TW200832813A - Multi-frequency antenna - Google Patents

Multi-frequency antenna Download PDF

Info

Publication number
TW200832813A
TW200832813A TW096142659A TW96142659A TW200832813A TW 200832813 A TW200832813 A TW 200832813A TW 096142659 A TW096142659 A TW 096142659A TW 96142659 A TW96142659 A TW 96142659A TW 200832813 A TW200832813 A TW 200832813A
Authority
TW
Taiwan
Prior art keywords
antenna
frequency
conductive layer
antenna portion
layer
Prior art date
Application number
TW096142659A
Other languages
Chinese (zh)
Inventor
Niekerk Chicot Van
Stefan Eben Goosen
Reinart Johan Moraal
Johan Izak Jacobus Fick
Christopher Pieter Smith
Original Assignee
Wavetrend Technogies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavetrend Technogies Ltd filed Critical Wavetrend Technogies Ltd
Publication of TW200832813A publication Critical patent/TW200832813A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Landscapes

  • Waveguide Aerials (AREA)

Abstract

The present invention relates to a multi-frequency antenna comprising: a ground layer; a conduction layer provided with a first and second elongated recess; and a dielectric layer provided between the ground layer and the conduction layer; wherein the first and second elongated recess enable the antenna to operate as a first antenna portion having a fist operating frequency and a second antenna portion having a second operating frequency different from the first operating frequency.

Description

200832813 九、發明說明: 【發明所屬之技術領域】 本發明是關於多頻率天線,並且特 儿付別疋,然非專門妯 關於多頻率片型天線。 【先前技術】 數位通訊在現今年代裡既已為廣泛使用,i中可在入 Γ料種位置之間傳送資料。特別地,無線通訊領域既已I 到仃動電話通訊及/或其他無線電腦相關之装置領域内的進 展:確實,此等係無線通訊的成長,尤其是犯(射頻)類型 :热線通讯’而用以傳送無線電波的頻譜則變得曰益奎 塞。 —任何RF系統的最重要特點之_即為適#天線的設計, 遠者能夠依需要以傳送並接收無線資料,而此外又能符人 所料應用的特定操作要求。現有許多類型的天線設計 ( ^ k擇,各者擁有其本身的強項及弱點。RF設計者必須嘗 試且選定其性質最為適合於相關應用項目的天線類型。例 士對於仃動電話應用而言,RF設計者通常將尋求具有低 功率性質的精巧天線設計,其原因在於該等係屬無線領域 而尺寸、重量及可攜性確為重點。 存在有夕種已知的天線幾何,例如標準雙極或迴路天 線組恶。然而,在RFID (射頻識別)的領域裡,會希望標 籤具有一些天線處理性質,例如:小尺寸、低廓型及輕重 里。此等天線可用來作為傳送器、接收器或收發器,而能 5 200832813 夠簡易地將其接附於一待予追蹤的包裝或是其他可移除資 產對此犬員型的應用,片型天線(patch antenna )通常是 最為適合者。 片型天線含有一金屬化薄片,其係疊置於一接地平 板而又藉一絕緣基板而與其分離。該片型天線係藉由在一 經貼附於該絕緣基板的金屬跡線之内蝕刻出一天線構件樣 式所製造。此等天線的優點包含該等可易於製造並具備機 械強固性。此外,片型天線可容納極化多樣性。 圖1說明一已知片型天線的平面圖,而圖2說明一該 圖1片型天線之側視圖。 即如圖1及2所示,該片型天線具有一底置接地平板 ^0、一位於該接地平板100之上的介電層14〇、一位於該 甩層14〇之上的導電層110,以及一天線饋點130。可 例如利用已知的印刷電路板(pcB)技術來製造圖上及2的 片型天線。 、,圖1及2的片型天線具有一在一半球區域内高於該接 地平面上之任意方向上的輻射樣式。 该介電層140的厚度決定該導電層11〇離於該接地平 板1 00的分開性,這會影響該片型天線的頻率範圍(帶寬)。 般說來,該介電層14〇愈厚,帶寬即愈高。 此外薄片的貫體大小會對該薄片的效能產生影響。 例如,天線的實體大小與天線的共振頻率之間存在有一倒 關係亦即,若薄片大小縮減則共振頻率將會增加,並 反疋。伙而,當天線的大小縮減時,該天線所運作於此的 6 200832813 共振頻率即為增加。 h 十匕等片型天線時,對於一些共振頻率而言其取200832813 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to multi-frequency antennas, and is particularly concerned with multi-frequency chip antennas. [Prior Art] Digital communication has been widely used in the current generation, and data can be transferred between the locations of the incoming materials. In particular, the field of wireless communication has evolved from the field of I-to-telephone communication and/or other wireless-computer-related devices: indeed, the growth of wireless communication, especially the type of (radio frequency): hotline communication' The spectrum used to transmit radio waves has become a benefit. - The most important feature of any RF system is the design of the antenna. It is capable of transmitting and receiving wireless data as needed, and in addition to the specific operational requirements of the application. There are many types of antenna designs available, each with its own strengths and weaknesses. RF designers must try and select the type of antenna whose properties are best suited for the application. For the case of mobile phone applications, RF designers will often seek sophisticated antenna designs with low power properties because they are in the wireless arena and size, weight and portability are important. There are some known antenna geometries, such as standard bipolar. Or the loop antenna group is evil. However, in the field of RFID (radio frequency identification), the label is expected to have some antenna processing properties, such as small size, low profile and light weight. These antennas can be used as transmitters and receivers. Or a transceiver, and 5 200832813 can easily attach it to a package to be tracked or other removable assets for this dog-type application, patch antennas are usually the most suitable. The chip antenna comprises a metallized sheet which is stacked on a ground plane and separated from an insulating substrate. The chip antenna is attached thereto. An antenna member pattern is etched into the metal trace of the insulating substrate. The advantages of these antennas include that they can be easily fabricated and mechanically robust. In addition, the chip antenna can accommodate polarization diversity. A plan view of a known chip antenna is illustrated, and FIG. 2 illustrates a side view of the chip antenna of the figure 1. As shown in FIGS. 1 and 2, the chip antenna has a bottom grounding plate, and a A dielectric layer 14A over the ground plane 100, a conductive layer 110 over the germanium layer 14A, and an antenna feed point 130. The pattern can be fabricated, for example, using known printed circuit board (PCB) technology. And the chip antenna of Figures 2 and 2. The chip antenna of Figures 1 and 2 has a radiation pattern in any direction above the ground plane in the half sphere region. The thickness of the dielectric layer 140 determines the conductive layer 11 The separation from the ground plane 100, which affects the frequency range (bandwidth) of the chip antenna. In general, the thicker the dielectric layer 14 is, the higher the bandwidth is. Affect the performance of the sheet. For example, There is an inverse relationship between the physical size of the line and the resonant frequency of the antenna. That is, if the size of the slice is reduced, the resonant frequency will increase and reverse. When the size of the antenna is reduced, the antenna operates. 6 200832813 The resonance frequency is increased. h When the X-ray antenna is used, it is taken for some resonance frequencies.

捨疋效月匕、、、工系會隨著薄片大小縮減而劣化。然而,對於RFID 心用所〜者即為盡可能地縮減片型天線的大小,而同時 又仍可達到適切的效能。 本卷明之貫施例即為尋求提供經改良的多頻率天線。 f、 【發明内容】 h 八根據本發明之一實施例,提供一種多頻率天線,其包 否·一接地層;一導電層,其係經設置有一第一及第二長 ΎΓιΙ . 凹处,以及一介電層,其係經設置於該接地層與該導電 运之間’其中該等第一及第二長型凹處可使該天線能夠運 作如一具有一第一操作頻率的第一天線部分,以及一具有 第二操作頻率的第二天線部分,而此頻率係異於該第一 操作頻率。 ,,: 本發明天線的一項優點在於該者可藉由具有兩個獨立 通訊頻道以傳送資訊兩次。 根據本發明之另一實施例,該第二天線部分構成該第 天線部分的一部分。 根據本發明之另一實施例,該導電層係電連接於該接 地層。 根據本發明之另一實施例,該導電層係藉由金屬通道 而電連接於該接地層。 根據本發明之另一實施例,該天線進一步含有:一電 7 200832813 谷構件’其係在一饋點邊緣處連接於該導電層。 根據本發明之另一實施例,該電容構件包含複數個電 容器。 根據本發明之另一實施例,該等複數個電容器係沿該 饋點邊緣而等距間隔放置。 根據本發明之另一實施例,該等複數個電容器之至少 者構成該第一天線部分的一部分,並且該等複數個電容The system will be degraded as the size of the sheet is reduced. However, the use of RFID is to reduce the size of the chip antenna as much as possible while still achieving the appropriate performance. The application of this paper is to seek to provide an improved multi-frequency antenna. f, [Description of the Invention] h eight according to an embodiment of the present invention, a multi-frequency antenna is provided, which includes a ground layer; a conductive layer is provided with a first and a second length. And a dielectric layer disposed between the ground layer and the conductive layer, wherein the first and second elongated recesses enable the antenna to operate as the first day having a first operating frequency a line portion, and a second antenna portion having a second operating frequency, the frequency being different from the first operating frequency. An advantage of the antenna of the present invention is that the person can transmit information twice by having two independent communication channels. According to another embodiment of the invention, the second antenna portion forms part of the first antenna portion. According to another embodiment of the invention, the conductive layer is electrically connected to the ground plane. According to another embodiment of the invention, the conductive layer is electrically connected to the ground layer by a metal via. According to another embodiment of the invention, the antenna further comprises: an electric 7 200832813 valley member </ RTI> attached to the conductive layer at the edge of a feed point. According to another embodiment of the invention, the capacitive member comprises a plurality of capacitors. In accordance with another embodiment of the present invention, the plurality of capacitors are placed equidistantly spaced along the edge of the feed point. According to another embodiment of the present invention, at least one of the plurality of capacitors forms part of the first antenna portion, and the plurality of capacitors

器之至少一者構成該第一天線部分及該第二天線部分的一 部分。 根據本發明之另一實施例,該電容構件係連接於該接 地層。 …根據本發明之另一實施例,該電容構件係藉由金屬通 逼而電連接於該接地層。 ^根據本發明之另一實施例,該等第一及第二長型凹處 係按大致彼此平行而設置。 ^ —根據本發明之另一實施例,該等第一及第二長型凹處 係按大致平行於該導電層之非輻射邊緣而設置。 :據本發明之另一實施例’―由該導電層之外部邊緣 疋義的區域構成該第一天線部分,並且一於該一 第二長型凹處間所定義的區域構成該第二天線部分。 根據本發明之另一實施例,該第一頻率係低於該 頻率。 &lt; 一 該第一天線部分及該第二 而該第一天線部分及該第 根據本發明之另一實施例 天'線部分之一者能夠接收信號 8 200832813 二天線部分之另一者能夠傳送信號。 根據本發明之另一實施例,該第 天線部分兩者皆能傳送及接收信號。 根據本發明之另一實施例,該第 天線部分能夠同時地運作。 根據本發明之另一實施例,該第 以於一420 MHz至460 MHz之範圍内 p 根據本發明之另一實施例,該第 以於大致為43 3 MHz的頻率處運作。 根據本發明之另一實施例,該第 以於一850 MHz至1〇〇〇 MHz之範圍f 根據本發明之另一實施例,該第 以於大致為9 1 5 MHz的頻率處運作。 根據本發明之另一實施例,該等 於一 50歐姆的阻抗。 , 根據本發明之另一實施例,該等 的長度1係在一 21 mm至28 mm的範 根據本發明之另一實施例,該等 的長度1係大致為21 mm。 根據本發明之另_實施例,該等 之間的距離ω係在一 6mm至24mm! 根據本發明之另_實施例,該等 之間的距離①係大致為16mm。 根據本發明之另—實施例,該等 一天線及該第二 天線部分及該第二 天線部分係經排置 的頻率處運作。 一天線部分係經排置 二天線部分係經排置 弓的頻率處運作。 —天線部分係經排置 第一及第二頻率匹配 第一及第二長型凹處 圍内。 第一及第二長型凹處 第〜及第二長型凹處 々範圍内。 第〜及第二長型凹處 第〜及第二長型凹處 9 200832813 各者的寬度t係在一 1 mm至2 mm的範圍内。 根據本發明之另一實施例,該等第一及第二長型四處 各者的寬度t係大致為丨mm。 爽 根據本發明之另_實施例,該導電層的寬度w係在 5〇 mm至60 mm的範圍内。 根據本發明之另一實施例,該導電層的寬度w 為55mm。 ,、次致 根據本發明之另一實施例,該導電層的長度L係在〜 4〇 mm至50 mm的範圍内。 根據本發明之另一實施例,該導電層的長度l係大 為44 mm。 , 夂 根據本發明之另一實施例,該介電層具有_大於1 mm的厚度。 、·6 根據本發明之另一實施例,該天線能夠離於一金層 面而運作。 表 根據本發明之另一實施例,該天線係一片型天線。 根據本發明之另一實施例,該天線係用以作為一 追蹤標籤的一部分。 、頰 根據本發明之另一實施例,該接地層係經電性接地。 根據本發明之另一實施例,該天線在形狀上為正方形。 根據本發明之一進一步實施例,提供一種多頻率天線, 其包含··一接地層;一導電層;以及一介電層,其係經設 置於邊接地層與該導電層之間,其中該天線具有一第一天 、、Ρ刀,其能夠按一第一操作頻率運作,以及二第一天線 10 200832813 部分’其能夠按一第二操作頻率運作。 根據本發明之另一實施例’該第—頻率係不同於該第 二頻率。 根據本發明之另一實施例,該第二天線部分構成該第 一天線部分之一部分。 根據本發明之另一實施例,該導電層係電連接於該接 地層。 根據本發明之另一實施例,該導電層係藉由金屬通道 而電連接於該接地層。 根據本發明之另一實施例,該天線進一步含有·· 一電 容構件’其係在一饋點邊緣處連接於該導電層。 根據本發明之另一實施例,該電容構件包含複數個電 容器。 根據本發明之另一實施例,該等複數個電容器係沿該 饋點邊緣而等距間隔放置。 根據本發明之另一實施例’该專複數個電容器之至少 /者構成該第一天線部分的一部分,並且該等複數個電容 器之至少一者構成該第一天線部分及該第二天線部分的一 部分。 根據本發明之另一實施例,該電容構件係連接於該接 地層。 根據本發明之另一實施例,該電容構件係藉由金屬通 道而電連接於該接地層。 根據本發明之一進一步實施例’提供一種諧調本發明 11 200832813 之天線的方法 ^ 處之間的距離,::包含:調整於該第一與該第二長型凹 距離增加時,二中當於該第一與該第二長型凹處之間的 μ弟一天線部分的操作頻率即降低。 根據本取aB &gt; , &quot; 之天線的4 :一進一步實施例,提供-種譜調本發明 寬度,其::包含.調整該第-與該第二長型凹處的 第-弟一與該第二長型凹處的寬度增加時,該 弟-天線部分的操作頻率即降低。 Γ 根據本發明之一谁— 之天 進步只靶例,提供一種諧調本發明 天線的方法,其包含:調整 W分的操作頻率即降低 長度,盆/、成弟一長型凹處的 第二… 一與該第二長型凹處的長度增加時,該 【實施方式】 所列t發明的額外優點及新穎特性將部份地於後文說明中 &quot;而部分地可由熟習本項技蓺 盥隨附闰+ 4貝孜π之人士在當檢閱後文 ”、回工¥所顯見,或是藉由本發明實作而習知。 觀視Ξ 3心兄明一根據本發明之一較佳實施例的片型天線外 天線係一長方形天線,具有一接地平板3。。、 二電基板340及一印刷導電㉟31〇。該天線亦具 長型凹槽96及98,該等係經構成於該導電層310 内。^兩個長型凹槽96及98係大致按平行於該導電層 的非輻射邊緣320、390所構成。 該導電層31G之—邊緣35g係電連接於該接地平板 。在-範例裡’可在經構成於該介電層34G之内的個 12 200832813 別孔洞裡設置以金屬通道,藉此將該導電層3 i 〇之一邊緣 350電連接於該接地平板3〇〇。而將該導電層31〇之一邊 緣350電連接於該接地平板3〇〇可令該天線的邊緣(邊緣 3 5 0)有效地短路至接地。 此外,該導電層3 10係經連接至複數個沿該導電層之 邊緣360而相對於該邊緣35〇所設置的電容器38〇。該等 電容器380立曾力口該片^天線的邊緣電容。纟一較佳實施例 裡,該等複數個電容器380的各個個別電容器38〇係經連 接於該導電層31〇及接於該接地平板3〇〇。該等電容器38〇 可藉由金屬通道而連接至該接地平板3〇〇,而該等通道係 經設置在構成於該介電層34〇之内的個別孔洞33〇裡,藉 以將該等電容器380電連接至該接地平板3〇〇。At least one of the devices constitutes a portion of the first antenna portion and the second antenna portion. According to another embodiment of the invention, the capacitive member is coupled to the ground plane. According to another embodiment of the invention, the capacitive member is electrically connected to the ground plane by metal coercing. According to another embodiment of the invention, the first and second elongated recesses are disposed substantially parallel to each other. ^ - According to another embodiment of the invention, the first and second elongated recesses are disposed substantially parallel to the non-radiative edges of the conductive layer. According to another embodiment of the present invention, a region defined by an outer edge of the conductive layer constitutes the first antenna portion, and a region defined between the second elongated recess constitutes the second Antenna section. According to another embodiment of the invention, the first frequency is below the frequency. &lt; One of the first antenna portion and the second and the first antenna portion and one of the antenna portions according to another embodiment of the present invention is capable of receiving the signal 8 200832813 the other of the two antenna portions Ability to transmit signals. According to another embodiment of the invention, both of the first antenna portions are capable of transmitting and receiving signals. According to another embodiment of the invention, the first antenna portion is capable of operating simultaneously. According to another embodiment of the invention, the first is in the range of 420 MHz to 460 MHz. According to another embodiment of the invention, the operation operates at a frequency of approximately 43 3 MHz. According to another embodiment of the invention, the range f is from 850 MHz to 1 〇〇〇 MHz. According to another embodiment of the invention, the operation operates at a frequency of approximately 915 MHz. According to another embodiment of the invention, the impedance is equal to a 50 ohm. According to another embodiment of the invention, the lengths 1 are in the range of 21 mm to 28 mm. According to another embodiment of the invention, the lengths 1 are approximately 21 mm. According to another embodiment of the invention, the distance ω between the two is between 6 mm and 24 mm! According to another embodiment of the invention, the distance 1 between the two is approximately 16 mm. According to another embodiment of the invention, the one antenna and the second antenna portion and the second antenna portion operate at a frequency of the arrangement. An antenna portion operates through the arrangement of the two antenna portions at the frequency of the alignment bow. - The antenna portion is aligned with the first and second frequencies to match the first and second elongated recesses. The first and second elongated recesses are in the range of the first and second elongated recesses. The first and second long recesses The first and second long recesses 9 200832813 The width t of each is in the range of 1 mm to 2 mm. According to another embodiment of the invention, the width t of each of the first and second elongated sections is approximately 丨mm. According to another embodiment of the invention, the conductive layer has a width w in the range of 5 mm to 60 mm. According to another embodiment of the invention, the conductive layer has a width w of 55 mm. Second, according to another embodiment of the present invention, the length L of the conductive layer is in the range of 〜4〇 mm to 50 mm. According to another embodiment of the invention, the length l of the conductive layer is substantially 44 mm.夂 According to another embodiment of the invention, the dielectric layer has a thickness of greater than 1 mm. According to another embodiment of the present invention, the antenna can operate from a gold layer. Table According to another embodiment of the invention, the antenna is a one-piece antenna. According to another embodiment of the invention, the antenna is used as part of a tracking tag. Bud According to another embodiment of the invention, the ground plane is electrically grounded. According to another embodiment of the invention, the antenna is square in shape. According to a further embodiment of the present invention, there is provided a multi-frequency antenna comprising: a ground layer; a conductive layer; and a dielectric layer disposed between the edge ground layer and the conductive layer, wherein The antenna has a first day, a file that is capable of operating at a first operating frequency, and two portions of the first antenna 10 200832813 that are capable of operating at a second operating frequency. According to another embodiment of the invention, the first frequency is different from the second frequency. According to another embodiment of the invention, the second antenna portion forms part of the first antenna portion. According to another embodiment of the invention, the conductive layer is electrically connected to the ground plane. According to another embodiment of the invention, the conductive layer is electrically connected to the ground layer by a metal via. According to another embodiment of the invention, the antenna further comprises a capacitive member 'connected to the conductive layer at the edge of a feed point. According to another embodiment of the invention, the capacitive member comprises a plurality of capacitors. In accordance with another embodiment of the present invention, the plurality of capacitors are placed equidistantly spaced along the edge of the feed point. According to another embodiment of the present invention, at least one of the plurality of capacitors forms part of the first antenna portion, and at least one of the plurality of capacitors constitutes the first antenna portion and the second day Part of the line section. According to another embodiment of the invention, the capacitive member is coupled to the ground plane. According to another embodiment of the invention, the capacitive member is electrically connected to the ground plane by a metal channel. According to a further embodiment of the present invention, a distance between methods for aligning an antenna of the present invention 11 200832813 is provided, and includes: adjusting: when the first and the second elongated concave distance are increased, The operating frequency of the antenna portion between the first and the second elongated recesses is lowered. According to the fourth embodiment of the antenna of the aB &gt;&quot;&quot;, a spectral tone of the present invention is provided, which includes: adjusting the first-and the second-shaped dimple of the second elongated recess As the width of the second elongated recess increases, the operating frequency of the antenna portion decreases. Γ A method for harmonizing the antenna of the present invention, according to one of the present invention, provides a method of harmonizing the antenna of the present invention, comprising: adjusting the operating frequency of the W-min, that is, reducing the length, and forming a second recess of the basin When the length of the second elongated recess increases, the additional advantages and novel features of the invention listed in the [Embodiment] will be partially described in the following description, and may be partially learned by the skill of the present invention.人士 盥 闰 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 The external antenna of the chip antenna of the embodiment is a rectangular antenna having a grounding plate 3. The second electric substrate 340 and a printed conductive 3531. The antenna also has long grooves 96 and 98. The two elongated grooves 96 and 98 are substantially parallel to the non-radiative edges 320, 390 of the conductive layer. The edge 35g of the conductive layer 31G is electrically connected to the ground plate. In the example, '12 200 can be formed within the dielectric layer 34G 832813 is provided with a metal channel in the hole, thereby electrically connecting one edge 350 of the conductive layer 3 i to the ground plate 3〇〇, and electrically connecting one edge 350 of the conductive layer 31 to the ground plate 3 The edge of the antenna (edge 3 50) can be effectively shorted to ground. Furthermore, the conductive layer 3 10 is connected to a plurality of edges 360 along the edge of the conductive layer relative to the edge 35 Capacitor 38. The capacitors 380 are used to force the edge capacitance of the antenna. In a preferred embodiment, the individual capacitors 38 of the plurality of capacitors 380 are connected to the conductive layer 31. The grounding plate is connected to the grounding plate 3. The capacitors 38 are connected to the grounding plate 3 by metal channels, and the channels are disposed in individual holes formed in the dielectric layer 34〇. 33 ,, whereby the capacitor 380 is electrically connected to the ground plane 3〇〇.

根據圖3的實施例,該等電容器、38〇係經設置在沿該 導電層310而與該RF饋點37〇相同的邊緣處,並且分佈 u RF饋點37G的任-側上。在—實施例裡,該等電容 器係沿該導電㉟31〇之邊緣38〇而等距相隔設置。在該饋 點370之各侧上有一個以上的電容器38〇,使得電流在沿 /導电層3 1 〇的邊緣上均勻地分佈。這可對該天線有利地 提供一均勻電磁場分佈。 在本發明之天線裡運用該等電容器380可提高該天線 的邊緣電容而可供縮短該天線的實體長度。亦即,藉 由將該等電容H 38〇增置於該天線電路,可縮短該天線的 貫體長度’而同時仍能將該天線之操作維持在—特定的所 欲共振頻率。即如前述’當該天線的實體長度縮短時,該 13 200832813 天線的共振頻率會提高 1用該等電容器380可增加該 天線的邊緣電容並降低共振 =-所體驗-共振頻率 ::===?r,一 ^ ^ 子包谷w口 38〇可使天線自電 性角度而g相比於其實體為較長。 别二t雖為敘述該等電容器380’然本發明並不限於 “益380。任何用以增加該天線之邊緣電容,並因 而可供以縮短該天線的實體長度,的裝置皆可運用。According to the embodiment of Fig. 3, the capacitors, 38 turns are disposed at the same edge along the conductive layer 310 as the RF feed point 37, and are distributed on either side of the RF feed point 37G. In an embodiment, the capacitors are spaced equidistantly along the edge 38 of the conductive 3531. There are more than one capacitor 38 turns on each side of the feed point 370 such that current is evenly distributed along the edge of the / conductive layer 3 1 〇. This advantageously provides a uniform electromagnetic field distribution for the antenna. The use of such capacitors 380 in the antenna of the present invention increases the edge capacitance of the antenna to reduce the physical length of the antenna. That is, by placing the capacitance H 38 置于 in the antenna circuit, the length of the antenna can be shortened while maintaining the operation of the antenna at a specific desired resonant frequency. That is, as described above, when the physical length of the antenna is shortened, the resonance frequency of the 13 200832813 antenna is increased by one. The capacitor 380 can increase the edge capacitance of the antenna and reduce the resonance =-experience-resonance frequency::=== ?r, a ^ ^ sub-package w port 38 〇 can make the antenna self-electrical angle and g is longer than its entity. Although the present invention is not limited to "Yi 380. Any device for increasing the edge capacitance of the antenna and thus for shortening the physical length of the antenna can be used.

圖4說明一在操作卜士 (S| Q 緣的截面® 線而沿直線AA所採 …J 別凹槽96及98之内建立出-對 於该導·岸及:8 #如圖4所示。該等長型凹槽係經構成 二外:二而除由該等外部輕射場81及83所定 致建立起-内天線:分二型_射場86、88亦獲 外部邊緣所定義的區域構…⑨層 長型凹槽96、98之邊2二Γ 。此外,在該等 之邊緣間所定義的較小區域,即如圖3 ,二绫主者’可構成—内天線部分。在此實施例裡, P分亦構成該外天線部分的一部分。 因此’圖3中所述之天線可在操作上於在 %、 ^里建立―微小Μ天線料;並域立—大型的外天線 I:天線部分具有長…寬度&quot;且該外天線 ^部有乂長度L及寬度w。該内天線部分的面積小於該外 、’刀。由於該内天線部分具有一小於該外天線部分的 14 200832813 四此讀内天線部分能 高的共振頻率而操作。 句知比m卜天線部分為較 此外,在較低共振頻率處 的幾何性之故,使得就以電性角产:=型凹槽96、98 %幾乎如同並不存在。 :“亥寺長型凹槽96、 部分運作。然而,在較古 父低共振頻率處為整個天線 %的幾何性即成為具有她 4長型凹槽96、 該内天線部分運作。 。所以在較高共振頻率處僅 b在σ亥導電層31〇内構成該等凹槽96 點在於可構成-具有較小内天線部分及-較大外 的天線。該所獲多頻率夭绩、、友口Ρ刀 .♦ L 、丰線犯夠按兩個不同共振頻率而運 作。该外天線部分按一第一 邻八卜楚# $ 〃振頻率㈣,並且該内天線 二共振頻率。 U頻率低於該第 在貝鈀例裡’本發明之天線能夠同時地運作於 :該第二共振頻率。在另—實施例裡,本發明之^能 达亚接收仏虎。例如,可利用該内天線部分的操作頻 率作為傳达頻率,而利用該外天線部分的操作頻率作為接 收 &gt;員率,或反疋。因此一天線能夠在不同的頻率處傳送並 接收信號。在另—實施例裡,該等内及外天線部分之其— 或兩者可運作如一能夠傳送並接收信號的收發器。八 本發明之天線可運作於在一頻譜上互為相隔之兩個共 矛^員率的任何組合。根據一較佳實施例,該天線運作於如 下所詳述的頻率處: 15 200832813 1) 外天線部分_ 43 3 MHz,内天線部分_ 9 j 5 MHz, 或者 2) 外天線部分—433 MHz,内天線部分—868 MHz。 在本發明之一實施例裡,該介電層34〇具有一大於工6 mm的厚度。此外,該RF饋點37〇是位在該導電層3ι〇的 邊緣3 6 0處。 圖3所示之天線具有一長方形形狀,然應瞭解亦可運 用其他的天線形狀,例如一正方形或類似形狀。有些片型 天線則為圓形。 圖5說明一利用一模擬套裝軟體之本發明天線的頻率 響應。該繪線顯示該天線運作於前述的第一頻率組對,而 其中在點處42的第一操作頻率為433 MHz,而在點處44 的第二操作頻率為9 1 5 MHz。 根據本發明之一實施例的片型天線係按兩個階段所設 計。 在该第階段裡,該天線的所欲頻率響應係利用例如 hmiet ' IE3D、Micr〇ware以⑹丨。等等的電磁模擬軟體所 模擬。即如前述,目5顯示利用一相關模擬套裝軟體的該 天線所欲頻率響應 圖6進一步表示該根據本發明之較佳實施例的天線之 同模擬、纟&quot;果,然其中圖5說明頻率響應,而圖ό則說明 16 200832813 一阻抗圖式。 天線設計的第二階段牵涉到該天線的原型化處理,這 可為例如利用一般的FR-4 PCB材料所建構。然後再利用 天線愈小,天線即需要愈多電容以按該所欲共振頻率而運 作的原理來校調該天線。 圖7至9說明調整該天線的幾何性可如何地調整該天 線所運作的頻率。Figure 4 illustrates a section of the operation of the squad (S|Q edge of the section о line taken along the line AA... J 凹槽 grooves 96 and 98 - for the guide shore and: 8 # shown in Figure 4. The equal length grooves are formed by two: two, except that the external light field 81 and 83 are used to establish the inner antenna: the split type _ shots 86, 88 are also defined by the outer edge. ... 9 sides of the long groove 96, 98 2 2 。. In addition, the smaller area defined between the edges, that is, as shown in Figure 3, the two mains 'can constitute the inner antenna part. Here In the embodiment, the P component also forms part of the outer antenna portion. Therefore, the antenna described in FIG. 3 can be operated to establish a "small Μ antenna material in %, ^; and a vertical-large external antenna I The antenna portion has a length ...width &quot; and the outer antenna portion has a length L and a width w. The inner antenna portion has an area smaller than the outer, 'knife. Since the inner antenna portion has a smaller than the outer antenna portion 14 200832813 Four antennas can be operated with high resonance frequency. The sentence is more than the antenna part. The geometry at the vibration frequency is such that it is produced at an electrical angle: the =-shaped groove 96, 98% is almost as if it does not exist.: "Hai Temple long groove 96, partially operated. However, in the ancient father At the low resonance frequency, the geometry of the entire antenna is the same as that of the 4-long groove 96, and the inner antenna portion operates. Therefore, at the higher resonance frequency, only b is formed in the σH conductive layer 31〇. The slot 96 is formed by an antenna with a smaller inner antenna portion and a larger outer portion. The multi-frequency performance obtained, the friend's mouth knife. ♦ L, the line is enough to operate at two different resonance frequencies. The outer antenna portion is according to a first neighboring eight-busch frequency (four), and the inner antenna has two resonant frequencies. The U frequency is lower than the first in the palladium example. The antenna of the present invention can operate simultaneously at: The second resonant frequency. In another embodiment, the present invention can receive the scorpion. For example, the operating frequency of the inner antenna portion can be used as the transmission frequency, and the operating frequency of the outer antenna portion can be used as the operating frequency. Receive &gt; rate, or rumor. So an antenna can The signals are transmitted and received at the same frequency. In another embodiment, the antennas of the inner and outer antennas, or both, can operate as a transceiver capable of transmitting and receiving signals. The antenna of the present invention can operate in Any combination of two common-split ratios in a spectrum. According to a preferred embodiment, the antenna operates at a frequency as detailed below: 15 200832813 1) External antenna portion _ 43 3 MHz, The antenna portion _ 9 j 5 MHz, or 2) the outer antenna portion - 433 MHz, the inner antenna portion - 868 MHz. In one embodiment of the invention, the dielectric layer 34 〇 has a thickness greater than 6 mm. In addition, the RF feed point 37 is located at the edge 360 of the conductive layer 3ι. The antenna shown in Fig. 3 has a rectangular shape, but it should be understood that other antenna shapes, such as a square or the like, may be used. Some chip antennas are round. Figure 5 illustrates the frequency response of an antenna of the present invention utilizing a simulation kit. The line shows that the antenna operates in the aforementioned first pair of frequency groups, wherein the first operating frequency at point 42 is 433 MHz and the second operating frequency at point 44 is 9 1 5 MHz. A chip antenna according to an embodiment of the present invention is designed in two stages. In this first phase, the desired frequency response of the antenna is (6) 利用 using, for example, hmiet 'IE3D, Micr〇ware. And so on the simulation of the electromagnetic simulation software. That is, as shown in the above, item 5 shows the desired frequency response of the antenna using a related simulation package software. FIG. 6 further shows the same simulation, 纟&quot; of the antenna according to the preferred embodiment of the present invention, wherein FIG. 5 illustrates the frequency. Response, while Figure 说明 illustrates 16 200832813 an impedance pattern. The second phase of the antenna design involves prototyping of the antenna, which can be constructed, for example, using conventional FR-4 PCB materials. Then, the smaller the antenna is, the more the antenna needs to be calibrated to operate at the desired resonant frequency. Figures 7 through 9 illustrate how adjusting the geometry of the antenna can adjust how often the antenna operates.

圖7說明當該内天線部分的寬度ω (即該等長型凹槽 之間的距離)改變時頻率的變異性。該寬度ω從6 mm變化 到24 mm (1/2ω從3 mm變化到12 mm)。在測試過程中,該 外天線部分(該導電層310)的寬度w固定為55 mm ;該外 天線部分(該導電層310)的長度L固定為44 mm ;該等長 型凹槽的長度1固定為21 mm,並且該等長型凹槽的寬度t 固定為1 mm。 §忒内天線部分的覓度ω增加時,該内天線部分的操 作頻率即降低。即如可自圖7觀察到,當ω = 6ιηη^·(ι/2ω = 3 mm),該内天線部分的操作頻率約為1〇〇〇 ΜΗζ。然而, 當ω = 24 mm時(Zoo = 12 mm),該内天線部分的操作頻率 約為 900 MHz。 此外,理論上該内天線部分之寬度ω的變異性應不會 實質地影響到該外天線部分的操作頻率,該外天線部分應 維持在433 MHz運作。而在實作上,即如圖7所示,當①= 6 mm 0CO = 3 mm)時,該外天線部分的操作頻率約為46〇 MHz,並且當ω = 24 mm (1/2ω = 12 mm)時,該外天線部分 17 200832813 的操作頻率約為420 MHz。 圖8說明當該等長型凹槽的寬度t改變時該頻率的變 異性。該等長型凹槽的寬度心」_的增量從i _掸 加到2 _。在測試過程中,該外天線部分(該導電層31〇曰 的寬度W固定為55匪;該外天線部分(該導電層3叫的 長度L固定為44 mm;該等長型凹槽的長度丄固定為η mm,並且該内天線部分的寬度①固^為16咖咖=8 mm)。 當該等長型凹槽的寬度t增加時, 作頻率降低。即如可自圖8觀察到,告^天線部分的操 J 田1 — 1 mm時,該内Figure 7 illustrates the frequency variability when the width ω of the inner antenna portion (i.e., the distance between the elongated grooves) is changed. The width ω varies from 6 mm to 24 mm (1/2ω varies from 3 mm to 12 mm). During the test, the width w of the outer antenna portion (the conductive layer 310) is fixed to 55 mm; the length L of the outer antenna portion (the conductive layer 310) is fixed to 44 mm; the length of the elongated groove 1 Fixed to 21 mm and the width t of the long grooves is fixed at 1 mm. When the twist ω of the antenna portion in the 增加 increases, the operating frequency of the inner antenna portion decreases. That is, as can be observed from Fig. 7, when ω = 6ιηη^·(ι/2ω = 3 mm), the operating frequency of the inner antenna portion is about 1 〇〇〇. However, when ω = 24 mm (Zoo = 12 mm), the inner antenna section operates at approximately 900 MHz. Furthermore, in theory, the variability of the width ω of the inner antenna portion should not substantially affect the operating frequency of the outer antenna portion, which should be maintained at 433 MHz. In practice, as shown in Fig. 7, when 1 = 6 mm 0CO = 3 mm), the operating frequency of the outer antenna portion is about 46 〇 MHz, and when ω = 24 mm (1/2 ω = 12) At mm), the outer antenna portion 17 200832813 operates at approximately 420 MHz. Figure 8 illustrates the variation of the frequency when the width t of the elongate grooves is changed. The increment of the width of the long groove "_" is added from i_掸 to 2_. During the test, the outer antenna portion (the width W of the conductive layer 31 is fixed to 55 匪; the outer antenna portion (the length of the conductive layer 3 is fixed to 44 mm; the length of the elongated groove)丄 is fixed to η mm, and the width of the inner antenna portion is fixed to 16 kPa = 8 mm. When the width t of the equal-shaped grooves is increased, the frequency is lowered. As can be observed from Fig. 8 , the ^ antenna part of the operation J field 1 - 1 mm, the inside

天線部分的操作頻率約為915 M ^ i 然而,當t = 2 mm時, 忒内天線邛分的操作頻率約為88〇 。 :如:…㉟,理論上該等長型凹槽之寬度 異性應不會貫質地影響到該外天線部分 天線部分應維持在433 MH 、革δ亥外 所示…-】. 乍而在貫作上,即如圖8 田 mm日寸’該外天線部♦ MHz,並且當t = 2 h貝半、、々為434 430 MHz 〇 ⑺…亥外天線部分的操作頻率約為 圖9說明當該等長型凹槽的長度 異性。該等長型凹槽 &quot;錢率的變 測試過程中,該外天線部分(該導_ l28mm。在 為55 mm;該外天線 見又W固疋 I刀v 口茨夺书層31〇)的 〜 匪;該等長型凹槽的寬度t &amp; □疋為44 部分的寬度ω固定疋為lmm,並且該内天線 疋為 16 mm &gt; 8 _)。 18 200832813 當該等長型凹槽的長度i增加時, 作頻率降低。即如可自圖9觀察到,當、、’例操 :天線部分的操作頻率約為915MHz。然而,當=’該 日守’该内天線部分的操作頻率約為85〇 MHz。 mm 即如前文圖7及8般,理論上料長型 應不會”地影響到該外天線部分的操I:率 么/ 22咖日寺,該外天線部分的操作頻率約 為434 MHz,並且當i = 28 mm 員羊、·、勺 k + T 发7卜天線部分的择你 頻率約為420 MHz。 幻ί木作 按如前說明所導屮,a + ^ 〇¥出,虽该凹槽維度變化時,在該外天 、泉部分的較低操作頻率並不會顯著地改變。從而 頻率而運作之外天線部分的操作並不會顯著地變化。 為改變該外天線部分的頻率,可改變該外天線部分(該 導電層31〇)的寬度該外天線部分(該導電層310)的長 ^ 在此h況下°亥外天線部分的操作頻率將自43 3 MHz 又私ϋ且Θ内天線部分的操作頻率在理論上應維持固 定。 mm的外天線部分長度L; 一 16 η mm的長型凹槽寬度t ;以及 在本舍明之—較佳實施例裡,該天線具有- 55 mm的 外天線部分寬度W; — 44 的内天線部分寬度ω ; 21 mm的長型凹槽長度1。 圖10及11說明對於 ,^ ^ ^ T力一本發明天線在當該外天線部分 運作於433 MHz的共振頻率本 少只午日守並且當該内天線部分運作於 19 200832813 91 5 MHz的共振頻率時的電流密度分佈。 即如可自圖10觀察到,該電流密度分佈在整個天線上 約為相同,這是由於整個天線被用以按較低頻率MHz 而共振,亦即使用到較大的外天線部分。 而即如可自圖U觀察到,當相較於該天線的其餘部分 時,在該等凹槽96、98之間的電流密度分佈增加,而該 處定義該内天線。這是因為利用較小的内天線以按該915 MHz的較南頻率而共振。 現筝照回到圖3的外觀視圖,應瞭解該等長型凹槽%、 98的長度1為具有顯著性。若等凹槽過短,則該天線不會 在較高頻率上有效地共振。不過,若該等凹槽過長,㈣ f線不會在較低頻率上有效地共振。該等凹槽係經設計^ 该天線能夠納入兩個共振頻率,並經足夠地相隔,狹兩者 頻率又仍為匹配’且最好是配於5〇歐姆阻抗,從而僅存 在一單一饋點370。 亥片型天線的大小為可變。不過其尺寸是無法 =内,的大小(亦即其維度會產生-所欲較高共振頻 ……、、又而為足夠地大藉以實現一能夠在較低頻率上此 的電性微小天線。 手上,、振 ^ 根據本發明之實施例的天線可具有任意形式,只要 亥寺長型凹槽96、98係經設置以使得能夠構成出-内及 一外天線而在不同頻率處共振即可。 及 士 ^卜可利用已知PCB技術以製造一本發明天線。同 a U藉纟利用化學或銅質餘安]處理以構成該等長型 20 200832813 本發明天線能夠離於一金屬表面而運作。此外,在當 將本發明天線放置在一金屬表面上時會較具效率。因此, 根據一較佳實施例,本發明天線在rf標籤追蹤領域裡且 有特:的應用i生。詳細地說,可簡易地追蹤應予寄送或路 由遞父至-特定目的地的容器或包裝,其方式為藉由將一 本,明天線固裝在此一容器的金屬(或其他)表φ上。從而 可簡易地傳送或接收有關於該容器的資訊。 亦應瞭解對於本揭所述之片型天線幾何性存在有許多 不同的應用項目及使用領域。部分的這些項目包含: - 任何RF點對點鏈結系統; - 任何RF點對多點鏈結系統; -任何RF標籤,無論為被動或主動標籤皆可; - 任何RF傳送器、接收器及/或收發器; 任何具進行資料中繼傳送之RF鏈結的感測器應 用。 熟習本項技藝之人士將能瞭解前文雖既已描述被視為 執行本發明之最佳模式以及在適當情況下的其他模式,然 不應將本發明限制於在本文較佳實施例說明中所揭示的特 定組態及方法。熟習本項技藝之人士將能認知到本發明在 仵夕不同颂型的天線裡具有廣泛的應用範圍,同時確可對 該等實施例進行廣泛範圍的修改,而不致悖離如後載申請 21 200832813 專利範圍中所定義的本發明觀念 【圖式簡單說明】 為更佳地瞭解本發明以及關於如何實作本發明 僅按如範例方式參照於隨附圖式,其中: : 圖1說明一已知片型天線的平面圖; 圖2說明-圖1之片型天線的側視圖; 圖3說明-根據本發明之一實施例的天線外觀視圖; 圖4說明一如圖3之夭@ L 圖; 天線而〉口直線AA所採繪的截面 圖5 Λ明|發明天線之所欲頻率響應的繪圖; 圖6說明一本發明天線之阻抗圖; 圖7說明-本發明天線在當該天線的兩個 之距離。〇改變時,於操作頻率上的所算得變異性;槽間 树圖士 8說明—本發明天線在當該天線的長型凹槽之寬度 t改變時,於操作頻率上的所算得變異性; 又 ^/說明—本發明天線在當該天線的長型凹槽之長度 1改變時,於操作頻率上的所算得變異性; 一二二說明—按一相當低頻率而運作之本發明天線的電 流岔度If圖;以及 流::明—按一相當高頻率而運作之本發明天線的電 【主要元件符號說明】 22 200832813 r %、The operating frequency of the antenna section is approximately 915 M ^ i. However, when t = 2 mm, the operating frequency of the antenna split is approximately 88 。. : Such as: ... 35, in theory, the width and the opposite nature of the long groove should not affect the antenna portion of the outer antenna portion should be maintained at 433 MH, as shown in the outside of the δ _ _ _. As shown in Figure 8, the field of the antenna is ♦ MHz, and when t = 2 h, half, and 々 434 430 MHz 7 (7)... The operating frequency of the antenna part is about Figure 9. The length of the long grooves is the opposite sex. During the test of the length of the groove &quot; the rate of the money, the outer antenna part (the guide _ l28mm. at 55 mm; the outer antenna sees another W 疋 I knife v mouth 夺 夺 书 31 31 31 31 31 31 31 ~ 匪; the width of the equal-shaped groove t &amp; □ 疋 is 44, the width ω is fixed at 疋 lmm, and the inner antenna 疋 is 16 mm &gt; 8 _). 18 200832813 When the length i of the elongate grooves increases, the frequency decreases. That is, as can be observed from Fig. 9, when the operation of the antenna portion is about 915 MHz. However, when =' the day's day, the inner antenna portion operates at a frequency of about 85 〇 MHz. Mm is as shown in Figures 7 and 8 above. In theory, the length of the material should not affect the operation of the outer antenna part. The rate of operation of the outer antenna part is about 434 MHz. And when i = 28 mm, the sheep, the spoon, the k + T, the 7th antenna part, the frequency of your selection is about 420 MHz. The magical wood works as explained in the previous section, a + ^ 〇 ¥ out, although When the groove dimension changes, the lower operating frequency of the outer and spring portions does not change significantly. Therefore, the operation of the antenna portion outside the frequency does not change significantly. To change the frequency of the outer antenna portion The width of the outer antenna portion (the conductive layer 31 〇) can be changed. The length of the outer antenna portion (the conductive layer 310) is in this case. The operating frequency of the antenna portion will be from 43 3 MHz. And the operating frequency of the antenna portion of the crucible should theoretically remain fixed. The outer antenna portion length L of mm; a long groove width t of 16 η mm; and in the preferred embodiment of the present invention, the antenna has - 55 mm outer antenna part width W; - 44 inner antenna part width ω; 21 mm long groove Length 1. Figures 10 and 11 illustrate that for an antenna of the invention, when the external antenna portion operates at a resonance frequency of 433 MHz, it is only a midday guard and when the inner antenna portion operates at 19 200832813 91 5 The current density distribution at the resonant frequency of MHz. As can be seen from Figure 10, the current density distribution is approximately the same across the antenna because the entire antenna is used to resonate at a lower frequency, i.e., To the larger outer antenna portion. As can be seen from Figure U, the current density distribution between the grooves 96, 98 increases when compared to the rest of the antenna, where the definition is defined Internal antenna. This is because the smaller inner antenna is used to resonate at the souther frequency of 915 MHz. Now that the kite returns to the appearance view of Figure 3, it should be understood that the length 1 of the long grooves %, 98 is Significant. If the grooves are too short, the antenna will not effectively resonate at higher frequencies. However, if the grooves are too long, the (iv) f-line will not effectively resonate at lower frequencies. The groove is designed. The antenna can incorporate two resonance frequencies. And the distance is sufficiently separated, the narrow frequencies are still matched 'and preferably matched with 5 ohm impedance, so there is only a single feed point 370. The size of the slab antenna is variable. However, its size is Unable to = the size of the inner (that is, its dimension will produce - the higher resonant frequency ..., but also enough to achieve a small electrical antenna that can be used at lower frequencies. The antenna according to an embodiment of the present invention may have any form as long as the Haisi-shaped grooves 96, 98 are disposed such that the inner and outer antennas can be constructed to resonate at different frequencies. And the use of known PCB technology to fabricate an antenna of the invention. Treated with a U by chemical or copper restoring to form the same length 20 200832813 The antenna of the present invention can operate away from a metal surface. Moreover, it is more efficient when the antenna of the present invention is placed on a metal surface. Therefore, according to a preferred embodiment, the antenna of the present invention has a special application in the field of rf tag tracking. In detail, the container or package that should be sent or routed to the specific destination can be easily tracked by attaching a copy of the antenna to the metal (or other) table of the container. φ. Thereby, information about the container can be easily transmitted or received. It should also be understood that there are many different applications and fields of use for the chip antenna geometry described in this disclosure. Some of these items include: - any RF point-to-point link system; - any RF point-to-multipoint link system; - any RF tag, whether passive or active; - any RF transmitter, receiver and/or Transceiver; any sensor application with an RF link for data relay transmission. Those skilled in the art will be able to understand that the present invention has been described as being the best mode of carrying out the present invention and other modes as appropriate, and the invention should not be limited to the description of the preferred embodiments herein. Specific configurations and methods revealed. Those skilled in the art will recognize that the present invention has a wide range of applications in different types of antennas, and that a wide range of modifications can be made to the embodiments without departing from the application. 200832813 The concept of the invention as defined in the patent scope [Simplified Description of the Drawings] For a better understanding of the present invention and how to practice the invention, reference is made to the accompanying drawings by way of example only, in which: FIG. Figure 2 illustrates a side view of the chip antenna of Figure 1; Figure 3 illustrates an external view of the antenna according to an embodiment of the present invention; Figure 4 illustrates a Figure L@L diagram; The cross-section of the antenna and the line AA is drawn. Figure 5 illustrates the impedance of the antenna of the invention. Figure 6 illustrates the impedance of an antenna of the present invention. Figure 7 illustrates that the antenna of the present invention is two of the antennas. Distance. The calculated variability in the operating frequency when 〇 is changed; the inter-slot tree diagram 8 illustrates the calculated variability in the operating frequency of the antenna of the present invention when the width t of the elongated groove of the antenna is changed; And / / description - the calculated variability of the antenna of the present invention at the operating frequency when the length 1 of the long groove of the antenna is changed; 1-2 description - the antenna of the present invention operating at a relatively low frequency Current mobility If diagram; and flow:: Ming—Electricity of the antenna of the present invention operating at a relatively high frequency [Main component symbol description] 22 200832813 r %,

81 外部輻射場 83 外部輻射場 86 長型凹槽輻射場 88 長型凹槽輻射場 96 長型凹槽 98 長型凹槽 100 接地平板 110 導電層 130 天線饋點 140 介電層 300 接地平板 310 印刷導電層 320 非輻射邊緣 330 接地平板 340 介電層 350 導電層邊緣 360 導電層邊緣 370 RF饋點 380 電容器 390 非輻射邊緣 2381 External radiation field 83 External radiation field 86 Long groove radiation field 88 Long groove radiation field 96 Long groove 98 Long groove 100 Ground plate 110 Conductive layer 130 Antenna feed point 140 Dielectric layer 300 Ground plate 310 Printed Conductive Layer 320 Non-radiative Edge 330 Ground Plate 340 Dielectric Layer 350 Conductive Layer Edge 360 Conductive Layer Edge 370 RF Feed Point 380 Capacitor 390 Non-radiative Edge 23

Claims (1)

200832813 十、申請專利範園·· 1. 一種多頻率天線,其包含: 一接地層; 一導電層,其係設置有一第一及第二長型凹處;以及 一介電層,其係設置於該接地層與該導電層之間; 其中該第一及第二長型凹處係致能該天線運作為一具 有 苐 操作頻率的第一天線部分,以及一具有一第二操 作頻率的第二天線部分,而第二操作頻率係異於該第一操 (作頻率。 2. 如申請專利範圍第1項所述之天線,其中該第二天 線部分構成該第一天線部分的一部分。 3. 如申請專利範圍第1或2項所述之天線,其中該導 電層係電連接於該接地層。 4·如申請專利範圍第3項所述之天線,其中該導電層 係藉由金屬通道而電連接於該接地層。 5 ·如申請專利範圍第1至4項中任一項所述之天線, ^ 其進一步包含: 一電容構件,其係在一饋點邊緣處連接於該導電層。 6 ·如申睛專利範圍第5項所述之天線,其中該電容構 件包含複數個電容器。 7·如申請專利範圍第6項所述之天線,其中該等複數 個電容器係沿該饋點邊緣而等距間隔放置。 8 ·如申睛專利範圍第6或7項所述之天線,其中該等 複數個電容器之至少一者構成該第一天線部分的一部分, 24 200832813 並且該等複數個電容器之至少一者構成該第—天線部分及 5亥弟一天線部分的' —部分。 9·如申請專利範圍第5至8項中任一項所述之天線, 其中該電容構件係連接於該接地層。 1 0.如申叫專利範圍第9項所述之天線,其中該電容構 件係藉由金屬通道而電連接於該接地層。 U ·如申請專利範圍第1至10項中任一項所述之天線, r 其中該第一及第二長型凹處係按大致彼此平行而設置。 12·如申請專利範圍第丨至u項中任一項所述之天線, 其中遠等第一及第二長型凹處係按大致平行於該導電層之 非輻射邊緣而設置。 13 ·如申請專利範圍第1至12項中任一項所述之天線, 其中一由該導電層之外部邊緣所定義的區域構成該第一天 線部分,並且一於該第一及第二長型凹處間所定義的區域 構成該第二天線部分。 I 14·如申請專利範圍第1至13項中任一項所述之天線, 其中該第一頻率係低於該第二頻率。 25 1 5 ·如申請專利範圍第1至14項中任一項所述之天線, 其中該第一天線部分及該第二天線部分之一者能夠接收信 號,而該第一天線部分及該第二天線部分之另一者能夠傳 送信號。 1 6·如申請專利範圍第1至14項中任一項所述之天線, 其中該第一天線部分及該第二天線部分兩者皆能傳送及接 收信號。 200832813 立中,/第利範圍第1至16項中任-項所述之天線, 二Γ由 分及該第二天線部分能夠同時地運作。 申請專利範圍第1至17項中任-項所述之天線, 其中該第一天線部分係 ' 辨置 M 420 MHz 至 460 MHz 之乾圍内的頻率處運作。 19 ·如申請專利範圍第 孙山》斤 弟1至1 8項中任一項所述之天線, 其中該弟一天線部分将奴 刀係絰排置以於大致為433 MHz的頻率 處運作。 ' 20·如申請專利範圍第 视图罘1至19項中任一項所述之天線, 其中該第二天線部分係征 …、、工排置U於一 850 MHz至1000 MHz 之範圍内的頻率處運作。 •如申請專利範圍第m項中任—項所述之天線, 其中該第二天線部分係經排置以於大致為915馳的頻率 處運作。 22.如申請專利範圍第1 固弟丄至21項中任一項所述之天線, 其中該寺弟&quot;及弟二頻率|7C献JhA Λ 肩手匹配於一 50歐姆的阻抗。 2 3 ·如申請專利範圍第1 $。q s + 弟至2 2項中任一項所述之天線, 其中該弟一及弟二長型凹虛的且危+ &lt;的長度1係在一 21 mm至2 8 mm 的範圍内。 24·如申請專利範圍第1至23項中任-項所述之天線, 其中該第一及第二長型凹處的長度丨係大致為21 mm。 25·如申請專利範圍第丄至以項中任一項所述之天線, 其中該等第一及第二長型凹處之間的距離ω係在一 6 mm 至24 mm的範圍内。 26 200832813 26.如申凊專利範圍第i至25項中任一項所述之天線, 其中4等第-及第二長型凹處之間的距_①係、大致為16 mm ° 27·如申明專利範圍第i至26項中任一項所述之天線, 其中忒第-及第二長型凹處各者的寬度t係在一 i醜至2 mm的範圍内。200832813 X. Patent Application Fan Park·· 1. A multi-frequency antenna comprising: a ground layer; a conductive layer provided with first and second elongated recesses; and a dielectric layer Between the ground layer and the conductive layer; wherein the first and second elongated recesses enable the antenna to operate as a first antenna portion having a chirp operating frequency and a second operating frequency The second antenna portion, and the second operating frequency is different from the first operation. 2. The antenna according to claim 1, wherein the second antenna portion constitutes the first antenna portion 3. The antenna of claim 1 or 2, wherein the conductive layer is electrically connected to the ground layer. The antenna of claim 3, wherein the conductive layer is The antenna is electrically connected to the grounding layer by a metal channel. The antenna of any one of claims 1 to 4, further comprising: a capacitor member connected at an edge of the feed point On the conductive layer. The antenna of claim 5, wherein the capacitor member comprises a plurality of capacitors. The antenna of claim 6, wherein the plurality of capacitors are equally spaced along the edge of the feed point. The antenna of claim 6 or claim 7, wherein at least one of the plurality of capacitors forms part of the first antenna portion, 24 200832813 and at least one of the plurality of capacitors The first antenna portion and the antenna portion of the fifth antenna portion of the fifth embodiment of the present invention, wherein the capacitor member is connected to the ground layer. The antenna of claim 9, wherein the capacitor member is electrically connected to the ground layer by a metal channel. U. The antenna of any one of claims 1 to 10. And wherein the first and second elongated recesses are disposed substantially parallel to each other. The antenna of any one of the preceding claims, wherein the first and second long The concave portion is roughly flat An antenna according to any one of claims 1 to 12, wherein an area defined by an outer edge of the conductive layer constitutes the first antenna And the antenna of any one of the first and second long recesses, wherein the antenna is defined by the first and second elongated recesses. The first frequency is lower than the second frequency. The antenna according to any one of claims 1 to 14, wherein the first antenna portion and the second antenna portion are The person is capable of receiving a signal, and the other of the first antenna portion and the second antenna portion is capable of transmitting a signal. The antenna of any one of claims 1 to 14, wherein both the first antenna portion and the second antenna portion are capable of transmitting and receiving signals. 200832813 The antenna described in any of items 1 to 16 of Lizhong, / Lili, and the second antenna portion and the second antenna portion can operate simultaneously. The antenna of any one of clauses 1 to 17, wherein the first antenna portion operates at a frequency within a dry circumference of M 420 MHz to 460 MHz. The antenna of any one of the items 1 to 18 of the patent application, wherein the antenna portion of the brother arranges the slave system to operate at a frequency of approximately 433 MHz. The antenna of any one of claims 1 to 19, wherein the second antenna portion is characterized by ..., and the work is disposed in a range of 850 MHz to 1000 MHz. Operating at frequency. The antenna of any of clauses, wherein the second antenna portion is arranged to operate at a frequency of approximately 915 achievable. 22. The antenna of claim 1, wherein the temple brother &quot;and the second frequency|7C offers JhA Λ shoulders are matched to a 50 ohm impedance. 2 3 · If you apply for a patent range of $1. The antenna according to any one of the items 2 to 2, wherein the length 1 of the younger brother and the second-length concave and dangerous + is in the range of 21 mm to 28 mm. The antenna of any one of clauses 1 to 23, wherein the length of the first and second elongated recesses is approximately 21 mm. The antenna of any one of the preceding claims, wherein the distance ω between the first and second elongated recesses is in the range of 6 mm to 24 mm. The antenna of any one of the first to second and second long recesses, wherein the distance between the fourth and second long recesses is _1, approximately 16 mm ° 27· An antenna according to any one of the preceding claims, wherein the width t of each of the first and second elongated recesses is in the range of ii to 2 mm. 28·如申明專利範圍第1至27項中任一項所述之天線, 其中忒第一及第二長型凹處各者的長度t係大致為丄麵。 29·如申明專利fe圍第i至28項中任一項所述之天線, /、中4 $包層的覓度w係在一 5〇至6〇 mm的範圍内。 30.如申巧專利範圍第i至29項中任_項所述之天線, 其中該導電層的寬度|係大致為55mm。 31·如申請專利範圍第!至3〇項中任一項所述之天線, 其中該導電層的長度L係在一 4〇_至5〇_的範圍内。 32·如申明專利範圍帛i至3 i項中任一項所述之天線, 其中該導電層的長度L係大致為44 mm。 33·如申請專利範圍第項中任一項所述之天線, 其中該介電層具有一大於1·6 mm的厚度。 34·如申請專利範圍第1至33項中任一項所述之天線, 其中该天線能夠離於一金屬表面而運作。 3 5·如申印專利範圍帛i至34項中任—項所述之天線, 其中該天線係一片型天線。 36·如申請專利範圍第^ 35項中任一項所述之天線, 其中該天線係用以作為—射頻追縱標籤的一部分。 27 200832813 4 3 7 ·如申請專利範圍箆 二 靶囷罘1至36項中任一項所述之天線, 其中該接地層係電性接地。 38·如申請專利範圍第m項中任一項所述之天線, 其中該天線在形狀上為正方形。 39·—種多頻率天線,其包含·· 一接地層; 一導電層;以及 f „ 一介電層’其係設置於該接地層與該導電層之間,其 1 中該天線具有一第一天線部分,其能夠按一第一操作頻率 運作’以及二第一天線部分,其能夠按一第二操作頻率運 作。 40·如申凊專利範圍第39項所述之天線,其中該第一 頻率係不同於該第二頻率。 4 h如申請專利範圍第39或40項所述之天線,其中該 第二天線部分構成該第一天線部分之一部分。 I. 42·如申請專利範圍第39至41項中任一項所述之天 線,其中該導電層係電連接於該接地層。 43 ·如申睛專利範圍第42項所述之天線,其中該導電 層係藉由金屬通道而電連接於該接地層。 44·如申請專利範圍第39至43項中任一項所述之天 線,進一步包含: 一電容構件,其係在一饋點邊緣處連接於該導電層。 45 ·如申請專利範圍第項所述之天線,其中該電容 構件包含複數個電容器。 28 200832813 數個申請專利範園第45項所述之天線,其中該等複 數個電容器係沿該 /、千忒專稷 4? U邊緣而等距間隔放置。 箄禎食f彳㈤中 範園第45或46項所述之天線’其中該 寻禝數個電容器之 &amp; T忑 分,並且兮笠# 夕—者構成該第一天線部分的一部 分及該第I:個電容器之至少一者構成該第-天線部 弟一天線部分的一部分。 48·如申請專利範 線,其中$ + ~』乾圍弟44至47項中任一項所述之天 :9如 件係連接於該接地層。 構件係藉由二甬利、、耗圍弟48項所述之天線,其中該電容 5〇 — ”屬通逼而電連接於該接地層。 方法調巾請專利範圍第1至38項之-之天線的 該第_與該第二長型凹處之間的距離, /、當於該第一與該第二長型凹處之 時,該第二夭綠如γ 抆尘凹處之間的距離增加 5 天線σ卩分的操作頻率即降低。 51 ·一種諧調申請專利範圍第1至38項 方法,其包含: 王Μ項之一之天線的 :整=第一與該第二長型凹處的寬度, 中當該第一與該第二長型凹 二?部分的操作頻率即降低。““加時,該第 方,/2·—種猎調中請專利範圍第1至38項之少 方法,其包含·· 貝 &lt; —之天線的 f整該第-與該第二長型凹處的長度, &quot;中备该第一與該第二長型凹處 反日加時,該第 29 200832813 二天線部分的操作頻率即降低。 53 · —種如上文所述並參照圖3及4之任一個之天線。 Η•一、圖式: 如次頁The antenna according to any one of claims 1 to 27, wherein the length t of each of the first and second elongated recesses is substantially a kneading surface. 29. The antenna of any of items i to 28 of the patent specification, wherein the thickness 4 of the cladding layer is in the range of 5 〇 to 6 〇 mm. 30. The antenna of any of clauses ii to 29, wherein the width of the conductive layer is approximately 55 mm. 31·If you apply for a patent scope! The antenna of any one of the preceding claims, wherein the length L of the conductive layer is in the range of 4 〇 to 5 〇. The antenna according to any one of the preceding claims, wherein the length L of the conductive layer is approximately 44 mm. The antenna of any one of the preceding claims, wherein the dielectric layer has a thickness greater than 1.6 mm. The antenna of any one of claims 1 to 33, wherein the antenna is operable to be separated from a metal surface. 3 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. The antenna of any one of the preceding claims, wherein the antenna is used as part of a radio frequency tracking tag. 27 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. The antenna of any one of the claims, wherein the antenna is square in shape. 39. A multi-frequency antenna comprising: a ground layer; a conductive layer; and f „ a dielectric layer is disposed between the ground layer and the conductive layer, wherein the antenna has a first An antenna portion capable of operating at a first operating frequency and a second antenna portion capable of operating at a second operating frequency. 40. The antenna of claim 39, wherein The first frequency is different from the second frequency. The antenna of claim 39 or 40, wherein the second antenna portion constitutes a portion of the first antenna portion. I. 42. The antenna of any one of the preceding claims, wherein the conductive layer is electrically connected to the ground layer. The antenna of claim 42 wherein the conductive layer is The antenna according to any one of claims 39 to 43 further comprising: a capacitor member connected to the conductive layer at a feed point edge 45. If you apply for the scope of patents An antenna, wherein the capacitor member comprises a plurality of capacitors. 28 200832813 Several antennas as claimed in claim 45, wherein the plurality of capacitors are equidistant along the edge of the /, Millennium, 4? U Placed at intervals. Foraging f彳(5) The antenna described in Section 45 or 46 of Fanyuan, where the number of capacitors of the capacitors is &amp; T忑, and 兮笠# 夕—constituting the first antenna portion At least one of the first and the first capacitors constitute a part of the first antenna portion of the first antenna portion. 48. If the patented patent line, wherein the $ + ~ "dry brothers 44 to 47 of any one of the items The day: 9 is connected to the grounding layer by the component. The component is connected to the antenna according to 48th, and the capacitor is 5〇-" Stratum. Method, the distance between the first and the second elongated recess of the antenna of the patent range 1 to 38, /, when the first and the second elongated recess are The distance between the second green, such as the gamma dust recess, is increased by 5 antenna σ 卩. 51. A method for harmonizing patent application Nos. 1 to 38, comprising: an antenna of one of the kings: a whole = a width of the first and the second elongated recess, wherein the first and the second Long concave two? Part of the operating frequency is reduced. "In the case of overtime, the first party, /2. - the lesser method of the patent range from 1 to 38, which includes ······························· The length of the concave portion, &quot;the first and the second long recess are reversed, and the operating frequency of the second antenna portion of the 29th 200832813 is lowered. 53. An antenna as described above and with reference to any of Figures 3 and 4. Η•1, schema: as the next page 3030
TW096142659A 2006-11-10 2007-11-12 Multi-frequency antenna TW200832813A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0622469.5A GB0622469D0 (en) 2006-11-10 2006-11-10 Multi-frequency antenna

Publications (1)

Publication Number Publication Date
TW200832813A true TW200832813A (en) 2008-08-01

Family

ID=37594718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096142659A TW200832813A (en) 2006-11-10 2007-11-12 Multi-frequency antenna

Country Status (4)

Country Link
EP (1) EP2089933A1 (en)
GB (1) GB0622469D0 (en)
TW (1) TW200832813A (en)
WO (1) WO2008056159A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136594B2 (en) 2009-08-20 2015-09-15 Qualcomm Incorporated Compact multi-band planar inverted F antenna
US10476142B2 (en) 2016-12-21 2019-11-12 Cts Corporation Radio frequency antenna with granular or powder insulating material and method of making the same
CN209016267U (en) * 2018-11-14 2019-06-21 深圳Tcl新技术有限公司 Double frequency vertical polarized antenna and television set

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI113212B (en) * 1997-07-08 2004-03-15 Nokia Corp Dual resonant antenna design for multiple frequency ranges
FR2772517B1 (en) * 1997-12-11 2000-01-07 Alsthom Cge Alcatel MULTIFREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE AND DEVICE INCLUDING THIS ANTENNA
WO2000052783A1 (en) * 1999-02-27 2000-09-08 Rangestar International Corporation Broadband antenna assembly of matching circuitry and ground plane conductive radiating element
GB0105440D0 (en) * 2001-03-06 2001-04-25 Koninkl Philips Electronics Nv Antenna arrangement

Also Published As

Publication number Publication date
EP2089933A1 (en) 2009-08-19
GB0622469D0 (en) 2006-12-20
WO2008056159A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
TWI376838B (en) Single-layer metallization and via-less metamaterial structures
CN104836031B (en) A kind of antenna and mobile terminal
US8279125B2 (en) Compact circular polarized monopole and slot UHF RFID antenna systems and methods
JP6468200B2 (en) Antenna directivity control system and radio apparatus including the same
CN1164008C (en) Radio communication apparatus and double frequency microstrip antenna
EP2712028B1 (en) Antenna device
EP3214697B1 (en) Antenna and antenna module comprising the same
US9236653B2 (en) Antenna device
US9136604B2 (en) Antenna and wireless communication apparatus
US20060017622A1 (en) Multi-band omni directional antenna
CN109478721A (en) The C feed antennas being formed on multilayer board edge
KR100980779B1 (en) Apparatus of Chip Antenna For Ultra-Wide-Band Applications
CN103972649B (en) Antenna module and the wireless communication device with the antenna module
CN103794868A (en) Antenna assembly
TW200832813A (en) Multi-frequency antenna
TWI525910B (en) Three-dimensional spiral antenna and applications thereof
TW200818606A (en) A patch antenna
TWI521796B (en) Radio-frequency device and wireless communication device for enhancing antenna isolation
WO2019227651A1 (en) Portable communication terminal and pifa antenna thereof
JP2011217205A (en) Planar antenna
TW200945664A (en) Dual-band antenna
JP2007174153A (en) Loop antenna and communication apparatus
TWI517492B (en) Antenna and wireless communication device
JP2002299948A (en) Patch antenna
JP2004312628A (en) Double resonance diversity antenna system