201241424 、發明說明: 【發明所屬之技術領域】 種能夠簡化系統結構 本發明是關於一種影像擷取系統,尤係關於一 與提升照明效率之影像擷取系統。 【先前技術】 檢測皮膚,尤其是檢測真皮層中的癌細胞等其他病變的影像擷取系 統中,-般是可見光的外部光源照明,l線穿過表皮進人真皮層^ 再透過顯微成像裝置觀察。因此為了觀測或檢測皮膚較深層的狀態曰, 降低知、明光在表皮層反射的比例是提升觀測或檢測品質的重要課題。 -習知技術係利用-浸人油設置於表皮與檢測系統中的玻璃接觸 板(contactplate)之間,且光源的光線直接照射至皮膚進行檢測。藉由可 減少反射的玻璃接觸板與浸人油,以達到觀測皮膚深層結構的目日的。 然而檢測前需要在皮膚上塗佈浸人油,檢測過雖往麻煩耗時,另外 玻璃接觸板上容易產生反射光的鬼影,影響成像品質。 另一習知技術係利用一接觸皮膚表面的光引導偈限元件,設置於欲 掏取影像位置的,將照明光引導並提供照明於欲擷取影像位置^ 周圍。其優點是不需使用浸人油,不易產生鬼影,並簡化操取程序。 其缺點為欲觀察位置的中央部份,無光源照射,易造成影像的中 份產生暗影。 、° 另—習知技術係照明光源搭配稜鏡(prism)與分光板 syUtter),使照明光產生同軸照明的效果,其優點是照明均勻,但缺點 疋系統複雜、體積較大,且照明與成像同軸容易在稜鏡與分光板上產 生鬼影,影響成像品質。 ‘上所述,如何簡化結構,降低製造成本,並減少照明光的反射, 提升照明效率之影像擷取系統便是目前極需努力的目標。 3 201241424 【發明内容】 的反射率月明2像掏取系統’不需使用浸入油便能降低照明光 快速與成本等優;率°另外’一體成型的一導光元件,具有组裝 ϊ光二:::j光,峨含:-照明光導光部ί!ί =:::;==rr像光導光部一: 與成像光導光部為一體成出2中導光元件之照明光導光部 實施例之說明而可 用以接受來自概物卩的=2=^-合, 更加ΐί社述及其他態樣、雜及優勢可由附圖及 【實施方式】 系統請=:===實施例之_取 皮膚,或-皮膚切片,其包含一表丫 =中樣。°1可為一活體 統包含:至少-光源2〇、一導光元曰盘二’皮層12。影像擷取系 以提供一照明光加。導光树 二。光源20用 像光導光部3。2,其中照明光導光二含 樣叩1接觸’光源2〇與照明光導光部3〇1光 ^直接與 出光面3011射出並穿過樣品丨之表面。,使照明光201自 要說明的是,照明光2〇1進入照明光導光部3〇1後,經過適當的光 201241424 學設計將照明光201引導至照明光導光部301的出光面3011,舉例來 說,在以印刷或貼附的方式將反射材料設置於照明光導光部301欲產 生反射的表面,或是將其表面設計為全反射光學面。以圖la的實施例 來說,導光元件30的照明光導光部301中包含一具有斜率的反射面 3012,用以反射部分的照明光201 ’擴大照明的範圍。於一實施例中, 導光元件30的照明光導光部301更包含一聚光曲面3013與光源20光 學耦合,以有效匯聚照明光201至照明光導光部301。 接著,成像光導光部302包含一入光面3021與一出光面3022,复 v > 中於樣品1之表面下之結構所反射之一成像光202進入成像光導光部 302的入光面3021,成像光202並由成像光導光部302的出光面3022 射出。於一實施例中,包含兩個光源20相對設置,但不以此為限,於 其他實施例中,可包含複數個光源20相對導光元件30對稱設置。 接續上述,成像模組40與導光元件30光學耦合,用以接受來自成 像光導光部302的出光面3022的成像光202,以形成影像,於一實施 例中,成像模組40可包含一透鏡組401與一影像感測元件402,其中 影像感測元件402包含一電荷麵合元件(charge Coupled Device, CCD)互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor ’ CMOS)感測器、軟片或以上之組合。可以理解的 疋,為使成像光202於成像模組40成像,成像光導光部302為一聚光 透鏡結構,用以將成像光202匯聚於成像模組40。於一實施例中,成 像光導光部302可為-物方遠心透鏡結構,使樣品丨之表面下之結構 所反射之成像光202的主光線垂直樣品丨之表面。因此不論樣品i表 面下的、纟。構的貫際位置如何在景深範圍内移動,成像光加的主光線 通過成像光導光部3〇2的角度不變,於成像模組4〇形成的像高為一定 值,進而可降低景深所造成的量測誤差。 , ,說明的是’本發明之實施例之影像操取系統導光請如之照明 刺用私1\301與成像光導光部302為一體成型之結構,舉例來說,可 方式達成。較佳者,導光元件3G為折射率介於L20〜1.70 間的材料’糊來說,可為聚曱基丙騎甲咖lymeth細hacrylate, 5 201241424 或其健騎料,射PMMa的折 ==11 約為M5,因此照明総於此介面』 L:f °照明光201穿透表皮層11峨率,提升照明 =率’進而可降低光源20的消耗功率或降低光源2〇設置的數量。另 ,-體成型的導光70件30 ’具有組裝快速與成本較低等優勢。 光^=的’照明光導光部301的出光面則與成像光導 t 為同—平面,並直接與樣品1接觸,但不以此 =考圖1b’為不意圖顯示依據本發明另—實施例之影像擷取 弁而抓、中照日月光導光部301的出光面3011與成像光導光部302的入 ίΙΓΓ,面’照明光導光部301的出光面3011直接接觸樣品1, 盘出光射^樣品11 ’成像光導光部3Q2的入光面3021 像出先面3022刀別為-凸面’用以匯聚成像光2〇2於成像模組4〇成 極可為-人光源,舉例來說,可為—發光二極體、雷射二 2或其他光源,光源2〇所發出的光線直接與導光 2部則光學耗合。另外,由圖la、圖lb可知’光源^置= 2照明光201相對於照明光導光部3〇1的出光面·垂直地與導光 =牛30的照明光縣部3〇1光學轉合。可以理解的是,於另一實施例 ==ic所示’光源20設置的方向使照明光201相對於照明光導光 2。01的出光面3011水平地與導光元件30的照明光導光部3〇1光學耦 n圖2a,圖2a為示意_示依據本發明另—實施例之影像掏 、中光源2〇可為一二次光源,其包含—點光源21盘一橢圓 表!反射罩22。點光源21設置於橢圓球型反射罩22之一焦^上點 =21發出照明光201經過翻球型反射罩22反射後與導、光元件3〇 勺2光導光部301光學耦合,照明光2〇1藉由照明光導光部3〇1的 3〇11射出並穿過樣品!之表面。較佳者,_球型反射罩η 的另-焦點設置於樣品(皮膚的真皮層12内,可提升照明的效果。於 201241424 -實施例中’導光元件3G的照明光導光部為 Ϊ光部302的入光面地1為-平面,成像光導光部成像光 為一凸面,用以匯聚成像光2G2於成像模 ==迎 圓球型反射罩財通過焦點的長軸221垂直二 面則’於另-實施例中,如圖2b所示,長轴221與照明光導^^ 的出^面3G11之間具有—傾斜角,使橢圓球型反射罩22的另—焦點 位置靠近成像光導光部3〇2,以提升照明效率。 ’…, 综合上述,本發明之影細取系統中,一體成型的導光元件包含 照明光導光部與雜光導光部,分_崎光源的照明光引導穿過樣 品之表面,以及引導成像光至成像模組成像。不需使用浸人油便能降 低照明光的反射’增加照邮穿透表皮層的穿透率,提升照明效率。 另外’-體的導光元件,具有組裝快速與成本較低等優勢。 以上所述之貫她例僅疋為說明本發明之技術思想及特點,其目 的在使熟習此項技藝之人士能夠瞭解本發明之内容並據以實施,當不 能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之 均等變化或修飾,仍應涵蓋在本發明之專利範圍内。 201241424 【圖式簡單說明】 圖la為顯示依據本發明一實施例之影像擷取系統的示意圖。 圖lb為顯示依據本發明另一實施例之影像擷取系統的示意圖。 圖lc為顯示依據本發明另一實施例之影像擷取系統的示意圖。 圖2a為顯示依據本發明另一實施例之影像擷取系統的示意圖。 圖2b為顯示依據本發明另一實施例之影像擷取系統的示意圖。 【主要元件符號說明】 1 樣品(皮膚) 11 表皮層 12 真皮層 20 光源 21 點光源 22 橢圓球型反射罩 221 長轴 201 照明光 202 成像光 30 導光元件 301 照明光導光部 3011 照明光導光部的出光面 3012 反射面 3013 聚光曲面 201241424 302 3021 3022 40 401 成像光導光部 成像光導光部的入光面 成像光導光部的出光面 成像模組 透鏡組 402 影像感測元件201241424, EMBODIMENT OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to an image capture system, and more particularly to an image capture system that enhances illumination efficiency. [Prior Art] In the image capturing system for detecting skin, especially for detecting other diseases such as cancer cells in the dermis layer, the external light source of visible light is generally illuminated, and the l line passes through the epidermis into the dermis layer. Device observation. Therefore, in order to observe or detect the state of the deeper layers of the skin, reducing the ratio of the reflection of the light and the light in the epidermis is an important issue for improving the quality of observation or detection. - The prior art utilizes - impregnating oil between the skin and the contact plate in the detection system, and the light from the source is directly illuminated to the skin for detection. The purpose of observing the deep structure of the skin is achieved by reducing the reflection of the glass contact plate and the impregnation of the oil. However, before the test, it is necessary to apply the immersion oil on the skin. Although it is troublesome and time-consuming to detect, the glass contact plate is prone to generate ghost light, which affects the image quality. Another conventional technique utilizes a light directing element that contacts the surface of the skin to be positioned at the location of the image to be imaged, to direct illumination and to provide illumination around the location of the image to be captured. The advantage is that it does not require the use of immersion oil, is less prone to ghosting, and simplifies the procedure. The disadvantage is that the central part of the position to be observed is not illuminated by the light source, which may cause shadows in the middle of the image. , ° Another - the known technology is the illumination source with prism and syUtter), which makes the illumination light produce the effect of coaxial illumination. The advantage is that the illumination is uniform, but the disadvantages are 疋 complex, large, and The imaging coaxial is easy to produce ghosts on the pupil and the beam splitter, affecting the image quality. ‘As mentioned above, how to simplify the structure, reduce the manufacturing cost, reduce the reflection of illumination light, and improve the illumination efficiency of the image capture system is the goal that is currently in great need. 3 201241424 [Summary of the Invention] The reflectivity of the Moonlight 2 image capture system can reduce the speed and cost of the illumination without using immersion oil. The rate is also a 'integrated light guide element with assembly light 2 :::j light, including: - illumination light guide ί! ί =:::;==rr like light guide 1: integrated with the imaging light guide to form the illumination light guide of the 2 light guide elements The description of the embodiment can be used to accept the =2=^- combination from the object ,, and the other aspects, miscellaneous and advantages can be illustrated by the drawings and the [implementation] system please =:=== embodiment _ Take the skin, or - skin section, which contains a table 丫 = sample. °1 can be a living system comprising: at least - a light source 2 〇, a light guide 曰 disk 2' cortex 12. The image capture system provides an illumination light plus. Light guide tree II. The light source 20 is used for the image light guiding portion 3. 2, wherein the illumination light guiding light 2 is in contact with the light source 2 〇 and the illumination light guiding portion 3 〇 1 light directly exits the light emitting surface 3011 and passes through the surface of the sample 丨. The illumination light 201 is described as follows. After the illumination light 2〇1 enters the illumination light guiding unit 3〇1, the illumination light 201 is guided to the light-emitting surface 3011 of the illumination light guiding unit 301 by appropriate light 201241424. In other words, the reflective material is disposed on the surface of the illumination light guiding portion 301 to be reflective by printing or attaching, or the surface thereof is designed as a total reflection optical surface. In the embodiment of Fig. 1a, the illumination light guiding portion 301 of the light guiding element 30 includes a reflecting surface 3012 having a slope for reflecting a portion of the illumination light 201' to expand the range of illumination. In one embodiment, the illumination light guiding portion 301 of the light guiding element 30 further includes a collecting curved surface 3013 optically coupled with the light source 20 to effectively converge the illumination light 201 to the illumination light guiding portion 301. Next, the imaging light guiding portion 302 includes a light incident surface 3021 and a light exit surface 3022. The structure of the image light 202 reflected by the structure under the surface of the sample 1 in the complex v > enters the light incident surface 3021 of the imaging light guiding portion 302. The imaging light 202 is emitted from the light emitting surface 3022 of the imaging light guiding portion 302. In an embodiment, the two light sources 20 are disposed opposite to each other, but not limited thereto. In other embodiments, the plurality of light sources 20 may be symmetrically disposed with respect to the light guiding elements 30. Continuing the above, the imaging module 40 is optically coupled to the light guiding element 30 for receiving the imaging light 202 from the light emitting surface 3022 of the imaging light guiding portion 302 to form an image. In an embodiment, the imaging module 40 can include a The lens group 401 and an image sensing component 402, wherein the image sensing component 402 comprises a charge coupled device (CCD) complementary metal oxide semiconductor (CMOS) sensor, a film or The combination of the above. It can be understood that, in order to image the imaging light 202 on the imaging module 40, the imaging light guiding portion 302 is a concentrating lens structure for concentrating the imaging light 202 to the imaging module 40. In one embodiment, the imaging light guiding portion 302 can be an object-side telecentric lens structure such that the principal ray of the imaging light 202 reflected by the structure under the surface of the sample is perpendicular to the surface of the sample. Therefore, regardless of the surface of the sample i, 纟. How the position of the structure moves within the depth of field, the angle of the chief ray of the imaging light passing through the imaging light guiding portion 3 不变 2 is constant, and the image height formed by the imaging module 4 为 is a certain value, thereby reducing the depth of field The measurement error caused. It is to be noted that the light guiding system of the embodiment of the present invention is configured such that the illumination 1/301 and the imaging light guiding unit 302 are integrally formed, for example, in a manner that can be achieved. Preferably, the light guiding element 3G is a material having a refractive index of between L20 and 1.70, and may be a polystyrene gamma lymeth fine hacrylate, 5 201241424 or its riding material, and a PMMA discount = =11 is about M5, so the illumination is at this interface. L:f ° illumination light 201 penetrates the skin layer 11 and increases the illumination = rate', which in turn reduces the power consumption of the light source 20 or reduces the number of light source settings. In addition, the body-formed light guide 70 member 30' has the advantages of quick assembly and low cost. The light-emitting surface of the illumination light guiding portion 301 of the light ^= is the same plane as the imaging light guide t, and is directly in contact with the sample 1, but this is not intended to show another embodiment according to the present invention. The light-emitting surface 3011 of the illuminating light guiding portion 301 and the light-emitting surface 302 of the image-forming light guiding portion 302 are directly contacted with the light-emitting surface 3011 of the surface of the illuminating light guiding portion 301, and the light-emitting surface is directly sampled. 11 'The light incident surface 3021 of the imaging light guiding portion 3Q2 is like the front surface 3022, the convex surface is used to converge the imaging light 2〇2, and the imaging module 4 can be a human light source. For example, - Light-emitting diode, laser 2 or other light source, the light emitted by the light source 2 直接 is directly optically compatible with the light guide 2 . In addition, as shown in FIG. 1a and FIG. 1b, it can be seen that the light source is set to 2, the illumination light 201 is optically coupled to the illumination light guide unit 3〇1, and the illumination light is proportional to the illumination light of the cow 30. . It can be understood that, in another embodiment ==ic, the direction in which the light source 20 is disposed is such that the illumination light 201 is horizontally opposite to the illumination light guide portion 311 of the illumination light guide lens 2. 〇1 optical coupling n FIG. 2a, FIG. 2a is a schematic diagram showing an image 掏 according to another embodiment of the present invention, the middle light source 2 〇 can be a secondary light source, which comprises a point light source 21 disk-elliptical table! Reflector 22. The point light source 21 is disposed on one of the ellipsoidal reflectors 22 at a point of focus = 21. The illumination light 201 is reflected by the reticle reflector 22 and optically coupled to the light guiding unit 301 of the light guide member 3, and the illumination light is illuminated. 2〇1 is emitted by the 3〇11 of the illumination light guiding unit 3〇1 and passes through the sample! The surface. Preferably, the other focus of the spherical reflector η is disposed in the sample (the dermis layer 12 of the skin to enhance the illumination effect. In 201241424 - in the embodiment, the illumination light guiding portion of the light guiding element 3G is dawn The entrance surface 1 of the portion 302 is a plane, and the imaging light of the imaging light guiding portion is a convex surface for condensing the imaging light 2G2 to the imaging mode == the spherical spherical reflector is passed through the long axis 221 of the focus. In the other embodiment, as shown in FIG. 2b, the long axis 221 and the output surface 3G11 of the illumination light guide have an inclination angle, so that the other focus position of the ellipsoidal reflector 22 is close to the imaging light guide. In the above-mentioned image capturing and extracting system, the integrally formed light guiding element includes the illumination light guiding portion and the stray light guiding portion, and the illumination light guide of the sub-saki light source is integrated. Passing through the surface of the sample and guiding the imaging light to the imaging module for imaging. Reducing the reflection of the illumination light without using the dip oil can increase the penetration rate of the photo-penetrating epidermis and improve the illumination efficiency. Light guiding element with quick assembly and low cost The above-mentioned examples are merely illustrative of the technical spirit and characteristics of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the contents of the present invention and to implement the present invention. The scope of the patent, that is, the equivalent changes or modifications made by the spirit of the invention, should be included in the scope of the invention. 201241424 [Simplified illustration of the drawings] Figure la is an image showing an image according to an embodiment of the invention. Figure lb is a schematic diagram showing an image capturing system according to another embodiment of the present invention. Figure 1c is a schematic diagram showing an image capturing system according to another embodiment of the present invention. 2b is a schematic diagram showing an image capturing system according to another embodiment of the present invention. [Explanation of main component symbols] 1 sample (skin) 11 skin layer 12 dermis layer 20 light source 21 point light source 22 ellipsoidal reflector 221 long axis 201 illumination light 202 imaging light 30 light guiding element 301 illumination light guiding part 3011 Illumination light guide light exit surface 3012 Reflecting surface 3013 Converging curved surface 201241424 302 3021 3022 40 401 Imaging light guiding portion The light incident surface of the imaging light guiding portion The light emitting surface of the imaging light guiding portion Imaging module Lens group 402 Image sensing element