TW201240321A - Motor control device of electrical winder - Google Patents

Motor control device of electrical winder Download PDF

Info

Publication number
TW201240321A
TW201240321A TW100129200A TW100129200A TW201240321A TW 201240321 A TW201240321 A TW 201240321A TW 100129200 A TW100129200 A TW 100129200A TW 100129200 A TW100129200 A TW 100129200A TW 201240321 A TW201240321 A TW 201240321A
Authority
TW
Taiwan
Prior art keywords
phase
rotation
current
motor
speed
Prior art date
Application number
TW100129200A
Other languages
Chinese (zh)
Other versions
TWI523402B (en
Inventor
Yousuke Katayama
Original Assignee
Shimano Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Kk filed Critical Shimano Kk
Publication of TW201240321A publication Critical patent/TW201240321A/en
Application granted granted Critical
Publication of TWI523402B publication Critical patent/TWI523402B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • H02P2006/045Control of current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The subject is to provide a sensor-less brushless motor capable of responding to the speed increases/decreases and saving cost. The motor control unit (60) uses a motor (12) with the sensor-less brushless motor of 2 poles 3 phases to make the reel (10) rotate toward the winding direction. The motor control unit (60) comprises an ignition control unit (65) and a rotation control unit (66). When the ignition control unit (65) is unable to detect a rotation phase due to reverse current, the coils in phase 3 follow the preset order of several mode patterns of rotation phases corresponding to a rotating element (17) until the rotation direction judgment unit (64) rotates the rotating element (17) toward the winding direction by one of the several mode patterns, which makes the current flow to thereby start the motor (12). If the rotation phase of the rotation speed control unit (66) can be detected, it corresponds to the rotation phase detected by the reverse current to make current flow through one of the coils (16b) in phase 3.

Description

201240321 六、發明說明: 【發明所屬之技術領域】 本發明,是有關於馬達控制裝置,特別是,可藉由逆 起電流進行位置檢出,藉由具有2極的磁鐵及UVW的3相的 線圈的無電刷馬達使捲筒朝線捲取方向旋轉之電動捲線器 的馬達控制裝置。 【先前技術】 對於將捲筒朝線捲取方向旋轉的電動捲線器,習知是 使用無電刷馬達(例如專利文獻1參照)。習知的電動捲 線器,是使用具有可檢出無電刷馬達的旋轉件的旋轉相位 的位置感測器。電動捲線器,因爲被釣的魚種不同而拉引 力不同,所以負荷的變動很大。在這種電動捲線器使用具 有位置感測器的無電刷馬達的話,因爲無論負荷大的低速 旋轉或負荷小的高速旋轉皆可檢出旋轉件的位置,所以馬 達的控制容易。 [先行技術文獻] [專利文獻] [專利文獻1]日本特開2000- 1 7 5 602號公報 【發明內容】 (本發明所欲解決的課題) 在前述習知的構成中,使用具有位置感測器的無電刷 馬達。因此,對於負荷的變動控制容易。但是,具有位置 201240321 感測器的無電刷馬達,與無感測器的無電刷馬達相比,構 造複雜。且,因爲搭載位置感測器而配線數很多,所以電 氣配線成爲複雜。因此,使用具有位置感測器的無電刷馬 達的話,電動捲線器的成本會變高。 另一方面,在無電刷馬達中,具有在開關的斷開( OFF )時使滯留於線圈的電氣藉著由旋轉件的旋轉所發生 的逆起電流來檢出旋轉件的旋轉相位的無感測器的無電刷 馬達。無感測器的無電刷馬達,因爲沒有位置感測器’所 以成本低,且配線作業容易。 但是藉由逆起電流檢出旋轉相位的情況,旋轉件若低 速旋轉的話逆起電流會變小,而無法檢出旋轉件的旋轉相 位。因此,習知的無感測器的無電刷馬達,是被使用於硬 碟(HD)等的比較高速且定常旋轉的裝置,而不適合被 使用於旋轉速度變動激烈的電動捲線器中。 本發明的課題,是即使使用無感測器的無電刷馬達’ 也可以對應速度的增減,且可以削減成本。 (用以解決課題的手段) 發明1的電動捲線器的馬達控制裝置,是具有設有2極 的磁鐵的旋轉件及設有UVW的3相的線圈的定子,可藉由 逆起電流檢出旋轉件的旋轉相位,藉由利用單向離合器使 線吐出方向被旋轉禁止的無電刷馬達,將捲筒朝線捲取方 向旋轉。馬達控制裝置,具備:旋轉方向判斷部、及旋轉 相位檢出部、及起動控制部、及旋轉控制部。旋轉方向判 -6- 201240321 斷部,是檢出旋轉件的旋轉方向。旋轉相位檢出部,是藉 由逆起電流來檢出旋轉件的旋轉相位。若起動控制部因爲 逆起電流而無法檢出旋轉相位時,直到旋轉方向判斷部判 斷出旋轉件是由複數模式圖的其中任一朝線捲取方向旋轉 爲止,由對應旋轉件的旋轉相位的複數模式圖依預定的順 序使電流流動於3相的線圈來起動馬達。旋轉控制部,若 可檢出旋轉相位的話,對應由逆起電流所檢出的旋轉相位 使電流流動於3相的線圈的其中任一來控制無電刷馬達。 在此馬達控制裝置中,若旋轉相位檢出部無法檢出旋 轉件的旋轉相位的起動時,藉由起動控制部使無電刷馬達 被起動。在起動控制部中,因爲無法檢出旋轉件的旋轉相 位,所以直到旋轉方向判斷部判斷出電流是由對應旋轉件 的旋轉相位的複數模式圖依序間歇地使旋轉件朝線捲取方 向旋轉爲止使電流流動於3相的線圈。藉此,不需使用感 測器檢出旋轉件的旋轉相位,就可以將旋轉件朝線捲取方 向旋轉。因此,若成爲可以藉由逆起電流檢出旋轉件的旋 轉相位的話,就切換至旋轉控制部的控制。旋轉控制部’ 是藉由逆起電流檢出旋轉件的旋轉相位’使電流對應旋轉 相位流動於3相的線圈的其中任一。 在此,對於例如因爲負荷的變動使旋轉速度大大地變 化的電動捲線器所使用的無電刷馬達’在可以藉由逆起電 流檢出旋轉相位時、及無法檢出旋轉相位的起動時’分別 進行不同的控制。因此,即使藉由無感測器的無電刷馬達 將電動捲線器驅動,也可以對應速度的增減’且可以削減 -7- 201240321 成本。 發明2的電動捲線器的馬達控制裝置,是如發明1的裝 置’複數模式圖,是具有第1模式圖至第6模式圖的6個模 式圖。第1模式圖,是使電流從U相線圈朝V相線圈流動的 模式圖。第2模式圖,是使電流從u相線圈朝W相線圈流動 的模式圖。第3模式圖,是使電流從V相線圈朝w相線圏流 動的模式圖。第4模式圖,是使電流從V相線圈朝U相線圈 流動的模式圖。第5模式圖,是使電流從W相線圈朝U相線 圈流動的模式圖。第6模式圖,是使電流從W相線圏朝V相 線圈流動的模式圖。 起動控制部具有模式圖流通部,其是依第1模式圖至 第6模式圖的順序,直到旋轉方向判斷部判斷出旋轉件是 朝線捲取方向旋轉爲止讓電流預定時間流動於3相的線圈 〇 在此情況下,依第1模式圖至第6模式圖的順序使電流 流動於UVW的3相的線圏的話,在S極是與U相的線圈相面 對的狀態下,旋轉件會朝線捲取方向旋轉。因此,即使旋 轉件的旋轉相位是其中任一,旋轉件也必定由其中任一的 模式圖朝線捲取方向旋轉。因此,旋轉方向判斷部若確認 是朝線捲取方向的旋轉的話,不需使用位置感/測器就可使 旋轉件朝線捲取方向旋轉。 發明3的電動捲線器的馬達控制裝置,是如發明2的裝 置,進一步具備供檢出流動於定子的電流的電流値及電流 的流通方向用的電流檢出部。旋轉方向判斷部,是藉著由 ⑧ -8 - 201240321 電流檢出部被檢出的電流値及電流方向來判斷無電刷馬達 是否朝線捲取方向旋轉。在此情況下,在藉由單向離合器 使旋轉件的線吐出方向的旋轉被禁止的無電刷馬達的定子 ’當可讓旋轉件朝線吐出方向旋轉的電流若流動的話,因 爲無法旋轉所以電流値會變高。因此,可以藉由電流値及 其電流方向精度佳地判斷旋轉件的線捲取方向的旋轉,無 關於旋轉件的旋轉相位就可以使旋轉件確實地朝線捲取方 向旋轉。 發明4的電動捲線器的馬達控制裝置,是如發明2或3 .的裝置,進一步具備藉由旋轉相位檢出馬達的旋轉速度用 的馬達速度檢出部,旋轉控制部,若旋轉速度爲第1速度 以下時,對應由旋轉相位檢出部所檢出的旋轉相位使電流 由第1模式圖至第6模式圖的其中任一流通於3相的線圈, 若旋轉速度爲比第1速度快的第2速度以上時,藉由來自旋 轉相位檢出部的中斷訊號及進角控制使電流流通於3相的 線圈。 在此情況下,例如,無電刷馬達是以第1速度例如 40 0Orpm以下旋轉時,不是讀入被檢出的旋轉相位來進行 進角控制而是決定勵磁的線圈使電流流動。且’無電刷馬 達是以第2速度例如5000rpm以上旋轉時’藉由來自旋轉速 度檢出部的中斷訊號及進角控制,藉由接著現在的勵磁位 置之後來到的3相的中斷訊號使電流流動於線圈。由此’ 無電刷馬達的旋轉若速度較慢時,則可以進行高精度的旋 轉控制,而若速度較高時,則可以提高效率並抑制電力消 201240321 耗。 發明5的電動捲線器的馬達控制裝置,是如發明1至4 的其中任一的裝置,進一步具備:捲筒速度設定部、及捲 筒速度檢出部。捲筒速度設定部,是將捲筒的旋轉速度設 定成複數階段的其中任一。捲筒速度檢出部,是檢出捲筒 的旋轉速度。旋轉控制部,是參照捲筒速度檢出部的檢出 結果使成爲由捲筒速度設定部被設定的捲筒旋轉速度的方 式控制無電刷馬達。 在此情況下,可以將捲筒速度由複數段且一定地控制 ,並且即使因爲負荷使捲筒速度下降,並使馬達的旋轉變 慢而無法檢出旋轉件的旋轉相位,也可以藉由低速控制部 由高扭矩使馬達旋轉。 [發明的效果] 依據本發明,對於例如藉由負荷的變動使旋轉速度大 大地變化的電動捲線器所使用的無電刷馬達,是在可以藉 由逆起電流檢出旋轉相位時、及無法檢出旋轉相位的起動 時,分別進行不同的控制。因此,即使藉由無感測器的無 電刷馬達將電動捲線器驅動,也可以對應速度的增減’且 可以削減成本。 【實施方式】 <捲線器的整體構成> 在第1圖及第2圖中,採用本發明的一實施例的電動捲 -10- ⑧ 201240321 線器,是藉由從外部電源被供給的電力被馬達驅動的大型 的捲線器。且,電動捲線器是具有可對應線吐出長度或線 捲取長度顯示釣組水深的水深顯示功能的捲線器。 電動捲線器,主要具備:可裝設於釣竿的捲線器本體 1、及被配置於捲線器本體1側方的捲筒1 〇的旋轉用的操作 桿2、及被配置於操作桿2的捲線器本體1側的牽引力調整 用的星狀牽引器3、及水深顯示用的計數器盒4。 捲線器本體1,具有:框架7、及將框架7的左右覆蓋 的第1側蓋8a及第2側蓋8b、及將框架7的前部覆蓋的前蓋9 (第2圖)。框架7,是例如含浸了玻璃纖維的聚醯胺樹脂 等的合成樹脂製,具有:第1側板7a及第2側板7b、及將那 些由下部、後部及前上部的3處連結的複數連結構件7c。 如第2圖所示,在捲線器本體1的內部’設有:與捲筒 10連動而動作的均勻捲線機構13 (第2圖)、和將操作桿2 及馬達12的旋轉傳達至捲筒10的旋轉傳達機構等。 且,與馬達12及操作桿2連結的線捲用的捲筒1〇是可 旋轉自如地被支撐在捲線器本體1的內部。在捲筒1〇的內 部,配置有將捲筒10朝線捲取方向旋轉驅動的馬達12。 如第1圖所示,操作桿2是可旋轉自如地被支撐在第2 側蓋8b的中央下部。且,將馬達12在複數階段控制用的調 整操作桿5是可擺動自如地被支撐在操作桿2的支撐部分的 上方前部。調整操作桿5,是作爲將捲筒速度設定成複數 階段的其中任一的捲筒速度設定部的功能。且’調整操作 桿5,也作爲將作用於釣線的張力設定成複數階段的其中 -11 - 201240321 任一的張力設定部的功能。離合器操作構件11是可擺動自 如地被配置在調整操作桿5的後方。離合器操作構件1 1, 是通斷(ΟΝ/OFF)操作將操作桿2及馬達12及捲筒10的驅 動傳達通斷(ΟΝ/OFF )用的離合器(無圖示)。將此離 合器導通(ON )的話,在由釣組的自重所產生的線吐出 中,可以將線吐出動作停止。電源纜線連接用的纜線連接 器1 4是朝下方地被裝設在操作桿2相反側的第1側蓋8a。 在前蓋9中,形成有供釣線通過用的橫長的開口 9a。 在下部的連結構件7c中,形成有將電動捲線器裝設在釣竿 用的竿裝設腳部7d。 <馬達的構成> 馬達12,是例如額定輸出爲180瓦程度的無電刷馬達 ,對於使用於電動捲線器者是屬於比較大容量者。 馬達12,是如第2圖所示,具有:馬達殼15、及設在 馬達殼15內周面的定子16、及被配置於定子16內周側的旋 轉件17、及固定有旋轉件的輸出軸18。馬達殼15,是爲了 提高耐腐蝕性而爲經過耐酸鋁處理的鋁合金製的構件。馬 達殼15,是如第4圖所示,具有:被配置於一端的第1蓋部 15a、及被配置於另一端的第2蓋部15b、及被配置在第1蓋 部15a及第2蓋部15b之間的中間蓋部15c。第1蓋部15a及第 2蓋部15b,是具有相同外徑的有底筒狀的構件,筒狀部分 是被相面對配置。中間蓋部1 5c,是具有與第1蓋部1 5a及 第2蓋部15b相同外徑的筒狀的構件。第1蓋部15a、第2蓋 201240321 部15b及中間蓋部15c,是藉由螺入從第1蓋部15a側被插入 的第2蓋部15b的複數根(例如3根)固定螺栓29被固定成 一體。固定螺栓29,是經過電鍍等的防蝕被膜的防蝕處理 。因此,中間蓋部15c,是藉由第1蓋部15a及第2蓋部15b 被挾持。在第2蓋部15b的筒狀部分中,如第2圖及第4圖所 示,排水用的至少一個的貫通孔1 5 d是沿著徑方向形成。 貫通孔1 5d是爲了將在馬達1 2內部因結露等發生的水從馬 達12內部排除而設置。貫通孔15d,是在朝向竿裝設腳部 7 d的下部、及其兩側被設置例如3個。 定子1 6,具有:被固定於中間蓋部1 5c的複數(例如3 個)層疊芯16a、及被捲繞在層疊芯16a的U相、V相及W相 的3個線圈1 6 b。層疊芯1 6 a,是例如無方向性矽鋼板製。 在層疊芯16a中,形成有藉由固定螺栓29在旋轉方向被定 位的呈U字狀凹陷形成的複數(3個)定位凹部16c (第2圖 )。定子16,其露出部分是經過電鍍等的防蝕被膜的防蝕 處理。又,在第4圖中,固定螺栓29雖揭示在直徑上被配 置2根,但是這只是示意,實際上,如第2圖所示,是在周 方向等間隔地被配置3根固定螺栓29。 旋轉件17,包含:具有S極及N極2極的磁鐵17a、及將 磁鐵17a保持的磁鐵支架17b。磁鐵支架17b,是可一體旋 轉地連結於輸出軸1 8 »旋轉件1 7,其露出部分是經過電鍍 等的防蝕被膜的防蝕處理。 輸出軸18,是例如不銹鋼合金製的軸,藉由左右一對 的軸承27可旋轉自如地被支撐在第1蓋部15a及第2蓋部15b -13- 201240321 。在輸出軸18的第1端(第5圖左端),裝設有禁止輸出軸 18朝線吐出方向旋轉用的單向離合器28。單向離合器28, 是滾子離合器,且是使外輪28a不可旋轉地被裝設在捲線 器本體1中的第1側板7a的膨出部7e內。在輸出軸18的第2 端(第5圖右端),固定有構成無圖示的旋轉傳達機構的 行星齒輪機構的太陽齒輪。馬達12的旋轉是透過行星齒輪 機構被傳達至捲筒10中。行星齒輪機構,是由例如1/50的 減速比將馬達12的旋轉減速。 馬達殻15的第2蓋部15b,是在對準於膨出部7e的狀態 下被連結,且藉由複數(例如2根)固定螺栓31被固定。 由此使馬達12被固定於捲線器本體1。與線圈16b電連接的 3條馬達線34是從第2蓋部15b的端部朝向計數器盒4延伸。 在捲線器本體1的第1側板7a及第2側板7b的上部,如 第1圖及第2圖所示,固定有供顯示被裝設於釣線的先端的 釣組的水深用的計數器盒4。 <計數器盒構成> 計數器盒4,是如第2圖及第3圖所示,具備:被載置 於捲線器本體1的前上部的殼本體19、及具有液晶顯示器 的水深顯示部22、及捲線器控制部23。 殻本體19,是被固定於捲線器本體1的第1側板7a及第 2側板7b。殻本體19’是具有上面部33’且具有:露出外 部的合成樹脂製的上殼構件3〇、及被固定於上殻構件30的 下殼構件32。 ⑧ -14- 201240321 上殼構件3 0,是例如’由被玻璃短纖維強化的聚醯胺 樹脂製。上殼構件30,其顯示部分是形成前細狀。上殻構 件3 0 ’是在內部與下殻構件3 2 —起形成收納空間。 在上面部33的顯示部分,形成有呈大致梯形形狀的顯 示用開口的顯示框33a。顯示框33a的開口,是藉由被熔接 於上殼構件30的透明蓋37塞住。 .且’如第3圖所示,在顯示框33a的後方,配置有選單 開關SW1、決定開關SW2、及記憶開關SW3。選單開關 SW 1 ’是例如進行選擇操作用的選單操作用的開關。決定 開關SW2 ’是例如由選單開關SW被決定選擇的操作用的開 關。記憶開關S W3 ’是例如棚(魚類洄游層深度)記憶用 的開關。選單開關SW 1,是爲了選擇水深顯示部22內的顯 示項目而被使用的按鈕。例如每次操作選單開關S W 1,就 會切換:從上模式(將釣組的水深由從水面的深度顯示的 模式)'及從底模式(將釣組的水深由從水底的水深顯示 的模式)。且將選單開關SW1持續3秒以上長按的話,每 次長按,就可以將馬達1 2的控制模式切換至速度一定模式 及張力一定模式。 在此,速度一定模式,是可對應調整操作桿5的擺動 位置將捲筒10的旋轉速度的上P速度由複數階段(例如31 階段)進行多段速度控制的模式。張力一定模式,是可對 應調整操作桿5的擺動位置將作用於釣線的張力的上限張 力由複數階段(例如3 1階段)進行多段張力控制的模式。 又,該兩模式的最高階段的3 1階段,皆是由1 〇〇%功率使馬 -15- 201240321 達1 2動作的速(快)捲速度,雖進行電流限制,但是不進 行速度控制。又’在速度一定模式中,第1階段的捲筒旋 轉速度,是被控制於28”111(”111=每1分鐘的旋轉數)至 3 Orpm的範圍。因此’馬達12的旋轉速度,是被控制於 1400rpm 至 1 500rpm 的範圍》 下殼構件32’是例如,由鋁合金及鎂合金等的輕量熱 傳導率較高的金屬製的框狀的構件。下殼構件32,是藉由 複數根(例如4根)固定螺栓(無圖示)將上殼構件30固 定。水深顯示部22及捲線器控制部23用的2枚的電路基板 20是被搭載於下殼構件32。 包含馬達12驅動用的複數FET (電場效果晶體管)25 的馬達驅動電路70是被搭載於下側的電路基板20下面。 FET25,是作爲將馬達12進行PWM (脈衝寬度變調)控制 時使對應功率比進行開閉的開關元件的功能。且,FET2 5 ,是作爲例如將馬達12的定子16的線圏16b依序勵磁及消 磁用的開關元件的功能。且’在下側的電路基板20連接有 電容器21。電容器21,是具有將從FET25發生的雜訊平滑 化的功能。且,具有將馬達1 2的逆起電流整流的功能。藉 由將此逆起電流整流,檢出馬達1 2的旋轉相位。藉由此被 檢出的旋轉相位控制FET25將線圏1 6b依序勵磁及消磁’使 馬達12旋轉。且,藉由此旋轉相位檢出馬達12的旋轉速度 〇 如第3圖所示,水深顯示部22 ’具有:被配置於中央 的4位數的1 6區段顯示的水深顯示領域2 2 a、及被配置於其 -16- 201240321 右下方的3位數的7區段的記憶水深顯示領域22b、及被 置於記憶水深顯示領域22b的左方的7區段的階段顯示領 22c。階段顯示領域22c,是將調整操作桿5的位置(階 SC),由例如0至30爲止的31階段顯示。在此,在水深 示領域22a因爲使用16區段的顯示,所以水深顯示更容 被目視確認。 <捲線器控制部的構成> 捲線器控制部23,是如第5圖所示,其功能構成具 :將馬達12控制的馬達控制部60 (馬達控制裝置的一例 、及將水深顯示部22控制的顯示控制部6 1。馬達控制部 ,是將馬達12進行PWM控制,並且進行將馬達12的定子 的複數線圈1 6b勵磁及消磁的控制。此勵磁及消磁控制 ’馬達控制部6 0,是藉由利用電容器2 1將馬達1 2的逆起 流整流而獲得的資料來檢出馬達1 2的旋轉相位,並對應 檢出的旋轉相位依序將複數線圈1 6b勵磁及消磁。 在捲線器控制部23中,連接有:調整操作桿5、選 開關SW1、決定開關SW2及記憶開關SW3。且,連接有 檢出捲筒10的旋轉速度及旋轉方向用的捲筒感測器41、 將朝線圈16b的通電通斷(ΟΝ/OFF)並且將馬達12進 PWM驅動的包含5個FET25及電容器21的馬達驅動電路 、及蜂鳴器47、及水深顯示部22、及記憶部46、及其他 輸入出部。在馬達驅動電路70中,設有供檢出流動於馬 12的電流値用的電流檢出部70a。電流檢出部70a,是除 配 域 段 顕 易 有 ) 60 16 時 電 被 單 及 行 7 0 的 達 了 -17- 201240321 流動於馬達的電流値以外,也可檢出電流方向。 捲筒感測器4 1,是由被前後並列配置的2個簧片開關 所構成,其中任一的簧片開關皆可先藉由判斷是否有檢出 脈衝發出來檢出捲筒10的旋轉方向。且,可以藉由檢出脈 衝來檢出捲筒的旋轉數及旋轉速度。 記億部46是由例如EEPROM等的不揮發記憶體所構成 。在記憶部46中,如第6圖所示,設有:將棚(魚類洄游 層深度)位置等的顯示資料記憶的顯示資料記憶區域5 0、 及將供顯示實際的線長及捲筒旋轉數的關係用的線長資料 記憶的線長資料記憶區域5 1、及將對應階段SC的捲筒1 0的 捲起速度(rpm )及捲起扭矩(電流値)記憶的旋轉資料 記憶區域5 2、及將各種的資料記憶的資料記億區域5 3。 在旋轉資料記憶區域52中,記億有:速度一定模式中 的各階段SC的上限速度Vsc、上限速度Vsc的下限値Vscl及 上限値Vsc2的資料、及張力一定模式中的各階段SC的上限 張力Qs的下限値Qscl及上限値Qsc2的資料。在資料記憶區 域5 3中容納有有關於線長的各種資料。容納有例如船緣停 止位置。 馬達控制部60 ’其由軟體實現的功能構成,’具有:旋 轉相位檢出部6 2、及馬達電流控制部6 3、及旋轉方向判斷 部64、及起動控制部65、及旋轉控制部66、及捲筒速度檢 出部67、及捲筒速度控制部68、及模式切換部69»旋轉相 位檢出部6 2,是藉由將馬達1 2的逆起電流整流而獲得的資 料來檢出馬達1 2的旋轉相位。也可藉由此旋轉相位的時間 -18- 201240321 經過來檢出馬達1 2的旋轉速度。 馬達電流控制部63,是對應調整操作桿5的擺動操作 位置’將流動於馬達1 2的電流値由複數階段(例如3 1階段 )控制。即,張力一定模式時進行馬達1 2的控制。 旋轉方向判斷部64,當在起動控制部65的控制時若電 流是由預定的模式圖流動於馬達1 2時就判斷馬達1 2的旋轉 方向。藉由利用馬達驅動電路7 0內的電流檢出部7 0 a所檢 出的電流値及電流方向,判斷馬達1 2是否朝線捲取方向旋 轉。如前述,馬達12的輸出軸18,是藉由單向離合器2 8使 線吐出方向的旋轉被禁止。因此,馬達1 2若朝線吐出方向 旋轉的話,流動於馬達1 2的電流會增加。藉由此電流値的 增加來檢出馬達是朝線吐出方向旋轉。 起動控制部65,是具有模式圖流通部65a。模式圖流 通部65a,若馬達12是由預定旋轉速度未滿的速度旋轉, 而無法進行由逆起電流所產生的旋轉相位的檢出時,第8 圖所示,電流是由具有第1模式圖至第6模式圖的預定的模 式圖依序從U相的線圈16b朝W相的線圈16b使每l〇〇〇rpm改 變電流的方式流動預定時間(例如0.5秒)。且,每次檢 出其旋轉方向,若旋轉件1 7朝線捲取方向旋轉時就終了起 動控制。 第8圖所示的預定的模式圖,是由第1模式圖至第6模 式圖的6個模式圖所構成。在各模式圖中,旋轉件1 7是位 於如第8圖所示的位置的話,馬達1 2,會朝線捲取方向旋 轉。第1模式圖,是使電流如箭頭A所示從U相朝V相的線 • 19- 201240321 圈16b流動。此時,如前述,若旋轉件17是位於第8圖所示 的位置以外的話’旋轉件1 7,則不會旋轉或朝線吐出方向 旋轉。藉由旋轉方向判斷部6 4判斷出旋轉件1 7未朝線捲取 方向旋轉的情況時,使電流由第2模式圖流動。第2模式圖 ,是使電流如箭頭B所示從U相線圈朝V相線圈1 6 b流動。 同樣地’若旋轉件1 7仍未朝線捲取方向旋轉的情況時,由 箭頭C流動的第3模式圖、由箭頭〇流動的第4模式圖、由箭 頭E流動的第5模式圖、由箭頭F流動的第6模式圖,直到旋 轉件1 7朝線捲取方向旋轉爲止使電流從U相朝V相的線圈 16b流動。又,第3模式圖,是使電流從v相線圈朝W相線 圈流動。第4模式圖’是使電流從v相線圈朝u相線圈流動 。第5模式圖’是使電流從W相線圈朝U相線圈流動。第6 模式圖,是使電流從W相線圈朝V相線圈流動。直到此第6 模式圖爲止使電流從第1模式圖依序流動的話,無論旋轉 件1 7在其中任一的模式圖是位於任何的相位,皆可使旋轉 件1 7朝線捲取方向旋轉。因此,直到旋轉件1 7是朝線捲取 方向旋轉爲止’一邊判斷旋轉方向一邊使下一個模式圖的 電流流動。且,若判斷爲旋轉件1 7是朝線捲取方向旋轉的 話,終了處理。 旋轉控制部66,若馬達12旋轉且可以藉著在FET25的 通斷(ON/OFF )時所發生的逆起電流檢出旋轉相位情況 時,對應被檢出的馬達1 2的旋轉件1 7的旋轉相位,使電流 流動於3個線圏1 6b。供將發生的逆起電流整流用的旋轉相 位的檢出訊號的一例是如第7圖所示。在第7圖中,顯示電 -20 - 201240321 流是從u相直到W相爲止如第8圖所示依序流動時所發生的 檢出訊號。第8圖’是圖示當由起動控制部65進行控制時 所使用的預定的模式圖。3相2極的馬達1 2的情況下,在預 定的模式圖中’無論旋轉件1 7是位於其中任一的旋轉相位 ’只要在6個的模式圖的其中任一的模式圖的話,旋轉件 17皆可朝線捲取方向旋轉。 在旋轉控制時’使電流由對應旋轉相位的檢出結果的 預定的模式圖流動。且,U相、V相、W相中的各線圈16b 的正極側,是由對應捲筒速度或電流値的周期進行通斷( ON/OFF )。另一方面,各線圈16b的負極側,是藉由例如 2 0kHz的周期的PWM控制,對應被設定的捲筒速度或電流 値進行功率控制。 捲筒速度檢出部67,是藉由來自捲筒感測器41的輸出 ,檢出在馬達控制部60中使用的捲筒10的速度及捲筒1〇的 旋轉方向。 捲筒速度控制部68,是對應作爲捲筒速度設定部的調 整操作桿5的擺動操作位置,將捲筒1〇的旋轉速度由複數 階段(例如3 1階段)控制。即,速度一定模式時控制馬達 12 ° 模式切換部69,是用來切換張力一定模式及速度一定 模式。如前述,例如,藉由選單開關SW 1的持續3秒以上 長按操作來實現動作模式的切換動作。 在這種構成的電動捲線器中,將釣線吐出時,藉由將 離合器操作構件1 1朝前方(後方)操作使離合器斷開( -21 - 201240321 OFF)。離合器斷開(OFF)的話,捲筒10會成爲自由旋 轉狀態,藉由被裝設於釣線的鉛錘的自重使釣線從捲筒10 被吐出。釣線被吐出的話,捲筒1 0會朝線吐出方向旋轉, 藉由捲筒感測器41的檢出使脈衝水深顯示部22的水深顯示 對應吐出量變化。釣組若到達棚(魚類洄游層深度)的話 ,將操作桿2朝線捲取方向旋轉並藉由無圖示的離合器返 回機構將離合器導通(ON)來停止釣線的吐出。 魚上鉤的話,將調整操作桿5操作將釣線捲起。將調 整操作桿5朝第1圖順時針擺動的話,就可以對應其擺動角 度階段地設定作用於捲筒10的旋轉速度或釣線的張力的最 大値。 <捲線器控制部的動作> 接著依據第9圖之後所示的控制流程圖說明捲線器控 制部2 3的具體的控制動作。又,以下的說明只是本發明的 控制程序的一例,本發明的控制程序不限定於以下流程圖 所示的內容。 電源是透過無圖示的電源纜線被投入電動捲線器的話 ,在第9圖的步驟S1進行初期設定。在此初期設定中重設 各種的變數和標記。且,將船緣停止位置FN (停止水深的 一例)設定成標準的船緣停止位置也就是第1線長L 1 (例 如 6 m )。 接著在步驟S2進行顯示處理。在顯示處理中,進行水 深顯示等的各種的顯示處理。在此,將階段SC顯示於階段 •22- 201240321 顯示領域22c。 在步驟S 3中’判斷由後述的各動作模式所算出的水深 LX是否爲第1線長L1以下。在步驟S4中,進行其中任一的 開關SW1〜開關SW3或調整操作桿5是否被按壓的開關輸入 的判斷。且在步驟S5中判斷捲筒1〇是否旋轉。此判斷,是 藉由捲筒感測器41的輸出來進行判斷。在步驟S6中,判斷 其他的指令和輸入是否被操作。 水深LX是第1線長L1以下時,從步驟S3移行至步驟S7 。在步驟S7中,判斷是否在該水深停止5秒以上。在6m以 下的水深停止5秒以上的話,多是進行將在船緣釣到的魚 取下的動作,或進行將餌重裝在釣組等的動作。因此’若 判斷爲停止5秒以上的話就移行至步驟S8,將此時的水深 LX設定成船緣停止位置FN。若5秒未滿時從步驟S7移行至 步驟S4。 開關輸入被操作的情況時從步驟S4移行至步驟S9實行 第10圖所示的開關輸入的處理。且捲筒1〇的旋轉被檢出的 情況時從步驟S5移行至步驟S10。在步驟S10實行中各動作 模式處理。其他的指令或是輸入被操作的情況時從步驟S6 移行至步驟S 1 1實行其他的處理。 在步驟S6的開關輸入處理中,由第10圖的步驟S15判 斷調整操作桿5是否被操作。在步驟S 1 6中’判斷選單開關 SW1是否被長按壓3秒以上。在步驟S17中,判斷其他的開 關是否被操作。其他的開關的操作’包含:選單開關s W 1 的通常操作、決定開關SW2及記憶開關SW3等的操作。 -23- 201240321 若判斷爲調整操作桿5被擺動操作的話從步驟S 1 5移行 至步驟S18。在步驟S18中,讀取調整操作桿5的段數SC。 在調整操作桿5中設有無圖示的旋轉式編碼器,讀取旋轉 式編碼器的輸出。在步驟S19中,判斷調整操作桿5是否被 操作成階段SC = 0。階段SC是「0」的情況時,移行至步驟 S20,將馬達12斷開(OFF),移行至步驟S16。階段SC不 是「〇」情況時,移行至步驟S2 1 ^ 在步驟S2 1中,進行第1 1圖所示的馬達旋轉控制處理 ,移行至步驟S22。在步驟S22中,判斷是否因選單開關 SW1的長按操作而使速度一定模式或張力一定模式的其中 任一被設定。速度一定模式被設定的情況時,從步驟S22 移行至步驟S23。在步驟S23中進行供實現速度一定模式用 的捲筒速度控制處理,之後移行至步驟S16。在此捲筒速 度控制處理中,反饋控制馬達1 2使成爲各階段SC所被設定 的目標捲筒旋轉速度。 選單開關SW1若被長按操作的話,從步驟S16移行至 步驟S25。在步驟S25中,判斷速度一定模式是否被設定。 速度一定模式被設定的情況時,從步驟S25移行至步驟S26 並設定成張力設定模式,之後移行至步驟S17。張力一定 模式若被設定的情況時,從步驟S25移行至步驟S27設定成 張力設定模式,移行至步驟S 1 7。 張力一定模式若被設定的情況時,從步驟S22移行至 步驟S24。在步驟S24中,進行實現張力一定模式的馬達電 流控制處理,之後移行至步驟S 1 6。在馬達電流控制處理 -24- 201240321 中,反饋控制馬達I2使成爲各階段sc所被設定的目標電流 値。 進行其他的開關輸入的話,從步驟S 1 7移行至步驟S2 ,例如,進行朝從底模式的變更和其他的模式的設定等的 其他的開關輸入處理,之後返回至第9圖所示的主例行程 式。 在步驟S21的馬達旋轉控制處理中,由第Η圖的步驟 S31判斷馬達12是否已起動。馬達12若已起動的情況時移 行至步驟S40。馬達12若未起動的情況時移行至步驟S31。 在步驟S 3 1中,將從第1模式圖依序將電流朝線圈1 6b流動 用的變數N(N爲正的整數)設定成「1」。在步驟S33中 ’ lOOOrpm的旋轉速度是將可使馬達12旋轉的第N模式圖的 電流朝線圏1 6b流動。在步驟S 3 4中,判斷馬達1 2的旋轉方 向是否爲線捲取方向。線捲取方向的旋轉的情況時,從步 驟S34移行至步驟S40。 馬達1 2未朝線捲取方向旋轉的情況時,從步驟S 3 4移 行至步驟S35。在步驟S35中,爲了使下一個模式圖的電流 流動而將變數N增加1。在步驟S36中,判斷變數N是否爲 「7」。變數N是「7」的情況時移行至步驟S37將變數N設 定成「1」,移行至步驟S38。在步驟S38中’判斷模式圖 的輸出是否超出0.5秒。若將模式圖輸出之後,超越〇·5秒 的話移行至步驟S40。且,變數N不是7的情況時,從步驟 S3 6移行至.步驟S33,將下一個模式圖輸出。反覆這些步驟 ’直到馬達1 2朝線捲取方向旋轉爲止。 -25- 201240321 馬達12若朝線捲取方向旋轉的話從步驟S34移行至步 驟S40。在步驟S4〇中,讀取馬達12的旋轉速度V及現在的 功率DR。這些是被記憶於記憶部46。在步驟S4 1中,判斷 馬達12的旋轉速度是否爲4000rpm以下。馬達12的旋轉是 4000rpm以下的情況時,從步驟S41移行至步驟S43。在步 驟S 4 3中,進行低速控制處理。具體而言,只要讀取供顯 示由逆起電流所獲得的第7圖所示的旋轉相位的訊號,不 需透過算出旋轉相位來進角控制就可決定勵磁位置。但是 ,由此控制進行高速旋轉的話,效率會變差,且消耗電力 會顯著變大。在此,在步驟S41若判斷爲馬達12的旋轉是 超越4000rpm的話,移行至步驟S42。在步驟S42中,判斷 馬達12的旋轉是否爲5000rpm以上。判斷爲馬達12的旋轉 是5 000rpm以上的話,從步驟S42移行至步驟S44進行高速 處理。在此高速處理中,在旋轉相位的訊號的中斷訊號中 加入位置檢出及進角控制來進行勵磁。在此,在步驟S4 1 及步驟S42的判斷設定lOOOrpm的損失(hysteresis),是 爲了防止因判斷成相同旋轉速度而發生震顫。 具體而言,由現在的速度被計算的勵磁位置是由中斷 訊號同步。例如,從W相的旋轉相位的訊號算出旋轉速度 ,以1 00 V秒的間隔求得旋轉速度。且,由下述的3個條件 進行各角度再設定來調整旋轉角。 1 .在第1及第6模式圖發生U相的位置檢出中斷的情況 時,位置(角度)爲〇度。 2.在第2及第3模式圖發生V相的位置檢出中斷的情況 ⑧ -26- 201240321 時,位置(角度)爲i2〇度。 3.在第4及第5模式圖發生U相的位置檢出中斷的情況 ,位置(角度)爲240度。 在此,爲了防止由雜訊等所導致的在不需要的角度中 的中斷,鎖定現在的勵磁位置的接下來的相位的旋轉相位 的訊號進行檢出。具體而言,第2模式圖的情況時,進行V 相的檢出,第4模式圖的情況時,進行W相的檢出,第6模 式圖的情況時,進行U相的檢出。馬達1 2每1旋轉就進行上 述的動作。一邊調整進角一邊使馬達12旋轉。這些處理完 成的話,移行至步驟S22。 在步驟S10的各動作模式處理中,由第12圖的步驟S51 判斷捲筒1 〇的旋轉方向是否爲線吐出方向。此判斷,是藉 由捲筒感測器41的其中任一的簧片開關是否先發出脈衝來 進行判斷。捲筒1 〇的旋轉方向被判斷爲線吐出方向的話從 步驟S51移行至步驟S52。在步驟S52中,每當捲筒旋轉數 減少時,就依據捲筒旋轉數讀出被記憶在線長資料記憶區 域5 1的資料並算出水深(被吐出的線長)LX。此水深LX 是由步驟S2的顯示處理被顯示。在步驟S53中,判斷所獲 得的水深LX是否與棚(魚類洄游層深度)位置或底位置一 致,即,釣組是否到達棚(魚類洄游層深度)或底。棚( 魚類洄游層深度)位置或底位置,是當釣組到達棚(魚類 洄游層深度)或底時藉由按壓記憶開關SW3,就可將記憶 部46的顯示資料設定於記憶區域50。在步驟S54中,判斷 是否爲學習模式等的其他的模式。 -27- 201240321 水深是與棚(魚類洄游層深度)位置或是底位置一致 的話從步驟s 5 3移行至步驟S 5 5 ’爲了報知釣組已到達棚( 魚類洄游層深度)或底而讓蜂鳴器47發聲。其他的模式的 情況時,從步驟S54移行至步驟S56,實行被指定的其他的 模式。不是其他的模式情況時’結束各動作模式處理並返 回至主例行程式。 若判斷爲捲筒1〇的旋轉是線捲取方向的話從步驟S51 移行至步驟S57。在步驟S57中,依據捲筒旋轉數讀出被記 憶在線長資料記憶區域5 1的資料並算出水深LX。此水深 LX是由步驟S2的顯示.處理被顯示。 在步驟S 5 8中,判斷是否到達船緣停止位置。到達船 緣停止位置FN的話從步驟S58移行至步驟S59。在步驟S59 中,爲了報知釣組已位於船緣而讓蜂鳴器47發聲。在步驟 S60中,將馬達12斷開(OFF )。由此當魚上釣時和將釣組 回收將餌交換時,將魚和釣組放置於容易取下的位置。未 被捲取至船緣停止位置的情況時返回至主例行程式。 <特徵> (A )馬達控制部60,是具有設有2極的磁鐵17a的旋 轉件17及設有UVW的3相的線圈16b的定子16,可藉由逆起 電流檢出旋轉件1 7的旋轉相位,藉由使用利用單向離合器 2 8使線吐出方向的旋轉被禁止的如無電刷馬達的馬達1 2 ’ 使捲筒1 〇朝線捲取方向旋轉。馬達控制部60,具備:旋轉 方向判斷部64、及旋轉相位檢出部62、及起動控制部65 ' 201240321 及旋轉控制部66。旋轉方向判斷部64,是檢出旋轉件1 7的 旋轉方向。旋轉相位檢出部62,是藉由逆起電流來檢出旋 轉件的旋轉相位及旋轉速度。起動控制部65若是因爲逆起 電流而無法檢出旋轉相位時,由對應旋轉件1 7的旋轉相位 的複數模式圖依蕷定的順序,直到旋轉方向判斷部64判斷 出旋轉件1 7是在複數模式圖的其中任一朝線捲取方向旋轉 爲止,使電流流動於3相的線圈來起動馬達1 2。旋轉控制 部66,若旋轉相位成爲可檢出的話,藉由對應由逆起電流 所檢出的旋轉相位使電流流動於3相的線圈1 6b的其中任一 的方式控制馬達1 2。 在此馬達控制部60中,若是旋轉相位檢出部62無法檢 出旋轉件1 7的旋轉相位的起動時,則藉由起動控制部65使 無電刷馬達1 2被起動。在起動控制部65中,因爲無法檢出 旋轉件1 7的旋轉相位,所以直到旋轉方向判斷部64判斷出 旋轉件17朝線捲取方向旋轉爲止,由對應旋轉件17的旋轉 相位的複數模式圖使電流依序且間歇地流動於3相的線圈 16b。藉此,不需使用感測器檢出旋轉件17的旋轉相位, 就可以使旋轉件1 6b朝線捲取方向旋轉。因此,成爲可以 藉由逆起電流檢出旋轉件1 6b的旋轉相位的話,就切換成 由旋轉控制部66的控制。在旋轉控制部66中,藉由逆起電 流檢出旋轉件1 6b的旋轉相位,對應旋轉相位使電流流動 於3相的線圈1 6b的其中任一。 在此,若使用例如被使用於電動捲線器的會因負荷的 變動而使旋轉速度大大地變化的無電刷的馬達1 2的話,就 -29- 201240321 可以進行:可藉由逆起電流檢出旋轉相位時、及無法檢出 旋轉相位時的不同的控制。因此,即使藉由無感測器的無 電刷的馬達1 2驅動電動捲線器,仍可以對應速度的增減, 且可以削減成本。 (B )在馬達控制部60中,複數模式圖,是具有第1模 式圖至第6模式圖的6個模式圖。第1模式圖,是使電流從U 相線圈朝V相線圈流動的模式圖。第2模式圖,是使電流從 U相線圈朝W相線圈流動的模式圖。第3模式圖,是使電流 從V相線圈朝W相線圈流動的模式圖。第4模式圖,是使電 流從V相線圈朝U相線圈流動的模式圖。第5模式圖,是使 電流從W相線圈朝U相線圈流動的模式圖。第6模式圖,是 使電流從W相線圏朝V相線圈流動的模式圖。 起動控制部65具有模式圖流通部65a,其是直到旋轉 方向判斷部64判斷出旋轉件1 7是朝線捲取方向旋轉爲止, 依第1模式圖至第6模式圖的順序,讓電流預定時間流動於 3相的線圏1 6 b。 在此情況下,依第1模式圖至第6模式圖的順序使電流 流動於UVW的3相的線圈16b的話,在S極與U相的線圈16b 相面對的狀態下,旋轉件17會朝線捲取方向旋轉。因此, 旋轉件1 7的旋轉相位即使是其中任一,旋轉件1 7必定會由 其中任一的模式圖朝線捲取方向旋轉。因此,只要藉由旋 轉方向判斷部64確認朝線捲取方向的旋轉,不需使用位置 感測器就可使旋轉件1 7朝線捲取方向旋轉》 (C)在馬達控制部60中,進一步具備供檢出流動於 ⑧ -30- 201240321 定子1 6的電流的電流値及電流的流通方向用的電流檢出部 70a。旋轉方向判斷部64,是藉由利用電流檢出部70a被檢 出的電流値及電流方向判斷馬達1 2是否朝線捲取方向旋轉 。在此情況下’使旋轉件1 7朝線吐出方向旋轉的電流若流 動於:藉由單向離合器2 8使旋轉件1 7的線吐出方向的旋轉 被禁止的馬達12的定子16的話,旋轉件17因爲無法旋轉而 使電流値是變高。因此,可以藉由電流値及其電流方向精 度佳地判斷旋轉件1 7的線捲取方向的旋轉,無關於旋轉件 17的旋轉相位就可以確實地使旋轉件17朝線捲取方向旋轉 〇 (D )在馬達控制部60,進一步具備藉由旋轉相位檢 出馬達1 2的旋轉速度用的馬達速度檢出部,旋轉控制部66 ,當旋轉速度是第1速度以下時,對應藉由旋轉相位檢出-部62所檢出的旋轉相位使電流由第1模式圖至第6模式圖的 其中任一朝3相的線圈流通,當旋轉速度是比第1速度快的 第2速度以上時,藉由來自旋轉相位檢出部62的中斷訊號 及進角控制使電流朝3相的線圈流通。 在此情況下,例如,無電刷馬達的旋轉是第1速度的 例如4000rpm以下時,不讀入被檢出的旋轉相位來進行進 角控制而是決定勵磁的線圈使電流流動。且,無電刷馬達 是以第2速度的例如5000rpm以上旋轉時,藉由來自旋轉速 度檢出部62的中斷訊號及進角控制,藉由使現在的勵磁位 置的接下來的相的中斷訊號使電流流動於線圈1 6b。由此 ,無電刷馬達1 2的旋轉速度較慢時,可進行高精度的旋轉 201240321 控制,速度較高時,可以提高效率並抑制電力消耗。 (E)在馬達控制部60中,進一步具備:調整操作桿5 、及捲筒速度檢出部67。調整操作桿5,是將捲筒10的旋 轉速度設定成複數階段的其中任一。捲筒速度檢出部67, 是檢出捲筒10的旋轉速度。旋轉控制部65,是參照捲筒速 度檢出部67的檢出結果控制馬達12使成爲由調整操作桿5 所被設定的捲筒旋轉速度。 在此情況下,可以將捲筒速度由複數段且一定地控制 ,並且即使因負荷使捲筒速度下降,使馬達12的旋轉變慢 而無法檢出旋轉件1 7的旋轉相位,仍可以藉由旋轉控制部 66由高扭矩使馬達旋轉。 <其他的實施例> 以上’雖說明了本發明的一實施例,但是本發明不限 定於上述實施例,在不脫離發明的實質範圍內可進行各種 變更。 (a)在前述實施例中,雖可切換張力一定控制、及 速度一定模式,但是本發明不限定於此。例如,只有進行 速度一定控制也可以。 (b )在前述實施例中,馬達1 2雖被收納於捲筒的內 部,但是將馬達裝設在捲筒外的電動捲線器也可以適用本 發明。 (c )在前述實施例中,馬達操作構件雖例示調整操 作桿,但是本發明不限定於此。例如,藉由按鈕的按壓操 ⑧ •32- 201240321 作時間等將階段增加及減少也可以。 【圖式簡單說明】 [第1圖]本發明的一實施例所採用的電動捲線器的立體 圖。 [第2圖]其側面剖面圖。 [第3圖]計數器盒的平面圖。 [第4圖]馬達裝設部分的剖面圖。 [第5圖]顯示控制系統的構成的方塊圖。 [第6圖]顯示記億部的記憶內容的方塊圖。 [第7圖]說明高速控制時的位置檢出訊號的圖。 [第8圖]說明朝低速控制時的線圈的流通模式圖的圖。 [第9圖]捲線器控制部的主例行程式的流程圖。 [第1 〇圖]顯示開關輸入的處理內容的流程圖。 [第11圖]顯示馬達旋轉控制的處理內容的流程圖。 [第12圖]顯示各動作模式處理的處理內容的流程圖。 主要元件符號說明】 DR :功率 LX :水深 SW2 :決定開關 V :旋轉速度 Vscl :下限値 1 :捲線器本體 FN :船緣停止位置 S W 1 :選單開關 SW3 :記憶開關 Vsc :上限速度 Vsc2 :上限値 2 :操作桿 33- 201240321 3 : 星狀牽引器 4 : 計數器盒 5 : 調整操作桿 7 : 框架 (捲 筒速度設定部的一例) 7a : 第1側板 7b : 第2側板 7c : 連結構件 7d : 竿裝設腳部 7e : 膨出部 8a : 第1側蓋 8b : 第2側蓋 9 : 、身- —!?>« 刖盍 9a : 開口 10 : 捲筒 11: 離合器操作構件 12 : 無電刷馬達 13 : 均勻捲線機構 14 : 纜線連接器 15: 馬達殼 15a :第1蓋部 15b :第2蓋部 15c :中間蓋部 1 5d :貫通孔 16 : 定子 16a :層疊芯 16b :線圈 16b :旋轉件 16c :定位凹部 17: 旋轉件 17a :磁鐵 17b :磁鐵支架 18: 輸出軸 19 : 殼本體 20 : 電路基板 21 : 電容器 22 : 水深顯示部 22a :水深顯示領域 22b :記憶水深顯示領域 22c :階段顯示領域 23 : 捲線器控制部 27 : 軸承 28 : 單向離合器 28a =外輪 29 : 固定螺栓 30 : 上殼構件 3 1: 固定螺栓 -34- 201240321 32 : 下 殼 構 件 33 : 上面部 33a :顯示框 34 : 馬達線 37 : 蓋 4 1 : 捲筒感測器 46 : 記 憶 部 47 : 蜂鳴器 50 : 顯 示 資 料 記 憶 區域 5 1: 線長資料記憶區 域 52 : 資 料 記 憶 區 域 52 : 旋轉資料記憶區 域 53 : 資 料 記 憶 1品 域 60 : 馬達控制部 61 : 顯 示 控 制 部 (電動捲線器的馬達 62 : 旋 轉 相 位 檢 出 部 控制裝置的一例 ) 63 : 馬 達 電 流 控 制 部 64 : 旋轉方向判斷部 65 : 起 動 控 制 部 6 5a =模式圖流通部 66 : 旋 轉 控 制 部 67 : 捲筒速度檢出部 68 : 捲 筒 速 度 控 制 部 69 : 模式切換部 70 : 馬 達 驅 動 電 路 70a :電流檢出部 35-201240321 SUMMARY OF THE INVENTION Technical Field The present invention relates to a motor control device, and in particular, can perform position detection by a reverse current, and has a three-phase magnet and a three-phase UVW. The motor control device of the electric reel that rotates the reel in the direction in which the reel is driven by the brushless motor of the coil. [Prior Art] It is known to use a brushless motor for an electric reel that rotates a reel in a winding direction (for example, refer to Patent Document 1). A conventional electric reel is a position sensor using a rotational phase of a rotating member that can detect a brushless motor. The electric reel has a different pulling force because of the different types of fish being caught, so the load varies greatly. When such a motorized reel uses a brushless motor having a position sensor, the control of the motor is easy because the position of the rotary member can be detected regardless of the high speed rotation or the high speed rotation with a small load. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2000-170-602 (Invention) [Problems to be Solved by the Invention] In the above-described conventional configuration, a sense of position is used. Brushless motor of the detector. Therefore, it is easy to control the fluctuation of the load. However, the brushless motor with the position 201240321 sensor is more complicated in construction than the brushless motor without the sensor. Further, since the position sensor is mounted and the number of wirings is large, the electric wiring is complicated. Therefore, the cost of the electric reel can be increased by using a brushless motor with a position sensor. On the other hand, in the brushless motor, there is a feeling that the electric power retained in the coil detects the rotational phase of the rotating member by the reverse current generated by the rotation of the rotating member when the switch is turned off (OFF). Brushless motor of the detector. The brushless motor without a sensor has a low cost because of the absence of a position sensor, and wiring work is easy. However, when the rotating phase is detected by the reverse current, if the rotating member rotates at a low speed, the reverse current becomes small, and the rotational phase of the rotating member cannot be detected. Therefore, the conventional brushless motor without a sensor is a relatively high-speed and constant-rotating device used for a hard disk (HD) or the like, and is not suitable for use in an electric reel in which the rotational speed fluctuates drastically. An object of the present invention is to increase or decrease the speed in accordance with the brushless motor ' without a sensor, and to reduce the cost. (Means for Solving the Problem) The motor control device for the electric reel according to the first aspect of the invention is a stator having a rotating magnet provided with two poles and a three-phase coil provided with UVW, which can be detected by the reverse current The rotation phase of the rotary member rotates the reel in the winding direction by the brushless motor in which the wire discharge direction is prohibited by the one-way clutch. The motor control device includes a rotation direction determining unit, a rotation phase detecting unit, a start control unit, and a rotation control unit. Direction of rotation -6- 201240321 The broken part is the direction of rotation of the rotating part. The rotating phase detecting portion detects the rotational phase of the rotating member by the reverse current. When the start control unit cannot detect the rotation phase due to the reverse current, the rotation direction determination unit determines that the rotation member is rotated by the rotation direction of the corresponding rotary member until the rotation member rotates in the direction of the winding direction of the complex pattern. The complex mode diagram causes current to flow in the 3-phase coil to start the motor in a predetermined sequence. When the rotation control unit detects the rotational phase, the brushless motor is controlled by one of the three-phase coils corresponding to the rotational phase detected by the reverse current. In the motor control device, when the rotational phase detecting portion cannot detect the start of the rotational phase of the rotary member, the start control portion causes the brushless motor to be started. In the start control unit, since the rotation phase of the rotating member cannot be detected, the rotation direction determining unit determines that the current is intermittently rotating the rotating member in the line winding direction by the plural pattern of the rotational phase of the corresponding rotating member. The current is caused to flow to the coil of the three phases. Thereby, the rotating member can be rotated in the winding direction without detecting the rotational phase of the rotating member using the sensor. Therefore, if it is possible to detect the rotational phase of the rotary member by the reverse current, the control is switched to the rotation control unit. The rotation control unit ' is a coil that causes the current to flow in the three-phase coil corresponding to the rotational phase by the reverse current detecting the rotational phase of the rotor. Here, for example, the brushless motor ' used in the electric reel which greatly changes the rotational speed due to the fluctuation of the load can be detected when the rotational phase can be detected by the reverse current and the start of the rotational phase cannot be detected. Make different controls. Therefore, even if the electric reel is driven by the brushless motor without the sensor, the speed can be increased or decreased, and the cost of -7-201240321 can be reduced. The motor control device for the electric reel according to the second aspect of the invention is a multi-pattern diagram of the apparatus of the first invention, and is a six-pattern diagram having the first mode to the sixth mode. The first mode diagram is a pattern in which a current flows from the U-phase coil to the V-phase coil. The second mode diagram is a schematic diagram in which a current flows from the u-phase coil toward the W-phase coil. The third mode diagram is a pattern in which a current flows from the V-phase coil toward the w-phase line. The fourth mode diagram is a pattern in which a current flows from the V-phase coil to the U-phase coil. The fifth mode diagram is a pattern in which current flows from the W-phase coil toward the U-phase coil. The sixth mode diagram is a schematic diagram in which a current flows from the W-phase line to the V-phase coil. The activation control unit has a pattern map circulation unit that moves the current for a predetermined period of time to three phases until the rotation direction determination unit determines that the rotation member is rotating in the wire winding direction in the order of the first mode to the sixth mode diagram. In this case, in the case where the current flows in the order of the three phases of the UVW in the order of the first mode to the sixth mode, the rotating member is in a state where the S pole faces the coil of the U phase. It will rotate in the direction of the wire take-up. Therefore, even if the rotational phase of the rotary member is any one of them, the rotary member must be rotated in the winding direction by any one of the pattern patterns. Therefore, if the rotation direction determining unit confirms that it is rotating in the wire winding direction, the rotating member can be rotated in the wire winding direction without using the position sensor/sensor. The motor control device for the electric reel according to the third aspect of the invention is the device according to the second aspect of the invention, further comprising a current detecting unit for detecting a current flowing in the stator and a flow direction of the current. The rotation direction determining unit determines whether or not the brushless motor is rotating in the wire winding direction by the current 値 and the current direction detected by the current detecting unit of 8 -8 - 201240321. In this case, the current of the stator of the brushless motor in which the rotation of the rotating member in the wire discharge direction is prohibited by the one-way clutch, if the current that can rotate the rotating member in the wire discharge direction flows, the current cannot be rotated.値 will get higher. Therefore, it is possible to judge the rotation of the rotating member in the wire winding direction by the current 値 and the accuracy of the current direction thereof, and the rotating member can be surely rotated in the winding direction without the rotation phase of the rotating member. A motor control device for an electric reel according to a fourth aspect of the invention, further comprising: a motor speed detecting unit for detecting a rotational speed of the motor by a rotational phase, and a rotation control unit, wherein the rotational speed is When the speed is equal to or lower than the first speed, the current is transmitted from the first mode to the sixth mode to the three-phase coil in accordance with the rotational phase detected by the rotational phase detecting unit, and the rotational speed is faster than the first speed. When the second speed is equal to or higher than the second speed, the current is caused to flow through the three-phase coil by the interrupt signal and the advance angle control from the rotary phase detecting unit. In this case, for example, when the brushless motor is rotated at the first speed, for example, 400 rpm or less, the coil is determined so that the coil is excited to flow the current instead of reading the detected rotation phase. And when the "brushless motor is rotated at the second speed, for example, 5000 rpm or more", the interrupt signal and the advance angle control from the rotational speed detecting portion are controlled by the three-phase interrupt signal which comes after the current exciting position. Current flows in the coil. Therefore, if the rotation of the brushless motor is slow, high-precision rotation control can be performed, and if the speed is high, efficiency can be improved and power consumption can be suppressed. A motor control device for an electric reel according to a fifth aspect of the invention, further comprising: a reel speed setting unit; and a reel speed detecting unit. The reel speed setting unit sets the rotation speed of the reel to a plurality of stages. The reel speed detecting portion detects the rotation speed of the reel. The rotation control unit controls the brushless motor in such a manner that the reel speed is set by the reel speed setting unit with reference to the detection result of the reel speed detecting unit. In this case, the reel speed can be controlled by a plurality of stages and can be controlled to a certain extent, and even if the rotation speed of the reel is slowed by the load and the rotation of the motor is slowed down, the rotation phase of the rotating member cannot be detected, and the speed can be low. The control unit rotates the motor with high torque. [Effect of the Invention] According to the present invention, the brushless motor used in the electric reel which greatly changes the rotational speed by the fluctuation of the load is capable of detecting the rotational phase by the reverse current and is unable to detect When starting the rotation phase, different controls are performed separately. Therefore, even if the electric reel is driven by the brushless motor without the sensor, the speed can be increased or decreased, and the cost can be reduced. [Embodiment] <Overall Configuration of Reeler> In the first and second figures, the electric coil -10- 8 201240321 according to an embodiment of the present invention is driven by a motor by electric power supplied from an external power source. Large reel. Further, the electric reel is a reel having a water depth display function capable of displaying the water depth of the fishing line corresponding to the line discharge length or the line take-up length. The electric reel mainly includes a reel body 1 that can be mounted on a fishing rod, an operating lever 2 for rotating the reel 1 that is disposed on the side of the reel body 1, and a winding that is disposed on the operating lever 2. The star tractor 3 for traction adjustment on the main body 1 side and the counter box 4 for water depth display. The reel body 1 includes a frame 7, and a first side cover 8a and a second side cover 8b that cover the left and right sides of the frame 7, and a front cover 9 (second drawing) that covers the front portion of the frame 7. The frame 7 is made of a synthetic resin such as a polyamide resin impregnated with glass fibers, and has a first side plate 7a and a second side plate 7b, and a plurality of connecting members connecting the lower portion, the rear portion, and the front upper portion. 7c. As shown in Fig. 2, the inside of the reel body 1 is provided with a uniform winding mechanism 13 (second drawing) that operates in conjunction with the reel 10, and conveys the rotation of the operating lever 2 and the motor 12 to the reel. 10 rotation transmission mechanism, etc. Further, the reel 1〇 for the coil that is coupled to the motor 12 and the operating lever 2 is rotatably supported inside the reel body 1. A motor 12 that rotationally drives the spool 10 in the wire winding direction is disposed inside the spool 1 . As shown in Fig. 1, the operating lever 2 is rotatably supported by the lower center portion of the second side cover 8b. Further, the adjustment operation lever 5 for controlling the motor 12 in the plurality of stages is swingably supported on the upper front portion of the support portion of the operation lever 2. The operation lever 5 is adjusted to function as a reel speed setting unit that sets the reel speed to a plurality of stages. Further, the adjustment lever 5 is also used as a function of the tension setting unit of any of -11 - 201240321 in which the tension acting on the fishing line is set to a plurality of stages. The clutch operating member 11 is swingably disposed rearward of the adjustment operating lever 5. The clutch operating member 1 1 is a clutch (not shown) for turning on and off (ΟΝ/OFF) the driving of the operating lever 2, the motor 12, and the spool 10 by the ON/OFF operation. When the clutch is turned ON (ON), the line discharge operation can be stopped in the line discharge caused by the own weight of the fishing group. The cable connector 14 for power cable connection is a first side cover 8a that is attached to the opposite side of the operation lever 2 toward the lower side. In the front cover 9, a horizontally long opening 9a for the passage of the fishing line is formed. In the lower connecting member 7c, a fitting leg portion 7d for attaching the electric reel to the fishing rod is formed. <Configuration of Motor> The motor 12 is, for example, a brushless motor having a rated output of about 180 watts, and is used for a motorized reel. As shown in Fig. 2, the motor 12 includes a motor case 15, a stator 16 provided on the inner circumferential surface of the motor case 15, a rotating member 17 disposed on the inner peripheral side of the stator 16, and a rotating member. Output shaft 18. The motor casing 15 is a member made of an aluminum alloy treated with an alumite treatment in order to improve corrosion resistance. As shown in FIG. 4, the motor casing 15 has a first cover portion 15a disposed at one end, a second cover portion 15b disposed at the other end, and a first cover portion 15a and a second cover portion. The intermediate cover portion 15c between the cover portions 15b. The first lid portion 15a and the second lid portion 15b are bottomed cylindrical members having the same outer diameter, and the cylindrical portions are disposed to face each other. The intermediate cover portion 15c is a tubular member having the same outer diameter as the first cover portion 15a and the second cover portion 15b. The first cover portion 15a, the second cover 201240321 portion 15b, and the intermediate cover portion 15c are a plurality of (for example, three) fixing bolts 29 that are screwed into the second cover portion 15b inserted from the first cover portion 15a side. Fixed into one. The fixing bolt 29 is an anticorrosive treatment of an anticorrosive film such as plating. Therefore, the intermediate cover portion 15c is held by the first cover portion 15a and the second cover portion 15b. In the cylindrical portion of the second lid portion 15b, as shown in Figs. 2 and 4, at least one of the through holes 15d for drainage is formed along the radial direction. The through hole 15d is provided to exclude water generated by condensation or the like inside the motor 12 from the inside of the motor 12. The through hole 15d is provided, for example, at a lower portion facing the cymbal mounting portion 7d and on both sides thereof. The stator 16 has a plurality of (for example, three) laminated cores 16a fixed to the intermediate cover portion 15c, and three coils 16b that are wound around the U-phase, the V-phase, and the W-phase of the laminated core 16a. The laminated core 166a is made of, for example, a non-directional 矽 steel plate. In the laminated core 16a, a plurality of (three) positioning concave portions 16c (second drawing) formed by U-shaped depressions which are positioned in the rotational direction by the fixing bolts 29 are formed. The exposed portion of the stator 16 is an anticorrosive treatment of an anticorrosive film such as plating. In addition, in the fourth figure, the fixing bolts 29 are arranged to have two diameters, but this is only a schematic view. Actually, as shown in Fig. 2, three fixing bolts 29 are arranged at equal intervals in the circumferential direction. . The rotor 17 includes a magnet 17a having two poles of an S pole and an N pole, and a magnet holder 17b holding the magnet 17a. The magnet holder 17b is integrally rotatably coupled to the output shaft 1 8 » the rotating member 17 and the exposed portion is an anticorrosive treatment of an anticorrosive film such as plating. The output shaft 18 is, for example, a shaft made of a stainless steel alloy, and is rotatably supported by the first cover portion 15a and the second cover portion 15b-13-201240321 by a pair of right and left bearings 27. At the first end (the left end of Fig. 5) of the output shaft 18, a one-way clutch 28 for prohibiting the output shaft 18 from rotating in the line discharge direction is attached. The one-way clutch 28 is a roller clutch, and the outer ring 28a is non-rotatably mounted in the bulging portion 7e of the first side plate 7a of the reel body 1. At the second end (the right end of Fig. 5) of the output shaft 18, a sun gear that constitutes a planetary gear mechanism of a rotation transmission mechanism (not shown) is fixed. The rotation of the motor 12 is transmitted to the spool 10 through the planetary gear mechanism. The planetary gear mechanism decelerates the rotation of the motor 12 by, for example, a reduction ratio of 1/50. The second cover portion 15b of the motor casing 15 is coupled to the bulging portion 7e, and is fixed by a plurality of (for example, two) fixing bolts 31. Thereby, the motor 12 is fixed to the reel body 1. The three motor wires 34 electrically connected to the coil 16b extend from the end of the second cover portion 15b toward the counter case 4. In the upper portion of the first side plate 7a and the second side plate 7b of the reel body 1, as shown in Figs. 1 and 2, a counter box for water depth for displaying a fishing group attached to the tip end of the fishing line is fixed. 4. <Counter Box Configuration> As shown in Figs. 2 and 3, the counter box 4 includes a case body 19 placed on the front upper portion of the reel body 1, and a water depth display portion 22 having a liquid crystal display. And a reel control unit 23. The case body 19 is fixed to the first side plate 7a and the second side plate 7b of the reel body 1. The case body 19' has an upper surface portion 33' and has a synthetic resin upper case member 3A that exposes the outer portion and a lower case member 32 that is fixed to the upper case member 30. 8 - 14 - 201240321 The upper case member 30 is, for example, made of a polyamide resin reinforced with glass short fibers. The upper case member 30 has a display portion which is formed in a fine shape. The upper casing member 30' is internally formed with the lower casing member 3 2 to form a storage space. On the display portion of the upper surface portion 33, a display frame 33a having a display opening having a substantially trapezoidal shape is formed. The opening of the display frame 33a is closed by a transparent cover 37 welded to the upper casing member 30. Further, as shown in Fig. 3, a menu switch SW1, a decision switch SW2, and a memory switch SW3 are disposed behind the display frame 33a. The menu switch SW 1 ' is, for example, a switch for performing a menu operation for a selection operation. The decision switch SW2' is, for example, a switch for operation selected by the menu switch SW. The memory switch S W3 ' is, for example, a switch for shed (fish migration layer depth) memory. The menu switch SW1 is a button used to select a display item in the water depth display unit 22. For example, each time the menu switch SW1 is operated, it switches: from the upper mode (the mode in which the water depth of the fishing group is displayed from the depth of the water surface) and the bottom mode (the mode in which the water depth of the fishing group is displayed from the water depth of the bottom) ). When the menu switch SW1 is held for longer than 3 seconds, the control mode of the motor 12 can be switched to the speed constant mode and the tension constant mode each time the button is pressed. Here, the speed constant mode is a mode in which the upper P speed of the rotational speed of the reel 10 can be multi-step speed controlled by a plurality of stages (for example, 31 stages) in accordance with the swing position of the operation lever 5. The tension constant mode is a mode in which the upper limit tension of the tension acting on the fishing line is controlled by the swinging position of the operating lever 5 to perform multi-stage tension control in a plurality of stages (for example, the 3 1 stage). In addition, the 3 1 stage of the highest stage of the two modes is a speed (fast) roll speed in which the horse -15-201240321 reaches 1 2 by 1 〇〇% power, and although the current is limited, the speed control is not performed. Further, in the speed-constant mode, the reeling speed of the first stage is controlled to a range of 28" 111 ("111 = number of revolutions per minute" to 3 Orpm. Therefore, the rotational speed of the motor 12 is controlled to be in the range of 1400 rpm to 1,500 rpm. The lower case member 32' is, for example, a frame-shaped member made of metal having a high thermal conductivity such as an aluminum alloy or a magnesium alloy. The lower casing member 32 is fixed to the upper casing member 30 by a plurality of (e.g., four) fixing bolts (not shown). The two circuit boards 20 for the water depth display unit 22 and the reel control unit 23 are mounted on the lower case member 32. The motor drive circuit 70 including the complex FET (electric field effect transistor) 25 for driving the motor 12 is mounted on the lower surface of the circuit board 20 on the lower side. The FET 25 functions as a switching element that opens and closes the corresponding power ratio when the motor 12 is controlled by PWM (Pulse Width Modulation). Further, the FET 2 5 functions as, for example, a switching element for sequentially exciting and demagnetizing the turns 16b of the stator 16 of the motor 12. Further, a capacitor 21 is connected to the lower circuit board 20. The capacitor 21 has a function of smoothing noise generated from the FET 25. Further, it has a function of rectifying the reverse current of the motor 12. By rectifying this reverse current, the rotational phase of the motor 12 is detected. The motor 12 is rotated by sequentially rotating and demagnetizing the turns 16b by the rotational phase control FET 25 thus detected. By the rotational speed of the rotational phase detecting motor 12, as shown in Fig. 3, the water depth display unit 22' has a water depth display field 2 2 a displayed in a 16-digit segment of the center. And the memory water depth display area 22b of the three-digit seven-segment, which is disposed on the lower right side of the -16-2012403, and the stage 22c, which is placed on the left side of the memory water depth display area 22b. The stage display area 22c is a 31-stage display in which the position (step SC) of the operation lever 5 is adjusted from 0 to 30, for example. Here, in the water depth display area 22a, since the display of the 16 sections is used, the water depth display is more visually confirmed. <Configuration of Reel Control Unit> As shown in Fig. 5, the reel control unit 23 is configured to include a motor control unit 60 that controls the motor 12 (an example of a motor control device and a water depth display unit) The control unit 6 controls the motor control unit to perform PWM control of the motor 12, and performs control for exciting and demagnetizing the plurality of coils 16b of the stator of the motor 12. The excitation and demagnetization control 'motor control unit 60, the rotation phase of the motor 12 is detected by the data obtained by rectifying the reverse flow of the motor 12 by the capacitor 21, and the complex coil 16b is sequentially excited corresponding to the detected rotation phase. The reel control unit 23 is connected to the adjustment operation lever 5, the selection switch SW1, the determination switch SW2, and the memory switch SW3. The reeling speed of the reel 10 and the reel sense of the rotation direction are connected. The detector 41 includes a motor drive circuit including five FETs 25 and a capacitor 21 that electrically turns the coil 16b on and off (ΟΝ/OFF) and drives the motor 12 into the PWM, and the buzzer 47 and the water depth display unit 22, and The memory unit 46 and other input and output units. The motor drive circuit 70 is provided with a current detecting portion 70a for detecting a current flowing in the horse 12. The current detecting portion 70a is a separate sheet and row 7 when the divided portion is 6016. 0 is up to -17- 201240321 In addition to the current flowing through the motor, the current direction can also be detected. The reel sensor 4 1 is composed of two reed switches arranged side by side, and any of the reed switches can detect the rotation of the reel 10 by judging whether or not a detection pulse is emitted. direction. Further, the number of rotations and the rotation speed of the reel can be detected by detecting the pulse. The megaphone 46 is composed of a non-volatile memory such as an EEPROM. As shown in FIG. 6, the memory unit 46 is provided with a display data memory area 50 in which the display data such as the position of the shed (fish migration layer depth) is stored, and the actual line length and the reel are displayed for rotation. The line length data memory area 5 1 for the relationship of the number of lines of data and the rotation data memory area 5 of the winding speed (rpm) and the winding torque (current 値) of the reel 10 of the corresponding stage SC 2. Record the information of various data memories in the area of 5 billion. In the rotating data memory area 52, the upper limit speed Vsc of each stage SC in the speed-constant mode, the lower limit 値Vscl of the upper limit speed Vsc, and the upper limit 値Vsc2, and the upper limit of each stage SC in the tension-fixed mode are included. The lower limit of the tension Qs 値Qscl and the upper limit 値Qsc2 data. Various data on the line length are accommodated in the data memory area 53. It accommodates, for example, a rim stop position. The motor control unit 60' is configured by a software, and has a rotary phase detecting unit 6.2, a motor current control unit 633, a rotation direction determining unit 64, a start control unit 65, and a rotation control unit 66. And the reel speed detecting unit 67, the reel speed control unit 68, and the mode switching unit 69»the rotational phase detecting unit 62 are detected by rectifying the reverse current of the motor 12. The rotational phase of the motor 12 is derived. It is also possible to detect the rotational speed of the motor 12 by the time -18-201240321 of the phase of the rotation. The motor current control unit 63 controls the current 流动 flowing to the motor 12 in a plurality of stages (for example, the 3 1 stage) in accordance with the swing operation position of the adjustment operation lever 5. That is, the control of the motor 12 is performed in the constant tension mode. The rotation direction determining unit 64 determines the rotation direction of the motor 12 when the current flows from the motor 12 to the predetermined pattern when the control of the start control unit 65 is performed. It is determined whether or not the motor 12 is rotated in the wire winding direction by the current 値 and the current direction detected by the current detecting portion 70 a in the motor drive circuit 70. As described above, the output shaft 18 of the motor 12 is prohibited from being rotated by the one-way clutch 28 in the line discharge direction. Therefore, if the motor 12 rotates in the line discharge direction, the current flowing to the motor 12 increases. By this increase in current 値, it is detected that the motor is rotating in the line discharge direction. The start control unit 65 has a pattern map circulation unit 65a. When the motor 12 is rotated at a speed at which the predetermined rotational speed is not full, and the rotation phase generated by the reverse current cannot be detected, the current shown in FIG. 8 has the first mode. The predetermined pattern diagram of the sixth mode diagram flows sequentially from the U-phase coil 16b to the W-phase coil 16b so that the current is changed every 1 rpm to a predetermined time (for example, 0.5 second). Further, each time the rotation direction is detected, the start control is terminated when the rotary member 17 is rotated in the wire take-up direction. The predetermined pattern shown in Fig. 8 is composed of six pattern diagrams from the first pattern to the sixth pattern. In each of the patterns, when the rotary member 17 is at the position as shown in Fig. 8, the motor 12 is rotated in the winding direction. The first mode diagram is such that the current flows from the U phase to the V phase as indicated by the arrow A. 19 - 201240321 Loop 16b flows. At this time, as described above, when the rotary member 17 is located outside the position shown in Fig. 8, the rotary member 17 does not rotate or rotate in the line discharge direction. When the rotation direction determining unit 6 4 determines that the rotating member 17 is not rotating in the wire winding direction, the current flows through the second pattern. In the second mode diagram, the current flows from the U-phase coil to the V-phase coil 16b as indicated by the arrow B. Similarly, when the rotating member 17 has not rotated in the winding direction, the third mode diagram flowing from the arrow C, the fourth mode diagram flowing from the arrow 〇, the fifth mode diagram flowing from the arrow E, In the sixth mode diagram in which the arrow F flows, the current flows from the U phase toward the V-phase coil 16b until the rotor 17 rotates in the wire winding direction. Further, in the third mode, the current flows from the v-phase coil toward the W-phase coil. The fourth mode diagram ' is to cause a current to flow from the v-phase coil toward the u-phase coil. The fifth mode diagram ' is a flow of current from the W-phase coil toward the U-phase coil. The sixth mode diagram is to make a current flow from the W-phase coil to the V-phase coil. When the current flows from the first mode map until the sixth mode diagram, the rotating member 17 can be rotated in the line winding direction regardless of whether any of the rotating patterns 17 is at any phase. . Therefore, the current of the next pattern is flown while determining the rotation direction until the rotor 17 is rotated in the winding direction of the wire. Further, if it is determined that the rotary member 17 is rotated in the wire take-up direction, the processing is terminated. When the motor 12 rotates and the rotation phase can be detected by the reverse current generated when the FET 25 is turned on or off (ON/OFF), the rotation control unit 66 corresponds to the rotating member 17 of the detected motor 1 2 . The phase of rotation causes current to flow through 3 lines 圏1 6b. An example of the detection signal for the rotation phase for the reverse current rectification to be generated is as shown in Fig. 7. In Fig. 7, the display -20 - 201240321 flow is a detection signal that occurs when the flow is sequentially flowed from the u phase to the W phase as shown in Fig. 8. Fig. 8' is a schematic diagram showing a predetermined pattern used when being controlled by the activation control unit 65. In the case of the motor of the three-phase two-pole, in the case of the pattern diagram of any one of the six pattern diagrams, the rotation is performed in any of the six pattern diagrams in the predetermined pattern diagram. The piece 17 can be rotated in the direction of the wire take-up. At the time of the rotation control, the current is caused to flow from a predetermined pattern map corresponding to the detection result of the rotational phase. Further, the positive electrode side of each of the U-phase, the V-phase, and the W-phase is turned on and off (ON/OFF) by the cycle of the corresponding reel speed or current 値. On the other hand, the negative side of each coil 16b is subjected to PWM control of a period of, for example, 20 kHz, and power control is performed in accordance with the set reel speed or current 。. The reel speed detecting unit 67 detects the speed of the reel 10 used in the motor control unit 60 and the rotation direction of the reel 1〇 by the output from the reel sensor 41. The reel speed control unit 68 is a swing operation position corresponding to the adjustment operation lever 5 as the reel speed setting unit, and controls the rotation speed of the reel 1〇 in a plurality of stages (for example, the 3 1 stage). That is, the control motor 12° mode switching unit 69 is used to switch the constant tension mode and the speed constant mode in the speed constant mode. As described above, for example, the switching operation of the operation mode is realized by the long-press operation of the menu switch SW1 for 3 seconds or longer. In the electric reel having such a configuration, when the fishing line is discharged, the clutch is opened by operating the clutch operating member 1 toward the front (rear) (-21 - 201240321 OFF). When the clutch is turned OFF, the reel 10 is in a freely rotating state, and the fishing line is discharged from the reel 10 by the weight of the plumb installed on the fishing line. When the fishing line is discharged, the reel 10 is rotated in the line discharge direction, and the water depth display of the pulse water depth display unit 22 is changed by the detection of the reel sensor 41. When the fishing group reaches the shed (the depth of the fish migration layer), the operation lever 2 is rotated in the winding direction of the wire, and the clutch is turned ON by the clutch return mechanism (not shown) to stop the discharge of the fishing line. When the fish is hooked, the operation lever 5 is operated to wind up the fishing line. When the adjustment operation lever 5 is swung clockwise in the first figure, the maximum speed of the rotation speed of the reel 10 or the tension of the fishing line can be set in accordance with the swing angle. <Operation of Reel Control Unit> Next, the specific control operation of the reel control unit 23 will be described based on the control flowchart shown after FIG. Further, the following description is only an example of the control program of the present invention, and the control program of the present invention is not limited to the contents shown in the following flowcharts. When the power source is put into the electric reel by a power cable (not shown), the initial setting is performed in step S1 of Fig. 9. Reset various variables and markers in this initial setting. Further, the rim stop position FN (an example of the stop water depth) is set to a standard rim stop position, that is, the first line length L 1 (for example, 6 m). Next, display processing is performed in step S2. In the display processing, various display processing such as water depth display is performed. Here, the stage SC is displayed in the stage • 22-201240321 to display the field 22c. In step S3, it is determined whether or not the water depth LX calculated by each of the operation modes described later is equal to or smaller than the first line length L1. In step S4, a determination is made as to whether any of the switches SW1 to SW3 or the switch input for adjusting the operation lever 5 is pressed. And it is judged in step S5 whether or not the reel 1 is rotated. This determination is made by the output of the reel sensor 41. In step S6, it is judged whether or not other commands and inputs are operated. When the water depth LX is equal to or smaller than the first line length L1, the flow proceeds from step S3 to step S7. In step S7, it is determined whether or not the water depth is stopped for 5 seconds or longer. When the water depth of 6 m or less is stopped for 5 seconds or longer, the operation of removing the fish caught in the rim is often performed, or the operation of attaching the bait to the fishing group or the like is performed. Therefore, if it is determined that the stop is 5 seconds or longer, the process proceeds to step S8, and the water depth LX at this time is set to the ship edge stop position FN. If the 5 seconds is not full, the process proceeds from step S7 to step S4. When the switch input is operated, the process proceeds from step S4 to step S9 to execute the switch input shown in Fig. 10. When the rotation of the reel 1 is detected, the flow proceeds from step S5 to step S10. Each of the operation mode processes is executed in step S10. When other commands or inputs are operated, the process proceeds from step S6 to step S1 1 to perform other processing. In the switch input processing of step S6, it is judged whether or not the adjustment operation lever 5 is operated by step S15 of Fig. 10. In step S16, it is judged whether or not the menu switch SW1 is pressed for 3 seconds or longer. In step S17, it is judged whether or not the other switches are operated. The operation of the other switches includes: the normal operation of the menu switch s W 1 , the operation of the decision switch SW2 and the memory switch SW3, and the like. -23-201240321 If it is determined that the adjustment operation lever 5 is oscillated, the flow proceeds from step S15 to step S18. In step S18, the number of stages SC of the adjustment operation lever 5 is read. A rotary encoder (not shown) is provided in the adjustment operating lever 5, and the output of the rotary encoder is read. In step S19, it is judged whether or not the adjustment operation lever 5 is operated to the stage SC = 0. When the phase SC is "0", the process proceeds to step S20, the motor 12 is turned off (OFF), and the process proceeds to step S16. When the stage SC is not "〇", the process proceeds to step S2 1 ^ In step S2 1, the motor rotation control process shown in Fig. 1 is performed, and the process proceeds to step S22. In step S22, it is judged whether or not any one of the speed constant mode or the constant tension mode is set due to the long press operation of the menu switch SW1. When the speed constant mode is set, the process proceeds from step S22 to step S23. The reel speed control processing for realizing the speed constant mode is performed in step S23, and then the flow proceeds to step S16. In this reel speed control process, the feedback control motor 12 sets the target reel rotation speed set in each stage SC. If the menu switch SW1 is operated for a long press, the process proceeds from step S16 to step S25. In step S25, it is judged whether or not the speed constant mode is set. When the speed constant mode is set, the process proceeds from step S25 to step S26 and is set to the tension setting mode, and then the process proceeds to step S17. When the tension constant mode is set, the process proceeds from step S25 to step S27 to set the tension setting mode, and the process proceeds to step S17. When the tension constant mode is set, the process proceeds from step S22 to step S24. In step S24, motor current control processing for realizing the constant tension mode is performed, and then the flow proceeds to step S16. In the motor current control process -24-201240321, the feedback control motor I2 sets the target current 値 set in each stage sc. When another switch input is performed, the process proceeds from step S17 to step S2. For example, another switch input process such as a change from the bottom mode and another mode setting is performed, and then the process returns to the main body shown in FIG. Example stroke type. In the motor rotation control processing of step S21, it is judged whether or not the motor 12 has been started by step S31 of the first diagram. When the motor 12 has been started, the process proceeds to step S40. If the motor 12 is not activated, the process proceeds to step S31. In step S3 1, the variable N (N is a positive integer) for sequentially flowing a current toward the coil 16b from the first mode diagram is set to "1". The rotation speed of '100 rpm in step S33 is that the current of the Nth pattern which can rotate the motor 12 flows toward the line 圏16b. In step S34, it is judged whether or not the rotation direction of the motor 12 is the wire winding direction. In the case of the rotation of the wire take-up direction, the flow proceeds from step S34 to step S40. When the motor 12 is not rotating in the wire take-up direction, the process proceeds from step S34 to step S35. In step S35, the variable N is incremented by one in order to cause the current of the next pattern to flow. In step S36, it is judged whether or not the variable N is "7". When the variable N is "7", the process proceeds to step S37 to set the variable N to "1", and the process proceeds to step S38. In step S38, it is judged whether or not the output of the pattern map exceeds 0.5 second. If the pattern map is output, if it exceeds 〇·5 seconds, the process proceeds to step S40. Further, if the variable N is not 7, the process proceeds from step S36 to step S33, and the next mode map is output. These steps are repeated ' until the motor 12 rotates in the wire take-up direction. -25- 201240321 When the motor 12 rotates in the wire winding direction, the process proceeds from step S34 to step S40. In step S4, the rotational speed V of the motor 12 and the current power DR are read. These are memorized in the memory unit 46. In step S4 1, it is judged whether or not the rotational speed of the motor 12 is 4000 rpm or less. When the rotation of the motor 12 is 4000 rpm or less, the process proceeds from step S41 to step S43. In step S4 3, low speed control processing is performed. Specifically, as long as the signal for displaying the rotational phase shown in Fig. 7 obtained by the reverse current is read, the excitation position can be determined without calculating the rotational phase to advance the angle control. However, if the high-speed rotation is controlled by this, the efficiency is deteriorated, and the power consumption is remarkably large. Here, if it is determined in step S41 that the rotation of the motor 12 exceeds 4000 rpm, the process proceeds to step S42. In step S42, it is determined whether or not the rotation of the motor 12 is 5000 rpm or more. If it is determined that the rotation of the motor 12 is 5 000 rpm or more, the process proceeds from step S42 to step S44 to perform high speed processing. In this high-speed processing, position detection and advance angle control are added to the interrupt signal of the phase signal for excitation. Here, the judgment of steps S4 1 and S42 is set to a loss of 1000 rpm in order to prevent chattering due to the determination of the same rotational speed. Specifically, the excitation position calculated from the current speed is synchronized by the interrupt signal. For example, the rotational speed is calculated from the signal of the rotational phase of the W phase, and the rotational speed is obtained at intervals of 100 V seconds. Further, the angles are reset by the following three conditions to adjust the rotation angle. 1. When the position detection of the U phase is interrupted in the first and sixth pattern diagrams, the position (angle) is the 〇 degree. 2. When the position detection interruption of the V phase occurs in the second and third pattern diagrams 8 -26- 201240321, the position (angle) is i2 〇. 3. When the position detection of the U phase is interrupted in the 4th and 5th pattern diagrams, the position (angle) is 240 degrees. Here, in order to prevent an interruption in an unnecessary angle caused by noise or the like, a signal for locking the phase of the next phase of the current excitation position is detected. Specifically, in the case of the second mode diagram, the detection of the V phase is performed, in the case of the fourth mode diagram, the detection of the W phase is performed, and in the case of the sixth mode diagram, the detection of the U phase is performed. The above operation is performed every time the motor 1 2 rotates. The motor 12 is rotated while adjusting the advance angle. If these processes are completed, the process proceeds to step S22. In each operation mode process of step S10, it is determined in step S51 of Fig. 12 whether or not the rotation direction of the reel 1 为 is the line discharge direction. This judgment is made by whether or not any of the reed switches of the reel sensor 41 is pulsed first. When the rotation direction of the reel 1 is judged to be the line discharge direction, the flow proceeds from step S51 to step S52. In step S52, each time the number of reel rotations is decreased, the data stored in the line length data storage area 5 1 is read based on the number of reels of the reel and the water depth (line length to be ejected) LX is calculated. This water depth LX is displayed by the display processing of step S2. In step S53, it is judged whether or not the obtained water depth LX coincides with the shed (fish migration layer depth) position or the bottom position, i.e., whether the fishing group reaches the shed (fish migration layer depth) or the bottom. The position of the shed (fish migration layer depth) or the bottom position is such that the display data of the memory unit 46 can be set to the memory area 50 by pressing the memory switch SW3 when the fishing group reaches the shed (fish migrating depth) or the bottom. In step S54, it is determined whether or not it is another mode such as a learning mode. -27- 201240321 If the water depth is consistent with the position of the shed (fish migration layer depth) or the bottom position, proceed from step s 5 3 to step S 5 5 'In order to report that the fishing group has reached the shed (fish migration layer depth) or bottom The buzzer 47 sounds. In the case of the other mode, the process proceeds from step S54 to step S56, and the other mode designated is executed. When it is not in other mode cases, the processing of each action mode is terminated and returned to the main routine. If it is determined that the rotation of the reel 1 is the wire winding direction, the process proceeds from step S51 to step S57. In step S57, the data of the recorded online length data memory area 5 1 is read in accordance with the number of reels of the reel and the water depth LX is calculated. This water depth LX is displayed by the display of step S2. In step S58, it is judged whether or not the rim stop position is reached. When the ship edge stop position FN is reached, the process proceeds from step S58 to step S59. In step S59, the buzzer 47 is made to sound in order to notify that the fishing group is already at the rim. In step S60, the motor 12 is turned off (OFF). Thus, when the fish is caught and the fishing group is recovered and the bait is exchanged, the fish and the fishing group are placed in an easily removable position. Return to the main routine if it is not taken to the rim stop position. <Characteristics> (A) The motor control unit 60 is a stator 16 having a rotor 17 having a magnet 17a having two poles and a coil 16b having three phases of UVW, and the rotating member can be detected by the reverse current The rotational phase of 1 7 causes the reel 1 〇 to rotate in the wire take-up direction by using a motor 1 2 ' such as a brushless motor that prohibits rotation of the wire discharge direction by the one-way clutch 28. The motor control unit 60 includes a rotation direction determining unit 64, a rotation phase detecting unit 62, and a start control unit 65'201240321 and a rotation control unit 66. The rotation direction determining unit 64 detects the rotation direction of the rotor 17. The rotational phase detecting unit 62 detects the rotational phase and the rotational speed of the rotary element by the reverse current. When the start control unit 65 cannot detect the rotational phase due to the reverse current, the rotation direction determining unit 64 determines that the rotary member 17 is in the order of the complex pattern corresponding to the rotational phase of the rotary member 17. When any one of the complex pattern maps is rotated in the winding direction, a current flows through the three-phase coil to start the motor 12. When the rotation phase is detectable, the rotation control unit 66 controls the motor 12 so that the current flows in the three-phase coil 16b corresponding to the rotation phase detected by the reverse current. In the motor control unit 60, when the rotational phase detecting unit 62 cannot detect the start of the rotational phase of the rotary member 17, the start control unit 65 activates the brushless motor 12. In the start control unit 65, since the rotational phase of the rotor 17 cannot be detected, the complex mode of the rotational phase of the corresponding rotary member 17 is determined until the rotational direction determining unit 64 determines that the rotary member 17 is rotating in the wire winding direction. The graph causes current to flow sequentially and intermittently to the coil 16b of the three phases. Thereby, the rotating member 16b can be rotated in the wire winding direction without detecting the rotational phase of the rotary member 17 using the sensor. Therefore, when the rotational phase of the rotating member 16b can be detected by the reverse current, it is switched to the control by the rotation control unit 66. The rotation control unit 66 detects the rotational phase of the rotary member 16b by the reverse current, and causes a current to flow to one of the three-phase coils 16b corresponding to the rotational phase. Here, for example, if the brushless motor 1 2 that is used in the electric reel for changing the rotational speed due to the fluctuation of the load is used, -29-201240321 can be performed: it can be detected by the reverse current Different control when rotating the phase and when the rotation phase cannot be detected. Therefore, even if the electric reel is driven by the brushless motor 12 without the sensor, the speed can be increased or decreased, and the cost can be reduced. (B) In the motor control unit 60, the complex pattern diagram is six pattern diagrams having the first pattern to the sixth pattern. The first mode diagram is a schematic diagram in which a current flows from the U-phase coil to the V-phase coil. The second mode diagram is a schematic diagram in which a current flows from the U-phase coil toward the W-phase coil. The third mode diagram is a schematic diagram in which a current flows from the V-phase coil to the W-phase coil. The fourth mode diagram is a schematic diagram in which current flows from the V-phase coil to the U-phase coil. The fifth mode diagram is a schematic diagram in which a current flows from the W-phase coil toward the U-phase coil. The sixth mode diagram is a schematic diagram in which a current flows from the W-phase line to the V-phase coil. The start control unit 65 has a pattern flow unit 65a that allows the current to be predetermined in the order of the first mode to the sixth mode until the rotation direction determining unit 64 determines that the rotor 17 is rotating in the wire winding direction. The time flows through the 3-phase line 圏1 6 b. In this case, when the current flows through the three-phase coil 16b of the UVW in the order of the first mode to the sixth mode, the rotating member 17 will be in a state where the S-pole and the U-phase coil 16b face each other. Rotate in the direction of the wire take-up. Therefore, even if any one of the rotational phases of the rotary member 17 is rotated, the rotary member 17 is necessarily rotated by the pattern of either of them in the winding direction. Therefore, if the rotation direction determining unit 64 confirms the rotation in the wire winding direction, the rotary member 17 can be rotated in the wire winding direction without using the position sensor (C) in the motor control unit 60. Further, a current detecting unit 70a for detecting the current 値 of the current flowing through the stator 316 of the 8-30-201240321 and the flow direction of the current is provided. The rotation direction determining unit 64 determines whether or not the motor 12 is rotated in the wire winding direction by the current 値 and the current direction detected by the current detecting unit 70a. In this case, the current that causes the rotation of the rotating member 17 in the line discharge direction to flow is rotated by the stator 16 of the motor 12 in which the rotation of the rotating member 17 in the line discharge direction is prohibited by the one-way clutch 28. Piece 17 causes the current 値 to become higher because it cannot be rotated. Therefore, the rotation of the rotating member 17 in the wire winding direction can be judged by the accuracy of the current 値 and its current direction, and the rotating member 17 can be surely rotated in the winding direction without the rotation phase of the rotating member 17. (D) The motor control unit 60 further includes a motor speed detecting unit for detecting the rotational speed of the motor 12 by the rotational phase, and the rotation control unit 66 rotates correspondingly when the rotational speed is equal to or lower than the first speed. The rotation phase detected by the phase detecting unit 62 causes a current to flow from one of the first pattern to the sixth pattern to the three-phase coil, and when the rotation speed is higher than the first speed. The current is directed to the three-phase coil by the interrupt signal and the advance angle control from the rotational phase detecting unit 62. In this case, for example, when the rotation of the brushless motor is, for example, 4000 rpm or less of the first speed, the detected rotation phase is not read to perform the angle control, and the coil that determines the excitation causes the current to flow. When the brushless motor is rotated at a second speed, for example, 5000 rpm or more, the interrupt signal and the advance angle control from the rotational speed detecting unit 62 are used to interrupt the next phase of the current excitation position. Current is caused to flow to the coil 16b. Therefore, when the rotation speed of the brushless motor 12 is slow, high-precision rotation is possible. 201240321 Control, when the speed is high, efficiency can be improved and power consumption can be suppressed. (E) The motor control unit 60 further includes an adjustment operation lever 5 and a reel speed detection unit 67. The operation lever 5 is adjusted to set the rotation speed of the reel 10 to a plurality of stages. The reel speed detecting portion 67 detects the rotational speed of the reel 10. The rotation control unit 65 controls the motor 12 to be the reel rotation speed set by the adjustment operation lever 5 with reference to the detection result of the reel speed detection unit 67. In this case, the reel speed can be controlled by a plurality of stages and can be controlled to a certain extent, and even if the reel speed is lowered by the load, the rotation of the motor 12 is slowed down and the rotational phase of the rotary member 17 cannot be detected, The motor is rotated by the rotation control unit 66 by high torque. <Other Embodiments> The above is an embodiment of the present invention, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit and scope of the invention. (a) In the foregoing embodiment, the tension constant control and the speed constant mode can be switched, but the present invention is not limited thereto. For example, only a certain speed control can be performed. (b) In the above embodiment, the motor 1 2 is housed inside the reel, but the present invention can also be applied to an electric reel in which the motor is mounted outside the reel. (c) In the foregoing embodiment, the motor operating member exemplifies the adjustment operating lever, but the present invention is not limited thereto. For example, it is also possible to increase and decrease the stage by pressing the button 8 • 32- 201240321 for the time. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] A perspective view of an electric reel used in an embodiment of the present invention. [Fig. 2] A side sectional view thereof. [Fig. 3] A plan view of the counter box. [Fig. 4] A cross-sectional view of the motor mounting portion. [Fig. 5] A block diagram showing the configuration of the control system. [Fig. 6] A block diagram showing the memory contents of the billions. [Fig. 7] A diagram illustrating a position detection signal at the time of high speed control. [Fig. 8] A diagram showing a flow pattern of the coil at the time of low speed control. [Fig. 9] A flow chart of the main routine of the reel control unit. [Picture 1] A flowchart showing the processing contents of the switch input. [Fig. 11] A flow chart showing the processing contents of the motor rotation control. [12] A flowchart showing the processing contents of each operation mode process. Main component symbol description] DR: Power LX: Water depth SW2: Determine switch V: Rotation speed Vscl: Lower limit 値1: Reel body FN: Ship stop position SW 1 : Menu switch SW3: Memory switch Vsc: Upper limit speed Vsc2 : Upper limit値 2 : Operating lever 33 - 201240321 3 : Star tractor 4 : Counter box 5 : Adjustment lever 7 : Frame (an example of the winding speed setting unit) 7a : First side plate 7b : Second side plate 7c : Connecting member 7d : 竿 设 7 7 e e e 7 7 7 7 7 e 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 离合器 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Brushless motor 13 : Uniform winding mechanism 14 : Cable connector 15 : Motor housing 15 a : First lid portion 15 b : Second lid portion 15 c : Intermediate lid portion 1 5d : Through hole 16 : Stator 16 a : Laminated core 16 b : Coil 16b: Rotating member 16c: positioning recess 17: Rotating member 17a: magnet 17b: magnet holder 18: output shaft 19: case body 20: circuit board 21: capacitor 22: water depth display portion 22a: water depth display field 22b: memory water depth display field 22c: order Display area 23 : Reel control unit 27 : Bearing 28 : One-way clutch 28 a = Outer wheel 29 : Fixing bolt 30 : Upper case member 3 1: Fixing bolt -34 - 201240321 32 : Lower case member 33 : Upper face 33a : Display frame 34 : Motor cable 37 : Cover 4 1 : Reel sensor 46 : Memory unit 47 : Buzzer 50 : Display data memory area 5 1: Line length data memory area 52 : Data memory area 52 : Rotate data memory area 53 : Data memory 1 product area 60 : Motor control unit 61 : Display control unit (motor 62 of electric reel: an example of control unit of rotary phase detection unit) 63 : Motor current control unit 64 : Rotation direction determination unit 65 : Start control Part 6 5a = pattern map circulation unit 66 : rotation control unit 67 : reel speed detection unit 68 : reel speed control unit 69 : mode switching unit 70 : motor drive circuit 70 a : current detection unit 35 -

Claims (1)

201240321 七、申請專利範圍: 1. 一種電動捲線器的馬達控制裝置,是具有設有2極 的磁鐵的旋轉件及設有UVW的3相的線圏的定子,可藉由 逆起電流檢出前述旋轉件的旋轉相位,藉由利用單向離合 器使線吐出方向被旋轉禁止的無電刷馬達,使捲筒朝線捲 取方向旋轉,具備: 旋轉方向判斷部,是判斷前述旋轉件的旋轉方向; 旋轉相位檢出部,是藉由前述逆起電流將前述旋轉件 的旋轉相位檢出; 起動控制部,是當前述旋轉相位檢出部無法藉由前述 逆起電流檢出前述旋轉相位時,直到旋轉方向判斷部判斷 出旋轉件是由複數模式圖的其中任一朝線捲取方向旋轉爲 止’由對應前述旋轉件的旋轉相位的複數模式圖依預定的 順序使電流流動於前述3相的線圈,來起勤馬達;及 旋轉控.p!l部,是當可以檢出前述旋轉相位時,使電流 以對應由前述逆起電流所檢出的前述旋轉相位流動於前述 3相的線圏的其中任一。 2 ·如申請專利範圍第1項的電動捲線器的馬達控制裝 置’其中’前述複數模式圖,是具有:使電流從U相線圈 朝V相線圈流動的第1模式圖、使電流從u相線圈朝w相線 圈流動的第2模式圖、使電流從V相線圈朝w相線圏流動的 第3模式圖、使電流從v相線圈朝u相線圏流動的第4模式 圖、使電流從W相線圏朝U相線圏流動的第5模式圖、及使 電流從W相線圈朝V相線圈流動的第6模式圖之6個模式圖 -36- 201240321 前述起動控制部具有模式圖流通部,其是依前述第1 模式圖至第6模式圖的順序,直到前述旋轉方向判斷部判 斷出前述旋轉件是朝線捲取方向旋轉爲止使電流預定時間 流動於前述3相的線圈。 3 .如申請專利範圍第2項的電動捲線器的馬達控制裝 置,其中,進一步具備電流檢出部,其是檢出流動於前述 定子的電流的電流値及前述電流的流通方向, 前述旋轉方向判斷部,是藉由利用前述電流檢出部被 檢出的電流値及電流方向來判斷前述無電刷馬達是否朝線 捲取方向旋轉》 4 ·如申請專利範圍第2或3項的電動捲線器的馬達控制 裝置,其中’進一步具備馬達速度檢出部,其是藉由前述 旋轉相位檢出前述馬達的旋轉速度, 前述旋轉控制部,是當前述旋轉速度爲第1速度以下 時,對應由前述旋轉相位檢出部所檢出的旋轉相位由前述 第1模式圖至前述第6模式圖的其中任一使電流流通於前述 3相的線圏, 當前述旋轉速度是比前述第1速度快的第2速度以上時 ’藉由來自旋轉相位檢出部的中斷訊號及進角控制使電流 流通於前述3相的線圈。 5 _如申請專利範圍第丨至3項中任一項的電動捲線器的 馬達控制裝置,其中,進一步具備: 將則述捲筒的旋轉速度設定成複數階段的其中任一用 -37- 201240321 的捲筒速度設定部、及 檢出前述捲筒的旋轉速度用的捲筒速度檢出部, 前述旋轉控制部,是參照前述捲筒速度檢出部的檢出 結果由前述捲筒速度設定部控制前述無電刷馬達使成爲被 設定的捲筒旋轉速度。 ⑧ -38201240321 VII. Patent application scope: 1. A motor control device for an electric reel, which is a rotating member with a magnet with two poles and a three-phase coiled stator with UVW, which can be detected by the reverse current The rotation phase of the rotating member is rotated by the brushless motor in which the wire discharge direction is prohibited by the one-way clutch, and the reel is rotated in the wire winding direction. The rotation direction determining unit determines the rotation direction of the rotating member. The rotation phase detecting unit detects the rotational phase of the rotating member by the reverse current, and the starting control unit detects that the rotational phase detecting unit cannot detect the rotational phase by the reverse current. Until the rotation direction determining unit determines that the rotating member is rotated in any one of the plurality of pattern patterns in the winding direction, the current flows through the three phases in a predetermined order by a complex pattern corresponding to the rotational phase of the rotating member. The coil, to the starter motor; and the rotary control .p!l part, when the rotation phase can be detected, the current is detected corresponding to the reverse current Wire rings of the rotational phase of the three phases flowing in either. 2. The motor control device of the electric reel according to the first application of the first aspect of the present invention, wherein the plurality of modes are: a first mode diagram for causing a current to flow from the U-phase coil to the V-phase coil, and a current from the u-phase A second pattern in which the coil flows toward the w-phase coil, a third pattern in which a current flows from the V-phase coil toward the w-phase line, a fourth pattern in which a current flows from the v-phase coil toward the u-phase line, and a current pattern The fifth mode diagram of the flow from the W-phase line to the U-phase line and the sixth mode diagram of the sixth mode diagram for flowing the current from the W-phase coil to the V-phase coil-36-201240321 The start-up control unit has a pattern diagram In the flow-through portion, the rotation direction determining unit determines that the rotation of the rotating member in the winding direction of the wire causes the current to flow in the three-phase coil for a predetermined period of time in the order of the first mode to the sixth mode. 3. The motor control device for an electric reel according to the second aspect of the invention, further comprising a current detecting unit that detects a current 电流 flowing through the stator and a flow direction of the current, the rotation direction The determination unit determines whether the brushless motor is rotated in the wire winding direction by the current 値 and the current direction detected by the current detecting unit. 4 4. The electric reel as claimed in claim 2 or 3 Further, the motor control device further includes a motor speed detecting unit that detects the rotational speed of the motor by the rotational phase, and the rotation control unit corresponds to the first speed when the rotational speed is equal to or lower than the first speed The rotation phase detected by the rotation phase detecting unit causes a current to flow through the three-phase coil from the first mode diagram to the sixth mode diagram, and the rotation speed is faster than the first speed. When the second speed is equal to or higher than above, the current is caused to flow through the three-phase coil by the interrupt signal and the advance angle control from the rotary phase detecting unit. The motor control device for an electric reel according to any one of claims 3 to 3, further comprising: setting the rotation speed of the reel to a plurality of stages -37-201240321 The reel speed setting unit and the reel speed detecting unit for detecting the rotational speed of the reel, wherein the rotation control unit refers to the reel speed setting unit by referring to the detection result of the reel speed detecting unit. The aforementioned brushless motor is controlled to be the set reel rotation speed. 8 -38
TW100129200A 2010-11-30 2011-08-16 Motor reducer motor control device TWI523402B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266259A JP5763909B2 (en) 2010-11-30 2010-11-30 Electric reel motor control device

Publications (2)

Publication Number Publication Date
TW201240321A true TW201240321A (en) 2012-10-01
TWI523402B TWI523402B (en) 2016-02-21

Family

ID=46087944

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100129200A TWI523402B (en) 2010-11-30 2011-08-16 Motor reducer motor control device

Country Status (4)

Country Link
JP (1) JP5763909B2 (en)
KR (1) KR101649174B1 (en)
CN (1) CN102475076B (en)
TW (1) TWI523402B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633838B (en) * 2014-02-27 2018-09-01 島野股份有限公司 Display apparatus for electrical fishing reel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153714B2 (en) * 2012-11-19 2017-06-28 株式会社シマノ Electric reel
JP6166063B2 (en) * 2013-03-01 2017-07-19 株式会社シマノ Electric reel control device
JP7257202B2 (en) * 2019-03-19 2023-04-13 株式会社シマノ Electric reel for fishing, its mode transition control method, and mode transition control program
CN111282651B (en) * 2020-03-31 2021-07-06 绍兴阔源机械科技有限公司 Coal pulverizer with motor speed excessively slow warning function

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107146A (en) * 1988-10-17 1990-04-19 Shimano Ind Co Ltd Controller for motor in fishing reel
JP3208641B2 (en) * 1995-06-14 2001-09-17 三菱電機株式会社 Control device and hand dryer for sensorless DC brushless motor
JPH09312987A (en) * 1996-05-22 1997-12-02 Sanyo Electric Co Ltd Brushless dc motor
JP2000125583A (en) * 1998-10-14 2000-04-28 Calsonic Corp Brushless motor
JP2000175602A (en) * 1998-12-15 2000-06-27 Daiwa Seiko Inc Electrically-driven fishing reel
JP2002125546A (en) * 2000-10-27 2002-05-08 Shimano Inc Motor controller for electric reel
JP2004236566A (en) * 2003-02-05 2004-08-26 Shimano Inc Motor controller for electric reel
JP2005110345A (en) * 2003-09-29 2005-04-21 Aisin Seiki Co Ltd Start control method and controller of sensorless brushless dc motor for driving hydraulic pump
JP5134991B2 (en) * 2008-01-31 2013-01-30 株式会社シマノ Electric reel motor control device
JP2009284793A (en) * 2008-05-28 2009-12-10 Shimano Inc Motor of electric reel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633838B (en) * 2014-02-27 2018-09-01 島野股份有限公司 Display apparatus for electrical fishing reel

Also Published As

Publication number Publication date
JP2012115177A (en) 2012-06-21
KR20120059353A (en) 2012-06-08
KR101649174B1 (en) 2016-08-18
CN102475076A (en) 2012-05-30
TWI523402B (en) 2016-02-21
JP5763909B2 (en) 2015-08-12
CN102475076B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
KR102133308B1 (en) Drag detecting apparatus for electrical fishing reel and control apparatus for electrical reel
TWI523402B (en) Motor reducer motor control device
JP2014168396A5 (en)
JP2012115177A5 (en)
JP5460404B2 (en) Electric reel counter case
TWI622348B (en) Motor control device for electric reel
TW201400011A (en) Uniform winding mechanism for dual-bearing fishing reel, dual-bearing fishing reel and electrical fishing reel
JP5723117B2 (en) Electric reel motor control device
TWI272907B (en) Electric reel
TWI300699B (en) Motor control device for motor driven reel
JP2015000024A5 (en)
CN100423637C (en) Motor controller of electric reel
TWI821581B (en) motor control device
JP6227286B2 (en) Electric reel control device
JP2009261333A (en) Fishing reel
TW201918171A (en) Motor controlling device of electric reel capable of changing the relation of the pressing force and the variation of the output of the motor toward the relation suitable for the situation of the fishing spot
JP2014239665A5 (en)
JP2002051674A (en) Motor control circuit of electric reel
JP2021052668A (en) Electrically-driven reel control device and electrically-driven reel
TW201918170A (en) Motor controlling device of electric reel capable of quickly and easily adjusting the output of motor
JP2000201603A (en) Motor-driven reel for fishing
JP2006129774A (en) Motor controller of electric reel
JP2001286250A (en) Rotation-transmitting device for motor-driven reel
JP2009203602A (en) Automatic door device equipped with means for detecting opening and closing operation of door depending on external force