升溫到100 t至3〇〇。當溫度升至反應溫度 時’通入預先混合之30 bar至100 bar氫氣與80 bar至300 bar 二氧化碳。或製備奈米觸媒方法二:選用金屬前驅物為 Bis(2, 2, 6, 6-tetramethyl- 3, 5-heptanedionato) (l’5-cyclo〇ctadiene)ruthenium,Ru(cod)(tmhd)2,而觸媒擔體 為MCM-41,製備1 wt.%至10 wt.%奈米釕觸媒。將配好的金屬前 驅物與擔體置入高壓反應器中,升溫到1〇〇°c至3〇〇。(:。當溫度升 至反應溫度時,通入預先混合之3〇 bar至100 bar氫氣與80 bar 至300 bar二氧化碳。其以化學流體沉積法製備之觸媒,能均勻 地將奈米金屬粒子含浸至中孔洞基材中,相對於傳統觸媒製程能 201244822
» I f效節省時間並提高反應轉化率。此製備之觸媒用於對二甲苯之 匕,其中釕對MCM-41之重量百分比介於1 wt·%至1〇 wt. %,氫 氣壓力介於10 bar至100 bar,溫度介於20°C至l〇〇°c。 【先前技術】 ,聚對笨二甲酸乙二醇脂(p〇lyethylene terephthalate),簡 稱PET)為常用的塑膠原料之一,在近年來大量使用下已造成環境 相當士^負擔。PET具有極佳的熱及化學穩定性,直接氫化pET 中的苯環,以獲得生物可分解之高分子聚合物面臨相當大的難 -般PET製程上通常是將對二曱苯(p—Xylene)氧化而獲得對 本二曱酸(Terephthalic Acid,簡稱TPA) ’再將TPA進行聚合反 應形成PET。如果將p—xylene進行苯環氫化,以獲得不含苯環之 严應物:即 I,4-對環己烷二曱酸(1,4_Cycl〇hexanedicarb〇xylic Acid,簡稱1,4-CHDA) ’再以1,4-CHDA氧化形成的單體進行聚合 反應得到,物可分解之高分子聚合物。本研究以化學流體沉積 法,也就歧料遍所熟知的超臨界流體來製備奈米金屬觸媒。 由於超臨界流體的特殊师只餘制溫度和壓力就可達成,所以 ^對於-般傳統溶液製備法有所優勢。當操作溫度及壓力超過物 質的臨界溫度及臨界壓力時,此時為超臨界趙。在本發明中將 選用一氧化碳當作超臨界流體介質。相較於一般製程,選用臨 f流體二氧化碳當作賴具有如下_:⑴操作溫度低;⑵綠 色溶劑;(3)不破壞擔體結構;⑷高質傳擴散係數;⑸操作、 來多重視’其操作要點概括為··⑴金屬前驅物 ^選擇,⑵猎由超臨界流體將金屬前驅物溶解;⑶前驅物 ^界流體協助下進行單體表面的擴散及吸附;⑷麵分離 妷程序;(5)對金屬前驅物進行還原反應。
Zhang等人[J· Supercrit. Fluids,第38卷(2006),第252? 二頁臨;二氧化碳製將金屬前驅物帶入孔洞擔體表面 〆疋咼77 這個程序包括了將金屬前驅物溶入超臨界二氣 化碳内和基質浸泡在溶液内。之後將金屬前驅物還原至金= 201244822 子,有三種程序: 直接加入如醇類或氫氣的還原劑進入超臨界流體還原金屬。 b. 直接升高溫度將金屬還原。 ' c. 先將壓力洩至常壓’在通入還原劑如氫氣或空氣將金屬還原。 以化學流體沉積法進行觸媒製備’因為不會有乾燥程序\'所 以並不會有一般傳統方式的所造成的反向的作用力使得有機金屬 分子向外擴散’而形成核殼型式的觸媒。當採用超臨界流體沈積 法所製備的觸媒因不會有此現象發生’而會形成均勻分佈的觸 媒’藉此可以提升反應的速率。Dhepe等人[Phys. Qiem. Chem. Phys.第5卷,第5565至5573頁]以Rh、Pt雙金屬以化學流體沉 積方法含浸至HMM-1與FSM-16,對比於傳統含浸方法。傳統方法 只能將金屬粒子附著於顆粒外面,而以超臨界c〇2挟帶 物,能有效的將奈米金屬粒子含浸至中孔洞之孔道;金以·: ,粒子的分散性。Chatterjee 等人[Adv· Synth. Catal 第=48 ^(2006)第1580至1590頁]以化學流體沉積方法將奈米金粒 f至MCM-48擔體巾’在他們的研究巾指丨,絲金的粒子大小 =界二氧化碳的密度紅比_。先前的專利文獻中,未有如 $明以超臨界流體之方法製備釕金屬分散於中孔則cm_4i分子 師之方法’及將其應餘對二甲笨航反應之方法。 【發明内容】 ί::,要其目:二 k升金屬奈料奸賴财齡散性。 初進而 本發明的屬】供化對4苯的方法,其中使用 或f、去〇、金U觸媒’進而提升對二甲苯氫化之速率。 子沉積發=t依本發明内容所完成的將金屬奈米粒 a) 夕中的方法,該方法包含下列步驟: ί二ί前驅物,其在超臨界二氧化碳中有良好的溶解 X果溶解度不高的話,亦可先加入些許的共溶劑,並 201244822 利用超音波震盪加速其溶解; b) 將該金屬前驅物和中孔洞二氧化矽載體一起置於高壓爸 内; 其特徵在於該方法包含下列步驟: c) 將氫氣和二氧化碳預先混合於儲壓槽中,並於到達反應溫 度之條件後’直接通入高壓釜中;或 Φ 先通入二氧化碳於高壓釜中,待金屬前驅物溶解後,再將 預混好的氫氣和二氧化碳通入高壓釜中。 本發明在步驟d)之後進一步包含: e) 將製備好的觸媒用於對二曱苯的氫化反應。 【實施方式】 實施方式1 : 本發明揭示一種以化學流體沉積法製備釕承載於中孔洞 MCM-41之奈米金屬觸媒,及於對二曱苯氫化反應之方法;其包括製 備奈米觸媒方法:選用金屬前驅物為乙醯丙酮釕(Rutheni um
Acetylacetonate,Ru(acac)3)而觸媒擔體為 MCM-41,製備 1 wt.% 至10 wt.%奈米釕觸媒,先以適量之溶劑(例如:四氫呋喃)將配好 的金屬前驅物與擔體於超音波震盪,再將溶劑抽乾後,即得到分 散良好的粉末;將此粉末置入高壓反應器中,升溫到1〇〇充至300 °C。當溫度升至反應溫度時,通入預先混合之3〇 bar至1〇〇 bar 虱氣與80 bar至300 bar二氧化碳。 實施方式2 : 本發明揭示一種以化學流體沉積法製備釕承載於中孔洞 MCM-41之奈米金屬觸媒,及於對二甲苯氫化反應之方法;其包括製 備奈米觸媒方法:選用金屬前驅物為Bis(2, 2, 6, 6-tetramethy卜 3,5-heptanedionato)(l, 5-cyc1ooctadiene)ruthenium > Ru(codXtmhd)2,而觸媒擔體為 MCM-41,製備 1 wt.°/。至 10 wt.0/0 奈米釕觸媒。將配好的金屬前驅物與擔體置入高壓反應器中,升 201244822 溫到100 C至300 °c。當溫度升至反應、、w声睹 =4⑽^氫氣與8° -至3°:二氧 =合之 至中體 ==製備之觸媒’能均句地將奈米金屬粒子含浸 至中孔洞基材中,相對於傳統觸製、 氮氣壓力介於至⑽ 可以結果(圖一)’Ru的粒子大小約在2. , 月楚的看顺鑲嵌在顧_41孔道中。比較傳統含浸法和 机體》儿積法兩種不同製備法之Ru/MCM_41,TEM圖(圖一、二)可以 看出化學趙沉積法魄由財超臨界二氧化韻獅下, ^子能有效的含浸至孔道巾,且具有較佳的分散性。而相反的在 傳統含浸法下的結果’較容易導致金屬粒子聚集的現象。在平均 的金屬顆粒大小,化學流體沉積法Ru觸媒約在2.6 nm;傳統方法 約為3.0 nm (表一)。比較於對二甲苯氫化的結果(表二),在相同 條件下化學流體沉積法觸媒之Ru/MCM_41轉化率高達1〇〇%,而傳 統方法含浸的Ru/MCM-41卻只有13%左右。另外一方面,化學流體 沉積法觸媒比傳統製備法觸媒的TOF值高出7倍之多。 表一比較兩種製備法Ru/MCM-41奈米金屬特性
Ru loading (weight %) Average size (nm) BET surface area (m2/e) Ru/MCM-41 (C02) 4.8 2.6 ±0.5 1068 Ru/MCM-41 (conventional) 4.2 3.0 ±0.8 899 表二比較兩種製備法Ru./MCM_41氫化p-xylene反應性 conversion % TON TOF (hr'1) Ru/MCM-41 (C02) 100 2380 1428 Ru/MCM-41 (conventional) 13.7 309 185 201244822
I I 【圖式簡單說明】 圖一化學流體沉積法製備Ru/MCM-41之TEM圖 圖二傳統方法製備Ru/MCM-41之TEM圖 【主要元件符號說明】 無主要元件符號說明

Claims (1)

  1. 201244822 • t 七、申請專利範圍: 1. 一種以化學流體沉積法製備釕承載於MCM-41之中孔洞奈米金 屬觸媒之方法,其包括製備奈米觸媒方法一:選用金屬前驅物 為乙醯丙酮釕(Ruthenium acetylacetonate,Ru(acac)3)而觸 媒擔體為MCM-41,製備1 wt. %至10 wt. %奈米釕觸媒,先以適 量之溶劑(例如:四氫呋喃)將配好的金屬前驅物與擔體於超音 波震盪,再將溶劑抽乾後,即得到分散良好的粉末;將此粉末 置入高壓反應器中,升溫到100 °C至300 °C。當溫度升至反 應溫度時,通入預先混合之30 bar至100 bar氫氣與80 bar 至300 bar二氧化碳;或製備奈米觸媒方法二:選用金屬前驅 物為 Bis(2, 2, 6, 6-tetramethyl- 3, 5-heptanedionato) (1,5-cyclooctadiene)ruthenium,Ru(cod)(tmhd)2,而觸媒擔 體為MCM-41,製備1 wt. °/Q至l〇 wt. %奈米釕觸媒。將配好的金 屬前驅物與擔體置入高壓反應器中,升溫到1〇〇 °C至300 °C; 當溫度升至反應溫度時,通入預先混合之3〇 bar至100 bar 氫氣與80 bar至300 bar二氧化碳。 λ 一種氫化對二曱苯的方法,其中使用申請專利範圍第1項所製 備的釕金屬奈米觸媒’其中釕對1^〇|_41之重量百分比介於1 敗%至10 wt· % ’氫氣壓力介於1〇 bar至100 bar,溫度介於 2〇°C 至 100。(:。
TW100117028A 2011-05-13 2011-05-13 釕承載於中孔洞mcm-41奈米金屬觸媒之方法及於對二甲苯氫化反應之應用 TWI418405B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100117028A TWI418405B (zh) 2011-05-13 2011-05-13 釕承載於中孔洞mcm-41奈米金屬觸媒之方法及於對二甲苯氫化反應之應用
US13/405,613 US20120289740A1 (en) 2011-05-13 2012-02-27 Catalyst, Method for Manufacturing the Same by Supercritical Fluid and Method for Hydrogenating an Aromatic Compound by Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117028A TWI418405B (zh) 2011-05-13 2011-05-13 釕承載於中孔洞mcm-41奈米金屬觸媒之方法及於對二甲苯氫化反應之應用

Publications (2)

Publication Number Publication Date
TW201244822A true TW201244822A (en) 2012-11-16
TWI418405B TWI418405B (zh) 2013-12-11

Family

ID=47142293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117028A TWI418405B (zh) 2011-05-13 2011-05-13 釕承載於中孔洞mcm-41奈米金屬觸媒之方法及於對二甲苯氫化反應之應用

Country Status (2)

Country Link
US (1) US20120289740A1 (zh)
TW (1) TWI418405B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332977A (zh) * 2021-05-25 2021-09-03 哈尔滨工业大学(深圳) 一种用于邻苯二甲酸酯加氢催化反应的催化剂及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314411B2 (ja) * 2013-10-10 2018-04-25 三菱瓦斯化学株式会社 芳香族カルボン酸類の水素化触媒およびその製造方法
US9861960B2 (en) * 2013-10-18 2018-01-09 Exxonmobil Chemical Patents Inc. Hydrogenation catalyst, its method of preparation and use
US9862657B2 (en) 2014-12-03 2018-01-09 Uop Llc Methods for selectively hydrogenating substituted arenes with supported organometallic catalysts
CN106824181A (zh) * 2017-02-24 2017-06-13 安徽师范大学 纳米钯复合材料及其制备方法
KR102474055B1 (ko) * 2020-06-30 2022-12-06 한국과학기술연구원 초임계 이산화탄소 추출을 이용한 금속산화물 촉매들의 합성

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117581A (en) * 1999-03-15 2000-09-12 Ford Global Technologies, Inc. Fuel cell electrode comprising conductive zeolite support material
US6958308B2 (en) * 2004-03-16 2005-10-25 Columbian Chemicals Company Deposition of dispersed metal particles onto substrates using supercritical fluids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332977A (zh) * 2021-05-25 2021-09-03 哈尔滨工业大学(深圳) 一种用于邻苯二甲酸酯加氢催化反应的催化剂及其制备方法与应用
CN113332977B (zh) * 2021-05-25 2022-04-01 哈尔滨工业大学(深圳) 一种用于邻苯二甲酸酯加氢催化反应的催化剂及其制备方法与应用

Also Published As

Publication number Publication date
TWI418405B (zh) 2013-12-11
US20120289740A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
TW201244822A (en) Preparation of ruthenium supported on mesoporous MCM-41 and its application in hydrogenation of p-xylene
Mu et al. A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids
Zhao et al. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids: II. Rhodium-catalyzed hydrogenation of arenes
Park et al. Catalytic hydrogen transfer of ketones over Ni@ SiO2 yolk− shell nanocatalysts with tiny metal cores
Chen et al. Carbon monoxide-controlled synthesis of surface-clean Pt nanocubes with high electrocatalytic activity
WO2021078128A1 (zh) 一种制备介孔碳负载金属纳米粒子催化剂的方法
Gong et al. General synthetic route toward highly dispersed ultrafine Pd–Au alloy nanoparticles enabled by imidazolium-based organic polymers
Gu et al. NH 2-MIL-125 (Ti)-derived porous cages of titanium oxides to support Pt–Co alloys for chemoselective hydrogenation reactions
KR102173690B1 (ko) 열분해된 다중 착물 기반의 orr을 위한 비-pgm 촉매
CN101869853A (zh) 有序介孔碳/碳化钨复合材料与其负载型催化剂以及它们的制备方法
KR100723394B1 (ko) 비자연발화성 쉬프트 반응 촉매 및 그의 제조 방법
EP2756899B1 (en) A plurality of ruthenium nanoparticles, use and method for producing same
CN109289842B (zh) 一种Pd1+NPs/TiO2纳米粒子单原子协同加氢催化剂及其制备方法和应用
CN110201696A (zh) 一种多孔碳纤维担载高分散贵金属纳米颗粒的制备方法
Barim et al. Supercritical deposition: a powerful technique for synthesis of functional materials for electrochemical energy conversion and storage
He et al. Liquid-phase synthesis of methyl formate via heterogeneous carbonylation of methanol over a soluble copper nanocluster catalyst
CN113135825B (zh) 一种硝基苯加氢制备苯胺的方法及其杂化纳米结构镍催化剂
CN101239318B (zh) 一种新型肉桂醛加氢催化剂及其制备方法
Shen et al. Nanoparticle-catalyzed green chemistry synthesis of polybenzoxazole
CN115007184A (zh) 一种氮掺杂碳负载的钌-铁双金属催化剂及其制备方法和应用
Pagán-Torres et al. Well-defined nanostructures for catalysis by atomic layer deposition
Xu et al. In Situ Construction of Pt–Ni NF@ Ni‐MOF‐74 for Selective Hydrogenation of p‐Nitrostyrene by Ammonia Borane
KR101932575B1 (ko) 형상이 제어된 백금 나노큐브 및 이의 제조방법
Taylor et al. Fuel cell performance and characterization of 1-D carbon-supported platinum nanocomposites synthesized in supercritical fluids
Shimizu et al. Effect of impregnation conditions of cobalt nano particles in mesoporous silica using supercritical fluid solvent

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees