TW201238231A - Power supply apparatuses for preventing latch-up of charge pump and methods thereof - Google Patents

Power supply apparatuses for preventing latch-up of charge pump and methods thereof Download PDF

Info

Publication number
TW201238231A
TW201238231A TW101104899A TW101104899A TW201238231A TW 201238231 A TW201238231 A TW 201238231A TW 101104899 A TW101104899 A TW 101104899A TW 101104899 A TW101104899 A TW 101104899A TW 201238231 A TW201238231 A TW 201238231A
Authority
TW
Taiwan
Prior art keywords
pulse
signal
voltage
power supply
generator
Prior art date
Application number
TW101104899A
Other languages
Chinese (zh)
Other versions
TWI549416B (en
Inventor
Seung-Jung Lee
Hun Lim
Ho-Hak Rho
Gyu-Sung Park
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201238231A publication Critical patent/TW201238231A/en
Application granted granted Critical
Publication of TWI549416B publication Critical patent/TWI549416B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/078Charge pumps of the Schenkel-type with means for reducing the back bias effect, i.e. the effect which causes the threshold voltage of transistors to increase as more stages are added to the converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power supply apparatus and a power supply method are disclosed. The power supply apparatus may include an internal power supply including a first voltage generator configured to generate a first voltage based on a pulse width modulation control signal, a charge pump configured to receive the first voltage and generate a second voltage, and an inrush current controller configured to be connected between the charge pump and the internal power supply and configured to generate the pulse width modulation control signal based on a target signal and a selection reference voltage.

Description

201238231 41432pif 六、發明說明: 【相關申請案的交叉參照】 本申請案主張韓國專利申請案第10-2011-0(^4252號 與第10-2011-0028253號的優先權,所述申請案分別於 2011年2月17曰及2011年3月29曰提申至韓國智慧財 產局,其所有内容在此以引用方式併入本文中。 【發明所屬之技術領域】 例示性實施例是有關於一種電源供應器,且特別是有 關於包括電荷幫浦的電源供應裝置,並有關於其方法。 【先前技術】 電性裝置或電子裝置通常使用直流電(direct current DC )電源供應器’其將交流電(aiternate current, AC)電源轉換為直流電電壓,以驅動設備。切換式電源供 應器(switching mode power supply,SMPS )用來作為直 流電電源供應器。 切換式電源供應器所供應的直流電電源施加至電子 裝置的各零件。因為切換式電源供應器所供應的電源是5 v、3.3 V或12 V’電子裝置也包括電荷幫浦,其自切換式 電源供應器接收直流電電壓,並將直流電電壓升壓至電子 裝置各零件(例如晶片組與記憶體)的位準。 然而’因為環境條件,例如設計錯誤及周遭溫度錯誤 (例如因尖冷電流導致閂鎖效應發生時),而導致電流未 均勻分布時’零件可能受到影響。 在閃鎖效應此一現象中,超過數百毫安培(mA)的電流 201238231 41432pif 在電路中流動,並中斷或破壞電路。例如,寄生PNPN結 構(也稱為閘流器結構(thyristor structure))在N型金氧半 (N-type metal oxide semiconductor,NMOS)與 P 型金氧 半(P-type metal oxide semiconductor,PMOS)間被觸發, 而湧入電流可能流入閘流器結構;N型金氧半與P型金氧 半在互補金氧半(complementary metal oxide semiconductor,CMOS)結構中彼此相鄰。因為輸入/輸出 電壓超過額定電壓而導致湧入電流(或洩漏電流)流入内 部設備,或因為電源供應端的電壓超過額定電壓而導致内 部設備故障時,大量電流可能影響設備。為防止此種閂鎖 效應,通常會使用外部蕭特基(Schottky)二極體,或可 在積體電路中提供内部蕭特基二極體。 然而’當使用外部蕭特基二極體時,模組的製造價格 上升。内部蕭特基二極體會增加晶片尺寸。 【發明内容】 根據一些例示性實施例,提供電源供應裝置,其包括 内部電源供應器、電荷幫浦,以及湧入電流控制器。所述 内部電源供應器包括根據脈波寬度調變控制訊號來產生第 一電壓的第一電壓產生器;所述電荷幫浦接收所述第一電 壓並產生第二電壓;而所述湧入電流控制器連接於電荷幫 浦與内部電源供應裔之間,並根據目標訊號及選擇來考電 壓來產生脈波寬度調變控制訊號。 渴入電流控制器可包括第一取樣電路、參考電壓產生 器,以及第一比較器。所述第一取樣電路回應第一致能訊 201238231 41432pif 號而分壓第一電壓’並根據此分壓輸出目標訊號;參考電 壓產生咨回應參考電壓選擇訊號而輸出選擇參考電壓;而 第一比較器比較目標訊號與選擇參考電壓,並輸出脈波寬 度調變控制訊號。 在一些例不性實施例中,第一電壓產生器產生回授訊 號’而内部電源供應器包括根據回授訊號來產生脈波的脈 波產生器。脈波產生器可包括鋸齒脈波產生器、鋸齒脈波 比較訊號產生器,以及第二比較器。所述鋸齒脈波產生器 產生具有坡度的鋸齒脈波,而鋸齒脈波是根據脈波寬度調 餐:控制sfL號以及第一致能訊號;所述鑛齒脈波比較訊號產 生态回應第二致能訊號而輸出目標訊號或回授訊號,作為 鋸齒脈波比較訊號;而第二比較器比較鋸齒脈波與鋸齒脈 波比較訊號,並產生切換脈波。 鋸齒脈波產生器可包括第二產生電路、第一波形產生 器,以及第二波形產生器。所述第二產生電路用多數個電 阻盗來分壓供應電壓,並根據所述分壓來產生多數個次要 參考電壓;所述第一波形產生器連接於第二產生電路及鋸 齒脈波輸出端之間,用以根據第二致能訊號而自次要參考 電壓中選擇電壓,並藉由回應選自次要參考電壓中的電壓 而上拉接地電壓以產生第一波形;而所述第二波形產生^ 連接於第二產生電路及鋸齒脈波輸出端間,並藉由回應下 降訊號而下拉鋸齒脈波輸出端的電壓以產生第二波形,所 述下降訊號是在第二波形產生器中產生,且是根據取樣供 應電壓,而取樣所述供應電壓是根據内部電源供應器的時 7 201238231 41432pif 脈訊號。 第一波形產生器可包括偏壓電路、上拉電路,以及疒 儲器。所述偏壓電路回應脈波寬度調變控制訊號而輪二^ 考電壓的其中-者作為軟偏壓訊號,或回應第二致^ 信號而輸出最大偏壓訊號作為鋸齒脈波基本訊號;所述: ^電路回應1¾齒脈波*本訊號拉财脈波輸出端的電 壓;而所述存儲器連接於鋸齒脈波輸出端及接地端間,並 用以儲存上拉訊號及產生第一波形。 、根據其他例示性實施例,提供電源供應器所執行的電 $供應方法,所述電源供應器包括内部電源供應器以及電 荷幫浦。電源供應方法包括根據内部電源供應器回應第一 致能訊號所產生的第一電壓來產生目標訊號,自供應電壓 中產生選擇參考電壓,根據目標訊號與選擇參考電壓來產 生脈波寬度調變控制訊號,根據脈波寬度調變控制訊號來 控制切換脈波的脈波寬度,根據切換脈波來控制輸入電荷 幫浦的湧入電流的量’以及使用電荷幫浦來產生第二電壓。 至少另一例示性實施例揭露一種包括電荷幫浦以及 内部電源供應器的電源供應器。所述電荷幫浦接收第一電 壓並根據第一電壓來產生第二電壓;而所述内部電源供應 器根據切換脈波的脈波寬度來產生第一電壓,且包括脈波 產生器,所述脈波產生器根據調變控制訊號來產生切換脈 波,調變控制訊號與第二電壓是不同的訊號,調變控制訊 號是根據目標訊號與選擇參考電壓之間的比較。 由下文配合隨附圖式對例示性實施例所作的詳細描 ⑧ 201238231 41432pif 述,將能更清楚瞭解例示性實施例的上述及其他特徵與優 點。 【實施方式】 現在將參照所附圖式更加完整地描述例示性實施 例,圖式中緣示些例示性實施例。然而,例示性實施例 可用許多不同形式實施,且不應理解為限於本文所載的例 示性實施例。相反地,提供這些例示性實施例意在讓此揭 露周詳而完整,且向本領域中具通常知識者完整傳達例示 性實施例的範圍。在圖式中,層與區域的尺寸及相對尺寸 可加以誇大以求清晰。全文中,相同元件符號代表類似元 件。 應理解的是,當提及一元件與另一元件「連接」或「耦 合」時,所述元件可直接與另一元件連接或耦合,或者可 存在介入的元件。相反地,當提及一元件與另一元件「直 接連接」或「直接耦合」時,介入的元件即不存在。本文 使用的術語「及/或」包括一個或多個相關列舉項目的所 組合,並可縮寫為「/」。 應理解的是,雖然「第一」、「第二」等術語在本 中可用來描述各種元件,但是這些元件不應受這些術語 制。這些術語只是用來區分一元件與另一元件。舉例而二又 在不偏離本揭露的教示的前提下,第一訊號可稱為第一 號,類似地,第二訊號可稱為第一訊號。 ’一況 本文使用的術語目的僅為描述特定的實施例,而非音 在限制例示性實施例。在本文令使用時,除非上下文、主^ 201238231 41432pif = 則單數形式「一」與「所述」意在一同 U括複數心式。應進一步理解, 時,即明確說明所述特微、Μ杜又十使用4丁°°包括」 杜芬/七輕六+ ^特徵^、整體、步驟、操作、元 ’但不排除存在或附加—個或多個特徵、 區域=數、,、操作、元件、部件及/或其組合。 “二:另f疋義’否則本文使用的所有術語(包括技術 二:語)广意義’皆與例示性實施例所屬領域中具通 吊技術身又理解的意義相同。應進一步理解,術語意義 的解釋,諸如通用字典中所定義的術語,應與其相關領域 及/或本發_脈絡中的意義—致,且除非本文明確定義, 否則不會㈣想化或過度正式的意義加以解釋。 圖1是根據一些例示性實施例的電源供應器1〇〇〇的 方塊圖。 電源供應器1〇〇〇包括内部電源供應器1〇〇、電荷幫浦 200、湧入電流控制器300,以及時序控制器4〇〇。 内部電源供應器100回應時序控制器400所施加的時 脈訊號SMPS_CK與脈波puii及脈波Pul2而執行切換操 作,藉此根據脈波Pull與脈波Pul2的寬度來控制湧入電 流的流動。内部電源供應器1 〇〇接收供應電壓VDD作為 輸入,並產生第一電壓。第一電壓包括正電壓與負電壓。 為求描述清晰’第一正電壓以VSP表示,而第一負電壓以 VSN表示。在一些例示性實施例中,内部電源供應器1〇〇 可為切換式電源供應器(switching mode power supply, SMPS) ’但在其他實施例中可用脈波寬度調變來實施。 201238231 41432pif 電何幫浦200回應時序控制器400所施加的時脈 CP_CK而交替執行充電及放電,藉此提升第一電壓,並產u 生第-電壓。第二電壓包括正電壓與負電壓。為求描述清 晰’第一正錢以VGH表示,而第二負電壓以VGL表示。 在不同實施财’電荷幫浦·可用不同方式實施。 湧入電流控制器300自内部電源供應器1〇〇接收第一 正電壓vsp,將第一正電壓vsp與選擇參考電壓 VREF_SEL比較’並向内部電源供應器廟輸出脈波寬 調變控制訊號Pul CON。 、時序控制器400將具有不同寬度的多數個預設脈 波Pull及脈波pul2施加至内部電源供應器1〇〇。内部電 源供應器1〇〇回應脈波寬度調變控制訊號PuLC〇n而使用 脈波Pull或脈波Pul2作為切換脈波Lsw,以控制 荷幫浦200的湧入電流的量。 圖2是根據一例示性實施例繪示於圖丨中的電源供應 器1000的詳細方塊圖。 〜 參照圖2 ’⑽電源供應器⑽包括第—電壓產生器 150與脈波產生器500。第一電壓產生器15〇包括第—切換 器101、電感器102,以及負載電路、 以下描述内部電源供應器1〇〇的操作。脈波產生器鄕 所產生的切換脈波LSW施加至第一切換器ι〇1的控制 端。當第一切換ϋ 101導通時,來自供應電壓VDD的能 里累積在電感器102上。當第一切換器1〇1關閉時,累積 在電感H 102上的能量釋放至負載電路1〇3。當此操作以 11 201238231 41432pif 預定間隔重複時,第一電壓(VSP與VSN)產生。第一電 壓產生器150分壓第一電壓(VSP與VSN)並產生回授訊 號FB_VM。當切換脈波LSW產生時,回授訊號FB_VM 被施加至脈波產生器500並被反映。 湧入電流控制器300包括第一取樣方塊310、參考電 壓產生器320,以及第一比較器350。當第一致能訊號 REF—EN未被施加至湧入電流控制器3〇〇時,脈波產生器 500根據接收自第一電壓產生器15〇的回授訊號, 將切換脈波LSW施加至第一電壓產生器15〇。然而,當第 一致能訊號REF—EN被施加至湧入電流控制器3〇〇時,湧 入電流控制器300產生脈波寬度調變控制訊號pui_c〇N。 脈波產生器500回應脈波寬度調變控制訊號Pul_c〇N而選 擇具有不同脈波寬度的第一脈波pull或第二脈波pul2,並 藉由在所選擇的脈波Pull或脈波Pul2上執行脈波寬度調 變來產生切換脈波LSW。切換脈波LSW控制供應至電荷 幫浦200的湧入電流的量。 電荷幫浦200升壓第一電壓(VSP與VSN )並輪出箆 二電壓(VGH與VGL),第一電壓受内部電源供應器1〇〇 中受控制的脈波所控制。在第一電壓因切換脈波而達到預 設最大輸出前,電荷幫浦200被致能並產生第二電壓。以 下將參照圖3,詳細描述湧入電流控制器3〇〇的結構與操 作。 圖3 s羊細繪示圖2中所繪示的湧入電流控制器3〇〇。 參照圖3,湧入電流控制器300包括第一取樣方塊201238231 41432pif VI. Description of the Invention: [CROSS-REFERENCE TO RELATED APPLICATIONS] This application claims the priority of the Korean Patent Application No. 10-2011-0 (No. 4, 425, and No. 10-2011-002825, respectively. Approved to the Korean Intellectual Property Office on February 17, 2011 and March 29, 2011, the entire contents of which are incorporated herein by reference. A power supply, and particularly a power supply device including a charge pump, and a method therefor. [Prior Art] An electrical device or an electronic device usually uses a direct current DC power supply, which is an alternating current ( Aiternate current, AC) The power is converted to a DC voltage to drive the device. A switching mode power supply (SMPS) is used as a DC power supply. The DC power supplied by the switching power supply is applied to the electronic device. Each part is because the power supply supplied by the switching power supply is 5 v, 3.3 V or 12 V' electronic devices also include charge The self-switching power supply receives the DC voltage and boosts the DC voltage to the level of each part of the electronic device (such as the chipset and the memory). However, 'because of environmental conditions, such as design errors and ambient temperature errors (for example) 'Parts may be affected when the current is not evenly distributed due to the pinch-cooling current. In the case of the flash-lock effect, currents exceeding several hundred milliamps (mA) 201238231 41432pif flow in the circuit And interrupt or destroy the circuit. For example, the parasitic PNPN structure (also known as the thyristor structure) is in the N-type metal oxide semiconductor (NMOS) and the P-type gold oxide half (P- The type metal oxide semiconductor (PMOS) is triggered, and the inrush current may flow into the thyristor structure; the N-type gold oxide half and the P-type gold oxide half are in the complementary metal oxide semiconductor (CMOS) structure. Neighbor. Because the input/output voltage exceeds the rated voltage, the inrush current (or leakage current) flows into the internal device, or because the power supply is powered. When the internal voltage exceeds the rated voltage and the internal equipment fails, a large amount of current may affect the equipment. To prevent this latch-up effect, an external Schottky diode is usually used, or an internal Schottky can be provided in the integrated circuit. Diode. However, when using an external Schottky diode, the manufacturing price of the module rises. Internal Schottky diodes increase wafer size. SUMMARY OF THE INVENTION According to some exemplary embodiments, a power supply device is provided that includes an internal power supply, a charge pump, and an inrush current controller. The internal power supply includes a first voltage generator that generates a first voltage according to a pulse width modulation control signal; the charge pump receives the first voltage and generates a second voltage; and the inrush current The controller is connected between the charge pump and the internal power supply, and generates a pulse width modulation control signal according to the target signal and the selected test voltage. The thirsty current controller can include a first sampling circuit, a reference voltage generator, and a first comparator. The first sampling circuit is responsive to the first enabling signal 201238231 41432pif to divide the first voltage ' and output a target signal according to the divided voltage; the reference voltage generating reference voltage reference signal is outputted to select the reference voltage; and the first comparison The device compares the target signal with the selection reference voltage and outputs a pulse width modulation control signal. In some exemplary embodiments, the first voltage generator generates a feedback signal and the internal power supply includes a pulse generator that generates a pulse wave based on the feedback signal. The pulse generator can include a sawtooth pulse generator, a sawtooth pulse comparison signal generator, and a second comparator. The sawtooth pulse generator generates a sawtooth pulse wave having a slope, and the sawtooth pulse wave is a meal according to a pulse width: controlling the sfL number and the first enable signal; the ore tooth pulse wave comparison signal generating state responds to the second The target signal or the feedback signal is outputted as a sawtooth pulse comparison signal, and the second comparator compares the sawtooth pulse with the sawtooth pulse to generate a switching pulse. The sawtooth pulse generator can include a second generation circuit, a first waveform generator, and a second waveform generator. The second generating circuit divides the supply voltage by using a plurality of resistors, and generates a plurality of secondary reference voltages according to the divided voltage; the first waveform generator is connected to the second generating circuit and the sawtooth pulse wave output Between the terminals, the voltage is selected from the secondary reference voltage according to the second enable signal, and the ground voltage is pulled up by responding to the voltage selected from the secondary reference voltage to generate the first waveform; The second waveform generation is connected between the second generating circuit and the sawtooth pulse output end, and pulls down the voltage of the sawtooth pulse wave output to generate a second waveform by responding to the falling signal, wherein the falling signal is in the second waveform generator Generated, and according to the sampling supply voltage, the sampling voltage is sampled according to the internal power supply time of the 201232831 41432pif pulse signal. The first waveform generator can include a bias circuit, a pull up circuit, and a buffer. The bias circuit responds to the pulse width modulation control signal and the voltage of the wheel voltage is used as a soft bias signal, or responds to the second signal to output a maximum bias signal as a sawtooth pulse basic signal; The circuit responds to the voltage of the output of the pulse wave; the memory is connected between the output end of the sawtooth pulse wave and the ground terminal, and is used for storing the pull-up signal and generating the first waveform. According to other exemplary embodiments, a power supply method performed by a power supply is provided, the power supply including an internal power supply and a charge pump. The power supply method comprises: generating a target signal according to a first voltage generated by the internal power supply in response to the first enable signal, generating a selection reference voltage from the supply voltage, and generating a pulse width modulation control according to the target signal and the selected reference voltage. The signal controls the pulse width of the switching pulse wave according to the pulse width modulation control signal, controls the amount of inrush current of the input charge pump according to the switching pulse wave, and uses the charge pump to generate the second voltage. At least another exemplary embodiment discloses a power supply that includes a charge pump and an internal power supply. The charge pump receives a first voltage and generates a second voltage according to the first voltage; and the internal power supply generates a first voltage according to a pulse width of the switching pulse wave, and includes a pulse wave generator, The pulse wave generator generates a switching pulse according to the modulation control signal, and the modulation control signal is different from the second voltage, and the modulation control signal is compared according to the target signal and the selected reference voltage. The above and other features and advantages of the exemplary embodiments will be more apparent from the following description of the appended claims. The present invention will now be described more fully hereinafter with reference to the appended claims However, the illustrative embodiments may be embodied in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. Rather, these illustrative embodiments are provided so that this disclosure will be thorough and complete, and the scope of the exemplary embodiments will be fully conveyed by those of ordinary skill in the art. In the drawings, the dimensions and relative sizes of layers and regions can be exaggerated for clarity. Throughout the text, the same component symbols represent similar elements. It will be understood that when an element is "connected" or "coupled" to another element, the element can be directly connected or coupled to the other element or the intervening element can be present. Conversely, when an element is referred to as being "directly connected" or "directly coupled" to another element, the intervening element does not. The term "and/or" as used herein includes a combination of one or more of the associated listed items and may be abbreviated as "/". It should be understood that although terms such as "first" and "second" are used herein to describe various elements, these elements are not intended to be limited by these terms. These terms are only used to distinguish one element from another. For example, the first signal may be referred to as the first number, and the second signal may be referred to as the first signal, without departing from the teachings of the present disclosure. The terminology used herein is for the purpose of describing particular embodiments only, As used herein, unless the context, the main ^ 201238231 41432pif = then the singular forms "a" and "said" mean U together with the plural. It should be further understood that, when explicitly stated, the special micro, Μ杜, and ten use 4 ° ° ° including "Duffin / seven light six + ^ features ^, the whole, steps, operations, yuan 'but does not rule out the existence or addition One or more features, regions=numbers,, operations, components, components, and/or combinations thereof. "II: Another meaning" otherwise all the terms (including technical two: language) used herein have the same meaning as in the field of the exemplary embodiment. It should be further understood that the meaning of the term The interpretation of terms, such as those defined in the general dictionary, should be related to the relevant field and/or the meaning of the context, and unless explicitly defined in this article, it will not be interpreted in terms of ideology or over-formal meaning. 1 is a block diagram of a power supply 1 根据 according to some exemplary embodiments. The power supply 1 〇〇〇 includes an internal power supply 1 电荷, a charge pump 200, an inrush current controller 300, and timing The internal power supply 100 performs a switching operation in response to the clock signal SMPS_CK applied by the timing controller 400 and the pulse wave puii and the pulse wave Pul2, thereby controlling according to the widths of the pulse wave Pull and the pulse wave Pul2. The inrush current flows. The internal power supply 1 receives the supply voltage VDD as an input and generates a first voltage. The first voltage includes a positive voltage and a negative voltage. 'The first positive voltage is represented by VSP, and the first negative voltage is represented by VSN. In some exemplary embodiments, the internal power supply 1〇〇 may be a switching mode power supply (SMPS)' In other embodiments, the pulse width modulation can be used to implement. 201238231 41432pif The electric Hew200 200 alternately performs charging and discharging in response to the clock CP_CK applied by the timing controller 400, thereby boosting the first voltage and generating the first- The second voltage includes a positive voltage and a negative voltage. For the sake of clarity, the first positive money is represented by VGH, and the second negative voltage is represented by VGL. In different implementations, the charge pump can be implemented in different ways. The current controller 300 receives the first positive voltage vsp from the internal power supply 1 ,, compares the first positive voltage vsp with the selected reference voltage VREF_SEL' and outputs a pulse width modulation control signal Pul CON to the internal power supply temple. The timing controller 400 applies a plurality of preset pulse waves Pull and pulse waves pul2 having different widths to the internal power supply 1 〇〇. The internal power supply 1 〇〇 response pulse The width modulation control signal PuLC〇n uses the pulse pulse Pull or the pulse Pul2 as the switching pulse Lsw to control the amount of inrush current of the load pump 200. FIG. 2 is a diagram showing an example according to an exemplary embodiment. Detailed block diagram of the power supply 1000 in the middle. Referring to Fig. 2 '(10) The power supply (10) includes a first voltage generator 150 and a pulse generator 500. The first voltage generator 15 includes a first switch 101, an inductor The operation of the internal power supply 1 is described below, and the switching pulse LSW generated by the pulse generator 施加 is applied to the control terminal of the first switch ι1. When the first switching port 101 is turned on, energy from the supply voltage VDD is accumulated on the inductor 102. When the first switch 1〇1 is turned off, the energy accumulated on the inductor H 102 is released to the load circuit 1〇3. When this operation is repeated at a predetermined interval of 11 201238231 41432pif, the first voltage (VSP and VSN) is generated. The first voltage generator 150 divides the first voltage (VSP and VSN) and generates a feedback signal FB_VM. When the switching pulse LSW is generated, the feedback signal FB_VM is applied to the pulse generator 500 and reflected. The inrush current controller 300 includes a first sampling block 310, a reference voltage generator 320, and a first comparator 350. When the first enable signal REF_EN is not applied to the inrush current controller 3, the pulse generator 500 applies the switching pulse LSW to the feedback signal received from the first voltage generator 15A. The first voltage generator 15 is. However, when the first coincidence signal REF_EN is applied to the inrush current controller 3, the inrush current controller 300 generates the pulse width modulation control signal pui_c〇N. The pulse wave generator 500 selects the first pulse wave or the second pulse pul2 having different pulse widths in response to the pulse width modulation control signal Pul_c〇N, and by selecting the pulse wave Pulse or pulse Pul2 The pulse width modulation is performed on the upper to generate the switching pulse LSW. The switching pulse LSW controls the amount of inrush current supplied to the charge pump 200. The charge pump 200 boosts the first voltage (VSP and VSN) and turns on the two voltages (VGH and VGL), the first voltage being controlled by the controlled pulse in the internal power supply 1〇〇. The charge pump 200 is enabled and generates a second voltage before the first voltage reaches the preset maximum output due to the switching pulse. The structure and operation of the inrush current controller 3A will be described in detail below with reference to FIG. Figure 3 shows the inrush current controller 3〇〇 depicted in Figure 2. Referring to FIG. 3, the inrush current controller 300 includes a first sampling block.

12 201238231 41432pif 310、參考電壓產生器320,以及第一比較器350。 第一取樣方塊310回應第一致能訊號REF_EN,使用 連接於第一電壓以及接地端間的多數個電阻器來分壓第一 電壓’並輸出比較目標訊號S_VSP。第一取樣方塊310連 接於第一電壓輸出端VSP或輸出端VSN與接地端GND 間。第一取樣方塊310包括第二切換器311與多數個電阻 器。當第一致能訊號REF一EN被施加至第二切換器311的 控制端時,第一取樣方塊310使用電阻器來分壓第一電 壓’並輸出比較目標訊號S_VSP,所述第一電壓自内部電 源供應器100輸出’並輸入至電荷幫浦200。 例示性實施例不限於圖3。例如,第一電壓VSP可以 其原本狀態作為比較目標訊號,或在其他實施例中,可根 據選擇參考電壓VREF_SEL的位準而被分壓。 參考電壓產生器320回應參考電壓選擇訊號SEL而輸 出選擇參考電壓VREF一SEL。參考電壓產生器320產生多 ,個主要參考電壓VREF_SEL_n以偵測第一電壓,參考電 壓產生器320並包括第一產生方塊33〇與選擇方塊34〇。 第一產生方塊330藉由用多數個電阻器分壓供應電壓 來產生多數個主要參考電壓VR£F_SEL-n,所述電阻器連 接於供應電壓端VDD與接地端GND之間。例如,當使用 ,個目標參考值時’第—產生方塊33G產生具有第-目標 =考值的第一主要參考電壓VREF_SEL1以及具有第二目 私參考值的第二主要參考電壓VREF—SEL2。此時可使用 兩個或兩個以上的目標參考值。 13 201238231 41432pif 選擇方塊340回應參考電壓選擇訊號SEL而輸出多數 個主要參考電壓VREF_SEL_n的其中一者’作為選擇參考 電壓VRELSEL。選擇方塊340包括多數個切換器 SEL_SW1與SEL_SW2,各切換器分別與參考電壓輸出端 連接。當第一產生方塊330產生至少兩個主要參考電壓 VREF_SEL_ii時,選擇方塊340回應參考電壓選擇訊號 SEL而選擇性地輸出一個選擇參考電壓VREF_SEL。在圖 3中,第一主要參考電壓VREF_SEL1或第二主要參考電 壓VREF_SEL2回應參考電壓選擇訊號SEL而被選擇並輸 出為選擇參考電壓VREF_SEL。切換器SEL_SW1與切換 器SEL_SW2可用不同方式實施。 第一比較器350比較來自第一取樣方塊310的比較目 標訊號S_VSP與選擇參考電壓VREF_SEL。當比較目標訊 號S一VSP低於選擇參考電壓VREF—SEL時,第一比較器 350輸出在第一邏輯位準(例如低位準)的脈波寬度調變 控制訊號Pul_CON。當比較目標訊號s—VSP高於選擇參 考電壓VREF一SEL時,第一比較器350輸出在第二邏輯位 準(例如高位準)的脈波寬度調變控制訊號Pul_c〇N。 圖4是電壓相對於時間的圖,其繪示圖2中所繪示的 湧入電流控制器300的操作。 參照圖4,當比較目標訊號s__vsp低於選擇參考電壓 VREF一SEL時,第一比較器35〇輸出在第一邏輯位準的脈 波寬度調變㈣訊號PuLc⑽。當比較目標訊號s vsp 高於選擇參考電壓VREF—狐時,第一比較器35〇輸出在 201238231 41432pif 第二邏輯位準的脈波寬度調變控制訊號pul_C〇N。 例如,當第一主要參考電壓VREF_SEL1作為選擇參 考電壓VREF_SEL輸入至第一比較器350時,第一比較器 3 5 0輸出第一脈波寬度調變控制訊號Pul_c〇N卜當第二主 要參考電壓VREF_SEL2作為選擇參考電壓VREF_SEL輸 入至第一比較器350時,第一比較器350輸出第二脈波寬 度調變控制訊號Pul_C〇N2。脈波寬度調變控制訊 號Pul-CON1或脈波寬度調變控制訊號Pul_CON2被施加 至内部電源供應器100中的脈波產生器5〇〇。脈波寬度調 變控制訊號Pul_CON由參考電壓選擇訊號SEL決定。 當脈波寬度調變控制訊號Pul_C〇N在高位準時,脈 波產生益500將第一脈波Pull施加至切換器ιοί,而當脈 波寬度調變控制訊號Pul_CON在低位準時,則將寬度與第 一脈波Pull不同的第二脈波?1112施加至切換器ι〇1。 因此,在第一脈波pull或第二脈波Pul2的軟脈波時 期(soft pulse period)中,内部電源供應器1〇〇的第一電壓 (VSP與VSN)逐漸產生,且在軟脈波時期結束前,時脈 訊號CP—Sig被施加至電荷幫浦2〇0,以防止尖峰電流產 生。當電荷幫浦200回應時脈訊號Cp—Sig而被致能時, 汤入電流逐漸流入電荷幫浦期,且因為閃鎖效應被防 止,所以湧入電流正常地被轉換為電壓而產生第二電壓 (VGH與VGL)。此時,軟脈波時期指的是脈波寬度低 於預設最大寬度的軸。換言之,料部電源供應器1〇〇 產生第-電廢(vsp與VSN)而電荷f浦2〇〇產生第二 15 201238231 41432pif 電壓(VGH與VGL)時,軟脈波時期自第一電壓開始產 生時開始,直到第二電壓穩定時結束。下文將參照圖5, 洋細描述根據脈波寬度調變控制的湧入電流的控制操作。 圖5是繪示根據一些例示性實施例的電源供應器1〇〇〇 的操作的訊號時序圖。 參照圖5,内部電源供應器1〇〇與電荷幫浦2〇〇自時 序控制器400分別接收頻率不同的時脈訊號smps CK與 時脈訊號CP_CK。 ~ ^ 當致能§fl號REF_EN被施加至消入電流控制器3 〇〇 時,汤入電流控制器300分壓並取樣内部電源供應器1〇〇 所輸出的第一電壓VSP。湧入電流控制器300比較選擇參 考電壓VREF一SEL與比較目標訊號s_VSP。時序控制器 4〇〇產生第一脈波Pull與第二脈波pui2,其分別具有預設 的不同脈波寬度。例如,第一脈波pull可具有pwi的軟 脈波寬度與PW_Max的最大脈波寬度,而第二脈波Pul2 可具有PW2的軟脈波寬度與pW_Max的最大脈波寬度。 當時序控制器400將第一脈波puii與第二脈波pui2 施加至内部電源供應器100時,脈波產生器500根據脈波 寬度調變控制訊號Pul—CON選擇第一脈波Pull或第二脈 波Pul2 ’並將所選擇的第一脈波puu或第二脈波pui2施 加至第一切換器101的控制端。内部電源供應器1〇〇中的 切換操作由脈波寬度調變控制訊號Pul_C0N控制,使得當 内部電源供應器100在軟脈波時期中產生第一電壓(VSP 與VSN)時’電荷幫浦200被致能,且電荷幫浦2〇〇在電 201238231 41432pif 荷幫浦操作時期操作。換言之,在最大脈波寬度為P \ V_M ax 的脈波(即LSW)被施加至内部 電源供應器100中的第一 切換器101前,電荷幫浦2〇〇起動操作,而湧入電流的量 逐漸增加,因而防止大量電流瞬間流入電荷幫浦200中。 因此’閂鎖效應被防止。 當有兩個參考電壓VREF_SEL1與VREF_SEL2時, 可根據兩個參考電壓VREF一SEL1與VREF_SEL2,分別產 生兩個脈波寬度調變控制訊號Pul_CONl與Pul CON2。 此時:兩個致能訊號CP_Sigl與Cp_Sig2可作為電荷幫浦 =0操作時的致能訊號cp_sig。脈波寬度、參考電壓的數 置,以及參考電壓的位準不限於圖5,且在其他實施例中 可做各種改變。 圖6是根據其他例示性實施例的電源供應器11〇〇的 方塊圖。 參照^圖6,電源供應器1100包括内部電源供應器 =0、電荷幫浦2〇〇、漠入電流控制器獅,,以及時序控制 态400°_對電源供應器1100的描述將著重在其與圖2及圖 3所繪示的電源供應器1〇〇〇的不同處。 。湧入電控制為300’不同於圖2所描繪的湧入電流控 制器300,湧入電流控制器3〇〇’可用第一電壓中的負電壓 VSN作為輸人喊。換言之’當致能喊REF—EN被施加 至湧入電流控制器3〇〇’時,湧入電流控制器雙,使用内部 電,供應$ 1GG所產生的第—負電壓VSN作為輸入訊號來 行取樣以產生比較目標訊號,湧入電流控制器 17 201238231 41432pif 300’並比較比較目標訊號S_VSN與選擇參考電壓 EF一SEL,並將比較結果傳送至内部電源供 =波產生器5〇〇,使得流人電荷幫浦綱的湧 量受到控制。此時,’取電流控㈣遍,操作所根據的原 則’與圖3所1會示的满入電流控制器300的原則相同。 圖7是根據其他例示性實施例的電源供應器12〇〇 方塊圖。 ° 參照圖7,電源供應器1200包括内部電源供應器 1〇〇、電荷幫浦200、湧入電流控制器3〇〇,,,以及時序控 制器400’。對電源供應器12〇〇的描述將著重在其與圖2 及圖3所繪示的電源供應器1000的不同處。 湧入電流控制器300’’比較比較目標訊號s_VSP與選 擇參考電壓VREF_SEL,並產生脈波寬度調變控制訊 號Pul—CON。脈波寬度調變控制訊號Pul_c〇N被施加至 時序控制器400,,而非如圖i到圖3所繪示的例示性實施 例中被施加至脈波產生器500,除此之外,湧入電流控制 器300”操作所根據的原則,與圖3所繪示的湧入電流控制 器300的原則相同。 時序控制器400’儲存至少兩個預設脈波寬度的相關 讯息’並將脈波寬度對應脈波寬度調變控制訊號Pul_CON 的脈波Pul施加至内部電源供應器1〇〇。 因此’脈波Pul輸入至脈波產生器5〇〇,並輸出為内 部電源供應器100中的切換脈波LSW,使得第一電壓(VSP 與VSN)逐漸形成。在切換脈波lSW的軟脈波時期結束 ⑧ 201238231 41432pif 前,時脈訊號或電荷幫浦致能訊號CP_Sig被施加至電荷 幫浦200。其後,湧入電流漸漸輸入至電荷幫浦,防止 閂鎖效應,使得電荷幫浦200執行正常升壓操作以產生第 二電壓。 圖8是根據一些例示性實施例的電源供應方法的流程 圖。參照圖8,當將供應電壓VDD施加至使用脈波寬度調 變的内部電源產生器1〇〇時,内部電源產生器1〇〇將供應 電壓VDD升壓並產生第一電壓VSP。第一電壓vsp被電 荷幫浦200升壓’並產生為第二電壓VGH。此時,負電壓 GND、負電壓VSN及負電壓VGL附帶產生。使用脈波寬 度調變的内部電源供應器1〇〇可為切換式電源供應器 (SMPS) ’但可用各種方式實施。電荷幫浦2〇〇也可用 各種方式實施。 在操作S10中’當使用脈波寬度調變的内部電源產生 器100產生第一電壓,而第一電壓輸入至電荷幫浦2〇〇時, 第一電壓被分裂。在操作S11中,第一電壓回應第一致能 訊號REF JEN而被取樣。此時,第一電壓可以其原本狀態 被取樣’或可由回應選擇參考電壓VREF_SEL的分壓加以 產生後再被取樣,但例示性實施例不限於此。第一電壓可 為第一正電壓VSp或第一負電壓VSN。 在操作S12中,至少一個主要參考電壓VREF_SEL_n 產生自供應電壓VDD。在操作S13中,至少一個主要參考 電壓的其中一者VREF_SEL_n回應參考電壓選擇訊號SEL 而輸出為選擇參考電壓VREF_SEL。 201238231 41432pif 在操作S14中,因取樣而獲得的比較目標訊號S_VSP 或比較目標訊號S_VSN被拿來與選擇參考電壓 VREF_SEL比較’而脈波寬度調變控制訊號pul_CON被輸 出。此時’當比較目標訊號S_VSP或比較目標訊號S_VSN 低於選擇參考電壓VREF_SEL時,脈波寬度調變控制訊 號Pul_CON在低位準輸出。當比較目標訊號s_VSP或比 較目標訊號S_VSN高於選擇參考電壓VREF_SEL時,脈 波寬度調變控制訊號Pul_CON在高位準輸出。 在操作S15中’内部電源供應器100回應脈波寬度調 變控制訊號Pul_CON而控制脈波寬度。此時,當脈波寬度 調變控制訊號Pul_CON在低位準時,可選擇時序控制器 400所產生的第一脈波Pull。當脈波寬度調變控制訊 號Pul一CON在高位準時,可選擇時序控制器4〇〇所產生的 第二脈波Pul2。 或者,當脈波寬度調變控制訊號Pul—C〇N在低位準 時,時序控制器400,可選擇預設的第一脈波匕丨丨,並將預 設的第一脈波Pull施加至内部電源供應器1〇〇。當脈波寬 度《周乂控制況號Pul一CON在兩位準時,時序控制器4〇〇, 可選擇預設的第二脈波PU12,並將預設的第二脈波pul2 施加至内部電源供應器100。 在操作S16中,湧入電流流入電荷幫浦2〇〇的量是根 據因控制脈波寬度而獲得的切換脈波LSW來控制。在軟 脈波時期結束前,電荷幫紐能訊號cp 荷幫浦’而在操作S17卜因㈣入—電流逐漸^電12 201238231 41432pif 310, reference voltage generator 320, and first comparator 350. The first sampling block 310 responds to the first enable signal REF_EN, and divides the first voltage ' using a plurality of resistors connected between the first voltage and the ground to output a comparison target signal S_VSP. The first sampling block 310 is connected between the first voltage output terminal VSP or the output terminal VSN and the ground terminal GND. The first sampling block 310 includes a second switch 311 and a plurality of resistors. When the first enable signal REF_EN is applied to the control terminal of the second switch 311, the first sampling block 310 uses a resistor to divide the first voltage ' and outputs a comparison target signal S_VSP, the first voltage from The internal power supply 100 outputs 'and is input to the charge pump 200. The illustrative embodiment is not limited to FIG. For example, the first voltage VSP can be its original state as a comparison target signal, or in other embodiments, can be divided according to the level of the selection reference voltage VREF_SEL. The reference voltage generator 320 outputs a selection reference voltage VREF_SEL in response to the reference voltage selection signal SEL. The reference voltage generator 320 generates a plurality of primary reference voltages VREF_SEL_n to detect the first voltage, the reference voltage generator 320 and includes a first generation block 33〇 and a selection block 34〇. The first generating block 330 generates a plurality of main reference voltages VR£F_SEL-n by dividing the supply voltage by a plurality of resistors, the resistor being connected between the supply voltage terminal VDD and the ground terminal GND. For example, when a target reference value is used, the -th generation block 33G generates a first primary reference voltage VREF_SEL1 having a first target = a value and a second primary reference voltage VREF_SEL2 having a second privacy reference value. Two or more target reference values can be used at this time. 13 201238231 41432pif The selection block 340 outputs one of the plurality of primary reference voltages VREF_SEL_n as the selection reference voltage VRELSEL in response to the reference voltage selection signal SEL. The selection block 340 includes a plurality of switches SEL_SW1 and SEL_SW2, each of which is coupled to a reference voltage output. When the first generation block 330 generates at least two main reference voltages VREF_SEL_ii, the selection block 340 selectively outputs a selection reference voltage VREF_SEL in response to the reference voltage selection signal SEL. In Fig. 3, the first main reference voltage VREF_SEL1 or the second main reference voltage VREF_SEL2 is selected in response to the reference voltage selection signal SEL and output as the selection reference voltage VREF_SEL. The switch SEL_SW1 and the switch SEL_SW2 can be implemented in different ways. The first comparator 350 compares the comparison target signal S_VSP from the first sampling block 310 with the selection reference voltage VREF_SEL. When the comparison target signal S_VSP is lower than the selection reference voltage VREF_SEL, the first comparator 350 outputs the pulse width modulation control signal Pul_CON at the first logic level (e.g., low level). When the comparison target signal s_VSP is higher than the selection reference voltage VREF_SEL, the first comparator 350 outputs the pulse width modulation control signal Pul_c〇N at the second logic level (e.g., high level). 4 is a graph of voltage versus time illustrating the operation of the inrush current controller 300 illustrated in FIG. Referring to FIG. 4, when the comparison target signal s__vsp is lower than the selection reference voltage VREF_SEL, the first comparator 35 outputs a pulse width modulation (four) signal PuLc (10) at the first logic level. When the comparison target signal s vsp is higher than the selection reference voltage VREF-fox, the first comparator 35 outputs the pulse width modulation control signal pul_C〇N at the second logic level of 201238231 41432pif. For example, when the first main reference voltage VREF_SEL1 is input to the first comparator 350 as the selection reference voltage VREF_SEL, the first comparator 350 outputs the first pulse width modulation control signal Pul_c〇N as the second main reference voltage. When VREF_SEL2 is input to the first comparator 350 as the selection reference voltage VREF_SEL, the first comparator 350 outputs the second pulse width modulation control signal Pul_C〇N2. The pulse width modulation control signal Pul-CON1 or the pulse width modulation control signal Pul_CON2 is applied to the pulse generator 5A in the internal power supply 100. The pulse width modulation control signal Pul_CON is determined by the reference voltage selection signal SEL. When the pulse width modulation control signal Pul_C〇N is at a high level, the pulse generation benefit 500 applies the first pulse Pu1 to the switcher ιοί, and when the pulse width modulation control signal Pul_CON is at the low level, the width is Is the first pulse wave different from the second pulse? 1112 is applied to the switch ι〇1. Therefore, in the soft pulse period of the first pulse or the second pulse Pul2, the first voltage (VSP and VSN) of the internal power supply 1〇〇 is gradually generated, and in the soft pulse wave Before the end of the period, the clock signal CP_Sig is applied to the charge pump 2〇0 to prevent spike current generation. When the charge pump 200 is enabled in response to the clock signal Cp_Sig, the incoming current gradually flows into the charge pump period, and since the flash lock effect is prevented, the inrush current is normally converted into a voltage to generate a second. Voltage (VGH and VGL). At this time, the soft pulse period refers to an axis whose pulse width is lower than the preset maximum width. In other words, when the material supply 1 〇〇 generates the first-electric waste (vsp and VSN) and the charge f 〇〇 2 generates the second 15 201238231 41432pif voltage (VGH and VGL), the soft pulse period starts from the first voltage. It starts when it is generated and ends when the second voltage is stable. The control operation of the inrush current according to the pulse width modulation control will be described hereinafter with reference to FIG. FIG. 5 is a signal timing diagram illustrating operation of a power supply 1 根据, in accordance with some demonstrative embodiments. Referring to Fig. 5, the internal power supply 1 〇〇 and the charge pump 2 〇〇 from the timing controller 400 respectively receive clock signals smps CK and clock signals CP_CK having different frequencies. ~ ^ When the enable §fl number REF_EN is applied to the erase current controller 3 ,, the soup enters the current controller 300 to divide and sample the first voltage VSP output from the internal power supply 1 。. The inrush current controller 300 compares the selection reference voltage VREF_SEL with the comparison target signal s_VSP. The timing controller 4 generates a first pulse Pu1 and a second pulse pui2, respectively having preset different pulse widths. For example, the first pulse pull may have a soft pulse width of pwi and a maximum pulse width of PW_Max, and the second pulse Pul2 may have a soft pulse width of PW2 and a maximum pulse width of pW_Max. When the timing controller 400 applies the first pulse wave puii and the second pulse wave pui2 to the internal power supply 100, the pulse wave generator 500 selects the first pulse wave Pull or the first according to the pulse width modulation control signal Pul_CON. The second pulse Pul2' and the selected first pulse wave pui or second pulse wave pui2 are applied to the control terminal of the first switcher 101. The switching operation in the internal power supply 1 is controlled by the pulse width modulation control signal Pul_CON, so that when the internal power supply 100 generates the first voltage (VSP and VSN) in the soft pulse period, the charge pump 200 It is enabled, and the charge pump 2 is operated during the 201203231 41432pif Lotus pump operation period. In other words, before the pulse wave (ie, LSW) having the maximum pulse width of P \ V_M ax is applied to the first switch 101 in the internal power supply 100, the charge pump 2 starts the operation, and the current flows. The amount is gradually increased, thereby preventing a large amount of current from flowing instantaneously into the charge pump 200. Therefore the 'latch effect is prevented. When there are two reference voltages VREF_SEL1 and VREF_SEL2, two pulse width modulation control signals Pul_CON1 and Pul CON2 can be generated according to the two reference voltages VREF_SEL1 and VREF_SEL2, respectively. At this time, the two enable signals CP_Sigl and Cp_Sig2 can be used as the enable signal cp_sig when the charge pump =0 is operated. The pulse width, the number of reference voltages, and the level of the reference voltage are not limited to Fig. 5, and various changes can be made in other embodiments. FIG. 6 is a block diagram of a power supply 11A according to other exemplary embodiments. Referring to FIG. 6, the power supply 1100 includes an internal power supply =0, a charge pump 2, a immersive current controller lion, and a timing control state of 400°. The description of the power supply 1100 will focus on The difference from the power supply 1 绘 shown in FIGS. 2 and 3 . . The inrush current control is 300' different from the inrush current controller 300 depicted in Fig. 2, and the inrush current controller 3' can use the negative voltage VSN in the first voltage as the input shout. In other words, when the enable REF-EN is applied to the inrush current controller 3〇〇', the current controller doubles, and the internal power is used to supply the first negative voltage VSN generated by $1GG as an input signal. Sampling to generate a comparison target signal, inrush current controller 17 201238231 41432pif 300' and comparing comparison target signal S_VSN with selection reference voltage EF_SEL, and transmitting the comparison result to internal power supply wave generator 5〇〇, so that the flow The influx of the human charge pump is controlled. At this time, 'the current control (four) passes, the principle according to the operation is the same as the principle of the full current controller 300 shown in Fig. 3 . FIG. 7 is a block diagram of a power supply 12 according to other exemplary embodiments. Referring to Fig. 7, the power supply 1200 includes an internal power supply 1 电荷, a charge pump 200, an inrush current controller 3, and a timing controller 400'. The description of the power supply 12A will focus on its differences from the power supply 1000 illustrated in FIGS. 2 and 3. The inrush current controller 300'' compares the comparison target signal s_VSP with the selection reference voltage VREF_SEL and generates a pulse width modulation control signal Pul_CON. The pulse width modulation control signal Pul_c〇N is applied to the timing controller 400 instead of being applied to the pulse generator 500 in the exemplary embodiment illustrated in FIGS. 1 to 3, in addition to The principle that the inrush current controller 300" operates is the same as the principle of the inrush current controller 300 illustrated in Figure 3. The timing controller 400' stores at least two related information of a predetermined pulse width ' The pulse wave width corresponding to the pulse width modulation control signal Pul_CON is applied to the internal power supply 1 〇〇. Therefore, the pulse pulse Pul is input to the pulse generator 5 〇〇 and output as the internal power supply 100 The switching pulse LSW is such that the first voltage (VSP and VSN) is gradually formed. The clock signal or the charge pump enable signal CP_Sig is applied to the charge before the soft pulse period of the switching pulse lSW ends 8 201238231 41432pif Thereafter, the inrush current is gradually input to the charge pump to prevent the latch-up effect, causing the charge pump 200 to perform a normal boost operation to generate a second voltage. Fig. 8 is a power supply method according to some demonstrative embodiments. of Referring to Fig. 8, when the supply voltage VDD is applied to the internal power generator 1 使用 using pulse width modulation, the internal power generator 1 升压 boosts the supply voltage VDD and generates a first voltage VSP. The first voltage vsp is boosted by the charge pump 200 and generated as the second voltage VGH. At this time, the negative voltage GND, the negative voltage VSN, and the negative voltage VGL are incidentally generated. The internal power supply using the pulse width modulation 1〇 The switch can be a switched power supply (SMPS) 'but can be implemented in various ways. The charge pump 2 can also be implemented in various ways. In operation S10 'when the internal power generator 100 using the pulse width modulation is generated a voltage, and when the first voltage is input to the charge pump 2〇〇, the first voltage is split. In operation S11, the first voltage is sampled in response to the first enable signal REF JEN. At this time, the first voltage can be The original state is sampled' or may be generated after the partial voltage of the response selection reference voltage VREF_SEL is generated, but the exemplary embodiment is not limited thereto. The first voltage may be the first positive voltage VSp or the first negative voltage VSN. Fuck In S12, at least one main reference voltage VREF_SEL_n is generated from the supply voltage VDD. In operation S13, one of the at least one main reference voltage VREF_SEL_n is output as the selection reference voltage VREF_SEL in response to the reference voltage selection signal SEL. 201238231 41432pif In operation S14 The comparison target signal S_VSP or the comparison target signal S_VSN obtained by sampling is compared with the selection reference voltage VREF_SEL' and the pulse width modulation control signal pul_CON is output. At this time, when the comparison target signal S_VSP or the comparison target signal S_VSN is lower than the selection reference voltage VREF_SEL, the pulse width modulation control signal Pul_CON is output at the low level. When the comparison target signal s_VSP or the comparison target signal S_VSN is higher than the selection reference voltage VREF_SEL, the pulse width modulation control signal Pul_CON is output at a high level. The internal power supply 100 controls the pulse width in response to the pulse width modulation control signal Pul_CON in operation S15. At this time, when the pulse width modulation control signal Pul_CON is at the low level, the first pulse Pu1 generated by the timing controller 400 can be selected. When the pulse width modulation control signal Pul_CON is at a high level, the second pulse Pul2 generated by the timing controller 4〇〇 can be selected. Alternatively, when the pulse width modulation control signal Pul_C〇N is at the low level, the timing controller 400 may select the preset first pulse wave and apply the preset first pulse Pu1 to the internal Power supply 1〇〇. When the pulse width "Pulsing control condition number Pul_CON is at two punctual timings, the timing controller 4 〇〇, the preset second pulse PU12 can be selected, and the preset second pulse wave pul2 is applied to the internal power source. Provider 100. In operation S16, the amount of inrush current flowing into the charge pump 2 is controlled in accordance with the switching pulse wave LSW obtained by controlling the pulse width. Before the end of the soft pulse period, the charge can be signaled by the cp pump. In operation S17, the input (four) is in-current gradually

20 201238231 41432pif 第·一電壓(VGH與VGL ) 致的閂鎖效應。 被產生而未發生尖峰電流所導 方塊日例示性實施例的電源供應器2〇00的 方塊圖參照圖9,電源供應器觸 刚、電荷幫浦、狀電流控制器遍,以及時 器4〇〇。對電源供應器2_的描述將*重在其與圖 3所繪示的電源供應器1〇〇〇的不同處。 内部電源供應器1〇〇回應時序控制器4〇〇所施加的 脈訊號SMPS_CK而執行切換操作,並舰波寬度來控制 淺入電流的流動。内部電源供應器刚,包括第—電壓產生 器150與脈波產生器5〇〇,。 第一電壓產生器150接收供應電壓VDD並產生第一 電壓(VSP與VSN)與回授訊號FB_VM。第一電壓包括 第一正電壓VSP與第一負電壓VSN。脈波產生器5〇〇,接 收回授訊號FB—VM與内部電源供應時脈訊號 SMPS_CK ’產生切換脈波LSW,並將切換脈波LSW施加 至第一電壓產生器150。 第一電壓(VSP)自内部電源供應器1〇〇,輸出,並輸 入電荷幫浦200。湧入電流控制器300接收第一電壓(vsp) 與第一致能訊號REF—EN,將第一電壓(vSp)與選擇參 考電壓VREF_SEL比較’並向内部電源供應器1〇〇’輸出脈 波寬度調變控制訊號Pul_CON與比較目標訊號s VSP。 此時,脈波寬度調變控制訊號Pul一CON用來選擇與方波坡 度相關的軟偏壓訊號,並被施加至脈波產生器500,以控制 21 201238231 41432pif 脈波寬度。 電荷幫浦2〇〇將第-電壓(VSP與VSN)升麗,並輸 出第二電壓(VGH與VGL),第—電愿根據内部電源供 應器100,中受控制的脈波來控制。此日夸,因為切換脈 波LSW,f荷幫浦200被致能並在第—電壓達到預設最大 輸出前產生第二電壓。 圖10是圖9所繪示的電源供應器2〇〇〇的詳細方塊圖。 參照圖10,電源供應器2000包括内部電源供應器 100’、電荷幫浦200、湧入電流控制器300,以及時序控制 盗400。對電源供應斋2000的描述將著重在其與圖9描述 的不同處。 内部電源供應器100’包括第一電壓產生器15〇與脈波 產生器500,。第一電壓產生器15〇包括第一切換器1〇1、 電感器102,以及負載電路1〇3。在内部電源供應器1〇〇’ 的操作中,脈波產生器500’所產生的切換脈波LSW被施 加至第一切換器1〇1的控制端。當第一切換器1〇1導通時, 來自供應電壓VDD的能量累積在電感器1〇2上。當第一 切換器101切斷時,累積在電感器102上的能量釋放至負 载電路103。當此操作以預設間隔重複時,第一電壓(vsp 與VSN)產生。第一電壓產生器15〇分壓第一電壓(vSp 與VSN)並產生回授訊號FB—VM。回授訊號FB—VM被 施加至脈波產生器5 〇 〇,並被反映在切換脈波L s W的產生。 汤入電流控制器300包括第一取樣方塊310、參考電 壓產生器320 ’以及第一比較器350。 22 ⑧ 201238231 41432pif 當第一致能訊號REF一ΕΝ未被施加至湧入電流控制器 300時’内部電源供應器100,中的脈波產生器5〇〇,根據接 收自第一電壓產生器150的回授訊號FB_VM,將切換脈 波LSW施加至第一電壓產生器15〇。然而,當第一致能訊 號REF—EN被施加至湧入電流控制器3〇〇時,湧入電流控 制器300產生脈波寬度調變控制訊號Pul_c〇N。脈波寬度 調變控制訊號PUl_CON用來選擇與方波坡度相關的軟= 壓訊號,並被施加至脈波產生器500,以控制脈波寬度。軟 偏壓訊號Sigl是根據第二參考電壓訊號 VREF—1SELECTION 或 VREF 2 SELECTION。 脈波產生器500’使用脈波寬度調變來產生切換脈 波L S W,以控制供應至電荷幫浦2 〇 〇的湧入電流的量。'以 下將參照圖11詳細描述脈波產生器500,的操作原則。 圖11是圖10所繪示的脈波產生器5〇〇,的方塊圖。 參照圖11,脈波產生器500,包括鋸齒脈波產生器 550、鑛齒脈波比較訊號產生器56〇,以及第二比較器5〇2。 鋸齒脈波產生器550回應脈波寬度調變控制訊 號Pul_CON以及第二致能訊號MAX_pULSE_EN,而產生 具有經調整的坡度的鋸齒脈波saw_pulse。此時,可使 用内部電源供應器1〇〇’中的時脈訊號SMPS—CK、内部參 考電壓VREF—SMPS,以及供應電壓VDD來產生鋸齒脈波 SAW—PULSE。 鋸齒脈波比較訊號產生器56〇回應第二致能訊號 MAX_PULSE_EN而輸出比較目標訊號s_vsp或回授訊號 23 201238231 41432pif FB_VM,作為鋸齒脈波比較訊號COMP_REF。 第二比較器502透過正向端(+ )接收鋸齒脈波 SAW一PULSE,透過負向端(-)接收鑛齒脈波比較訊號 COMP一REF,比車交鑛齒脈波SAW_PULSE與鑛齒脈波比幸交 訊號COMP_REF,並輸出比較結果COMP—OUT作為切換 脈波LSW。 脈波產生器500’可包括反向器501。反向器501反轉 第二比較器502的比較結果COMP_OUT,並輸出適合第 一電壓產生器150的切換操作的切換脈波LSW。以下將參 照圖12到圖15詳細描述脈波產生器500,的結構與操作。 圖12是繪示根據一些例示性實施例缘示於圖Η中的 脈波產生器500’的内部結構的示意圖。參照圖12,脈波產 生器500’包括鋸齒脈波產生器550、鋸齒脈波比較訊號產 生器560,以及第二比較器502。 鑛齒脈波產生器550包括第二產生方塊51〇、第一波 形產生器520 ’以及第二波形產生器530。 第二產生方塊510藉由用多數個電阻器執行電壓分壓 來產生多數個次要參考電壓,所述電阻器連接於内部參考 電壓VREF一SMPS與接地端GND之間。此時,次要參考 電壓可包括軟偏壓訊號Sigl的基本訊號VREFi與基本訊 號VREF2、最大偏壓訊號Sig2,以及鋸齒脈波重置夂者 SAW CMP REF。 > 第一波形產生器520包括偏壓選擇電路522、上拉電 路524,以及存儲器525。第一波形產生器52〇連接於第二 24 201238231 41432pif 產生方塊510與鋸齒脈波輸出端551之間。第一波形產生 器520回應第二致能信號MAX_PULSE_EN而選擇軟偏壓 訊號Sigl與最大偏壓訊號Sig2其中一者作為鋸齒脈波基 本訊號SAW_REF,並回應根據鋸齒脈波基本訊號 SAW_REF的偏壓訊號BIAS而上拉接地電壓,以產生第一 波形。 偏壓選擇電路522回應脈波寬度調變控制訊 號Pul_CON而選擇自次要參考電壓中被選擇出的軟偏壓 訊號Sigl,或回應第二致能信號MAX_PULSE_EN而選擇 最大偏壓訊號Sig2,並將所選擇的訊號輸出為鋸齒脈波基 本訊號SAW_REF 〇 例如’當第二致能訊號MAX_PULSE_EN在低位準時 (意即當最大脈波寬度未被致能時),軟偏壓訊號Sigl被 輸出為鋸齒脈波基本訊號SAW_REF。當第二致能訊號 MAX_PULSE_EN在高位準時(意即當最大脈波寬度被致 能時)’最大偏壓訊號Sig2被輸出為鋸齒脈波基本訊號 SAW_REF。軟偏壓訊號Sigl是第二產生方塊510所產生 的次要參考電壓VREF1與次要參考電壓VREF2的其中一 者’次要參考電壓VREF1與次要參考電壓VREF2是回應 脈波寬度調變控制訊號pul_C〇N而被選擇的。最大偏壓訊 號Sig2可為第二產生方塊51〇所產生的預設次要參考電壓 VREF1與VREF2的其中一者。 第一波形產生器520也可包括用於使偏壓訊號bias 穩定輸出的穩定電路523。穩定電路523可為緩衝器,將 25 201238231 41432pif 鑛齒脈波基本訊號SAW_REF輸出為偏壓訊號BIAS,但可 用其他各種方式實施。 上拉電路524連接於供應電壓VDD與鋸齒脈波輸出 端X之間’並回應偏壓訊號BIAS而上拉鋸齒脈波輸出端 的電壓。上拉電路524可為P型金氧半(PM0S)電晶體 所實施的切換器,但可用不同方式實施。 存儲器525連接於鑛齒脈波輸出端X與接地端 之間。存儲器525儲存上拉訊號並產生第一波形。第一波 形可為錫齒脈波的上升波形。 第二波形產生器530包括第二取樣方塊與下拉電路 533。 苐一取樣方塊包括比較器531與閂鎖電路532。第二 取樣方塊連接於供應電壓VDD與鋸齒脈波輸出端χ之 間,以在重置閂鎖電路532後輸出下降訊號f_ s A w,下降 訊號f一SAW是藉由回應内部電源供應器1〇〇的時脈訊號 SMPS_CK取樣供應電壓VDD喊得。比較器531比較雜 齒脈波輸出端X所回授的鋸齒脈波s A w—p UL s E與預設的 鋸齒脈波重置參考SAW_CMP_REF,並產生重置訊號。 下拉電路533連接於鋸齒脈波輸出端χ與接地端 GND之間’並回應下降訊號f—SAW而下拉㈣脈波輸出 端χ的電壓。下拉電路533可為Μ金氧半(nm⑹電 晶體所實施的切換器,但可用不同方式實施。 鑛齒脈波比較訊號產生器,回應第二致能訊號 MAX_PULSE_EN ’在軟脈波時射(當第二致能訊號 ⑧ 201238231 41432pif MAX_PULSE-EN未被致能時,即在低位準時)輸出比較 目標訊號S—VSP作為鋸齒脈波比較訊號c〇Mp—,並 在最大腻波時期中(當第二致能訊號max_pulse_en被 致能時,即在高位準時)輸出回授訊號FB_VM作為鋸齒 脈波比較訊號COMP_REF。 如上所述,第二比較器502透過正向端(+ )接收鋸 齒脈波SAW_PULSE,透過負向端(一)接收鋸齒脈波比較 訊號COMP—REF ’比較鋸齒脈波SAW_PULSE與鋸齒脈 波比較訊號COMP—REF,並輸出比較結果c〇MP_OUT作 為切換脈波LSW。 因此’當軟偏壓訊號Sigl回應脈波寬度調變控制訊 號Pul_CON而被選擇時,決定鋸齒脈波坡度的偏壓訊號 BIAS對應軟偏壓訊號Sigl而輸出。 例如,當偏壓訊號BIAS上升時,第一波形的坡度也 增加。當第一波形的坡度增加時,比較鋸齒脈波 SAW_PULSE與鋸齒脈波比較訊號COMP_REF而產生的 比較結果C0MP_0UT的脈波寬度也增加。結果,因為比 較結果COMP_OUT被反向,切換脈波LSW的脈波寬度減 少。反之,當偏壓訊號BIAS下降時,第一波形的坡度也 減少。當第一波形的坡度減少時,比較鑛齒脈波 SAW_PULSE與鋸齒脈波比較訊號COMP_REF而產生的 比較結果COMP_OUT的脈波寬度也減少。結果,因為比 較結果COMP_OUT被反向,切換脈波LSW的脈波寬度增 加。20 201238231 41432pif Latch-up effect due to the first voltage (VGH and VGL). The block diagram of the power supply 2〇00 of the exemplary embodiment which is generated without the occurrence of the peak current is referred to FIG. 9. The power supply contacts, the charge pump, the current controller, and the timer 4〇 Hey. The description of the power supply 2_ will be different from that of the power supply 1 绘 shown in FIG. The internal power supply 1 〇〇 responds to the pulse signal SMPS_CK applied by the timing controller 4 to perform a switching operation, and the ship width is used to control the flow of the shallow current. The internal power supply has just included the first voltage generator 150 and the pulse generator 5〇〇. The first voltage generator 150 receives the supply voltage VDD and generates a first voltage (VSP and VSN) and a feedback signal FB_VM. The first voltage includes a first positive voltage VSP and a first negative voltage VSN. The pulse generator 5A, the recovery signal FB_VM and the internal power supply clock signal SMPS_CK' generate the switching pulse LSW, and apply the switching pulse LSW to the first voltage generator 150. The first voltage (VSP) is output from the internal power supply, and is input to the charge pump 200. The inrush current controller 300 receives the first voltage (vsp) and the first enable signal REF-EN, compares the first voltage (vSp) with the selection reference voltage VREF_SEL and outputs a pulse wave to the internal power supply 1〇〇 The width modulation control signal Pul_CON is compared with the comparison target signal s VSP. At this time, the pulse width modulation control signal Pul_CON is used to select the soft bias signal associated with the square wave gradient and is applied to the pulse generator 500 to control the 21 201238231 41432pif pulse width. The charge pump 2 boosts the first voltage (VSP and VSN) and outputs a second voltage (VGH and VGL), which is controlled according to the controlled pulse wave in the internal power supply 100. This day, because of the switching pulse LSW, the f-load pump 200 is enabled and generates a second voltage before the first voltage reaches the preset maximum output. FIG. 10 is a detailed block diagram of the power supply 2〇〇〇 illustrated in FIG. 9. Referring to Fig. 10, the power supply 2000 includes an internal power supply 100', a charge pump 200, an inrush current controller 300, and a timing control pirate 400. The description of the power supply supply 2000 will focus on its differences from those described in FIG. The internal power supply 100' includes a first voltage generator 15A and a pulse generator 500. The first voltage generator 15A includes a first switcher 〇1, an inductor 102, and a load circuit 〇3. In the operation of the internal power supply 1', the switching pulse LSW generated by the pulse generator 500' is applied to the control terminal of the first switch 101. When the first switch 1〇1 is turned on, energy from the supply voltage VDD is accumulated on the inductor 1〇2. When the first switch 101 is turned off, the energy accumulated on the inductor 102 is discharged to the load circuit 103. When this operation is repeated at a preset interval, the first voltage (vsp and VSN) is generated. The first voltage generator 15 turns the first voltage (vSp and VSN) and generates a feedback signal FB_VM. The feedback signal FB_VM is applied to the pulse generator 5 〇 〇 and is reflected in the generation of the switching pulse L s W . The soup into current controller 300 includes a first sampling block 310, a reference voltage generator 320', and a first comparator 350. 22 8 201238231 41432pif When the first enable signal REF is not applied to the inrush current controller 300, the pulse generator 5 in the internal power supply 100, according to the received from the first voltage generator 150 The feedback signal FB_VM applies the switching pulse LSW to the first voltage generator 15A. However, when the first enable signal REF_EN is applied to the inrush current controller 3, the inrush current controller 300 generates the pulse width modulation control signal Pul_c〇N. Pulse Width The modulation control signal PU1_CON is used to select the soft = pressure signal associated with the slope of the square wave and is applied to the pulse generator 500 to control the pulse width. The soft bias signal Sigl is based on the second reference voltage signal VREF-1 SELECTION or VREF 2 SELECTION. The pulse generator 500' uses pulse width modulation to generate a switching pulse L S W to control the amount of inrush current supplied to the charge pump 2 〇 . The principle of operation of the pulse wave generator 500 will be described in detail below with reference to FIG. Figure 11 is a block diagram of the pulse wave generator 5A shown in Figure 10. Referring to Fig. 11, a pulse wave generator 500 includes a sawtooth pulse wave generator 550, a mineral tooth pulse wave comparison signal generator 56A, and a second comparator 5〇2. The sawtooth pulse generator 550 responds to the pulse width modulation control signal Pul_CON and the second enable signal MAX_pULSE_EN to generate a sawtooth pulse saw_pulse having an adjusted slope. At this time, the sawtooth pulse SAW_PULSE can be generated by using the clock signal SMPS_CK in the internal power supply 1', the internal reference voltage VREF_SMPS, and the supply voltage VDD. The sawtooth pulse comparison signal generator 56 outputs a comparison target signal s_vsp or a feedback signal 23 201238231 41432pif FB_VM as a sawtooth pulse comparison signal COMP_REF in response to the second enable signal MAX_PULSE_EN. The second comparator 502 receives the sawtooth pulse wave SAW-PULSE through the forward end (+), and receives the ore tooth pulse wave comparison signal COMP-REF through the negative end (-), which is higher than the car ore tooth wave SAW_PULSE and the mineral tooth pulse. Bobby passes the signal COMP_REF and outputs the comparison result COMP_OUT as the switching pulse LSW. The pulse generator 500' can include an inverter 501. The inverter 501 inverts the comparison result COMP_OUT of the second comparator 502, and outputs a switching pulse LSW suitable for the switching operation of the first voltage generator 150. The structure and operation of the pulse wave generator 500 will be described in detail below with reference to Figs. FIG. 12 is a schematic diagram showing the internal structure of a pulse wave generator 500' shown in the drawing in accordance with some exemplary embodiments. Referring to Fig. 12, the pulse generator 500' includes a sawtooth pulse generator 550, a sawtooth pulse wave comparison signal generator 560, and a second comparator 502. The mineral tooth wave generator 550 includes a second generating block 51A, a first waveform generator 520', and a second waveform generator 530. The second generation block 510 generates a plurality of secondary reference voltages by performing voltage division with a plurality of resistors connected between the internal reference voltage VREF-SMPS and the ground GND. At this time, the secondary reference voltage may include the basic signal VREFi of the soft bias signal Sigl and the basic signal VREF2, the maximum bias signal Sig2, and the sawtooth pulse reset SAW CMP REF. > The first waveform generator 520 includes a bias selection circuit 522, a pull-up circuit 524, and a memory 525. The first waveform generator 52 is coupled between the second 24 201238231 41432pif generation block 510 and the sawtooth pulse output 551. The first waveform generator 520 selects one of the soft bias signal Sigl and the maximum bias signal Sig2 as the sawtooth pulse basic signal SAW_REF in response to the second enable signal MAX_PULSE_EN, and responds to the bias signal according to the sawtooth pulse basic signal SAW_REF. The BIAS pulls up the ground voltage to generate a first waveform. The bias selection circuit 522 selects the soft bias signal Sigl selected from the secondary reference voltage in response to the pulse width modulation control signal Pul_CON, or selects the maximum bias signal Sig2 in response to the second enable signal MAX_PULSE_EN, and The selected signal output is the sawtooth pulse basic signal SAW_REF. For example, when the second enable signal MAX_PULSE_EN is at the low level (that is, when the maximum pulse width is not enabled), the soft bias signal Sigl is output as a sawtooth pulse. Wave basic signal SAW_REF. When the second enable signal MAX_PULSE_EN is at the high level (that is, when the maximum pulse width is enabled), the maximum bias signal Sig2 is output as the sawtooth pulse basic signal SAW_REF. The soft bias signal Sigl is one of the secondary reference voltage VREF1 and the secondary reference voltage VREF2 generated by the second generation block 510. The secondary reference voltage VREF1 and the secondary reference voltage VREF2 are response pulse width modulation control signals. pul_C〇N is selected. The maximum bias signal Sig2 may be one of the preset secondary reference voltages VREF1 and VREF2 generated by the second generating block 51A. The first waveform generator 520 may also include a stabilization circuit 523 for stabilizing the output of the bias signal bias. The stabilization circuit 523 can be a buffer that outputs the 25 201238231 41432pif orthodontic pulse signal SAW_REF as the bias signal BIAS, but can be implemented in various other ways. The pull-up circuit 524 is coupled between the supply voltage VDD and the sawtooth pulse output terminal X and pulls up the voltage of the sawtooth pulse output terminal in response to the bias signal BIAS. Pull-up circuit 524 can be a switch implemented by a P-type metal oxide half (PMOS) transistor, but can be implemented in different ways. The memory 525 is connected between the mineral pulse output terminal X and the ground. The memory 525 stores the pull-up signal and generates a first waveform. The first waveform can be a rising waveform of the tin-toothed pulse wave. The second waveform generator 530 includes a second sampling block and pull-down circuit 533. The first sampling block includes a comparator 531 and a latch circuit 532. The second sampling block is connected between the supply voltage VDD and the sawtooth pulse output terminal , to output a falling signal f_ s A w after resetting the latch circuit 532, and the falling signal f-SAW is responded to by the internal power supply 1 The pulse signal SMPS_CK sampling supply voltage VDD is called. The comparator 531 compares the sawtooth pulse s A w — p UL s E fed back by the spur pulse output terminal X with a preset sawtooth pulse reset reference SAW_CMP_REF and generates a reset signal. The pull-down circuit 533 is connected between the sawtooth pulse output terminal 接地 and the ground GND' and responds to the down signal f-SAW to pull down the voltage of the pulse output terminal χ. The pull-down circuit 533 can be a switch implemented by a gold-oxide half (nm(6) transistor, but can be implemented in different ways. The mine tooth pulse comparison signal generator responds to the second enable signal MAX_PULSE_EN 'in the soft pulse wave (when The second enable signal 8 201238231 41432pif When the MAX_PULSE-EN is not enabled, that is, at the low level, the comparison target signal S_VSP is output as the sawtooth pulse comparison signal c〇Mp—, and during the maximum greasy wave period (when the first When the binary enable signal max_pulse_en is enabled, that is, at the high level, the feedback signal FB_VM is output as the sawtooth pulse comparison signal COMP_REF. As described above, the second comparator 502 receives the sawtooth pulse SAW_PULSE through the forward end (+). Receiving the sawtooth pulse wave comparison signal COMP_REF through the negative end (1), comparing the sawtooth pulse wave SAW_PULSE with the sawtooth pulse wave comparison signal COMP_REF, and outputting the comparison result c〇MP_OUT as the switching pulse wave LSW. When the voltage signal Sigl is selected in response to the pulse width modulation control signal Pul_CON, the bias signal BIAS which determines the slope of the sawtooth pulse wave is output corresponding to the soft bias signal Sigl. When the bias signal BIAS rises, the slope of the first waveform also increases. When the slope of the first waveform increases, the comparison of the sawtooth pulse SAW_PULSE and the sawtooth pulse comparison signal COMP_REF produces a comparison result of the pulse width of the C0MP_0UT. As a result, since the comparison result COMP_OUT is reversed, the pulse width of the switching pulse LSW is decreased. Conversely, when the bias signal BIAS is decreased, the slope of the first waveform is also decreased. When the slope of the first waveform is decreased, the comparison is performed. The pulse width of the comparison result COMP_OUT generated by the tooth pulse wave SAW_PULSE and the sawtooth pulse wave comparison signal COMP_REF is also reduced. As a result, since the comparison result COMP_OUT is reversed, the pulse width of the switching pulse wave LSW is increased.

S 27 201238231 41432pif 脈波產生器500藉由根據上述原則控制脈波寬度調 變’而產生施加至内部電源供應器刚中的第一切換器ι〇ι 的切換脈波LSW。自内部電源供應器1〇〇流出並流入電荷 幫浦200的渴入電流的量是根據切換脈波Lsw來控制, 減少尖峰電流。因此,閃鎖效應被防止。 圖13疋繪示根據其他例示性實施例的脈波的内部結 構的示意圖。參照圖13,脈波產生器5〇〇□包括鋸齒脈波 產生550□、鋸齒脈波比較訊號產生器56〇,以及第二比 較器502。對圖13的描述將著重在其與圖12的不同處。 第一波形產生器520□包括偏壓選擇電路522、上拉 電路524,以及存儲器525。第一波形產生器520□連接於 第二產生方塊510與鋸齒脈波輸出端551之間。第一波形 產生器520□上拉接地電壓並回應次要參考電壓而產生第 一波形,所述次要參考電壓回應第二致能訊號 MAX_PULSE_EN而選自多數個次要參考電壓中。 偏壓選擇電路522回應第二致能訊號 MAX一PULSE_EN而輸出軟偏壓訊號Sigl或最大偏壓訊號 Sig2,作為偏壓訊號BIAS。軟偏壓訊號Sigl是第二產生 方塊510所產生的次要參考電壓VREF1與次要參考電壓 VREF2的其中一者,次要參考電壓VREF1與次要參考電 壓VREF2是回應脈波寬度調變控制訊號pul_CON而被選 擇的。 不同於圖12所繪示的第一波形產生器520,圖13所 繪示的第一波形產生器520□也包括產生最大偏壓訊號 ⑧ 201238231 41432pifS 27 201238231 41432pif The pulse wave generator 500 generates a switching pulse wave LSW applied to the first switcher ι〇 in the internal power supply just by controlling the pulse width modulation ' according to the above principle. The amount of thirsty current flowing from the internal power supply 1〇〇 and flowing into the charge pump 200 is controlled according to the switching pulse Lsw to reduce the peak current. Therefore, the flash lock effect is prevented. FIG. 13B is a schematic diagram showing the internal structure of a pulse wave according to other exemplary embodiments. Referring to Fig. 13, the pulse generator 5A includes a sawtooth pulse generation 550□, a sawtooth pulse comparison signal generator 56A, and a second comparator 502. The description of FIG. 13 will focus on its differences from FIG. The first waveform generator 520□ includes a bias selection circuit 522, a pull-up circuit 524, and a memory 525. The first waveform generator 520□ is coupled between the second generation block 510 and the sawtooth pulse output 551. The first waveform generator 520 □ pulls up the ground voltage and generates a first waveform in response to the secondary reference voltage, the secondary reference voltage being selected from the plurality of secondary reference voltages in response to the second enable signal MAX_PULSE_EN. The bias selection circuit 522 outputs a soft bias signal Sigl or a maximum bias signal Sig2 as a bias signal BIAS in response to the second enable signal MAX_PULSE_EN. The soft bias signal Sigl is one of the secondary reference voltage VREF1 and the secondary reference voltage VREF2 generated by the second generating block 510. The secondary reference voltage VREF1 and the secondary reference voltage VREF2 are the response pulse width modulation control signals. pul_CON is selected. Different from the first waveform generator 520 shown in FIG. 12, the first waveform generator 520□ shown in FIG. 13 also includes generating a maximum bias signal. 8 201238231 41432pif

Sig2的第二電路540。 第二產生方塊510回應位準選擇訊號rEf_SEL而產 生次要參考電壓’第二電路540輸出選自次要參考電壓中 的最大偏壓訊號Sig2。位準選擇訊號reF_SEL長度為N 位元,其中N是2或大於2的自然數。第二產生方塊510 的總電壓可被分壓為N個電壓,而位準選擇訊號reF_SEL 可選擇N個電壓的其中一者。第二電路540可包括解碼器 541與位準移位器542 ’但可用不同方式實施。 第一波形產生器520□也可包括用於使偏壓訊號 BIAS穩定輸出的穩定電路523。穩定電路523可包括緩衝 器。 因此’最大偏壓訊號Sig2可根據第一電壓(VSP)或 電源供應器2000的特徵而用各種方式設定。換言之,第二 電路540與包括第二電路540的脈波產生器500□□可根 據如熱及溫度等可能隨操作改變的物理環境來控制鋸齒脈 波的坡度,及重置最大脈波寬度PW_Max。 圖14A到圖14C是繪示根據其他例示性實施例的電源 供應器的操作的訊號時序圖。為求描述清晰,假設次要參 考電壓VREF1高於次要參考電壓VREF2。 圖14 A此一 §fL號時序圖所繪示的操作’是次要參考電 壓VREF1回應脈波寬度調變控制訊號Pul—c〇N而被選為 鋸齒脈波基本訊號SAW_REF時的操作。 在第一致能訊號max_pulse_en在低位準的軟脈波 時期中’當脈波寬度調變控制訊號Pul_CON在低位準時, 29 201238231 41432pif 第一電路521選擇次要參考電壓VREF1。次要參考電壓 VREF1被傳送至穩定電路523,並由穩定電路523將之輸 出為偏壓訊號BIAS。閂鎖電路532回應内部電源供應器 100的時脈訊號SMPS_CK而取樣供應電壓VDD,使得下 降訊號f_SAW產生。上拉電路524與存儲器525回應偏 壓訊號BIAS而產生第一波形(即上升波形)。下拉電路 533回應下降訊號f_SAW而產生第二波形,即下降波形, 使得第一鋸齒脈波SAW__PULSE@VREF1根據次要參考電 壓VREF1而產生。第一鋸齒脈波SAW_PULSE@VREF1 與鋸齒脈波比較訊號COMP_REF分別供應至正向端(+ ) 與負向端(-),並由第二比較器502比較兩者。第二比 較器502輸出第一比較結果COMP_OUTl。此時,當第一 鋸齒脈波SAW_PULSE@VREF1高於鋸齒脈波比較訊號 COMP_REF時’第一比較結果COMP_OUTl在高位準輸 出,而當第一鋸齒脈波SAW_PULSE@VREF1低於鋸齒脈 波比較訊號COMP_REF時,則在低位準輸出。第一比較 結果COMP—OUT1由反向器501反向,並輸出為第一切換 脈波LSW卜 圖14B此一訊號時序圖所繪示的操作,是次要參考電 壓VREF2回應脈波寬度調變控制訊號Pul_c〇N而被選為 鋸齒脈波基本訊號SAW_REF時的操作。 第二鋸齒脈波SAW_PULSE@VREF2是根據與以上參 照圖14A所描述的相同原則產生。然而,因為次要參考電 壓VREF2低於次要參考電壓VREF1,第二鋸齒脈波 201238231 41432pif SAW_PULSE@VREF2的坡度小於第一鋸齒脈波 SAW_PULSE@VREF1的坡度。第二比較結果 COMP_OUT2與第二切換脈波LSW2根據第二鋸齒脈波 SAW_PULSE@VREF2 而產生。 圖14C此一 號時序圖所繪示的,是比較次要參考電 壓VREF1被選為鑛齒脈波基本訊號SAW_REF,以及次要 參考電壓VREF2被選為鋸齒脈波基本訊號SAW_REF 時,兩者之間的差異。 相較於在次要參考電壓VREF2被選擇時,在次要參 考電壓VREF1被選擇時,鋸齒脈波基本訊號SAW_REF 較高,因此第一鋸齒脈波SAW_PULSE@VREF1的坡度大 於第二鋸齒脈波SAW_PULSE@VREF2的坡度。第一鋸齒 脈波SAW_PULSE@VREF1或第二鋸齒脈波 SAW_PULSE@VREF2被與鋸齒脈波比較訊號c〇MP_REF 比較,而產生比較結果COMP_OUT。詳細來說,當第一 鋸齒脈波SAW_PULSE@VREF1或第二鋸齒脈波 SAW_PULSE@VREF2高於鋸齒脈波比較訊號COMP_REF 時’比較結果COMP_OUT在高位準輸出。當第一鑛齒脈 波 SAW_PULSE@VREF1 或第二鋸齒脈波 SAW_PULSE@VREF2低於鋸齒脈波比較訊號COMP_REF 時,比較結果COMP_OUT在低位準輸出。由於第一鑛齒 脈波SAW_PULSE@VREF1的坡度大於第二鋸齒脈波 SAW_PULSE@VREF2的坡度’因此相較於使用第二鋸齒 脈波SAW_PULSE@VREF2時,在使用第一鋸齒脈波 31 201238231 41432pif SAW_PULSE@VREF1時,比較結果COMP_OUT的脈波 寬度較大。比較結果COMP_OUT由反向器501反向,並 輸出為切換脈波LSW,因此,切換脈波LSW的脈波寬度 隨鋸齒脈波SAW_PULSE的坡度增加而減少。 如上所述,在第二致能訊號MAX_PULSE_EN在低位 準的軟脈波時期中,鋸齒脈波SAW_PULSE的坡度是用脈 波寬度調變控制訊號Pul_CON來控制,使得切換脈波lsW 的寬度受到控制。 圖15是綠示根據其他例示性實施例的電源供應器的 操作的訊號時序圖。 參照圖4與圖15’時序控制器400所產生的時脈訊號 SMPS一CK與時脈訊號CP—CK具有不同頻率,並分別被施 加至内部電源供應器1〇〇與電荷幫浦2〇〇。 當比較目標訊號S—VSP低於選擇參考電壓 VREF_SEL時,湧入電流控制器3〇〇中的第一比較器35〇 在低位準輸出脈波寬度調變控制訊號pul_c〇N,而當比較 目標訊號S_VSP高於選擇參考電壓VREF_SEL時,則在 高位準輸出脈波寬度調變控制訊號pul_c〇N。 例如’如圖4所繪示,當第一主要參考電壓 VREF一SEL1作為選擇參考電壓VREF_SEL輸入至第一比 較器350時,第一比較器350輸出第一脈波寬度調變控制 訊號Pul_CONl。當第二主要參考電壓VREF_SEL2作為選 擇參考電壓VREF—SEL輸入至第一比較器350時,第一比 較器350輸出第二脈波寬度調變控制訊號Pul—c〇N2。第 ⑧ 201238231 41432pif 一脈波寬度調變控制訊號Pul_CONl或第二脈波寬度調變 控制訊號Pul一CON2被施加至内部電源供應器1〇〇中的脈 波產生器500。 當在低位準的第二致能訊號MAX_PULSE_EN輸入至 第二電路522 ’而第一脈波寬度調變控制訊號Pul_c〇N1 輸入至第一電路521時,如果第一脈波寬度調變控制訊 號Pul_CONl在低位準,則脈波產生器5〇〇自次要參考電 壓中選擇電壓VREF1作為軟偏壓訊號Sigl,並根據軟偏 壓訊號Sigl來輸出具有第一脈波寬度pwi的第一切換脈 波LSW1。反之’如果第一脈波寬度調變控制訊 號Pul_CONl在高位準,則脈波產生器5〇〇自次要參考電 壓中選擇電壓VREF2作為軟偏壓訊號sigl,並根據軟偏 壓訊號Sigl來輸出具有第二脈波寬度pW2的第二切換脈 波 LSW2。 當在高位準的第二致能訊號MAX_PULSE_EN輸入至 第二電路522時,脈波產生器5〇〇回應位準選擇訊號 REF_SEL而自次要參考電壓中選擇最大偏壓訊號Sig2,並 根據最大偏壓訊號Sig2輸出具有最大脈波寬度pW_MAX 的切換脈波LSW1或切換脈波LSW2。 内部電源供應器100根據切換脈波LSW而產生將輸 入電荷幫浦100的第一電壓(VSp與VSN)及湧入電流。 當湧入電流逐漸供應至電荷幫浦200時’電荷幫浦200在 具有最大脈波寬度PW_MAX的切換脈波LSW產生前被致 能,使得大量電流不會瞬間輸入電荷幫浦2〇〇。因此,閂 33 201238231 41432pif 鎖效應被防止。在例示,降訾#点丨七 心丨m 料,根據脈波寬度調變控 制减Pul—CON的狀態,電壓VREF1及電壓vref2豆中 =被作為軟偏壓訊號Slg卜但例示性實施例不限於此。 ίίΓΙ示ί實施例中,脈波寬度、作為軟偏壓訊號的參 考電[的數以及參考電壓的位準可做各種改變。 圖16疋根據其他例不性實施例的電源供應器2麵, 的方塊圖。 參…'圖16 ’電源供應器2〇〇〇,包括内部電源供應器 100D□、電荷幫浦200,以及時序控制器4〇〇。對圖16所 繪示的電源供應器2000’的描述將著重在其與圖9合 的電源供應器2000的不同處。 ' 1 圖16所繪不的電源供應器2〇〇〇,不同於圖9所繪示的 電源供應器2000,電源供應器2〇〇〇’不包括湧入電流控制 器300。内部電源供應器1〇〇□包括第一電壓產生器15〇與 脈波模組600。脈波模組600包括脈波產生器5〇〇與控制 訊號產生器650。 ^ 内部電源供應器100□將第一電壓(VSP)施加至脈波 調變器600以及電荷幫浦200。脈波模組600的控制訊號 產生器650產生控制訊號SEL_Sig以根據第一電壓(VSP ) 來控制脈波寬度調變。脈波產生器500回應控制訊號 SEL_Sig而產生軟偏壓訊號Sigl,並產生脈波寬度對應軟 偏壓訊號Sigl的切換脈波LSW。控制訊號SEL_Sig長度 可為兩位元,但可用其他各種方式實施。 換言之,電源供應器2000’藉由根據第一電壓控制内 34 ⑧ 201238231 41432pif 部電源供應器1〇〇的脈波寬度調變來控制流入電荷幫浦 2〇〇的湧入電流的量,而不使用湧入電流控制器3〇〇。 圖17是根據其他例示性實施例的電源供應方法的流 程圖。 參照圖17’電源供應方法是由電源供應器(其包括執 行切換操作的内部電源供應器100口)以及電荷幫浦200 來執行。 在操作S100中,當第一致能訊號^£17_^1^被施加至 消入電流控制器300時,比較目標訊號8_乂3?產生。在操 作S11〇中’湧入電流控制器3〇〇自供應電壓VDD中產生 選擇參考電壓VREF_SEL。在操作S120中,湧入電流控 制器300比較比較目標訊號s_vsp與選擇參考電壓 VREF_SEL ’並產生脈波寬度調變控制訊號Pul_c〇N。 在操作S130中,脈波寬度調變控制訊號Pui_c〇N被 施加至内部電源供應器1〇〇,而内部電源供應器1〇〇中的 脈波產生器500根據第二致能訊號MAX_puLSE_EN以及 脈波寬度調變控制訊號Pul_c〇N,使用I拉操作I產生第 一波形,即上升波形。此時,第一波形的坡度根據軟偏壓 訊號Sigl改變,軟偏壓訊號Sigl是根據脈波寬度調變控 制訊號Pul一CON被選擇。在操作sl4〇中,脈波產生器5〇〇 根據内部電源供應II 1GG的時脈訊號SMPS—CK,藉由下 拉第-波形而產生第二波形,即下降波形,並在操作si5〇 中’產生結合第一波形與第二波形的鋸齒脈波 SAW__PULSE。同時’在操作S16Q中,為了微雛制;勇入 35 201238231 41432pif 電流,脈波產生器500回應第二致能訊號MAX_PULSE_EN 而選擇比較目標訊號S_V S P或回授訊號FB_VM作為鋸齒 脈波比較訊號COMP_REF。在操作S170中,脈波產生器 500比較鋸齒脈波SAW—PULSE與鋸齒脈波比較訊號 COMP—REF,並產生切換脈波LSW。切換脈波LSW的寬 度是根據鋸齒脈波SAW—PULSE的坡度來控制。 在操作S180中,内部電源供應器1〇〇回應切換脑 波LSW而產生第一電壓(VSP與VSN)及湧入電流。在 操作S190中,電荷幫浦2〇〇從第一電壓及湧入電流產生 第二電壓。因此,在具有最大脈波寬度pw—ΜΑχ的切換 脈波LSW產生前,電荷幫浦的操作根據㈣入電流的 量而被致能,使得電荷幫浦200的閂鎖效應被防止。 圖18A與ϋ l8By艮據一些例示性實施例,綠示 供應器1000中的波形的示意圖’以及電源供應器麵中 輸入訊號的時序圖。參照圖18A與圖⑽,在 廟使舰波寬軸來控制輸入 據第㈣中’脈波寬度是根 川〇 說’參照圖18A’當藉由取樣内部電源供庫写 1〇〇所輸出的第一電壓(VSP) :原供應益 S—VSP高於選擇參考訊號VREF SeI時!_目標訊號 被致能並產生第二電壓(VGH與—VGLf幫浦細 102中儲存的能量透過控制脈波寬 :^谷為 止___請”力開==。,藉此防 ⑧ 36 201238231 41432pif 參照圖18B,來自供應電壓VDD的能量根據脈波的 軟脈波寬度PW而受限地供應至内部電源供應器1〇〇中的 電容器102中,使得第一電壓(VSP)在軟脈波時期a中 逐漸增加。當第一電壓(VSP)至少達到預設位準時,内 部電源供應器10 0使電荷幫浦2 0 〇致能而在軟脈波時期a 中因湧入電流控制器300或脈波產生器500的操作而操 作,内部電源供應器1〇〇並將湧入電流供應至電荷幫浦 200。只有在電容器1〇2的能量達到預設最大位準時,内部 電源供應器100會在最大脈波時期B使用脈波的最大脈波 寬度PW_MAX來增加供應至電荷幫浦2〇〇的湧入電流, 使得閂鎖效應被防止。此時,在不同實施例中,脈波寬 度PW與脈波寬度pw_MAX可改變設計。 圖19是繪示根據一些例示性實施例的電源供應器的 輸出訊號的圖。 °° 參照圖19,當第一電壓(vsp與VSN)及第二電壓 (VGH與VGL)從供應電壓VDD中產生時,不發生 效應。 比較目標訊號S—VSP藉由取樣第一電壓而獲得,切換 脈波LSW反映選擇參考電壓vref_sel與比較目標訊號 S—VSP的比較結果;詳細來說,當致能訊號REF_EN被施 加至湧入電流控制器300時,切換脈波LSW被施加至内 部電,供應H 1GG中的第-切換器1G1的控制端,使得第 -電壓(vsp)逐漸從軟脈波起點形成。冑第一電壓(vsp) 至少達到預設位準時’内部電源供應器觸在軟脈波時期 37 201238231 41432pif 結束前在電荷幫浦致能起點致能電荷幫浦200,使得湧入 電流逐漸流入電荷幫浦200。因此,在不發生閃鎖效應的 情況下,第一電壓正常地升壓,且第二電壓(VGH)產生。 負電壓VSN與負電壓VGL根據與上述相同的原則產生。 圖20是根據一些例示性實施例的包括電源供應器 1000的顯示系統4000的方塊圖。參照圖2〇,顯示系統4〇〇〇 包括面板1、源極驅動器3、閘極驅動器2、栌制哭4 及電源供應器1000。 ^ j以 面板1包括多數條資料線、多數條閘極線,以及與資 料線及閘極線連接的多數個像素。 、 源極驅動器3回應控制器4所輸出的控制訊號與電源 供應器誦所輸出的電壓,在面板丨中產生用以驅動資料 線(或源極線)的類比電壓。 極驅動器2回應控制& 4所輸出的控制訊號與電 所,電壓,在面板1中依序驅動問極線(或 ϋ。’使付源極驅動113所輸出的類比電壓被提供至 4所圖17描述的電源供應器1000咖制器 動器=的訊號而提供升壓電壓(即第二電壓)至源極驅 D或閘極驅動器2。控制器4產生時序护告丨訊钬以如 制與源極驅動器2連接的資料後的主卫° " 閉極-動器2連接的=時序’以及控制與 圖21是根據其他例示性麻 1000 j 丁性只苑例的包括電源供應器 4_’的方塊圖。參照圖2卜顯示系統 38 201238231 41432pif 4000’包括面板1與顯示驅動器5。 顯示驅動器5包括源極驅動器3’、閘極驅動器2,、控 制态4’ ’以及電源供應器1〇〇〇。顯示驅動器5可以單晶片 或以如圖21所纟會示的封裝來實施’但例示性實施例不限於 此。 圖22是根據一些例示性實施例的包括電源供應器的 電子設備的方塊圖。參照圖22,電子設備5000包括電源 供應器 1000、中央處理單元(central processing unit,CPU ) 5100、記憶體設備5200、輸入/輸出介面單元woo,以及 匯流排5400。 中央處理單元5100可透過匯流排5400控制電源供應 器1000、記憶體設備5200,以及輸入/輸出介面單元 之間的資料交換。 記憶體設備5200可實施為非揮發性記憶體設備。非 揮發性記憶體設備可包括多數個非揮發性記憶胞。 各非揮發性記憶胞可實施為電子抹除式可複寫唯讀 δ己憶體(Electrically Erasable Programmable Read-OnlyThe second circuit 540 of Sig2. The second generation block 510 generates a secondary reference voltage in response to the level selection signal rEf_SEL. The second circuit 540 outputs a maximum bias signal Sig2 selected from the secondary reference voltage. The level selection signal reF_SEL is N bits in length, where N is a natural number of 2 or greater. The total voltage of the second generating block 510 can be divided into N voltages, and the level selection signal reF_SEL can select one of the N voltages. The second circuit 540 can include the decoder 541 and the level shifter 542' but can be implemented in a different manner. The first waveform generator 520□ may also include a stabilization circuit 523 for stabilizing the output of the bias signal BIAS. The stabilization circuit 523 can include a buffer. Therefore, the 'maximum bias signal Sig2' can be set in various ways depending on the characteristics of the first voltage (VSP) or the power supply 2000. In other words, the second circuit 540 and the pulse generator 500□□ including the second circuit 540 can control the slope of the sawtooth pulse wave according to a physical environment such as heat and temperature that may change with operation, and reset the maximum pulse width PW_Max. . 14A through 14C are signal timing diagrams illustrating the operation of a power supply in accordance with other exemplary embodiments. For clarity of description, assume that the secondary reference voltage VREF1 is higher than the secondary reference voltage VREF2. The operation shown in Fig. 14A of this §fL timing diagram is the operation when the secondary reference voltage VREF1 is selected as the sawtooth pulse fundamental signal SAW_REF in response to the pulse width modulation control signal Pul_c〇N. When the first enable signal max_pulse_en is in the soft pulse period of the low level, when the pulse width modulation control signal Pul_CON is at the low level, the second circuit 521 selects the secondary reference voltage VREF1. The secondary reference voltage VREF1 is supplied to the stabilization circuit 523 and outputted by the stabilization circuit 523 as the bias signal BIAS. The latch circuit 532 samples the supply voltage VDD in response to the clock signal SMPS_CK of the internal power supply 100, so that the down signal f_SAW is generated. Pull-up circuit 524 and memory 525 respond to bias signal BIAS to produce a first waveform (i.e., a rising waveform). The pull-down circuit 533 responds to the down signal f_SAW to generate a second waveform, i.e., a falling waveform, such that the first sawtooth pulse SAW__PULSE@VREF1 is generated in accordance with the secondary reference voltage VREF1. The first sawtooth pulse SAW_PULSE@VREF1 and the sawtooth pulse comparison signal COMP_REF are supplied to the forward terminal (+) and the negative terminal (-), respectively, and are compared by the second comparator 502. The second comparator 502 outputs the first comparison result COMP_OUT1. At this time, when the first sawtooth pulse SAW_PULSE@VREF1 is higher than the sawtooth pulse comparison signal COMP_REF, the first comparison result COMP_OUT1 is output at a high level, and when the first sawtooth pulse SAW_PULSE@VREF1 is lower than the sawtooth pulse comparison signal COMP_REF At the time, it is output at a low level. The first comparison result COMP_OUT1 is reversed by the inverter 501, and is output as the first switching pulse wave LSW. The operation shown in the signal timing diagram of FIG. 14B is the secondary reference voltage VREF2 responding to the pulse width modulation. The operation when the control signal Pul_c〇N is selected as the sawtooth pulse basic signal SAW_REF. The second sawtooth pulse SAW_PULSE@VREF2 is generated according to the same principles as described above with reference to Fig. 14A. However, since the secondary reference voltage VREF2 is lower than the secondary reference voltage VREF1, the slope of the second sawtooth pulse 201238231 41432pif SAW_PULSE@VREF2 is smaller than the slope of the first sawtooth pulse SAW_PULSE@VREF1. The second comparison result COMP_OUT2 and the second switching pulse LSW2 are generated according to the second sawtooth pulse SAW_PULSE@VREF2. 14C is a timing diagram showing that the secondary reference voltage VREF1 is selected as the mineral tooth pulse basic signal SAW_REF, and the secondary reference voltage VREF2 is selected as the sawtooth pulse basic signal SAW_REF. The difference between the two. Compared with when the secondary reference voltage VREF2 is selected, the sawtooth pulse basic signal SAW_REF is higher when the secondary reference voltage VREF1 is selected, so the slope of the first sawtooth pulse SAW_PULSE@VREF1 is greater than the second sawtooth pulse SAW_PULSE The slope of @VREF2. The first sawtooth pulse SAW_PULSE@VREF1 or the second sawtooth pulse SAW_PULSE@VREF2 is compared with the sawtooth pulse comparison signal c〇MP_REF to produce a comparison result COMP_OUT. In detail, when the first sawtooth pulse SAW_PULSE@VREF1 or the second sawtooth pulse SAW_PULSE@VREF2 is higher than the sawtooth pulse comparison signal COMP_REF, the comparison result COMP_OUT is output at a high level. When the first orthodontic pulse SAW_PULSE@VREF1 or the second sawtooth pulse SAW_PULSE@VREF2 is lower than the sawtooth pulse comparison signal COMP_REF, the comparison result COMP_OUT is output at the low level. Since the slope of the first orthodontic pulse wave SAW_PULSE@VREF1 is larger than the slope of the second sawtooth pulse wave SAW_PULSE@VREF2, the first sawtooth pulse wave 31 201238231 41432pif SAW_PULSE is used compared to when the second sawtooth pulse wave SAW_PULSE@VREF2 is used. When @VREF1, the pulse width of the comparison result COMP_OUT is large. The comparison result COMP_OUT is inverted by the inverter 501 and output as the switching pulse LSW. Therefore, the pulse width of the switching pulse LSW decreases as the slope of the sawtooth pulse SAW_PULSE increases. As described above, in the soft pulse period in which the second enable signal MAX_PULSE_EN is in the low level, the slope of the sawtooth pulse SAW_PULSE is controlled by the pulse width modulation control signal Pul_CON, so that the width of the switching pulse lsW is controlled. Fig. 15 is a timing chart showing the operation of the power supply according to other exemplary embodiments. Referring to FIG. 4 and FIG. 15 ', the clock signal SMPS-CK generated by the timing controller 400 has different frequencies from the clock signal CP_CK, and is applied to the internal power supply 1 and the charge pump 2, respectively. . When the comparison target signal S_VSP is lower than the selection reference voltage VREF_SEL, the first comparator 35 that is injected into the current controller 3A is at the low level output pulse width modulation control signal pul_c〇N, and when comparing the target When the signal S_VSP is higher than the selection reference voltage VREF_SEL, the pulse width modulation control signal pul_c〇N is output at the high level. For example, as shown in FIG. 4, when the first main reference voltage VREF_SEL1 is input to the first comparator 350 as the selection reference voltage VREF_SEL, the first comparator 350 outputs the first pulse width modulation control signal Pul_CON1. When the second main reference voltage VREF_SEL2 is input to the first comparator 350 as the selection reference voltage VREF_SEL, the first comparator 350 outputs the second pulse width modulation control signal Pul_c〇N2. The 8th 201238231 41432pif pulse width modulation control signal Pul_CON1 or the second pulse width modulation control signal Pul_CON2 is applied to the pulse generator 500 in the internal power supply 1〇〇. When the second enable signal MAX_PULSE_EN at the low level is input to the second circuit 522' and the first pulse width modulation control signal Pul_c〇N1 is input to the first circuit 521, if the first pulse width modulation control signal Pul_CONl At a low level, the pulse generator 5 selects the voltage VREF1 from the secondary reference voltage as the soft bias signal Sigl, and outputs the first switching pulse having the first pulse width pwi according to the soft bias signal Sigl. LSW1. Otherwise, if the first pulse width modulation control signal Pul_CON1 is at a high level, the pulse generator 5 selects the voltage VREF2 from the secondary reference voltage as the soft bias signal sigl and outputs it according to the soft bias signal Sigl. The second switching pulse wave LSW2 having the second pulse width pW2. When the second enable signal MAX_PULSE_EN at the high level is input to the second circuit 522, the pulse generator 5 〇〇 responds to the level selection signal REF_SEL and selects the maximum bias signal Sig2 from the secondary reference voltage, and according to the maximum bias The voltage signal Sig2 outputs a switching pulse LSW1 having a maximum pulse width pW_MAX or a switching pulse LSW2. The internal power supply 100 generates a first voltage (VSp and VSN) and an inrush current to be input to the charge pump 100 in accordance with the switching pulse wave LSW. When the inrush current is gradually supplied to the charge pump 200, the charge pump 200 is enabled before the switching pulse LSW having the maximum pulse width PW_MAX is generated, so that a large amount of current does not instantaneously input the charge pump 2〇〇. Therefore, the latch 33 201238231 41432pif lock effect is prevented. In the example, the 訾 丨 丨 丨 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压 电压Limited to this. In the embodiment, the pulse width, the reference number of the soft bias signal, and the level of the reference voltage can be variously changed. Figure 16 is a block diagram of a power supply unit 2 according to other exemplary embodiments. Referring to the 'Fig. 16' power supply unit 2, including the internal power supply 100D□, the charge pump 200, and the timing controller 4〇〇. The description of the power supply 2000' shown in Fig. 16 will be focused on its difference from the power supply 2000 of Fig. 9. The power supply 2 is not shown in Fig. 16. Unlike the power supply 2000 shown in Fig. 9, the power supply 2' does not include the inrush current controller 300. The internal power supply 1〇〇□ includes a first voltage generator 15〇 and a pulse wave module 600. The pulse wave module 600 includes a pulse wave generator 5A and a control signal generator 650. The internal power supply 100□ applies a first voltage (VSP) to the pulse modulator 600 and the charge pump 200. The control signal generator 650 of the pulse wave module 600 generates a control signal SEL_Sig to control the pulse width modulation according to the first voltage (VSP). The pulse generator 500 generates a soft bias signal Sigl in response to the control signal SEL_Sig, and generates a switching pulse LSW whose pulse width corresponds to the soft bias signal Sigl. The control signal SEL_Sig can be two digits in length, but can be implemented in a variety of other ways. In other words, the power supply 2000' controls the amount of inrush current flowing into the charge pump 2〇〇 by the pulse width modulation according to the first voltage control within the 34 8 201238231 41432 pif portion power supply 1 , Use the inrush current controller 3〇〇. FIG. 17 is a flow chart of a power supply method according to other exemplary embodiments. Referring to Fig. 17', the power supply method is performed by a power supply (which includes an internal power supply 100 port for performing a switching operation) and a charge pump 200. In operation S100, when the first enable signal ^17_^1^ is applied to the erase current controller 300, the comparison target signal 8_乂3 is generated. In operation S11, the inrush current controller 3 generates a selection reference voltage VREF_SEL from the supply voltage VDD. In operation S120, the inrush current controller 300 compares the comparison target signal s_vsp with the selection reference voltage VREF_SEL' and generates a pulse width modulation control signal Pul_c〇N. In operation S130, the pulse width modulation control signal Pui_c〇N is applied to the internal power supply 1〇〇, and the pulse generator 500 in the internal power supply 1〇〇 is based on the second enable signal MAX_puLSE_EN and the pulse. The wave width modulation control signal Pul_c〇N uses the I pull operation I to generate a first waveform, that is, a rising waveform. At this time, the slope of the first waveform is changed according to the soft bias signal Sigl, and the soft bias signal Sigl is selected based on the pulse width modulation control signal Pul_CON. In operation sl4, the pulse generator 5 产生 generates a second waveform, that is, a falling waveform, and operates in si5〇 according to the clock signal SMPS_CK of the internal power supply II 1GG by pulling down the first waveform. A sawtooth pulse SAW__PULSE is generated that combines the first waveform with the second waveform. At the same time, in operation S16Q, for the micro-system; to enter 35 201238231 41432pif current, the pulse generator 500 responds to the second enable signal MAX_PULSE_EN and selects the comparison target signal S_V SP or the feedback signal FB_VM as the sawtooth pulse comparison signal COMP_REF . In operation S170, the pulse generator 500 compares the sawtooth pulse SAW_PULSE with the sawtooth pulse comparison signal COMP_REF and generates a switching pulse LSW. The width of the switching pulse LSW is controlled according to the slope of the sawtooth pulse SAW-PULSE. In operation S180, the internal power supply unit 1 generates a first voltage (VSP and VSN) and an inrush current in response to the switching brain wave LSW. In operation S190, the charge pump 2 generates a second voltage from the first voltage and the inrush current. Therefore, before the switching pulse wave LSW having the maximum pulse width pw - 产生 is generated, the operation of the charge pump is enabled in accordance with the amount of the (four) incoming current, so that the latch-up effect of the charge pump 200 is prevented. Figures 18A and ϋ18By are schematic diagrams of waveforms in green display 1000 and timing diagrams of input signals in the power supply face, in accordance with some exemplary embodiments. Referring to Fig. 18A and Fig. (10), in the temple, the ship's wave width axis is used to control the input data. The pulse width is the root of the pulse width. A voltage (VSP): the original supply benefit S-VSP is higher than the selection reference signal VREF SeI! _ the target signal is enabled and generates a second voltage (the energy stored in the VGH and -VGLf pump 102 passes through the control pulse width) :^谷[___Please" force open ==., by means of defense 8 36 201238231 41432pif Referring to FIG. 18B, the energy from the supply voltage VDD is limitedly supplied to the internal power supply according to the soft pulse width PW of the pulse wave. In the capacitor 102 in the device 1, the first voltage (VSP) is gradually increased in the soft pulse period a. When the first voltage (VSP) reaches at least the preset level, the internal power supply 10 0 causes the charge to help The PU 2 〇 is enabled and operates in the soft pulse period a due to the operation of the inrush current controller 300 or the pulse generator 500, and the internal power supply 1 〇〇 supplies the inrush current to the charge pump 200 Only when the energy of the capacitor 1〇2 reaches the preset maximum level, the internal The power supply 100 uses the maximum pulse width PW_MAX of the pulse wave during the maximum pulse period B to increase the inrush current supplied to the charge pump 2〇〇, so that the latch-up effect is prevented. At this time, in different embodiments The pulse width PW and the pulse width pw_MAX can be changed. Figure 19 is a diagram showing the output signal of the power supply according to some exemplary embodiments. °° Referring to Figure 19, when the first voltage (vsp and VSN) When the second voltage (VGH and VGL) is generated from the supply voltage VDD, no effect occurs. The comparison target signal S_VSP is obtained by sampling the first voltage, and the switching pulse LSW reflects the selection reference voltage vref_sel and the comparison target signal S. - comparison result of VSP; in detail, when the enable signal REF_EN is applied to the inrush current controller 300, the switching pulse LSW is applied to the internal power to supply the control terminal of the first switch 1G1 in the H 1GG, The first voltage (vsp) is gradually formed from the soft pulse start point. When the first voltage (vsp) reaches at least the preset level, the internal power supply contacts the soft pulse period 37 201238231 41432pif before the end of the charge The starting point enables the charge pump 200 so that the inrush current gradually flows into the charge pump 200. Therefore, in the case where the flash lock effect does not occur, the first voltage is normally boosted, and the second voltage (VGH) is generated. The VSN and the negative voltage VGL are generated according to the same principles as described above. Figure 20 is a block diagram of a display system 4000 including a power supply 1000, according to some exemplary embodiments. Referring to Figure 2, the display system 4 includes a panel 1 The source driver 3, the gate driver 2, the crying 4, and the power supply 1000. ^ j uses panel 1 to include a plurality of data lines, a plurality of gate lines, and a plurality of pixels connected to the data lines and the gate lines. The source driver 3 generates an analog voltage for driving the data line (or the source line) in the panel 回应 in response to the control signal output from the controller 4 and the voltage output from the power supply unit. The pole driver 2 responds to the control signal and the electric station and voltage outputted by the control & 4, and sequentially drives the interrogation line (or ϋ in the panel 1). 'The analog voltage output from the source driver 113 is supplied to 4 The power supply 1000 of the power supply 1000 is shown in Fig. 17 to provide a boost voltage (i.e., a second voltage) to the source drive D or the gate driver 2. The controller 4 generates a timing guard signal to The data connected to the source driver 2 is connected to the main controller ° " Closed-Motor 2 connection = timing' and control and Figure 21 is based on other exemplary examples. 4_' block diagram. Referring to Figure 2, the display system 38 201238231 41432pif 4000' includes a panel 1 and a display driver 5. The display driver 5 includes a source driver 3', a gate driver 2, a control state 4'', and a power supply. The display driver 5 can be implemented as a single wafer or in a package as illustrated in Figure 21, but the illustrative embodiments are not limited thereto. Figure 22 is an electronic device including a power supply, in accordance with some demonstrative embodiments. Block diagram of the device. 22, the electronic device 5000 includes a power supply 1000, a central processing unit (CPU) 5100, a memory device 5200, an input/output interface unit woo, and a bus bar 5400. The central processing unit 5100 can be controlled through the bus bar 5400. Data exchange between the power supply 1000, the memory device 5200, and the input/output interface unit. The memory device 5200 can be implemented as a non-volatile memory device. The non-volatile memory device can include a plurality of non-volatile memories. Each non-volatile memory cell can be implemented as an electronically erasable rewritable read-only δ ** (Electrically Erasable Programmable Read-Only

Memory,EEPROM)、快閃記憶體(flash mem〇ry)、磁 性隨機存取記憶體(Magnetic RAM,MRAM)、自旋轉移 力矩磁性隨機存取記憶體(Spin_Transfer Torque MRAM, MRAM)、導電橋接隨機存取記憶體(c〇nductivebridging RAM ’ CBRAM )、鐵電隨機存取記憶體(Ferr〇electric RAM,FeRAM )、被稱為雙向通用記憶體(〇v〇nic Unified Memory,OUM)的相變隨機存取記憶體(phase change 39 201238231 41432pif RAM ’ PRAM )、電阻式隨機存取記憶體(Resistive RAM, RRAM或ReRAM)、奈米管電阻式隨機存取記憶體 (Nanotube RRAM )、聚合物隨機存取記憶體(Polymer RAM,PoRAM )、奈米浮動閘極記憶體(Nano Floating Gate Memory ’ NFGM)、全像記憶體(holographic memory)、 分子電子記憶體(Molecular Electronics Memory),或絕 緣電阻變化記憶體(Insulator Resistance Change Memory )。 電子設備5000可為個人電腦(Pc)、可攜式電腦、 可攜式行動通sfL设備’或消費性設備(c〇nsumer equipment’ CE)。可攜式行動通訊設備包括個人數位助理 (personal digital assistants,PDA)以及可攜式多媒體播放 器(portable multimedia player,PMP)。電子設備 5000 也可為電子書、遊戲設備、遊戲控制器、導航器,或電子 樂器。 發明概念可貫施為硬體或軟體,或硬體與軟體之結 合。發明概念也可實施為電腦可讀媒體上的電腦可讀碼。 電腦可讀紀錄親是可㈣㈣存為之後可被電腦系統讀 取的知式的任何資料儲存設備。電腦可讀紀錄媒體的例子 包括唯讀記憶體(ROM)、隨機存取記憶體(MM)、光 ,機、磁帶、軟性磁碟,以及光學資料儲存設備。電腦可 項紀錄媒體也可分散麵_合電_統,使得電腦可讀 =刀,方式儲存與執行。此外,本發明概賴屬領域之 f M可㈣理解完成發明概念的功能程式、碼、以及 碼段。 201238231 41432pif 如上所述,根據一些例示性實施例,脈波寬度是根據 電荷=浦的輪入訊號與選擇參考電壓的比較結果,而輸入 f電4幫浦的人電流的量是藉由控獅波寬度來控制, 藉此防止_效應在電源供應器中發生。因此,電源供靡 器不需要外部蕭特基二極體’藉此降低製造價格。此夕^ 内部蕭特基二極體可自電源供應器中移除,使得晶片尺寸 :二=:電荷幫浦操作期間的尖峰電流減少,使得接 觸的壓力減少,而電力消耗也減少。 雖然例示性實施例已被詳細描述與揭露如上,缺而本 =中^常知财應轉,在不麻財施例如後 圍所界定之精神與範圍下’其形式與細節可 【圖式簡單說明】 圖。圖1疋根據-些例不性實施例的電源供應器的方塊 圖2是根據-例示性實施例繪示 器的詳細方塊圖。 T J电你仏應 圖3詳細繪示圖2中所繪示_ 圖4是電壓相對於時間的圖,其繪示圖2^ 湧入電流控制器的操作。 圖5是繪示根據一也例 作的訊號時序®。—例㈣貫施例的電源供應器的操 圖 圖疋祀I、他例不性實施例的電源供應器的方塊 201238231 41432pif 圖7是根據其他例示性實施例的電源供應器的方塊 圖。 圖8是根據一些例示性實施例的電源供應方法的流程 圖。 圖9是根據其他例示性實施例的電源供應器的方塊 圖。 圖10是根據一例示性實施例繪示於圖9中的電源供 應器的詳細方塊圖。 圖11是根據一例示性實施例繪示於圖10中的脈波產 生器的方塊圖。 圖12是繪示根據一些例示性實施例綠示於圖η中的 脈波產生器的内部結構的示意圖。 圖13是繪示根據其他例示性實施例繪示於圖Η中的 脈波產生器的内部結構的示意圖。 圖14A到圖14C是繪示根據其他例示性實施例的電源 供應器的操作的訊號時序圖。 圖15是繪示根據其他例示性實施例的電源供應器的 操作的訊號時序圖。 圖16是根據其他例示性實施例的電源供應器的方塊 圖。 圖17是根據其他例示性實施例的電源供應方法的流 程圖。 圖18A與圖18B是根據一些例示性實施例所繪示,電 源供應器中的波形的示意圖以及電源供應器中輸入訊號的 ⑧ 201238231 41432pif 時序圖。 圖19是繪示根據一些例示性實施例的電源供應器的 輸出訊號的圖。 圖20是根據一些例示性實施例的包括電源供應器的 顯示系統的方塊圖。 圖21是根據其他例示性實施例的包括電源供應器的 顯示系統的方塊圖。 圖22是根據一些例示性實施例的包括電源供應器的 電子設備的方塊圖。 【主要元件符號說明】 1 :面板 2、 2':閘極驅動器 3、 3’ :源極驅動器 4、 4':控制器 5:顯示驅動器 100、100’ :内部電源供應器 101 第一切換器 102 電感器 103 負載電路 150 第一電壓產生器 200 電荷幫浦 300、300’、300” :湧入電流控制器 310 :第一取樣方塊 311 :第二切換器 43 201238231 41432pif 320 :參考電壓產生器 330 :第一產生方塊 340 :選擇方塊 350 :第一比較器 400 :時序控制器 500、500’、500” :脈波產生器 501 :反向器 502 :第二比較器 510 :第二產生方塊 520 :第一波形產生器 521 :第一電路 522 :偏壓選擇電路 523 :穩定電路 524 :上拉電路 525 :存儲器 530 :第二波形產生器 531 :比較器 532 :閂鎖電路 533 :下拉電路 540 :第二電路 541 :解碼器 542 :位準移位器 550 :鋸齒脈波產生器 551:鋸齒脈波輸出端 ⑧ 201238231 41432pif 560 :鋸齒脈波比較訊號產生器 600 :脈波模組 650 :控制訊號產生器 1000、1100、1200、2000、2000’ :電源供應器 4000、4000':顯示系統 5000 :電子設備 5100 ··中央處理單元 5200 :記憶體設備 5300 :輸入/輸出介面單元 5400 :匯流排 A、 Soft_Pulse :軟脈波時期 B、 Max_Pulse :最大脈波時期 BIAS :偏壓訊號 COMP—REF :鋸齒脈波比較訊號 COMP_OUT :比較結果 COMP—OUT1 :第一比較結果 COMPJ3UT2 :第二比較結果 CP_CK、SMPS_CK :時脈訊號 CP_Sig卜CP_Sig2 :致能訊號 FB_VM :回授訊號 f_SAW ··下降訊號 GND :接地端 LSW :切換脈波 LSW1 :第一切換脈波 45 201238231 41432pif LSW2 :第二切換脈波 MAX_PULSE_EN:第二致能訊號 MUX :多工器 Pull、Pul2 :脈波Memory, EEPROM, flash mem〇ry, magnetic RAM, MRAM, Spin_Transfer Torque MRAM, MRAM, conductive bridge random Access memory (c〇nductivebridging RAM 'CBRAM), ferroelectric random access memory (Ferr〇electric RAM, FeRAM), phase change random called bidirectional universal memory (OUM) Access memory (phase change 39 201238231 41432pif RAM ' PRAM ), resistive random access memory (Resistive RAM, RRAM or ReRAM), nanotube RRAM, polymer random storage Take memory (Polymer RAM, PoRAM), Nano Floating Gate Memory 'NFGM, holographic memory, Molecular Electronics Memory, or insulation resistance change memory Insulator Resistance Change Memory. The electronic device 5000 can be a personal computer (Pc), a portable computer, a portable mobile sfL device' or a consumer device (c〇nsumer equipment' CE). Portable mobile communication devices include personal digital assistants (PDAs) and portable multimedia players (PMPs). The electronic device 5000 can also be an e-book, a gaming device, a game controller, a navigator, or an electronic musical instrument. The inventive concept can be applied as a hard or soft body, or as a combination of a hard body and a soft body. The inventive concept can also be embodied as a computer readable code on a computer readable medium. A computer-readable record is a data storage device that can be read by the computer system after being stored in (4) (4). Examples of computer readable recording media include read only memory (ROM), random access memory (MM), optical, mechanical, magnetic, floppy, and optical data storage devices. The computer can also record the media can also be distracted _ _ _ system, making the computer readable = knife, way to store and execute. Furthermore, the present invention pertains to the field of the art, and understands the functional programs, codes, and code segments that fulfill the inventive concept. 201238231 41432pif As described above, according to some exemplary embodiments, the pulse width is based on the comparison of the charge signal of the charge=pu and the selected reference voltage, and the amount of the current input to the electric pump of 4 pumps is controlled by the lion. The wave width is controlled to prevent the _ effect from occurring in the power supply. Therefore, the power supply unit does not require an external Schottky diode' to thereby reduce the manufacturing price. On the other hand, the internal Schottky diode can be removed from the power supply, so that the wafer size: two =: the peak current during charge pump operation is reduced, so that the contact pressure is reduced and the power consumption is also reduced. Although the exemplary embodiments have been described in detail and disclosed above, the present invention is inconsistent with the fact that in the spirit and scope defined by the circumstance, such as the form and details. Illustrating. 1 is a block diagram of a power supply according to some exemplary embodiments. FIG. 2 is a detailed block diagram of a drawing according to an exemplary embodiment. T J electricity you should refer to Figure 3 in detail as shown in Figure 2 Figure 4 is a voltage versus time diagram, which shows the operation of Figure 2 ^ inrush current controller. Fig. 5 is a diagram showing the signal timing® according to an example. - (4) The operation of the power supply of the embodiment of the present invention. Fig. 1 is a block diagram of the power supply of the exemplary embodiment. 201238231 41432pif FIG. 7 is a block diagram of a power supply according to other exemplary embodiments. FIG. 8 is a flow diagram of a power supply method, in accordance with some demonstrative embodiments. Figure 9 is a block diagram of a power supply in accordance with other exemplary embodiments. Figure 10 is a detailed block diagram of the power supply shown in Figure 9 in accordance with an illustrative embodiment. Figure 11 is a block diagram of the pulse generator shown in Figure 10, according to an exemplary embodiment. Figure 12 is a schematic diagram showing the internal structure of a pulse wave generator shown in Figure η in accordance with some exemplary embodiments. FIG. 13 is a schematic diagram showing the internal structure of a pulse wave generator illustrated in the drawing according to other exemplary embodiments. 14A through 14C are signal timing diagrams illustrating the operation of a power supply in accordance with other exemplary embodiments. Figure 15 is a timing diagram showing the operation of a power supply in accordance with other exemplary embodiments. Figure 16 is a block diagram of a power supply in accordance with other exemplary embodiments. FIG. 17 is a flow chart of a power supply method according to other exemplary embodiments. 18A and 18B are schematic diagrams of waveforms in a power supply and a timing diagram of an input signal in the power supply 8 201238231 41432pif, in accordance with some exemplary embodiments. 19 is a diagram of an output signal of a power supply, in accordance with some demonstrative embodiments. Figure 20 is a block diagram of a display system including a power supply, in accordance with some demonstrative embodiments. 21 is a block diagram of a display system including a power supply, in accordance with other exemplary embodiments. Figure 22 is a block diagram of an electronic device including a power supply, in accordance with some demonstrative embodiments. [Main component symbol description] 1 : Panel 2, 2': Gate driver 3, 3': Source driver 4, 4': Controller 5: Display driver 100, 100': Internal power supply 101 First switch 102 inductor 103 load circuit 150 first voltage generator 200 charge pump 300, 300', 300": inrush current controller 310: first sampling block 311: second switch 43 201238231 41432pif 320: reference voltage generator 330: first generation block 340: selection block 350: first comparator 400: timing controller 500, 500', 500": pulse generator 501: inverter 502: second comparator 510: second generation block 520: first waveform generator 521: first circuit 522: bias selection circuit 523: stabilization circuit 524: pull-up circuit 525: memory 530: second waveform generator 531: comparator 532: latch circuit 533: pull-down circuit 540: second circuit 541: decoder 542: level shifter 550: sawtooth pulse generator 551: sawtooth pulse output terminal 8 201238231 41432pif 560: sawtooth pulse wave comparison signal generator 600: pulse wave module 650: Control signal generation 1000, 1100, 1200, 2000, 2000': power supply 4000, 4000': display system 5000: electronic device 5100 · central processing unit 5200: memory device 5300: input/output interface unit 5400: bus A, Soft_Pulse: soft pulse period B, Max_Pulse: maximum pulse period BIAS: bias signal COMP_REF: sawtooth pulse comparison signal COMP_OUT: comparison result COMP_OUT1: first comparison result COMPJ3UT2: second comparison result CP_CK, SMPS_CK: Clock signal CP_Sig Bu CP_Sig2: Enable signal FB_VM: Feedback signal f_SAW ··Drop signal GND: Ground terminal LSW: Switch pulse wave LSW1: First switching pulse 45 201238231 41432pif LSW2 : Second switching pulse MAX_PULSE_EN: Second Enable signal MUX: multiplexer Pull, Pul2: pulse wave

Pull_Sel:第一邏輯位準(低位準)的脈波寬度調變 控制訊號Pull_Sel: pulse width modulation control signal of the first logic level (low level)

Pul2_Sel:第二邏輯位準(高位準)的脈波寬度調變 控制訊號Pul2_Sel: pulse width modulation control signal of the second logic level (high level)

Pul_CON :脈波寬度調變控制訊號Pul_CON: Pulse width modulation control signal

Pul_CONl :第一脈波寬度調變控制訊號Pul_CONl: first pulse width modulation control signal

Pul_CON2 :第二脈波寬度調變控制訊號 PW1 :第一脈波寬度 PW2 :第二脈波寬度 PW_Max :最大脈波寬度 REF_EN :第一致能訊號 REF_SEL :位準選擇訊號 SEL_Sig :控制訊號 SAW_CMP_REF :鋸齒脈波重置參考 SAW_PULSE :鋸齒脈波 SAW_PULSE@VREF :根據參考電壓產生的鋸齒脈波 SAW_PULSE@VREF1 :第一鋸齒脈波 SAW_PULSE@VREF2 :第二鋸齒脈波 SAW_REF :鋸齒脈波基本訊號 SAW_REF@VREF1 :根據次要參考電壓VREF1產生 ⑧ 201238231 41432pif 的鋸齒脈波基本訊號 SAW—REF@VREF2 :根據次要參考電壓VREF2產生 的鋸齒脈波基本訊號 SEL :參考電壓選擇訊號 SEL_SW1、SEL_SW2 :切換器 Sigl :軟偏壓訊號 Sig2 :最大偏壓訊號 S_VSP :比較目標訊號 VDD :供應電壓 VGH:第二電壓(第二正電壓) VGL:第二電壓(第二負電壓) VREF1、VREF2 :次要參考電壓 VREF_1 SELECTION :第二參考電壓訊號 VREF—2 SELECTION:第二參考電壓訊號 VREF_SEL :選擇參考電壓 VREF_SEL1 :第一主要參考電壓 VREF_SEL2:第二主要參考電壓 VREF—SMPS :内部參考電壓 Rstring :電阻器串 VSN :第一電壓(第一負電壓) VSP:第一電壓(第一正電壓) X:鑛齒脈波輸出端 47Pul_CON2: second pulse width modulation control signal PW1: first pulse width PW2: second pulse width PW_Max: maximum pulse width REF_EN: first enable signal REF_SEL: level selection signal SEL_Sig: control signal SAW_CMP_REF: Serrated pulse reset reference SAW_PULSE : sawtooth pulse SAW_PULSE@VREF : sawtooth pulse generated according to reference voltage SAW_PULSE@VREF1 : first sawtooth pulse SAW_PULSE@VREF2 : second sawtooth pulse SAW_REF : sawtooth pulse basic signal SAW_REF@ VREF1: Generated according to the secondary reference voltage VREF1 8 201238231 41432pif Sawtooth pulse basic signal SAW_REF@VREF2: Sawtooth pulse basic signal SEL generated according to the secondary reference voltage VREF2: Reference voltage selection signal SEL_SW1, SEL_SW2: Switch Sigl : soft bias signal Sig2: maximum bias signal S_VSP: comparison target signal VDD: supply voltage VGH: second voltage (second positive voltage) VGL: second voltage (second negative voltage) VREF1, VREF2: secondary reference voltage VREF_1 SELECTION: second reference voltage signal VREF-2 SELECTION: second reference voltage signal VREF_SEL: select reference voltage VREF_SEL1: first main To reference voltage VREF_SEL2: second main reference voltage VREF-SMPS: internal reference voltage Rstring: resistor string VSN: first voltage (first negative voltage) VSP: first voltage (first positive voltage) X: orthodontic pulse wave Output 47

Claims (1)

201238231 41432pif 七、申請專利範圍: 1. 一種電源供應裝置,包栝: 内部電源供應器,其包括第一電壓產生器,所述第一 電壓產生器用以根據脈波寬度調變控制訊號來產生第一電 電荷幫浦,其用以接收所述第一電壓並產生第二電 壓;以及 湧入電流控制器,其連接於所述電荷幫浦與所述内部 電源供應器間,並用以根據目標訊號及選擇參考電壓來產 生所述脈波寬度調變控制訊號。 2. 如申請專利範圍第i項所述之電源供應裝置,其中 所述湧入電流控制器包括: 第一取樣電路,用以回應第一致能訊號而分壓所述第 一電壓’並根據此分壓來輸出所述目標訊號; 參考電壓產生器,其用以回應參考電壓選擇訊號而輸 出所述選擇參考電壓;以及 第一比較器,其用以比較所述目標訊號與所述選擇參 考電壓’並輸出所述脈波寬度調變控制訊號。 3. 如申請專利範圍第2項所述之電源供應裝置,其中 所述參考電壓產生器包括: ~ 第一產生電路,其用多數個電阻器以分壓所述供應電 壓,並根據分壓所述供應電壓來產生多數個主要參考電 壓;以及 選擇電路,其回應所述參考電壓選擇訊號而輪出所述 (D 201238231 414izpif 夕壓^其巾—者’作為所述選擇參考電壓。 如異概11第1項所述之電源供應裝置,其中 將分別具有不同脈波寬度的脈波施加至所 =:、供應器,則所述内部電源供應器回應所述湧入 電所產生的所賴波寬度調變控制訊號,而選擇 所述脈波的其中-者,並產生所述第一電壓。 5.如申請專利範圍第w所述之電源供應裝置,其中 所述第電壓產生器用以產生回授訊號,而所述内部電源 供應器包括脈波產生器,所述脈波產生器根據所述回授訊 號來產生脈波’所述脈波產生器包括, 鑛齒脈波產生器,其用以產生具有坡度的鑛齒脈波, 所述鑛齒脈波疋根據所述脈波寬度調變控制訊號以及第二 致能訊號; 鋸齒脈波比較訊號產生器,其回應所述第二致能訊號 而輸出所述目標訊號或所述回授訊號,作為鋸齒脈波比較 訊號;以及 第二比較器,其用以比較所述鋸齒脈波與所述鋸齒脈 波比較訊號’並產生切換脈波。 6.如申請專利範圍第5項所述之電源供應裝置,其中 所述雜齒脈波產生器包括· 第二產生電路,其用多數個電阻器來分壓内部參考電 壓,並根據所述分壓來產生多數個次要參考電壓; 第一波形產生器,其連接於所述第二產生電路及鋸齒 脈波輸出端之間,根據所述第二致能訊號在所述多數個次 49 201238231 41432pif 中選擇電壓’並藉由回應選自所述多數個次要 : 巾的所述電壓而上拉接地電壓以產生第一波形; Μ齒脈、、由认形產生器,其連接於所述第二產生電路及所站 Μ、皮^出端之間’並藉由回應下降訊號而下拉所述· 端的電壓以產生第二波形,所述下降訊號是名 t 形產生盗中產生,所述下降訊號是根據取樣戶月 應器ί時取樣所述供應電壓是根據所述内部電源伯 "资如申5青專利範圍第6項所述之電源供應襄置,其中 所述第一波形產生器包括: Π電路’其回應所述脈波寬度婦控制訊號而輪出 要參考電_其中—者作為軟訊號,或 f r =第—致能信號而輸出最大偏壓訊號作為鑛齒脈波 基本sfl號; 上拉電路,其回應所述鋸齒脈波基本訊號而上拉所述 鑛齒脈波輸出端的所述電麼;以及 存儲器’其連接於所述織脈波輸㈣及接地端之 間’所述存儲_以儲存上拉訊號,並產生所述第一波形。 8.如申請專利範圍第6項所述之電源供應裝置,1 中所述第一波形產生器包括: ^ 第一電路,其回應所述脈波寬度調變控制訊號而選擇 並輸出所舒數個次要參考電㈣其t—者,作為軟偏屢 訊號; ⑧ 50 201238231 第二電路,其回應位準選擇訊號而選擇並輸出所述多 數個次要參考電壓的其中一者,作為最大偏壓訊號; h •偏壓電路,其回應所述第二致能訊號而輸出所述軟偏 壓訊號*或所述最大偏壓訊號作為鋸齒脈波基本訊號;以及 it電路,其藉由回應所述鋸齒脈波基本訊號而上拉 所述接地電壓,以產生所述第一波形。 【如申請專利範圍第6項所述之電源供應裝置,其中 所述第二波形產生器包括: 第二取樣電路’其根據所述鋸齒脈波及鋸齒脈波重置 參考來執行重置操作,並輸出所述下降訊號;以及 下拉電路,其回應所述下拉訊號而下拉所述鋸齒脈波 輪出端的電壓。 ιυ. 划寻利範圍第5項所述之電源供應裝置,其 中所述鑛鎌纽較崎產生器在軟脈波時射回應所述 第二致能訊號而輸出所述目標職,作為所賴齒脈波比 較訊號,並在最大脈波時射回應所述第二致能訊號而輸 出所述回授訊號’作為所述職脈波比較訊號。 51201238231 41432pif VII. Patent application scope: 1. A power supply device, comprising: an internal power supply, comprising a first voltage generator, wherein the first voltage generator is configured to generate a signal according to a pulse width modulation control signal An electric charge pump for receiving the first voltage and generating a second voltage; and an inrush current controller connected between the charge pump and the internal power supply and configured to be based on the target signal And selecting a reference voltage to generate the pulse width modulation control signal. 2. The power supply device of claim 1, wherein the inrush current controller comprises: a first sampling circuit for dividing the first voltage in response to the first enable signal and based on Deriving the target signal; the reference voltage generator is configured to output the selection reference voltage in response to the reference voltage selection signal; and the first comparator is configured to compare the target signal with the selection reference Voltage 'and outputs the pulse width modulation control signal. 3. The power supply device of claim 2, wherein the reference voltage generator comprises: a first generation circuit that divides the supply voltage by a plurality of resistors, and according to a voltage divider Supplying a voltage to generate a plurality of primary reference voltages; and selecting a circuit that responds to the reference voltage selection signal and turns the said (D 201238231 414 izizifif the wiper as the selected reference voltage. The power supply device according to Item 1, wherein a pulse wave having a different pulse width is respectively applied to the =:, the supplier, and the internal power supply responds to the wave generated by the inrush current. Width modulation control signal, and selecting one of the pulse waves, and generating the first voltage. 5. The power supply device of claim w, wherein the first voltage generator is used to generate a back The internal power supply includes a pulse wave generator, and the pulse wave generator generates a pulse wave according to the feedback signal. The pulse wave generator includes, For generating a graded pulse wave having a slope, the mineral tooth wave modulating the control signal and the second enable signal according to the pulse width; the sawtooth pulse comparison signal generator, in response to the a second enable signal to output the target signal or the feedback signal as a sawtooth pulse comparison signal; and a second comparator for comparing the sawtooth pulse to the sawtooth pulse to compare the signal 6. The power supply device of claim 5, wherein the miscellaneous pulse generator comprises: a second generating circuit that divides the internal reference voltage by a plurality of resistors, And generating a plurality of secondary reference voltages according to the voltage division; a first waveform generator connected between the second generation circuit and the sawtooth pulse output end, according to the second enable signal The majority of the times 49 201238231 41432pif selects the voltage 'and pulls the ground voltage to generate the first waveform by responding to the voltage selected from the plurality of minor: the towel; the tooth waveform, the shape generator Connected to the second generating circuit and between the station and the terminal, and pull down the voltage of the terminal by responding to the falling signal to generate a second waveform, the falling signal is a t-shaped thief Generating, the down signal is based on the sampling household, and the sampling voltage is according to the power supply device according to the internal power supply, and the power supply device described in item 6 of the patent application scope. The first waveform generator includes: a Π circuit that outputs a maximum bias signal as a soft signal, or a fr = a first enable signal, in response to the pulse width control signal a mineral tooth wave substantially sfl number; a pull-up circuit that pulls up the electrical output of the mineral tooth wave wave in response to the sawtooth pulse wave basic signal; and a memory 'connected to the weaving pulse wave (4) And storing the pull-up signal between the ground terminal and generating the first waveform. 8. The power supply device according to claim 6, wherein the first waveform generator comprises: ^ a first circuit that selects and outputs a number of responses in response to the pulse width modulation control signal. The secondary circuit (4) is the soft bias signal; 8 50 201238231 The second circuit selects and outputs one of the plurality of secondary reference voltages as the maximum bias in response to the level selection signal. a voltage signal; a bias circuit that outputs the soft bias signal* or the maximum bias signal as a sawtooth pulse basic signal in response to the second enable signal; and an it circuit that responds The sawtooth pulse wave fundamentally pulls up the ground voltage to generate the first waveform. [The power supply device of claim 6, wherein the second waveform generator comprises: a second sampling circuit that performs a reset operation according to the sawtooth pulse wave and the sawtooth pulse wave reset reference, and And outputting the falling signal; and a pull-down circuit that pulls down the voltage of the output end of the sawtooth pulse wheel in response to the pull-down signal. Ιυ. The power supply device of claim 5, wherein the mine 较 较 产生 产生 在 在 在 在 在 在 在 在 在 在 在 软 软 软 软 软 软 软 软 软 软 软 软 软 软 软The tooth pulse compares the signal, and outputs the feedback signal 'as the job pulse comparison signal when the maximum pulse wave responds to the second enable signal. 51
TW101104899A 2011-02-17 2012-02-15 Power supply apparatuses for preventing latch-up of charge pump and methods thereof TWI549416B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110014252 2011-02-17
KR1020110028253A KR101852065B1 (en) 2011-02-17 2011-03-29 Power supply apparatus for latch-up free charge pump and method there-of

Publications (2)

Publication Number Publication Date
TW201238231A true TW201238231A (en) 2012-09-16
TWI549416B TWI549416B (en) 2016-09-11

Family

ID=46885596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104899A TWI549416B (en) 2011-02-17 2012-02-15 Power supply apparatuses for preventing latch-up of charge pump and methods thereof

Country Status (2)

Country Link
KR (1) KR101852065B1 (en)
TW (1) TWI549416B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448582A (en) * 2016-08-16 2017-02-22 深圳天珑无线科技有限公司 Power supply circuit used for liquid crystal module and liquid crystal module
CN114613316A (en) * 2022-02-16 2022-06-10 重庆惠科金渝光电科技有限公司 Driving circuit of display panel and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100203136B1 (en) 1996-06-27 1999-06-15 김영환 Voltage generator preventing latch-up
JP4108254B2 (en) * 2000-07-11 2008-06-25 富士通株式会社 Optical transmitter and optical transmission system
JP4059285B2 (en) * 2000-09-13 2008-03-12 日本板硝子株式会社 Method for processing amorphous material
JP2004233684A (en) * 2003-01-30 2004-08-19 Mitsubishi Cable Ind Ltd Apparatus and method for manufacturing split optical fiber ribbon
ITRM20030512A1 (en) 2003-11-05 2005-05-06 St Microelectronics Srl LOADING PUMP CIRCUIT WITH LOW-WEAKING TIME
TWI328917B (en) * 2006-10-04 2010-08-11 Himax Display Inc Charge pump circuit and control circuit therof
US7688052B2 (en) * 2006-12-05 2010-03-30 Semiconductor Components Industries, Llc Charge pump circuit and method therefor
US7782027B2 (en) * 2006-12-30 2010-08-24 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including down inductive switching pre-regulator and capacitive switching post-converter
JP5154152B2 (en) 2007-07-04 2013-02-27 ルネサスエレクトロニクス株式会社 Boost power supply circuit
TWI377772B (en) * 2009-08-10 2012-11-21 Richtek Technology Corp Control circuit and method for a buck-boost power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448582A (en) * 2016-08-16 2017-02-22 深圳天珑无线科技有限公司 Power supply circuit used for liquid crystal module and liquid crystal module
CN114613316A (en) * 2022-02-16 2022-06-10 重庆惠科金渝光电科技有限公司 Driving circuit of display panel and display device

Also Published As

Publication number Publication date
KR101852065B1 (en) 2018-06-07
TWI549416B (en) 2016-09-11
KR20120094815A (en) 2012-08-27

Similar Documents

Publication Publication Date Title
US8817500B2 (en) Power supply apparatuses for preventing latch-up of charge pump and methods thereof
TWI308823B (en) High voltage switching circuit of a nand type flash memory device
JP5154152B2 (en) Boost power supply circuit
EP2415049B1 (en) Negative voltage generation
US7315478B2 (en) Internal voltage generator for a semiconductor memory device
TW201136118A (en) Techniques to reduce charge pump overshoot
JP2009044948A (en) Regulator and high-voltage generator
CN108124499A (en) Signal generating circuit, active pen and the code printing method of active pen
TW200939235A (en) Power supplies in flash memory devices and systems
JP2006141196A (en) Charge pump circuit and dc converter using the same
CN106787685A (en) Use the negative charge pump of soft start
WO2010061769A1 (en) Led drive device
TWI277295B (en) High voltage switch circuit of semiconductor device
TW201238231A (en) Power supply apparatuses for preventing latch-up of charge pump and methods thereof
US8085103B2 (en) Resonant oscillator circuit with reduced startup transients
JP5779680B2 (en) Start-up sequence control method and apparatus having low current power supply using the same
KR102502208B1 (en) Dc-dc converter and driving method thereof
TW200818673A (en) Charge pump circuit and control circuit therof
KR20130024275A (en) Phase change memory device, method of generating operation voltage of the same and memory system having the same
US9356515B2 (en) Power switching device, three phase bridge inverter, and method of operating a power switching device
US11581892B2 (en) Method of driving a capacitive load, corresponding circuit and device
US20020130708A1 (en) Arrangement for driving display units with an adaptive start sequence
JPWO2016157719A1 (en) Semiconductor memory device rewriting method and semiconductor memory device
KR100650805B1 (en) Pumping circuit and method of generating pumping voltage
TW200935560A (en) System and apparatus for generating ideal rise and fall time