TW201238150A - Asymmetric antenna and a MIMO antenna - Google Patents

Asymmetric antenna and a MIMO antenna Download PDF

Info

Publication number
TW201238150A
TW201238150A TW100135539A TW100135539A TW201238150A TW 201238150 A TW201238150 A TW 201238150A TW 100135539 A TW100135539 A TW 100135539A TW 100135539 A TW100135539 A TW 100135539A TW 201238150 A TW201238150 A TW 201238150A
Authority
TW
Taiwan
Prior art keywords
antenna
asymmetric
metal piece
dielectric substrate
metal
Prior art date
Application number
TW100135539A
Other languages
Chinese (zh)
Other versions
TWI501468B (en
Inventor
ruo-peng Liu
guan-xiong Xu
song-tao Yang
Neng-Hui Fang
yang-yang Zhang
Original Assignee
Kuang Chi Inst Advanced Tech
Kuang Chi Innovative Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110062178.5A external-priority patent/CN102683832B/en
Priority claimed from CN201110144948.0A external-priority patent/CN103036014B/en
Priority claimed from CN201110145029.5A external-priority patent/CN102800941B/en
Priority claimed from CN201110145196.XA external-priority patent/CN102800944B/en
Priority claimed from CN201110144971.XA external-priority patent/CN103187622B/en
Priority claimed from CN2011101449688A external-priority patent/CN103187621A/en
Application filed by Kuang Chi Inst Advanced Tech, Kuang Chi Innovative Tech Ltd filed Critical Kuang Chi Inst Advanced Tech
Publication of TW201238150A publication Critical patent/TW201238150A/en
Application granted granted Critical
Publication of TWI501468B publication Critical patent/TWI501468B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Disclosed are an asymmetric antenna and an MIMO antenna. The asymmetric antenna comprises a first feeder cable and a first metal sheet. The first feeder cable is fed into the first metal sheet by coupling. The first metal sheet has engraved asymmetrically thereon at least a first micro-groove structure and a second micro-groove structure, thus providing the asymmetric antenna with at least two different resonant bands. In the method, the asymmetric antenna and the MIMO antenna of the present invention have engraved asymmetrically on the metal sheet at least the first micro-groove structure and the second micro-groove structure; the generation of multiple resonance points is hence facilitated and the resonance points are difficult to offset, thus facilitating multimode resonance.

Description

201238150 六、發明說明: 【發明所屬之技術領域】 本發明涉及鱗驗躺’_是涉及—辦對稱天線及 ΜΙΜΟ天線。 【先前技術】 在傳統天線設計中當遇到天線使用空間小、工作頻率低、 工作在多模制題時’天線的性能將極大較制於天線體積大 小。天線體積的減小對應的天線的電長度也將受到影響,天線 輻射效率及工作頻率將改變。傳統的偶極子天線及PIFA天線 在面對習知通訊終端小體積、寬頻帶等問題時就顯得力不從 心,設計難度極大最終也不能滿足使用的要求。傳統的天線在 低頻设计中只用通過外部的匹配線路來實現多模的輻射要 求’在天饋系統中加入匹配網絡後功能上是可實現低頻、多模 的工作要求,但是其輻射效率將極大的降低因爲非常大的一部 分能量損失在匹配網絡上。 習知的超材料小天線,在設計中集成了新型人工電磁材 料’因此其輻射具有非常豐富的色散特性,可以形成多種輻射 模式,即可免去繁瑣的阻抗匹配網絡,這種豐富的色散特性爲 多頻點的阻抗匹配帶來了極大的便利。 儘管如此’習知的超材料小天線在面對習知終端設備小體 積、低工作頻率、寬帶多模等問題時,設計的過程中也受到了 極大的制約。 201238150 【發明内容】 本發明主要解決的技術問題是提供-種非對稱天線及 场,祕綠實❹且她功頻率仍然性能 艮好。 爲解決上述技術問題’本發明採用的一個技術方案是提 對稱天線’包括第—饋線與第—金則,該第一饋線201238150 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a squashing lie _ is a symmetrical antenna and a ΜΙΜΟ antenna. [Prior Art] In the conventional antenna design, when the antenna is used in a small space, the operating frequency is low, and the multi-mode problem is worked, the performance of the antenna will be much larger than that of the antenna. The reduction in antenna volume will also affect the electrical length of the antenna, and the antenna radiation efficiency and operating frequency will change. The traditional dipole antenna and PIFA antenna are incapable of facing the problems of small size and wide frequency band of the conventional communication terminal, and the design difficulty is extremely difficult to meet the requirements of use. In the low-frequency design, the traditional antenna only uses the external matching line to realize the multi-mode radiation requirement. 'After adding the matching network in the antenna feeder system, the function is low-frequency and multi-mode, but the radiation efficiency will be extremely great. The reduction is due to a very large portion of the energy loss on the matching network. The well-known super-material small antenna integrates a new type of artificial electromagnetic material in the design' so that its radiation has a very rich dispersion characteristic, and can form a variety of radiation modes, thereby eliminating the cumbersome impedance matching network, which is rich in dispersion characteristics. Great convenience for multi-frequency impedance matching. Despite this, the conventional ultra-material small antennas are subject to great constraints in the design process when faced with problems such as small volume, low operating frequency, and wide-band multimode. 201238150 SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide an asymmetric antenna and a field, and the performance of the power is still good. In order to solve the above technical problem, a technical solution adopted by the present invention is to provide a symmetrical antenna 'including a first feeder and a first gold, the first feeder

Hi方式饋域第-金,該第—金則上至少鏤刻有 ^的帛-微槪構和帛二微槪構,使雜稱天線具 有至少兩個不同的諧振頻段。 ί中’該第一微槽結構爲互補式開口譜振環結構、互補式 ϊίϊΐί中1口螺旋環結構、雙開口螺旋環結構以及互補式 或者是通過前面五種結構的其中一種結 其中,、=中—種結構組陣得到的結構。 5χ第一微槽、、口構爲互補式開口諧振環結構、互補式 螺域結構、開σ螺旋環結構、魏 :折f構中的-種或者是通過前面五種二其Tt 構,中其:多種結構複合或其中一種結構組陣‘ 稱天線還包括第一介質基板,該第一金屬片 饋線狄置於該第—介f基板的第—表面上。 料_氧材料^質基板由陶紐料、高分子材料、鐵電材 板覆ί:::=包括第二介質基板,該第二介質基 其中’該第二介質基板由陶紐料、高分子材料、鐵電材 201238150 料或鐵氧材料制成。 -今ί Γ該麵稱天線财括第二金則及第二饋線,該第 J金屬片設置於該第—介質基板的與該第—表面相對的第二 胜?士’該第二饋線通過耦合方式饋入該第二金屬片,該第-饋線與該第二饋線電連接。 四微ϋ構該第二金屬片上鏤财非對稱的第三微槽結構與第 其中,該非對稱天線還包括第三金屬片,該第二介 ,表面與該第—介質基板第二表面重合,相對的另一側^ 设置有第三金屬片’該第二饋線與該第三金屬片電連接。 其中’該第二饋線與該第三金屬片通過金屬化通孔或導線 電連接。 其中’該第一微槽結構、該第二微槽結構、該第三微槽姓 構與該第四職結構通雜刻、_、細、電子刻或離子^ 鏤空於所對應的該第一金屬片與該第二金屬片上。 / 、其中’該第-金屬片與第二金屬4通過金屬化通孔或導線 連接,該第一饋線與第二饋線通過金屬化通孔或導線連接。 其中,該第-麟_容_合方式贼_合方式饋入 該第一金屬片;該第二饋線通過容性耦合方式或感性耦合 饋入該第二金屬片。 σ ^ 爲解決上述技術問題’本發明採用的另一個技術方案是·· 提供一種ΜΙΜΟ天線,該ΜΙΜΟ天線包括多個非對稱天, 該非對稱天線包括第-饋線與第-金屬片,該第—饋線通過搞 合方式饋人該第-金屬片’該第-金屬片上至少鏤刻有非對稱 201238150 的第-微槪構和^二補結構,使得該諸稱天線具有至小 兩個不同的諧振頻段。 、 夕 其中,該非對稱天線還包括用於放置該第一饋線與該第一 金屬片的介質,該介質爲空氣、陶究、環氧樹脂基板或聚 乙稀基板。 其中,該非對稱天線還包括第一介質基板,該第一金屬片 與該第一饋線設置於該第一介質基板的第一表面上。 其中,該非對稱天線還包括第二介質基板,該第二介 板覆蓋於該第一介質基板上。 土 其中,該非對稱天線還包括第二金屬片及第二饋線,該第 二金屬片設置於該第一介質基板的與該第一表面相對的第二 表面上,該第二饋線通過耦合方式饋入該第二金屬片,該第一 饋線與該第二饋線電連接。 其中’該第二金屬片上鏤刻有非對稱的第三微槽結構與第 四微槽結構’該非對稱天線還包括第三金屬片,該第二介質基 板一侧表面與該第一介質基板第二表面重合,相對的另—側^ 面設置有第三金屬片,該第二饋線與該第三金屬片電連接。 本發明的有益效果是:區別於習知技術的情况,本發明的 非對稱天線及ΜΙΜΟ天線在金屬片上至少鏤刻有不對稱的第 一微槽結構及第二微槽結構’因此能够很容易地産生多個諧振 點,且諧振點不易抵消,很容易實現多模諧振。 、 【實施方式】 如圖1所示’圖1爲本發明第一較佳實施方式的非對稱天 201238150 線的結構示意圖。在太 饋線1與第-金屬片t 明的非對稱天線包括 饋線1圍繞第—金屬片2設置以對第— 耦1於電的方式可以爲感性輕合饋電方式也可以爲i性 輛1,電式。#採_级合饋電方辆,需在饋線?盘第 -金屬片2之間設置可短接節點,饋線! 4 == 形接觸,而是二者相對的部分構成輕合電容以 以及上至少鎮刻有非對稱的第一微槽結構觸 構=的r案=稱是指第一微槽結構100與第二微槽結 矜辨㈣in、寸和/或帥位置不同,該些不哪致第一 曰^ 〇與第二微槽結構2〇〇的譜振頻段不同。 2上形絲—微槽結構⑽和第二微槽結構 其中射,/祕^酬、鑽刻、光刻、電子刻、離子刻等制程, 設備,溶劑與金屬的化學=== ⑽A 部分即可得到形成有上述第—微槽結構 =微槽結構的第一金屬片2。上述金屬 頁可以疋鋼、銀等金屬。 μ本發明還包括用於放置饋線與金屬片的介f,介質可 工氣喊、魏樹絲板絲四氣〔縣板。 本發明採用至少非對稱的第—微槽結構和第二微槽結 201238150 二者響應電錢所產生的電容值和電感值會 抵、/,有二ϋ個*同的魏點,且該多個不同的譜振點不易 抵4有利於實現天線豐富的多模化。 易 微槽ΙΓ私論述缝本發明第—金屬片2上職的非對稱 =圖2所示’圖2爲本發明第二較佳實施方式的非對 邕t "^圖。圖2中’第一微槽結構100及第二微槽結構200 連冓由;ί:荦第一微槽結構㈣與第二微槽結構2〇〇 靜的獨導致錢翻稍稱,使得第-本ϋ方二與第二微槽結構各自區域的諧振頻率不同。 線=:;===補式螺旋 綠沾Ϊ圖3所不圖3爲本發明第三較佳實施方式的非對稱天 爲圖幸^ °圖3中’第一微槽結構100及第二微槽結構200 槽S 20= 結構’其中,第一微槽結構1〇0與第二微 稱m 獨立的,由於圖案的不同導致其結構的不對 與第二微槽結構各自區域_ 螺旌产^本實施方式中第一微槽結構議以圖8所示開口 _==明长娜義咖麻互補式螺 如圖4所不’圖4爲本發明第四較佳實施方式的非對稱天 爲非構圖Γ微槽結構100及第二微槽結構200 β 吳…構,其中,第一微槽結構100與第二微槽結構2的 疋獨立的’其圖案相同,但是其尺寸的不同導致其結構的 201238150 的諧振頻率不同H 與第二微槽結構200各自區域 &问。本實施方式中,第一微槽結構100與第二微 ^ 圖8所示的互補式螺旋線結構爲例說明。 線的正㈣所Γ ’圖5爲本發明第五較佳實施方式的非對稱天 爲非對稱二:微槽結構議及第二微槽結構200 是各自3® A ^中第一微槽結構100與第二微槽結構200 不對稱,使得第if案相同’但是其位置的不同導致其結構的 的諧振頻率不同 構100與第二微槽結構200各自區域 6所=^==^娜獅可以是圖 構、圖8所示:Γ圖7所示的互補式螺旋線結 構、圖10所示的互補式^折所示的雙開口螺旋環結 結構衍生、其中多種結構複合或其卜種 仿生分爲兩種,一種是幾 =處的幾何形狀衍生是指功能類:、形==二 匕^__轉。此處圖構= ^礎^開設新的槽以形成新的微槽結構圖= 開口譜振環結構爲例’圖„爲 所:的互補式The Hi-mode feeds the first-gold, and the first-gold is engraved with at least the 帛-micro-structure and the 帛2 micro-structure, so that the miscellaneous antenna has at least two different resonant frequency bands. ί中 'The first micro-slot structure is a complementary open-spectrum ring structure, a complementary spiral ring structure, a double-open spiral ring structure, and a complementary type or one of the first five structures, = structure of the medium-structure array. 5χ The first microgroove, the mouth is a complementary open resonant ring structure, the complementary spiral domain structure, the open sigma spiral ring structure, the Wei: the F species in the F structure or the T5 structure in the first five It is: a plurality of structural composites or one of the structural arrays, wherein the antenna further comprises a first dielectric substrate, the first metal sheet feed line being disposed on the first surface of the first-f-substrate. Material _ oxygen material ^ substrate is covered by ceramic material, polymer material, ferroelectric material sheet ί::: = including a second dielectric substrate, the second medium substrate, wherein the second dielectric substrate is made of ceramic material, polymer Material, ferroelectric material 201238150 material or ferrite material. - Today, the surface of the antenna is said to be the second gold and the second feed line. The J-th metal sheet is disposed on the first dielectric substrate opposite to the first surface. The second feed line is fed into the second metal piece by coupling, and the first feed line is electrically connected to the second feed line. Forming a fourth micro-groove structure on the second metal sheet and the third micro-groove structure, the asymmetric antenna further includes a third metal sheet, the second surface, the surface coincides with the second surface of the first dielectric substrate, The opposite side is provided with a third metal piece 'the second feeding line is electrically connected to the third metal piece. Wherein the second feed line is electrically connected to the third metal piece through a metallized via or wire. Wherein the first micro-slot structure, the second micro-slot structure, the third micro-slot structure and the fourth-level structure are scribed, _, fine, electronically engraved or ionized ^ corresponding to the first a metal piece and the second metal piece. / wherein, the first metal piece and the second metal 4 are connected by metallized vias or wires, and the first feed line and the second feed line are connected by metalized via holes or wires. The first susceptor is fed into the first metal piece; the second feed line is fed into the second metal piece by capacitive coupling or inductive coupling. σ ^ In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a ΜΙΜΟ antenna including a plurality of asymmetric days, the asymmetric antenna including a first-feeder and a first-metal, the first- The feed line feeds the first metal piece by engaging the metal piece. The first metal piece is engraved with at least the first and second complementary structures of the asymmetric 201238150, so that the antennas have two different resonant frequency bands. . In addition, the asymmetric antenna further includes a medium for placing the first feed line and the first metal piece, and the medium is an air, a ceramic, an epoxy substrate or a polyethylene substrate. The asymmetric antenna further includes a first dielectric substrate, and the first metal strip and the first feed line are disposed on the first surface of the first dielectric substrate. The asymmetric antenna further includes a second dielectric substrate, and the second dielectric layer covers the first dielectric substrate. The second antenna is disposed on a second surface of the first dielectric substrate opposite to the first surface, and the second metal wire is fed by a coupling method. The second metal piece is electrically connected to the second feed line. Wherein the second metal piece is engraved with an asymmetric third micro-groove structure and a fourth micro-slot structure. The asymmetric antenna further includes a third metal piece, and the second dielectric substrate side surface and the first dielectric substrate are second. The surface is coincident, and the opposite other side surface is provided with a third metal piece, and the second feeding line is electrically connected to the third metal piece. The invention has the beneficial effects that the asymmetric antenna and the sputum antenna of the present invention are at least engraved with an asymmetric first micro-groove structure and a second micro-groove structure on the metal sheet, which is different from the prior art. Multiple resonance points are generated, and the resonance point is not easily canceled, and multimode resonance is easily realized. [Embodiment] FIG. 1 is a schematic structural view of an asymmetric day 201238150 line according to a first preferred embodiment of the present invention. The asymmetric antenna of the feeder line 1 and the first metal piece t includes the feeding line 1 disposed around the first metal piece 2 to be electrically coupled to the first coupling type, and may be an inductive light-weight feeding mode or an i-type vehicle 1 , electric. #采_级合供电车, you need to set the short-circuit node between the feeder-plate-metal piece 2, the feeder! 4 == shape contact, but the opposite part of the two constitute the light-combining capacitor and At least the symmetry of the first micro-groove structure touch structure = r case = the first micro-slot structure 100 and the second micro-slot structure is different (four) in, inch and / or handsome position, which is not The first 曰^ 〇 is different from the spectral frequency band of the second microgroove structure 2〇〇. 2 upper wire-micro-groove structure (10) and second micro-groove structure, which are shot, / secret, drilling, lithography, electron engraving, ion engraving, etc., equipment, solvent and metal chemistry === (10) Part A The first metal piece 2 in which the above-described first microgroove structure = microgroove structure is formed can be obtained. The above metal sheets can be made of steel such as steel or silver. μ The present invention also includes a medium for placing the feeder and the metal sheet, the medium can be screamed, and the Weishu silk plate is four gas [County board. The invention adopts at least an asymmetric first-micro-slot structure and a second micro-slot junction 201238150. Both the capacitance value and the inductance value generated by the response to the electric money will be offset, and there are two ** identical Wei points, and the A different spectral point is not easy to reach 4, which is conducive to the antenna multi-mode. The second embodiment of the present invention is a non-symmetric 第二t " Figure 2 of the second preferred embodiment of the present invention. In FIG. 2, 'the first micro-slot structure 100 and the second micro-slot structure 200 are connected together; ί: 荦 the first micro-slot structure (four) and the second micro-slot structure 2 are quietly caused by the money, so that the first - The resonant frequencies of the respective regions of the second and second microchannel structures are different. Line =:; === Complementary spiral green staining Figure 3 is not shown in Fig. 3 is an asymmetric sky diagram of the third preferred embodiment of the present invention. FIG. 3 is a first microgroove structure 100 and a second Micro-groove structure 200 S20 = structure 'where the first micro-slot structure 1 〇 0 and the second micro-m are independent, due to the difference in pattern, the structure is not the same as the second micro-groove structure _ 旌 旌In the first embodiment of the present invention, the first micro-slot structure is represented by the opening shown in FIG. 8 _== Ming Chang Na-Yi-Jia complementary snail is as shown in FIG. 4 . FIG. 4 is an asymmetric day according to a fourth preferred embodiment of the present invention. The non-patterned Γ microgroove structure 100 and the second microgroove structure 200 β ..., wherein the first microgroove structure 100 and the second microgroove structure 2 are independent of the same pattern, but the difference in size results in The structure of the 201238150 has a different resonant frequency than the second microgroove structure 200 and the respective region & In the present embodiment, the first microgroove structure 100 and the complementary spiral structure shown in the second micrograph 8 are taken as an example. Figure 5 is an asymmetric asymmetry of the fifth preferred embodiment of the present invention: the microgroove structure and the second microgroove structure 200 are the first microgroove structures in the respective 3® A ^ 100 is asymmetrical with the second microgroove structure 200, so that the first if case is the same 'but the difference in its position results in a different resonant frequency of its structure 100 and the second microgroove structure 200 respective regions 6 =^==^Na Lion It can be a schematic structure, as shown in FIG. 8 : a complementary spiral structure shown in FIG. 7 , a double-opening spiral ring structure shown in the complementary form shown in FIG. 10 , and a plurality of structures or composites thereof. There are two kinds of bionics, one is that the geometric shape derived from a few = refers to the functional class: shape == two 匕 ^ _ _ turn. Here, the structure = ^^^ opens a new groove to form a new microgroove structure diagram = the open spectrum ring structure is taken as an example.

爲其幾何形狀触示意圖。肋錄何生不意圖’圖U 此處的複合是指,圖6至圖1G的微辦 -個新的微槽結構’如圖13所示,爲三二所 201238150 開口諧振環結構複合後的結構示意圖。 ==式開口譜振環結構與圖7所示爲以 ^===^賴。丨_轉個圖6 至圖10所不的微槽結構在同—金屬片上 微槽結構’如圖15所示,爲多個如圖6 J = 振環結構組陣後的結構示意圖。但是本發明 =:。。是非對稱的.對稱方式在槽;面構: 竹t發—微槽結構励與第二微槽結構綱的結構形 =可以-樣’也可以不-樣。並且第一微槽結構觸盘第 槽結,200的不對稱程度可以根據需要調節。從而實現豐富的 可調節的多模譜振。並且根據需要,本發明亦可在同一金屬片 聽賴槪触錄天料有三個以上的 如圖16所不’圖16爲本發明第讀佳實施方式的非對稱 天線的結構不意圖。在本實施方式中,非對稱天線除上述饋線 及第-金屬片2之外’還包括第—介質基板1()。第—介質基 板10的第-表面上設置有第—金屬片2以及圍繞第一金屬片 2设置的饋線1,第一金屬片2上還鏤空有非對稱的第一微槽 結構100以及第二微槽結構·。第一微槽結構励以及第二 微槽結構200可爲上述任意結構的組合。 如,17 ’圖17爲本發明第七較佳實施方式的非對稱天線 的結構示意圖。在本實施方式中,與上—較佳實施方式相比, 非對稱天祕包括覆蓋於第-介質基板1G上的第二介質基板 201238150 20。 r产祕理I原理可知’電長度是描述電獻皮波形變化頻繁 ,電長度=物理長度/波長。當天線工作於低頻 描下的電磁波波長較長,在需要储電長度不變的前 長物理長度就是必要的選擇。然而增大物理長度必然 塞:署^小型化的要求。本發明在第―介質基板10上覆 ί f基板2G,當场她线树射電磁波 收從而使。過第二介質基板2g才能被發射或者被接 f、,整體的分布電容增大。根據公式MAWZB可 長^有贿低天線卫作鮮使得在不增加物理 長度的_下柄騎電長度不變。並且通過改變第二 的材fe卩可㈣天雜體的分布電容 ===在不改變物理長度的前提下改 ===以在極小的空間内設計出工作在極 本發明的第一介質基板的材質可撰古 料’其中高分子材二選::氣 =分子材料、鐵電材陶 子材料優選聚四氟乙烯、F4B或FR-4。 、问刀 如圖18,圖18爲本發明第八較佳眘 的結構示意圖。與本發明第六較佳實 *'卩對稱天線 中的非觸讀奴減帛_麵 片3。第-金屬片2與第二金屬片3之間存=置質的= 201238150 尚分子聚合物、陶兗材料等’在其他實施方式中,也可爲空氣。 當介質爲空氣時,饋線1與第二金屬片3通過導線電連當 介質爲高分子聚合物或陶瓷材料時,饋線1與第二金屬片3 通過在介質上形成金屬化通孔而相互電連接。金屬化通孔可形 成於介質任意位置,只要能達到電連接饋線與第二金屬片的效 ,即可。本實施方式中,介質爲上述介質基板1〇,採用聚四 氟乙稀(FR-4)’第二金屬片3設置於介質基板1〇上與第一表 面相對的第一表面上。第一金屬片3和饋線j通過金屬化通孔 4電連接。或者’在其他實施方式中,第二金屬片3可通過金 屬化通孔或導線連接與第一金屬片2,而非連接饋線卜 第二金屬片3的設置可有效解決f知專利天線在工作在 =頻時’ _段的電魏對應的波長較長,根據天線設計原 魏射細觸域·«長,不利 使r夭綠,小型化並且較長的舰使得舰損耗增大從而 的問題。其問題解決的原理是··第二金屬片 他2地的第一微 -金^ 輕合饋電。第二金屬片3對第 ,屬片2上形成的第一微槽結構1〇 少⑽線1對第,二= 槽結構200輕合饋電的需求。因此當天線 在低頻&時無茜增加饋線i的 人 二金屬片3輕合饋電面積t可頻段只需簡單的調整第 圖19爲本翻第九較佳魏方式的非對稱天線 12 201238150 不思圖。與上一實施方式相tb,本實施方式除第一饋線 -么鹿’觀括第二饋線5。第二觀5通翻合方式饋入第 姑φ *片3 ’第—饋線1與第二饋線5通過金屬化通孔或者導 银電連接。 如圖2G與圖21 ’爲本發明第十較佳實施方式的正面立體 =與背面立體I與上—實施方式相比,第二金屬片3上鐘空 ^非對稱的第三微槽結構及第三微槽結構働。其中,第 金屬片2附著在第—表面3上,第二金屬片3附著在與第— 表面扛相對的第二表面。圍繞第—金屬片2設置有第一饋 線卜圍繞第二金屬# 3設置有第二饋線5。帛一饋線i與第 二饋線5通過金屬化通孔6電連接。 圖20中,第一金屬片2畫剖面線的部分爲第一金屬片2 的金屬部分’第一金屬片2上的空白部分(鏤空的部分)表示 第一微槽結構1〇〇及第二微槽結構2〇〇。另外,第一饋線i也 ,剖面線表示。同樣的,圖21中,第二金屬片3晝剖面線的 邛刀爲第二金屬片3的金屬部分’第二金屬片上3的空白部分 (鐘空的部分)表示第三微槽結構300及第四微槽結構400。 另外’第一饋線5也用剖面線表示。 同樣的,在第二金屬片3上鏤空第三微槽結構3〇〇和第四 微槽結構400的方式可爲蝕刻、鑽刻、光刻、電子刻、離子刻 等制程。 在本實施方式中,處於介質基板10第一表面a的第一微 槽結構100及第二微槽結構200其均爲開口螺旋環結構,第— 微槽結構100及第二微槽結構2〇〇不相通,但是其尺寸的不同 13 201238150 3一者結構的非對稱。同樣,處於介質基板U)第二表面b ^ f細及第四微槽結構働其均爲開口螺旋環結 料致二者結構__,使得天線具有 二似上的諧振頻率。另外,本實施例中,介質基板ι〇 ^面a上的第一金屬片2、第一饋線卜第一微槽結構卿 第-微槽結構200在第二表面b的投影分別與第二金屬片 3、第二饋線5、第三微槽結構3〇〇及第四微槽結構400重合, 這樣做的好處是簡化制程。 如圖22 ’圖22爲本發明第十一較佳實施方式的非對稱天 線的第二介·板騎構示_。本實财式與上—實施方式 相比,非對稱天線還包括第二介質基板2〇與第三金屬片7。 第二介質基板20 —側表面與第一介質基板1〇第二表面b重 合,相對的另一側表面設置有第三金屬片7,第二饋線5與第 二金屬片7通過金屬化通孔8電連接。在其他實施方式中,第 二饋線5與第三金屬片7也可通過導線電連接。 並且,本發明根據需要,在同一片金屬片上還可以設置更 夕的微槽結構,以使得的天線具有3個以上的不同的譜振頻 本發明還提供一種包括多個上述非對稱天線的多輸入多 輸出(ΜΙΜΟ)天線。該ΜΙΜΟ天線中每一非對稱天線的每 一饋線均各自接入一發射/接收機,所有的發射/接收機接入基 帶信號處理器。 本發明的有益效果是:區別於習知技術的情况,本發明的 非對稱天線及ΜΙΜΟ天線在金屬片上至少鏤刻有不對稱的第 201238150 -微槽結構及第二微構,因此能雜料地産生多個 點且,振點不易板消,很容易實現多模諧振。 x 儘管上文藉由較佳實施例揭示了本發明,但並不意 本發本領域熟知此項技藝者可林麟本發明的精神及範 圍的月况下進行—些潤飾及變化。因而,本發明 入所附的申請專利範圍内。 靶固洛 【圖式簡單說明】 立圖1爲本發明第—較佳實施方式的非對稱天線的結構示 思圖, 圖2爲本發明第二較佳實施方式的非對稱天線的正視圖; ,,本發明第二較佳實施方式的非對稱天線的正視圖; f 4 f本發料四較佳實施方式的非_天_正視圖; m : 第五較佳實施方式的非對稱天線的正視圖; 圖爲互補式開口譜振環結構的示意圖; 圖7所示爲互補式螺旋線結翻示意圖; 圖8所示爲開口螺旋環結構的示意圖; 圖9所不一爲雙開口螺旋環結構的示意圖; 圖1〇所示爲互補式彎折線結構的示意圖; 生示^細6所㈣互補式㈣雜雜構錢何形狀衍 意圖圖12細6所示的互補式開口雜環結構其擴展衍生示 "爲個圖6所示的互補式開口諸振環結構的複合後 15 201238150 的結構示意圖; 結構^5圖細_ 6所示的互補賴口嫌環結構組陣後的 意圖圖16爲本發明第六較佳實施方式的非對稱天線的結構示 圖17爲本發明第七較佳實施方式的請稱轉的結構示 圖18 意圖; 圖19 意圖; 爲本發明第八較佳實施方式的非對稱天線的結構示 爲本發明第九較佳實施方式的非對稱天線的結構示 圖20爲本發明第十較佳實施方式的正面立體圖; 圖21爲本發明第十較佳實施方式的背面立體圖; 圖22爲本發明第十一較佳實施方式的非對稱天線的第二 介質基板的結構示意圖。 【主要元件符號說明】 1 :饋線 2:第一金屬片 3:第二金屬片 4:金屬化通孔 5:第二饋線 201238150 6:金屬化通孔 7:第三金屬片 8:金屬化通孔 10 :介質基板 20 :第二介質基板 100 :第一微槽結構 200 :第二微槽結構 300 :第三微槽結構 400 :第三微槽結構 a :第一表面 b:第二表面A schematic diagram of its geometry. The ribs are not intended to be 'Fig. U. The composite here means that the micro-running-new micro-groove structure of Figure 6 to Figure 1G' is shown in Figure 13, which is the composite of the 3238 open-resonant ring structure of the 32-32. Schematic. The structure of the == type open spectrum ring is shown in Fig. 7 as ^===^.丨_ 转 转 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图But the invention =:. . It is asymmetrical. The symmetry is in the groove; the surface structure: the bamboo t-figure-micro-groove structure and the structure of the second micro-groove structure can be -like - or not. And the first microgroove structure touches the groove, and the degree of asymmetry of 200 can be adjusted as needed. This results in a rich, adjustable multimode spectrum. Further, if necessary, the present invention can also be used in the same metal sheet to have more than three types of tactile materials as shown in Fig. 16. Fig. 16 is a schematic view showing the structure of the asymmetric antenna of the first preferred embodiment of the present invention. In the present embodiment, the asymmetric antenna includes the first dielectric substrate 1 () in addition to the above-described feed line and the first metal piece 2. The first surface of the first dielectric substrate 10 is provided with a first metal piece 2 and a feed line 1 disposed around the first metal piece 2, and the first metal piece 2 is also hollowed out with an asymmetric first micro groove structure 100 and a second Microgroove structure·. The first microgroove structure and the second microgroove structure 200 can be a combination of any of the above structures. For example, 17' is a schematic structural view of an asymmetric antenna according to a seventh preferred embodiment of the present invention. In the present embodiment, the asymmetric mystery includes the second dielectric substrate 201238150 20 overlying the first dielectric substrate 1G as compared with the above-described preferred embodiment. r principle of production I know that 'electric length is to describe the frequency of electric skin changes frequently, electrical length = physical length / wavelength. When the antenna operates at a low frequency, the wavelength of the electromagnetic wave is long, and the physical length before the length of the storage is constant is a necessary choice. However, increasing the physical length is bound to be: the miniaturization requirements. According to the present invention, the substrate 2G is covered on the first dielectric substrate 10, and the electromagnetic wave is emitted from the line on the field. After the second dielectric substrate 2g can be emitted or connected, the overall distributed capacitance increases. According to the formula MAWZB can be long ^ there is a bribe low antenna guardian fresh so that the length of the rider does not change without increasing the physical length. And by changing the second material, the distribution capacitance of the (four) days of the hybrid body === without changing the physical length, the === is designed to work on the first dielectric substrate of the present invention in a very small space. The material can be used to make ancient materials. Among them, the second choice of polymer materials: gas = molecular materials, ferroelectric materials, ceramic materials are preferably Teflon, F4B or FR-4. Fig. 18 is a schematic view showing the eighth preferred structure of the present invention. And the non-touching slave subtraction _ patch 3 in the sixth preferred real antenna of the present invention. Between the first metal piece 2 and the second metal piece 3 = = 201238150 Molecular polymer, ceramic material, etc. In other embodiments, air may also be used. When the medium is air, the feed line 1 and the second metal piece 3 are electrically connected through the wires. When the medium is a high molecular polymer or a ceramic material, the feed line 1 and the second metal piece 3 are electrically connected to each other by forming metalized through holes on the medium. connection. The metallized via hole can be formed at any position of the medium as long as the effect of electrically connecting the feed line and the second metal piece can be achieved. In the present embodiment, the medium is the dielectric substrate 1A, and the second metal piece 3 is made of a polytetrafluoroethylene (FR-4)'. The second metal piece 3 is provided on the first surface of the dielectric substrate 1 which faces the first surface. The first metal piece 3 and the feed line j are electrically connected through the metallized through hole 4. Or 'in other embodiments, the second metal piece 3 can be connected to the first metal piece 2 through a metallized through hole or a wire, instead of the connection of the second metal piece 3, which can effectively solve the problem that the patented antenna is working. In the = frequency, the wavelength of the ' _ segment corresponds to a longer wavelength. According to the antenna design, the original Wei shot is a small contact area. «Long, unfavorable to make r夭 green, miniaturized and longer ship makes the ship loss increase. . The principle of solving the problem is: · The second metal piece The first micro-gold ^ lightly feeding the two places. The second metal piece 3 is required for the first micro-groove structure 1 formed on the first and second sub-pieces 2 to have a (10) line 1 pair and a second = slot structure 200. Therefore, when the antenna is in the low frequency &, the feeder 2 is not added to the light-feeding area t of the feeder. The frequency band can be simply adjusted. Figure 19 is the ninth preferred Wei mode asymmetric antenna 12 201238150 Do not think about it. In contrast to the previous embodiment, the second feed line 5 is included in the present embodiment except for the first feeder line. The second view 5-way flip mode feeds the first φ * slice 3 '-the feed line 1 and the second feed line 5 are electrically connected through the metallized via or the silver guide. 2G and FIG. 21' are a front three-dimensional structure of the tenth preferred embodiment of the present invention, and a third micro-groove structure on the second metal piece 3 asymmetrically on the second metal piece 3 and The third microgroove structure is defective. Among them, the first metal piece 2 is attached to the first surface 3, and the second metal piece 3 is attached to the second surface opposite to the first surface. A first feed line is disposed around the first metal piece 2, and a second feed line 5 is disposed around the second metal #3. The first feeder line i and the second feeder line 5 are electrically connected through the metallized via 6. In Fig. 20, the portion of the first metal piece 2 where the hatching is drawn is the metal portion of the first metal piece 2. The blank portion (the hollow portion) on the first metal piece 2 indicates the first micro groove structure 1 and the second. The microgroove structure is 2〇〇. In addition, the first feed line i is also indicated by a hatching. Similarly, in FIG. 21, the trowel of the second metal piece 3昼 is the metal portion of the second metal piece 3, and the blank portion (the portion of the clock space) of the second metal piece 3 indicates the third micro groove structure 300 and The fourth microgroove structure 400. Further, the first feed line 5 is also indicated by a hatching. Similarly, the third micro-groove structure 3 and the fourth micro-slot structure 400 may be hollowed out on the second metal piece 3 by etching, drilling, photolithography, electron engraving, ion etching, and the like. In the present embodiment, the first microgroove structure 100 and the second microgroove structure 200 on the first surface a of the dielectric substrate 10 are both open spiral ring structures, and the first microgroove structure 100 and the second microgroove structure 2〇 〇 does not communicate, but its size is different 13 201238150 3 asymmetrical structure. Similarly, the second surface b ^ f of the dielectric substrate U) and the fourth micro-slot structure are both open spiral loops resulting in a structure __ such that the antenna has a resonant frequency of two. In addition, in this embodiment, the first metal piece 2 on the surface of the dielectric substrate ι〇2, the first feed line, the first micro-slot structure, the first-micro-slot structure 200 are projected on the second surface b and the second metal respectively. The sheet 3, the second feed line 5, the third microgroove structure 3〇〇 and the fourth microgroove structure 400 are coincident, which has the advantage of simplifying the process. Figure 22 is a second embodiment of the asymmetric antenna of the eleventh preferred embodiment of the present invention. The asymmetric antenna further includes a second dielectric substrate 2A and a third metal sheet 7 as compared with the above-described embodiment. The second dielectric substrate 20 has a side surface that coincides with the first dielectric substrate 1 〇 the second surface b, and the opposite other surface is provided with a third metal sheet 7 through which the second feed line 5 and the second metal sheet 7 pass through the metallized through hole 8 electrical connections. In other embodiments, the second feed line 5 and the third metal piece 7 may also be electrically connected by wires. Moreover, the present invention can also provide a further micro-slot structure on the same piece of metal sheet as needed, so that the antenna has more than three different spectral frequencies. The invention also provides a plurality of asymmetric antennas including the above-mentioned asymmetric antennas. Input multiple output (ΜΙΜΟ) antenna. Each of the feeders of each of the asymmetric antennas is connected to a transmitter/receiver, and all of the transmitters/receivers are connected to the baseband signal processor. The invention has the beneficial effects that the asymmetric antenna and the sputum antenna of the present invention are at least engraved with the asymmetric 201238150-microgroove structure and the second micro-structure on the metal sheet, so that the material can be miscellaneously Multiple points are generated and the vibration point is not easily removed, making it easy to achieve multimode resonance. Although the present invention has been disclosed above by way of a preferred embodiment, it is not intended that the skilled person in the art can make some modifications and changes in the spirit and scope of the invention. Thus, the present invention is within the scope of the appended claims. FIG. 1 is a front view of an asymmetric antenna according to a second preferred embodiment of the present invention; FIG. 2 is a front view of an asymmetric antenna according to a second preferred embodiment of the present invention; , a front view of an asymmetric antenna according to a second preferred embodiment of the present invention; f 4 f a non-day-front view of the preferred embodiment of the present invention; m: an asymmetric antenna of the fifth preferred embodiment Front view; The figure is a schematic diagram of the structure of the complementary open spectrum ring; Figure 7 is a schematic diagram of the complementary spiral knot; Figure 8 is a schematic view of the open spiral ring structure; Figure 9 is a double-open spiral ring Schematic diagram of the structure; Figure 1A is a schematic diagram of the structure of the complementary bending line; the production of the fine 6 (4) complementary (4) heterogeneous structure, the shape of the structure of the complementary open heterocyclic ring structure shown in Figure 12 The extended derivative " is a structural schematic diagram of the composite opening 15 201238150 of the complementary opening vibration ring structure shown in Fig. 6; the structure of the complementary sinusoidal ring structure array shown in the structure ^5 diagram _ 6 16 is an asymmetric of the sixth preferred embodiment of the present invention BRIEF DESCRIPTION OF THE DRAWINGS FIG. 17 is a structural view of a seventh preferred embodiment of the present invention. FIG. 19 is intended; FIG. 19 is a view showing the structure of an asymmetric antenna according to an eighth preferred embodiment of the present invention. 20 is a front perspective view of a tenth preferred embodiment of the present invention; FIG. 21 is a rear perspective view of the tenth preferred embodiment of the present invention; A schematic structural view of a second dielectric substrate of an asymmetric antenna of a preferred embodiment. [Main component symbol description] 1 : Feeder 2: First metal piece 3: Second metal piece 4: Metallized through hole 5: Second feed line 201238150 6: Metallized through hole 7: Third metal piece 8: Metallization Hole 10: dielectric substrate 20: second dielectric substrate 100: first microgroove structure 200: second microgroove structure 300: third microgroove structure 400: third microgroove structure a: first surface b: second surface

Claims (1)

201238150 七、申請專利範圍: 卜-種非對稱天線’包括第—饋 f-饋線通過偷式饋入所述第-金屬片其Ϊ屬戶 =述 =屬片上至少鏤财賴_第—和== 2、根據申請專利範圍第丨項所述之非 開㈣振環結構、式螺旋線結 =種過前面五種結構的其卜種結構衍生、其 _多種、,Ό構複合或其中—種結構組陣得到的。 所这3第^申請專利範圍第1項所述之非對稱天線,其中, 構開口譜振環結構、互補式螺旋線結 :開Π螺她結構、雙開σ螺旋環結構以及互補 中多前面五種結構的其中一種結構衍生、其: 、、。冓複σ或其中一種結構組陣得到的結構。 所、if針請專利範圍第1項所述之非對稱天線,其中, 天線還包括第-介質基板,所述第-金則與二 饋線设置於所述第—介質基板的第-表面上。 所述專利範圍第4項所述之非對稱天線,其中, 材料制成7 陶究材料、高分子材料、鐵電材料或鐵氧 所、十、非」罐申凊專利範圍第4項所述之非對稱天線,其中, 於所述第稱第二介質基板,所述第二纖板覆蓋 201238150 所據申請專利範圍第6項所述之非對稱天線,其中, 材料制i讀基板_紐料、高分子材料、鐵電材料或鐵氧 所艮據申請專利範圍第4項所述之非對稱天線,其中’ 片ί置=天線還包括第二金則及第二饋線,所述第二金屬 :置於所述第—介質基板的與所述第—表面相對的第二表 第-餹 第二饋線通過搞合方式饋人所述第二金屬片,所述 第饋線與所述第二饋線電連接。 射I、根據申請專利範圍第8項所述之非對稱天線,其中, 結二—金屬片上鏤刻有非對稱的第三微槽結構與第四微槽 10、根據申請專利範圍第9項所述之非對稱天線,1中, 面===還包括第三金屬片,所述第二介質基板一側表 a介板第二表面重合相制另—侧表面設置 有第二金屬片,所述第二饋線與所述第三金屬片電連接。 Ij、根據申請專利範圍第10項所述之非對稱天線,其中, ^第二饋線與所述第三金屬片通過金屬化通孔或導線電連 接0 、12、根據申請專利範圍第9項所述之非對稱天線,其中, 微槽結構、所述第二微槽結構、所述第三微槽結構與 f第四微槽結構通過侧、鑽刻、、電子刻或離子刻鏤 卫於所對應的所述第—金屬片與所述第二金屬片上。 13、根據巾請專利範圍第8項所述之非對稱天線,其中, 所这第金屬片與第一金屬片通過金屬化通孔或導線連接;戶斤 201238150 述第-饋線與第二饋線通過金屬化通孔或導線連接。 ‘Λ4、t據申請專利範圍第8項所述之非對稱天線,其中, 一 ϋ 一饋線通過容_合方式或祕輕合方式饋入所述第 入所过齡通财_合方式域絲合方式饋 入所第金屬片。 ㈣ 天線,其中,所述祕10天線包括多個 ’所述非對稱天線包括第—饋線與第—金屬片,所 ΐ第一饋線通蝴合方式饋人所述第-金屬片,所述第-金屬 片上至少翻有非對稱的第_微槽結構和第二微槽結構,使 所述非對稱天線具有至少同的魏頻段。 16、 根據申請專利範圍第項所述之μμ〇天線其中, :述非對稱天_包括用於放置所述第—饋線與所述第、一金 7 質’所述介質爲空氣、陶竞、環氧樹脂基板或聚四氟 乙缚基板。 17、 根據申請專利範圍第15項所述之μμ〇天線其中, =述非對稱天線還包括第—介f基板,所述第—金屬片與所述 第饋線设置於所述第一介質基板的第一表面上。 /8、根據申請專利範圍第17項所述之mjM〇天線其中, 所述非對稱天職包括第二介f基板,所述第二介質基板覆蓋 於所述第一介質基板上。 19、根據申請專利範圍第18項所述之驗]^[〇天線,其中, 所述非對稱天線還包括第二金屬片及第二饋線所述第二金屬 片設置於所述第—介質基板的與所述第-表面相對的第二表 面上’所述第二饋線通過柄合方式饋入所述第二金屬片,所述 20 201238150 第一饋線與所述第二饋線電連接。 20、根據申請專利範圍第19項所述之ΜΙΜΟ天線,其中, 所述第二金屬片上鏤刻有非對稱的第三微槽結構與第四微槽 結構,所述非對稱天線還包括第三金屬片,所述第二介質基板 一侧表面與所述第一介質基板第二表面重合,相對的另一側表 面設置有第三金屬片,所述第二饋線與所述第三金屬片電連 接。 21201238150 VII. Patent application scope: 卜-type asymmetric antenna 'includes the first-fed-feeder by stealing the first-metal piece and its dependents=represented on the film at least 镂财赖_第- and = = 2, according to the scope of the patent application scope of the non-open (four) ring structure, the type of spiral knot = species of the previous five structures derived from its structure, its _ variety, Ό composite or one of them The structure array is obtained. The asymmetric antenna according to the first aspect of the present invention, wherein the open-spectrum ring structure and the complementary spiral knot are: the structure of the open snail, the structure of the double-open sigma loop, and the complement of the middle five One of the structures of the structure is derived from: , , , . The structure obtained by 冓 σ or one of the structural arrays. The asymmetric antenna according to claim 1, wherein the antenna further includes a first dielectric substrate, and the first-gold and two-feed wires are disposed on a first surface of the first dielectric substrate. The asymmetric antenna according to Item 4 of the patent scope, wherein the material is made of 7 ceramic materials, polymer materials, ferroelectric materials or ferrite materials, and the tenth and the non-cans are claimed in the fourth paragraph of the patent scope. The asymmetric antenna, wherein the second fiber substrate covers the asymmetric antenna according to claim 6 of 201238150, wherein the material is i-reading substrate_new material An asymmetrical antenna according to claim 4, wherein the antenna further includes a second gold and a second feeder, the second metal Disposing a second surface of the first dielectric substrate opposite to the first surface to feed the second metal piece, the first feeding line and the second feeding line Electrical connection. The asymmetric antenna according to claim 8, wherein the second metal sheet is engraved with an asymmetric third microgroove structure and a fourth microgroove 10, according to claim 9 The asymmetric antenna, wherein, the surface === further includes a third metal piece, the second dielectric substrate side of the second surface of the second substrate is coincident with the other side surface is provided with a second metal piece, The second feed line is electrically connected to the third metal piece. The asymmetric antenna according to claim 10, wherein the second feed line and the third metal piece are electrically connected by metallized through holes or wires, 0, 12, according to claim 9 The asymmetric antenna, wherein the microgroove structure, the second microgroove structure, the third microgroove structure and the fth microgroove structure are defended by side, drill, electronic or ion engraving Corresponding to the first metal sheet and the second metal sheet. 13. The asymmetric antenna according to claim 8, wherein the first metal piece and the first metal piece are connected by a metallized through hole or a wire; and the first feeder and the second feeding line are passed through Metallized through holes or wire connections. 'Λ4, t according to the patent application scope of the eighth embodiment of the asymmetric antenna, wherein the one-to-one feeder is fed into the first-in-coming-in-the-way _ _ _ _ _ _ _ _ The way to feed the metal piece. (4) an antenna, wherein the secret 10 antenna includes a plurality of the asymmetrical antennas including a first feed line and a first metal piece, and the first feed line feeds the first metal piece by a snap-fit manner, the first - at least the asymmetric first-micro-groove structure and the second micro-groove structure are turned on the metal sheet such that the asymmetric antenna has at least the same Wei frequency band. 16. The μμ〇 antenna according to the scope of the patent application scope, wherein: the asymmetric day includes: for placing the first feeder and the first and the first gold, the medium is air, Tao Jing, Epoxy substrate or polytetrafluoroethylene substrate. 17. The μμ〇 antenna according to claim 15, wherein the asymmetrical antenna further includes a first f-substrate, and the first metal piece and the first feed line are disposed on the first dielectric substrate. On the first surface. The mjM〇 antenna according to claim 17, wherein the asymmetric vocation includes a second f substrate, and the second dielectric substrate covers the first dielectric substrate. 19. The antenna according to claim 18, wherein the asymmetric antenna further includes a second metal piece and a second metal line, wherein the second metal piece is disposed on the first dielectric substrate The second feed line on the second surface opposite the first surface is fed into the second metal piece by a shank, and the 20 201238150 first feed line is electrically connected to the second feed line. The ΜΙΜΟ antenna according to claim 19, wherein the second metal piece is engraved with an asymmetric third microgroove structure and a fourth microgroove structure, and the asymmetric antenna further includes a third metal a side surface of the second dielectric substrate coincides with the second surface of the first dielectric substrate, and the opposite side surface is provided with a third metal piece, and the second feeding line is electrically connected to the third metal piece . twenty one
TW100135539A 2011-03-14 2011-09-30 Asymmetric antenna and a mimo antenna TWI501468B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110062178.5A CN102683832B (en) 2011-03-14 2011-03-14 A kind of asymmetric radio frequency antenna
CN201110144948.0A CN103036014B (en) 2011-05-31 2011-05-31 A kind of antenna and there is the MIMO antenna of this antenna
CN201110145029.5A CN102800941B (en) 2011-05-31 2011-05-31 Antenna and MIMO (multiple input multiple output) antenna with same
CN201110145196.XA CN102800944B (en) 2011-05-31 2011-05-31 A kind of asymmetrical antenna and there is the MIMO antenna of this asymmetrical antenna
CN201110144971.XA CN103187622B (en) 2011-05-31 2011-05-31 A kind of asymmetrical antenna and there is the mimo antenna of this asymmetrical antenna
CN2011101449688A CN103187621A (en) 2011-05-31 2011-05-31 Antenna and MIMO antenna provided with antennas

Publications (2)

Publication Number Publication Date
TW201238150A true TW201238150A (en) 2012-09-16
TWI501468B TWI501468B (en) 2015-09-21

Family

ID=46830046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135539A TWI501468B (en) 2011-03-14 2011-09-30 Asymmetric antenna and a mimo antenna

Country Status (2)

Country Link
TW (1) TWI501468B (en)
WO (1) WO2012122793A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632736B (en) 2016-12-27 2018-08-11 財團法人工業技術研究院 Multi-antenna communication device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201611683U (en) * 2008-11-20 2010-10-20 深圳大鹏光启科技有限公司 Radio frequency chip small antenna
CN101740862B (en) * 2008-11-20 2014-04-30 深圳光启创新技术有限公司 Dipole antenna of RF chip
EP2284946B1 (en) * 2009-07-17 2013-11-20 BlackBerry Limited Multi-slot antenna and mobile device
CN201490337U (en) * 2009-08-31 2010-05-26 深圳市启汉科技有限公司 Monopole radio-frequency antenna
CN101667680A (en) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 Monopole radio frequency antenna

Also Published As

Publication number Publication date
TWI501468B (en) 2015-09-21
WO2012122793A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US8669905B2 (en) Portable communication device comprising an antenna
US20090231211A1 (en) Antenna for use in earphone and earphone with integrated antenna
CN110178267A (en) Vertical antenna patch in cavity area
KR20100034227A (en) Microstrip patch antenna with high gain and wide band characteristics
CN109075457A (en) Component load-bearing part, the electronic equipment, radio communication method arranged with integrated antenna
CN109742550A (en) A kind of antenna system for the low backward radiation loading M shape artificial magnetic conductor
US11342949B2 (en) Transmission system for a body-worn electronic device
TWI651889B (en) Antenna device
TW201238150A (en) Asymmetric antenna and a MIMO antenna
TWI517492B (en) Antenna and wireless communication device
TW201310768A (en) Antenna
EP3513452A1 (en) Antenna on protrusion of multi-layer ceramic-based structure
TWM393817U (en) Chip antenna with capacitive load
CN202127090U (en) Asymmetrical antenna and MIMO (multiple-input multiple-output) antenna with same
CN103187622B (en) A kind of asymmetrical antenna and there is the mimo antenna of this asymmetrical antenna
TW200832813A (en) Multi-frequency antenna
TWI502806B (en) Metamaterial radio frequency antenna and mimo antenna
TWI502811B (en) Dual polarization antenna and mimo antenna with the dual polarization antenna
TWI517491B (en) An antenna and mimo antenna with the antenna
CN112234340B (en) Shell assembly, antenna assembly and electronic equipment
KR102198286B1 (en) Antenna structure with improved isolation by routing
TW201134001A (en) Compensation antenna and electronic device having the same
TWI515959B (en) Antenna and mimo antenna with the antenna
CN102800944B (en) A kind of asymmetrical antenna and there is the MIMO antenna of this asymmetrical antenna
TWI686994B (en) Light-transmissive radiation element