TW201231730A - Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same - Google Patents

Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same Download PDF

Info

Publication number
TW201231730A
TW201231730A TW100145902A TW100145902A TW201231730A TW 201231730 A TW201231730 A TW 201231730A TW 100145902 A TW100145902 A TW 100145902A TW 100145902 A TW100145902 A TW 100145902A TW 201231730 A TW201231730 A TW 201231730A
Authority
TW
Taiwan
Prior art keywords
sulfuric acid
conductive diamond
electrode
cathode
anode
Prior art date
Application number
TW100145902A
Other languages
Chinese (zh)
Other versions
TWI516641B (en
Inventor
Masaaki Kato
Hiroki Domon
Junko Kosaka
Original Assignee
Chlorine Eng Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Eng Corp Ltd filed Critical Chlorine Eng Corp Ltd
Publication of TW201231730A publication Critical patent/TW201231730A/en
Application granted granted Critical
Publication of TWI516641B publication Critical patent/TWI516641B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/083Diamond
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Abstract

The present invention is an electrically conductive diamond electrode which comprises an electrically conductive base and an electrically conductive diamond layer coated on the surface of the electrically conductive base, and which is characterized in that (1) the electrically conductive diamond layer has a thickness of 1-25 μm, (2) a potential window fulfills formula (1), and (3) the ratio (A/B) of a diamond component (A) to a non-diamond component (B) as determined by Raman spectroscopy fulfills formula (2): (1) 2.1 V = potential window = 3.5 V; (2) 1.5 -1 in Raman spectroscopy; B = the intensity at a wave number of 1500 cm-1 in Raman spectroscopy). The present invention provides: an electrically conductive diamond electrode in which the thickness of an electrically conductive diamond layer and the crystallinity of electrically conductive diamond are regulated so as to achieve high electrode durability and high oxidizable substance production efficiency at a low cell voltage; and a sulfuric acid electrolysis method and a sulfuric acid electrolysis apparatus, each of which utilizes the electrode.

Description

201231730 六、發明說明: 【發明所屬之技術領域] 本發明係關於-種導電性鑽石電極、及使用導電性鑽石電 極直接電解硫義穩定地生絲錄物質之硫酸電解方法 及硫酸電解裝置。 【先前技術】 作為金屬之電解魏之預處理劑或關劑、半導體元件製 造中之化學機械性研磨處理中之氧化劑、濕式分析中之有機 物之氧化劑、碎晶目之清洗料各種製造餘或檢查製程中 所使用之_ ’可使用過雜或過碰鹽。鱗過硫酸或過 硫酸鹽係稱作「氧化性物質」,已知該「氧化性物質」係 由硫酸之電解而生成,已以工業規模加以電解製造。 於树明中,所謂「氧化性物質」係指作為過氧二硫酿 過氧單硫酸之總稱的過硫酸、過氧化氫。於將作為電解產 之「氧化性物質」用於構件之清洗或表面處理等時,大, 況下成為該等總濃度越高效果越佳之藥液,故而 二 濃度之藥液之方法。又,於料之製造巾使用電解法, 由電解糟、電解電流、電流效率所算出之電力原單位 情況、及經時地轉穩定且較高之鶴效率之情况,由於 少生產所必需之能量,故而對於生產性提高方 從而尋求㈣實現上麟狀電極之製造紐%所使的 之電極之敎性較高之情況由於延長電極壽命、可製作無 100145902 201231730 自= 亏染的潔淨之電解液等’故而有致。 造二栽有使科電性鑽石陽極電解濃硫酸而製 把似▲之硫酸電解方法、及使 圓加工物之清洗方法。 力硫u矽曰曰 ^ 包11鑽石電極與習知較多地用作 生成過‘j欠鹽之電極的鈕 •大,故而蔣抑士 比,由於產生氧之過電壓較 大故而將石爪酉夂電解氧化 - 與穩宏秘护故_ 丨义之效率優異。又,具有化 子父強、電極壽命較長之優點。 即、,導六電_石電極與其他電極觸媒(pt、pb〇2等)相比, 之成效率較高、耐久性較高、可製作無來自電極 之污染的潔淨之雷紐、、戌站 冑解料’故而尤其是於半導體晶圓等之清 洗液製造用途等中不斷進行開發。 Υ、而雖”、、於專利文獻1中記載有如下方法 ,該方法係使 用導電性鑽硕極轉濃碰”造過硫酸之硫酸電解方 法,且電解濃硫酸而生成包含過硫酸之清錄,將上述清洗 液供給至附有抗_切晶圓等被清洗物而進行清洗,進而 藉由回收過硫酸濃度下降之使用完畢之清洗液並再次進行 ’電解* 0加過硫酸I度,將同—清洗液减用於清洗,但其 •對於導電f生鑽石電極之結晶性、與拉曼光譜特性/電位範圍 之關係11及過氧二硫酸等過硫酸或清洗液中之氧化性物質 之電流效率及電解槽電壓等生產性未作揭示。 、 於專利文獻2中揭示有,對於工具用多結晶鑽石,藉由規 ^厚而_鑽石之較高之強度,藉由規定拉曼㈣之峰值 100145902 201231730 強度比而提高鑽石之耐磨耗性之方法 文獻2中所記载之鑽石係將膜厚設為二=有’專利 拉曼光譜分析所獲得之_碳轉類鑽 ’將藉由 碳/類鑽碳)設為2.0以 々 及之峰值比(非類鑽 解用電極,對於導電性鑽^目$而’關於該鑽石並非電 一的電位範圍之相:作為電解特性之 二硫酸等撕物 解槽電㈣生純的_性未作揭示。 及電 於中’作為臭氧水製造裝置用之電解用電極, ^ _鑽碳之導電性膜之導電性鑽石電極 於專利文獻3所記載之導電'_,於拉曼光譜分析中,存在 於1340 Cm ±20 cm.丨之峰值之積分強度Int< m〇>與存在 於1580 —2〇 W之峰值之積分強度Int<测〉的比滿 足下述式’藉此揭示—種_電極之耐久性、可以高電流效 率製造臭氧水之臭氧水製造裝置。201231730 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a conductive diamond electrode and a sulfuric acid electrolysis method and a sulfuric acid electrolysis apparatus which directly electrolyze a sulfur-stable stable raw material using a conductive diamond electrode. [Prior Art] As a pretreatment agent or a shut-off agent for metal electrolysis, an oxidizing agent in chemical mechanical polishing treatment in the manufacture of semiconductor elements, an oxidizing agent for organic substances in wet analysis, and a cleaning material for crushing crystals, or Check the process used in the process _ 'can use too much or touch salt. Squamous persulfate or persulfate is called an "oxidizing substance". It is known that this "oxidizing substance" is produced by electrolysis of sulfuric acid and has been produced by electrolysis on an industrial scale. In the case of Yu Shuming, the term "oxidizing substance" refers to persulfuric acid or hydrogen peroxide, which is a general term for peroxydisulfuric peroxymonosulfuric acid. When an "oxidizing substance" which is produced by electrolysis is used for cleaning or surface treatment of a member, it is a method in which the higher the total concentration is, the better the effect is, and the second concentration is the liquid medicine. In addition, in the manufacturing of the material, the electrolysis method is used, and the electric power unit calculated from the electrolysis waste, the electrolysis current, and the current efficiency, and the crane efficiency which is stable over time and high, are required for less production. Therefore, for the improvement of the productivity, it is sought to achieve (4) the high conductivity of the electrode made by the manufacture of the upper rib electrode. Since the electrode life is prolonged, a clean electrolyte without 100145902 201231730 self-consumption can be produced. Waiting for it. The second plant has a method of electrolyzing sulfuric acid which is made by electrolyzing the nucleus of the electric diamond to produce a sulfuric acid electrolysis method and a cleaning method for the round processed material. Force sulfur u矽曰曰^ package 11 diamond electrode and more commonly used as the button to generate the 'j under salt electrode · large, so the Jiang Yi Shi ratio, due to the generation of oxygen overvoltage, the stone claw酉夂 Electrolytic oxidation - and the stability of the _ _ _ _ _ _ _ _ _ _ _ _ In addition, it has the advantages of strong parent and long electrode life. In other words, the lead-electrode_stone electrode has higher efficiency and higher durability than other electrode catalysts (pt, pb〇2, etc.), and can produce a clean renewed rod without contamination from the electrode,戌 胄 胄 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 。 。 Patent Document 1 discloses a method in which a sulfuric acid electrolysis method for producing sulfuric acid is used, and a concentrated sulfuric acid is electrolyzed to produce an inventory containing persulfuric acid. The cleaning liquid is supplied to the object to be cleaned with an anti-cut wafer to be cleaned, and the used cleaning liquid having a reduced concentration of persulfuric acid is recovered, and the electrolysis is further performed. The same - cleaning solution is used for cleaning, but it has the relationship between the crystallinity of the conductive f-stone electrode, the Raman spectral characteristic/potential range, and the oxidizing substance in persulfuric acid or cleaning solution such as peroxodisulfate. The productivity of current efficiency and cell voltage is not disclosed. According to Patent Document 2, for a multi-crystal diamond for a tool, the strength of the diamond is increased by the intensity of the ruled thickness of the Raman (4) by the higher intensity of the diamond. Method The diamond system described in Document 2 has a film thickness of two = "The carbon-type drill obtained by the patented Raman spectroscopy" is set to 2.0 by carbon/drilling carbon. Peak ratio (for non-drilling electrodes, for conductive drills and 'the phase of the potential range where the diamond is not electricity one: as the electrolysis characteristics of disulfuric acid and other tears, the solution is not pure. For the purpose of the Raman spectroscopy, the electroconductive electrode for the ozone water-making device is used as the electroconductive electrode for the ozone-based conductive film, and the conductive diamond electrode of the conductive film of the carbon is described in Patent Document 3. The integral intensity of the peak at 1340 Cm ± 20 cm. InInt<m〇> and the integral intensity of the peak existing at 1580-2 〇W Int<measurement> satisfy the following formula' Durable electrode, ozone water with high current efficiency Making device.

Int< 1340>/lnt< 1580〉5 然而,於專利文獻3中表明,所謂類鑽碳係表示非晶質硬 質碳,為與具有結晶構造之導電性鑽石不同之構造。 然而’於專利文獻3中’係使用類鑽碳作為電極,對於導 電性鑽石電極之結晶性與拉曼光譜特性/電位範圍之關係 性、及導電性鑽石電極之結晶性與過氧二硫料過硫酸或清 洗液中之氧化性物質之電流效率及電解槽電壓等生產性的 100145902 6 201231730 關係性未作揭示。 然而’於上述專敎獻卜3所記叙方法巾,導電性鑽 石電極之結晶性與拉曼綠特性/電位範圍之相關性並不明 確,況且,利㈣等方法無法製造電極之耐久性較高且於低 • t解槽電壓下氧化性物f生成效率較高之導電性鑽石電極。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開2006-278838號公報 [專利文獻2]曰本專利特開平2-232106號公報 [專利文獻3]日本專利特開2008_266718號公報 【發明内容】 (發明所欲解決之問題) 本發明之目的在於:解決該等習知技術問題,並提供一種 電極之耐久性優異且於低電解槽電壓下氧化性物質生成效 率杈尚之導電性鑽石電極、使用其之硫酸電解方法及硫酸電 解裝置。 瓜夂 ,本發明者等人為解決上述問題而進行了銳意研究,結果發 . 現導電性鑽石之結晶性與電解性能(電極之耐久性、電解样 電壓、氧化性物質之電流效率)存在密切之關係,又,於妗 晶性之評價中,藉由規定導電性鑽石膜之膜厚、電位範圍之 廣度與拉曼光譜之峰值強度比而成功地實現上述電解性能。 (解決問題之手段) b 100145902 201231730 本發明為解決上述問題而提供一種導電性鑽石電極,其特 徵在於:包括導電性基體與被覆於上述導電性基體之表面上 之導電性鑽石層,且 1) 上述導電性鑽石層之厚度為1〜25 /zm, 2) 電位範圍滿足式(1), 3) 藉由拉曼光譜分析所獲得之鑽石成分A與非鑽石成分 B之比(A/B)滿足式(2)。 刀 2.1 VS 電位範圍 S3.5 V ...(1) 1.5 < A/B ^6.5 ."(2) A=拉曼光譜分析中之波數1300 cm,1下之強度 B=拉曼光譜分析中之波數1500 cm·1下之強度 又,本發明之第2解決手段在於提供一種電極,其係使用 包含1000〜6000 ppm之硼之導電性鑽石層作為上述導電性 鑽石層。 又,本發明之第3解決手段在於提供一種電極,其中,上 述導電性基體係使用矽基板。 又,本發明之第4解決手段在於提供一種硫酸電解方法, 其係藉由隔膜而劃分成陽極室與陰極室,於上述陽極室内設 置導電性鑽;5陽極,於上述陰極室内設置陰極,自外部向上 述陽極室及陰極室内分別供給包含硫酸離子之電解液而進 行電解’從而於上述陽極室内之陽極電解液中生成氧化性物 質的硫酸電解方法,並錢用特定之導電性鑽石電極作為上 100145902 201231730 述導電性鑽石電極,且將上述包含硫酸離子之電解液製成含 有2〜14 mol/l之濃度的硫酸離子之溶液。 又’本發明之第5解決手段在於提供一種硫酸電解方法, 其係於上述電祕件巾,將上述包含硫麟子之f解液之酸 濃度设為4〜28 mol/I.。 又藉由本發明之第6解決手段在於提供一種硫酸電解裝 置,其係藉由隔膜而劃分成陽極室與陰極室,於上述陽極室 内《又置導電性鑽石陽極,於上述陰極室内設置陰極,自外部 向上述陽極室及陰極室内分職給包含硫酸離子之電解液 而進行電解’從而於上述陽極室内之陽極電解液中生成氧化 性物質的硫酸電解裝置,並且使用上述㈣性鑽石電極,且 使用包含氟樹脂系陽離子交換膜或經親水化處理之多孔質 敦系樹脂臈的隔膜作為上述隔膜。 又本發明之第7解決手段在於提供一種硫酸電解方法, 其係精由隔膜而劃分成陽極室與陰極室,於上述陽極室内設 置導電性鑽石陽極,於上述陰極室内設置陰極,自外部向上 述陽極室及陰極室内分別供給包含硫酸離子之電解液而進 行電解,從而於上述陽極室内之陽極電解液中生成氧化性物 質的硫酸電解方法’並且使用上述導電性鑽石電極作為上述 導電性鑽石電極’且於滿足(3)式、⑷式之條件下電解上述 包含硫酸離子之電解液。 ΙΟΟ^Χ^ 10000 ...(3) 100145902 9 201231730 25<Υ<250 …(4) X =電流值/陽極液量(A/l) Υ=電流密度(A/dm2) 又,本發明之第8解決手段在於提供一種硫酸電解方法, 其係於上述電解條件下’於滿足⑽之條件下電解包含硫 酸離子之溶液。 & 18000^Z^ 1080000 …(5) Ζ=每單位體積之電量(c/丨卜電流值X電解時間/陽極液量 (Α · s/1) (發明效果) 根據本發明之導電性鑽石電極、使用其之硫酸電解方法及 硫酸電解裝置,可崎高之電流效率製造—種習知技術無法 達成之電極之敎㈣s、· 化性物質溶液。 胃賴L農度較而之氧 【實施方式】 本發明發現,導電性鑽石電極之結晶性係與電流效率之間 存在松切關係,即該導電性鑽石電極之結晶性與將上 性鑽石電極組裝於電解槽中而進行硫酸之電解時的電極之 、所製造之氧化性物質溶液之_ 質濃度與電流效率之間存在密切關係。 鑽石係構成之碳原子分別根據肥混成執道而結合之立 方晶,又,帶隙係較寬且為絕緣體。 100145902 201231730 /;;方面’本發财之導料鑽石細H由包含原子價血 石反不同之雜質而賦予導電性之。 八 -> ^'t ^^ - 就棱高導電率之觀點而 吕,雜質濃度越高越好,另一方 曰卜4織兰丄义 , 右雜處濃度過高,則結 本發明中之結晶性係表示二二成為缺乏耐久性者。 之雜質之含量,且^ : 之規則性或除碳以外 里具體I,於非鑽石成分、石墨成分、非0曰 狀鑽石較多之情形,導電性鑽石層之膜厚較薄之情形^ 性鑽石之粒錄小之㈣,除碳料 ^ 之情形時,結晶性較低^ mu II交多 一如本^料域㈣之衫之實觀果、下述實 不i可明確了解導電性鑽石層之膜厚、藉由拉曼光譜分才戶 獲付之鑽石成分A盥非鑽石占八斤 ”非鑽石成分B之比(A/B)均為表科曰 性之因子’藉由規定該等,可獲得電極之耐久性較^;曰曰 較低之電解槽電壓下進行電解、氧化性物質之電: 南、可製造高濃度之氧化性㈣溶㈣導電_石電極,乂 用其之硫酸電解方法及硫酸之電解裝置。 ,使 本發明係構成導電性鑽石電極者,該導電性 徵在於:上述導電性鑽石層之膜厚為卜 滿足式⑴’ ϋ由拉曼光譜分析所獲得之鎖石成> a與非 石成分B之比(A/B)滿足式(2)。 /、鑽 2.1 VS電位範圍5 v …(1) 1.5<A/B^6.5 …(2) 100145902 201231730 A =拉曼光譜分析中之波數之強度 B =拉曼光譜分析中之波數15〇〇(^_1下之強^ 首先,對導電性鑽石電極之膜厚之限定理由進行說明。 上述導電性鑽石層之臈厚較佳為1〜25 _,更佳為卜 Μ 上述導電性鑽石層之厚度㈣越薄,越能夠縮短 上述導電性鑽石層之製作時間,且成為導電性錯石之结晶性 越低者。若結晶性變低,則氧化性物質之㈣” 解槽電厂堅變低’因此較佳。然而,若膜厚變得過薄科^ ,,則因基材之腐料而導致基體露出、或膜於電解過程 中剝落等’從而成為缺乏電極之敎性者。又,若膜厚變得 過厚而大於25 _,騎晶性變高,無基材之露出,電解 液不會浸透至基材,因此電極之敎性提高,但成為氧化性 物質之電流效率較低、電解槽電壓較高者,故而本發明之導 電性鑽石電極之膜厚較佳為丨〜25 wm。 其次,對電位範圍之限定理由進行說明。 再者,於本發明中,所謂電位範圍,係表示於水之電解反 應中皆不產生氫或氧之電位區域。 於電位範圍之廣度較大之情形時,導電性鑽石膜之結晶性 變同,電極之耐久性提高。然而,若電位範圍之廣度變得大 於3.5 V貝j氧化性物質之電流效率變低,電解槽電壓變高。 另-方面,若電位範圍之廣度變得小於21 V,則電極之耐 久性變低。 100145902Int<1340>/lnt<1580>5 However, Patent Document 3 discloses that the diamond-like carbon system represents amorphous hard carbon and has a structure different from that of a conductive diamond having a crystal structure. However, 'Patent Document 3' uses the diamond-like carbon as an electrode, the relationship between the crystallinity of the conductive diamond electrode and the Raman spectral characteristic/potential range, and the crystallinity of the conductive diamond electrode and the peroxydisulfide. The current efficiency of the oxidizing substance in the persulfuric acid or the cleaning liquid and the productivity of the electrolytic cell voltage are not disclosed in the relationship of 100145902 6 201231730. However, the correlation between the crystallinity of the conductive diamond electrode and the Raman green characteristic/potential range is not clear, and the durability of the electrode cannot be made by the method such as Lee (4). Conductive diamond electrode with high oxidizing agent f generation efficiency at high and low • t solution voltage. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a conductive material which is excellent in durability and has an efficient production efficiency of an oxidizing substance under a low electrolytic cell voltage. A diamond electrode, a sulfuric acid electrolysis method using the same, and a sulfuric acid electrolysis device. The inventors of the present invention conducted intensive studies to solve the above problems, and as a result, the crystallinity of the conductive diamond and the electrolysis property (the durability of the electrode, the voltage of the electrolytic sample, and the current efficiency of the oxidizing substance) are closely related. In addition, in the evaluation of twinning, the above electrolysis performance was successfully achieved by specifying the film thickness of the conductive diamond film, the breadth of the potential range, and the peak intensity ratio of the Raman spectrum. (Means for Solving the Problem) b 100145902 201231730 In order to solve the above problems, the present invention provides a conductive diamond electrode comprising a conductive substrate and a conductive diamond layer coated on the surface of the conductive substrate, and 1) The thickness of the conductive diamond layer is 1 to 25 /zm, 2) the potential range satisfies the formula (1), 3) the ratio of the diamond component A to the non-diamond component B obtained by Raman spectroscopy (A/B) Satisfy the formula (2). Knife 2.1 VS potential range S3.5 V ... (1) 1.5 < A / B ^ 6.5 . " (2) A = Raman spectrum analysis wave number 1300 cm, 1 intensity B = Raman In the spectral analysis, the intensity of the wave number is 1500 cm·1. The second solution of the present invention is to provide an electrode using a conductive diamond layer containing 1000 to 6000 ppm of boron as the conductive diamond layer. Further, a third means of solving the present invention is to provide an electrode in which the above-mentioned conductive base system uses a tantalum substrate. Further, a fourth solution of the present invention is to provide a sulfuric acid electrolysis method which is divided into an anode chamber and a cathode chamber by a separator, and a conductive drill is disposed in the anode chamber; and an anode is provided in the cathode chamber. A sulfuric acid electrolysis method in which an electrolytic solution containing sulfuric acid ions is supplied to the anode chamber and the cathode chamber to perform electrolysis to generate an oxidizing substance in the anolyte in the anode chamber, and a specific conductive diamond electrode is used as the upper side. 100145902 201231730 A conductive diamond electrode is described, and the above electrolyte containing a sulfate ion is made into a solution containing a sulfate ion having a concentration of 2 to 14 mol/l. Further, the fifth means for solving the present invention is to provide a method for electrolyzing sulfuric acid which is applied to the above-mentioned electric secretory towel, and the acid concentration of the solution containing the sulfur sulphide is 4 to 28 mol/l. According to a sixth aspect of the present invention, there is provided a sulfuric acid electrolysis apparatus which is divided into an anode chamber and a cathode chamber by a diaphragm, and a conductive diamond anode is disposed in the anode chamber, and a cathode is disposed in the cathode chamber. A sulfuric acid electrolysis device that externally supplies an electrolyte containing sulfuric acid ions to the anode chamber and the cathode chamber to perform electrolysis to generate an oxidizing substance in the anolyte in the anode chamber, and uses the above (four) diamond electrode, and uses A separator comprising a fluororesin-based cation exchange membrane or a hydrophilized porous dielectric resin crucible is used as the separator. A seventh solution of the present invention is to provide a sulfuric acid electrolysis method, which is divided into an anode chamber and a cathode chamber by a separator, a conductive diamond anode is disposed in the anode chamber, and a cathode is disposed in the cathode chamber, and the cathode is externally A sulfuric acid electrolysis method for generating an oxidizing substance in an anolyte in the anode chamber by supplying an electrolyte containing sulfuric acid ions to the anode chamber and the cathode chamber, and using the above-described conductive diamond electrode as the conductive diamond electrode Further, the above electrolyte containing sulfate ions is electrolyzed under the conditions satisfying the formulas (3) and (4). ΙΟΟ^Χ^ 10000 ...(3) 100145902 9 201231730 25<Υ<250 (4) X = current value / anolyte amount (A/l) Υ = current density (A/dm2) Further, the present invention The eighth solution is to provide a sulfuric acid electrolysis method for electrolyzing a solution containing sulfate ions under the above-mentioned electrolysis conditions under the condition of satisfying (10). & 18000^Z^ 1080000 (5) Ζ = amount of electricity per unit volume (c / 电流 current value X electrolysis time / anolyte amount (Α · s / 1) (effect of the invention) Conductive diamond according to the present invention The electrode, the sulfuric acid electrolysis method using the same, and the sulfuric acid electrolysis device can be manufactured with high current efficiency - an electrode that cannot be achieved by conventional techniques (4) s, a chemical substance solution. The stomach depends on the degree of oxygen of the agricultural system [implementation] The present invention has found that there is a loose relationship between the crystallinity of the conductive diamond electrode and the current efficiency, that is, the crystallinity of the conductive diamond electrode and the electrolysis of sulfuric acid when the upper diamond electrode is assembled in the electrolytic cell. There is a close relationship between the concentration of the electrode and the current efficiency of the oxidizing substance solution produced by the electrode. The carbon atoms formed by the diamond system are combined according to the cubic crystal of the fat blending, and the band gap system is wide and 100145902 201231730 /;; Aspect 'The wealth of the guide diamond fine H is imparted with conductivity by containing impurities of the opposite bloodstone. Eight-> ^'t ^^ - High electrical conductivity Point of view The higher the impurity concentration, the better, the other side is 4, and the concentration of the right side is too high. The crystallinity in the present invention indicates that the second is a lack of durability. In the case of regularity or carbon removal, in the case of non-diamond components, graphite components, and non-zero diamonds, the film thickness of the conductive diamond layer is thinner. In the case of carbon material ^, the crystallinity is lower ^ mu II is more than the actual view of the shirt of the material field (4), the following is not clear, the film thickness of the conductive diamond layer can be clearly understood, by pulling Mann Spectrum is divided into diamond components A, non-diamonds account for eight pounds, and the ratio of non-diamond components B (A/B) is a factor of the table's ambiguity'. By specifying these, the durability of the electrode can be obtained. Electrolysis, oxidizing substance electricity at a lower electrolytic cell voltage: South, can produce high concentration of oxidizing (4) dissolved (four) conductive _ stone electrode, sulphuric acid electrolysis method and sulphuric acid electrolysis device In order to make the present invention constitute a conductive diamond electrode, the conductivity is: the above guide The film thickness of the electric diamond layer is satisfied by the formula (1)', and the ratio of the lock stone obtained by Raman spectroscopy to the non-stone component B (A/B) satisfies the formula (2). /, drill 2.1 VS Potential range 5 v ... (1) 1.5 < A / B ^ 6.5 ... (2) 100145902 201231730 A = the intensity of the wave number in Raman spectroscopy B = the number of waves in Raman spectroscopy 15 〇〇 (^_1 First, the reason for limiting the film thickness of the conductive diamond electrode is described. The thickness of the conductive diamond layer is preferably from 1 to 25 Å, more preferably the thickness of the conductive diamond layer (four) When it is thin, the production time of the above-mentioned conductive diamond layer can be shortened, and the crystallinity of the conductive stony stone is lowered. If the crystallinity is low, the (4) oxidizing substance is low in the power plant. Therefore, if the film thickness becomes too thin, the substrate is exposed due to the corrosion of the substrate. Or the film peels off during electrolysis, etc., and becomes a lack of electrode. Moreover, if the film thickness becomes too thick and is larger than 25 _, the crystal riding property becomes high, and no substrate is exposed, the electrolyte does not permeate to Since the base material is improved in the conductivity of the electrode, the current efficiency of the oxidizing substance is low and the voltage of the electrolytic cell is high. Therefore, the thickness of the conductive diamond electrode of the present invention is preferably 丨 25 25 m. In the present invention, the potential range is a potential region in which no hydrogen or oxygen is generated in the electrolytic reaction of water. When the breadth of the potential range is large, the conductive region is conductive. The crystallinity of the diamond film is the same, and the durability of the electrode is improved. However, if the breadth of the potential range becomes larger than 3.5 V, the current efficiency of the oxidizing substance becomes lower, and the cell voltage becomes higher. The breadth of the scope becomes small At 21 V, the durability of the electrode becomes low. 100145902

S 12 201231730 又,於拉曼光譜之峰值強度比A/B較大之情形時 ,導電 性鑽石膜之結日曰日性變高,電極之敎性提高。然而,若拉曼 光谱之峰值強度比A/B變得大於6·5,則氧化性物質之電流 效率變低,電解槽電壓變高。另—方面,於拉曼光譜構值 強度比Α/Β杈小之情形時,導電性鑽石膜之結晶性變低, 氧化性物質之效率變高’電解槽電壓變低。然而,若拉曼光 譜之峰值強度比Α/Β為1·5以下,則電極之财久性變低。 上述導電性鑽石層較佳為含有1_〜6_ppm之硼,更 佳為含有3000〜5000 ppm之石朋。石朋濃度變得越高,結晶性 變得越低’越會成為電解槽電壓較低、氧化性㈣之電流效 率較高之電極,因此較佳。然而,若贿度磐過高而大於 _〇 ppm,則成為如附著有锡之電極,電極缺乏耐久性,因 此本發明之導電性鑽石電極較佳為含有1〇〇〇〜刪〇鹏之 硼。 上述導電) 生基體並無特別限定,可使用组、鶴、欽、銳等, 於使用硬基板之情形時,可製作密著性更佳之電極,故而較 佳再者’上述導電性基體之形狀並無特別限定,可使用板 狀、雜、管狀、球狀等。上述導電性基體亦可含有硼、碳 等雜質。 以下’參照圖式詳細地說明本發明之硫酸電解方法及硫酸 電解裝置之實施之一例。 圖1係表示本發明之硫酸電解方法及硫酸電解裝置中所 100145902 13 201231730 使用之電解槽之一例者。 該電解槽係劃分為陽極室3與陰極室4,陽極室3係 多孔質 PTFE(Poly Tetra Fluoro Ethylene ’ 聚四氟乙婦)隔膜 9 而收容導電性鑽石陽極10,且收容充滿有上述包含硫酸離 子之電解液;陰極室4係收容導電性鑽石陰極12,且充滿 有與陽極室3相同浪度之硫酸。於陽極室3連接有陽極液供 給口 7,通過該陽極液供給口 7使作為陽極液之硫酸供給至 陽極室3巾。又’於陰極室4連接有陰極液供給口 8,通過 s亥陰極液供給口 8使陰極液供給於陰極室4。 於陽極室3中生成之氧化性物質溶液係自陽極液排出口 ^ 排出。又,於陰極室4中生成之氫及硫酸歸係自陰極液排 出口 2排出。 再者,5為陽極給電端子,6為陰極給電端子,n為導電 性鑽石陽極ίο之導電性基板,13為導f性鑽石陰極12之 導電性基板’ 14為電解槽之密封材料,15為冷卻套’ 16為 冷卻水排出口 ’ 17為冷卻水供給口。 本毛月中之導電f生鑽石陽極1〇及導電性鑽石陰極U,係 由被覆於導電性基板u、13之表面之導電性鑽石層所構成。 導電I·生鑽石層之被覆方法並無特別限定,可使用任意者。 作為代表I·生之方去’可選擇熱絲cvD(chemieal Vap〇rS 12 201231730 Further, when the peak intensity ratio A/B of the Raman spectrum is large, the junction of the conductive diamond film becomes high, and the polarity of the electrode is improved. However, if the peak intensity ratio A/B of the Raman spectrum becomes larger than 6.5, the current efficiency of the oxidizing substance becomes low, and the electrolytic cell voltage becomes high. On the other hand, when the Raman spectral intensity ratio is smaller than Α/Β杈, the crystallinity of the conductive diamond film is lowered, and the efficiency of the oxidizing substance is increased, and the electrolytic cell voltage is lowered. However, if the peak intensity ratio Α/Β of the Raman spectrum is 1.5 or less, the durability of the electrode becomes low. The conductive diamond layer preferably contains 1 to 6 ppm of boron, more preferably 3,000 to 5,000 ppm of stone. The higher the concentration of the stone is, the lower the crystallinity is. The electrode having a lower voltage of the electrolytic cell and higher current efficiency of the oxidizing property (4) is preferable. However, if the bribe is too high and is larger than _〇ppm, it becomes an electrode to which tin is attached, and the electrode lacks durability. Therefore, the conductive diamond electrode of the present invention preferably contains 1 〇〇〇~〇〇鹏 boron . The conductive substrate is not particularly limited, and a group, a crane, a chin, a sharp, or the like can be used. When a hard substrate is used, an electrode having better adhesion can be produced. Therefore, the shape of the conductive substrate is preferably further It is not particularly limited, and a plate shape, a miscellaneous shape, a tubular shape, a spherical shape, or the like can be used. The conductive substrate may contain impurities such as boron or carbon. Hereinafter, an example of the implementation of the sulfuric acid electrolysis method and the sulfuric acid electrolysis apparatus of the present invention will be described in detail with reference to the drawings. Fig. 1 is a view showing an example of an electrolytic cell used in the sulfuric acid electrolysis method of the present invention and the sulfuric acid electrolysis apparatus used in 100145902 13 201231730. The electrolytic cell is divided into an anode chamber 3 and a cathode chamber 4, and the anode chamber 3 is a porous PTFE (Poly Tetra Fluoro Ethylene') separator 9 to accommodate the conductive diamond anode 10, and is housed with the above-mentioned sulfuric acid containing The electrolyte of ions; the cathode chamber 4 houses the conductive diamond cathode 12 and is filled with sulfuric acid having the same degree of radiance as the anode chamber 3. An anolyte supply port 7 is connected to the anode chamber 3, and sulfuric acid as an anolyte is supplied to the anode chamber 3 through the anolyte supply port 7. Further, the catholyte supply port 8 is connected to the cathode chamber 4, and the catholyte is supplied to the cathode chamber 4 through the shai catholyte supply port 8. The oxidizing substance solution generated in the anode chamber 3 is discharged from the anolyte discharge port ^. Further, hydrogen and sulfuric acid generated in the cathode chamber 4 are discharged from the cathode liquid discharge port 2. Furthermore, 5 is an anode power supply terminal, 6 is a cathode power supply terminal, n is a conductive substrate of a conductive diamond anode, 13 is a conductive substrate of the conductive diamond cathode 12, 14 is a sealing material for the electrolytic cell, 15 is The cooling jacket '16 is a cooling water discharge port' 17 is a cooling water supply port. The conductive f-crystal diamond anode 1 and the conductive diamond cathode U in the present month are composed of a conductive diamond layer coated on the surfaces of the conductive substrates u and 13. The coating method of the conductive I·green diamond layer is not particularly limited, and any of them may be used. As a representative of I·sheng's side, you can choose hot silk cvD (chemieal Vap〇r

Dep〇S1-,化學氣相沈積)法、微波電漿㈣法、DC— Current,直流)電弧嘴射電漿cvd法等。 100145902Dep〇S1-, chemical vapor deposition), microwave plasma (four) method, DC-Current, DC) arc nozzle plasma cvd method. 100145902

14 S 201231730 再者,作為陰極,亦可使用鉑等其他陰極代替導電性鑽石 陰極12。 本發明中之包含硫酸離子(HS〇4-4S〇42-)之電解液較佳為 含有2〜14 mol/l之硫酸離子,較佳為含有3〜9 m〇i/i之硫 酸離子。 若硫酸離子濃度(HSCV或SO/-)小於2 mol/卜則由於反應 物較少而導致成為氧化性物質之電流效率較低者。又,若硫 酸離子濃度大於Umom,則電解液之黏度變高,氣體脫離 變差,㈣率增加’電解液之導電率下降成為電解槽電壓較 高者。 因此,於本發明中,上述包含硫酸離子之電解液之硫酸離 子濃度係設為2〜14 mol/l。 本發明中之包含硫酸離子之電解液之酸(H+)濃度係設為* 〜28 m·之範圍,較佳為設為6〜18m〇i/i之範圍。 若酸(H+)漠度低於4 m〇1/1,則成為電解液之導電率較低、 電解槽電壓較高者。另一方面,於酸濃度(H+)高於28m〇i/i .之情形時,成為氧化性物質之電流效率較低者。 _ 目此’於本發明巾,上述包含硫_子之電騎之酸濃度 係設為4〜28 m〇m。 又,於本發明之硫酸電解方法中,較佳為使用上述導電性 鑽石電極’並且於x=電流值/陽極液量(A/1)滿足100SXS 1_0、較佳為滿足3G()sXs6_,γ=電流密度(A/dm2) 100145902 201231730 滿足25<Y<25G、較佳為滿足他的條件下電解 上述包含硫酸離子之電解液。 則成為氧化性物質之電流效率較低 發現,若X小於100, 者,另-方面,若X大於10_,則槽内充滿產生之氣體, 電解槽電壓變高。又,於本發明之硫酸電解方法中,若電流 密度Y(A/dm2)為25卩下,則成為氧化性物質之電流效率較 低者另方面,右γ為25〇以上,則由於放熱變得明顯 而導致電解液之溫度控制變得困難。又,逸氣性較差,氣泡 率增加,電解液之導電率下降而成為電解槽電麗較高者。 因此,於本發明中,係設為100SXS10000、25<Y<250 之範圍。 又’於本發明之硫酸電解方法卜較佳為使用丨述導電性 镄石電極’並且於Z=每單位體積之電量(c/1)=電流值父電 解時間/陽極液量(A · s/1)滿足18000$ζ$1〇8〇〇〇〇、較佳為 滿足100G〇〇SZS_()〇〇的條件下電解上述包含硫酸離子 之電解液。 若z小於18000,則氧化性物質濃度變低,另一方面若 Z大於1080000,則氧化性物質之電流效率變低因此其範 圍係設為 18000SZS 1080000。 本發明中之多孔質PTFE隔膜9係劃分陽極室3與陰極室 4,且藉由離子交換作用、或電解液通過隔膜内之孔於陽極 室3與陰極室4之間移動而表現出導電性者。構成材料並無 100145902 16 201231730 特別限定’就敎性方©而言,較佳為使用包含氟樹脂系陽 離子交換膜或經親水化處理之多孔質氟系樹脂骐之隔膜。於 本發明中,若無隔膜,則氧化性物質於陰極被電解還原,氧 化性物質濃度降低,因此較佳為設置多孔質PTFE隔膜9。 本發明中之硫酸之電解槽、配管、泵、氣液分離槽等與硫 酸電解液之接液部之構成材料並無特別限定 '硫酸性之 PTFE、PFA(Polyfluoroalkoxy—H 等氟樹脂、玻璃、石英。 本發明中包含硫酸離子之電解液除了硫酸離子以外亦可 包含雜質,但由硫酸或硫酸録等硫酸鹽及水所構成之 由於過硫酸製造之電流效率變高,故而較 收 物可與藉由電解所生成之氧化性物質進行反應=機 解液之氧化性物質濃度降低之原因,故:二電 物。又,田於女,曾A 佳為不包含有機 全屬作^ 製造之清_巾之情形時,由於 離=作為雜質對元件造成不良影響,故而較佳為不包含金屬 τΛ而卢發明中,較佳為將電解之電解溫度設為0〜5〇 /皿又越低’乳化性物質之電流效率變得越高 若變得過低,則電缝之減變高H , 加,電解液之導電率下降,電解槽 _率增 電解溫度設為〇〜机。 ^^’因此較佳為將 100145902 又’於本發明中,電解液之循環之有無並無限定,若杜 Ι/Ι<ΛΑ^ ^ 17 201231730 :環,則由於可高效率地進行電解液冷卻, 電解液之循環之情形之陽極液量,係指^ = 刀離槽以循%糸内之陽極側所有電解液的量 者,於本發明中’亦包含未進行 於電解槽内流通―:欠,即,所謂單程之情:二:吏:解液僅 極液量係指存在於電解槽内之陽極侧之=液早量程情形之陽 圖2]係表示一面使陽極液及陰極液分 電解硫酸之本發明之硫酸電解方法及_電㈣2二 者。b包含硫酸離子之電解液係自陽極液供給管線18 ’並使 用陽極液U 19、流量計2〇而供給至電解槽^之陽極 室3,於陽極室3内進行電解,使用流量計22、陽極液循環 /排出泵23並藉由陽極液循環管㈣而於陽極室3内循環。 此時’產线體自陽極職液分_ %分離,並自產生氣 體排出口 27排出°於電解結束時’所製造之氧化性物質溶 液係使用流量計22、陽極液循環/排Μ 23並自氧化性物質 冷液排出管線24排出n面,陰極係自陰極液供給管 線28並銭陰極液供給泵29、流量計%,㈣包含硫酸離 子之電解液供給至f解槽21之陰極室4,於陰極室4内進 行電解’使用流量計3卜陰極液循環/排出果32並藉由陰極 液循環管線34而於陰極室4内循環。此時,產生氣體自陰 極側氣液分離器35分離,並自產生氣體排出口 %排出。: 電解結束時,陰極液係使用流量計Μ、陰極液循環場出栗 100145902 18 201231730 32並自陰極液排出管線33排出。再者’電解槽21係藉由 冷卻套15及冷卻水循環管線37而冷卻。再者,電解液之溫 度係測定圖1所記載之陽極液排出口1之電解液溫度。 圖2-2係表示僅使陰極液循環而不進行陽極液之循環,以 單程方式製造氧化性物質溶液之本發明之硫酸電解方法及 硫酸電解裝置之另一例者。除不進行陽極液之循環而以單程 方式製造氧化性物質溶液方面以外,圖2-2為與圖2-1完全 相同之步驟,符號亦使用相同之符號,因此省略圖2-2之步 驟之說明。 [實施例] 繼而,列舉實施例及比較例而具體地說明本發明。然而, 本發明並不限定於該等實施例。 再者,本發明中所製作之電極之拉曼光譜特性測定、導電 性鑽石電極之膜厚測定、硼濃度測定、電極之耐久性試驗、 電位範圍之測定、電解所使用之包含硫酸離子之電解液之製 作、所製造之氧化性物質溶液之氧化性物質之濃度測定,係 藉由以下之方法而進行。 <拉曼光譜特性測定> 為了測定是否能夠製作導電性鑽石且為了測定A/b強度 比而進行電極之表面拉曼測定。 •測疋裝置.Thermo Fisher Scientific公司製造之拉曼光 譜光度計 / 100145902 19 201231730 •型式:AIMEGA XR •雷射光:532 nm •曝光時間:2.00秒 •曝光次數:20 •基底曝光次數:20 •光柵:672 lines/mm •測定寬度:700〜2000 cm·1 •分光器光圈:25 /zm狹縫 •於低倍試驗室中進行低分解能測定 •測定位置:自表示電極之最長距離之兩邊緣起均等地分 成3等份,分別測定其中心位置而確認平均值。 •光譜修正:自整個範圍之強度中減去2000 cm·1時之強 度。 •鑽石成分:波數nOOiSOcm·1之範圍之峰值強度,於未 確認到峰值之情形時為波數1300 cm-1之強度 •非鑽石成分:波數15〇〇±50 cm-1之範圍之峰值強度,於 未確認到峰值之情形時為波數15〇〇 cm·1之強度 將於波數UOOiSOcm-1之範圍内顯示出拉曼活性者,即, 於波數1300±50 cnT〗之範圍内顯示出峰值、或寬波形之情形 判斷為可製作導電性鑽石電極者。 <導電性鑽石膜厚測定> 自表示電極之最長距離之兩邊緣起將導電性鑽石電極均 100145902 201231730 等地分成5等份’崎各基板。使用掃描型電子顯 造商:崎,商品名:驅49_10kV之加速電厂堅=14 S 201231730 Further, as the cathode, another cathode such as platinum may be used instead of the conductive diamond cathode 12. The electrolyte containing sulfate ion (HS〇4-4S〇42-) in the present invention preferably contains 2 to 14 mol/l of sulfuric acid ion, preferably 3 to 9 m〇i/i of sulfuric acid ion. If the sulfate ion concentration (HSCV or SO/-) is less than 2 mol/b, the current efficiency of the oxidizing substance is lower due to less reactants. Further, when the concentration of the sulfuric acid ion is larger than Umom, the viscosity of the electrolytic solution becomes high, and the gas detachment is deteriorated, and (4) the rate is increased. The decrease in the conductivity of the electrolytic solution is such that the electrolytic cell voltage is higher. Therefore, in the present invention, the sulfuric acid ion concentration of the above-mentioned electrolyte containing sulfate ions is set to 2 to 14 mol/l. The acid (H+) concentration of the electrolyte containing sulfate ions in the present invention is in the range of * to 28 m·, preferably in the range of 6 to 18 m〇i/i. If the acid (H+) is less than 4 m〇1/1, the conductivity of the electrolyte is low and the cell voltage is high. On the other hand, when the acid concentration (H+) is higher than 28 m〇i/i., the current efficiency of the oxidizing substance is lower. In the present invention, the acid concentration of the above-mentioned electrophoresis containing sulfur is set to 4 to 28 m〇m. Further, in the sulfuric acid electrolysis method of the present invention, it is preferred to use the above-mentioned conductive diamond electrode 'and satisfy the 100SXS 1_0, preferably 3G()sXs6_, γ at x = current value / anolyte amount (A / 1). = current density (A/dm2) 100145902 201231730 The electrolyte containing the sulfate ion is electrolyzed under the condition that 25 < Y < 25G is satisfied. The current efficiency of the oxidizing substance is low. If X is less than 100, the X is more than 10 _, and the inside of the tank is filled with the generated gas, and the electrolytic cell voltage becomes high. Further, in the sulfuric acid electrolysis method of the present invention, when the current density Y (A/dm2) is 25 Torr, the current efficiency of the oxidizing substance is lower. On the other hand, if the right γ is 25 Å or more, the heat generation is changed. Obviously, it becomes difficult to control the temperature of the electrolyte. Further, the outgassing property is inferior, the bubble ratio is increased, and the conductivity of the electrolytic solution is lowered to become a higher electric cell. Therefore, in the present invention, it is set to the range of 100SXS10000, 25<Y<250. Further, in the sulfuric acid electrolysis method of the present invention, it is preferred to use a description of the conductive vermiculite electrode 'and at Z = the amount of electricity per unit volume (c / 1) = current value parent electrolysis time / anolyte amount (A · s /1) The electrolyte containing the sulfate ion is electrolyzed under the condition of satisfying 18000$ζ$1〇8〇〇〇〇, preferably 100G〇〇SZS_()〇〇. When z is less than 18,000, the concentration of the oxidizing substance becomes low. On the other hand, if Z is more than 1,080,000, the current efficiency of the oxidizing substance becomes low, so the range is set to 18000 SZS 1080000. The porous PTFE separator 9 of the present invention divides the anode chamber 3 and the cathode chamber 4, and exhibits conductivity by ion exchange or electrolyte flowing through the pores in the separator between the anode chamber 3 and the cathode chamber 4. By. The constituent material is not limited to 100145902 16 201231730. In particular, it is preferable to use a separator containing a fluororesin-based cation exchange membrane or a hydrophilized porous fluororesin. In the present invention, if the separator is not provided, the oxidizing substance is electrolytically reduced at the cathode, and the concentration of the oxidizing substance is lowered. Therefore, the porous PTFE separator 9 is preferably provided. The constituent material of the liquid contact portion of the sulfuric acid electrolytic solution, the piping, the pump, the gas-liquid separation tank, and the like in the present invention is not particularly limited to sulphuric acid PTFE, PFA (polyfluoroalkoxy-H, etc., fluororesin, glass, Quartz. The electrolyte containing sulfuric acid ions in the present invention may contain impurities in addition to sulfate ions, but the current efficiency of persulfuric acid formed by sulfuric acid or sulfuric acid and water is high, so that it can be compared with the product. The reaction is carried out by the oxidizing substance generated by electrolysis = the reason why the concentration of the oxidizing substance in the machine solution is lowered, so: the second electric substance. Moreover, the field of the woman, the former A Jia does not contain the organic whole product In the case of the towel, since it is adversely affected by the element as an impurity, it is preferable not to contain the metal τ Λ. In the invention, it is preferable to set the electrolysis temperature of the electrolysis to 0 to 5 〇 / the lower the dish. When the current efficiency of the emulsifying substance becomes too high, the electric seam is reduced to a high H, and the conductivity of the electrolytic solution is lowered, and the electrolysis cell rate is increased to a temperature of 〇~ machine. ^^' Therefore, it is better to 100145902 Further, in the present invention, the presence or absence of the circulation of the electrolytic solution is not limited, and if the rhododendron/Ι Ι ΛΑ ^ ^ 17 201231730: ring, the electrolyte can be efficiently cooled, and the electrolyte is circulated. The amount of anolyte refers to the amount of all the electrolyte on the anode side in the 糸 以 以 , , , , , , , , , , , 糸 糸 糸 糸 本 本 本 本 : : : : : : : : : : : : : : : : : : : : 2: 吏: lyolysis only the amount of liquid refers to the anode side of the electrolytic cell; the positive aspect of the liquid is shown in the figure 2] is the sulphuric acid electrolysis of the present invention which oxidizes the anolyte and the catholyte The method and the electric (4) 2 are both b. The electrolyte containing the sulfate ion is supplied from the anolyte supply line 18' and is supplied to the anode chamber 3 of the electrolytic cell using the anolyte U 19 and the flow meter 2, in the anode chamber 3. Electrolysis is carried out, using the flow meter 22, the anolyte circulation/discharge pump 23, and circulating in the anode chamber 3 by the anolyte circulation pipe (four). At this time, the line body is separated from the anode liquid fraction _%, and the gas is self-generated. The discharge port 27 is discharged at the end of the electrolysis. The mass solution is discharged from the oxidizing substance cold liquid discharge line 24 using the flow meter 22, the anolyte circulation/discharge port 23, and the cathode is supplied from the catholyte supply line 28 and the catholyte supply pump 29, the flow meter%, (4) The electrolyte containing sulfuric acid ions is supplied to the cathode chamber 4 of the desolvation tank 21, and electrolysis is performed in the cathode chamber 4, using the flow meter 3, the catholyte circulation/discharge fruit 32, and the cathode chamber 4 through the catholyte circulation line 34. At this time, the generated gas is separated from the cathode side gas-liquid separator 35, and is discharged from the generated gas discharge port.: At the end of the electrolysis, the catholyte is flowmeter Μ, the catholyte circulation field is used to produce the pump 100145902 18 201231730 32 And discharged from the catholyte discharge line 33. Further, the electrolytic cell 21 is cooled by the cooling jacket 15 and the cooling water circulation line 37. Further, the temperature of the electrolytic solution was measured by measuring the temperature of the electrolytic solution of the anolyte discharge port 1 shown in Fig. 1 . Fig. 2-2 shows another example of the sulfuric acid electrolysis method and the sulfuric acid electrolysis apparatus of the present invention which circulate the catholyte only without circulating the anolyte to produce the oxidizing substance solution in a single pass. Except that the oxidizing substance solution is produced in a single pass without circulating the anolyte, FIG. 2-2 is the same step as FIG. 2-1, and the same symbols are used for the symbols, so the steps of FIG. 2-2 are omitted. Description. [Examples] Next, the present invention will be specifically described by way of examples and comparative examples. However, the invention is not limited to the embodiments. Further, the Raman spectral characteristics of the electrode produced in the present invention, the film thickness measurement of the conductive diamond electrode, the boron concentration measurement, the durability test of the electrode, the measurement of the potential range, and the electrolysis containing the sulfate ion used for electrolysis The production of the liquid and the measurement of the concentration of the oxidizing substance in the produced oxidizing substance solution were carried out by the following methods. <Raman spectrum characteristic measurement> In order to measure whether or not a conductive diamond can be produced and to measure the A/b intensity ratio, surface Raman measurement of the electrode was performed. • Measuring device. Raman spectrophotometer manufactured by Thermo Fisher Scientific / 100145902 19 201231730 • Type: AIMEGA XR • Laser light: 532 nm • Exposure time: 2.00 seconds • Exposure times: 20 • Base exposure: 20 • Grating :672 lines/mm • Measurement width: 700~2000 cm·1 • Splitter aperture: 25 /zm slit • Low-decomposition energy measurement in low-power laboratory • Measurement position: equal from the two edges of the longest distance of the electrode The ground was divided into three equal portions, and the center position was measured to confirm the average value. • Spectral correction: The intensity at 2000 cm·1 is subtracted from the intensity of the entire range. • Diamond composition: peak intensity in the range of wave number nOOiSOcm·1, intensity of wave number 1300 cm-1 when no peak is confirmed • Non-diamond component: peak of wave range 15〇〇±50 cm-1 Intensity, when the peak value is not confirmed, the intensity of the wave number 15〇〇cm·1 will show Raman activity in the range of wave number UOOiSOcm-1, that is, within the range of wave number 1300±50 cnT A case where a peak or a wide waveform is displayed is judged to be a conductive diamond electrode. <Measurement of Conductive Diamond Film Thickness> From the two edges of the longest distance of the electrode, the conductive diamond electrode 100245902 201231730 or the like was divided into five equal parts. Use scanning electronic display manufacturer: Saki, trade name: drive 49_10kV acceleration power plant firm =

么對於所獲得之剖面進行觀察,拍攝所有切斷樣品之 至少單個抑’根縣均^麟。 D <蝴濃度測定> 使用二次離子質量分析(製造商:ULVAC · PHI,商品名: PHI ADEPT H)! 〇),並於—次離子ο,、—次離子能量3 k^、 檢測區域⑽2次離子極性為正之條件下測定所f 作▲之電極表面。濃度換算係合併沉組成中之B之標準濃 度試樣而進行測定,求出相對感度係數而將係數代入試^ 中。 <導電性鑽石電極之耐久性試驗> _利用與陽極、陰極—起製作而成之電極將如圖Μ示附有 隔膜之電解槽21進行組| ’而成為圖2]所示之硫酸電解 裝置,並以如下條件進行氧化性物質溶液之製造。 電流密度: 100 A/dm 電解時間: 12 h 陽極液量: 200 ml 電解液溫度 :35〇C 冷卻水溫度 :15°C 陽極液流量 :1 1/min 陰極液流量 :1 1/min 100145902 21 201231730 陽極電解液:4.2 mol/l硫酸(利用電子工業用純水稀釋電 子工業用之關東化學股份有限公司製造之硫酸而製備) 陰極電解液:4.2 mol/l硫酸(利用電子工業用純水稀釋電 子工業用之關東化學股份有限公司製造之硫酸而製備) 隔膜:(住友電工FinePolymer公司製造之POREFLON(註 冊商標)) 目測觀察電解結束後之電極,將未確認有導電性鑽石膜之 剝離者設為耐久性〇,將確認有極少剝離者設為耐久性△, 將媒5忍有面積之一半以上剝離者設為财久性X。 <電位範圍之測定> 電位範圍之測定係藉由循環伏安法而進行氧化還原分解 電壓之測定。即,使用4.2 mol/l之硫酸作為電解液、使用 於基體上形成有導電性鑽石層之電極作為工作電極、使用鉑 線作為相對電極、使用硫酸第一水銀比較電極作為參考電 極,以50 mV/s進行電位掃描’測定流通±50 mA/dm2之電 流時之電位,根據還原及氧化分解電位值而決定電位範圍。 <電解液製作所必需之硫酸質量> 根據式(6)算出製作1 1之電解液所必需之%%硫酸之質 量,收取98%硫酸(關東化學(股)製造)放入丨丨量瓶中,添加 超純水而製成共11之電解液。 C(g) = Μ作之包含硫酸離子之電解液濃度^奶)χ硫酸之⑽ ⑹ C (g):製作1 1電解液所需之98%硫酸之質量Observe the obtained profile and shoot at least one of all the cut samples. D <fume concentration measurement> Using secondary ion mass spectrometry (manufacturer: ULVAC · PHI, trade name: PHI ADEPT H)! 〇), and - sub-ion ο,, - sub-ion energy 3 k^, detection The surface of the electrode was measured under the condition that the polarity of the region (10) was twice positive. The concentration conversion is performed by combining the standard concentration sample of B in the sinking composition, and the relative sensitivity coefficient is obtained, and the coefficient is substituted into the test. <Durability Test of Conductive Diamond Electrode> _ The electrode prepared by using the anode and the cathode is formed by the electrolytic cell 21 with the separator shown in Fig. 2 as the sulfuric acid shown in Fig. 2 The apparatus was electrolyzed, and the production of the oxidizing substance solution was carried out under the following conditions. Current density: 100 A/dm Electrolysis time: 12 h Anode volume: 200 ml Electrolyte temperature: 35 〇C Cooling water temperature: 15 °C Anolyte flow rate: 1 1/min Catholyte flow rate: 1 1/min 100145902 21 201231730 Anolyte: 4.2 mol/l sulphuric acid (prepared by sulphuric acid manufactured by Kanto Chemical Co., Ltd. for use in the electronics industry). Catholyte: 4.2 mol/l sulphuric acid (diluted with pure water from the electronics industry) (Prepared by sulfuric acid manufactured by Kanto Chemical Co., Ltd. for the electronics industry) Separator: (POREFLON (registered trademark) manufactured by Sumitomo Electric FinePolymer Co., Ltd.) The electrode after the completion of the electrolysis was visually observed, and the peeling of the unrecognized conductive diamond film was set. In the case of the durability, it was confirmed that the peeling was extremely low, and the one that was tolerated by the medium 5 was cut into one or more half of the area. <Measurement of potential range> The measurement of the potential range was carried out by cyclic voltammetry to measure the redox decomposition voltage. That is, 4.2 mol/l of sulfuric acid was used as the electrolytic solution, the electrode on which the conductive diamond layer was formed on the substrate was used as the working electrode, the platinum wire was used as the opposite electrode, and the first mercury comparative electrode was used as the reference electrode at 50 mV. /s performs a potential sweep' to measure the potential at a current of ±50 mA/dm2, and determines the potential range based on the reduction and oxidative decomposition potential values. <Quality of sulfuric acid necessary for electrolytic solution preparation> The mass of %% sulfuric acid necessary for producing the electrolytic solution of 1 1 is calculated according to the formula (6), and 98% sulfuric acid (manufactured by Kanto Chemical Co., Ltd.) is charged in a measuring bottle. In the middle, ultrapure water was added to prepare a total of 11 electrolytes. C(g) = concentration of electrolyte containing sulfuric acid ions ^ milk) χ sulfuric acid (10) (6) C (g): quality of 98% sulfuric acid required to make 1 1 electrolyte

100145902 22 S 201231730 &lt;酸濃度&gt; 基於式(6)中所採用之欲製作之包含硫酸離子之電解液之 濃度(mol/1),根據以下式(7)算出酸濃度。 酸濃度=欲製作之包含硫酸離子之電解液之濃度x2... (7) &lt;氧化性物質之濃度測定&gt; 於100 ml錐形瓶中量取0.4 ml之所製造之氧化性物質溶 液’添加超純水而製成共3 ml之試樣液,添加5 ml之利用 超純水調整碘化鉀(和光純藥工業(股)製造)而製作之2〇〇 g/1 之溶液’利用游離碘進行著色,使錐形瓶内充滿氮氣並利用 矽橡膠進行密封,於此狀態下放置3〇分鐘後’滴加〇·〇2 m〇i/i 之硫代硫酸鈉溶液(和光純藥工業(股)製造)直至試樣液變得 無色為止。測定次數係設為各試樣測定3次,使用其平均值 並藉由下式(8)而算出氧化性物質之濃度。 氧化性物質總濃度= _滴加量(^)χΝ02Ο3濃度(0.02W &quot;) ... (8) 樣品收取量(w/) X Ν3^2〇3之量論係數(2) &lt;氧化性物質之電流效率&gt; 使用利用上述氧化性物質之濃度測定算出所製造之氧化 性物質溶液之lut性物f濃度而獲得之值,藉由以下式(9) 而計算電流效率。 電流效率(%)= 性物質增加量(膨/ &quot;)x陽極液量(/)x 1〇〇___ ---(9) t解《 W/純二硫酸之反應電子數(2)觸85 〈導g鑽石層之形成:藉由熱絲CVD&gt; 本發明中之導電性鑽石電極係藉由如下方法而製作。使用 100145902 23 201231730 單晶Si作為導電性基體,研磨、清洗基體表面並利用鑽石 粒子進行核附著後,將其設置於裝置内。使用氫、曱烷、 Ar+石朋酸二甲g旨作為導人氣體,—面使該氣體以5升/分之 速度流入裝置内,一面將裝置内壓力保持於6〇 T〇rr,對絲 施加電力而使溫度升溫至23〇〇。〇。此時,基體溫度為8〇〇 石朋酉义二曱醋係藉由使Ar於填充有液體狀棚酸三甲醋之容 器内起泡而導入至裝置内。 藉由改變R流量、職三甲§旨流量岐前變化。 藉由改變成膜時間而使膜厚變化。 &lt;實施例1 &gt; 利用於陽極、陰極均使用電解面積1_細2之導電性鑽 石電極進讀裝如®1 1所示之附有㈣之電解槽2卜而成 為圖2_1所社硫酸電解裝置,—面使陽極液及陰極液分別 循環一面電解魏’於如下條件下崎氧化_質溶液之製 所製作之電極之特性如表!所示。 電= 二陰極均使用所製作之電極,使用附有隔膜之 制/雷^所5己载之條件及如下條件進行電解硫酸之 (股 包二:離二7,添加超純水而稀釋成共u,製成 ).々之電解液,其中使用300 ml作為陽 100145902100145902 22 S 201231730 &lt;Acid concentration&gt; The acid concentration is calculated from the following formula (7) based on the concentration (mol/1) of the electrolyte containing sulfate ions to be produced in the formula (6). Acid concentration = concentration of electrolyte solution containing sulfate ions to be prepared x2 (7) &lt;Measurement of concentration of oxidizing substance&gt; 0.4 ml of oxidizing substance solution prepared in a 100 ml Erlenmeyer flask 'A total of 3 ml of the sample solution was added to the ultrapure water, and 5 ml of a solution of 2 〇〇g/1 prepared by adjusting potassium iodide (manufactured by Wako Pure Chemical Industries Co., Ltd.) with ultrapure water was used. The iodine is colored, and the conical flask is filled with nitrogen and sealed with ruthenium rubber. After being left for 3 minutes in this state, the sodium thiosulfate solution of 〇·〇2 m〇i/i is added dropwise (Wako Pure Chemical Industries, Ltd.) (manufactured)) until the sample solution becomes colorless. The number of times of measurement was measured three times for each sample, and the average value was used, and the concentration of the oxidizing substance was calculated by the following formula (8). Total concentration of oxidizing substances = _ drop amount (^) χΝ 02 Ο 3 concentration (0.02W &quot;) ... (8) Sample amount (w /) X Ν 3 ^ 2 〇 3 quantitative coefficient (2) &lt;oxidation The current efficiency of the substance is calculated by calculating the concentration of the lut material f of the produced oxidizing substance solution by the concentration measurement of the oxidizing substance, and calculating the current efficiency by the following formula (9). Current efficiency (%) = increase in the amount of sexual substances (expansion / &quot;) x anolyte amount (/) x 1 〇〇 ___ --- (9) t solution "W / pure disulfuric acid reaction electron number (2) touch 85 <Formation of a diamond layer by a hot filament CVD> The conductive diamond electrode of the present invention is produced by the following method. Using 100145902 23 201231730 single crystal Si as a conductive substrate, the surface of the substrate was polished and cleaned, and the core was adhered by diamond particles, and then placed in the apparatus. Hydrogen, decane, Ar+ succinic acid was used as the guiding gas, and the gas was allowed to flow into the device at a rate of 5 liters/min. while maintaining the pressure inside the device at 6 〇T rr, the wire was applied. Electric power was applied to raise the temperature to 23 Torr. Hey. At this time, the substrate temperature was 8 〇〇 Shi Pengyiyi vinegar was introduced into the apparatus by bubbling Ar in a container filled with liquid tartaric acid triacetate. By changing the R traffic, the position of the job is changed. The film thickness is changed by changing the film formation time. &lt;Example 1&gt; A conductive diamond electrode having an electrolysis area of 1 to 2 was used for both the anode and the cathode, and the electrolytic cell 2 (4) shown in Fig. 1 1 was used to form the sulfuric acid of Fig. 2_1. Electrolytic device, the surface of the anolyte and the catholyte are respectively circulated and electrolyzed. The characteristics of the electrode prepared by the process of the sulphur oxidizing solution are as follows! Shown. Electric = The cathode is made of the electrode, and the electrolytic sulfuric acid is used under the conditions of the separator and the following conditions and the following conditions: (Package 2: 2:7, adding ultrapure water and diluting into a total of u, made). 々 electrolyte, which uses 300 ml as yang 100145902

S 24 201231730 極液,使用剩餘300 ml作為陰極液。根據式(7)算出酸濃度, 結果為 18.4 mol/1。 電解槽電流:100 A 電流密度:100 A/dm2 電解時間:20分鐘 陽極液量:3 00 ml 電解液溫度:28°C 冷卻水溫度:15°C 陽極液流量:1 1/min 陰極液流量:1 1/min 陽極電解液:4.2 mol/1硫酸 陰極電解液:4.2 mol/1硫酸 隔膜:(住友電工FinePolymer(股)製造之POREFLON(註 冊商標)) 將所獲得之氧化性物質溶液之結果示於表6及以下。 使用所製造之氧化性物質溶液,根據上述氧化性物質之濃 度測定方法進行滴定,結果滴加〇 〇2 mow硫代硫酸鈉溶液 44.00 ml後溶液成為無色。繼而,利用相同方法重複進行2 次測定,結果其測定結果分別為44 〇〇、44⑽㈤。使 等之平均值襲ml,根據(8)式而計算氧化性物質濃度二 1/1。又’使用氧化性物質濃度藉 ; 鼻電流效率,結果為53%。 °十 100145902 25 201231730 &lt;實施例2〜l〇 &gt; 作為貫施例2〜1 〇,藉由改變甲烧流量、蝴酸三甲酯流量 及成膜時間’將如表卜2所記紐改變導電性鑽石膜厚、 電位範圍、趟、衝農度之電極用於陽極中,除此以外以與 實施例1相同之方法獲得氧化性物質溶液。 將所獲得之氧化性物質溶液之結果示於表6、7。 &lt;實施例11〜14&gt; 如表2〜3所記載般改變電解液中之硫酸離子濃度、酸濃 度除此以外以與貫施例i相同之方法獲得氧化性物質溶 液0 將所獲得之氧化性物質溶液之結果示於表7〜8。 &lt;實施例15〜16 &gt; 己载般改變電解液中之陽極液量、電流值/陽極 dU:,利用於陽極、陰極均使用電解面積⑽0 :,而成㈣、2Γ極喊如圖1所示之附有隔膜之電解槽 二示之硫酸電解農置,不進行陽咖 衣而乂早㈣核造氧錄㈣崎,除此 1相同之方法獲得氧倾物質料。 貫例 將所獲得之氧化性物質溶液之結果示於表8。 〈實施例17〜24&gt; 之 除此M外以與實施例1相同 100145902 26 201231730 方法獲得氧化性物質溶液。 將所獲得之氧化性物質溶液之結果示於表8〜9。 &lt;實施例25&gt; 於基體材料中使用鈮,除此以外以與實施例1相同之方法 獲得氧化性物質溶液。 將所獲得之氧化性物質溶液之結果示於表9。 1) 由實施例1〜4之結果可知,電位範圍越窄、且A=拉 曼光譜分析中之波數1300 cnT1下之強度與B =拉曼光譜分 析中之波數1500 cnT1下之強度的比A/B越小,氧化性物質 之電流效率越高,電解槽電壓越低。另一方面,於實施例2 中,目測確認電極之耐久性試驗後之電極,結果確認到導電 性鑽石膜之剝離極少。 2) 由實施例5、6之結果可知,與實施例1之結果相比, 導電性鑽石層之厚度越薄,氧化性物質之電流效率越高,電 解槽電壓越低。認為其原因在於:導電性鑽石層越薄,電位 範圍越窄,A=拉曼光譜分析中之波數1300 cnT1下之強度 與B =拉曼光譜分析中之波數1500 cm_1下之強度的比A/B 變得越小。 另一方面,與實施例1之結果相比,實施例6係成為氧化 性物質之電流效率較低、電解槽電壓較高者。 3) 由實施例7〜10之結果可知,與實施例1之結果相比, 硼濃度越高,氧化性物質之電流效率越高,與此同時,氧化 100145902 27 201231730 性物質濃度越高,電解槽電壓越低。認為其原因在於·♦硼濃 度越高,電位範圍越窄’ A=拉曼光譜分析中之波數13〇〇 cm·1下之強度與B =拉曼光譜分析中之波數1500 cm·1下之 強度的比A/B變得越小。 另一方面,於實施例10中,目測確認電極之耐久性試驗 後之電極,結果確認到導電性鑽石膜之剝離極少。 4)由貫施例11、12之結果可知’與實施例1之結果相比, 硫酸離子濃度越低,電流效率越低。認為其原因在於:硫酸 離子濃度越低,反應物越少。又,可知與實施例1之結果相 比’酸濃度越低’電解槽電壓越尚。認為其原因在於:酸濃 度變低’導電率變低。由實施例13、14之結果可知,與實 施例1之結果相比,酸濃度越高,電流效率越低。認為其原 因在於:酸濃度越高,氧化性物質越容易分解。又,可知與 實施例1之結果相比,硫酸離子濃度越高,電解槽電壓越 高。認為其原因在於:硫酸離子濃度變高,黏度變高,氣體 脫離變差,氣泡率增加,電解液之導電率下降而電解槽電壓 變高。 1之結果相比, 之電流效率越 5)由實施例15〜18之結果可知,與實施例 X=電流值/陽極液量(A/1)越大,氧化性物質 高’與此同時’越能夠獲得氧化性物料度較高之電解液。 另-方面,χ=電流值/陽極液量(A/1)越大,成為電解槽電壓 越高者。認為其原因在於:氣體填充於電解糟内而使電解槽 100145902S 24 201231730 Extreme solution, using the remaining 300 ml as the catholyte. The acid concentration was calculated according to the formula (7) and found to be 18.4 mol/l. Cell current: 100 A Current density: 100 A/dm2 Electrolysis time: 20 minutes Anode volume: 3 00 ml Electrolyte temperature: 28 °C Cooling water temperature: 15 °C Anode fluid flow rate: 1 1/min Catholyte flow :1 1/min Anolyte: 4.2 mol/1 sulfuric acid Catholyte: 4.2 mol/1 sulfuric acid separator: (POREFLON (registered trademark) manufactured by Sumitomo Electric FinePolymer Co., Ltd.) Results of the obtained oxidizing substance solution Table 6 and below are shown. Using the produced oxidizing substance solution, titration was carried out according to the concentration measurement method of the above oxidizing substance, and as a result, the solution became colorless after dropwise addition of 44.00 ml of 〇2 mow sodium thiosulfate solution. Then, the measurement was repeated twice by the same method, and the results were 44 〇〇, 44 (10), and (5), respectively. Let the average value of the equals hit ml, and calculate the concentration of the oxidizing substance by 1/1 according to the formula (8). In addition, the concentration of the oxidizing substance was used; the nasal current efficiency was 53%. °10100145902 25 201231730 &lt;Example 2~l〇&gt; As a general example 2~1 〇, by changing the flow rate of the A, the flow rate of the trimethyl valerate and the film formation time' will be as shown in Table 2 An oxidizing substance solution was obtained in the same manner as in Example 1 except that the electrode of the conductive diamond film thickness, the potential range, the enthalpy, and the irrigating degree was changed to the anode. The results of the obtained oxidizing substance solution are shown in Tables 6 and 7. &lt;Examples 11 to 14&gt; The oxidizing substance solution was obtained by the same method as in Example i except that the sulfate ion concentration and the acid concentration in the electrolytic solution were changed as described in Tables 2 to 3. The results of the solution of the substance are shown in Tables 7 to 8. &lt;Examples 15 to 16 &gt; The amount of anolyte in the electrolyte and the current value/anode dU were changed as described above, and the electrolysis area (10) was used for both the anode and the cathode: (4), 2 (2), 2 The electrolytic cell with the diaphragm shown in the second shows the sulfuric acid electrolysis plant, and does not carry out the mascara coating and the early (four) nuclear oxygen recording (four), in addition to the same method to obtain the oxygen tilting material. The results of the obtained oxidizing substance solution are shown in Table 8. <Examples 17 to 24> Except for M, the same as Example 1 was used. 100145902 26 201231730 The method was carried out to obtain an oxidizing substance solution. The results of the obtained oxidizing substance solution are shown in Tables 8 to 9. &lt;Example 25&gt; An oxidizing substance solution was obtained in the same manner as in Example 1 except that ruthenium was used for the base material. The results of the obtained oxidizing substance solution are shown in Table 9. 1) From the results of Examples 1 to 4, the narrower the potential range, and the intensity at a wave number of 1300 cnT1 in A=Raman spectrum analysis and the intensity at a wave number of 1500 cnT1 in B=Raman spectrum analysis. The smaller the A/B ratio, the higher the current efficiency of the oxidizing substance and the lower the electrolysis cell voltage. On the other hand, in the second embodiment, the electrode after the durability test of the electrode was visually confirmed, and it was confirmed that the peeling of the conductive diamond film was extremely small. 2) From the results of Examples 5 and 6, it is understood that the thinner the thickness of the conductive diamond layer, the higher the current efficiency of the oxidizing substance and the lower the electrolytic cell voltage, as compared with the results of Example 1. The reason is considered to be: the thinner the conductive diamond layer, the narrower the potential range, the ratio of the intensity at 1300 cnT1 in the A=Raman spectrum analysis to the intensity at 1500 cm_1 in the B=Raman spectrum analysis. The smaller A/B becomes. On the other hand, in Example 6, the sixth embodiment was lower in the current efficiency of the oxidizing substance and higher in the electrolytic cell voltage than in the results of Example 1. 3) From the results of Examples 7 to 10, it is understood that the higher the boron concentration, the higher the current efficiency of the oxidizing substance, and the higher the concentration of the oxidized 100145902 27 201231730, the higher the electrolysis, compared with the results of Example 1 The lower the tank voltage. The reason is considered to be: ♦ the higher the boron concentration, the narrower the potential range 'A=the intensity of the wave number in the Raman spectrum analysis at 13〇〇cm·1 and the wave number in the B=Raman spectrum analysis 1500 cm·1 The ratio of the strength of the lower one becomes smaller. On the other hand, in the example 10, the electrode after the endurance test of the electrode was visually confirmed, and it was confirmed that the peeling of the conductive diamond film was extremely small. 4) From the results of the examples 11 and 12, it is understood that the lower the sulfate ion concentration, the lower the current efficiency as compared with the result of the first embodiment. The reason is considered to be that the lower the sulfuric acid ion concentration, the less the reactants. Further, it can be seen that the electrolysis cell voltage is higher as compared with the result of the first embodiment. The reason is considered to be that the acid concentration is lowered and the electric conductivity is lowered. From the results of Examples 13 and 14, it is understood that the higher the acid concentration, the lower the current efficiency as compared with the results of Example 1. The reason is considered to be that the higher the acid concentration, the more easily the oxidizing substance decomposes. Further, it is understood that the higher the sulfate ion concentration, the higher the electrolytic cell voltage as compared with the result of Example 1. The reason is considered to be that the sulfate ion concentration is high, the viscosity is high, the gas detachment is deteriorated, the bubble ratio is increased, the conductivity of the electrolyte is lowered, and the electrolytic cell voltage is increased. The result of the current efficiency is 5). As can be seen from the results of Examples 15 to 18, the larger the oxidizing substance is, the more the oxidizing substance is higher than the example X = current value / anolyte amount (A / 1). The more the electrolyte with a higher degree of oxidizing material can be obtained. On the other hand, the larger the χ = current value / anolyte amount (A / 1), the higher the cell voltage. The reason is considered to be: the gas is filled in the electrolytic waste to make the electrolytic cell 100145902

S 28 201231730 電壓上升。於實施例17、18中,電解槽電壓良好,但電流 效率較低。 6) 由實施例19〜20之結果可知,與實施例丨之結果相比, 若電流在、度(A/dm2)變低,則氧化性物質之電流效率變低, 與此同時,氧化性物質濃度變低。另一方面,由實施例21、 22之結果可知,與實施例1之結果相比,若電流密度(A/dm2) 4兩,則氧化性物質之電流效率變高,但電解槽電墨上升。 認為其原因在於:由於電流密度較高,故而產生之氣體填充 於電解槽内。 7) 由貫施例23之結果可知,與實施例丨之結果相比,若 母單位體積之電量變低,則氧化性物質之電流效率變高,與 此同時,氧化性物質濃度變低。另一方面,由實施例24之 結果可知,若每單位體積之電量變高,則氧化性物質之電流 效率變低,氧化性物質濃度變高。 8) 由實施例25之結果可知’與實施例i之結果相比若 基板材料變為鈮,則氧化性物質之電流效率良好,與此同時 氧化性物質濃度良好,但於電極之耐久性試驗後之電極表面 之目測觀察中確認到膜少許地剝落。 &lt;比較例1〜4&gt; 藉由改變曱烧流量、蝴酸三甲醋流量及成膜時間,而將使 用如表5所記載般改變導電性鑽石膜厚、電位範圍、之 電極用於陽極中,除此以外以與實施例!相同之方法獲得氧 100145902 29 201231730 7物質溶液。將所獲得之氧化性物質溶液之結果示於表 於比較例1巾,電解槽電壓、氧化性物質之電流效率獲得 ,'«果但於電極之耐久性試驗後之電極表面之目測觀 察中確認到膜大部分地剝落之處。 於比較例2中,於電極之耐久性試驗後之電極表面之目測 觀察中未確5忍到膜之劣化,但電解過程中之電解槽電壓變 南’結果所獲彳旱之含氧化性物質之溶液之電流效率較低。 於比較例3中’電解槽電壓、電流效率獲得良好之結果, 但於電極之财久性試驗後之電極表面之目測觀察中確認到 膜大部分地剝落。 於比較例4中,於電極之财久性試驗後之電極表面之目測 觀察中未確認到膜之劣化,但電解過程中之電解槽電壓變 尚,結果所獲得之含氧化性物質之溶液之電流效率較低。 於比較例5中,於電解過程中電極劣化,於電解液中目測 確s忍到碳之粉末,因此中斷電解。 100145902 30 201231730 表1電解條件 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 陽極及陰極 被膜材料 導電性鑽石 基板材料 導電性矽 鑽石層厚度(/zm) 10 10 10 10 1.5 23 電位範圍(V) 2.63 2.12 3.40 2.80 2.12 3.30 A/B 4.50 1.80 6.20 6.30 1.58 6.00 棚濃·度(ppm) 3000 3000 3000 3000 3000 3000 電解液中之硫酸離子濃度 (mol/1) 4.2 4.2 4.2 4.2 4.2 4.2 電解液中之酸濃度(mol/l) 8.4 8.4 8.4 8.4 8.4 8.4 陽極液量(ml) 300 300 300 300 300 300 電解面積(dm2) 1.000 1.000 1.000 1.000 1.000 1.000 電流值(A) 100 100 100 100 100 100 電流密度(A/dm2) 100 100 100 100 100 100 電流值/陽極液量(A/1) 333 333 333 333 333 333 電解時間(min) 20 20 20 20 20 20 每單位體積之電量(xl〇4As/l) 40 40 40 40 40 40 隔膜 使用 表2電解條件 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 陽極及陰極 被膜材料 導電性鑽石 基板材料 導電性矽 鑽石層厚度 (//m) 10 10 10 10 10 10 電位範圍(V) 3.50 3.20 2.60 2.15 2.63 2.63 A/B 6.00 5.50 3.20 1.62 4.50 4.50 硼濃度(ppm) 700 1200 5000 7000 3000 3000 電解液中之硫酸離子濃度 (mol/1) 4.2 4.2 4.2 4.2 1.9 2.5 電解液中之酸濃度(mol/1) 8.4 8.4 8.4 8.4 3.8 5.0 陽極液量(ml) 300 300 300 300 300 300 電解面積(dm2) 1.000 1.000 1.000 1.000 1.000 1.000 電流值(A) 100 100 100 100 100 100 電流密度(A/dm2) 100 100 100 100 100 100 電流值/陽極液量(A/1) 333 333 333 333 333 333 電解時間(min) 20 20 20 20 20 20 每單位體積之電量(x1〇4As/1) .40 40 40 40 40 40 隔膜 使用 31 ‘ &gt; 100145902 實施例13 實施例14 實施例〗5|實施你貫蜉例18 被膜材料 導電性错石 基板材料 练雷性故 陽極及陰極 鑽石層厚度 (βϊή) 10 10 10 10 10 10 電位範圍(V) 2.63 2.63 2.63 2.63 2.63 2.63 Α/Β 4.50 4.50 4.50 4.50 4.50 4.50 3000 3000 3000 3000 3000 3000 電解液中之硫酸離子濃度 (mol/1) 8.5 16.0 4.2 4.2 4.2 4.2 電解液中之酸濃度(mol/1) 17.0 32.0 1 8.4 8.4 8.4 8.4 陽極液量(ml) 300 300 11 20 1000 1200 電解面積(dm2) 1.000 1.000 1.000 1.000 1.000 1.000 電流值(A) 100 100 100 100 100 100 電流密度(A/dm2) 100 100 100 100 100 100 電流值/陽極液量(A/1) 333 333 9091 5000 100 83 電解時間(min) 20 20 0.7 1.3 66.7 80.0 每單位體積之電量 (x104As/1) 40 40 40 40 40 40 隔膜 使用 201231730 表3電解條件 表4電解條件 實施例 19 實施例 20 實施例 21 實施例 22 實施例 23 實施例 24 實施例 25 陽極及陰極 被膜材料 導1 1性鑽石 基板村料 導電性矽 鈮 鑽石層厚度(/m) 10 10 10 10 10 10 10 電位範圍(V) 2.63 2.63 2.63 2.63 2.63 2.63 2.63 A/B 4.50 4.50 4.50 4.50 4.50 4.50 4.50 蝴漠度(pprr〇 3000 3000 3000 3000 3000 3000 3000 電解液中之硫酸離子濃度(mol/D 4.2 4.2 4.2 4.2 4.2 4.2 4.2 電解液中之酸濃度(mol/1) 8.4 8.4 8.4 8.4 8.4 8.4 8.4 陽極液量(ml) 300 300 300 300 300 300 300 電解面積(dm2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 電流值(A) 20 50 200 280 100 100 100 電流密度(A/dm2) 20 50 200 280 100 100 100 電流值/陽極液量(A/1) 67 167 667 933 333 333 333 電解時間(min) 100 40 10 7.1 1.0 50 20 每單位體積之電量(X l〇4As/n 40 40 40 40 2 100 40 隔膜 使用 100145902 32 201231730 表5電解條件 -—---— 比較例1 比較例2 比較例3 比較例4 比較例5 陽極及陰極 被膜材料 導電性鑽石 石炭 基板材料 遙雷性石夕 • 鑽石層厚度(um) 10 10 0.8 26 - 3.60 1.90 電位範圍(V) 1.97 3.90 1.99 A/B 2.00 7.20 1.49 6.30 蝴濃度(rmm) 3000 3000 3000 3000 - 4.2 4.2 電解液中之硫酸離子濃度 (mol/1) 4.2 4.2 4.2 .電解液中之酸濃廑imol/1) 8.4 8.4 8.4 8.4 8.4 陽極液量(ml) 300 300 300 300 300 電解面積(dm2) 1.000 1.000 1.000 1 1.000 1.000 電流值(A) 100 100 100 100 100 100&quot;&quot;&quot;&quot; 100 ..... 電流密度(A/dm2) 100 100 100 ~ 333 333 雷济信/陽搞洛吾ΓΑ/Π 333 333 333 電解時問fmin、 20 20 20 20 20 每單位體積之電量(xl〇4As/l) 40 40 40 40 40 一 隔膜 使用____ 表6實驗結果 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 電流效率% 53 55 49 50 56 40 11/: 氧化性物質濃度(m〇l/l) 1.10 1.14 1.02 1.04 1.04 1.1〇 1 1 ΛΛΛ 電解槽電壓m 10.200 9.800 10.800 10.790 9.620 11.2UU 耐久性 〇 △ 〇 〇 △ KJ 表7實驗結果 實施例12 實施例7 電流效率% 氧化性物質濃度(m〇l/l) 一電解槽電壓(v) 38 0.79ΤΓόόό^ 實施例 41 —0.85109〇〇~ 實施例9 54 1.12 9.800 〇 實施例10 55 1.14 9.500 實施例11 30 0.62 10.400 42 0.87 10.300 &quot;&quot;δ&quot;- 表8實驗結果 電流效率% 氧化性物質濃度 電解槽電壓fV) 耐久性 實施例13 51 1.06 11.300 0 實施例14 35 0.73 12.900 〇 實施例15 55 1.14 12.100 〇 實施例16 54 1.12 11.800 〇 實施例17 50 1.04 10.200 〇 貫把例 49 1.02 10.200 〇 100145902 33 201231730 表9實驗結果 實施例一 23 ^實施例^ 24 25 . 實施例 19 實施例 20 實施例 21 實施例 22 電流效率% 46 49 54 55 97 34 53 氧化性物質濃度 (mol/1) 0.95 1.02 1.12 1.14 0.05 1.76 1.10 電解槽電壓(V) 6.400 7.902 13.200 15.000 10.200 10.200 10.300 耐久性 〇 〇 〇 〇 〇 〇 Δ 表10實驗結果 比較例1 比較例2 比較例3 比較例4 比較例5 電流效率% 54 33 54 32 劣化嚴重 不可電解 氧化性物質濃度(mol/1) 1.12 0.68 1.12 0.66 電解槽電壓(V) 10.000 12.800 9.800 12.500 耐久性 X 〇 X 〇 (產業上之可利用性) 若使用藉由本發明之鑽石電極尤其是作為硫酸電解中之 陽極,則具有使氧化性物質穩定地生成之效果,若同時用作 硫酸電解中之陰極,則可提高該效果。進而,本發明之導電 性鑽石電極亦可作為其他電解用陽極及陰極使用。 【圖式簡單說明】 圖1係表不本發明之硫電解方法及硫酸電解裂置中所 使用之電解槽之一例的整體圖。 圖2-i係表示本發明之硫酸電解方法及硫酸電解裳置之 一例的整體圖。 圖2-2係表林發明之械電解方法及碰電解裝置之 另一例的整體圖。 【主要元件符號說明】 100145902S 28 201231730 Voltage rises. In Examples 17 and 18, the electrolytic cell voltage was good, but the current efficiency was low. 6) From the results of Examples 19 to 20, it is understood that the current efficiency of the oxidizing substance is lower when the current is at a lower degree (A/dm2) than the result of the Example 与, and at the same time, the oxidizing property is obtained. The substance concentration becomes lower. On the other hand, as is clear from the results of Examples 21 and 22, when the current density (A/dm2) 4 is two, the current efficiency of the oxidizing substance is higher than that of the results of Example 1, but the electrolytic cell ink rises. . The reason is considered to be that the gas generated is filled in the electrolytic cell because of the high current density. 7) As a result of the application of Example 23, when the amount of electric power per unit volume is lower than that of the results of Example 则, the current efficiency of the oxidizing substance is increased, and at the same time, the concentration of the oxidizing substance is lowered. On the other hand, as is clear from the results of Example 24, when the amount of electricity per unit volume is increased, the current efficiency of the oxidizing substance is lowered, and the concentration of the oxidizing substance is increased. 8) From the results of Example 25, it can be seen that the current efficiency of the oxidizing substance is good when the substrate material becomes 铌 compared with the result of Example i, and at the same time, the concentration of the oxidizing substance is good, but the durability test of the electrode The visual observation of the surface of the electrode was confirmed to be slightly peeled off. &lt;Comparative Examples 1 to 4&gt; By changing the flow rate of the xenon, the flow rate of the cyanuric acid triacetate, and the film formation time, the electrode of the conductive diamond film thickness and the potential range as described in Table 5 was used for the anode. In addition to this and the examples! The same method was used to obtain oxygen 100145902 29 201231730 7 substance solution. The results of the obtained oxidizing substance solution are shown in Table 1, the current efficiency of the electrolytic cell voltage and the oxidizing substance, and the result was confirmed by visual observation of the electrode surface after the durability test of the electrode. To the extent where the film is mostly peeled off. In Comparative Example 2, in the visual observation of the surface of the electrode after the durability test of the electrode, the deterioration of the film was not confirmed, but the voltage of the electrolytic cell in the electrolysis process became south, and the oxidizing substance obtained by the drought was obtained. The current efficiency of the solution is low. In Comparative Example 3, the electrolytic cell voltage and current efficiency were excellent, but it was confirmed that the film was largely peeled off by visual observation of the electrode surface after the electrode durability test. In Comparative Example 4, no deterioration of the film was observed in the visual observation of the surface of the electrode after the long-term test of the electrode, but the voltage of the electrolytic cell during the electrolysis was changed, and the current of the solution containing the oxidizing substance was obtained. Less efficient. In Comparative Example 5, the electrode was deteriorated during the electrolysis, and the powder of carbon was visually observed in the electrolytic solution, thereby interrupting the electrolysis. 100145902 30 201231730 Table 1 Electrolysis conditions Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Anode and cathode film material Conductive diamond substrate material Conductivity 矽 Diamond layer thickness (/zm) 10 10 10 10 1.5 23 Potential range (V) 2.63 2.12 3.40 2.80 2.12 3.30 A/B 4.50 1.80 6.20 6.30 1.58 6.00 Shed concentration (ppm) 3000 3000 3000 3000 3000 3000 Sulfate ion concentration in electrolyte (mol/1) 4.2 4.2 4.2 4.2 4.2 4.2 Acid concentration in the electrolyte (mol/l) 8.4 8.4 8.4 8.4 8.4 8.4 Anode volume (ml) 300 300 300 300 300 300 Electrolytic area (dm2) 1.000 1.000 1.000 1.000 1.000 1.000 Current value (A) 100 100 100 100 100 100 Current density (A/dm2) 100 100 100 100 100 100 Current value / anolyte volume (A/1) 333 333 333 333 333 333 Electrolysis time (min) 20 20 20 20 20 20 Electricity per unit volume ( xl〇4As/l) 40 40 40 40 40 40 Separator use Table 2 Electrolysis conditions Example 7 Example 8 Example 9 Example 10 Example 11 Example 12 Anode and cathode film material Conductive diamond substrate material Conductive diamond Layer thickness (//m) 10 10 10 10 10 10 Potential range (V) 3.50 3.20 2.60 2.15 2.63 2.63 A/B 6.00 5.50 3.20 1.62 4.50 4.50 Boron concentration (ppm) 700 1200 5000 7000 3000 3000 Sulfate ion concentration in electrolyte (mol/1) 4.2 4.2 4.2 4.2 1.9 2.5 Acid concentration in electrolyte (mol/1) 8.4 8.4 8.4 8.4 3.8 5.0 Anode volume (ml) 300 300 300 300 300 300 Electrolytic area (dm2) 1.000 1.000 1.000 1.000 1.000 1.000 Current value (A) 100 100 100 100 100 100 Current density (A/dm2) 100 100 100 100 100 100 Current value / anolyte volume (A/1) 333 333 333 333 333 333 Electrolysis time (min) 20 20 20 20 20 20 Per unit volume Electric quantity (x1〇4As/1) .40 40 40 40 40 40 Separator use 31 ' &gt; 100145902 Example 13 Example 14 Example 〖5|Implementation of the 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Therefore, the anode and cathode diamond layer thickness (βϊή) 10 10 10 10 10 10 Potential range (V) 2.63 2.63 2.63 2.63 2.63 2.63 Α/Β 4.50 4.50 4.50 4.50 4.50 4.50 3000 3000 3000 3000 3000 3000 Sulfate ion concentration in the electrolyte ( Mol/1) 8.5 16.0 4.2 4.2 4.2 4.2 Acid concentration in the solution (mol/1) 17.0 32.0 1 8.4 8.4 8.4 8.4 Anode volume (ml) 300 300 11 20 1000 1200 Electrolytic area (dm2) 1.000 1.000 1.000 1.000 1.000 1.000 Current value (A) 100 100 100 100 100 100 Current density (A/dm2) 100 100 100 100 100 100 Current value / Anode volume (A/1) 333 333 9091 5000 100 83 Electrolysis time (min) 20 20 0.7 1.3 66.7 80.0 Electricity per unit volume (x104As /1) 40 40 40 40 40 40 Separator use 201231730 Table 3 Electrolysis conditions Table 4 Electrolysis conditions Example 19 Example 20 Example 21 Example 22 Example 23 Example 24 Example 25 Anode and cathode film materials Diamond substrate material conductivity 矽铌 diamond layer thickness (/m) 10 10 10 10 10 10 10 Potential range (V) 2.63 2.63 2.63 2.63 2.63 2.63 2.63 A/B 4.50 4.50 4.50 4.50 4.50 4.50 4.50 Moment (pprr〇 3000 3000 3000 3000 3000 3000 3000 Sulfate ion concentration in electrolyte (mol/D 4.2 4.2 4.2 4.2 4.2 4.2 4.2 Acid concentration in electrolyte (mol/1) 8.4 8.4 8.4 8.4 8.4 8.4 8.4 Anode volume (ml) 300 300 300 300 300 300 300 Electrolytic area (dm2 ) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Current value (A) 20 50 200 280 100 100 100 Current density (A/dm2) 20 50 200 280 100 100 100 Current value / anolyte volume (A/1) 67 167 667 933 333 333 333 Electrolysis time (min) 100 40 10 7.1 1.0 50 20 Electricity per unit volume (X l〇4As/n 40 40 40 40 2 100 40 Separator use 100145902 32 201231730 Table 5 Electrolysis conditions------ Comparative example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Anode and Cathode Film Material Conductive Diamond Carboniferous Substrate Material Tele-Ray Shi Xi • Diamond Layer Thickness (um) 10 10 0.8 26 - 3.60 1.90 Potential Range (V) 1.97 3.90 1.99 A/B 2.00 7.20 1.49 6.30 Butterfly concentration (rmm) 3000 3000 3000 3000 - 4.2 4.2 Sulfate ion concentration in electrolyte (mol/1) 4.2 4.2 4.2 Acid concentration in electrolyte 廑imol/1) 8.4 8.4 8.4 8.4 8.4 Anode fluid volume (ml) 300 300 300 300 300 Electrolytic area (dm2) 1.000 1.000 1.000 1 1.000 1.000 Current value (A) 100 100 100 100 100 100&quot;&quot;&quot;&quot; 100 ..... Current density (A/dm2) 100 100 100 ~ 333 333 Lei Zixin / Yang Luoqiu / Π 3 33 333 333 Electrolysis time fmin, 20 20 20 20 20 Electricity per unit volume (xl〇4As/l) 40 40 40 40 40 One diaphragm use ____ Table 6 Experimental results Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Current efficiency % 53 55 49 50 56 40 11/: Oxidizing substance concentration (m〇l/l) 1.10 1.14 1.02 1.04 1.04 1.1〇1 1 电解 Cell voltage m 10.200 9.800 10.800 10.790 9.620 11.2 UU durability 〇 △ 〇〇 △ KJ Table 7 Experimental results Example 12 Example 7 Current efficiency % Oxidizing substance concentration (m〇l / l) A cell voltage (v) 38 0.79 ΤΓόόό ^ Example 41 - 0.85109 〇 〇~ Example 9 54 1.12 9.800 〇Example 10 55 1.14 9.500 Example 11 30 0.62 10.400 42 0.87 10.300 &quot;&quot;δ&quot;- Table 8 Experimental Results Current Efficiency % Oxidizing Material Concentration Cell Voltage fV) Durability Implementation Example 13 51 1.06 11.300 0 Example 14 35 0.73 12.900 〇Example 15 55 1.14 12.100 〇Example 16 54 1.12 11.800 〇Example 17 50 1.04 10.200 把例 Example 49 1.02 10.200 〇100145902 33 201231730 Table 9 Experiment Example 1 23 ^Examples ^ 24 25 . Example 19 Example 20 Example 21 Example 22 Current efficiency % 46 49 54 55 97 34 53 Oxidizing substance concentration (mol/1) 0.95 1.02 1.12 1.14 0.05 1.76 1.10 Cell voltage (V) 6.400 7.902 13.200 15.000 10.200 10.200 10.300 Durability 〇〇〇〇〇〇 Δ Table 10 Experimental results Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Current efficiency % 54 33 54 32 Serious deterioration Non-electrolytic oxidizing substance concentration (mol/1) 1.12 0.68 1.12 0.66 Cell voltage (V) 10.000 12.800 9.800 12.500 Durability X 〇X 〇 (industrial availability) If the diamond electrode by the present invention is used, especially The anode in sulfuric acid electrolysis has an effect of stably generating an oxidizing substance, and this effect can be improved when used as a cathode in sulfuric acid electrolysis. Further, the conductive diamond electrode of the present invention can also be used as another anode and cathode for electrolysis. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a general view showing an example of an electrolytic cell used in the sulfur electrolysis method and the sulfuric acid electrolytic cracking of the present invention. Fig. 2-i is a general view showing an example of the sulfuric acid electrolysis method and the sulfuric acid electrolysis according to the present invention. Fig. 2-2 is an overall view of another example of the mechanical electrolysis method and the collision electrolysis apparatus of the invention. [Main component symbol description] 100145902

S 34 201231730 1 陽極液排出口 2 陰極液排出口 3 陽極室 4 陰極室 5 陽極給電端子 6 陰極給電端子 7 陽極液供給口 8 陰極液供給口 9 多孔質PTFE隔膜 10 導電性鑽石陽極 11 導電性基板 12 導電性鑽石陰極 13 導電性基板 14 密封材料 15 冷卻套 16 冷卻水排出口 17 冷卻水供給口 18 陽極液供給管線 19 陽極液供給泵 20 流量計 21 電解槽 22 流量計 100145902 35 201231730 23 陽極液循環/排出泵 24 氧化性物質溶液排出管線 25 陽極液循環管線 26 陽極側氣液分離器 27 產生氣體排出口 28 陰極液供給管線 29 陰極液供給泵 30 流量計 31 流量計 32 陰極液循環/排出泵 33 陰極液排出管線 34 陰極液循環管線 35 陰極側氣液分離器 36 產生氣體排出口 37 冷卻水循環管線 100145902 36 sS 34 201231730 1 anolyte discharge port 2 catholyte discharge port 3 anode chamber 4 cathode chamber 5 anode feed terminal 6 cathode feed terminal 7 anolyte supply port 8 catholyte supply port 9 porous PTFE diaphragm 10 conductive diamond anode 11 conductivity Substrate 12 Conductive Diamond Cathode 13 Conductive Substrate 14 Sealing Material 15 Cooling Jacket 16 Cooling Water Discharge Port 17 Cooling Water Supply Port 18 Anolyte Supply Line 19 Anolyte Supply Pump 20 Flow Meter 21 Electrolyzer 22 Flow Meter 100145902 35 201231730 23 Anode Liquid circulation/discharge pump 24 Oxidizing substance solution discharge line 25 Anomatic liquid circulation line 26 Anode side gas-liquid separator 27 Production gas discharge port 28 Catholyte supply line 29 Catholyte supply pump 30 Flow meter 31 Flow meter 32 Catholyte circulation / Discharge pump 33 Catholyte discharge line 34 Catholyte circulation line 35 Cathode side gas-liquid separator 36 Generate gas discharge port 37 Cooling water circulation line 100145902 36 s

Claims (1)

201231730 七、申請專利範圍: 、L種導電性鑽石電極,其特徵在於:包括導電性基體與 被覆於上迷導電性基體之表面之導電性鑽石層,且 丄)上述導電性鑽石層之厚度為1〜25 //m, . 2)電位範圍滿足式(1), • )藉由杈曼光譜分析所獲得之鑽石成分A與非鑽石成分 B之比(A/B)滿足式(2), 2·1 電位範圍5 v …⑴ A/B^6 5 ...(2) A拉曼光譜分析中之波數13〇〇 cm·1下之強度 B—拉曼光譜分析中之波數1500 cm-1下之強度。 2·如申凊專利範圍第1項之導電性鑽石電極,其中,上述 導電性鑽石層包含1〇〇〇〜6000 ppm之棚。、 、 3. 如申%專利範圍第1或2項之導電性鑽石電極,其中, 上述導電性基體為矽基板。 4. -種硫酸電解方法,其係藉由隔膜而劃分成陽極室與陰 •極室’於上述陽極室内設置導電性鑽石陽極,於上述陰極: •内設置陰極,自外部向上述陽極室及陰極㈣分別供給包含 硫酸離子之電解液而進行電解,於上述陽極室内之陽極電: 液中生成氧化性物質者,其特徵在於:使用中請專利範圍第 1至3項中任—項之導電性鑽石電極作為上述導電性鑽石電 極’且將上述包含硫酸離子之電解液製成含有2〜14功㈣ 100145902 37 201231730 之濃度之硫酸離子的溶液。 5. 如申請專利範圍第4項之硫酸電解方法,其中,將 包含硫酸離子之電解液製成含有4〜28之濃度之酸的 溶液。 6. -種硫酸電㈣置,其係藉由隔膜㈣分成陽極室與陰 極室,於上述陽極室内設置導電性鑽石陽極,於上述陰極室 内設置陰極,自外部向上述陽極室及陰極室内分別供給包含 硫酸離子之電解液而進行電解,於上述陽極室内之陽極電解 液中生成氧化性物質者’其特徵在於:使用中請專利範圍第 1至3項中任-項之導電性鑽石電極作為上述導電性鑽石電 極,且使用包含氟樹脂系陽離子交_或經親水化處理之多 孔質氟系樹脂膜之隔膜作為上述隔膜。 7. -種硫酸f解方法,其储由隔膜賴分成陽極室與陰 極室,於上述陽極室内設置導電性鑽石陽極,於上述陰極: 内設置陰極’自外部向上述陽極室及陰極室内分別供給包含 硫酸離子之電解液而進行電解,於上述陽極室内之陽極電: 液中生成氧化性物質者,其特徵在於:❹巾請專利範圍第 1至3項中任1之導電性鑽石電極作為上述導電性鑽石電 極,且於滿足(3)式、⑷式之條件下電解上述包含硫酸 之電解液, 100^X^ 10000 ..·(3) 25&lt;Υ&lt;250 ...μ、 100145902 38 201231730 X=電流值/陽極液量(A/l) Y=電流密度(A/dm2)。 8.如申請專利範圍第7項之硫酸電解方法,其係於滿足(5) 式之條件下電解包含硫酸離子之溶液, 18000SZS 1080000 …(5) ‘ Z=每單位體積之電量(C/l)=電流值X電解時間/陽極液量 (A. s/1)。 &quot; 100145902 39201231730 VII. Patent application scope: L type conductive diamond electrode, comprising: a conductive substrate and a conductive diamond layer coated on the surface of the conductive substrate, and 丄) the thickness of the conductive diamond layer is 1~25 //m, . 2) The potential range satisfies the formula (1), • The ratio of the diamond component A to the non-diamond component B (A/B) obtained by the 杈-manner spectrum analysis satisfies the formula (2), 2·1 Potential range 5 v ...(1) A/B^6 5 (2) Wave number in A Raman spectroscopy analysis intensity under 13〇〇cm·1 B-wave number in Raman spectroscopy The strength under cm-1. 2. The conductive diamond electrode of claim 1, wherein the conductive diamond layer comprises a shed of 1 〇〇〇 to 6000 ppm. 3. The conductive diamond electrode according to claim 1 or 2, wherein the conductive substrate is a tantalum substrate. 4. A method for electrolyzing sulfuric acid, which is divided into an anode chamber and a cathode chamber by a separator to provide a conductive diamond anode in the anode chamber, and a cathode is provided in the cathode: from the outside to the anode chamber and The cathode (4) is separately supplied with an electrolyte containing sulfuric acid ions for electrolysis, and the anode in the anode chamber is formed into an oxidizing substance in the liquid, and is characterized in that: in use, the conductive material of any one of the first to third patent ranges is used. The diamond electrode is used as the conductive diamond electrode', and the electrolyte containing the sulfate ion is made into a solution containing a concentration of 2 to 14 watts (4) 100145902 37 201231730. 5. The sulfuric acid electrolysis method according to claim 4, wherein the electrolyte containing sulfate ions is made into a solution containing an acid having a concentration of 4 to 28. 6. A sulfuric acid (four) device, which is divided into an anode chamber and a cathode chamber by a separator (four), a conductive diamond anode is disposed in the anode chamber, a cathode is disposed in the cathode chamber, and is supplied from the outside to the anode chamber and the cathode chamber respectively. An electrolytic diamond electrode comprising any of the anolyte solutions in the anode chamber is electrolyzed by an electrolytic solution containing a sulfate ion, and the conductive diamond electrode according to any one of the first to third aspects of the patent range is used as the above. As the conductive diamond electrode, a separator containing a fluororesin-based cation or a hydrophilized porous fluororesin film is used as the separator. 7. A method for solving sulfuric acid f, wherein the storage is divided into an anode chamber and a cathode chamber by a separator, and a conductive diamond anode is disposed in the anode chamber, and a cathode is provided in the cathode: a cathode is supplied from the outside to the anode chamber and the cathode chamber. The electrolytic solution containing the sulfuric acid ion is electrolyzed, and the anodic electricity in the anode chamber is formed into an oxidizing substance in the liquid, and the conductive diamond electrode according to any one of the first to third aspects of the patent scope is used as the above-mentioned Conductive diamond electrode, and electrolyzing the above electrolyte containing sulfuric acid under the conditions satisfying the formulas (3) and (4), 100^X^ 10000 ..·(3) 25&lt;Υ&lt;250 ...μ, 100145902 38 201231730 X = current value / anolyte amount (A / l) Y = current density (A / dm2). 8. The method for electrolyzing sulfuric acid according to item 7 of the patent application, which is to electrolyze a solution containing sulfuric acid ions under the condition of the formula (5), 18000SZS 1080000 ... (5) 'Z=electric quantity per unit volume (C/l ) = current value X electrolysis time / anolyte amount (A. s / 1). &quot; 100145902 39
TW100145902A 2010-12-21 2011-12-13 A conductive diamond electrode, a sulfuric acid electrolysis method thereof, and a sulfuric acid electrolysis apparatus TWI516641B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285100A JP5271345B2 (en) 2010-12-21 2010-12-21 Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same

Publications (2)

Publication Number Publication Date
TW201231730A true TW201231730A (en) 2012-08-01
TWI516641B TWI516641B (en) 2016-01-11

Family

ID=46313634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100145902A TWI516641B (en) 2010-12-21 2011-12-13 A conductive diamond electrode, a sulfuric acid electrolysis method thereof, and a sulfuric acid electrolysis apparatus

Country Status (7)

Country Link
US (1) US20130256150A1 (en)
EP (1) EP2657370A4 (en)
JP (1) JP5271345B2 (en)
KR (1) KR101525340B1 (en)
CN (1) CN103380232B (en)
TW (1) TWI516641B (en)
WO (1) WO2012086352A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015006514B4 (en) * 2015-05-26 2016-12-15 Condias Gmbh Method for producing a diamond electrode and diamond electrode
CN106917104A (en) * 2017-03-17 2017-07-04 南开大学 A kind of method of use BDD electrodes electro synthesis persulfate
JP6947783B2 (en) * 2017-09-01 2021-10-13 栗田工業株式会社 ABS-based resin surface plating pretreatment method and ABS-based resin surface plating treatment method
JP6953484B2 (en) * 2017-09-01 2021-10-27 栗田工業株式会社 ABS-based resin surface plating pretreatment method, ABS-based resin surface plating treatment method, and ABS-based resin plating products
JP2019044229A (en) * 2017-09-01 2019-03-22 栗田工業株式会社 Plating pretreatment method for abs resin surface, plating treatment method for abs resin surface, and abs resin-plated product
CN111020623A (en) * 2019-12-31 2020-04-17 河北中科同创科技发展有限公司 Closed electrolytic tank

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019683A1 (en) * 2000-04-20 2001-10-25 Degussa Process for the preparation of alkali metal and ammonium peroxodisulfate
US20080271911A1 (en) * 2003-08-08 2008-11-06 Ebara Corporation Submerged Electrode and Material Thereof
JP2006152338A (en) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd Diamond-coated electrode and production method therefor
KR101030940B1 (en) * 2006-01-20 2011-04-28 토요 탄소 가부시키가이샤 Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP5148889B2 (en) * 2007-02-09 2013-02-20 株式会社東芝 Cleaning method and electronic device manufacturing method
JP4460590B2 (en) * 2007-06-22 2010-05-12 ペルメレック電極株式会社 Conductive diamond electrode structure and method for electrolytic synthesis of fluorine-containing material
JP5358303B2 (en) * 2008-06-30 2013-12-04 クロリンエンジニアズ株式会社 Method of cleaning with electrolytic sulfuric acid and method of manufacturing semiconductor device
JP5320173B2 (en) * 2008-06-30 2013-10-23 クロリンエンジニアズ株式会社 Sulfuric acid electrolysis method
JP5482123B2 (en) * 2008-11-26 2014-04-23 コニカミノルタ株式会社 Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, and image forming apparatus

Also Published As

Publication number Publication date
KR101525340B1 (en) 2015-06-02
CN103380232A (en) 2013-10-30
WO2012086352A1 (en) 2012-06-28
US20130256150A1 (en) 2013-10-03
EP2657370A4 (en) 2016-08-24
JP2012132066A (en) 2012-07-12
KR20130108435A (en) 2013-10-02
CN103380232B (en) 2016-08-17
TWI516641B (en) 2016-01-11
EP2657370A1 (en) 2013-10-30
JP5271345B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
TW201231730A (en) Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same
US5900127A (en) Electrode for electrolysis and electrolytic cell using the electrode
KR100803931B1 (en) Conductive diamond electrode and process for producing the same
US7335285B2 (en) Electrolytic anode and method for electrolytically synthesizing fluorine containing substance using the electrolytic anode
US20070170070A1 (en) Electrolysis cell for synthesizing perchloric acid compound and method for electrolytically synthesizing perchloric acid compound
KR101286426B1 (en) Sulfuric acid electrolysis process
Arihara et al. Application of freestanding perforated diamond electrodes for efficient ozone-water production
JP2011137241A (en) Method and apparatus for achieving maximum yield in electrolytic preparation of group iv and v hydrides
JP4157615B2 (en) Method for producing insoluble metal electrode and electrolytic cell using the electrode
WO2014208019A1 (en) Methanol production apparatus, methanol production method, and electrode for use in methanol production
JP6221067B2 (en) Formic acid production apparatus and method
JP6528183B2 (en) Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus
JP2017047362A (en) Generation apparatus and generation method of weak-acidic hypochlorous acid solution
JP2012097334A (en) Method for recovering bromine and device for the same
CN110612365B (en) Method for electrochemically producing germane
JP5649948B2 (en) Sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus
TWI743360B (en) The method of electrochemical production of germane
KR20190140029A (en) How to make germane electrochemically
JP2007254760A (en) Method for manufacturing electrolyzed ion water
JP2011102410A (en) Electrolyzer, and deterioration diagnostic method of electrode