WO2021177270A1 - Fixed-bed electrolysis treatment device and electrolysis treatment method - Google Patents

Fixed-bed electrolysis treatment device and electrolysis treatment method Download PDF

Info

Publication number
WO2021177270A1
WO2021177270A1 PCT/JP2021/007832 JP2021007832W WO2021177270A1 WO 2021177270 A1 WO2021177270 A1 WO 2021177270A1 JP 2021007832 W JP2021007832 W JP 2021007832W WO 2021177270 A1 WO2021177270 A1 WO 2021177270A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
electrode
electrolysis treatment
bed
treated
Prior art date
Application number
PCT/JP2021/007832
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 剛史
駿介 中村
敏史 東條
湯浅 真
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to JP2022504379A priority Critical patent/JP7280650B2/en
Publication of WO2021177270A1 publication Critical patent/WO2021177270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present invention relates to a fixed bed electrolytic treatment apparatus and an electrolytic treatment method.
  • the conductive diamond electrode has a wider potential window than the platinum electrode and the like, can efficiently generate active species such as OH radical and ozone, and has excellent corrosion resistance. Therefore, for example, a factory. It is expected to be applied as an electrode for electrolysis when electrolyzing water to be treated such as wastewater.
  • Conductive diamond is generally formed on a substrate such as a silicon wafer by a chemical vapor deposition method (CVD method). Therefore, there is a problem that the shape of the electrode is limited to a thin film. Further, since the area of the obtained conductive diamond thin film depends on the size of the CVD apparatus, there is a problem that it is difficult to increase the surface area of the electrode.
  • CVD method chemical vapor deposition method
  • the shape of the electrode is not limited to the thin film shape, and the surface area of the electrode can be easily increased.
  • Patent Document 1 discloses a fluidized bed electrolysis treatment apparatus using conductive diamond particles as a fluidized bed electrode.
  • An object of the present invention is to provide a fixed-bed electrolytic treatment apparatus capable of electrochemically treating even water to be treated having high conductivity, and an electrolytic treatment method using the fixed-bed electrolytic treatment apparatus.
  • a fixed-bed electrolytic treatment device that electrochemically treats water to be treated.
  • a fixed floor electrode with a packed layer of conductive diamond particles With the counter electrode An electrolytic cell in which the fixed floor electrode and the counter electrode are arranged, and in which the water to be treated is housed or passed,
  • a fixed-bed electrolysis treatment device provided with.
  • ⁇ 4> The fixed-bed electrolysis treatment apparatus according to any one of ⁇ 1> to ⁇ 3>, wherein the electrolytic cell has a flow path through which the water to be treated is passed.
  • ⁇ 5> The fixed floor according to ⁇ 4>, wherein one of the fixed floor electrode and the counter electrode is arranged on the upstream side or the downstream side of the flow path, and the other is arranged on the downstream side or the upstream side of the flow path.
  • Electrolytic processing equipment ⁇ 6> The fixed bed electrolysis treatment apparatus according to ⁇ 5>, wherein the fixed floor electrode is arranged on the upstream side of the flow path and the counter electrode is arranged on the downstream side of the flow path.
  • ⁇ 7> The fixed bed electrolysis treatment apparatus according to ⁇ 5> or ⁇ 6>, wherein the packed bed is provided in at least a part of a cross section of the flow path.
  • ⁇ 8> The fixed bed electrolysis treatment apparatus according to ⁇ 7>, wherein the packed bed is provided over the entire cross section of the flow path.
  • ⁇ 10> The electrolytic treatment method according to ⁇ 9>, which continuously treats the water to be treated.
  • the present invention it is possible to provide a fixed-bed electrolytic treatment apparatus capable of electrochemically treating even water to be treated having high conductivity, and an electrolytic treatment method using the fixed-bed electrolytic treatment apparatus.
  • Test Example 1 It is a figure which shows an example of the fixed bed electrolysis processing apparatus which concerns on this embodiment. It is a figure which shows another example of the fixed bed electrolysis processing apparatus which concerns on this embodiment. It is a figure which shows the cyclic voltammogram obtained in Test Example 1. It is a figure which shows the decrease amount of the methylene blue concentration after 60 minutes when the constant voltage electrolysis was performed at 3V, 4V, or 5V using the 50 ⁇ M methylene blue aqueous solution as the water to be treated in Test Example 2. In Test Example 2, it is a figure which shows the time change of the methylene blue concentration at the time of performing constant voltage electrolysis at 5V using a 50 ⁇ M methylene blue aqueous solution as water to be treated.
  • Test Example 4 It is a figure which shows the schematic structure of the flow type fixed bed electrolysis treatment apparatus used in Test Example 4.
  • Test Example 4 it is a figure which shows the time change of the methylene blue concentration when the constant voltage electrolysis was performed at 5V at a flow rate of 2.0 mL / min using a 50 ⁇ M methylene blue aqueous solution as water to be treated.
  • Test Example 4 it is a figure which shows the time change of the methylene blue concentration when the constant voltage electrolysis was performed at 5V at a flow rate of 0.5 mL / min or 2.0 mL / min using a 50 ⁇ M methylene blue aqueous solution as water to be treated. ..
  • the fixed bed electrolysis treatment device is a fixed bed electrolysis treatment device that electrochemically treats water to be treated, and is fixed with a fixed floor electrode having a packed layer of conductive diamond particles, a counter electrode, and the like. A floor electrode and a counter electrode are arranged, and an electrolytic cell in which water to be treated is housed or passed is provided. By applying a voltage between the electrodes of this fixed-bed electrolytic treatment apparatus, the water to be treated can be treated electrochemically.
  • Examples of the conductive diamond include those obtained by doping diamond with a group 13 or group 15 element to impart conductivity.
  • the conductivity of the conductive diamond particles is, for example, 0.01 S / cm or more.
  • Examples of Group 13 or Group 15 elements include boron, nitrogen, phosphorus and the like.
  • the shape of the conductive diamond particles is not particularly limited.
  • the shape of the conductive diamond particles may be spherical, cubic, or polyhedral with an aspect ratio of about 1, and may have an aspect ratio of more than 1.
  • the particle size of the conductive diamond particles is, for example, preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 20 ⁇ m to 100 ⁇ m.
  • boron-doped diamond particles doped with boron are preferable.
  • the method for producing BDDP is not particularly limited, and known production methods described in JP-A-2008-36631, JP-A-2018-76216, and the like can be adopted.
  • a preferred production method includes a method of forming a boron-doped diamond layer (BDD layer) on the surface of the particulate substrate. Hereinafter, this manufacturing method will be described.
  • the particulate substrate is not particularly limited as long as it does not melt or deform when the BDD layer is formed, and can be appropriately selected depending on the intended purpose.
  • Specific examples of the particulate substrate include natural or artificial diamond particles; silicon particles; metal particles such as molybdenum particles; metal oxide particles such as alumina particles; boron nitride particles, quartz particles; and the like.
  • One type of these particulate base materials may be used alone, or two or more types may be used in combination. Of these, natural or artificial diamond particles are preferred.
  • the method of forming the BDD layer is not particularly limited and can be appropriately selected according to the purpose.
  • Specific examples of the forming method include a CVD method such as a thermal CVD method, a plasma CVD method, and a thermal filament CVD method; a physical vapor deposition method (PVD method) such as an ion beam method and an ionization vapor deposition method; and a high temperature and high pressure method. ..
  • the plasma CVD method is preferable.
  • the carbon source and the boron source which are the raw materials of the BDD layer are not particularly limited.
  • the carbon source methane, acetone or the like can be used.
  • the boron source diborane, trimethylborane, trimethoxyborane and the like can be used.
  • the amount of boron doped into diamond is preferably 10 ppm or more, more preferably 1000 ppm or more, and further preferably 10000 ppm or more with respect to the carbon constituting the diamond.
  • the amount of boron doped in diamond can be measured by secondary ion mass spectrometry or the like.
  • FIG. 1 An example of the fixed bed electrolysis treatment apparatus is shown in FIG.
  • a fixed floor electrode (anode) 10, a counter electrode (cathode) 20, a fixed floor electrode 10 and a counter electrode 20 are arranged, and water to be treated is housed.
  • An electrolytic cell 30 is provided.
  • the fixed bed electrolysis treatment device 1 shown in FIG. 1 is an example of a batch type fixed bed electrolysis treatment device that electrolyzes the water to be treated contained in the electrolytic cell 30.
  • the fixed floor electrode 10 has a packed layer 11 filled with the above-mentioned conductive diamond particles and a current collector 12 electrically connected to the packed layer 11.
  • Examples of the material of the current collector 12 include metals such as copper and aluminum; conductive diamond; and the like.
  • the current collector 12 may be formed integrally with the lead.
  • the counter electrode 20 constitutes an electrode for electrolysis together with the fixed floor electrode 10.
  • Examples of the counter electrode 20 include a platinum electrode, a gold electrode, a stainless steel electrode, a conductive diamond electrode and the like.
  • the counter electrode 20 may be a fixed floor electrode having a packed layer of conductive diamond particles.
  • the above-mentioned fixed floor electrode 10 and counter electrode 20 are arranged, and water to be treated is housed.
  • the electrolytic cell 30 may be provided with a stirrer for stirring the water to be treated.
  • the water to be treated contained in the electrolytic cell 30 can be electrolyzed by applying a voltage between the fixed floor electrode 10 and the counter electrode 20.
  • an electrode using conductive diamond has a wide potential window, suppresses electrolysis of water, and facilitates an electrolytic reaction of organic substances and the like. Therefore, for example, when the water to be treated contains an organic substance, the organic substance can be efficiently decomposed by active species such as OH radicals and ozone generated by applying a voltage.
  • the conductive diamond particles are arranged as the fixed floor electrodes, the surface area of the electrodes can be expanded and the electrolysis efficiency can be improved.
  • the metal ions can be reduced by applying a voltage to recover the metal.
  • the voltage and its application time when electrolyzing the water to be treated are not particularly limited, and can be appropriately selected according to the type of water to be treated and the like.
  • FIG. 2 Another example of the fixed bed electrolysis treatment apparatus is shown in FIG.
  • the fixed bed electrolysis treatment device 2 shown in FIG. 2 does not electrolyze the water to be treated contained in the electrolytic cell, but continuously electrolyzes the water to be treated which has passed through the electrolytic cell. It is different from the fixed bed electrolytic cell 1 shown in. Therefore, the same reference numerals are given to the configurations common to those in FIG. 1, and detailed description thereof will be omitted.
  • a fixed floor electrode (anode) 40, a counter electrode (cathode) 20, a fixed floor electrode 40 and a counter electrode 20 are arranged, and water to be treated is passed through the fixed bed electrolysis treatment device 2.
  • An electrolytic cell 50 having a flow path is provided.
  • the fixed-bed electrolysis treatment device 2 shown in FIG. 2 is an example of a flow-type fixed-bed electrolysis treatment device that continuously electrolyzes the water to be treated that has passed through the electrolytic cell 50.
  • the fixed floor electrode 40 is filled with the above-mentioned conductive diamond particles, and is inserted into the filling layer 41 and the filling layer 41 provided over the entire cross section of the flow path through which the water to be treated is passed. It has a current collector 42 and a pair of filters 43a and 43b provided so as to sandwich the packed bed 41.
  • the material of the current collector 42 include metals such as copper and aluminum; conductive diamond; and the like.
  • the filters 43a and 43b are not particularly limited as long as they allow water to be treated to pass through and the pore size is smaller than the particle size of the conductive diamond particles.
  • the electrolytic cell 50 has a flow path through which the water to be treated is passed in the direction of the arrow in the figure (direction from the lower side to the upper side in the figure), the fixed floor electrode 40 is arranged on the upstream side, and the fixed floor electrode 40 is arranged.
  • the counter electrode 20 is arranged on the downstream side.
  • the water to be treated that has passed through the electrolytic cell 50 is continuously electrolyzed. be able to.
  • the filling layer 41 is provided over the entire cross section of the flow path through which the water to be treated passes, the water to be treated reliably forms the filling layer 41. It will pass through, and more efficient electrolytic treatment will be possible.
  • the organic substance can be decomposed more efficiently by an active species such as OH radical generated by applying a voltage.
  • the voltage and its application time when electrolyzing the water to be treated are not particularly limited, and can be appropriately selected according to the type of water to be treated and the like.
  • the fixed floor electrode 40 is arranged on the upstream side of the flow path and the counter electrode 20 is arranged on the downstream side of the flow path, but the present invention is limited to this example. Instead, the fixed floor electrode 40 may be arranged on the downstream side of the flow path, and the counter electrode 20 may be arranged on the upstream side of the flow path.
  • the filling layer 41 is provided over the entire cross section of the flow path, but the present invention is not limited to this example, and at least a part of the cross section of the flow path is provided. It suffices if it is provided in.
  • ⁇ Manufacturing Example 1 Manufacture of Boron Doped Diamond Thin Film (BDD Thin Film)> The surface of the silicon wafer was scratched with diamond particles having a particle size of 3 ⁇ m to 6 ⁇ m, and then ultrasonically cleaned with methanol, acetone, and ultrapure water for 30 minutes each. Next, a BDD thin film was formed on the silicon wafer by the microwave plasma CVD method.
  • the film forming conditions were microwave output: 5500 W, stage temperature: 698 ° C., chamber internal pressure: 90 Torr, plenum pressure: 70 Torr, film forming time: 4 hours, and boron concentration: 10000 ppm.
  • BDDP Boron Doped Diamond Particles
  • As the particulate substrate diamond particles having a particle size of 40 ⁇ m to 60 ⁇ m were used.
  • impurities Co, Fe, various sp 2 carbons, etc.
  • cleaning was performed according to the previously reported. Specifically, diamond particles are immersed in royal water in which hydrochloric acid and nitric acid are mixed at a volume ratio of 3: 1 and heated at 60 ° C. for 30 minutes, and then immersed in 30% hydrogen peroxide solution at 60 ° C. It was heated for 30 minutes.
  • Example 1 Evaluation of electrode surface area of BDDP-filled electrode> Background current by cyclic voltammetry (CV) to confirm whether the electrode surface area of the BDDP-filled electrode is larger than that of the BDD thin-film electrode and whether the electrode surface area of the BDDP-filled electrode is increased by increasing the filling amount of BDDP. The size of was compared.
  • the CV measurement was carried out in a 0.1 M aqueous sodium sulfate solution using a BDDP-filled electrode or a BDD thin film electrode as a working electrode, a platinum wire as a counter electrode, and an Ag / AgCl electrode as a reference electrode.
  • the measurement potential was ⁇ 1.3 V to + 1.8 V (vs. Ag / AgCl), and the scanning speed was 100 mV / sec.
  • the cyclic voltammogram obtained by CV measurement is shown in FIG.
  • the background current when the BDDP filling electrode was used was larger than the background current when the BDD thin film electrode was used, and the value increased as the filling amount of BDDP increased. From this, it can be seen that the electrode surface area of the BDDP-filled electrode is larger than the electrode surface area of the BDD thin film electrode, and the electrode surface area of the BDDP-filled electrode is increased by increasing the filling amount of BDDP.
  • ⁇ Test Example 2 Constant-voltage electrolysis experiment of methylene blue using a batch-type fixed-bed electrolysis treatment device> An aqueous solution containing methylene blue was used as water to be treated, and a constant voltage electrolysis experiment was carried out using a BDDP-filled electrode or a BDD thin film electrode. By using methylene blue, it is possible to quantify by the ultraviolet-visible (UV-vis) absorption spectrum.
  • UV-vis ultraviolet-visible
  • a 50 ⁇ M methylene blue aqueous solution containing 0.1 M sodium sulfate as a supporting electrolyte was prepared, and a BDDP-filled electrode (BDDP filling amount: 0.2 g, 0.4 g, 0.6 g, 0.8 g) or a BDD thin film electrode (BDDP filling amount) was prepared. : 0 g) was added to the electrolytic cell of the electrolytic treatment apparatus provided with 5 mL. Then, constant voltage electrolysis was performed for 60 minutes to quantify the amount of decrease in methylene blue concentration. The constant voltage was 3V, 4V, or 5V.
  • the supernatant of the methylene blue aqueous solution was collected and UV-vis measurement was performed. Then, the obtained absorbance was converted into a methylene blue concentration by a calibration curve prepared in advance.
  • FIG. 4 shows the amount of decrease in the methylene blue concentration when constant voltage electrolysis was performed for 60 minutes. As shown in FIG. 4, as the applied voltage increased and the BDDP filling amount increased, the amount of decrease in the methylene blue concentration increased.
  • FIG. 5 shows the time change of the methylene blue concentration when constant voltage electrolysis of 5 V was performed.
  • FIG. 5 shows a relative value when the initial concentration of methylene blue is 100%.
  • the methylene blue concentration decreased significantly at the initial stage of the electrolytic treatment, and the decrease rate decreased as the methylene blue concentration decreased.
  • Test Example 3 Evaluation of OH radical generation by batch type fixed bed electrolysis treatment device>
  • a batch-type fixed-bed electrolytic treatment apparatus 1A having the configuration shown in FIG. Inside the electrolytic cell 10A having an internal volume of 5.5 mL, a predetermined amount (0 g, 0.2 g, 0.4 g, 0.6 g, 0.8 g) of BDDP (particle size: 40 ⁇ m to 60 ⁇ m) obtained in Production Example 2 is placed. ) To form a packed layer 11A of a fixed floor electrode (BDDP filled electrode) 10A. A platinum wire was used as the current collector 12A and the counter electrode 20A of the fixed floor electrode 10A.
  • BDDP fixed floor electrode
  • FIG. 7A The fluorescence spectrum of the solution after constant voltage electrolysis is shown in FIG. 7A, and the HTA concentration is shown in FIG. 7B. As shown in FIGS. 7A and 7B, it can be seen that the HTA concentration increased as the BDDP filling amount increased, and the OH production amount increased.
  • Test Example 4 Constant-voltage electrolysis experiment of methylene blue using a flow-type fixed-bed electrolysis treatment device>
  • BDDP particle size: 40 ⁇ m to 60 ⁇ m
  • the packed layer 41B of the floor electrode (BDDP filled electrode) 40B was constructed.
  • a platinum wire was used as the current collector 42B of the fixed floor electrode 40B, and a platinum mesh was used as the counter electrode 20B.
  • the filter 43B was arranged on the upstream side (lower side in the figure) of the packed bed 41B, but the filter was not arranged on the downstream side (upper side in the figure).
  • a 50 ⁇ M methylene blue aqueous solution containing 0.1 M sodium sulfate was prepared as a supporting electrolyte, and 30 mL of this methylene blue aqueous solution was circulated by a plunger pump and subjected to constant voltage electrolysis at 5 V for 360 minutes to quantify the decrease in methylene blue concentration. ..
  • FIG. 9 shows the time change of the methylene blue concentration when the BDDP filling amount was 0.8 g, 1.6 g, or 2.4 g and the flow rate was 2.0 mL / min.
  • FIG. 10 shows the time change of the methylene blue concentration when the BDDP filling amount is 0.8 g or 1.6 g and the flow rate is 0.5 mL / min or 2.0 mL / min.
  • 9 and 10 show relative values when the initial concentration of methylene blue is 100%. As shown in FIGS. 9 and 10, the amount of decrease in the methylene blue concentration increased as the BDDP filling amount increased.
  • the amount of decrease in the methylene blue concentration was larger when the flow velocity was 0.5 mL / min than when the flow velocity was 2.0 mL / min. It is presumed that this is because the filter was not arranged on the downstream side of the BDDP filling electrode, and the filling layer collapsed when the flow velocity was 2.0 mL / min.
  • 1,1A fixed bed electrolyzer (batch type), 2,2B fixed bed electrolyzer (flow type), 10,10A fixed floor electrode, 11,11A packing layer, 12,12A current collector, 20,20A, 20B counter electrode, 30, 30A electrolytic cell, 40, 40B fixed floor electrode, 41, 41B packing layer, 42, 42B current collector, 43a, 43b, 43B filter, 50, 50B electrolytic cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Provided is a fixed-bed electrolysis treatment device for electrochemically treating water to be treated, wherein the fixed-bed electrolysis treatment device is equipped with a fixed-bed electrode having a packed layer of conductive diamond particles; a counter electrode; and an electrolytic cell in which the fixed-bed electrode and the counter electrode are disposed and the water to be treated is passed through or housed. Also provided is an electrolysis treatment method that uses the fixed-bed electrolysis treatment device.

Description

固定床電解処理装置及び電解処理方法Fixed-bed electrolysis equipment and electrolysis method
 本発明は、固定床電解処理装置及び電解処理方法に関する。 The present invention relates to a fixed bed electrolytic treatment apparatus and an electrolytic treatment method.
 導電性ダイヤモンド電極は、白金電極等と比較して電位窓が広く、効率的にOHラジカル、オゾン等の活性種を生成することが可能であり、耐食性にも優れていることから、例えば、工場排水等の被処理水を電解処理する際の電解用電極としての応用が期待されている。 The conductive diamond electrode has a wider potential window than the platinum electrode and the like, can efficiently generate active species such as OH radical and ozone, and has excellent corrosion resistance. Therefore, for example, a factory. It is expected to be applied as an electrode for electrolysis when electrolyzing water to be treated such as wastewater.
 導電性ダイヤモンドは、一般に、化学気相成長法(CVD法)により、シリコンウェハ等の基板上に成膜される。このため、電極の形状が薄膜状に限定されてしまうという課題があった。また、得られる導電性ダイヤモンド薄膜の面積はCVD装置のサイズに依存するため、電極表面積を拡大することが困難であるという課題があった。 Conductive diamond is generally formed on a substrate such as a silicon wafer by a chemical vapor deposition method (CVD method). Therefore, there is a problem that the shape of the electrode is limited to a thin film. Further, since the area of the obtained conductive diamond thin film depends on the size of the CVD apparatus, there is a problem that it is difficult to increase the surface area of the electrode.
 これらの課題を解決するため、近年、導電性ダイヤモンド粒子を電極に応用することが提案されている。このような導電性ダイヤモンド粒子によれば、電極の形状が薄膜状に限定されないことに加え、電極表面積を容易に拡大することができる。 In recent years, it has been proposed to apply conductive diamond particles to electrodes in order to solve these problems. According to such conductive diamond particles, the shape of the electrode is not limited to the thin film shape, and the surface area of the electrode can be easily increased.
 例えば、特許文献1には、導電性ダイヤモンド粒子を流動床電極として用いた流動床電解処理装置が開示されている。 For example, Patent Document 1 discloses a fluidized bed electrolysis treatment apparatus using conductive diamond particles as a fluidized bed electrode.
特開2008-36631号公報Japanese Unexamined Patent Publication No. 2008-36631
 特許文献1に記載の流動床電解処理装置では、導電性ダイヤモンド粒子がバイポーラ電極として振る舞うことにより、粒子が浮遊状態であっても電解が起こるものと考えられる。このため、被処理水の導電率が高い場合には、電解効率が低下すると予想される。 In the fluidized bed electrolysis treatment apparatus described in Patent Document 1, it is considered that the conductive diamond particles behave as bipolar electrodes, so that electrolysis occurs even when the particles are in a suspended state. Therefore, when the conductivity of the water to be treated is high, it is expected that the electrolysis efficiency will decrease.
 本発明は、導電率が高い被処理水であっても電気化学的に処理可能な固定床電解処理装置、及びこの固定床電解処理装置を用いた電解処理方法を提供することを課題とする。 An object of the present invention is to provide a fixed-bed electrolytic treatment apparatus capable of electrochemically treating even water to be treated having high conductivity, and an electrolytic treatment method using the fixed-bed electrolytic treatment apparatus.
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> 被処理水を電気化学的に処理する固定床電解処理装置であって、
 導電性ダイヤモンド粒子の充填層を有する固定床電極と、
 対電極と、
 前記固定床電極及び前記対電極が配置されるとともに、前記被処理水が収容又は通液される電解槽と、
を備える固定床電解処理装置。
<2> 前記導電性ダイヤモンド粒子がボロンドープダイヤモンド粒子である<1>に記載の固定床電解処理装置。
<3> 前記固定床電極が、前記導電性ダイヤモンド粒子の充填層に電気的に接続した集電体を有する<1>又は<2>に記載の固定床電解処理装置。
<4> 前記電解槽が、前記被処理水が通液される流路を有する<1>~<3>のいずれか1項に記載の固定床電解処理装置。
<5> 前記固定床電極及び前記対電極の一方が前記流路の上流側又は下流側に配置され、他方が前記流路の下流側又は上流側に配置される<4>に記載の固定床電解処理装置。
<6> 前記固定床電極が前記流路の上流側に配置され、前記対電極が前記流路の下流側に配置される<5>に記載の固定床電解処理装置。
<7> 前記充填層が前記流路の断面の少なくとも一部に設けられる<5>又は<6>に記載の固定床電解処理装置。
<8> 前記充填層が前記流路の断面全体に亘って設けられる<7>に記載の固定床電解処理装置。
<9> <1>~<8>のいずれか1項に記載の固定床電解処理装置の電極間に電圧を印加することにより、被処理水を電気化学的に処理する電解処理方法。
<10> 前記被処理水を連続的に処理する<9>に記載の電解処理方法。
Specific means for solving the above problems include the following embodiments.
<1> A fixed-bed electrolytic treatment device that electrochemically treats water to be treated.
A fixed floor electrode with a packed layer of conductive diamond particles,
With the counter electrode
An electrolytic cell in which the fixed floor electrode and the counter electrode are arranged, and in which the water to be treated is housed or passed,
A fixed-bed electrolysis treatment device provided with.
<2> The fixed bed electrolysis treatment apparatus according to <1>, wherein the conductive diamond particles are boron-doped diamond particles.
<3> The fixed bed electrolysis treatment apparatus according to <1> or <2>, wherein the fixed floor electrode has a current collector electrically connected to the packed layer of the conductive diamond particles.
<4> The fixed-bed electrolysis treatment apparatus according to any one of <1> to <3>, wherein the electrolytic cell has a flow path through which the water to be treated is passed.
<5> The fixed floor according to <4>, wherein one of the fixed floor electrode and the counter electrode is arranged on the upstream side or the downstream side of the flow path, and the other is arranged on the downstream side or the upstream side of the flow path. Electrolytic processing equipment.
<6> The fixed bed electrolysis treatment apparatus according to <5>, wherein the fixed floor electrode is arranged on the upstream side of the flow path and the counter electrode is arranged on the downstream side of the flow path.
<7> The fixed bed electrolysis treatment apparatus according to <5> or <6>, wherein the packed bed is provided in at least a part of a cross section of the flow path.
<8> The fixed bed electrolysis treatment apparatus according to <7>, wherein the packed bed is provided over the entire cross section of the flow path.
<9> An electrolytic treatment method for electrochemically treating water to be treated by applying a voltage between the electrodes of the fixed bed electrolytic treatment apparatus according to any one of <1> to <8>.
<10> The electrolytic treatment method according to <9>, which continuously treats the water to be treated.
 本発明によれば、導電率が高い被処理水であっても電気化学的に処理可能な固定床電解処理装置、及びこの固定床電解処理装置を用いた電解処理方法を提供することができる。 According to the present invention, it is possible to provide a fixed-bed electrolytic treatment apparatus capable of electrochemically treating even water to be treated having high conductivity, and an electrolytic treatment method using the fixed-bed electrolytic treatment apparatus.
本実施形態に係る固定床電解処理装置の一例を示す図である。It is a figure which shows an example of the fixed bed electrolysis processing apparatus which concerns on this embodiment. 本実施形態に係る固定床電解処理装置の他の例を示す図である。It is a figure which shows another example of the fixed bed electrolysis processing apparatus which concerns on this embodiment. 試験例1で得られたサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram obtained in Test Example 1. 試験例2において、被処理水として50μM メチレンブルー水溶液を用いて3V、4V、又は5Vで定電圧電解を行った際の、60分後におけるメチレンブルー濃度の減少量を示す図である。It is a figure which shows the decrease amount of the methylene blue concentration after 60 minutes when the constant voltage electrolysis was performed at 3V, 4V, or 5V using the 50 μM methylene blue aqueous solution as the water to be treated in Test Example 2. 試験例2において、被処理水として50μM メチレンブルー水溶液を用いて5Vで定電圧電解を行った際の、メチレンブルー濃度の時間変化を示す図である。In Test Example 2, it is a figure which shows the time change of the methylene blue concentration at the time of performing constant voltage electrolysis at 5V using a 50 μM methylene blue aqueous solution as water to be treated. 試験例3で用いたバッチ式の固定床電解処理装置の概略構成を示す図である。It is a figure which shows the schematic structure of the batch type fixed bed electrolysis processing apparatus used in Test Example 3. 図6の固定床電解処理装置の電解槽に1mM テレフタル酸二ナトリウム(NaTA)溶液を5mL加え、5V、30分間の定電圧電解を行った後の、溶液の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of the solution after adding 5 mL of 1 mM disodium terephthalate (NaTA) solution to the electrolytic cell of the fixed bed electrolysis treatment apparatus of FIG. 6, and performing constant voltage electrolysis at 5 V for 30 minutes. 図6の固定床電解処理装置の電解槽に1mM テレフタル酸二ナトリウム(NaTA)溶液を5mL加え、5V、30分間の定電圧電解を行った後の、溶液中の2-ヒドロキシテレフタル酸(HTA)濃度を示す図である。2-Hydroxyterephthalic acid (HTA) in the solution after 5 mL of 1 mM disophthalate terephthalate (NaTA) solution was added to the electrolytic cell of the fixed bed electrolysis treatment apparatus shown in FIG. 6 and constant voltage electrolysis was performed at 5 V for 30 minutes. It is a figure which shows the concentration. 試験例4で用いたフロー式の固定床電解処理装置の概略構成を示す図である。It is a figure which shows the schematic structure of the flow type fixed bed electrolysis treatment apparatus used in Test Example 4. 試験例4において、被処理水として50μM メチレンブルー水溶液を用い、流速を2.0mL/minとして5Vで定電圧電解を行った際の、メチレンブルー濃度の時間変化を示す図である。In Test Example 4, it is a figure which shows the time change of the methylene blue concentration when the constant voltage electrolysis was performed at 5V at a flow rate of 2.0 mL / min using a 50 μM methylene blue aqueous solution as water to be treated. 試験例4において、被処理水として50μM メチレンブルー水溶液を用い、流速を0.5mL/min又は2.0mL/minとして5Vで定電圧電解を行った際の、メチレンブルー濃度の時間変化を示す図である。In Test Example 4, it is a figure which shows the time change of the methylene blue concentration when the constant voltage electrolysis was performed at 5V at a flow rate of 0.5 mL / min or 2.0 mL / min using a 50 μM methylene blue aqueous solution as water to be treated. ..
 以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
 本実施形態に係る固定床電解処理装置は、被処理水を電気化学的に処理する固定床電解処理装置であって、導電性ダイヤモンド粒子の充填層を有する固定床電極と、対電極と、固定床電極及び対電極が配置されるとともに、被処理水が収容又は通液される電解槽と、を備える。この固定床電解処理装置の電極間に電圧を印加することにより、被処理水を電気化学的に処理することが可能である。 The fixed bed electrolysis treatment device according to the present embodiment is a fixed bed electrolysis treatment device that electrochemically treats water to be treated, and is fixed with a fixed floor electrode having a packed layer of conductive diamond particles, a counter electrode, and the like. A floor electrode and a counter electrode are arranged, and an electrolytic cell in which water to be treated is housed or passed is provided. By applying a voltage between the electrodes of this fixed-bed electrolytic treatment apparatus, the water to be treated can be treated electrochemically.
 以下では、まず、導電性ダイヤモンド粒子について説明し、次いで、固定床電解処理装置の構成について説明する。 In the following, the conductive diamond particles will be described first, and then the configuration of the fixed bed electrolysis treatment device will be described.
(導電性ダイヤモンド粒子)
 導電性ダイヤモンドとしては、ダイヤモンドに13族又は15族の元素をドープして導電性を付与したものが挙げられる。導電性ダイヤモンド粒子の導電率は、例えば、0.01S/cm以上である。13族又は15族の元素としては、ホウ素、窒素、リン等が挙げられる。
(Conductive diamond particles)
Examples of the conductive diamond include those obtained by doping diamond with a group 13 or group 15 element to impart conductivity. The conductivity of the conductive diamond particles is, for example, 0.01 S / cm or more. Examples of Group 13 or Group 15 elements include boron, nitrogen, phosphorus and the like.
 導電性ダイヤモンド粒子の形状は特に制限されない。導電性ダイヤモンド粒子の形状は、アスペクト比が1付近の球状、立方体状、又は多面体状であってもよく、アスペクト比が1を上回る形状であってもよい。 The shape of the conductive diamond particles is not particularly limited. The shape of the conductive diamond particles may be spherical, cubic, or polyhedral with an aspect ratio of about 1, and may have an aspect ratio of more than 1.
 導電性ダイヤモンド粒子の粒子径は、例えば、1μm~1000μmであることが好ましく、20μm~100μmであることがより好ましい。 The particle size of the conductive diamond particles is, for example, preferably 1 μm to 1000 μm, and more preferably 20 μm to 100 μm.
 導電性ダイヤモンド粒子の中でも、ホウ素がドープされたボロンドープダイヤモンド粒子(BDDP)が好ましい。 Among the conductive diamond particles, boron-doped diamond particles (BDDP) doped with boron are preferable.
 BDDPの製造方法は特に制限されず、特開2008-36631号公報、特開2018-76216号公報等に記載された公知の製造方法を採用することができる。好ましい製造方法としては、粒子状基材の表面にボロンドープダイヤモンド層(BDD層)を形成する方法が挙げられる。以下、この製造方法について説明する。 The method for producing BDDP is not particularly limited, and known production methods described in JP-A-2008-36631, JP-A-2018-76216, and the like can be adopted. A preferred production method includes a method of forming a boron-doped diamond layer (BDD layer) on the surface of the particulate substrate. Hereinafter, this manufacturing method will be described.
 粒子状基材としては、BDD層の形成時に溶融又は変形するものでなければ特に制限されず、目的に応じて適宜選択することができる。粒子状基材の具体例としては、天然又は人工のダイヤモンド粒子;シリコン粒子;モリブデン粒子等の金属粒子;アルミナ粒子等の金属酸化物粒子;窒化ホウ素粒子、石英粒子;などが挙げられる。これらの粒子状基材は、1種類を単独で使用してもよく、2種類以上を併用してもよい。これらの中でも、天然又は人工のダイヤモンド粒子が好ましい。 The particulate substrate is not particularly limited as long as it does not melt or deform when the BDD layer is formed, and can be appropriately selected depending on the intended purpose. Specific examples of the particulate substrate include natural or artificial diamond particles; silicon particles; metal particles such as molybdenum particles; metal oxide particles such as alumina particles; boron nitride particles, quartz particles; and the like. One type of these particulate base materials may be used alone, or two or more types may be used in combination. Of these, natural or artificial diamond particles are preferred.
 BDD層の形成方法は特に制限されず、目的に応じて適宜選択することができる。形成方法の具体例としては、熱CVD法、プラズマCVD法、熱フィラメントCVD法等のCVD法;イオンビーム法、イオン化蒸着法等の物理蒸着法(PVD法);高温高圧法;などが挙げられる。これらの中でも、プラズマCVD法が好ましい。 The method of forming the BDD layer is not particularly limited and can be appropriately selected according to the purpose. Specific examples of the forming method include a CVD method such as a thermal CVD method, a plasma CVD method, and a thermal filament CVD method; a physical vapor deposition method (PVD method) such as an ion beam method and an ionization vapor deposition method; and a high temperature and high pressure method. .. Among these, the plasma CVD method is preferable.
 上述したCVD法において、BDD層の原料となる炭素源及びホウ素源は特に制限されない。炭素源としては、メタン、アセトン等を用いることができる。また、ホウ素源としては、ジボラン、トリメチルボラン、トリメトキシボラン等を用いることができる。 In the above-mentioned CVD method, the carbon source and the boron source which are the raw materials of the BDD layer are not particularly limited. As the carbon source, methane, acetone or the like can be used. Further, as the boron source, diborane, trimethylborane, trimethoxyborane and the like can be used.
 BDD層において、ダイヤモンドにドープするホウ素の量は、ダイヤモンドを構成する炭素に対して、10ppm以上であることが好ましく、1000ppm以上であることがより好ましく、10000ppm以上であることがさらに好ましい。ダイヤモンドにドープするホウ素の量は、二次イオン質量分析法等により測定することができる。 In the BDD layer, the amount of boron doped into diamond is preferably 10 ppm or more, more preferably 1000 ppm or more, and further preferably 10000 ppm or more with respect to the carbon constituting the diamond. The amount of boron doped in diamond can be measured by secondary ion mass spectrometry or the like.
(固定床電解処理装置の一例)
 固定床電解処理装置の一例を図1に示す。図1に示す固定床電解処理装置1は、固定床電極(陽極)10と、対電極(陰極)20と、固定床電極10及び対電極20が配置されるとともに、被処理水が収容される電解槽30と、を備える。図1に示す固定床電解処理装置1は、電解槽30に収容された被処理水を電解処理するバッチ式の固定床電解処理装置の一例である。
(Example of fixed floor electrolysis treatment equipment)
An example of the fixed bed electrolysis treatment apparatus is shown in FIG. In the fixed bed electrolysis treatment device 1 shown in FIG. 1, a fixed floor electrode (anode) 10, a counter electrode (cathode) 20, a fixed floor electrode 10 and a counter electrode 20 are arranged, and water to be treated is housed. An electrolytic cell 30 is provided. The fixed bed electrolysis treatment device 1 shown in FIG. 1 is an example of a batch type fixed bed electrolysis treatment device that electrolyzes the water to be treated contained in the electrolytic cell 30.
 固定床電極10は、上述した導電性ダイヤモンド粒子が充填されてなる充填層11と、該充填層11と電気的に接続された集電体12と、を有する。集電体12の材質としては、銅、アルミニウム等の金属;導電性ダイヤモンド;などが挙げられる。集電体12は、リードと一体に形成されたものであってもよい。 The fixed floor electrode 10 has a packed layer 11 filled with the above-mentioned conductive diamond particles and a current collector 12 electrically connected to the packed layer 11. Examples of the material of the current collector 12 include metals such as copper and aluminum; conductive diamond; and the like. The current collector 12 may be formed integrally with the lead.
 対電極20は、固定床電極10とともに電解用電極を構成する。対電極20としては、白金電極、金電極、ステンレス電極、導電性ダイヤモンド電極等が挙げられる。対電極20は、導電性ダイヤモンド粒子の充填層を有する固定床電極であってもよい。 The counter electrode 20 constitutes an electrode for electrolysis together with the fixed floor electrode 10. Examples of the counter electrode 20 include a platinum electrode, a gold electrode, a stainless steel electrode, a conductive diamond electrode and the like. The counter electrode 20 may be a fixed floor electrode having a packed layer of conductive diamond particles.
 電解槽30は、上述した固定床電極10及び対電極20が配置されるとともに、被処理水が収容される。電解槽30には、被処理水を撹拌する撹拌子が設けられていてもよい。 In the electrolytic cell 30, the above-mentioned fixed floor electrode 10 and counter electrode 20 are arranged, and water to be treated is housed. The electrolytic cell 30 may be provided with a stirrer for stirring the water to be treated.
 以上説明した固定床電解処理装置1によれば、固定床電極10と対電極20との間に電圧を印加することにより、電解槽30に収容された被処理水を電解処理することができる。導電性ダイヤモンドを用いた電極は、電位窓が広く、水の電気分解が抑えられ、有機物等の電解反応が進行し易くなることが知られている。したがって、例えば、被処理水が有機物を含有する場合には、電圧印加によって発生したOHラジカル、オゾン等の活性種により、有機物を効率的に分解することができる。しかも、本実施形態では、導電性ダイヤモンド粒子を固定床電極として配置するため、電極表面積が拡大し、電解効率の向上を図ることができる。また、被処理水が金属イオンを含有する場合には、電圧印加により金属イオンを還元し、金属を回収することができる。 According to the fixed bed electrolysis treatment device 1 described above, the water to be treated contained in the electrolytic cell 30 can be electrolyzed by applying a voltage between the fixed floor electrode 10 and the counter electrode 20. It is known that an electrode using conductive diamond has a wide potential window, suppresses electrolysis of water, and facilitates an electrolytic reaction of organic substances and the like. Therefore, for example, when the water to be treated contains an organic substance, the organic substance can be efficiently decomposed by active species such as OH radicals and ozone generated by applying a voltage. Moreover, in the present embodiment, since the conductive diamond particles are arranged as the fixed floor electrodes, the surface area of the electrodes can be expanded and the electrolysis efficiency can be improved. When the water to be treated contains metal ions, the metal ions can be reduced by applying a voltage to recover the metal.
 被処理水を電解処理する際の電圧及びその印加時間は特に制限されず、被処理水の種類等に応じて適宜選択することができる。 The voltage and its application time when electrolyzing the water to be treated are not particularly limited, and can be appropriately selected according to the type of water to be treated and the like.
(固定床電解処理装置の他の例)
 固定床電解処理装置の他の例を図2に示す。図2に示す固定床電解処理装置2は、電解槽に収容された被処理水を電解処理するのではなく、電解槽に通液された被処理水を連続的に電解処理する点で図1に示す固定床電解処理装置1と異なる。そこで、図1と共通する構成については同一の符号を付し、詳細な説明を省略する。
(Other examples of fixed floor electrolysis treatment equipment)
Another example of the fixed bed electrolysis treatment apparatus is shown in FIG. The fixed bed electrolysis treatment device 2 shown in FIG. 2 does not electrolyze the water to be treated contained in the electrolytic cell, but continuously electrolyzes the water to be treated which has passed through the electrolytic cell. It is different from the fixed bed electrolytic cell 1 shown in. Therefore, the same reference numerals are given to the configurations common to those in FIG. 1, and detailed description thereof will be omitted.
 図2に示す固定床電解処理装置2は、固定床電極(陽極)40と、対電極(陰極)20と、固定床電極40及び対電極20が配置されるとともに、被処理水が通液される流路を有する電解槽50と、を備える。図2に示す固定床電解処理装置2は、電解槽50に通液された被処理水を連続的に電解処理するフロー式の固定床電解処理装置の一例である。 In the fixed bed electrolysis treatment device 2 shown in FIG. 2, a fixed floor electrode (anode) 40, a counter electrode (cathode) 20, a fixed floor electrode 40 and a counter electrode 20 are arranged, and water to be treated is passed through the fixed bed electrolysis treatment device 2. An electrolytic cell 50 having a flow path is provided. The fixed-bed electrolysis treatment device 2 shown in FIG. 2 is an example of a flow-type fixed-bed electrolysis treatment device that continuously electrolyzes the water to be treated that has passed through the electrolytic cell 50.
 固定床電極40は、上述した導電性ダイヤモンド粒子が充填されてなり、被処理水が通液される流路の断面全体に亘って設けられた充填層41と、該充填層41に挿入された集電体42と、該充填層41を挟むように設けられた一対のフィルタ43a,43bと、を有する。集電体42の材質としては、銅、アルミニウム等の金属;導電性ダイヤモンド;などが挙げられる。フィルタ43a,43bとしては、被処理水を通し、且つ、孔径が導電性ダイヤモンド粒子の粒子径よりも小さいものであれば特に制限されない。 The fixed floor electrode 40 is filled with the above-mentioned conductive diamond particles, and is inserted into the filling layer 41 and the filling layer 41 provided over the entire cross section of the flow path through which the water to be treated is passed. It has a current collector 42 and a pair of filters 43a and 43b provided so as to sandwich the packed bed 41. Examples of the material of the current collector 42 include metals such as copper and aluminum; conductive diamond; and the like. The filters 43a and 43b are not particularly limited as long as they allow water to be treated to pass through and the pore size is smaller than the particle size of the conductive diamond particles.
 電解槽50は、被処理水が図中矢印の方向(図中の下側から上側への方向)に通液される流路を有し、上流側に固定床電極40が配置されるとともに、下流側に対電極20が配置されている。 The electrolytic cell 50 has a flow path through which the water to be treated is passed in the direction of the arrow in the figure (direction from the lower side to the upper side in the figure), the fixed floor electrode 40 is arranged on the upstream side, and the fixed floor electrode 40 is arranged. The counter electrode 20 is arranged on the downstream side.
 以上説明した固定床電解処理装置2によれば、固定床電極40と対電極20との間に電圧を印加することにより、電解槽50に通液された被処理水を連続的に電解処理することができる。 According to the fixed bed electrolysis treatment device 2 described above, by applying a voltage between the fixed floor electrode 40 and the counter electrode 20, the water to be treated that has passed through the electrolytic cell 50 is continuously electrolyzed. be able to.
 特に、図2に示す固定床電解処理装置2では、被処理水が通液される流路の断面全体に亘って充填層41が設けられているため、被処理水が確実に充填層41を通過することになり、より効率的な電解処理が可能となる。例えば、被処理水が有機物を含有する場合には、電圧印加によって発生したOHラジカル等の活性種により、有機物をより効率的に分解することが可能となる。 In particular, in the fixed bed electrolysis treatment device 2 shown in FIG. 2, since the filling layer 41 is provided over the entire cross section of the flow path through which the water to be treated passes, the water to be treated reliably forms the filling layer 41. It will pass through, and more efficient electrolytic treatment will be possible. For example, when the water to be treated contains an organic substance, the organic substance can be decomposed more efficiently by an active species such as OH radical generated by applying a voltage.
 被処理水を電解処理する際の電圧及びその印加時間は特に制限されず、被処理水の種類等に応じて適宜選択することができる。 The voltage and its application time when electrolyzing the water to be treated are not particularly limited, and can be appropriately selected according to the type of water to be treated and the like.
 なお、図2に示す固定床電解処理装置2では、固定床電極40が流路の上流側に配置され、対電極20が流路の下流側に配置されているが、この例に限定されるものではなく、固定床電極40を流路の下流側に配置し、対電極20を流路の上流側に配置してもよい。 In the fixed bed electrolytic treatment apparatus 2 shown in FIG. 2, the fixed floor electrode 40 is arranged on the upstream side of the flow path and the counter electrode 20 is arranged on the downstream side of the flow path, but the present invention is limited to this example. Instead, the fixed floor electrode 40 may be arranged on the downstream side of the flow path, and the counter electrode 20 may be arranged on the upstream side of the flow path.
 また、図2に示す固定床電解処理装置2では、充填層41が流路の断面全体に亘って設けられているが、この例に限定されるものではなく、流路の断面の少なくとも一部に設けられていればよい。 Further, in the fixed bed electrolytic treatment apparatus 2 shown in FIG. 2, the filling layer 41 is provided over the entire cross section of the flow path, but the present invention is not limited to this example, and at least a part of the cross section of the flow path is provided. It suffices if it is provided in.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
<製造例1:ボロンドープダイヤモンド薄膜(BDD薄膜)の製造>
 粒子径が3μm~6μmのダイヤモンド粒子を用いてシリコンウェハの表面に傷付け処理を施した後、メタノール、アセトン、及び超純水を用いて各30分間、超音波洗浄を行った。次いで、マイクロ波プラズマCVD法により、シリコンウェハ上にBDD薄膜を成膜した。成膜条件は、マイクロ波出力:5500W、ステージ温度:698℃、チャンバー内圧:90Torr、プレナム圧力:70Torr、成膜時間:4時間、ホウ素濃度:10000ppmとした。
<Manufacturing Example 1: Manufacture of Boron Doped Diamond Thin Film (BDD Thin Film)>
The surface of the silicon wafer was scratched with diamond particles having a particle size of 3 μm to 6 μm, and then ultrasonically cleaned with methanol, acetone, and ultrapure water for 30 minutes each. Next, a BDD thin film was formed on the silicon wafer by the microwave plasma CVD method. The film forming conditions were microwave output: 5500 W, stage temperature: 698 ° C., chamber internal pressure: 90 Torr, plenum pressure: 70 Torr, film forming time: 4 hours, and boron concentration: 10000 ppm.
<製造例2:ボロンドープダイヤモンド粒子(BDDP)の製造>
 粒子状基材として、粒子径が40μm~60μmのダイヤモンド粒子を用いた。まず、ダイヤモンド粒子に含まれる不純物(Co、Fe、各種spカーボン等)を除去するため、既報に従って洗浄を行った。具体的には、ダイヤモンド粒子を、塩酸と硝酸とを体積比3:1で混合した王水中に浸漬して60℃で30分間加熱した後、30%過酸化水素水中に浸漬して60℃で30分間加熱した。その後、超純水、2-プロパノール、及びアセトンを用いて順に洗浄し、加熱炉で乾燥させた。次いで、洗浄後のダイヤモンド粒子を約0.8g秤量し、マイクロ波プラズマCVD法により、ダイヤモンド粒子の表面にBDD層を形成してBDDPを得た。成膜条件は、マイクロ波出力:1300W、ステージ温度:800℃、チャンバー内圧:50Torr、成膜時間:8時間、ホウ素濃度:20000ppmとした。
<Manufacturing Example 2: Production of Boron Doped Diamond Particles (BDDP)>
As the particulate substrate, diamond particles having a particle size of 40 μm to 60 μm were used. First, in order to remove impurities (Co, Fe, various sp 2 carbons, etc.) contained in the diamond particles, cleaning was performed according to the previously reported. Specifically, diamond particles are immersed in royal water in which hydrochloric acid and nitric acid are mixed at a volume ratio of 3: 1 and heated at 60 ° C. for 30 minutes, and then immersed in 30% hydrogen peroxide solution at 60 ° C. It was heated for 30 minutes. Then, it was washed sequentially with ultrapure water, 2-propanol, and acetone, and dried in a heating furnace. Next, about 0.8 g of the washed diamond particles were weighed, and a BDD layer was formed on the surface of the diamond particles by a microwave plasma CVD method to obtain BDDP. The film forming conditions were microwave output: 1300 W, stage temperature: 800 ° C., chamber internal pressure: 50 Torr, film forming time: 8 hours, and boron concentration: 20000 ppm.
<製造例3:固定床電解処理装置の製造>
 製造例1で得たBDD薄膜(2cm×2cm)上に、遠心チューブ(内面積:1cm)を長さ10cmに切断した筒状部品を固定した。その際、液漏れが起きないように、筒状部品とBDD薄膜との間にOリング(内面積:1cm)を介在させた。次いで、筒状部品の内部に、製造例2で得たBDDP(粒子径:40μm~60μm)を所定量だけ充填し、固定床電極(以下、「BDDP充填電極」という。)を構成した。そして、白金線を対電極として、図1に示す構成のバッチ式の固定床電解処理装置を製造した。以下に示す試験例1、2では、このバッチ式の固定床電解処理装置を用いて実験を行った。
<Manufacturing Example 3: Manufacture of Fixed Floor Electrolysis Treatment Equipment>
On the BDD thin film (2 cm × 2 cm) obtained in Production Example 1, a tubular part obtained by cutting a centrifugal tube (inner area: 1 cm 2 ) to a length of 10 cm was fixed. At that time, an O-ring (inner area: 1 cm 2 ) was interposed between the tubular part and the BDD thin film so that liquid leakage did not occur. Next, the inside of the tubular part was filled with the BDDP (particle size: 40 μm to 60 μm) obtained in Production Example 2 in a predetermined amount to form a fixed floor electrode (hereinafter, referred to as “BDDP-filled electrode”). Then, a batch-type fixed-bed electrolysis treatment apparatus having the configuration shown in FIG. 1 was manufactured using a platinum wire as a counter electrode. In Test Examples 1 and 2 shown below, an experiment was conducted using this batch type fixed bed electrolysis treatment device.
<試験例1:BDDP充填電極の電極表面積の評価>
 BDDP充填電極の電極表面積がBDD薄膜電極よりも拡大するか、及びBDDPの充填量を増やすことによりBDDP充填電極の電極表面積が拡大するかを確認するため、サイクリックボルタンメトリー(CV)によりバックグラウンド電流の大きさを比較した。CV測定は、BDDP充填電極又はBDD薄膜電極を作用電極、白金線を対電極、Ag/AgCl電極を参照電極とし、0.1M 硫酸ナトリウム水溶液中で行った。測定電位は-1.3V~+1.8V(vs. Ag/AgCl)とし、走査速度は100mV/secとした。
<Test Example 1: Evaluation of electrode surface area of BDDP-filled electrode>
Background current by cyclic voltammetry (CV) to confirm whether the electrode surface area of the BDDP-filled electrode is larger than that of the BDD thin-film electrode and whether the electrode surface area of the BDDP-filled electrode is increased by increasing the filling amount of BDDP. The size of was compared. The CV measurement was carried out in a 0.1 M aqueous sodium sulfate solution using a BDDP-filled electrode or a BDD thin film electrode as a working electrode, a platinum wire as a counter electrode, and an Ag / AgCl electrode as a reference electrode. The measurement potential was −1.3 V to + 1.8 V (vs. Ag / AgCl), and the scanning speed was 100 mV / sec.
 CV測定により得られたサイクリックボルタモグラムを図3に示す。図3に示すとおり、BDDP充填電極を用いた場合のバックグラウンド電流は、BDD薄膜電極を用いた場合のバックグラウンド電流よりも大きく、その値はBDDPの充填量が増えるに従って増大した。このことから、BDDP充填電極の電極表面積はBDD薄膜電極の電極表面積よりも大きく、また、BDDPの充填量を増やすことによりBDDP充填電極の電極表面積が拡大することが分かる。 The cyclic voltammogram obtained by CV measurement is shown in FIG. As shown in FIG. 3, the background current when the BDDP filling electrode was used was larger than the background current when the BDD thin film electrode was used, and the value increased as the filling amount of BDDP increased. From this, it can be seen that the electrode surface area of the BDDP-filled electrode is larger than the electrode surface area of the BDD thin film electrode, and the electrode surface area of the BDDP-filled electrode is increased by increasing the filling amount of BDDP.
<試験例2:バッチ式の固定床電解処理装置を用いたメチレンブルーの定電圧電解実験>
 メチレンブルーを含有する水溶液を被処理水とし、BDDP充填電極又はBDD薄膜電極による定電圧電解実験を行った。メチレンブルーを用いることで、紫外可視(UV-vis)吸収スペクトルによる定量が可能となる。
<Test Example 2: Constant-voltage electrolysis experiment of methylene blue using a batch-type fixed-bed electrolysis treatment device>
An aqueous solution containing methylene blue was used as water to be treated, and a constant voltage electrolysis experiment was carried out using a BDDP-filled electrode or a BDD thin film electrode. By using methylene blue, it is possible to quantify by the ultraviolet-visible (UV-vis) absorption spectrum.
 支持電解質として0.1M 硫酸ナトリウムを含有する50μM メチレンブルー水溶液を調製し、BDDP充填電極(BDDP充填量:0.2g、0.4g、0.6g、0.8g)又はBDD薄膜電極(BDDP充填量:0g)を備えた電解処理装置の電解槽に5mL加えた。その後、60分間の定電圧電解を行い、メチレンブルー濃度の減少量を定量した。定電圧は3V、4V、又は5Vとした。メチレンブルー濃度の減少量を定量する際には、メチレンブルー水溶液の上澄み液を採取し、UV-vis測定を行った。そして、得られた吸光度から、予め作成しておいた検量線によりメチレンブルー濃度に換算した。 A 50 μM methylene blue aqueous solution containing 0.1 M sodium sulfate as a supporting electrolyte was prepared, and a BDDP-filled electrode (BDDP filling amount: 0.2 g, 0.4 g, 0.6 g, 0.8 g) or a BDD thin film electrode (BDDP filling amount) was prepared. : 0 g) was added to the electrolytic cell of the electrolytic treatment apparatus provided with 5 mL. Then, constant voltage electrolysis was performed for 60 minutes to quantify the amount of decrease in methylene blue concentration. The constant voltage was 3V, 4V, or 5V. When quantifying the amount of decrease in the methylene blue concentration, the supernatant of the methylene blue aqueous solution was collected and UV-vis measurement was performed. Then, the obtained absorbance was converted into a methylene blue concentration by a calibration curve prepared in advance.
 60分間の定電圧電解を行った際のメチレンブルー濃度の減少量を図4に示す。図4に示すとおり、印加電圧が大きくなるほど、また、BDDP充填量が増加するほど、メチレンブルー濃度の減少量が増加した。 FIG. 4 shows the amount of decrease in the methylene blue concentration when constant voltage electrolysis was performed for 60 minutes. As shown in FIG. 4, as the applied voltage increased and the BDDP filling amount increased, the amount of decrease in the methylene blue concentration increased.
 また、定電圧電解を行った際のメチレンブルー濃度の時間変化を調べるため、5Vの定電圧で定電圧電解を行い、10分ごとに上記と同様にしてメチレンブルー濃度を定量した。なお、測定に用いた上澄み液は、廃液とせずに電解槽内に戻した。 In addition, in order to investigate the time change of the methylene blue concentration when constant voltage electrolysis was performed, constant voltage electrolysis was performed at a constant voltage of 5 V, and the methylene blue concentration was quantified every 10 minutes in the same manner as above. The supernatant liquid used for the measurement was returned to the electrolytic cell without being made into a waste liquid.
 5Vの定電圧電解を行った際のメチレンブルー濃度の時間変化を図5に示す。図5は、メチレンブルーの初期濃度を100%としたときの相対値を表したものである。図5に示すとおり、BDDP充填電極を用いた場合には、電解処理の初期にメチレンブルー濃度が大きく減少し、メチレンブルー濃度が低くなるに従って減少速度が低下した。 FIG. 5 shows the time change of the methylene blue concentration when constant voltage electrolysis of 5 V was performed. FIG. 5 shows a relative value when the initial concentration of methylene blue is 100%. As shown in FIG. 5, when the BDDP-filled electrode was used, the methylene blue concentration decreased significantly at the initial stage of the electrolytic treatment, and the decrease rate decreased as the methylene blue concentration decreased.
<試験例3:バッチ式の固定床電解処理装置によるOHラジカル生成の評価>
 試験例3では、図6に示す構成のバッチ式の固定床電解処理装置1Aを使用して実験を行った。内容積5.5mLの電解槽10Aの内部には、製造例2で得たBDDP(粒子径:40μm~60μm)を所定量(0g、0.2g、0.4g、0.6g、0.8g)だけ充填して固定床電極(BDDP充填電極)10Aの充填層11Aを構成した。固定床電極10Aの集電体12A及び対電極20Aとしては、白金線を使用した。
<Test Example 3: Evaluation of OH radical generation by batch type fixed bed electrolysis treatment device>
In Test Example 3, an experiment was conducted using a batch-type fixed-bed electrolytic treatment apparatus 1A having the configuration shown in FIG. Inside the electrolytic cell 10A having an internal volume of 5.5 mL, a predetermined amount (0 g, 0.2 g, 0.4 g, 0.6 g, 0.8 g) of BDDP (particle size: 40 μm to 60 μm) obtained in Production Example 2 is placed. ) To form a packed layer 11A of a fixed floor electrode (BDDP filled electrode) 10A. A platinum wire was used as the current collector 12A and the counter electrode 20A of the fixed floor electrode 10A.
 1.0mMのテレフタル酸二ナトリウム(NaTA)溶液を電解槽に5mL加え、5V、30分間の定電圧電解を行った後、波長425nmの蛍光強度を測定することにより、溶液中の2-ヒドロキシテレフタル酸(HTA)の濃度を測定した。電解処理により生じたOHラジカルによりNaTAがHTAへと変換されるため、HTAの濃度を測定することにより、OHラジカルの生成量を間接的に評価することができる。 Add 5 mL of 1.0 mM disodium terephthalate (NaTA) solution to the electrolytic cell, perform constant voltage electrolysis at 5 V for 30 minutes, and then measure the fluorescence intensity at a wavelength of 425 nm to obtain 2-hydroxyterephthalate in the solution. The concentration of acid (HTA) was measured. Since NaTA is converted to HTA by the OH radicals generated by the electrolytic treatment, the amount of OH radicals produced can be indirectly evaluated by measuring the concentration of HTA.
 定電圧電解後の溶液の蛍光スペクトルを図7Aに示し、HTA濃度を図7Bに示す。図7A及び図7Bに示すとおり、BDDP充填量が増加するほどHTA濃度が上昇しており、OH生成量が増加したことが分かる。 The fluorescence spectrum of the solution after constant voltage electrolysis is shown in FIG. 7A, and the HTA concentration is shown in FIG. 7B. As shown in FIGS. 7A and 7B, it can be seen that the HTA concentration increased as the BDDP filling amount increased, and the OH production amount increased.
<試験例4:フロー式の固定床電解処理装置を用いたメチレンブルーの定電圧電解実験>
 試験例4では、図8に示す構成のフロー式の固定床電解処理装置2Bを使用して実験を行った。内容積5.5mLの電解槽50Bの内部には、製造例2で得たBDDP(粒子径:40μm~60μm)を所定量(0.8g、1.6g、2.4g)だけ充填して固定床電極(BDDP充填電極)40Bの充填層41Bを構成した。固定床電極40Bの集電体42Bとしては白金線を使用し、対電極20Bとしては白金メッシュを使用した。なお、充填層41Bの上流側(図中下側)にはフィルタ43Bを配置したが、下流側(図中上側)にはフィルタを配置しなかった。
<Test Example 4: Constant-voltage electrolysis experiment of methylene blue using a flow-type fixed-bed electrolysis treatment device>
In Test Example 4, an experiment was conducted using a flow-type fixed-bed electrolytic treatment apparatus 2B having the configuration shown in FIG. The inside of the electrolytic cell 50B having an internal volume of 5.5 mL is filled with the BDDP (particle size: 40 μm to 60 μm) obtained in Production Example 2 by a predetermined amount (0.8 g, 1.6 g, 2.4 g) and fixed. The packed layer 41B of the floor electrode (BDDP filled electrode) 40B was constructed. A platinum wire was used as the current collector 42B of the fixed floor electrode 40B, and a platinum mesh was used as the counter electrode 20B. The filter 43B was arranged on the upstream side (lower side in the figure) of the packed bed 41B, but the filter was not arranged on the downstream side (upper side in the figure).
 支持電解質として0.1M 硫酸ナトリウムを含有する50μM メチレンブルー水溶液を調製し、このメチレンブルー水溶液30mLをプランジャーポンプにより循環させながら、5V、360分間の定電圧電解を行い、メチレンブルー濃度の減少量を定量した。 A 50 μM methylene blue aqueous solution containing 0.1 M sodium sulfate was prepared as a supporting electrolyte, and 30 mL of this methylene blue aqueous solution was circulated by a plunger pump and subjected to constant voltage electrolysis at 5 V for 360 minutes to quantify the decrease in methylene blue concentration. ..
 BDDP充填量を0.8g、1.6g、又は2.4gとし、流速を2.0mL/minとしたときのメチレンブルー濃度の時間変化を図9に示す。また、BDDP充填量を0.8g又は1.6gとし、流速を0.5mL/min又は2.0mL/minとしたときのメチレンブルー濃度の時間変化を図10に示す。図9及び図10は、メチレンブルーの初期濃度を100%としたときの相対値を表したものである。図9及び図10に示すとおり、BDDP充填量が増加するほどメチレンブルー濃度の減少量が増加した。また、流速を2.0mL/minとした場合よりも、流速は0.5mL/minとした場合の方がメチレンブルー濃度の減少量が大きかった。これは、BDDP充填電極の下流側にフィルタを配置しなかったため、流速を2.0mL/minとした場合には充填層が崩れたためと推測される。 FIG. 9 shows the time change of the methylene blue concentration when the BDDP filling amount was 0.8 g, 1.6 g, or 2.4 g and the flow rate was 2.0 mL / min. Further, FIG. 10 shows the time change of the methylene blue concentration when the BDDP filling amount is 0.8 g or 1.6 g and the flow rate is 0.5 mL / min or 2.0 mL / min. 9 and 10 show relative values when the initial concentration of methylene blue is 100%. As shown in FIGS. 9 and 10, the amount of decrease in the methylene blue concentration increased as the BDDP filling amount increased. In addition, the amount of decrease in the methylene blue concentration was larger when the flow velocity was 0.5 mL / min than when the flow velocity was 2.0 mL / min. It is presumed that this is because the filter was not arranged on the downstream side of the BDDP filling electrode, and the filling layer collapsed when the flow velocity was 2.0 mL / min.
 1,1A 固定床電解処理装置(バッチ式)、2,2B 固定床電解処理装置(フロー式)、10,10A 固定床電極、11,11A 充填層、12,12A 集電体、20,20A,20B 対電極、30,30A 電解槽、40,40B 固定床電極、41,41B 充填層、42,42B 集電体、43a,43b,43B フィルタ、50,50B 電解槽 1,1A fixed bed electrolyzer (batch type), 2,2B fixed bed electrolyzer (flow type), 10,10A fixed floor electrode, 11,11A packing layer, 12,12A current collector, 20,20A, 20B counter electrode, 30, 30A electrolytic cell, 40, 40B fixed floor electrode, 41, 41B packing layer, 42, 42B current collector, 43a, 43b, 43B filter, 50, 50B electrolytic cell

Claims (10)

  1.  被処理水を電気化学的に処理する固定床電解処理装置であって、
     導電性ダイヤモンド粒子の充填層を有する固定床電極と、
     対電極と、
     前記固定床電極及び前記対電極が配置されるとともに、前記被処理水が収容又は通液される電解槽と、
    を備える固定床電解処理装置。
    A fixed-bed electrolytic treatment device that electrochemically treats water to be treated.
    A fixed floor electrode with a packed layer of conductive diamond particles,
    With the counter electrode
    An electrolytic cell in which the fixed floor electrode and the counter electrode are arranged, and in which the water to be treated is housed or passed,
    A fixed-bed electrolysis treatment device provided with.
  2.  前記導電性ダイヤモンド粒子がボロンドープダイヤモンド粒子である請求項1に記載の固定床電解処理装置。 The fixed bed electrolysis treatment apparatus according to claim 1, wherein the conductive diamond particles are boron-doped diamond particles.
  3.  前記固定床電極が、前記導電性ダイヤモンド粒子の充填層に電気的に接続した集電体を有する請求項1又は2に記載の固定床電解処理装置。 The fixed bed electrolysis treatment apparatus according to claim 1 or 2, wherein the fixed floor electrode has a current collector electrically connected to the packed layer of the conductive diamond particles.
  4.  前記電解槽が、前記被処理水が通液される流路を有する請求項1~3のいずれか1項に記載の固定床電解処理装置。 The fixed-bed electrolysis treatment apparatus according to any one of claims 1 to 3, wherein the electrolytic cell has a flow path through which the water to be treated is passed.
  5.  前記固定床電極及び前記対電極の一方が前記流路の上流側又は下流側に配置され、他方が前記流路の下流側又は上流側に配置される請求項4に記載の固定床電解処理装置。 The fixed bed electrolysis treatment apparatus according to claim 4, wherein one of the fixed floor electrode and the counter electrode is arranged on the upstream side or the downstream side of the flow path, and the other is arranged on the downstream side or the upstream side of the flow path. ..
  6.  前記固定床電極が前記流路の上流側に配置され、前記対電極が前記流路の下流側に配置される請求項5に記載の固定床電解処理装置。 The fixed bed electrolysis treatment apparatus according to claim 5, wherein the fixed floor electrode is arranged on the upstream side of the flow path, and the counter electrode is arranged on the downstream side of the flow path.
  7.  前記充填層が前記流路の断面の少なくとも一部に設けられる請求項5又は6に記載の固定床電解処理装置。 The fixed bed electrolysis treatment apparatus according to claim 5 or 6, wherein the packed bed is provided in at least a part of a cross section of the flow path.
  8.  前記充填層が前記流路の断面全体に亘って設けられる請求項7に記載の固定床電解処理装置。 The fixed bed electrolysis treatment apparatus according to claim 7, wherein the packed bed is provided over the entire cross section of the flow path.
  9.  請求項1~8のいずれか1項に記載の固定床電解処理装置の電極間に電圧を印加することにより、被処理水を電気化学的に処理する電解処理方法。 An electrolytic treatment method for electrochemically treating water to be treated by applying a voltage between the electrodes of the fixed bed electrolytic treatment apparatus according to any one of claims 1 to 8.
  10.  前記被処理水を連続的に処理する請求項9に記載の電解処理方法。 The electrolytic treatment method according to claim 9, wherein the water to be treated is continuously treated.
PCT/JP2021/007832 2020-03-02 2021-03-02 Fixed-bed electrolysis treatment device and electrolysis treatment method WO2021177270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022504379A JP7280650B2 (en) 2020-03-02 2021-03-02 FIXED BED ELECTROLYSIS APPARATUS AND ELECTROLYSIS METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020034839 2020-03-02
JP2020-034839 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021177270A1 true WO2021177270A1 (en) 2021-09-10

Family

ID=77614322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007832 WO2021177270A1 (en) 2020-03-02 2021-03-02 Fixed-bed electrolysis treatment device and electrolysis treatment method

Country Status (2)

Country Link
JP (1) JP7280650B2 (en)
WO (1) WO2021177270A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000974A (en) * 1999-06-23 2001-01-09 Konica Corp Treatment of ballast water and ship
JP2004255226A (en) * 2003-02-24 2004-09-16 Kurita Water Ind Ltd Wastewater treatment method and its apparatus
JP2005169174A (en) * 2003-12-08 2005-06-30 Kurita Water Ind Ltd Water treatment method and apparatus
JP2005279608A (en) * 2004-03-31 2005-10-13 Kurita Water Ind Ltd Fixed bed-used electrolysis method and electrolysis apparatus
JP2008208429A (en) * 2007-02-27 2008-09-11 Sumitomo Electric Hardmetal Corp Granular diamond and diamond electrode using the same
JP2013076130A (en) * 2011-09-30 2013-04-25 Tokyo Univ Of Science Conductive diamond electrode and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446102B2 (en) 2008-03-06 2014-03-19 大日本印刷株式会社 Moist heat resistant film for display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000974A (en) * 1999-06-23 2001-01-09 Konica Corp Treatment of ballast water and ship
JP2004255226A (en) * 2003-02-24 2004-09-16 Kurita Water Ind Ltd Wastewater treatment method and its apparatus
JP2005169174A (en) * 2003-12-08 2005-06-30 Kurita Water Ind Ltd Water treatment method and apparatus
JP2005279608A (en) * 2004-03-31 2005-10-13 Kurita Water Ind Ltd Fixed bed-used electrolysis method and electrolysis apparatus
JP2008208429A (en) * 2007-02-27 2008-09-11 Sumitomo Electric Hardmetal Corp Granular diamond and diamond electrode using the same
JP2013076130A (en) * 2011-09-30 2013-04-25 Tokyo Univ Of Science Conductive diamond electrode and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2021177270A1 (en) 2021-09-10
JP7280650B2 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
Ngai et al. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide
US7438790B2 (en) Electrode for electrolysis and process for producing the same
Siuzdak et al. Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity
US8303797B2 (en) Cleaning system and cleaning method
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP2006097054A (en) Electroconductive diamond electrode and production method therefor
JP5271345B2 (en) Conductive diamond electrode, sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus using the same
Liu et al. A highly stable microporous boron-doped diamond electrode etched by oxygen plasma for enhanced electrochemical ozone generation
WO2021177270A1 (en) Fixed-bed electrolysis treatment device and electrolysis treatment method
Arbab-Zavar et al. Speciation and analysis of arsenic (III) and arsenic (V) by electrochemical hydride generation spectrophotometric method
KR101741401B1 (en) Coating solution for electrochemical insoluble electrode and preparation method thereof
Rosa et al. Photoelectrocatalytic degradation of methylene blue using ZnO nanorods fabricated on silicon substrates
Takenouchi Behavior of hydrogen nanobubbles in alkaline electrolyzed water and its rinse effect for sulfate ion remained on nickel-plated surface
Rahayu et al. The effects of laser pulse irradiation at glassy carbon electrode on the electrochemistry of dopamine and ascorbic acid
RU2632901C2 (en) Electrolytic cell equipped with microelectrodes
CN117282453A (en) Au-N co-doped TiO 2 Preparation method of nanotube and photoelectrocatalysis water purification system
Orudzhev et al. Photoelectrocatalytic oxidation of phenol on silver loaded TiO2 nanotube array at high oxygen pressure under luminescent light irradiation
Brosler et al. Customized boron-doped diamond electrodes for efficient water treatment via HF-CVD parameter optimization
Zhu et al. Electrocatalytic degradation of bisphenol a in aqueous solution using β-PbO 2/Ti as anode
KR20190007561A (en) Electrodes for electrochemical water treatment comprising mixed metal oxide coating layer, fabrication method thereof and water treatment method using the same
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
JP2017133935A (en) Method and apparatus for measuring residual chlorine
JP2017056426A (en) Method of producing slightly acidic hypochlorous acid water
JP2007155671A (en) Method and apparatus for analyzing aqueous solution
Nakata et al. Photoelectrocatalytic and Photocatalytic Reduction Using Diamond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764798

Country of ref document: EP

Kind code of ref document: A1