JP5271345B2 - Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same - Google Patents

Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same Download PDF

Info

Publication number
JP5271345B2
JP5271345B2 JP2010285100A JP2010285100A JP5271345B2 JP 5271345 B2 JP5271345 B2 JP 5271345B2 JP 2010285100 A JP2010285100 A JP 2010285100A JP 2010285100 A JP2010285100 A JP 2010285100A JP 5271345 B2 JP5271345 B2 JP 5271345B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
conductive diamond
anode
electrode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010285100A
Other languages
Japanese (ja)
Other versions
JP2012132066A (en
Inventor
昌明 加藤
宏紀 土門
純子 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010285100A priority Critical patent/JP5271345B2/en
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to PCT/JP2011/076781 priority patent/WO2012086352A1/en
Priority to US13/993,205 priority patent/US20130256150A1/en
Priority to KR1020137019257A priority patent/KR101525340B1/en
Priority to CN201180068101.7A priority patent/CN103380232B/en
Priority to EP11851375.3A priority patent/EP2657370A4/en
Priority to TW100145902A priority patent/TWI516641B/en
Publication of JP2012132066A publication Critical patent/JP2012132066A/en
Application granted granted Critical
Publication of JP5271345B2 publication Critical patent/JP5271345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/083Diamond
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Abstract

The present invention provides an electrically conductive diamond electrode comprising an electrically conductive substrate and an electrically conductive diamond layer coated on the surface of the electrically conductive substrate, featuring that: 1) the thickness of the electrically conductive diamond layer is 1ˆ¼25µm, 2) the potential window fulfills Equation (1) and 3) the ratio (A/B) of the diamond component A and the non-diamond component B by the Raman spectroscopic analysis fulfills Equation (2). 2.1 �¢ V ‰¦ potential window ‰¦ 3.5 �¢ V 1.5 < A / B ‰¦ 6.5 A: Intensity at the wave number 1300cm -1 by the Raman spectroscopic analysis B: Intensity at the wave number 1500cm -1 by the Raman spectroscopic analysis. The present invention intends to provide an electrically conductive diamond electrode with a high durability as electrode, which achieves a high current efficiency of oxidizing agent at a low cell voltage by controlling the thickness of the electrically conductive diamond layer and crystallinity of the electrically conductive diamond, a sulfuric acid electrolysis method and an electrolysis apparatus of sulfuric acid applying the electrically conductive diamond electrode.

Description

本発明は、導電性ダイヤモンド電極及び導電性ダイヤモンド電極を用いて硫酸を直接電解し、酸化性物質を安定して生成させる、硫酸電解方法及び硫酸電解装置に関するものである。   The present invention relates to a sulfuric acid electrolysis method and a sulfuric acid electrolysis apparatus in which sulfuric acid is directly electrolyzed using a conductive diamond electrode and a conductive diamond electrode to stably generate an oxidizing substance.

金属の電解めっきの前処理剤やエッチング剤、半導体デバイス製造における化学的機械的研磨処理における酸化剤、湿式分析における有機物の酸化剤、シリコンウェハの洗浄剤等の、様々な製造プロセスや検査プロセスに用いる薬剤として、過硫酸や過硫酸塩が用いられている。これら過硫酸や過硫酸塩は、「酸化性物質」と呼ばれ、この「酸化性物質」は、硫酸の電解によって生成することが知られており、既に工業規模で電解製造されている。   For various manufacturing and inspection processes such as pretreatment agents and etching agents for metal electroplating, oxidants in chemical mechanical polishing treatment in semiconductor device manufacturing, organic oxidizers in wet analysis, silicon wafer cleaning agents, etc. As a drug to be used, persulfuric acid or persulfate is used. These persulfuric acid and persulfate are called “oxidizing substances”, and this “oxidizing substance” is known to be produced by electrolysis of sulfuric acid, and has already been electrolytically produced on an industrial scale.

本発明において、「酸化性物質」とはペルオキソ二硫酸、ペルオキソ一硫酸を総称する過硫酸、過酸化水素を指す。電解生成物である「酸化性物質」を部材の洗浄や表面処理等に使用する時、多くの場合では、これら総濃度が高いほど効果の高い薬液となるため、高濃度な液を作製する方法が求められる。また、これらの製造においては電解法が用いられるが、セル電圧、電解電流、電流効率から算出される電力原単位を小さくすること、及び経時的に安定かつ高い電流効率を維持することは、生産に必要なエネルギーを小さくするため生産性向上に有効であり、それを実現するための電極の製造方法が求められる。また、使用される電極の耐久性が高いことは、電極寿命を延ばし、電極からの汚染発生がないクリーンな電解液を作製できることなどから有効である。   In the present invention, the “oxidizing substance” refers to persulfuric acid, hydrogen peroxide, which is a general term for peroxodisulfuric acid and peroxomonosulfuric acid. When using "oxidizing substances", which are electrolytic products, for cleaning or surface treatment of parts, in many cases, the higher the total concentration, the more effective the chemical solution. Is required. In addition, although the electrolysis method is used in these manufactures, reducing the power consumption calculated from the cell voltage, electrolysis current, and current efficiency and maintaining stable and high current efficiency over time In order to reduce the energy required for this, it is effective in improving productivity, and an electrode manufacturing method for realizing it is required. In addition, the high durability of the electrode used is effective because the electrode life can be extended and a clean electrolyte solution free from contamination from the electrode can be produced.

特許文献1は、導電性ダイヤモンド陽極を用いて濃硫酸を電解し過硫酸を製造する硫酸電解方法及び製造された過硫酸を用いてシリコンウェハ加工物を洗浄する洗浄方法が記されている。この導電性ダイヤモンド電極は、従来、過硫酸塩を生成する電極として多用されてきた白金電極と比較して、酸素発生の過電圧が大きいため、硫酸を過硫酸に電解酸化する効率に優れている。また化学安定性に富み、電極寿命が長いという特長を有している。   Patent Document 1 describes a sulfuric acid electrolysis method for producing persulfuric acid by electrolyzing concentrated sulfuric acid using a conductive diamond anode, and a cleaning method for washing a silicon wafer workpiece using the produced persulfuric acid. This conductive diamond electrode is superior in efficiency of electrolytic oxidation of sulfuric acid to persulfuric acid because it has a higher overvoltage for oxygen generation than a platinum electrode that has been widely used as an electrode for generating persulfate. In addition, it has excellent chemical stability and long electrode life.

即ち、導電性ダイヤモンド電極は、他の電極触媒(Pt、PbO2等)と比較して過硫酸生成効率が高く、耐久性が高く電極からの汚染発生がないクリーンな電解液を作製できることなどから、特に半導体ウェハ等の洗浄液製造用途などで開発を進められている。 That is, the conductive diamond electrode has higher persulfuric acid generation efficiency than other electrode catalysts (Pt, PbO 2, etc.), and can produce a clean electrolyte solution that is highly durable and free from contamination from the electrode. In particular, it is being developed for cleaning liquid manufacturing applications such as semiconductor wafers.

然るに、特許文献1に記載の導電性ダイヤモンド陽極を用いて、濃硫酸を電解し、過硫酸を製造する硫酸電解方法は硫酸を電解して過硫酸を含む洗浄液を生成し、前記洗浄液をレジスト付きシリコンウェハ等の被洗浄物へ供給して洗浄を行ない、更に過硫酸濃度の低下した使用済み洗浄液を回収して再度電解することで過硫酸濃度を増加させて繰り返し同一洗浄液を洗浄に用いる方法であり、導電性ダイヤモンド電極の結晶性と、ラマン分光特性・電位窓の関係性及びペルオキソ二硫酸等の過硫酸や洗浄液中の酸化性物質の電流効率及びセル電圧等の生産性について開示がない。   However, a sulfuric acid electrolysis method for producing persulfuric acid by electrolyzing concentrated sulfuric acid using the conductive diamond anode described in Patent Document 1 generates a cleaning solution containing persulfuric acid by electrolyzing sulfuric acid, and the cleaning solution is provided with a resist. This is a method in which cleaning is performed by supplying an object to be cleaned such as a silicon wafer, and the used cleaning liquid with a reduced persulfuric acid concentration is recovered and electrolyzed again to increase the persulfuric acid concentration and repeatedly use the same cleaning liquid for cleaning. There is no disclosure regarding the crystallinity of the conductive diamond electrode, the relationship between the Raman spectral characteristics and the potential window, the persulfuric acid such as peroxodisulfuric acid, the current efficiency of the oxidizing substance in the cleaning liquid, and the productivity such as the cell voltage.

特許文献2は、工具用多結晶ダイヤモンドとして、膜厚を規定することでダイヤモンドの高い強度を維持し、ラマン分光のピーク強度比を規定することでダイヤモンドの耐摩耗性を高める方法が開示されている。更に、特許文献2に記載のダイヤモンドは、膜厚を50μm以上、ラマン分光分析によるダイヤモンド炭素と非ダイヤモンド炭素のピーク比(非ダイヤモンド炭素/ダイヤモンド炭素)を2.0以下の範囲とすることが記載されている。しかし、このダイヤモンドは、電解用電極でなく、導電性ダイヤモンド電極の結晶性と、電解特性の一つである電位窓との相関性及びペルオキソ二硫酸等の過硫酸や洗浄液中の酸化性物質の電流効率及びセル電圧等の生産性との関係性について開示がない。   Patent Document 2 discloses a method for increasing the wear resistance of diamond by prescribing the film thickness and maintaining the high strength of the diamond by defining the film thickness, and by defining the peak intensity ratio of Raman spectroscopy. Yes. Furthermore, it is described that the diamond described in Patent Document 2 has a film thickness of 50 μm or more, and the peak ratio of diamond carbon to non-diamond carbon (non-diamond carbon / diamond carbon) by Raman spectroscopy is 2.0 or less. Has been. However, this diamond is not an electrode for electrolysis, but the correlation between the crystallinity of the conductive diamond electrode and the potential window, which is one of the electrolysis characteristics, and the presence of persulfuric acid such as peroxodisulfuric acid and oxidizing substances in the cleaning liquid. There is no disclosure about the relationship between productivity such as current efficiency and cell voltage.

特許文献3は、オゾン水製造装置用の電解用電極として、導電性ダイヤモンドライクカーボンの導電性膜を有する導電性ダイヤモンド電極が開示されている。特許文献3に記載の導電性膜は、ラマン分光分析において、1340cm-1±20cm-1に存在するピークの積分強度Int<1340>と1580cm-1±20cm-1に存在するピークの積分強度Int<1580>との比が下記式を満足することで、電極の耐久性を維持し、高電流効率でオゾン水を製造できるオゾン水製造装置が開示されている。
Int<1340>/Int<1580>=0.5〜1.5
Patent Document 3 discloses a conductive diamond electrode having a conductive film of conductive diamond-like carbon as an electrode for electrolysis for an ozone water production apparatus. Conductive film described in Patent Document 3, in Raman spectroscopic analysis, the integrated intensity of the peaks present in 1580 cm -1 ± 20 cm -1 and the integrated intensity Int <1340> of peaks present in 1340cm -1 ± 20cm -1 Int An ozone water production apparatus capable of producing the ozone water with high current efficiency while maintaining the durability of the electrode by the ratio of <1580> satisfying the following formula is disclosed.
Int <1340> / Int <1580> = 0.5 to 1.5

しかし、ダイヤモンドライクカーボンとは、非晶質硬質炭素のことを示しており、結晶構造を有している導電性ダイヤモンドとは異なる構造であることが特許文献3に明示されている。   However, diamond-like carbon indicates amorphous hard carbon, and it is clearly disclosed in Patent Document 3 that the structure is different from conductive diamond having a crystal structure.

然るに、特許文献3では、電極としてダイヤモンドライクカーボンを用いており、導電性ダイヤモンド電極の結晶性と、ラマン分光特性・電位窓の関係性及び導電性ダイヤモンド電極の結晶性とペルオキソ二硫酸等の過硫酸や洗浄液中の酸化性物質の電流効率及びセル電圧等の生産性との関係性について開示がない。   However, in Patent Document 3, diamond-like carbon is used as an electrode, and the relationship between the crystallinity of the conductive diamond electrode and the Raman spectral characteristics / potential window, the crystallinity of the conductive diamond electrode, and peroxodisulfuric acid. There is no disclosure about the relationship between the current efficiency of the oxidizing substance in the sulfuric acid and the cleaning liquid and the productivity such as the cell voltage.

然るに、上記特許文献1〜3に記載の方法は、導電性ダイヤモンド電極の結晶性とラマン分光特性・電位窓の相関性は明らかでなく、更に、それら方法では、電極の耐久性が高く、且つ、低セル電圧で酸化性物質生成効率が高い導電性ダイヤモンド電極を製造することができなかった。   However, in the methods described in Patent Documents 1 to 3, the correlation between the crystallinity of the conductive diamond electrode and the Raman spectroscopic characteristics / potential window is not clear. Further, in these methods, the durability of the electrode is high, and Therefore, it was not possible to produce a conductive diamond electrode with a low cell voltage and high oxidizing substance generation efficiency.

特開2006−278838号公報JP 2006-278838 A 特開平2−232106号公報JP-A-2-232106 特開2008−266718号公報JP 2008-266718 A

本発明の目的は、かかる従来技術の課題を解消し、電極の耐久性に優れ、低セル電圧で酸化性物質生成効率が高い導電性ダイヤモンド電極、これを用いた、硫酸の電解方法及び硫酸の電解装置を提供することにある。   An object of the present invention is to eliminate such problems of the prior art, and to provide a conductive diamond electrode having excellent electrode durability, low cell voltage and high oxidizing substance generation efficiency, and a sulfuric acid electrolysis method and sulfuric acid using the same. It is to provide an electrolyzer.

本発明者らは、前記課題を解決するために鋭意検討した結果、導電性ダイヤモンドの結晶性が電解性能(電極の耐久性、セル電圧、酸化性物質の電流効率)と密接な関係があることを見出し、また結晶性の評価には、導電性ダイヤモンド膜の膜厚、電位窓の広さとラマン分光のピーク強度比から規定することにより、上記電解性能を達成することに成功した。   As a result of intensive studies to solve the above problems, the present inventors have found that the crystallinity of conductive diamond is closely related to the electrolysis performance (electrode durability, cell voltage, current efficiency of oxidizing substances). In addition, the evaluation of crystallinity was successful in achieving the above electrolytic performance by defining from the film thickness of the conductive diamond film, the width of the potential window, and the peak intensity ratio of Raman spectroscopy.

本発明は、上記の課題を解決するため、導電性シリコン基板よりなる導電性基板と前記導電性基板の表面に被覆された導電性ダイヤモンド層よりなり、
1)前記導電性ダイヤモンド層のドーピング剤がボロンのみからなり、
2)前記導電性ダイヤモンド層が1000〜6000ppmのボロンを含み、
)前記導電性ダイヤモンド層の厚さが、1〜25μmであり、
)電位窓が式(1)を満たし、
)ラマン分光分析によるダイヤモンド成分Aと非ダイヤモンド成分Bとの比(A/B)が式(2)を満たし、
6)硫酸電解用に使用する
ことを特徴とする導電性ダイヤモンド電極を提供することにある。
2.1V≦電位窓≦3.5V ・・・(1)
3.2≦A/B≦6.5 ・・・(2)
A=ラマン分光分析における波数1300cm-1における強度
B=ラマン分光分析における波数1500cm-1における強度
The present invention for solving the above problems, consists coated on the conductive substrate and the surface of the conductive substrate made of a conductive silicon substrate conductive diamond layer,
1) The conductive diamond layer doping agent consists only of boron,
2) The conductive diamond layer contains 1000 to 6000 ppm of boron,
3) The thickness of the conductive diamond layer is a 1 0 ~25μm,
4 ) The potential window satisfies equation (1),
5 ) The ratio (A / B) of the diamond component A to the non-diamond component B by Raman spectroscopic analysis satisfies the formula (2),
6) To provide a conductive diamond electrode characterized in that it is used for sulfuric acid electrolysis .
2.1V ≦ potential window ≦ 3.5V (1)
3.2 ≦ A / B ≦ 6.5 (2)
A = Intensity at wave number 1300 cm −1 in Raman spectroscopic analysis B = Intensity at wave number 1500 cm −1 in Raman spectroscopic analysis

また、本発明による第の解決手段は、隔膜により陽極室と陰極室に区画し、前記陽極室内に導電性ダイヤモンド陽極を設け、前記陰極室内に陰極を設け、前記陽極室及び陰極室内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、前記陽極室内の陽極電解液中に酸化性物質を生成させる硫酸の電解方法において、前記導電性ダイヤモンド電極として、特定の導電性ダイヤモンド電極を用いるとともに、前記硫酸イオンを含む電解液の硫酸イオン濃度を2〜14mol/l含有する溶液とした硫酸電解方法を提供することにある。 Further, the second solution according to the present invention is divided into an anode chamber and a cathode chamber by a diaphragm, a conductive diamond anode is provided in the anode chamber, a cathode is provided in the cathode chamber, and in the anode chamber and the cathode chamber, In the electrolytic method of sulfuric acid in which an electrolytic solution containing sulfate ions is supplied from the outside to perform electrolysis, and an oxidizing substance is generated in the anode electrolyte in the anode chamber, the conductive diamond electrode has a specific conductivity. Another object of the present invention is to provide a sulfuric acid electrolysis method using a diamond electrode and a solution containing a sulfate ion concentration of 2 to 14 mol / l of the electrolyte solution containing the sulfate ion.

また、本発明による第の解決手段は前記電解条件において、前記硫酸イオンを含む電解液の酸濃度を4〜28mol/lとした硫酸電解方法を提供することにある。 The third solving means of the present invention is to provide a sulfuric acid electrolysis method in which the acid concentration of the electrolytic solution containing sulfate ions is 4 to 28 mol / l under the electrolysis conditions.

また、本発明による第の解決手段は、隔膜により陽極室と陰極室に区画し、前記陽極室内に導電性ダイヤモンド陽極を設け、前記陰極室内に陰極を設け、前記陽極室及び陰極室内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、前記陽極室内の陽極電解液中に酸化性物質を生成させる硫酸の電解装置において、前記導電性ダイヤモンド電極を用いるとともに、前記隔膜としてフッ素樹脂系陽イオン交換膜又は親水化処理を行った多孔質フッ素系樹脂膜よりなる隔膜を用いた硫酸の電解装置を提供することにある。 The fourth solution according to the present invention is divided into an anode chamber and a cathode chamber by a diaphragm, a conductive diamond anode is provided in the anode chamber, a cathode is provided in the cathode chamber, and in the anode chamber and the cathode chamber, In each of the sulfuric acid electrolysis apparatuses that perform electrolysis by supplying an electrolyte solution containing sulfate ions from the outside and generate an oxidizing substance in the anode electrolyte solution in the anode chamber, the conductive diamond electrode is used, and the diaphragm It is intended to provide a sulfuric acid electrolysis apparatus using a fluororesin cation exchange membrane or a diaphragm made of a porous fluororesin membrane subjected to hydrophilic treatment.

また、本発明による第の解決手段は、隔膜により陽極室と陰極室に区画し、前記陽極室内に導電性ダイヤモンド陽極を設け、前記陰極室内に陰極を設け、前記陽極室及び陰極室内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、前記陽極室内の陽極電解液中に酸化性物質を生成させる硫酸の電解方法において、前記導電性ダイヤモンド電極として、前記導電性ダイヤモンド電極を用いるとともに、前記硫酸イオンを含む電解液を(3)式、(4)式を満たす条件で電解する硫酸電解方法を提供することにある。
100≦X≦10000 ・・・(3)
25<Y<250 ・・・(4)
X=電流値/陽極液量(A/l)
Y=電流密度(A/dm2
Further, the fifth solution according to the present invention is divided into an anode chamber and a cathode chamber by a diaphragm, a conductive diamond anode is provided in the anode chamber, a cathode is provided in the cathode chamber, and in the anode chamber and the cathode chamber, In the electrolytic method of sulfuric acid in which an electrolytic solution containing sulfate ions is supplied from the outside to perform electrolysis, and an oxidizing substance is generated in the anode electrolyte in the anode chamber, the conductive diamond is used as the conductive diamond electrode. Another object of the present invention is to provide a sulfuric acid electrolysis method that uses an electrode and electrolyzes an electrolytic solution containing sulfate ions under conditions satisfying the expressions (3) and (4).
100 ≦ X ≦ 10000 (3)
25 <Y <250 (4)
X = current value / anolyte amount (A / l)
Y = current density (A / dm 2 )

また、本発明による第の解決手段は、前記電解条件において、硫酸イオンを含む溶液を(5)式を満たす条件で電解する硫酸電解方法を提供することにある。
18000≦Z≦1080000 ・・・(5)
Z=単位体積あたりの電気量(C/l)=電流値×電解時間/陽極液量(A・s/l)
The sixth solving means of the present invention is to provide a sulfuric acid electrolysis method for electrolyzing a solution containing sulfate ions under a condition satisfying the expression (5) under the above electrolysis conditions.
18000 ≦ Z ≦ 10800000 (5)
Z = amount of electricity per unit volume (C / l) = current value × electrolysis time / anolyte amount (A · s / l)

本発明による導電性ダイヤモンド電極、これを用いた、硫酸電解方法及び硫酸電解装置によれば、従来技術では達成できなかった電極の耐久性が高く、低セル電圧で高濃度の酸化性物質溶液を高い電流効率で製造することができる。   According to the conductive diamond electrode according to the present invention, and the sulfuric acid electrolysis method and the sulfuric acid electrolysis apparatus using the same, the durability of the electrode, which could not be achieved by the prior art, is high, and a high concentration oxidizing substance solution can be obtained at a low cell voltage. It can be manufactured with high current efficiency.

本発明による硫酸電解方法及び硫酸電解装置に使用する電解セルの一例を示す全体図。The whole figure which shows an example of the electrolysis cell used for the sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus by this invention. 本発明による硫酸電解方法及び硫酸電解装置の一例を示す全体図。The whole figure which shows an example of the sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus by this invention. 本発明による硫酸電解方法及び硫酸電解装置の他の例を示す全体図。The whole figure which shows the other example of the sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus by this invention.

本発明は、導電性ダイヤモンド電極の結晶性と、前記導電性ダイヤモンド電極を電解セルに組込み硫酸の電解を行ったときの電極の耐久性・セル電圧・製造される酸化性物質溶液の酸化性物質濃度と電流効率の間に密接な関係があること見出したものである。   The present invention relates to the crystallinity of a conductive diamond electrode, the durability of the electrode when the conductive diamond electrode is incorporated in an electrolytic cell and electrolysis of sulfuric acid, the cell voltage, and the oxidizing substance of the oxidizing substance solution produced. It has been found that there is a close relationship between concentration and current efficiency.

ダイヤモンドは、構成している炭素原子それぞれがSP3混成軌道によって結合している立方晶であり、また、バンドギャップが広く絶縁体である。
一方、本発明における導電性ダイヤモンドとは、炭素とは原子価の異なる不純物を含むことで導電性を付与したダイヤモンドのことを示す。導電率を高める観点から、不純物濃度は高い方がよく、一方で高すぎると結晶性が崩れ、ススが付着したような電極となり、耐久性が乏しいものとなる。
Diamond is a cubic crystal in which each constituting carbon atom is bonded by SP3 hybrid orbitals, and has a wide band gap and is an insulator.
On the other hand, the conductive diamond in the present invention refers to a diamond imparted with conductivity by containing impurities having a valence different from that of carbon. From the viewpoint of increasing the conductivity, it is preferable that the impurity concentration is high. On the other hand, if the impurity concentration is too high, the crystallinity is lost, so that an electrode having soot attached thereto is obtained, and the durability is poor.

本発明における結晶性とは、結晶配列の規則性や炭素以外の不純物の含有量を表すものであり、具体的には非ダイヤ成分・グラファイト成分・アモルファス状のダイヤが多い場合、導電性ダイヤモンド層の膜厚が薄い場合、導電性ダイヤモンドの粒径が小さい場合、炭素以外の不純物元素の含有量が多い場合結晶性が低いものとなる。   The crystallinity in the present invention represents the regularity of crystal arrangement and the content of impurities other than carbon. Specifically, when there are many non-diamond components, graphite components, and amorphous diamonds, the conductive diamond layer When the film thickness of the conductive diamond is small, the conductive diamond has a small particle size, or the content of impurity elements other than carbon is large, the crystallinity is low.

本発明者らによる多くの実験の結果、後述する実施例に示す通り、導電性ダイヤモンド層の膜厚、ラマン分光分析によるダイヤモンド成分Aと非ダイヤモンド成分Bとの比(A/B)は、いずれも、結晶性を表すファクターであり、それらを規定することにより、電極の耐久性が高く、低いセル電圧で電解を行え、酸化性物質の電流効率が高く、高濃度の酸化性物質溶液を製造できる導電性ダイヤモンド電極、これを用いた、硫酸電解方法及び硫酸の電解装置を得ることができることが明らかになった。   As a result of many experiments by the present inventors, the film thickness of the conductive diamond layer and the ratio (A / B) of the diamond component A to the non-diamond component B by Raman spectroscopic analysis are as follows. Is a factor that expresses crystallinity, and by defining them, the electrode has high durability, can be electrolyzed at a low cell voltage, has high current efficiency of the oxidizing substance, and produces a highly concentrated oxidizing substance solution. It was revealed that a conductive diamond electrode that can be used, and a sulfuric acid electrolysis method and a sulfuric acid electrolysis device using the same can be obtained.

本発明は、前記導電性ダイヤモンド層の膜厚が、1〜25μmであり、電位窓が式(1)を満たし、ラマン分光分析によるダイヤモンド成分Aと非ダイヤモンド成分Bとの比(A/B)が式(2)を満たすことを特徴とする導電性ダイヤモンド電極を構成したものである。
2.1V≦電位窓≦3.5V ・・・(1)
1.5<A/B≦6.5 ・・・(2)
A=ラマン分光分析における波数1300cm-1における強度
B=ラマン分光分析における波数1500cm-1における強度
In the present invention, the conductive diamond layer has a film thickness of 1 to 25 μm, the potential window satisfies the formula (1), and the ratio of the diamond component A to the non-diamond component B by Raman spectroscopy (A / B) Is a conductive diamond electrode characterized by satisfying the expression (2).
2.1V ≦ potential window ≦ 3.5V (1)
1.5 <A / B ≦ 6.5 (2)
A = Intensity at wave number 1300 cm −1 in Raman spectroscopic analysis B = Intensity at wave number 1500 cm −1 in Raman spectroscopic analysis

先ず、第1に、導電性ダイヤモンド電極の膜厚の限定理由について説明する。
前記導電性ダイヤモンド層の膜厚は1〜25μm、より好ましくは1〜15μmであることが好ましい。前記導電性ダイヤモンド層の厚さが薄くなるほど、前記導電性ダイヤモンド層の製作時間を短縮することができ、また、導電性ダイヤモンドの結晶性が低いものとなる。結晶性が低くなると、酸化性物質の電流効率が高く、セル電圧が低くなるため好ましい。然るに、膜厚が薄くなりすぎ、1μmより薄くなると、基材の腐食などにより基体が露出したり、電解中に膜が剥がれ落ちるなど、電極の耐久性が乏しいものとなってしまう。また、膜厚が厚くなりすぎ、25μmより厚くなると、結晶性が高くなり、基材の露出がなく、基材まで電解液が浸透しないことから、電極の耐久性は向上するものの、酸化性物質の電流効率が低く、セル電圧が高いものとなってしまうため、本発明による導電性ダイヤモンド電極の膜厚は、1〜25μmが好ましい。
First, the reason for limiting the film thickness of the conductive diamond electrode will be described first.
The conductive diamond layer preferably has a thickness of 1 to 25 μm, more preferably 1 to 15 μm. The thinner the conductive diamond layer is, the shorter the manufacturing time of the conductive diamond layer is, and the lower the crystallinity of the conductive diamond is. Low crystallinity is preferable because the current efficiency of the oxidizing substance is high and the cell voltage is low. However, if the film thickness is too thin and thinner than 1 μm, the durability of the electrode becomes poor, for example, the substrate is exposed due to corrosion of the substrate or the film is peeled off during electrolysis. Further, if the film thickness becomes too thick and becomes thicker than 25 μm, the crystallinity becomes high, the base material is not exposed, and the electrolyte does not penetrate into the base material. Therefore, the thickness of the conductive diamond electrode according to the present invention is preferably 1 to 25 μm.

次に、電位窓の限定理由について説明する。
尚、本発明における電位窓とは、水の電解反応において水素発生も酸素発生も起こらない電位領域を示す。
電位窓の広さが広い場合、導電性ダイヤモンド膜の結晶性は、高くなり、電極の耐久性が向上する。しかし、電位窓の広さが3.5Vより広くなると、酸化性物質の電流効率が低く、セル電圧が高くなる。一方、電位窓の広さが2.1Vより狭くなると、電極の耐久性が低くなる。
Next, the reason for limiting the potential window will be described.
In the present invention, the potential window indicates a potential region where neither hydrogen nor oxygen is generated in the water electrolysis reaction.
When the potential window is wide, the crystallinity of the conductive diamond film is increased and the durability of the electrode is improved. However, if the potential window is wider than 3.5 V, the current efficiency of the oxidizing substance is low and the cell voltage is high. On the other hand, if the potential window is narrower than 2.1V, the durability of the electrode is lowered.

また、ラマン分光のピーク強度比A/Bが大きい場合、導電性ダイヤモンド膜の結晶性は、高くなり、電極の耐久性が向上する。しかし、ラマン分光のピーク強度比A/Bが6.5より大きくなると、酸化性物質の電流効率が低く、セル電圧が高くなる。一方、ラマン分光のピーク強度比A/Bが小さい場合、導電性ダイヤモンド膜の結晶性は、低くなり、酸化性物質の効率が高く、セル電圧が低くなる。しかし、ラマン分光のピーク強度比A/Bが1.5以下では、電極の耐久性が低くなる。   Moreover, when the peak intensity ratio A / B of Raman spectroscopy is large, the crystallinity of the conductive diamond film is increased, and the durability of the electrode is improved. However, when the peak intensity ratio A / B of Raman spectroscopy is larger than 6.5, the current efficiency of the oxidizing substance is low and the cell voltage is high. On the other hand, when the peak intensity ratio A / B of Raman spectroscopy is small, the crystallinity of the conductive diamond film is low, the efficiency of the oxidizing substance is high, and the cell voltage is low. However, when the peak intensity ratio A / B of Raman spectroscopy is 1.5 or less, the durability of the electrode is low.

前記導電性ダイヤモンド層は1000〜6000ppm、より好ましくは3000〜5000ppmのボロンを含むことが好ましい。ボロン濃度が高くなるほど、結晶性が低くなり、セル電圧が低く、酸化性物質の電流効率が高い電極となるため好ましい。然るに、ボロン濃度が高くなりすぎ、6000ppmより多くなると、ススが付着したような電極となり、電極の耐久性が乏しいため、本発明による導電性ダイヤモンド電極は、1000〜6000ppmのボロンを含むことが好ましい。   The conductive diamond layer preferably contains 1000 to 6000 ppm of boron, more preferably 3000 to 5000 ppm of boron. The higher the boron concentration, the lower the crystallinity, the lower the cell voltage, and the higher the current efficiency of the oxidizing substance, which is preferable. However, if the boron concentration becomes too high and exceeds 6000 ppm, it becomes an electrode with soot attached, and the durability of the electrode is poor. Therefore, the conductive diamond electrode according to the present invention preferably contains 1000 to 6000 ppm of boron. .

前記導電性基体は特に限定されず、タンタル、タングステン、チタン、ニオブなどが使用できるが、シリコン基板を用いた場合、より密着性が良い電極を作製できるため好ましい。尚、前記導電性基体の形状は特に限定されず、板状、棒状、パイプ状、球状などが使用できる。前記導電性基体はボロン、炭素などの不純物を含んでいてもよい。   The conductive substrate is not particularly limited, and tantalum, tungsten, titanium, niobium, or the like can be used. However, when a silicon substrate is used, an electrode with better adhesion can be manufactured. The shape of the conductive substrate is not particularly limited, and a plate shape, a rod shape, a pipe shape, a spherical shape, or the like can be used. The conductive substrate may contain impurities such as boron and carbon.

以下、本発明による硫酸電解方法及び硫酸電解装置の実施の一例を図面を参照して詳細に説明する。   Hereinafter, an example of the implementation of the sulfuric acid electrolysis method and the sulfuric acid electrolysis apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、本発明による硫酸電解方法及び硫酸電解装置に使用する電解セルの一例を示したものである。
この電解セルは、隔膜9により導電性ダイヤモンド陽極10が収容され、かつ前記硫酸イオンを含む電解液が満たされた陽極室3と導電性ダイヤモンド陰極12が収容され、かつ陽極室3と同濃度の硫酸が満たされた陰極室4に区画されている。陽極室3には陽極液供給口7が接続され、この陽極液供給口7を通して陽極液である硫酸が陽極室3に供給される。又、陰極室4には陰極液供給口8が接続され、この陰極液供給口8を通して陰極液が陰極室4に供給される。
陽極室3において生成した酸化性物質溶液は、陽極液排出口1より排出される。また、陰極室4において生成した水素及び硫酸溶液は、陰極液排出口2より排出される。
尚、5は、陽極給電端子、6は、陰極給電端子、11は、導電性ダイヤモンド陽極10の導電性基板、13は、導電性ダイヤモンド陰極12の導電性基板、14は、電解セルのシール材、15は、冷却ジャケット、16は、冷却水排出口、17は、冷却水供給口である。
FIG. 1 shows an example of an electrolytic cell used in a sulfuric acid electrolysis method and a sulfuric acid electrolysis apparatus according to the present invention.
This electrolytic cell contains a conductive diamond anode 10 by a diaphragm 9, an anode chamber 3 filled with the electrolyte containing sulfate ions and a conductive diamond cathode 12, and has the same concentration as the anode chamber 3. It is partitioned into a cathode chamber 4 filled with sulfuric acid. An anolyte supply port 7 is connected to the anolyte chamber 3, and sulfuric acid as an anolyte is supplied to the anolyte chamber 3 through the anolyte supply port 7. The catholyte supply port 8 is connected to the cathode chamber 4, and the catholyte is supplied to the cathode chamber 4 through the catholyte supply port 8.
The oxidizing substance solution generated in the anode chamber 3 is discharged from the anolyte discharge port 1. The hydrogen and sulfuric acid solution generated in the cathode chamber 4 is discharged from the catholyte discharge port 2.
Reference numeral 5 denotes an anode feeding terminal, 6 denotes a cathode feeding terminal, 11 denotes a conductive substrate of the conductive diamond anode 10, 13 denotes a conductive substrate of the conductive diamond cathode 12, and 14 denotes a sealing material for the electrolytic cell. , 15 is a cooling jacket, 16 is a cooling water discharge port, and 17 is a cooling water supply port.

本発明における導電性ダイヤモンド陽極10及び導電性ダイヤモンド陰極12は、導電性基板11、13の表面に被覆された導電性ダイヤモンド層で構成される。
導電性ダイヤモンド層の被覆方法は特に限定されず、任意のものを使用できる。代表的な方法として、熱フィラメントCVD法、マイクロ波プラズマCVD法、DCアークジェットプラズマCVD法などが選択できる。
尚、陰極としては、導電性ダイヤモンド陰極12に変えて白金その他の陰極を使用してもよい。
The conductive diamond anode 10 and the conductive diamond cathode 12 in the present invention are composed of a conductive diamond layer coated on the surfaces of the conductive substrates 11 and 13.
The method for coating the conductive diamond layer is not particularly limited, and any method can be used. As a typical method, a hot filament CVD method, a microwave plasma CVD method, a DC arc jet plasma CVD method, or the like can be selected.
As the cathode, platinum or another cathode may be used instead of the conductive diamond cathode 12.

本発明における硫酸イオン(HSO4 -もしくはSO4 2-)を含む電解液は、2〜14mol/l、好ましくは3〜9mol/lの硫酸イオンを含有することが好ましい。
硫酸イオン濃度(HSO4 -もしくはSO4 2-)が2mol/lより小さいと、反応物が少ないため酸化性物質の電流効率が低いものとなってしまう。また硫酸イオン濃度が14mol/lより大きいと、電解液の粘度が高くなりガス抜けが悪く、気泡率が増加し電解液の導電率が低下してセル電圧が高いものとなってしまう。
このため、本発明においては、前記硫酸イオンを含む電解液の硫酸イオン濃度は、2〜14mol/lとしたものである。
The electrolytic solution containing sulfate ions (HSO 4 or SO 4 2− ) in the present invention preferably contains 2 to 14 mol / l, preferably 3 to 9 mol / l of sulfate ions.
If the sulfate ion concentration (HSO 4 or SO 4 2− ) is less than 2 mol / l, the current efficiency of the oxidizing substance is low because the amount of reactants is small. On the other hand, if the sulfate ion concentration is higher than 14 mol / l, the viscosity of the electrolytic solution is increased and gas escape is poor, the bubble rate is increased, the electrical conductivity of the electrolytic solution is decreased, and the cell voltage is increased.
For this reason, in this invention, the sulfate ion concentration of the electrolyte solution containing the said sulfate ion shall be 2-14 mol / l.

本発明における硫酸イオンを含む電解液の酸(H+)濃度は、4〜28mol/l、好ましくは6〜18mol/lの範囲とする。
酸(H+)濃度が4mol/lよりも低いと、電解液の導電率が低く、セル電圧が高いものとなってしまう。一方、酸濃度(H+)が28mol/lよりも高い場合は、酸化性物質の電流効率が低いものとなってしまう。
このため、本発明においては、前記硫酸イオンを含む電解液の酸濃度は、4〜28mol/lとしたものである。
The acid (H + ) concentration of the electrolyte solution containing sulfate ions in the present invention is in the range of 4 to 28 mol / l, preferably 6 to 18 mol / l.
If the acid (H + ) concentration is lower than 4 mol / l, the conductivity of the electrolyte is low and the cell voltage is high. On the other hand, when the acid concentration (H + ) is higher than 28 mol / l, the current efficiency of the oxidizing substance is low.
For this reason, in this invention, the acid concentration of the electrolyte solution containing the said sulfate ion shall be 4-28 mol / l.

また、本発明による硫酸電解方法においては、前記導電性ダイヤモンド電極を用いるとともに、前記硫酸イオンを含む電解液をX=電流値/陽極液量(A/l)が100≦X≦10000、好ましくは、300≦X≦6000とし、Y=電流密度(A/dm2)が25<Y<250、好ましくは50≦Y≦200を満たす条件で電解することが好ましい。
Xが100より小さいと、酸化性物質の電流効率が低いものとなってしまい、一方、Xが10000より大きいと、セル内に発生したガスが充満し、セル電圧が高くなってしまうことを見出したものである。また、本発明は、硫酸電解方法において、電流密度Y(A/dm2)が25以下では、酸化性物質の電流効率が低いものとなってしまい、一方、Yが250以上では、発熱が著しくなるため、電解液の温度制御が困難となってしまう。またガス抜けが悪く気泡率が増加し電解液の導電率が低下してセル電圧が高いものとなってしまう。
このため、本発明においては、100≦X≦10000、25<Y<250の範囲としたものである。
In the sulfuric acid electrolysis method according to the present invention, the conductive diamond electrode is used, and the electrolyte containing the sulfate ions is X = current value / anolyte amount (A / l) is 100 ≦ X ≦ 10000, preferably 300 ≦ X ≦ 6000, and electrolysis is preferably performed under the condition that Y = current density (A / dm 2 ) satisfies 25 <Y <250, preferably 50 ≦ Y ≦ 200.
It has been found that when X is less than 100, the current efficiency of the oxidizing substance is low, whereas when X is greater than 10,000, the gas generated in the cell is filled and the cell voltage becomes high. It is a thing. In the sulfuric acid electrolysis method according to the present invention, when the current density Y (A / dm 2 ) is 25 or less, the current efficiency of the oxidizing substance is low. On the other hand, when Y is 250 or more, the heat generation is remarkable. Therefore, it becomes difficult to control the temperature of the electrolytic solution. In addition, gas escape is poor, the bubble rate increases, the conductivity of the electrolyte decreases, and the cell voltage becomes high.
For this reason, in this invention, it is set as the range of 100 <= X <= 10000 and 25 <Y <250.

また、本発明による硫酸電解方法においては、前記導電性ダイヤモンド電極を用いるとともに、前記硫酸イオンを含む電解液をZ=単位体積あたりの電気量(C/l)=電流値×電解時間/陽極液量(A・s/l)が18000≦Z≦1080000、好ましくは100000≦Z≦800000を満たす条件で電解することが好ましい。
Zが18000より小さいと、酸化性物質濃度が低くなる、一方でZが1080000より大きいと、酸化性物質の電流効率が低くなるので、その範囲は18000≦Z≦1080000としたものである。
Further, in the sulfuric acid electrolysis method according to the present invention, the conductive diamond electrode is used, and the electrolytic solution containing the sulfate ion is changed to Z = amount of electricity per unit volume (C / l) = current value × electrolysis time / anolyte. It is preferable to perform electrolysis under the condition that the amount (A · s / l) satisfies 18000 ≦ Z ≦ 1080000, preferably 100,000 ≦ Z ≦ 800000.
When Z is less than 18000, the concentration of the oxidant substance is lowered. On the other hand, when Z is greater than 10800000, the current efficiency of the oxidant substance is lowered. Therefore, the range is set to 18000 ≦ Z ≦ 1080000.

本発明における隔膜9とは、陽極室3と陰極室4を区画しつつ、イオン交換作用や、隔膜内の孔を通して電解液が陽極室3と陰極室4の間を移動することによって導電性を発現させるものである。構成材料は特に限定されないが、耐久性の面からフッ素樹脂系陽イオン交換膜又は親水化処理を行った多孔質フッ素系樹脂膜よりなる隔膜を用いることが好ましい。本発明において、隔膜がないと、酸化性物質が陰極で電解還元され、酸化性物質濃度が低下するため隔膜9を設けることが好ましい。   The diaphragm 9 in the present invention defines the conductivity by partitioning the anode chamber 3 and the cathode chamber 4 while the ion exchange action or the electrolyte moves between the anode chamber 3 and the cathode chamber 4 through the holes in the diaphragm. To be expressed. Although the constituent material is not particularly limited, it is preferable to use a fluororesin cation exchange membrane or a membrane made of a porous fluororesin membrane subjected to hydrophilic treatment from the viewpoint of durability. In the present invention, if there is no diaphragm, the oxidizing substance is electrolytically reduced at the cathode, and the concentration of the oxidizing substance is lowered. Therefore, the diaphragm 9 is preferably provided.

本発明における硫酸の電解セル、配管、ポンプ、気液分離タンク等の硫酸電解液との接液部の構成材料は特に限定されないが、耐硫酸性を有するPTFE、PFAなどのフッ素樹脂、ガラス、石英であることが好ましい。   The constituent material of the wetted part with the sulfuric acid electrolyte such as an electrolytic cell, piping, pump, gas-liquid separation tank, etc. in the present invention is not particularly limited, but fluororesin such as PTFE and PFA having resistance to sulfuric acid, glass, Quartz is preferred.

本発明における硫酸イオンを含む電解液は、硫酸イオンの他に不純物を含んでいてもよいが、硫酸もしくは硫酸アンモニウム等の硫酸塩と、水から構成されている電解液は過硫酸製造の電流効率が高くなるため好ましい。また、有機物は電解によって生成した酸化性物質と反応し、電解液の酸化性物質濃度を減少させる原因となりうるため、含まないことが好ましい。また、半導体デバイス製造における洗浄剤等に使用する場合は、金属が不純物としてデバイスに悪影響を及ぼすため金属イオンを含まないことが好ましい。   The electrolytic solution containing sulfate ions in the present invention may contain impurities in addition to sulfate ions. However, an electrolytic solution composed of sulfuric acid or a sulfate such as ammonium sulfate and water has a current efficiency of persulfuric acid production. Since it becomes high, it is preferable. In addition, it is preferable that the organic substance not be contained because it can react with an oxidizing substance generated by electrolysis and reduce the oxidizing substance concentration of the electrolytic solution. Further, when used as a cleaning agent or the like in the manufacture of semiconductor devices, it is preferable that the metal does not contain metal ions because it adversely affects the device as an impurity.

更に、本発明においては、電解の電解温度を0〜50℃とすることが好ましい。温度が低いほど酸化性物質の電流効率は高くなる。一方で低くなりすぎると電解液の粘度が高くなり、ガス抜けが悪く気泡率が増加し電解液の導電率が低下してセル電圧が高くなるため、電解温度を0〜50℃とすることが好ましい。   Furthermore, in the present invention, the electrolysis temperature of electrolysis is preferably 0 to 50 ° C. The lower the temperature, the higher the current efficiency of the oxidizing substance. On the other hand, if the pressure is too low, the viscosity of the electrolytic solution increases, gas outflow is poor, the bubble rate increases, the conductivity of the electrolytic solution decreases, and the cell voltage increases, so the electrolysis temperature can be set to 0 to 50 ° C. preferable.

また、本発明において、電解液の循環の有無は限定されないが、循環を行うと、電解液冷却を効率的に行うことができるため好ましい。電解液の循環を行う場合の陽極液量とは、電解セル、配管、気液分離タンク、ポンプ等、循環系内の陽極側全ての電解液の量の和を意味するものである。尚、本発明においては、電解液の循環を行わず、電解液を一度だけ電解セルに流通させる、いわゆるワンパスの場合も含むものであり、ワンパスの場合の陽極液量は、電解セル内に存在する陽極側の電解液量を意味する。   In the present invention, the presence or absence of the electrolyte solution is not limited. However, the circulation is preferable because the electrolyte solution can be cooled efficiently. The amount of anolyte when the electrolyte is circulated means the sum of the amount of electrolyte on the anode side in the circulation system, such as the electrolytic cell, piping, gas-liquid separation tank, and pump. In the present invention, the electrolyte solution is not circulated and the electrolyte solution is circulated only once through the electrolytic cell, including the so-called one-pass case. The amount of anolyte in the one-pass case is present in the electrolytic cell. It means the amount of electrolyte solution on the anode side.

図2−1は、陽極液及び陰極液をそれぞれ循環しながら硫酸を電解する、本発明による硫酸電解方法及び硫酸電解装置の一例を示したものである。硫酸イオンを含む電解液は、陽極液供給ライン18より、陽極液供給ポンプ19、流量計20を用いて電解セル21の陽極室3に供給され、陽極室3で電解され、流量計22、陽極液循環/排出ポンプ23を用いて陽極液循環ライン25により、陽極室3に循環される。そのとき、発生ガスは、陽極側気分離器26より分離され、発生ガス排出口27より排出される。電解が終了すると、製造された酸化性物質溶液は流量計22、陽極液循環/排出ポンプ23を用いて酸化性物質溶液排出ライン24より排出される。一方、陰極には、硫酸イオンを含む電解液を、陰極液供給ライン28より、陰極液供給ポンプ29、流量計30を用いて電解セル21の陰極室4に供給され、陰極室4で電解され、流量計31、陰極液循環/排出ポンプ32を用いて陰極液循環ライン34により、陰極室4に循環される。そのとき、発生ガスは、陰極側気分離器35より分離され、発生ガス排出口36より排出される。電解が終了すると、陰極液は流量計31、陰極液循環/排出ポンプ32を用いて陰極液排出ライン33より排出される。尚、電解セル21は、冷却ジャケット15及び冷却水循環ライン37により、冷却されている。尚、電解液の温度は、図1に記載の陽極液排出口1の電解液温度を測定した。   FIG. 2-1 shows an example of a sulfuric acid electrolysis method and a sulfuric acid electrolysis apparatus according to the present invention in which sulfuric acid is electrolyzed while circulating an anolyte and a catholyte, respectively. The electrolytic solution containing sulfate ions is supplied from the anolyte supply line 18 to the anode chamber 3 of the electrolysis cell 21 using the anolyte supply pump 19 and the flow meter 20, and is electrolyzed in the anode chamber 3. The liquid is circulated to the anode chamber 3 by the anolyte circulation line 25 using the liquid circulation / discharge pump 23. At that time, the generated gas is separated from the anode-side air separator 26 and discharged from the generated gas discharge port 27. When the electrolysis is completed, the manufactured oxidizing substance solution is discharged from the oxidizing substance solution discharge line 24 using the flow meter 22 and the anolyte circulation / discharge pump 23. On the other hand, an electrolytic solution containing sulfate ions is supplied to the cathode from the catholyte supply line 28 to the cathode chamber 4 of the electrolytic cell 21 using the catholyte supply pump 29 and the flow meter 30, and is electrolyzed in the cathode chamber 4. Then, it is circulated to the cathode chamber 4 by a catholyte circulation line 34 using a flow meter 31 and a catholyte circulation / discharge pump 32. At that time, the generated gas is separated from the cathode-side air separator 35 and discharged from the generated gas discharge port 36. When the electrolysis is completed, the catholyte is discharged from the catholyte discharge line 33 using the flow meter 31 and the catholyte circulation / discharge pump 32. The electrolysis cell 21 is cooled by the cooling jacket 15 and the cooling water circulation line 37. In addition, the temperature of electrolyte solution measured the electrolyte solution temperature of the anolyte discharge port 1 of FIG.

図2−2は、陰極液のみを循環し、陽極液の循環を行わず、ワンパスで酸化性物質溶液を製造する、本発明による硫酸電解方法及び硫酸電解装置の他の例を示したものである。図2−2は、陽極液の循環を行わず、ワンパスで酸化性物質溶液を製造する点以外、図2−1と全く同一の工程であり、符号も同一の符号を用いているので、図2−2の工程の説明を省略する。   FIG. 2-2 shows another example of the sulfuric acid electrolysis method and the sulfuric acid electrolysis apparatus according to the present invention, in which only the catholyte is circulated and the anolyte is not circulated, and the oxidizing substance solution is manufactured in one pass. is there. FIG. 2-2 is the same process as FIG. 2-1, except that the oxidant solution is not circulated and the oxidizing substance solution is manufactured in one pass, and the same reference numerals are used. The description of the process 2-2 is omitted.

次に、本発明を実施例及び比較例を挙げて、具体的に説明する。但し、本発明は、これらの実施例に限定されるものではない。
尚、本発明における作製した電極のラマン分光特性測定、導電性ダイヤモンド電極の膜厚測定、ボロン濃度測定、電極の耐久性試験、電位窓の測定、電解に使用した硫酸イオンを含む電解液の作製、製造した酸化性物質溶液の酸化性物質の濃度測定は次の方法により行った。
Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to these examples.
In addition, the Raman spectral characteristic measurement of the produced electrode in the present invention, the film thickness measurement of the conductive diamond electrode, the boron concentration measurement, the electrode durability test, the measurement of the potential window, and the production of the electrolytic solution containing sulfate ions used for electrolysis The concentration of the oxidizing substance in the manufactured oxidizing substance solution was measured by the following method.

<ラマン分光特性測定>
導電性ダイヤモンドが作製できているかどうか、またA/B強度比を測定するため、電極の表面ラマン測定を行った。
・測定装置:サーモフィッシャーサイエンティフィック社製ラマン分光光度計
・型式:AlMEGA XR
・レーザー光:532nm
・露光時間:2.00秒
・露光回数:20
・バックグラウンド露光回数:20
・グレーティング:672lines/mm
・測定幅:700〜2000cm-1
・分光器アパーチャ:25μmスリット
・マクロ試験室にて、低分解能測定
・測定箇所:電極の最も長い距離を示す両エッジから均等に3等分し、そのセンター箇所をそれぞれ測定して平均値を確認した。
・スペクトル補正:全範囲の強度から2000cm-1のときの強度を差し引いた。
・ダイヤモンド成分:波数1300±50cm-1の範囲のピーク強度、ピークが確認されない場合は波数1300cm-1の強度
・非ダイヤモンド成分:波数1500±50cm-1の範囲のピーク強度、ピークが確認されない場合は波数1500cm-1の強度
波数1300±50cm-1の範囲でラマン活性を示したもの、すなわち波数1300±50cm-1の範囲でピーク、もしくはブロードな波形を示した場合を導電性ダイヤモンド電極が作製できているものと判断とした。
<Raman spectral characteristics measurement>
The surface Raman measurement of the electrode was performed in order to measure whether the conductive diamond was produced and to measure the A / B intensity ratio.
・ Measuring device: Raman spectrophotometer manufactured by Thermo Fisher Scientific ・ Model: AlMEGA XR
・ Laser light: 532 nm
-Exposure time: 2.00 seconds-Number of exposures: 20
-Number of background exposures: 20
・ Grating: 672lines / mm
Measurement width: 700 to 2000 cm -1
・ Spectroscope aperture: 25μm slit ・ Low resolution measurement in the macro test room ・ Measurement point: Divide equally from both edges indicating the longest distance of the electrode, and measure the center point to confirm the average value did.
-Spectral correction: The intensity at 2000 cm -1 was subtracted from the intensity in the entire range.
Diamond components: a peak intensity in the range of wave number 1300 ± 50 cm -1, strength and non-diamond component of the wave number 1300 cm -1 If the peak is not confirmed: peak intensity in the range of wave number 1500 ± 50 cm -1, if the peak is not confirmed manufactured illustrates the Raman-active in the range of intensity wavenumber 1300 ± 50 cm -1 in wave number 1500 cm -1, i.e., a case where a peak or broad waveform in the wave number range of 1300 ± 50 cm -1 is conductive diamond electrode It was judged that it was made.

<導電性ダイヤモンド膜厚測定>
導電性ダイヤモンド電極を電極の最も長い距離を示す両エッジから均等に5等分し基板ごと切断する。得られた断面を、走査型電子顕微鏡(製造元:JEOL、商品名:JSM6490)を用いて、加速電圧10kV、8000倍にて全切断サンプルの少なくとも片断面を観察・撮影し、平均値から膜厚を求めた。
<Measurement of conductive diamond film thickness>
The conductive diamond electrode is equally divided into five equal parts from both edges indicating the longest distance of the electrode, and the whole substrate is cut. Using the scanning electron microscope (manufacturer: JEOL, trade name: JSM6490), the obtained cross section was observed and photographed at least one cross section of the entire cut sample at an acceleration voltage of 10 kV and 8000 times, and the film thickness was determined from the average value. Asked.

<ボロン濃度測定>
作製した電極表面を、二次イオン質量分析(製造元:アルバック・ファイ、商品名:PHI ADEPT1010)を用いて、一次イオンO2 +、一次イオンエネルギー3keV、検出領域100μmφ、2次イオン極性ポジティブにて測定した。濃度換算はSiC組成中のBの標準濃度試料を併せて測定し、相対感度係数を求め試料に係数を代入した。
<導電性ダイヤモンド電極の耐久性試験>
陽極、陰極共に作製した電極を用い、図1に示す隔膜付き電解セル21を組み込んだ、図2−1で示す硫酸電解装置を用いて、次の条件にて酸化性物質溶液の製造を行った。
電流密度:100A/dm2
電解時間:12h
陽極液量:200ml
電解液温度:35℃
冷却水温度:15℃
陽極液流量:1l/min
陰極液流量:1l/min
陽極電解液:4.2mol/l硫酸(電子工業用の関東化学株式会社製硫酸を電子工業用純水にて希釈調製)
陰極電解液:4.2mol/l硫酸(電子工業用の関東化学株式会社製硫酸を電子工業用純水にて希釈調製)
隔膜:(住友電工ファインポリマー社製のポアフロン(登録商標))
電解終了後の電極を目視観察し、導電性ダイヤモンド膜の剥離が確認されなかったものを耐久性○、剥離が極わずか確認されたものを耐久性△、面積の半分以上剥離が確認されたものを耐久性×とした。
<Boron concentration measurement>
Using the secondary ion mass spectrometry (manufacturer: ULVAC-PHI, trade name: PHI ADEPT1010), the prepared electrode surface was primary ion O 2 + , primary ion energy 3 keV, detection region 100 μmφ, and secondary ion polarity positive. It was measured. Concentration conversion was performed by measuring a standard concentration sample of B in the SiC composition together, obtaining a relative sensitivity coefficient, and substituting the coefficient into the sample.
<Durability test of conductive diamond electrode>
Using the electrodes prepared for both the anode and cathode, an oxidizing substance solution was manufactured under the following conditions using the sulfuric acid electrolysis apparatus shown in FIG. 2A incorporating the electrolytic cell 21 with a diaphragm shown in FIG. .
Current density: 100 A / dm 2
Electrolysis time: 12h
Anolyte volume: 200ml
Electrolyte temperature: 35 ° C
Cooling water temperature: 15 ° C
Anolyte flow rate: 1 l / min
Catholyte flow rate: 1 l / min
Anode electrolyte: 4.2 mol / l sulfuric acid (diluted sulfuric acid manufactured by Kanto Chemical Co., Ltd. for electronics industry with pure water for electronics industry)
Cathodic electrolyte: 4.2 mol / l sulfuric acid (diluted sulfuric acid manufactured by Kanto Chemical Co., Ltd. for electronics industry with pure water for electronics industry)
Diaphragm: (Poreflon (registered trademark) manufactured by Sumitomo Electric Fine Polymer Co., Ltd.)
Visual observation of the electrode after completion of electrolysis. Durability was confirmed when the conductive diamond film was not peeled. Durability was confirmed when peeling was very slight. Durability was confirmed by more than half of the area. Durability x.

<電位窓の測定>
電位窓の測定にはサイクリックボルタモグラムにより酸化還元分解電圧の測定を行った。すなわち、電解液に4.2mol/lの硫酸、作用極に基体上に導電性ダイヤモンド層を形成した電極、対極に白金線、参照電極に硫酸第一水銀比較電極を用いて50mV/sで電位掃引し±50mA/dm2の電流が流れたときの電位を測定し、還元及び酸化分解電位値から電位窓を決定した。
<Measurement of potential window>
For the measurement of the potential window, the redox decomposition voltage was measured by a cyclic voltammogram. That is, a potential of 50 mV / s using 4.2 mol / l sulfuric acid as an electrolyte, an electrode having a conductive diamond layer formed on a base as a working electrode, a platinum wire as a counter electrode, and a mercuric sulfate reference electrode as a reference electrode. The potential when a current of ± 50 mA / dm 2 was swept was measured, and the potential window was determined from the reduction and oxidative decomposition potential values.

<電解液作製に必要な硫酸質量>
1lの電解液を作製するのに必要な98%硫酸の質量を式(6)に基づき算出し、1lメスフラスコに、98%硫酸(関東化学(株)製)を採取し、超純水を加えて全1lの電解液とした。

Figure 0005271345
C(g):1l電解液を作製するのに必要な98%硫酸の質量 <Sulfuric acid mass required for electrolyte preparation>
The mass of 98% sulfuric acid necessary to produce 1 liter of electrolyte is calculated based on the formula (6), 98% sulfuric acid (manufactured by Kanto Chemical Co., Inc.) is collected in a 1 liter volumetric flask, and ultrapure water is added. In addition, a total of 1 liter of electrolyte was obtained.
Figure 0005271345
C (g): Mass of 98% sulfuric acid necessary to prepare a 1 liter electrolyte

<酸濃度>
式(6)で採用した作製したい硫酸イオンを含む電解液の濃度(mol/l)に基づき、以下式(7)から酸濃度を算出した。
酸濃度=作製したい硫酸イオンを含む電解液の濃度×2・・・(7)
<Acid concentration>
Based on the concentration (mol / l) of the electrolyte solution containing sulfate ions to be prepared, which was adopted in Equation (6), the acid concentration was calculated from Equation (7) below.
Acid concentration = concentration of electrolyte containing sulfate ion to be prepared × 2 (7)

<酸化性物質の濃度測定>
製造された酸化性物質溶液を100ml三角フラスコに0.4ml計り取り、超純水を加えて全3mlの試料液とし、ヨウ化カリウム(和光純薬工業(株)製)を超純水で調整し200g/lとした溶液を5ml添加して遊離ヨウ素にて着色させ、三角フラスコ内を窒素で満たしシリコンゴムで密閉した状態で30分間放置した後、0.02mol/lチオ硫酸ナトリウム溶液(和光純薬工業(株)製)を試料液が無色になるまで滴下した。測定回数は各試料3回とし、その平均値を用いて、以下式(8)により酸化性物質の濃度を算出した。

Figure 0005271345
<Oxidizing substance concentration measurement>
0.4 ml of the manufactured oxidizing substance solution is weighed into a 100 ml Erlenmeyer flask, and ultrapure water is added to make a total of 3 ml of sample solution, and potassium iodide (manufactured by Wako Pure Chemical Industries, Ltd.) is adjusted with ultrapure water. 5 ml of a 200 g / l solution was added and colored with free iodine. The Erlenmeyer flask was filled with nitrogen and sealed with silicon rubber for 30 minutes, and then 0.02 mol / l sodium thiosulfate solution (sum) Koganei Pharmaceutical Co., Ltd.) was added dropwise until the sample solution became colorless. The number of measurement was 3 times for each sample, and the concentration of the oxidizing substance was calculated by the following formula (8) using the average value.
Figure 0005271345

<酸化性物質の電流効率>
製造された酸化性物質溶液の酸化性物質濃度を前記、酸化性物質の濃度測定で算出した値を用いて、以下式(9)により電流効率を計算した。

Figure 0005271345
<Current efficiency of oxidizing substances>
The current efficiency was calculated by the following formula (9) using the value obtained by measuring the oxidizing substance concentration of the manufactured oxidizing substance solution in the concentration measurement of the oxidizing substance.
Figure 0005271345

<導電性ダイヤモンド層の形成:熱フィラメントCVDによる>
本発明における導電性ダイヤモンド電極は次の方法によって作製した。導電性基体として単結晶Siを使用し、基体表面を研磨、洗浄、ダイヤモンド粒子で核付けを行った後、装置内に設置した。導入ガスとして水素、メタン、Ar+ホウ酸トリメチルを用い、5リットル/分の速度で装置内に流しながら、装置内圧力を60Torrに保持し、フィラメントに電力を印加して温度2300℃に昇温した。このとき基体温度は800℃であった。
ホウ酸トリメチルは、液体状のホウ酸トリメチルを充填した容器内にArをバブリングすることにより装置内に導入した。
メタン流量、ホウ酸トリメチル流量を変えることにより、膜質を変化させた。
成膜時間を変えることにより膜厚を変化させた。
<Formation of conductive diamond layer: by hot filament CVD>
The conductive diamond electrode in the present invention was produced by the following method. Single crystal Si was used as the conductive substrate, and the substrate surface was polished, washed, nucleated with diamond particles, and then placed in the apparatus. Using hydrogen, methane, Ar + trimethylborate as the introduction gas, the pressure in the apparatus was maintained at 60 Torr while flowing through the apparatus at a rate of 5 liters / minute, and power was applied to the filament to raise the temperature to 2300 ° C. . At this time, the substrate temperature was 800 ° C.
Trimethyl borate was introduced into the apparatus by bubbling Ar into a container filled with liquid trimethyl borate.
The film quality was changed by changing the methane flow rate and the trimethyl borate flow rate.
The film thickness was changed by changing the film formation time.

<実施例1>
図1に示す電解面積1.000dm2の導電性ダイヤモンド電極を陽極、陰極共に用いた隔膜付き電解セル21を組み込んだ、図2−1で示す硫酸電解装置を用いて、陽極液及び陰極液をそれぞれ循環しながら硫酸を電解し、次の条件にて酸化性物質溶液の製造を行った。
作製した電極の特性を表1に示す。
陽極、陰極共に作製した電極を用い、隔膜付き電解槽を用いて、表1に記載の条件及び次の条件にて電解硫酸の製造を行った。電解液は、1lメスフラスコに、98%硫酸(関東化学(株)製)を式(6)に基づき403g採取し、超純水を加えて全1lに希釈し、硫酸イオンを4.2mol/l含む電解液とし、内300mlを陽極液、残り300mlを陰極液として使用した。酸濃度は式(7)に基づき算出したところ18.4mol/lであった。
セル電流:100A
電流密度:100A/dm2
電解時間:20分
陽極液量:300ml
電解液温度:28℃
冷却水温度:15℃
陽極液流量:1l/min
陰極液流量:1l/min
陽極電解液:4.2mol/l硫酸
陰極電解液:4.2mol/l硫酸
隔膜:(住友電工ファインポリマー(株)製のポアフロン(登録商標))
得られた酸化性物質溶液の結果を表6及び次に示した。
製造した酸化性物質溶液を用い、前記、酸化性物質の濃度測定方法に従い、滴定を行ったところ、0.02mol/lチオ硫酸ナトリウム溶液を44.00ml滴下したところで溶液が無色になった。さらに同手段で測定を2回繰返したところ、その測定結果は各々、44.00、44.00mlであった。それら平均値44.00mlを用いて、(8)式により酸化性物質濃度を計算したところ、1.10mol/lであった。また酸化性物質濃度を用いて、(9)式により電流効率を計算したところ、53%であった。
<Example 1>
The sulfuric acid electrolysis apparatus shown in FIG. 2A incorporating the electrolytic cell 21 with a diaphragm using the conductive diamond electrode having an electrolytic area of 1.000 dm 2 shown in FIG. While each was circulated, sulfuric acid was electrolyzed, and an oxidizing substance solution was produced under the following conditions.
Table 1 shows the characteristics of the fabricated electrodes.
Electrolytic sulfuric acid was produced under the conditions described in Table 1 and the following conditions using an electrode prepared with both an anode and a cathode and using an electrolytic cell with a diaphragm. The electrolyte solution was 403 g of 98% sulfuric acid (manufactured by Kanto Chemical Co., Ltd.) based on the formula (6) in a 1 l volumetric flask, diluted with ultrapure water to a total of 1 l, and sulfate ions of 4.2 mol / 1 was used, 300 ml of which was used as the anolyte and the remaining 300 ml was used as the catholyte. The acid concentration calculated from the formula (7) was 18.4 mol / l.
Cell current: 100A
Current density: 100 A / dm 2
Electrolysis time: 20 minutes Anolyte volume: 300 ml
Electrolyte temperature: 28 ° C
Cooling water temperature: 15 ° C
Anolyte flow rate: 1 l / min
Catholyte flow rate: 1 l / min
Anode electrolyte solution: 4.2 mol / l sulfuric acid Cathode electrolyte solution: 4.2 mol / l sulfuric acid Membrane: (Poreflon (registered trademark) manufactured by Sumitomo Electric Fine Polymer Co., Ltd.)
The results of the obtained oxidizing substance solution are shown in Table 6 and the following.
When the produced oxidizing substance solution was used for titration according to the above-mentioned oxidizing substance concentration measuring method, 44.00 ml of 0.02 mol / l sodium thiosulfate solution was dropped, and the solution became colorless. Further, when the measurement was repeated twice by the same means, the measurement results were 44.00 and 44.00 ml, respectively. Using these average values of 44.00 ml, the oxidizing substance concentration was calculated according to the formula (8) and found to be 1.10 mol / l. Further, the current efficiency was calculated by the equation (9) using the oxidizing substance concentration, and it was 53%.

<実施例3、4、6、8、9、参考例2、5、7、10>
実施例3、4、6、8、9、参考例2、5、7、10として、メタン流量、ホウ酸トリメチル流量及び成膜時間を変えることにより、導電性ダイヤモンド膜厚、電位窓、A/B、ボロン濃度を表1、2に記載のように変化させた電極を陽極に用いた以外は実施例1と同様の方法で酸化性物質溶液を得た。
得られた酸化性物質溶液の結果を表6、7に示した。
<Examples 3, 4, 6, 8, 9 and Reference Examples 2, 5, 7, 10>
By changing the methane flow rate, the trimethyl borate flow rate, and the film formation time as Examples 3, 4, 6, 8, 9 and Reference Examples 2, 5, 7, and 10, conductive diamond film thickness, potential window, A / B. An oxidizing substance solution was obtained in the same manner as in Example 1 except that the electrode having the boron concentration changed as shown in Tables 1 and 2 was used for the anode.
The results of the obtained oxidizing substance solution are shown in Tables 6 and 7.

<実施例11〜14>
電解液中の硫酸イオン濃度、酸濃度を表2〜3に記載のように変更した以外は、実施例1と同様の方法で酸化性物質溶液を得た。
得られた酸化性物質溶液の結果を表7〜8に示した。
<Examples 11 to 14>
An oxidizing substance solution was obtained in the same manner as in Example 1 except that the sulfate ion concentration and the acid concentration in the electrolytic solution were changed as shown in Tables 2-3.
The result of the obtained oxidizing substance solution was shown to Tables 7-8.

<実施例15〜16>
電解液中の陽極液量、電流値/陽極液量、電解時間を表3に記載のように変更し、図1に示す電解面積1.000dm2の導電性ダイヤモンド電極を陽極、陰極共に用いた隔膜付き電解セル21を組み込んだ、図2−2で示す硫酸電解装置を用い、陽極液の循環を行わず、ワンパスで酸化性物質溶液を製造したこと以外は、実施例1と同様の方法で酸化性物質溶液を得た。
得られた酸化性物質溶液の結果を表8に示した。
<Examples 15 to 16>
The amount of the anolyte in the electrolyte, the current value / the amount of the anolyte, and the electrolysis time were changed as shown in Table 3, and the conductive diamond electrode having an electrolysis area of 1.000 dm 2 shown in FIG. 1 was used for both the anode and the cathode. Using the sulfuric acid electrolysis apparatus shown in FIG. 2-2, which incorporates the electrolytic cell 21 with the diaphragm, the oxidant solution was not circulated and the oxidizing substance solution was produced in a single pass in the same manner as in Example 1. An oxidizing substance solution was obtained.
The results of the obtained oxidizing substance solution are shown in Table 8.

<実施例17〜24>
陽極液量、電流値/陽極液量、電解時間、単位体積あたりの電気量を表3〜4に記載のように変化させた以外は実施例1と同様の方法で酸化性物質溶液を得た。
得られた酸化性物質溶液の結果を表8〜9に示した。
<Examples 17 to 24>
An oxidant solution was obtained in the same manner as in Example 1 except that the amount of anolyte, current value / anolyte amount, electrolysis time, and amount of electricity per unit volume were changed as shown in Tables 3-4. .
The result of the obtained oxidizing substance solution was shown to Tables 8-9.

参考例25>
基体材料にニオブを用いた以外は実施例1と同様の方法で酸化性物質溶液を得た。
得られた酸化性物質溶液の結果を表9に示した。
< Reference Example 25>
An oxidizing substance solution was obtained in the same manner as in Example 1 except that niobium was used as the base material.
The results of the obtained oxidizing substance solution are shown in Table 9.

1)実施例1、3、4、参考例2の結果、電位窓が狭いほど、またA=ラマン分光分析における波数1300cm-1における強度とB=ラマン分光分析における波数1500cm-1における強度の比A/Bが小さいほど、酸化性物質の電流効率が高く、セル電圧が低いことが分かった。一方参考例2では電極の耐久性試験後の電極を目視確認したところ導電性ダイヤモンド膜の剥離が極わずか確認された。
2)参考例5の結果、実施例1の結果と比べて、導電性ダイヤモンド層の厚みが薄いほど、酸化性物質の電流効率が高く、セル電圧が低いことが分かった。これは導電性ダイヤモンド層が薄いほど、電位窓が狭く、A=ラマン分光分析における波数1300cm-1における強度とB=ラマン分光分析における波数1500cm-1における強度の比A/Bが小さくなったためであると考えられる。
一方、実施例6は実施例1の結果と比べて、酸化性物質の電流効率が低く、セル電圧が高いものとなった。
3)実施例8、9、参考例7、10の結果、実施例1の結果と比べて、ボロン濃度が高いほど、酸化性物質の電流効率が高く、それに伴う酸化性物質濃度が高く、セル電圧が低いことが分かった。これはボロン濃度が高いほど、電位窓が狭く、A=ラマン分光分析における波数1300cm-1における強度とB=ラマン分光分析における波数1500cm-1における強度の比A/Bが小さくなったためであると考えられる。
一方、参考例10では電極の耐久性試験後の電極を目視確認したところ導電性ダイヤモンド膜の剥離が極わずか確認された。
4)実施例11、12の結果、実施例1の結果と比べて、硫酸イオン濃度が低いほど、電流効率が低いことが分かった。これは硫酸イオン濃度が低いほど反応物が少ないためであると考えられる。また実施例1の結果と比べて、酸濃度が低いほどセル電圧が高いことが分かった。これは酸濃度が低く、導電率が低くなったことによるものと考えられる。実施例13、14の結果、実施例1の結果と比べて、酸濃度が高いほど、電流効率が低いことが分かった。これは、酸化性物質は酸濃度が高いほど分解しやすいためであると考えられる。また実施例1の結果と比べて、硫酸イオン濃度が高いほどセル電圧が高いことが分かった。これは硫酸イオン濃度が高く、粘度が高くなり、ガス抜けが悪く気泡率が増加し電解液の導電率が低下してセル電圧が高くなったものと考えられる。
5)実施例15〜18の結果、実施例1の結果と比べて、X=電流値/陽極液量(A/l)が大きいほど、酸化性物質の電流効率が高く、それに伴い酸化性物質濃度が高い液を得られることが分かった。一方で、X=電流値/陽極液量(A/l)が大きいほど、セル電圧が高いものとなった。これは、セル内にガスが充填してセル電圧が上昇したものと考えられる。実施例17、18ではセル電圧は良好であったが電流効率が低いものとなった。
6)実施例19〜20の結果、実施例1の結果と比べて、電流密度(A/dm2)が低くなると、酸化性物質の電流効率が低く、それに伴い酸化性物質濃度が低くなることが分かった。一方、実施例21、22の結果、実施例1の結果と比べて、電流密度(A/dm2)が高くなると、酸化性物質の電流効率は高くなるものの、セル電圧が上昇することが分かった。これは、電流密度が高いため、発生したガスがセル内に充填したためであると考えられる。
7)実施例23の結果、実施例1の結果と比べて、単位体積あたりの電気量が低くなると、酸化性物質の電流効率が高く、それに伴い酸化性物質濃度が低くなることが分かった。一方、実施例24の結果、単位体積あたりの電気量が高くなると、酸化性物質の電流効率が低く、酸化性物質濃度が高くなることが分かった。
8)参考例25の結果、実施例1の結果と比べて、基板材料がニオブになると、酸化性物質の電流効率、それに伴う酸化性物質濃度は良好なものの、電極の耐久性試験後の電極表面の目視観察で膜がわずかに剥がれ落ちていることが確認された。
1) As a result of Examples 1 , 3, 4, and Reference Example 2 , as the potential window is narrower, A = ratio of intensity at wave number 1300 cm −1 in Raman spectroscopic analysis and B = intensity at wave number 1500 cm −1 in Raman spectroscopic analysis It was found that the smaller the A / B, the higher the current efficiency of the oxidizing substance and the lower the cell voltage. On the other hand, in Reference Example 2, when the electrode after the durability test of the electrode was visually confirmed, peeling of the conductive diamond film was confirmed very little.
2) As a result of Reference Example 5 , as compared with the result of Example 1, it was found that the thinner the conductive diamond layer, the higher the current efficiency of the oxidizing substance and the lower the cell voltage. This is because the thinner the conductive diamond layer, the narrower the potential window, and the smaller the ratio A / B of A = intensity at wave number 1300 cm −1 in Raman spectroscopic analysis and B = intensity at wave number 1500 cm −1 in Raman spectroscopic analysis. It is believed that there is.
On the other hand, in Example 6, compared with the result of Example 1, the current efficiency of the oxidizing substance was low and the cell voltage was high.
3) As a result of Examples 8 and 9 and Reference Examples 7 and 10, as compared with the result of Example 1, the higher the boron concentration, the higher the current efficiency of the oxidizing substance, and the higher the accompanying oxidizing substance concentration. The voltage was found to be low. This is because the higher the boron concentration, the narrower the potential window, and the smaller the ratio A / B of A = intensity at wave number 1300 cm −1 in Raman spectroscopic analysis and B = intensity at wave number 1500 cm −1 in Raman spectroscopic analysis. Conceivable.
On the other hand, in Reference Example 10, when the electrode after the electrode durability test was visually confirmed, peeling of the conductive diamond film was confirmed very little.
4) As a result of Examples 11 and 12, it was found that the lower the sulfate ion concentration, the lower the current efficiency compared to the result of Example 1. This is probably because the lower the sulfate ion concentration, the less the reactant. Further, it was found that the cell voltage was higher as the acid concentration was lower than the result of Example 1. This is thought to be due to the low acid concentration and low conductivity. As a result of Examples 13 and 14, it was found that the current efficiency was lower as the acid concentration was higher than the result of Example 1. This is considered to be because the oxidizing substance is easily decomposed as the acid concentration increases. Further, it was found that the cell voltage was higher as the sulfate ion concentration was higher than the result of Example 1. This is probably because the sulfate ion concentration was high, the viscosity was high, the outgassing was poor, the bubble rate was increased, the conductivity of the electrolyte was lowered, and the cell voltage was increased.
5) As a result of Examples 15 to 18, compared with the result of Example 1, X = current value / anolyte amount (A / l) is larger, and the current efficiency of the oxidizing substance is higher. It was found that a liquid having a high concentration can be obtained. On the other hand, the larger the X = current value / anolyte amount (A / l), the higher the cell voltage. This is presumably because the cell voltage was increased by filling the cell with gas. In Examples 17 and 18, the cell voltage was good, but the current efficiency was low.
6) As a result of Examples 19 to 20, when the current density (A / dm 2 ) is lower than the result of Example 1, the current efficiency of the oxidizing substance is lowered, and accordingly the oxidizing substance concentration is lowered. I understood. On the other hand, as a result of Examples 21 and 22, when the current density (A / dm 2 ) is higher than the result of Example 1, the current efficiency of the oxidizing substance is increased, but the cell voltage is increased. It was. This is presumably because the generated gas filled the cell because the current density was high.
7) As a result of Example 23, it was found that when the amount of electricity per unit volume was lower than the result of Example 1, the current efficiency of the oxidizing substance was high, and the oxidizing substance concentration was lowered accordingly. On the other hand, as a result of Example 24, it was found that when the amount of electricity per unit volume is high, the current efficiency of the oxidizing substance is low and the oxidizing substance concentration is high.
8) As a result of Reference Example 25, when the substrate material is niobium as compared with the result of Example 1, the current efficiency of the oxidizing substance and the accompanying oxidizing substance concentration are good, but the electrode after the durability test of the electrode It was confirmed by visual observation of the surface that the film was slightly peeled off.

<比較例1〜4>
メタン流量、ホウ酸トリメチル流量及び成膜時間を変えることにより、導電性ダイヤモンド膜厚、電位窓、A/Bを表5に記載のように変化させた電極を陽極に用いた以外は実施例1と同様の方法で酸化性物質溶液を得た。得られた酸化性物質溶液の結果を表10に示した。
<Comparative Examples 1-4>
Example 1 except that an electrode in which the conductive diamond film thickness, potential window, and A / B were changed as shown in Table 5 by changing the methane flow rate, the trimethyl borate flow rate, and the film formation time was used as the anode. An oxidizing substance solution was obtained in the same manner as described above. The results of the obtained oxidizing substance solution are shown in Table 10.

比較例1ではセル電圧、酸化性物質の電流効率は良好な結果が得られたものの、電極の耐久性試験後の電極表面の目視観察で膜が大部分剥がれ落ちている箇所が確認された。
比較例2では電極の耐久性試験後の電極表面の目視観察における膜の劣化は確認されなかったものの、電解中のセル電圧が高く、得られた酸化性物質含有溶液の電流効率は低い結果となった。
比較例3ではセル電圧、電流効率は良好な結果が得られたものの、電極の耐久性試験後の電極表面の目視観察で膜が大部分剥がれ落ちていることが確認された。
比較例4では電極の耐久性試験後の電極表面の目視観察における膜の劣化は確認されなかったものの、電解中のセル電圧が高く、得られた酸化性物質含有溶液の電流効率は低い結果となった。
比較例5では電解中に電極が劣化し、電解液中にカーボンの粉末が目視で確認されたため、電解を中断した。
In Comparative Example 1, although the cell voltage and the current efficiency of the oxidizing substance were good, it was confirmed that the film was largely peeled off by visual observation of the electrode surface after the electrode durability test.
In Comparative Example 2, although the deterioration of the film in the visual observation of the electrode surface after the electrode durability test was not confirmed, the cell voltage during electrolysis was high, and the current efficiency of the obtained oxidizing substance-containing solution was low. became.
In Comparative Example 3, good cell voltage and current efficiency were obtained, but it was confirmed by visual observation of the electrode surface after the electrode durability test that the film was largely peeled off.
In Comparative Example 4, although the deterioration of the film in the visual observation of the electrode surface after the electrode durability test was not confirmed, the cell voltage during electrolysis was high, and the current efficiency of the obtained oxidizing substance-containing solution was low. became.
In Comparative Example 5, the electrode deteriorated during electrolysis, and carbon powder was visually confirmed in the electrolytic solution, so electrolysis was interrupted.

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

Figure 0005271345
Figure 0005271345

本発明によるダイヤモンド電極は、特に、硫酸電解における陽極として使用すると、酸化性物質を安定して生成させる効果があるが、同時に硫酸電解における陰極として使用すると、その効果を向上させることができる。更に、本発明による導電性ダイヤモンド電極は、その他の電解用陽極及び陰極としても使用することができる。   The diamond electrode according to the present invention has an effect of stably producing an oxidizing substance, particularly when used as an anode in sulfuric acid electrolysis. However, when used as a cathode in sulfuric acid electrolysis, the effect can be improved. Furthermore, the conductive diamond electrode according to the present invention can be used as an anode and a cathode for other electrolysis.

1:陽極液排出口
2:陰極液排出口
3:陽極室
4:陰極室
5:陽極給電端子
6:陰極給電端子
7:陽極液供給口
8:陰極液供給口
9:多孔質PTFE隔膜
10:導電性ダイヤモンド陽極
11:導電性基板
12:導電性ダイヤモンド陰極
13:導電性基板
14:シール材
15:冷却ジャケット
16:冷却水排出口
17:冷却水供給口
18:陽極液供給ライン
19:陽極液供給ポンプ
20:流量計
21:電解セル
22:流量計
23:陽極液循環/排出ポンプ
24:酸化性物質溶液排出ライン
25:陽極液循環ライン
26:陽極側気液分離器
27:発生ガス排出口
28:陰極液供給ライン
29:陰極液供給ポンプ
30:流量計
31:流量計
32:陰極液循環/排出ポンプ
33:陰極液排出ライン
34:陰極液循環ライン
35:陰極側気液分離器
36:発生ガス排出口
37:冷却水循環ライン
1: anolyte outlet 2: catholyte outlet 3: anode chamber 4: cathode chamber 5: anode feeding terminal 6: cathode feeding terminal 7: anolyte feeding port 8: catholyte feeding port 9: porous PTFE diaphragm 10: Conductive diamond anode 11: conductive substrate 12: conductive diamond cathode 13: conductive substrate 14: sealing material 15: cooling jacket 16: cooling water discharge port 17: cooling water supply port 18: anolyte supply line 19: anolyte Supply pump 20: flow meter 21: electrolysis cell 22: flow meter 23: anolyte circulation / discharge pump 24: oxidizing substance solution discharge line 25: anolyte circulation line 26: anode side gas-liquid separator 27: generated gas discharge port 28: Catholyte supply line 29: Catholyte supply pump 30: Flow meter 31: Flow meter 32: Catholyte circulation / discharge pump 33: Catholyte discharge line 34: Catholyte circulation line 35: Cathode side gas-liquid separator 36 Generated gas discharge port 37: cooling water circulation line

Claims (6)

導電性シリコン基板よりなる導電性基板と前記導電性基板の表面に被覆された導電性ダイヤモンド層よりなり、
1)前記導電性ダイヤモンド層のドーピング剤がボロンのみからなり、
2)前記導電性ダイヤモンド層が1000〜6000ppmのボロンを含み、
)前記導電性ダイヤモンド層の厚さが、1〜25μmであり、
)電位窓が式(1)を満たし、
)ラマン分光分析によるダイヤモンド成分Aと非ダイヤモンド成分Bとの比(A/B)が式(2)を満たし、
6)硫酸電解用に使用する
ことを特徴とする導電性ダイヤモンド電極。
2.1V≦電位窓≦3.5V ・・・(1)
3.2≦A/B≦6.5 ・・・(2)
A=ラマン分光分析における波数1300cm-1における強度
B=ラマン分光分析における波数1500cm-1における強度
A conductive substrate composed of a conductive silicon substrate and a conductive diamond layer coated on the surface of the conductive substrate,
1) The conductive diamond layer doping agent consists only of boron,
2) The conductive diamond layer contains 1000 to 6000 ppm of boron,
3) The thickness of the conductive diamond layer is a 1 0 ~25μm,
4 ) The potential window satisfies equation (1),
5 ) The ratio (A / B) of the diamond component A to the non-diamond component B by Raman spectroscopic analysis satisfies the formula (2),
6) A conductive diamond electrode used for sulfuric acid electrolysis .
2.1V ≦ potential window ≦ 3.5V (1)
3.2 ≦ A / B ≦ 6.5 (2)
A = Intensity at wave number 1300 cm −1 in Raman spectroscopic analysis B = Intensity at wave number 1500 cm −1 in Raman spectroscopic analysis
隔膜により陽極室と陰極室に区画し、前記陽極室内に導電性ダイヤモンド陽極を設け、前記陰極室内に陰極を設け、前記陽極室及び陰極室内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、前記陽極室内の陽極電解液中に酸化性物質を生成させる硫酸の電解方法において、前記導電性ダイヤモンド電極として、請求項1に記載の導電性ダイヤモンド電極を用いるとともに、前記硫酸イオンを含む電解液の濃度を2〜14mol/lの硫酸イオンを含有する溶液としたことを特徴とする硫酸電解方法。 Partitioned into an anode chamber and a cathode chamber by a diaphragm, a conductive diamond anode is provided in the anode chamber, a cathode is provided in the cathode chamber, and an electrolytic solution containing sulfate ions is supplied to the anode chamber and the cathode chamber from the outside. Then, in the sulfuric acid electrolysis method for electrolyzing and generating an oxidizing substance in the anode electrolyte in the anode chamber, the conductive diamond electrode according to claim 1 is used as the conductive diamond electrode, and the sulfuric acid is used. A sulfuric acid electrolysis method, characterized in that the concentration of the electrolytic solution containing ions is a solution containing 2 to 14 mol / l of sulfate ions. 前記硫酸イオンを含む電解液の酸濃度を4〜28mol/l含有する溶液としたことを特徴とする請求項に記載の硫酸電解方法。 3. The sulfuric acid electrolysis method according to claim 2 , wherein the electrolytic solution containing the sulfate ion is a solution containing an acid concentration of 4 to 28 mol / l. 隔膜により陽極室と陰極室に区画し、前記陽極室内に導電性ダイヤモンド陽極を設け、前記陰極室内に陰極を設け、前記陽極室及び陰極室内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、前記陽極室内の陽極電解液中に酸化性物質を生成させる硫酸の電解装置において、前記導電性ダイヤモンド電極として、請求項1に記載の導電性ダイヤモンド電極を用いるとともに、前記隔膜としてフッ素樹脂系陽イオン交換膜又は親水化処理を行った多孔質フッ素系樹脂膜よりなる隔膜を用いたことを特徴とする硫酸電解装置。 Partitioned into an anode chamber and a cathode chamber by a diaphragm, a conductive diamond anode is provided in the anode chamber, a cathode is provided in the cathode chamber, and an electrolytic solution containing sulfate ions is supplied to the anode chamber and the cathode chamber from the outside. In the electrolysis apparatus of sulfuric acid which electrolyzes and produces an oxidizing substance in the anode electrolyte in the anode chamber, the conductive diamond electrode according to claim 1 is used as the conductive diamond electrode, and the diaphragm is used. A sulfuric acid electrolysis apparatus using a fluororesin cation exchange membrane or a diaphragm made of a porous fluororesin membrane subjected to a hydrophilization treatment. 隔膜により陽極室と陰極室に区画し、前記陽極室内に導電性ダイヤモンド陽極を設け、前記陰極室内に陰極を設け、前記陽極室及び陰極室内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、前記陽極室内の陽極電解液中に酸化性物質を生成させる硫酸の電解方法において、前記導電性ダイヤモンド電極として、請求項1に記載の導電性ダイヤモンド電極を用いるとともに、前記硫酸イオンを含む電解液を(3)式、(4)式を満たす条件で電解することを特徴とする硫酸電解方法。
100≦X≦10000 ・・・(3)
25<Y<250 ・・・(4)
X=電流値/陽極液量(A/l)
Y=電流密度(A/dm2
Partitioned into an anode chamber and a cathode chamber by a diaphragm, a conductive diamond anode is provided in the anode chamber, a cathode is provided in the cathode chamber, and an electrolytic solution containing sulfate ions is supplied to the anode chamber and the cathode chamber from the outside. Then, in the sulfuric acid electrolysis method for electrolyzing and generating an oxidizing substance in the anode electrolyte in the anode chamber, the conductive diamond electrode according to claim 1 is used as the conductive diamond electrode, and the sulfuric acid is used. A sulfuric acid electrolysis method characterized by electrolyzing an electrolytic solution containing ions under conditions satisfying formulas (3) and (4).
100 ≦ X ≦ 10000 (3)
25 <Y <250 (4)
X = current value / anolyte amount (A / l)
Y = current density (A / dm 2 )
硫酸イオンを含む溶液を(5)式を満たす条件で電解することを特徴とする請求項に記載の硫酸電解方法。
18000≦Z≦1080000 ・・・(5)
Z=単位体積あたりの電気量(C/l)=電流値×電解時間/陽極液量(A・s/l)
6. The sulfuric acid electrolysis method according to claim 5 , wherein the solution containing sulfate ions is electrolyzed under conditions satisfying formula (5).
18000 ≦ Z ≦ 10800000 (5)
Z = amount of electricity per unit volume (C / l) = current value × electrolysis time / anolyte amount (A · s / l)
JP2010285100A 2010-12-21 2010-12-21 Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same Active JP5271345B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010285100A JP5271345B2 (en) 2010-12-21 2010-12-21 Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same
US13/993,205 US20130256150A1 (en) 2010-12-21 2011-11-21 Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same
KR1020137019257A KR101525340B1 (en) 2010-12-21 2011-11-21 Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same
CN201180068101.7A CN103380232B (en) 2010-12-21 2011-11-21 Conductive diamond electrode, the sulphuric acid electrolyte method using it and sulphuric acid electrolyte device
PCT/JP2011/076781 WO2012086352A1 (en) 2010-12-21 2011-11-21 Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same
EP11851375.3A EP2657370A4 (en) 2010-12-21 2011-11-21 Electrically conductive diamond electrode, and sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus each utilizing same
TW100145902A TWI516641B (en) 2010-12-21 2011-12-13 A conductive diamond electrode, a sulfuric acid electrolysis method thereof, and a sulfuric acid electrolysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285100A JP5271345B2 (en) 2010-12-21 2010-12-21 Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same

Publications (2)

Publication Number Publication Date
JP2012132066A JP2012132066A (en) 2012-07-12
JP5271345B2 true JP5271345B2 (en) 2013-08-21

Family

ID=46313634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285100A Active JP5271345B2 (en) 2010-12-21 2010-12-21 Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same

Country Status (7)

Country Link
US (1) US20130256150A1 (en)
EP (1) EP2657370A4 (en)
JP (1) JP5271345B2 (en)
KR (1) KR101525340B1 (en)
CN (1) CN103380232B (en)
TW (1) TWI516641B (en)
WO (1) WO2012086352A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015006514B4 (en) * 2015-05-26 2016-12-15 Condias Gmbh Method for producing a diamond electrode and diamond electrode
CN106917104A (en) * 2017-03-17 2017-07-04 南开大学 A kind of method of use BDD electrodes electro synthesis persulfate
JP6953484B2 (en) * 2017-09-01 2021-10-27 栗田工業株式会社 ABS-based resin surface plating pretreatment method, ABS-based resin surface plating treatment method, and ABS-based resin plating products
JP6947783B2 (en) * 2017-09-01 2021-10-13 栗田工業株式会社 ABS-based resin surface plating pretreatment method and ABS-based resin surface plating treatment method
JP2019044229A (en) * 2017-09-01 2019-03-22 栗田工業株式会社 Plating pretreatment method for abs resin surface, plating treatment method for abs resin surface, and abs resin-plated product
CN111020623A (en) * 2019-12-31 2020-04-17 河北中科同创科技发展有限公司 Closed electrolytic tank

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019683A1 (en) * 2000-04-20 2001-10-25 Degussa Process for the preparation of alkali metal and ammonium peroxodisulfate
WO2005014887A1 (en) * 2003-08-08 2005-02-17 Ebara Corporation Submerged electrode and material thereof
JP2006152338A (en) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd Diamond-coated electrode and production method therefor
WO2007083740A1 (en) * 2006-01-20 2007-07-26 Toyo Tanso Co., Ltd. Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP5148889B2 (en) * 2007-02-09 2013-02-20 株式会社東芝 Cleaning method and electronic device manufacturing method
JP4460590B2 (en) * 2007-06-22 2010-05-12 ペルメレック電極株式会社 Conductive diamond electrode structure and method for electrolytic synthesis of fluorine-containing material
JP5358303B2 (en) * 2008-06-30 2013-12-04 クロリンエンジニアズ株式会社 Method of cleaning with electrolytic sulfuric acid and method of manufacturing semiconductor device
JP5320173B2 (en) * 2008-06-30 2013-10-23 クロリンエンジニアズ株式会社 Sulfuric acid electrolysis method
JP5482123B2 (en) * 2008-11-26 2014-04-23 コニカミノルタ株式会社 Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, and image forming apparatus

Also Published As

Publication number Publication date
EP2657370A1 (en) 2013-10-30
KR101525340B1 (en) 2015-06-02
US20130256150A1 (en) 2013-10-03
EP2657370A4 (en) 2016-08-24
WO2012086352A1 (en) 2012-06-28
CN103380232A (en) 2013-10-30
TWI516641B (en) 2016-01-11
KR20130108435A (en) 2013-10-02
CN103380232B (en) 2016-08-17
JP2012132066A (en) 2012-07-12
TW201231730A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US5900127A (en) Electrode for electrolysis and electrolytic cell using the electrode
US7285194B2 (en) Conductive diamond electrode and process for producing the same
JP5271345B2 (en) Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
KR101286426B1 (en) Sulfuric acid electrolysis process
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
Arihara et al. Application of freestanding perforated diamond electrodes for efficient ozone-water production
JP4157615B2 (en) Method for producing insoluble metal electrode and electrolytic cell using the electrode
JP2007284790A (en) Method and apparatus for achieving maximum yield in electrolytic preparation of group iv and v hydrides
US20220356589A1 (en) Electrolytic cell equipped with microelectrodes
TWI252216B (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JP6221067B2 (en) Formic acid production apparatus and method
JP2017119282A (en) Method for generating slightly acidic hypochlorous acid water, bipolar electrolytic tank and generation device
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
JP5649948B2 (en) Sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus
EP0041365B1 (en) Improved electrolytic process for the production of ozone
JP4053805B2 (en) Functional water, production method and production apparatus thereof
WO2021177270A1 (en) Fixed-bed electrolysis treatment device and electrolysis treatment method
JP2007254760A (en) Method for manufacturing electrolyzed ion water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120509

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120814

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5271345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250