TW201232798A - Method for manufacturing a back-contact solar cell - Google Patents

Method for manufacturing a back-contact solar cell Download PDF

Info

Publication number
TW201232798A
TW201232798A TW100102752A TW100102752A TW201232798A TW 201232798 A TW201232798 A TW 201232798A TW 100102752 A TW100102752 A TW 100102752A TW 100102752 A TW100102752 A TW 100102752A TW 201232798 A TW201232798 A TW 201232798A
Authority
TW
Taiwan
Prior art keywords
electrode
semiconductor substrate
solar cell
type semiconductor
conductive paste
Prior art date
Application number
TW100102752A
Other languages
Chinese (zh)
Other versions
TWI429097B (en
Inventor
Hsin-Jung Feng
Yu-Chou Lee
Original Assignee
Tainergy Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tainergy Tech Co Ltd filed Critical Tainergy Tech Co Ltd
Priority to TW100102752A priority Critical patent/TWI429097B/en
Publication of TW201232798A publication Critical patent/TW201232798A/en
Application granted granted Critical
Publication of TWI429097B publication Critical patent/TWI429097B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for manufacturing a back-contact solar cell is provided which comprises the step of filling a conductive paste into a through hole of a first semiconductor wafer at the same process for forming a finger electrode of a first electrode, so as to form a filled-in electrode of the first electrode.

Description

201232798 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能電池的製造方法,尤其關於一 種背接觸式太陽能電池的製造方法。 【先前技術】 圖1顯示習知太陽能電池之剖面圖。如圖1所示,習知 太陽此電池100包含有一石夕晶基板11〇、一抗反射層120及 一電極結構130。 矽晶基板110可為一 P型多晶矽基板,且於其一表面上 摻雜N型雜質,例如磷或砷’使其擴散進入p型多晶矽基板, 形成一 N型雜質擴散區’使得石夕晶基板11〇包含有互相連接 之一 N型區域111及一 P型區域112,亦即前述N型雜質擴 散區形成N型區域ill ;而矽晶基板no的其餘部分則形成 P型區域112。抗反射層12〇可以包含有一氮化矽(%Ν4) 層。電極結構130包含有第一電極131及第二電極132。第 一電極131設於N型區域Π1的第一表面113上且接觸n型 區域111,第二電極132設於p型區域ι12的第二表面114 上且接觸P型區域112。而第一電極131與第二電極132可 201232798 以透過-負載15G互相電連接,以形成—電流迴路,供給負 載150電能。 圖2 A顯不習知形成有第—電極的石夕晶基板的俯視圖。圖 2 B顯示習知形成有第二電極_晶基板的仰視圖。如圖2a 所示,第-W m &含有手指電極ma及匯流排條配線 131b。如2B所示,第二電極132包含有背面場電極ma 及匯流排條配線132b。手指電極ma為細長結構分佈於太 陽能電池1〇〇的大致上整個第—表面113,用以收集電流, 減少第-表面113上的電子移動至第—電極131的距離。背 面場電極132a,由沉積-層轉卿成,用崎低少數載流 子在背面復合的概率。 此外,太陽能電池100更包含有一分離溝14〇,位在距離 矽晶基板110之邊緣的一預定距離處,分離溝140的開口位 於接收%光的表面,並向石夕晶基板110内部延伸,用以避免 電子e2從N型區域111經過石夕晶基板11〇的側邊而流到第 二電極132。 由於第一表面113為受光面,其上形成有不透光的第一 電極131 ’會減少電流的產生。因而發展出一種金屬貫穿孔 (Metal Wrap Through,MWT)技術,其係將第一電極 131 及第二電極132皆形成於第二表面114。然而,習知金屬貫 穿孔太陽能電池的製程中,因矽晶基板11〇形成有多個貫穿 201232798 孔,因此需要額外增加一道利用網印進行填孔膠之印刷的程 序,而多了一道網印的製程,不僅增加網印設備的額外支 出,也必須修改網印之印台(table)的結構以避免沾膠。 【發明内容】 本發明一貫施例之目的在於提供一種能夠簡化製程的太 陽旎電池製造方法。一實施例之目的在於提供一種能夠少手 指電極與N型區域間的接觸電阻的太陽能電池製造方法。 依據本發明一貫施例,提供一種太陽能電池製造方法其 包含以下步驟。提供具有至少一貫穿孔的一第一型半導體基 板,且第—型半導體基板更具有-第-表面及-第二表面, 第一表面相對於第一表面,而該至少一貫穿孔延伸於第一表 面及第二表面間。將多數的第二型雜質,摻雜於第一型半導 體基板的第-表面上。將—第—導電膠塗布於第__型半導體 基板的第-表面之即將形成—第—電極之—手指電極的區 域’同時將第-導電膠填充於該至少_些貫穿孔内,藉以形 成第-電極的手指電極及—填充電極。將—第二導電膠塗布 於第型半導體基板的第二表面上,藉以形成第—電極之— 第-匯流排條配線以及—第二電極之—第二匯流排條配 線,其中第—匯流排條配線電連接填充電極。將一第三導電 膠塗布於第-型半導體基板的第二表面上,藉以形成第二電 201232798 極之一背面場電極。 於一實施例中,太陽能電池製造方法還可以包含有形成 一抗反射層於第一型半導體基板的第一表面上。於一實施例 中,太%能電池製造方法還可以包含有去除即將形成第一電 極之手指電極的區域上的抗反射層,以形成至少一凹槽,且 較佳的情況是前述形成第一電極的該手指電極及一填充電 極的步驟包含:以網印方式同時將第一導電膠填充於至少— 凹槽及至少一貫穿孔中。 於一實施例中,太陽能電池製造方法還可以包含利用— 蝕刻液蝕刻第一型半導體基板的第一表面,使第一表面粗糙 化0 於一實施例中,利用網印方式來形成第一電極之第一匯 流排條配線以及第二電極之第二匯流排條配線。於一實施例 中,利用網印方式來形成第二電極之一背面場電極。 於一實施例中第一導電膠可以包含一銀膠。於一實施例 中第二導電膠可以包含一銀膠。於一實施例中第三導電穋可 以包令'•一铭膠。 依據本發明一實施例,在形成手指電極的同時,將第一 導電膠填充於貫穿孔,以形成填充電極,因此相較於習知製 造金屬貫穿孔太陽能電池的技術,能夠簡化製造的程序。 本發明的其他目的和優點可以從本發明所揭露的技術特 201232798 徵中得到進一步的了解。為讓本發明之上述和其他目的、特 徵和優點能更明顯易懂,下文特舉實施例並配合所附圖式, 作詳細說明如下。 【實施方式】 圖3A至3B顯示依據本發明一實施例之背接觸式太陽 能電池製造方法的流程圖。圖4A至4J顯示依據本發明一實 施例之背接觸式太陽能電池製造方法之各步驟的剖面示意 圖。如圖3A至3B及圖4A至4J所示,背接觸式太陽能電 池的製造方法包含以下步驟。 如圖4A所示,步驟S02 :提供一 P型多晶矽基板21〇, 其具有一第一表面213及相對於第一表面213的一第二表面 214 ’並利用雷射對p型多晶矽基板21〇進行鑽孔,形成多 個貫穿P型多晶矽基板210並從第一表面213延伸至第二表 面214的貫穿孔215 ^圖5顯示圖4A之P型多晶矽基板的 俯視圖。圖5顯示形成有多個貫穿孔215後之P型多晶矽基 板210的第一表面213。 如圖4B所示’步驟S〇4 :利用蝕刻液清洗或者蝕刻p 型多晶矽基板210的第一表面213,使P型多晶矽基板210 之第一表面213粗糙化,以降低太陽光的反射。 如圖4C所示’步驟s〇6 :將N型之多數的第一雜質, 201232798 摻雜於P型多晶矽基板2i〇的第一表面213上。於一實施例 中,可以利用爐管擴散法或者網印、旋塗或喷霧法,於第一 表面213上摻雜N型雜質,N型雜質會擴散進入P型多晶矽 基板210’形成一 N型雜質擴散區,以使p型多晶矽基板21〇 具有N型區域211及P型區域212。於一實施例中,第一雜 質可以為磷雜質’並且是在溫度約8〇〇芄至約820°C下,利 用三氣氧磷(POCI3)來對p型多晶矽基板21〇進行磷雜質 摻雜。 如圖4D所示,步驟S08 :對P型多晶矽基板210的第 —表面213及第二表面214進行去除氧化層蝕刻,以去除於 璘擴散步驟(步驟S06)十被形成在p型多晶矽基板21〇之 第一表面213、第二表面214以及側邊的磷矽玻璃 (Phosphorous Silicate Glass ’ PSG)結構 216。 如圖4E所示’步驟S10 :形成一抗反射層220於P型 多晶矽基板210的第一表面213上。較佳的情況是,抗反射 層220的一部分會形成於貫穿孔215的壁面及第二表面214 之一部分。 如圖4F所示,步驟S12:利用雷射剝離法(iaser ablati〇n ) 去除即將形成第一電極231之手指電極231a(請參照圖4G) 的區域上的抗反射層220,形成多個凹槽221。 如圖4G所示,步驟S14 :利用網印(printing)方式’ 8 201232798 將第-導電膠印刷於p型多晶絲板21〇的第—表面213 上,並填充該些凹槽221及該些貫穿孔215,以形成第一電 極231之手指電極231a以及填充電極23ic。於本實施例 中’以網印方式同時將第一導電膠填充於該些凹槽221及 二貝穿孔215中,因此僅需利用一道網印製程即可形成 第-電極231之手指電極231a以及填充電極23ic。 於一實施例’雖然可以不形成凹槽221,僅以網印方式 同時形成位於抗反射層220上的手指電極23la及填充電極 231c。但形成凹槽221的好處為能夠使第一導電勝更進一步 深入貫穿孔215内’以最簡化的方式說明其原因如下。在 不形成凹槽221的情況下,相對於手指電極231a,還需要 使填充電極231c的第一導電膠被填充於貫穿孔215内的深 度大致上為P型多晶矽基板210的厚度H加上抗反射層22〇 的厚度h。在形成有凹槽221的情況下,相對於手指電極 231a ’還需要使填充電極231c的第一導電膠被填充於貫穿 孔215内的珠度大致上能夠被減少至p型多晶石夕基板21〇 的厚度H。 此外,於習知技術中,是將第一導電膠直接形成於抗反 射層Π0上,並藉由後續之燒結處理,使第一導電膠被燒 結後穿透抗反射層120而接觸至N型區域211。相對於此, 由於手指電極23la位於凹槽221内,能夠直接接觸N型區 201232798 域211 ’在燒結處理時第一導電膠不需要穿透抗反射層 220 ’相對於習知技術,可以減少手指電極uia與n型區 域211間的接觸電阻。於一實施例中,第一導電膠可以為 銀膠。 如圖4H所示,步驟S16 :利用網印(printing)方式, 將第二導電膠印刷於P型多晶矽基板210的第二表面214 上’以形成第一電極231之匯流排條配線23lb以及第二電 極232之匯流排條配線232b,其中(至少於燒結處理後) 匯流排條配線231b能夠接觸填充電極231c,以使手指電極 231a電連接匯流排條配線231b。較佳的情況是,匯流排條 配線231b形成於第二表面214上之前述抗反射層220的部 分上。於一實施例中’第二導電膠可以為銀膠。 如圖41所示’步驟18 :利用網印方式,將第三導電膠 印刷於P型多晶矽基板210的第二表面214上,以形成第 二電極232之背面場電極232a »於一實施例中,背面場電 極232a之至少一部分位於匯流排條配線232b之至少一部分 上。於一實施例中’第三導電膠可以為鋁膠。 如圖4J所示,步驟20 :使經過步驟18後的p型多晶矽 基板210進行燒結處理’並利用雷射形成至少一分離溝 240 ’分離溝240從P型多晶矽基板21〇的第二表面214向 第一表面213延伸,用以使N型區域211及P型區域212 10 201232798 間在P型多晶矽基板210中大致上呈無電性短路狀態(no short circuit)。如此,即可形成第一電極231之匯流排條配 線231b以及第二電極232之匯流排條配線232b皆位於第 二表面214的背接觸式太陽能電池200。 於一實施例中,在形成手指電極231a的同時,將第一 導電膠填充於貫穿孔215,以形成填充電極231c,因此相較 於習知製造金屬貫穿孔太陽能電池的技術能夠減少僅將第 一導電膠填充於貫穿孔215的步驟。於一實施例中,形成 有凹槽221,並同時以網印方式同時將第一導電膠填充於該 些凹槽221及該些貫穿孔215中,能夠使第一導電膠更進 一步深入貫穿孔215内。吟一實施例中,由於手指電極23ia 的第一導電膠在燒結處理前,已接觸至N型區域21丨,能夠 少手指電極231a與N型區域211間的接觸電阻。 雖然本發明已以較佳實施例揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和範 圍内’當可作些許之更動無飾,因此本發明之保護範圍當 視後附之巾請專利範圍所界定者鱗。另外,本發明的任一 貫施例或巾請專職®不須達成本發明所揭露之全部目的 或優點或特點。此外’摘要部分和標題僅·來輔助專利文 件搜尋之用,並非用來限制本發明之權利範圍。 232798 f圖式簡單說明】 蘭i、顯示習知太陽能電池之剖面圖。 圖2A顯不習知形成有第一電極的矽晶基板的俯視圖。 圖2B顯示習知形成有第二電極的矽晶基板的仰視圖。 圖3A至3B顯示依據本發明一實施例之背接觸式太陽能 電池製造方法的流程圖。 圖4A至4J顯示依據本發明一實施例之背接觸式太陽能 電池製造方法之各步驟的剖面示意圖。 圖5顯示圖4A之P型多晶矽基板的俯視圖。 【主要元件符號說明】 100 太陽能電池 110 石夕晶基板 111 N型區域 112 P型區域 113 第一表面 114 第二表面 120 抗反射層 130 電極結構 131 第一電極 131a 手指電極 201232798201232798 VI. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a solar cell, and more particularly to a method of manufacturing a back contact solar cell. [Prior Art] Fig. 1 shows a cross-sectional view of a conventional solar cell. As shown in FIG. 1, the conventional solar cell 100 includes a quartz substrate 11, an anti-reflection layer 120, and an electrode structure 130. The twinned substrate 110 can be a P-type polycrystalline germanium substrate, and is doped with an N-type impurity such as phosphorus or arsenic on one surface thereof to diffuse into the p-type polycrystalline germanium substrate to form an N-type impurity diffusion region. The substrate 11A includes an N-type region 111 and a P-type region 112 interconnected, that is, the N-type impurity diffusion region forms an N-type region ill; and the remaining portion of the twin crystal substrate no forms a P-type region 112. The anti-reflective layer 12A may comprise a layer of tantalum nitride (% Ν 4). The electrode structure 130 includes a first electrode 131 and a second electrode 132. The first electrode 131 is disposed on the first surface 113 of the N-type region Π1 and contacts the n-type region 111, and the second electrode 132 is disposed on the second surface 114 of the p-type region ι12 and contacts the P-type region 112. The first electrode 131 and the second electrode 132 can be electrically connected to each other through the load-load 15G at 201232798 to form a current loop for supplying the load 150 power. Fig. 2A shows a plan view of a lithographic substrate on which a first electrode is formed. Fig. 2B shows a bottom view of a conventionally formed second electrode-crystal substrate. As shown in Fig. 2a, the -W m & includes a finger electrode ma and a bus bar wiring 131b. As shown in 2B, the second electrode 132 includes a back surface field electrode ma and a bus bar line 132b. The finger electrode ma is an elongated structure distributed over substantially the entire first surface 113 of the solar cell 1 to collect current and reduce the distance of electrons on the first surface 113 from moving to the first electrode 131. The back surface field electrode 132a is transformed from a deposition layer to a low probability of recombining the minority carrier on the back side. In addition, the solar cell 100 further includes a separation trench 14 位 at a predetermined distance from the edge of the twin crystal substrate 110. The opening of the separation trench 140 is located on the surface receiving the % light, and extends to the inside of the radiant substrate 110. It is avoided that the electrons e2 flow from the N-type region 111 through the side of the iridium substrate 11 而 to the second electrode 132. Since the first surface 113 is a light receiving surface, the formation of the first electrode 131' which is opaque thereto reduces the generation of current. Thus, a Metal Wrap Through (MWT) technique is developed in which the first electrode 131 and the second electrode 132 are formed on the second surface 114. However, in the process of the conventional metal through-hole solar cell, since the twinned substrate 11 is formed with a plurality of holes penetrating through 201232798, an additional procedure for printing the hole-filling glue by screen printing is required, and a screen printing is added. The process not only increases the extra expenditure of the screen printing equipment, but also changes the structure of the screen printing table to avoid sticking. SUMMARY OF THE INVENTION It is an object of a consistent embodiment of the present invention to provide a method of manufacturing a solar cell that simplifies the process. An object of an embodiment is to provide a solar cell manufacturing method capable of reducing contact resistance between a finger electrode and an N-type region. According to a consistent embodiment of the present invention, a solar cell manufacturing method is provided which comprises the following steps. Providing a first type semiconductor substrate having at least consistent perforations, and wherein the first type semiconductor substrate further has a -first surface and a second surface, the first surface being opposite to the first surface, and the at least consistent perforation extending to the first surface And between the second surface. A majority of the second type impurity is doped on the first surface of the first type semiconductor substrate. Applying a first conductive paste to the first surface of the __ type semiconductor substrate to form a region of the first electrode - the electrode electrode while filling the at least some through holes, thereby forming The finger electrode of the first electrode and the filling electrode. Applying a second conductive paste on the second surface of the first type semiconductor substrate, thereby forming a first-bus-side bus bar wiring and a second electrode-second bus bar wiring, wherein the first bus bar The wiring is electrically connected to the filling electrode. A third conductive paste is coated on the second surface of the first type semiconductor substrate to form a back surface field electrode of the second electric 201232798. In an embodiment, the solar cell manufacturing method may further include forming an anti-reflection layer on the first surface of the first type semiconductor substrate. In an embodiment, the solar cell manufacturing method may further include an anti-reflection layer on the region where the finger electrode of the first electrode is to be formed to form at least one groove, and preferably the first form is formed. The step of the finger electrode and the filling electrode of the electrode comprises: simultaneously filling the first conductive paste in at least the groove and at least the uniform perforation by screen printing. In one embodiment, the method for fabricating a solar cell may further include etching the first surface of the first type semiconductor substrate with an etchant to roughen the first surface. In one embodiment, the first electrode is formed by screen printing. The first bus bar wiring and the second bus bar wiring of the second electrode. In one embodiment, the back surface field electrode of one of the second electrodes is formed by screen printing. In an embodiment, the first conductive paste may comprise a silver paste. In an embodiment, the second conductive paste may comprise a silver paste. In one embodiment, the third conductive crucible can be used to make a '. According to an embodiment of the present invention, the first conductive paste is filled in the through holes while forming the finger electrodes to form the filling electrodes, so that the manufacturing process can be simplified as compared with the conventional technique of manufacturing metal through-hole solar cells. Other objects and advantages of the present invention will become apparent from the teachings of the present invention. The above and other objects, features and advantages of the present invention will become apparent from [Embodiment] Figs. 3A to 3B are flowcharts showing a method of manufacturing a back contact solar cell according to an embodiment of the present invention. 4A through 4J are cross-sectional schematic views showing respective steps of a method of fabricating a back contact solar cell according to an embodiment of the present invention. As shown in Figs. 3A to 3B and Figs. 4A to 4J, the manufacturing method of the back contact type solar cell comprises the following steps. As shown in FIG. 4A, step S02: providing a P-type polysilicon substrate 21A having a first surface 213 and a second surface 214' opposite to the first surface 213 and utilizing a laser to the p-type polycrystalline substrate 21 Drilling is performed to form a plurality of through holes 215 extending through the P-type polysilicon substrate 210 and extending from the first surface 213 to the second surface 214. FIG. 5 shows a top view of the P-type polycrystalline silicon substrate of FIG. 4A. Fig. 5 shows a first surface 213 of a P-type polycrystalline silicon substrate 210 formed with a plurality of through holes 215. As shown in Fig. 4B, step S〇4: the first surface 213 of the p-type polycrystalline silicon substrate 210 is cleaned or etched with an etching solution to roughen the first surface 213 of the p-type polycrystalline silicon substrate 210 to reduce reflection of sunlight. As shown in Fig. 4C, the step s〇6: a first impurity of a majority of the N-type, 201232798 is doped on the first surface 213 of the P-type polycrystalline germanium substrate 2i. In an embodiment, the first surface 213 may be doped with an N-type impurity by a furnace tube diffusion method or a screen printing, a spin coating or a spray method, and the N-type impurity may diffuse into the P-type polycrystalline substrate 210' to form a N. The impurity diffusion region is such that the p-type polysilicon substrate 21 has an N-type region 211 and a P-type region 212. In one embodiment, the first impurity may be a phosphorus impurity 'and the phosphorus impurity is doped on the p-type polycrystalline germanium substrate 21 using phosphorus oxyphosphorus (POCI3) at a temperature of about 8 Torr to about 820 ° C. miscellaneous. As shown in FIG. 4D, step S08: performing a removal oxide layer etching on the first surface 213 and the second surface 214 of the P-type polycrystalline germanium substrate 210 to be removed from the germanium diffusion step (step S06) to be formed on the p-type polycrystalline germanium substrate 21. The first surface 213, the second surface 214, and the side Phosphorous Silicate Glass 'PSG structure 216. As shown in Fig. 4E, step S10: forming an anti-reflection layer 220 on the first surface 213 of the P-type polysilicon substrate 210. Preferably, a portion of the anti-reflective layer 220 is formed on the wall surface of the through hole 215 and a portion of the second surface 214. As shown in FIG. 4F, in step S12, the anti-reflection layer 220 on the region where the finger electrode 231a of the first electrode 231 is to be formed (please refer to FIG. 4G) is removed by a laser lift-off method (iaser ablati〇n) to form a plurality of concaves. Slot 221. As shown in FIG. 4G, step S14: printing a first conductive paste on the first surface 213 of the p-type polysilicon plate 21A by using a printing method '8 201232798, and filling the grooves 221 and the The through holes 215 are formed to form the finger electrode 231a of the first electrode 231 and the filling electrode 23ic. In the present embodiment, the first conductive paste is simultaneously filled in the recesses 221 and the two-hole vias 215 by screen printing, so that the finger electrodes 231a of the first electrode 231 can be formed by using only one screen printing process. The electrode 23ic is filled. In an embodiment, although the recess 221 is not formed, the finger electrode 23la and the filling electrode 231c on the anti-reflection layer 220 are simultaneously formed only by screen printing. However, the advantage of forming the recess 221 is that the first conductive win can be further penetrated into the through hole 215, which is explained in the most simplified manner as follows. In the case where the recess 221 is not formed, it is also required that the depth of the first conductive paste filling the electrode 231c to be filled in the through hole 215 is substantially the thickness H of the P-type polysilicon substrate 210 with respect to the finger electrode 231a. The thickness h of the reflective layer 22〇. In the case where the recess 221 is formed, the bead of the first conductive paste filling the electrode 231c to be filled in the through hole 215 can be substantially reduced to the p-type polycrystalline substrate with respect to the finger electrode 231a'. 21〇 thickness H. In addition, in the prior art, the first conductive paste is directly formed on the anti-reflection layer Π0, and the first conductive paste is sintered and penetrates the anti-reflection layer 120 to contact the N-type by subsequent sintering treatment. Area 211. In contrast, since the finger electrode 23la is located in the recess 221, it can directly contact the N-type region 201232798. The field 211 'the first conductive paste does not need to penetrate the anti-reflective layer 220 during the sintering process. Compared with the conventional technique, the finger can be reduced. Contact resistance between the electrode uia and the n-type region 211. In an embodiment, the first conductive paste may be a silver paste. As shown in FIG. 4H, in step S16, a second conductive paste is printed on the second surface 214 of the P-type polysilicon substrate 210 by a printing method to form a bus bar wiring 23b and a first electrode of the first electrode 231. The bus bar wiring 232b of the two electrodes 232, wherein (at least after the sintering process), the bus bar wiring 231b can contact the filling electrode 231c so that the finger electrode 231a is electrically connected to the bus bar wiring 231b. Preferably, the bus bar wiring 231b is formed on a portion of the anti-reflection layer 220 on the second surface 214. In one embodiment, the second conductive paste may be a silver paste. As shown in FIG. 41, in step 18, a third conductive paste is printed on the second surface 214 of the P-type polysilicon substrate 210 to form the back surface field electrode 232a of the second electrode 232. At least a portion of the back field electrode 232a is located on at least a portion of the bus bar wiring 232b. In one embodiment, the third conductive paste may be an aluminum paste. As shown in FIG. 4J, step 20: sintering the p-type polycrystalline germanium substrate 210 after the step 18 and forming at least one separation trench 240' by the laser to separate the trench 240 from the second surface 214 of the P-type polycrystalline substrate 21 The first surface 213 is extended to make the N-type region 211 and the P-type region 212 10 201232798 substantially non-short circuit in the P-type polysilicon substrate 210. Thus, the bus bar strip 231b of the first electrode 231 and the bus bar strip 232b of the second electrode 232 are both formed on the back contact solar cell 200 of the second surface 214. In one embodiment, while the finger electrode 231a is formed, the first conductive paste is filled in the through hole 215 to form the filling electrode 231c. Therefore, the technology for manufacturing a metal through-hole solar cell can be reduced only by the prior art. A step of filling a conductive paste in the through hole 215. In one embodiment, the recess 221 is formed, and at the same time, the first conductive paste is simultaneously filled in the recesses 221 and the through holes 215 by screen printing, so that the first conductive paste can further penetrate the through holes. Within 215. In the first embodiment, since the first conductive paste of the finger electrode 23ia has contacted the N-type region 21A before the sintering process, the contact resistance between the finger electrode 231a and the N-type region 211 can be reduced. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection depends on the scales defined in the patent scope. In addition, any of the embodiments or the invention of the present invention may not require all of the objects or advantages or features disclosed in the present invention. In addition, the 'summary section and the title only to assist in the search of patent documents are not intended to limit the scope of the invention. 232798 f simple description of the diagram] Lan i, showing a cross-sectional view of a conventional solar cell. 2A shows a top view of a twinned substrate on which a first electrode is formed. 2B shows a bottom view of a conventional twinned substrate formed with a second electrode. 3A through 3B are flow charts showing a method of fabricating a back contact solar cell in accordance with an embodiment of the present invention. 4A through 4J are cross-sectional views showing respective steps of a method of fabricating a back contact solar cell in accordance with an embodiment of the present invention. Figure 5 shows a top view of the P-type polycrystalline germanium substrate of Figure 4A. [Main component symbol description] 100 Solar cell 110 Shixi crystal substrate 111 N-type region 112 P-type region 113 First surface 114 Second surface 120 Anti-reflection layer 130 Electrode structure 131 First electrode 131a Finger electrode 201232798

131b 匯流排條配線 132 第二電極 132a 背面場電極 132b 匯流排條配線 140 分離溝 150 負載 200 太陽能電池 210 P型多晶矽基板 211 N型區域 212 P型區域 213 第一表面 214 第二表面 215 貫穿孔 216 填石夕玻璃結構 220 抗反射層 221 凹槽 231 第一電極 231a 手指電極 231b 匯流排條配線 231c 填充電極 232 第二電極 13 201232798 232a 背面場電極 232b 匯流排條配線 240 分離溝131b bus bar wiring 132 second electrode 132a back field electrode 132b bus bar wiring 140 separation trench 150 load 200 solar cell 210 P-type polysilicon substrate 211 N-type region 212 P-type region 213 first surface 214 second surface 215 through hole 216 Rockfill glass structure 220 Antireflection layer 221 Groove 231 First electrode 231a Finger electrode 231b Bus bar wiring 231c Fill electrode 232 Second electrode 13 201232798 232a Back field electrode 232b Bus bar wiring 240 Separation trench

Claims (1)

201232798 七、申請專利範圍: 1、一種太陽能電池製造方法,包含: 提供具有至少-貫穿孔的ϋ轉縣板且該第 型半導體基板更具有-第一表面及一第二表 面,該第二表面相對於該第一表面,而該至少一貫 穿孔延伸於該第一表面及該第二表面間; 將多數的第二型雜質’摻雜於該第_型半導體基板的該 第一表面上; 將一第一導電膠塗布於該第一型半導體基板的該第一 表面之即將形成一第一電極之一手指電極的區 域,同時將該第一導電膠填充於該至少一些貫穿孔 内,藉以形成該第一電極的該手指電極及一填充電 極; 將一第二導電膠塗布於該第一型半導體基板的該第二 表面上,藉以形成該第一電極之一第一匯流排條配 線以及一第二電極之一第二匯流排條配線,其中該 第一匯流排條配線電連接該填充電極;以及 將一第三導電膠塗布於該第一型半導體基板的該第二 表面上,藉以形成該第二電極之一背面場電極。 、如申請專利範圍第1項所述之太陽能電池製造方法,更 15 201232798 包含:形成一抗反射層於該第一型半導體基板的該第一表 面上。 3、如申請專利範圍第2項所述之太陽能電池製造方法,更 包含: 去除即將形成該第一電極之該手指電極的區域上的該 抗反射層,以形成至少一凹槽, 其中該形成該第一電極的該手指電極及一填充電極的 步驟包含:以網印方式同時將該第一導電膠填充於 該至少一凹槽及該至少一貫穿孔中。 4'如申請專利範圍第1項所述之太陽能電池製造方法,其 中該第一導電膠包含一銀膠。 5、 如申請專利範圍第1項所述之太陽能電池製造方法,其 中該提供具有至少一貫穿孔的一第一型半導體基板的步 驟包含: 提供該第一型半導體基板,並利用雷射對該第一型半導 體基板進行鑽孔,以形成貫穿該第一型半導體美板 並從該第一表面延伸至該第二表面的該至少一貫 穿孔; 6、 如申請料!顧第1摘述之太_電池製造方法,更 包含:利用一蝕刻液蝕刻該第一型半導體基板的該第一表 面,使該第一表面粗縫化。 16 201232798 7、 如申請專利範圍第1項所述之太陽能電池製造方法,其 中, 該形成該第一電極之一第一匯流排條配線以及一第二 電極之一第二匯流排條配線的步驟包含:利用網印 方式,將該第二導電膠印刷於該第一型半導體基板 的該第二表面上,且 該形成該第二電極之一背面場電極的步驟包含:利用網 印方式,將該第三導電膠印刷於該第一型半導體基 板的該第二表面上。 8、 如申請專利範圍第7項所述之太陽能電池製造方法,其 中該第二導電膠包含一銀膠。 9、 如申請專利範圍第7項所述之太陽能電池製造方法,其 中該第三導電膠包含一鋁膠。 10、 如申請專利範圍第1項所述之太陽能電池製造方法,更 包含: 對形成有該第一電極及該第二電極的該第一型半導體 基板,進行燒結處理; 利用雷射形成至少一分離溝,且至少一分離溝該從該第 一型半導體基板的該第二表面向該第一表面延伸。 17201232798 VII. Patent application scope: 1. A method for manufacturing a solar cell, comprising: providing a 县 县 plate having at least a through hole and the first type semiconductor substrate further has a first surface and a second surface, the second surface Relative to the first surface, the at least one continuous via extends between the first surface and the second surface; a plurality of second type impurities are doped on the first surface of the first-type semiconductor substrate; Applying a first conductive paste to the first surface of the first type semiconductor substrate to form a region of the finger electrode of one of the first electrodes, and filling the first conductive paste in the at least some through holes, thereby forming a first electrode of the first electrode and a filling electrode; a second conductive paste is coated on the second surface of the first type semiconductor substrate, thereby forming a first bus bar wiring and a first electrode a second bus bar wiring of the second electrode, wherein the first bus bar wiring is electrically connected to the filling electrode; and a third conductive paste is applied to the first type semiconductor On the second surface of the substrate, thereby forming one of the back surface electrode of the second field electrode. The method for manufacturing a solar cell according to claim 1, further comprising: forming an anti-reflection layer on the first surface of the first type semiconductor substrate. 3. The method of manufacturing a solar cell according to claim 2, further comprising: removing the anti-reflection layer on a region of the finger electrode to be formed of the first electrode to form at least one groove, wherein the forming The step of the finger electrode and the filling electrode of the first electrode comprises simultaneously filling the first conductive paste in the at least one groove and the at least one continuous through hole by screen printing. The method of manufacturing a solar cell according to claim 1, wherein the first conductive paste comprises a silver paste. 5. The method of manufacturing a solar cell according to claim 1, wherein the step of providing a first type semiconductor substrate having at least a uniform via includes: providing the first type semiconductor substrate, and using the laser to A type of semiconductor substrate is drilled to form the at least consistent perforation extending through the first type of semiconductor sheet and extending from the first surface to the second surface; 6. As described in the application material; The battery manufacturing method further includes etching the first surface of the first type semiconductor substrate with an etching solution to roughen the first surface. The method for manufacturing a solar cell according to claim 1, wherein the step of forming the first bus bar wiring of the first electrode and the second bus bar wiring of one of the second electrodes The method includes: printing the second conductive paste on the second surface of the first type semiconductor substrate by using a screen printing method, and the step of forming a back surface field electrode of the second electrode comprises: using a screen printing method, The third conductive paste is printed on the second surface of the first type semiconductor substrate. 8. The method of manufacturing a solar cell according to claim 7, wherein the second conductive paste comprises a silver paste. 9. The method of manufacturing a solar cell according to claim 7, wherein the third conductive paste comprises an aluminum paste. 10. The method of manufacturing a solar cell according to claim 1, further comprising: performing sintering treatment on the first type semiconductor substrate on which the first electrode and the second electrode are formed; forming at least one by using a laser a separation trench, and the at least one separation trench extends from the second surface of the first type semiconductor substrate toward the first surface. 17
TW100102752A 2011-01-26 2011-01-26 Method for manufacturing a back-contact solar cell TWI429097B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100102752A TWI429097B (en) 2011-01-26 2011-01-26 Method for manufacturing a back-contact solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102752A TWI429097B (en) 2011-01-26 2011-01-26 Method for manufacturing a back-contact solar cell

Publications (2)

Publication Number Publication Date
TW201232798A true TW201232798A (en) 2012-08-01
TWI429097B TWI429097B (en) 2014-03-01

Family

ID=47069698

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102752A TWI429097B (en) 2011-01-26 2011-01-26 Method for manufacturing a back-contact solar cell

Country Status (1)

Country Link
TW (1) TWI429097B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253166A (en) * 2014-10-17 2014-12-31 天威新能源控股有限公司 Back-contact solar cell and preparation method thereof
TWI505506B (en) * 2012-11-13 2015-10-21
TWI513019B (en) * 2013-08-01 2015-12-11 Motech Ind Inc Solar cell and solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505506B (en) * 2012-11-13 2015-10-21
TWI513019B (en) * 2013-08-01 2015-12-11 Motech Ind Inc Solar cell and solar cell module
CN104253166A (en) * 2014-10-17 2014-12-31 天威新能源控股有限公司 Back-contact solar cell and preparation method thereof
CN104253166B (en) * 2014-10-17 2017-02-15 天威新能源控股有限公司 Back-contact solar cell and preparation method thereof

Also Published As

Publication number Publication date
TWI429097B (en) 2014-03-01

Similar Documents

Publication Publication Date Title
JP2022501837A (en) Crystalline silicon solar cell and its manufacturing method
JP4818544B2 (en) Solar cell and manufacturing method thereof
JP2593063B2 (en) Laser grooved solar cell
TWI515916B (en) Fabrication method for interdigitated back contact photovoltaic cells
KR101719949B1 (en) Solar battery cell, method for producing same, and solar battery module
CN104956495B (en) Solar battery cell and its manufacture method
TW201021224A (en) Interdigitated back contact silicon solar cells with laser ablated grooves and a manufacturing method thereof
KR20100098993A (en) Solar cell and manufacturing mehtod of the same
TWI455342B (en) Solar cell with selective emitter structure and manufacturing method thereof
EP2172982A2 (en) Method of fabricating a differential doped solar cell
TWI441347B (en) Solar cell
CN107799616A (en) A kind of interdigital back contact solar cell piece and preparation method thereof
CN115132852A (en) N-type TOPCon solar cell and manufacturing method thereof
CN115566099A (en) Manufacturing method of solar cell
CN117747678A (en) Ultrathin tunneling oxidation passivation contact solar cell and manufacturing method thereof
TW201232798A (en) Method for manufacturing a back-contact solar cell
KR100682017B1 (en) Solar cell and method for manufacturing the same
CN117637875A (en) Back contact battery and manufacturing method thereof
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
CN115692516A (en) Novel TOPCON battery and manufacturing method thereof
CN213519983U (en) Solar cell
CN117133812A (en) Back contact battery and manufacturing method thereof
TWI496305B (en) Solar cell and manufacturing method thereof
CN104241356B (en) DMOS device and manufacturing method thereof
TW201232803A (en) Method for manufacturing a back-contact solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees