JP6528183B2 - Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus - Google Patents
Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus Download PDFInfo
- Publication number
- JP6528183B2 JP6528183B2 JP2017078286A JP2017078286A JP6528183B2 JP 6528183 B2 JP6528183 B2 JP 6528183B2 JP 2017078286 A JP2017078286 A JP 2017078286A JP 2017078286 A JP2017078286 A JP 2017078286A JP 6528183 B2 JP6528183 B2 JP 6528183B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- electrode
- hydrogen chloride
- hypochlorous acid
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明は、微酸性次亜塩素酸水(通称、微酸性電解水)として参照される殺菌水の製造技術に関し、より具体的には、微酸性次亜塩素酸水の生成方法、複極式電解槽および生成装置に関する。 The present invention relates to a technique for producing sterilizing water referred to as slightly acidic hypochlorous acid water (generally referred to as slightly acidic electrolyzed water), and more specifically, a method of producing slightly acidic hypochlorous acid water, a bipolar system The present invention relates to an electrolytic cell and a generator.
微酸性次亜塩素酸水は、殺菌対象が広く、殺菌速度が速いうえに、無毒、無刺激で、かつ安価であることから、厚生労働省より食品添加物に指定されている。 The slightly acidic hypochlorous acid water is designated as a food additive by the Ministry of Health, Labor and Welfare because it is widely used for sterilization, has a high sterilization rate, is nontoxic, non-irritant and inexpensive.
また、食品生産現場に限らず、水産、農業、医療介護などの幅広い分野での利用が拡がりつつある。 In addition to food production sites, applications in a wide range of fields such as fisheries, agriculture and medical care are expanding.
微酸性次亜塩素酸水は、塩化水素溶液または塩化水素溶液と塩化ナトリウム溶液の混合物を電気分解することで得られるものであると定義されている。そして、塩分を含まず、高い殺菌作用を有する微酸性次亜塩素酸水を得る方法として、塩化水素溶液を電気分解し、遊離型次亜塩素酸の溶液を生成する方法が実用化されている。 The slightly acidic hypochlorous acid water is defined as one obtained by electrolyzing a hydrogen chloride solution or a mixture of a hydrogen chloride solution and a sodium chloride solution. And as a method of obtaining slightly acidic hypochlorous acid water having high bactericidal activity without containing salt, a method of producing a solution of free hypochlorous acid by electrolyzing a hydrogen chloride solution is put to practical use .
微酸性次亜塩素酸水が強い殺菌力を安定的に保ち、かつ高い安全性を具備するように、有効塩素濃度の範囲は10〜80mg/L、pHの範囲は5.0〜6.5とされている(平成24年4月26日 厚生労働省告示 第345号)。 The effective chlorine concentration range is 10 to 80 mg / L, and the pH range is 5.0 to 6.5, so that the slightly acidic hypochlorous acid water keeps the strong bactericidal activity stable and has high safety. It is said (April 26, 2012 Ministry of Health, Labor and Welfare notification 345).
しかし、有効塩素濃度やpHの範囲を上記の範囲に限ることは、生成過程の電解条件や電解槽の要素等による成分などの変動を考慮すると、生成過程の注意深い制御が重要となる。 However, limiting the range of the effective chlorine concentration and pH to the above range makes it important to carefully control the generation process, considering the fluctuation of components due to the electrolytic conditions of the generation process and the elements of the electrolytic cell.
生成物に重要な影響を与える電気分解の因子としては、原料である塩化水素溶液の濃度、その供給速度、電解槽の構造、電解電圧および電流、原水の物性などが挙げられる。 The factors of electrolysis that have an important influence on the product include the concentration of the hydrogen chloride solution as the raw material, the supply rate thereof, the structure of the electrolytic cell, the electrolysis voltage and current, and the physical properties of the raw water.
さらに、これらの因子が相互に関係し合うことで、生成される微酸性次亜塩素酸水の品質が左右される。そのため、品質の安定した微酸性次亜塩素酸水を生成するには、原料である塩化水素溶液の濃度、その供給速度、電解電圧、電解電流、希釈水流量、電解槽の構造、原水の物性、およびそれらの相互作用を吟味し、それらの制御を含めた生成過程を構築することが必要である。 Furthermore, the mutual relationship between these factors affects the quality of the slightly acidic hypochlorous acid water produced. Therefore, in order to produce slightly acidic hypochlorous acid water of stable quality, the concentration of the hydrogen chloride solution that is the raw material, its supply rate, electrolysis voltage, electrolysis current, dilution water flow rate, structure of the electrolysis tank, physical properties of raw water It is necessary to examine their interactions and to construct the generation process including their control.
電気分解の制御について特開2011−104519(特許文献1)では、一定電圧で電解し、生成した電解液を希釈水で希釈することにより、殺菌水を生成する方法であって、電解電流値を、測定された稀釈水の流量または殺菌水の成分濃度に依存するように制御する技術が開示されている。しかしながら、特許文献1では、原料である塩化水素溶液の濃度、その供給速度、電解槽の構造、電解電圧および電流、原水の物性などが微酸性次亜塩素酸水の生成に対して与える影響については開示されていない。 About control of electrolysis In JP, 2011-104519 (patent documents 1), it is a method of producing sterilization water by making it electrolyze by fixed voltage and diluting generated electrolyte solution with dilution water, and an electrolysis current value There is disclosed a technique of controlling to depend on the measured flow rate of dilution water or the concentration of components of sterilizing water. However, in Patent Document 1, the concentration of the hydrogen chloride solution as a raw material, its supply rate, the structure of the electrolytic cell, the electrolysis voltage and current, the physical properties of the raw water, etc. affect the formation of slightly acidic hypochlorous acid water Is not disclosed.
本発明は、上述した従来技術の問題点に鑑みてなされたものであり、本発明は、品質の安定した微酸性次亜塩素酸水を効率的に生成するための生成方法、複極式電解槽および生成装置を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and the present invention provides a method for efficiently generating stable acid semi-acidic hypochlorous acid water, bipolar electrolysis It is intended to provide a tank and a generator.
本発明者は、原料である塩化水素溶液の濃度、その供給速度、電解槽の構造、電解電圧および電流、原水の物性などの影響因子が生成物の品質に与える影響を詳細に調査した。そして、当該検討結果に基づいて複合的な作用因子を制御することにより、品質の安定した微酸性次亜塩素酸水を安定的に生成できることを見出し、本発明を完成させるに至ったものである。 The inventor investigated in detail the influence of the influence factors such as the concentration of the hydrogen chloride solution which is the raw material, the supply rate thereof, the structure of the electrolytic cell, the electrolysis voltage and current, and the physical properties of the raw water on the product quality. Then, it has been found that by controlling a complex acting factor based on the examination result, it is possible to stably generate a slightly acidic hypochlorous acid water having stable quality, and the present invention has been completed. .
すなわち、本発明によれば、塩化水素溶液を電極に電力を供給することにより電気分解して有効塩素濃度が10〜80mg/L、pHが5.0〜6.5である微酸性次亜塩素酸水を生成する方法であって、
前記塩化水素水溶液が供給される供給開口と、電解液を排出するための排出開口と、前記排出開口を取り囲むようにして形成された第2開口とを備え、前記供給開口、前記排出開口、前記第2開口の順で面積が増加する複極式電解槽に電力を供給する工程と、
前記第2開口から排出される前記電解液を水で希釈する工程と、
を含む、方法を提供することができる。
That is, according to the present invention, a slightly acidic hypochlorous acid having an effective chlorine concentration of 10 to 80 mg / L and a pH of 5.0 to 6.5 is electrolyzed by supplying a hydrogen chloride solution with power to an electrode. A method of producing acid water,
A supply opening through which the aqueous solution of hydrogen chloride is supplied; a discharge opening for discharging an electrolyte; and a second opening formed to surround the discharge opening, the supply opening, the discharge opening, Supplying power to the bipolar electrolyzer in which the area increases in the order of the second opening;
Diluting the electrolytic solution discharged from the second opening with water;
Can be provided.
本発明によれば、発生効率、生成物の安全性、電力効率、電極寿命を改善した、微酸性次亜塩素酸水を生成する生成方法、複極式電解槽および生成装置が提供できる。 According to the present invention, it is possible to provide a production method, a bipolar electrolytic cell and a production apparatus for producing slightly acidic hypochlorous acid water having improved generation efficiency, product safety, power efficiency and electrode life.
以下、本発明を実施形態によって説明するが、本発明は後述する実施形態に限定されるものではない。図1は、微酸性次亜塩素酸水の電解装置(以下、単に電解装置として参照する)の実施形態を示す図である。 Hereinafter, the present invention will be described by way of embodiments, but the present invention is not limited to the embodiments described later. FIG. 1 is a view showing an embodiment of a slightly acidic hypochlorous acid water electrolytic device (hereinafter simply referred to as an electrolytic device).
図1に示す電解装置30は、電極7を含んで構成される電解槽と、電解装置筐体16とを含んで構成されており、電解装置筐体16は、電解液を希釈すると共に電解槽を冷却するための水(以下、希釈水として参照する)が満たされている。電解槽によって生成された高濃度の次亜塩素酸を含有する電解液は、電解槽の開口11から排出される。希釈水供給口19から供給される希釈水14は、電解槽を冷却しながら電解液を希釈し、本実施形態における微酸性次亜塩素酸水12を排出口17から排出する。 The electrolytic device 30 shown in FIG. 1 is configured to include an electrolytic cell configured to include the electrode 7 and an electrolytic device case 16, and the electrolytic device case 16 dilutes the electrolytic solution and the electrolytic cell. Water for cooling (hereinafter referred to as dilution water) is filled. The electrolytic solution containing a high concentration of hypochlorous acid generated by the electrolytic cell is discharged from the opening 11 of the electrolytic cell. The dilution water 14 supplied from the dilution water supply port 19 dilutes the electrolytic solution while cooling the electrolytic cell, and discharges the slightly acidic hypochlorous acid water 12 in the present embodiment from the discharge port 17.
電解槽は、絶縁性のフレーム15、上蓋9、下蓋6および図示した実施形態では、5つの電極7を備えている。フレーム15は、上蓋9および下蓋6を水密に保持し、電極7の側端を保持しており、電解液を希釈水14から隔離している。上蓋9および下蓋6は、電極7の上端および下端を保持し、所定の電位差の下での電気分解を可能としている。最外部にある2枚の電極7には、電源(不図示)から給電端子18を介して電解電流が供給されていて、複極式の電解槽を形成する。なお、電極7は、平行とされ、均一な電界を形成することができる限り平板に限定されるわけではなく、平行曲面を形成する形状とされていても良い。 The electrolytic cell is provided with an insulating frame 15, an upper lid 9, a lower lid 6 and five electrodes 7 in the illustrated embodiment. The frame 15 holds the upper cover 9 and the lower cover 6 in a watertight manner, holds the side end of the electrode 7 and isolates the electrolyte from the dilution water 14. The upper lid 9 and the lower lid 6 hold the upper end and the lower end of the electrode 7 to enable electrolysis under a predetermined potential difference. An electrolytic current is supplied from the power supply (not shown) to the outermost two electrodes 7 through the feeding terminal 18 to form a bipolar electrolytic cell. The electrodes 7 are not limited to flat plates as long as they can be parallel and form a uniform electric field, and may have a shape forming parallel curved surfaces.
下蓋6の単位電解槽を形成する領域には、原料を供給するための供給開口5がそれぞれ形成されている。また、上蓋9には電解液を排出するための排出開口10が、単位電解槽ごとに形成されており、高濃度の次亜塩素酸を含有する電解液を、開口11から電解装置筐体16の希釈水14が充満した領域に排出させている。電解液は、希釈水14によって希釈されて、所定の次亜塩素酸濃度およびpHとされて、排出口17から微酸性次亜塩素酸水12として排出される。 Supply openings 5 for supplying raw materials are respectively formed in the area of the lower lid 6 where the unit electrolytic cell is formed. In addition, a discharge opening 10 for discharging the electrolytic solution is formed in the upper lid 9 for each unit electrolytic cell, and an electrolytic solution containing high concentration of hypochlorous acid is made from the opening 11 to the electrolytic device case 16 The water is discharged to the area filled with the dilution water 14. The electrolytic solution is diluted with dilution water 14 to a predetermined hypochlorous acid concentration and pH, and discharged from the outlet 17 as slightly acidic hypochlorous acid water 12.
供給開口5および排出開口10の径は特に制限されるものではないが、例えば特許第4712915号明細書に記載されるように、供給開口5は、単位電解槽あたり1つでも複数でもかまわないが、総開口面積で例えば、電極の有効片面面積の0.018〜0.45%となるように数およびサイズを設定することができる。また、排出開口10についても単位電解槽あたり1つでも複数でもかまわないが、総開口面積で例えば、電極の有効片面面積の0.036〜0.9%の数およびサイズとすることができる。 Although the diameters of the supply opening 5 and the discharge opening 10 are not particularly limited, as described in, for example, Japanese Patent No. 4712915, the number of the supply openings 5 may be one or more per unit electrolytic cell. The number and size can be set such that the total opening area is, for example, 0.018 to 0.45% of the effective single-sided area of the electrode. The number of discharge openings 10 may be one or more per unit electrolytic cell, but the total opening area can be, for example, the number and size of 0.036 to 0.9% of the effective single-sided area of the electrode.
フレーム15の下部には、原料供給口4が形成されており、原料タンク(不図示)に蓄積された原料を供給チューブ2およびポンプ(不図示)を使用して原料を電解槽に供給する。本実施形態では、原料は、塩化水素溶液を使用する。 The raw material supply port 4 is formed in the lower part of the frame 15, and the raw material accumulated in the raw material tank (not shown) is supplied to the electrolytic cell using the supply tube 2 and a pump (not shown). In the present embodiment, the raw material uses a hydrogen chloride solution.
また、供給開口5は、フレーム15の下部に形成された共通流路を通して、原料の供給を受け、単位電解槽への原料供給量が均等になるようにされている。原料は、供給開口5からそれぞれの単位電解槽に供給され、電気分解をうけながら上昇して行き、電解液として排出開口10から排出される。 Further, the supply opening 5 receives the supply of the raw material through the common flow path formed in the lower part of the frame 15 so that the supply amount of the raw material to the unit electrolytic cell becomes uniform. The raw materials are supplied from the supply openings 5 to the respective unit electrolytic cells, rise while undergoing electrolysis, and are discharged from the discharge openings 10 as an electrolytic solution.
複数の排出開口10は、その上部に形成された共通排出路へと電解液を排出する。この共通排出路は、各単位電解槽の出口圧を均等化させることを可能とし、単位電解槽ごとの液流量を均一化させるバッファ通路を提供する。電解液は、この共通排出路を通してフレーム15に形成された排出開口10よりも大面積で形成された開口11から電解装置筐体16の希釈水14を流通させる部分に送られ、希釈された後、排出口17から微酸性次亜塩素酸水12として排出される。複極式電解槽においては、単位電解槽間で液流量に差が生じると、特に流速の遅い単位電解槽内の液体中の電気伝導量が低下し、それが全体の電解槽の電気伝導度を低下させる。それに対し、本実施形態の電解槽は、各単位電解槽の流速が均一化されることによって、生成される微酸性次亜塩素酸水の品質に与える変動を抑制し、安定した品質の微酸性次亜塩素酸水を供給する。 The plurality of discharge openings 10 discharge the electrolyte to a common discharge path formed at the top thereof. The common discharge path makes it possible to equalize the outlet pressure of each unit electrolytic cell, and provides a buffer passage which makes the liquid flow rate per unit electrolytic cell uniform. The electrolytic solution is sent to the portion of the electrolytic device case 16 through which the dilution water 14 flows, and is diluted through the common discharge passage through the opening 11 formed in a larger area than the discharge opening 10 formed in the frame 15. The water is discharged from the discharge port 17 as slightly acidic hypochlorous acid water 12. In the bipolar electrolyzer, when a difference in liquid flow rate occurs between unit electrolyzers, the amount of electrical conductivity in the liquid in the unit electrolyzer, which has a particularly low flow rate, decreases, and the electrical conductivity of the entire electrolyzer is reduced. Reduce On the other hand, the electrolytic cell of the present embodiment suppresses the fluctuation given to the quality of the slightly acidic hypochlorous acid water to be produced by uniforming the flow rate of each unit electrolytic cell, and the stable slight acid of stable quality Supply hypochlorous acid water.
図2は、電極7の複極式電極の断面を示す図である。電極7は、電極基材7aと、陽極面7bと、陰極面7cとを含んでいる。電極基材7aは、チタン、またはチタンを含む合金を含む材料から構成することができる。陽極面7bは、電極基材7aを被覆する被膜として形成され、酸化イリジウムを含む材料で形成することができる。陰極面7cは、電極基材7aそのもの、または白金族の金属を含む物質で電極基材7aを被覆することにより形成される。 FIG. 2 is a view showing a cross section of the bipolar electrode of the electrode 7. The electrode 7 includes an electrode base 7a, an anode surface 7b, and a cathode surface 7c. The electrode substrate 7a can be made of a material containing titanium or an alloy containing titanium. The anode surface 7b is formed as a film that covers the electrode substrate 7a, and can be formed of a material containing iridium oxide. The cathode surface 7c is formed by covering the electrode substrate 7a with the electrode substrate 7a itself or a substance containing a platinum group metal.
電極7は、上記構成の複極式電極を採用することによって、平板電極の構造を単純化しながら、陽極および陰極で適切な電気分解特性を提供することが可能となり、電解効率を改善し、微酸性次亜塩素酸水の生成効率を向上させることができる。さらに、電極7を薄型化できることから、電解槽の容積も小サイズ化することができる。 By employing the bipolar electrode of the above configuration, the electrode 7 can provide appropriate electrolytic characteristics with the anode and the cathode while simplifying the structure of the flat plate electrode, and the electrolytic efficiency is improved. The generation efficiency of the acidic hypochlorous acid water can be improved. Furthermore, since the electrode 7 can be thinned, the volume of the electrolytic cell can also be reduced.
図3は、図1の電解装置30を使用して微酸性次亜塩素酸水12を生成する、生成装置を示す模式図である。図3中、電解装置筐体16内部の構造は、図1および図2で説明した通りなので、詳細な記載を省略して示している。原料である塩化水素溶液は原料タンク1に蓄積されており、供給チューブ2およびポンプ3を使用して原料を電解装置筐体16内部の電解槽に供給する。電源13は、給電端子18に接続され、電解電流を電解槽に供給する。電解電流の値は、電流計20によって測定される。 FIG. 3 is a schematic view showing a production apparatus for producing slightly acidic hypochlorous acid water 12 using the electrolytic device 30 of FIG. In FIG. 3, the internal structure of the electrolytic device case 16 is as described with reference to FIGS. 1 and 2, and thus the detailed description is omitted. The hydrogen chloride solution, which is a raw material, is accumulated in the raw material tank 1, and the raw material is supplied to the electrolytic cell inside the electrolytic device housing 16 using the supply tube 2 and the pump 3. The power supply 13 is connected to the feed terminal 18 and supplies an electrolytic current to the electrolytic cell. The value of the electrolytic current is measured by an ammeter 20.
電流計20で測定された電流値は、制御装置21に与えられる。制御装置21は、電流値の変動に応じて、連続的に電気分解を行う場合のポンプ3の動作を制御することができる。例えば、制御装置21にあらかじめ電流値の範囲を設定しておき、測定した電流値が設定値未満の場合には、ポンプ3を動作させて原料の供給を開始させる。また、測定した電流値が設定値を超えた場合には、ポンプ3を停止し、原料の供給を停止する。これによって、連続的に電気分解を行う場合であっても、電気分解の速度を一定に保つことができる。 The current value measured by the ammeter 20 is given to the controller 21. The control device 21 can control the operation of the pump 3 in the case of continuously performing electrolysis in accordance with the fluctuation of the current value. For example, the range of the current value is set in advance in the control device 21, and when the measured current value is less than the set value, the pump 3 is operated to start the supply of the raw material. When the measured current value exceeds the set value, the pump 3 is stopped to stop the supply of the raw material. This makes it possible to keep the rate of electrolysis constant even when performing electrolysis continuously.
以下に、図3の生成装置にて、効率的に微酸性次亜塩素酸水を生成するための、単位電解槽当たりの電圧、隣接する電極表面間の距離(以下、電極間隔として参照する)、電極の単位面積当たりの電流値(以下、電流密度として参照する)、単位時間に単位電解槽の単位容積当たりに供給される純塩化水素ミリモル数(以下、塩化水素供給量として参照する)、および塩化水素1ミリモル当たりの電気量(以下、塩化水素単位供給速度当たりの電流値として参照する)について述べる。 In the following, the voltage per unit electrolytic cell, the distance between the adjacent electrode surfaces (hereinafter referred to as electrode spacing) for efficiently generating slightly acidic hypochlorous acid water in the generating apparatus of FIG. 3 Current value per unit area of electrode (hereinafter referred to as current density), millimole number of pure hydrogen chloride supplied per unit volume of unit electrolytic cell per unit time (hereinafter referred to as hydrogen chloride supply amount), And electric quantity per millimole of hydrogen chloride (hereinafter referred to as current value per unit rate of hydrogen chloride supply).
単位電解槽当たりに印加する電圧は、好ましくは0.5V以上、6.0V以下、より好ましくは、1.5V以上、4.0V以下とすることができる。電圧が0.5V未満では、塩素の発生効率が低くなり、電圧が6.0Vを超えると、塩素の発生量は増加するが、副生成物が発生し、微酸性次亜塩素酸水としての品質が悪化する。そして、単位電解槽当たりに印加する電圧を1.5V以上、4.0V以下とすることで、制御の際の電圧自動設定誤差が生じた場合にも、安定して、効率的、かつ高品質な微酸性次亜塩素酸水を生成することができる。 The voltage applied per unit electrolytic cell can be preferably 0.5 V or more and 6.0 V or less, more preferably 1.5 V or more and 4.0 V or less. If the voltage is less than 0.5 V, the generation efficiency of chlorine decreases, and if the voltage exceeds 6.0 V, the generation amount of chlorine increases, but a by-product is generated, and as a slightly acidic hypochlorous acid water The quality gets worse. And, by setting the voltage applied per unit electrolytic cell to 1.5 V or more and 4.0 V or less, stable, efficient and high quality can be achieved even when an automatic voltage setting error occurs in control. Slightly acidic hypochlorous acid water can be produced.
電極間隔は、好ましくは0.5mm以上、10mm以下とすることができ、より好ましくは、1mm以上、8mm以下である。電極間隔が0.5mm未満では、電気分解の際に発生した気泡が分離しにくく、電流が安定しない。また、電極間隔が10mmを超えた場合には、電力の損失が生じることや、電解槽内の電解液の更新が悪くなることによって、電力効率が悪化する。したがって、電極間隔を、1mm以上、8mm以下とすることで、生成装置を製作する際の寸法精度のバラツキによる影響を防止しながら、安定的かつ効率的に微酸性次亜塩素酸水を生成することができる。 The electrode spacing can be preferably 0.5 mm or more and 10 mm or less, and more preferably 1 mm or more and 8 mm or less. If the electrode distance is less than 0.5 mm, bubbles generated during electrolysis are difficult to separate, and the current is not stable. In addition, when the electrode distance exceeds 10 mm, the power efficiency is deteriorated due to the loss of electric power and the deterioration of the renewal of the electrolytic solution in the electrolytic cell. Therefore, by setting the electrode distance to 1 mm or more and 8 mm or less, the slightly acidic hypochlorous acid water is stably and efficiently generated while preventing the influence of the variation in dimensional accuracy at the time of manufacturing the generating device. be able to.
また、単位電解槽当たりに印加する電圧および電極間隔から、電界強度を定義することができる。電界強度は、電圧を電極間隔で除した値であり、上記の単位電解槽当たりに印加する電圧および電極間隔の上限値と下限値から、0.1875V/mm以上、4.0V/mmとすることで、効率的に微酸性次亜塩素酸水を生成することができる。 Also, the electric field strength can be defined from the voltage applied per unit electrolytic cell and the electrode interval. The electric field strength is a value obtained by dividing the voltage by the electrode interval, and from the upper limit value and the lower limit value of the voltage applied per unit electrolytic cell and the electrode interval as described above, 0.1875 V / mm or more, 4.0 V / mm Thus, it is possible to efficiently produce slightly acidic hypochlorous acid water.
電流密度は、好ましくは0.05mA/mm2以上、1.0mA/mm2以下、より好ましくは0.2mA/mm2以上、0.6mA/mm2以下とすることができる。電流密度が0.05mA/mm2未満では、電極面積が大きくなることで、単位面積当たりの電解量の減少や、生成装置の大型化につがなる。また、電流密度が1.0mA/mm2を超えると、電極の消耗が早くなり、結果、生成装置の寿命が短くなる。したがって、電流密度を0.2mA/mm2以上、0.6mA/mm2以下とすることで、生成装置サイズを制限でき、長期的に安定運転可能であり、経済的に有利な生成装置を提供することができる。 The current density is preferably 0.05 mA / mm 2 or more, 1.0 mA / mm 2 or less, more preferably 0.2 mA / mm 2 or more, it may be 0.6 mA / mm 2 or less. When the current density is less than 0.05 mA / mm 2 , the electrode area is increased, which leads to a decrease in the amount of electrolysis per unit area and an increase in the size of the generator. In addition, when the current density exceeds 1.0 mA / mm 2 , the consumption of the electrode becomes fast, and as a result, the life of the generator is shortened. Accordingly, current density 0.2 mA / mm 2 or more, by a 0.6 mA / mm 2 or less, can limit the generator size is long-term stable operable, providing an economically advantageous generator can do.
塩化水素供給量は、好ましくは0.0006mMol/hmm3以上、0.013mMol/hmm3以下、より好ましくは0.0013mMol/hmm3以上、0.0063mMol/hmm3以下とすることができる。塩化水素供給量が0.0006mMol/hmm3未満では、電力の損失による電力効率の低下につながり、塩化水素供給量が0.013mMol/hmm3を超えると、塩素の変換率の低下につながる。したがって、塩化水素供給量を0.0006mMol/hmm3以上、0.013mMol/hmm3以下とすることで、適切な塩素の生成効率を維持することができる。なお、塩化水素供給量Mは、塩化水素の物質量n、電解時間t、電極面積S、電極間隔Dとして、下記式(1)から求められる値である。 Amount of hydrogen chloride supplied, preferably 0.0006mMol / hmm 3 or more, 0.013 mmol / hmm 3 or less, more preferably 0.0013 mmol / hmm 3 or more, it is possible to 0.0063mMol / hmm 3 below. Is less than 3 weight hydrogen chloride supply 0.0006mMol / hmm, leads to a decrease in power efficiency due to power loss, the amount of hydrogen chloride supplied exceeds 0.013 mmol / hmm 3, leads to a decrease in conversion of chlorine. Therefore, by setting the hydrogen chloride supply amount to 0.0006 mMol / hmm 3 or more and 0.013 mMol / hmm 3 or less, an appropriate chlorine generation efficiency can be maintained. The hydrogen chloride supply amount M is a value obtained from the following formula (1) as the hydrogen chloride substance mass n, the electrolysis time t, the electrode area S, and the electrode distance D.
これまでに示した諸条件が相互に影響することを考慮して、電流Iと原料の供給量(電極面積S、電極間隔D、塩化水素供給量Mの積)の比、具体的には、下記式(2)で与えられる、塩化水素単位供給速度当たりの電流値IHClは、1.90mAh/mMol以上、460mAh/mMol以下、より好ましくは9.20mAh/mMol以上、230mAh/mMol以下とすることができる。塩化水素単位供給速度当たりの電流値が上記の範囲内であれば、一定の電解状態を保ち、生成物の特性を一定に制御することができる。 The ratio of the current I to the supply amount of the raw material (the product of the electrode area S, the electrode spacing D, and the hydrogen chloride supply amount M), taking into consideration that the various conditions described so far affect each other, specifically, The current value I HCl per hydrogen chloride unit feed rate given by the following formula (2) is 1.90 mAh / mMol or more and 460 mAh / mMol or less, more preferably 9.20 mAh / mMol or more and 230 mAh / mMol or less be able to. If the current value per unit rate of hydrogen chloride supply is within the above range, it is possible to maintain a constant electrolytic state and to control the characteristics of the product to a constant.
これまで、本発明を実施形態をもって説明したが、以下、本発明をより具体的な試験例、および実施例によって説明する。
(試験例1)
Up to this point, the present invention has been described by way of embodiments, but the present invention will be described below by more specific test examples and examples.
(Test Example 1)
図1に記載した生成装置を使用し、塩化水素0.15%を含む溶液を、電極間隔3mmで配置した単位電解槽で電気分解した。使用した電極は、陽極が酸化イリジウムで被覆され、陰極が白金で被覆された、2500mm2(50mm×50mm)の面積を有するチタン板を使用した。種々の電圧において、回分式電解装置を使用し、任意の初期電流値から電気分解を開始し、電流値が初期値の95%に低下した時点で電気分解を終了した。塩素量の測定は、空中捕集した量と、電解液に残留した量とを合わせ、ヨウ素滴定によって求めて、単位時間当たりの発生量に換算した。対理論値発生量比とは、電気量とファラデー定数から算出する理論生成量に対する、実発生量の比を百分率で表したもので、下記式(3)により算出する。 Using the generator described in FIG. 1, a solution containing 0.15% hydrogen chloride was electrolyzed in a unit cell arranged at an electrode spacing of 3 mm. The electrode used was a titanium plate having an area of 2500 mm 2 (50 mm × 50 mm) in which the anode was coated with iridium oxide and the cathode was coated with platinum. At various voltages, using a batch electrolytic device, electrolysis was started from an arbitrary initial current value, and the electrolysis ended when the current value decreased to 95% of the initial value. The amount of chlorine was determined by combining the amount collected in the air and the amount remaining in the electrolyte, determined by iodine titration, and converted to the amount generated per unit time. The ratio of the theoretical generation amount to the theoretical value is a ratio of the actual generation amount to the theoretical generation amount calculated from the electric amount and the Faraday constant, and is calculated by the following equation (3).
ここで式(3)中のCは塩素発生量(mg)、Fはファラデー定数(96500C/Mol)、Iは、電流値(A)、tは、発生時間(秒)を表し、定数35.5は塩素の原子量である。電気分解を行った結果を下記表1に示す。 Here, C in the formula (3) represents the chlorine generation amount (mg), F represents the Faraday constant (96500 C / Mol), I represents the current value (A), t represents the generation time (seconds), and 35. 5 is the atomic weight of chlorine. The results of the electrolysis are shown in Table 1 below.
次に、高い電圧で電気分解を行うと副反応による副生成物の種類が増えることが知られていることから、電解電圧の値によって生成する副生成物を調べた。塩化水素溶液を、各電圧で5分間電気分解を行い、電解液中の副生成物を、電気伝導度検出器を具備したイオンクロマトグラフィーで測定した。発生した副生成物の結果を下記表2および図4に示す。 Next, since it is known that the type of by-products by side reaction increases when electrolysis is performed at a high voltage, the generated by-products were examined according to the value of the electrolysis voltage. The hydrogen chloride solution was electrolyzed at each voltage for 5 minutes, and byproducts in the electrolyte were measured by ion chromatography equipped with a conductivity detector. The results of the generated by-products are shown in Table 2 below and FIG.
表1、表2および図4より、電解電圧が1.5V以上において効率的に塩素が生成し、電解電圧が4.0V以下では副生成物の生成が無かったことから、良好な電気分解が行われていることが確認された。
(試験例2)
From Table 1 and Table 2 and FIG. 4, chlorine was efficiently generated at an electrolysis voltage of 1.5 V or more, and no by-product was produced at an electrolysis voltage of 4.0 V or less. It was confirmed that it was done.
(Test Example 2)
試験例1で使用した生成装置における電解槽の電極間隔を変化させたことを除き、その他の条件を統一にして0.15%塩化水素溶液を電気分解した。電解電圧は、2.5Aの電流を流すために必要な電圧とし、対理論値発生量比を測定した。結果を下記表3に示す。 A 0.15% hydrogen chloride solution was electrolyzed under the same other conditions except that the electrode spacing of the electrolytic cell in the generator used in Test Example 1 was changed. The electrolysis voltage was a voltage required to flow a current of 2.5 A, and the ratio to the theoretical value generation amount was measured. The results are shown in Table 3 below.
表3より、電極間隔を大きくすると、電気抵抗が大きくなり、電力の損失が生じていることがわかる。また、電解槽内の液の流れが複雑になり、槽内の電解液の更新が悪くなることで、電力効率が低下する。一方で電極間隔が0.5mmの場合では、発生した気泡の滞留による電流値の変動が見られた。そこで、電極間隔は1mm以上、8mm以下とすることで、良好な電気分解がなされることが確認できた。
(試験例3)
From Table 3, it can be seen that when the electrode distance is increased, the electrical resistance is increased, and power loss occurs. In addition, the flow of the liquid in the electrolytic cell becomes complicated, and the renewal of the electrolytic solution in the cell becomes worse, whereby the power efficiency is lowered. On the other hand, in the case where the electrode distance was 0.5 mm, the fluctuation of the current value due to the retention of the generated bubbles was observed. Therefore, it was confirmed that good electrolysis can be achieved by setting the electrode interval to 1 mm or more and 8 mm or less.
(Test Example 3)
塩化水素1%を含む溶液を、図1に記載した生成装置を使用して、種々の電流密度にて電気分解した。電極としては、酸化イリジウムを主成分とする被覆材を0.2μmの厚さで被覆したチタン面を陽極面とし、無垢のチタン面を陰極面とした。電極の面積は、2500mm2(50mm×50mm)とした。設定した電流密度を保つため、図3の生成方法において、電流値が設定値未満になると原料を供給し、設定値を超えると供給を停止するように制御した。また、電極の消耗を加速するために液温を45℃に保ち、最初に設定した電圧条件(2.5V)で電流値を維持できなくなり、原料の供給が連続的になるまでの時間を耐久時間とした。電気分解を行った結果を下記表4に示す。 A solution containing 1% hydrogen chloride was electrolyzed at various current densities using the generator described in FIG. As an electrode, a titanium surface coated with a coating material containing iridium oxide as a main component with a thickness of 0.2 μm was used as an anode surface, and a solid titanium surface was used as a cathode surface. The area of the electrode was 2500 mm 2 (50 mm × 50 mm). In order to maintain the set current density, in the generation method of FIG. 3, the raw material is supplied when the current value is less than the set value, and the supply is stopped when the set value is exceeded. In addition, the liquid temperature is maintained at 45 ° C to accelerate the consumption of the electrode, and the current value can not be maintained under the initially set voltage condition (2.5 V), and the time until the supply of the raw material becomes continuous lasts It was time. The results of the electrolysis are shown in Table 4 below.
表4の結果から、電流密度が0.6mA/mm2以下であれば、実用に耐える耐久時間が得られることが確認できた。一方、電流密度が0.2mA/mm2を下回ると、電極面積当たりの電解量が減少し、電流密度と耐久時間を掛け合わせた生涯効果が小さくなり、経済的に不利であることが確認できた。
(試験例4)
From the results of Table 4, it can be confirmed that the endurance time for practical use can be obtained if the current density is 0.6 mA / mm 2 or less. On the other hand, when the current density is less than 0.2 mA / mm 2 , the amount of electrolysis per electrode area decreases, and the lifetime effect combining the current density and the endurance time decreases, and it can be confirmed that it is economically disadvantageous. The
(Test Example 4)
図1の生成装置を使用し、0.15%塩化水素溶液を種々の供給量で連続的に供給しながら単位電解槽当たりの電圧を2.5Vで電気分解し、塩素変換率を測定した。電極としては、陽極面を酸化イリジウムで被覆したチタン面とし、陰極面を無垢のチタン面とした。電極面積を7500mm2(50mm×150mm)とし、電極間隔を3mmとした。塩素変換率とは、供給された全塩素イオンに対する、生成次亜塩素酸に含まれる塩素の比率である。次亜塩素酸に含まれる塩素の量は、ヨウ素滴定によって測定した。測定した結果を、下記表5に示す。 Using the production apparatus of FIG. 1, the voltage per unit electrolytic cell was electrolyzed at 2.5 V while continuously supplying 0.15% hydrogen chloride solution at various supply amounts, and the chlorine conversion rate was measured. As the electrode, the anode surface was a titanium surface coated with iridium oxide, and the cathode surface was a solid titanium surface. The electrode area was 7500 mm 2 (50 mm × 150 mm), and the electrode distance was 3 mm. The chlorine conversion is the ratio of chlorine contained in the generated hypochlorous acid to the total chlorine ions supplied. The amount of chlorine contained in hypochlorous acid was determined by iodine titration. The measured results are shown in Table 5 below.
表5の対理論値発生量比および塩素変換率から、塩化水素供給量は、0.0006mMol/hmm3以上、0.013mMol/hmm3以下の範囲が適切であることが確認できた。また、単位電解槽当たりの電圧を2Vおよび3Vとして測定をしたところ、適切な塩化水素供給量の範囲は同様であることが確認できた。
(試験例5)
Table 5 pairs theoretical generation quantity ratio and chlorine conversion rate, the amount of hydrogen chloride supplied, 0.0006mMol / hmm 3 or more, 0.013 mmol / hmm 3 following range is confirmed to be appropriate. Moreover, when the voltage per unit electrolytic cell was measured as 2V and 3V, it has confirmed that the range of the suitable hydrogen chloride supply was the same.
Test Example 5
図1の生成装置を使用し、0.25%塩化水素溶液を、単位電解槽当たりの印加電圧2.5Vで電気分解し、塩素変換率および対理論値発生量比を測定した。電極としては、陽極面を酸化イリジウムで被覆したチタン面とし、陰極面を無垢のチタン面とした。電極面積は2500mm2(50mm×50mm)とした。式(2)で与えられる、塩化水素単位供給速度当たりの電流値は、試験例2〜4で示した各要因の範囲である、電流密度0.2〜0.6mA/mm2、電極間隔1〜8mm、塩化水素供給量0.0013〜0.013mMol/hmm3の下限値と上限値から、最小境界が1.92mAh/mMol、最大境界が462mAh/mMolと求まる。両境界の条件で測定した塩素変換率および対理論値発生量比の結果を下記表6に示す。 A 0.25% hydrogen chloride solution was electrolyzed at an applied voltage of 2.5 V per unit electrolytic cell using the production apparatus of FIG. 1, and the chlorine conversion rate and the theoretical value generation ratio were measured. As the electrode, the anode surface was a titanium surface coated with iridium oxide, and the cathode surface was a solid titanium surface. The electrode area was 2500 mm 2 (50 mm × 50 mm). The current value per unit hydrogen chloride supply rate given by the equation (2) is a range of each factor shown in Test Examples 2 to 4, current density 0.2 to 0.6 mA / mm 2 , electrode spacing 1 ~8Mm, the lower limit and the upper limit of the hydrogen chloride supply amount 0.0013~0.013mMol / hmm 3, the minimum boundary 1.92mAh / mMol, maximum boundary obtained as 462mAh / mMol. The results of the chlorine conversion and the theoretical value generation ratio measured under the conditions of both boundaries are shown in Table 6 below.
表6の結果から、塩化水素単位供給速度当たりの電流値が1.92〜462mAh/mMolの範囲において、実用的な塩素変換率および対理論値発生量比で電気分解が行われることを確認した。 From the results in Table 6, it was confirmed that electrolysis was carried out with a practical chlorine conversion rate and a theoretical value generation ratio in the range of 1.92 to 462 mAh / mMol of the current value per hydrogen chloride unit feed rate. .
図1に示した生成装置と同様の構成の生成装置を、事業者用として、有効塩素濃度20ppmの微酸性次亜塩素酸水を1時間当たり15000リットル生成するスケールで製作した。電解槽を、単位電解槽が18個から成る、複極式電解槽とした。上述した量の微酸性次亜塩素酸水を生成するために必要な塩素の量は、1時間当たり約300g(8.45Mol)であることから、必要な電気量は815000クーロンとなる。発生率を50%とすると、必要な合計電流値は453Aとなり、単位電解槽当たりの電流値は25Aとなる。 A production apparatus having the same configuration as the production apparatus shown in FIG. 1 was manufactured for a company on a scale that produces 15000 liters per hour of slightly acidic hypochlorous acid water having an effective chlorine concentration of 20 ppm. The electrolytic cell was a bipolar electrolytic cell consisting of 18 unit electrolytic cells. The amount of chlorine required to produce the above-mentioned amount of slightly acidic hypochlorous acid water is about 300 g (8.45 Mol) per hour, so the amount of electricity required is 815,000 coulombs. Assuming that the generation rate is 50%, the required total current value is 453 A, and the current value per unit electrolytic cell is 25 A.
電極当たりの電流値は25Aであることから、電流密度を表4の結果の中間値である0.4mA/mm2とすると、電極面積は62900mm2となるので、420mm×150mmの電極を使用した。電極間隔は4mmとした。陽極面は酸化イリジウムを主成分とする混合物をチタン板に被覆し、陰極面は白金をチタン板に被覆した。 Since the current value per electrode is 25 A, assuming that the current density is 0.4 mA / mm 2 which is an intermediate value of the results in Table 4, the electrode area is 62900 mm 2 , so an electrode of 420 mm × 150 mm was used. . The electrode spacing was 4 mm. The anode surface was coated with a mixture containing iridium oxide as a main component on a titanium plate, and the cathode surface was coated with platinum on a titanium plate.
塩化水素供給量は、式(2)に上記の電流密度および電極間隔を代入して整理すると、0.00022〜0.0053mMol/hmm3と算出されるので、中間値の0.002mMol/hmm3とした。この値から、10%塩化水素溶液を1時間当たり3.3リットル供給した。 Amount of hydrogen chloride supplied, and arranging by substituting the above current density and electrode spacing in equation (2), since it is calculated as 0.00022~0.0053mMol / hmm 3, the intermediate value 0.002 mmol / hmm 3 And From this value, 3.3 liters per hour of a 10% hydrogen chloride solution were fed.
上記の条件で、電解槽に36Vの電圧を印加したところ、電流値は35〜38Aで推移し、pH6.0〜6.3、有効塩素濃度15〜20ppmの微酸性次亜塩素酸水を、1時間当たり15000リットルで安定して生成した。また、この生成装置にて印加電圧36Vで電気分解し、24.5A未満になったら塩化水素溶液の供給を開始し、25.5Aを超えたら塩化水素溶液の供給を停止する定電流運転を行った。この結果、有効塩素濃度18±2ppm、pH6.1±0.2の微酸性次亜塩素酸水を1時間当たり15000リットルで安定して生成することができた。 When a voltage of 36 V is applied to the electrolytic cell under the above conditions, the current value changes from 35 to 38 A, and slightly acidic hypochlorous acid water having a pH of 6.0 to 6.3 and an effective chlorine concentration of 15 to 20 ppm, It produced stably at 15000 liters per hour. In this generator, electrolysis is performed at an applied voltage of 36 V, and supply of the hydrogen chloride solution is started when it is less than 24.5 A, and constant current operation is performed to stop the supply of the hydrogen chloride solution when it exceeds 25.5 A. The As a result, a slightly acidic hypochlorous acid water having an effective chlorine concentration of 18 ± 2 ppm and a pH of 6.1 ± 0.2 could be stably produced at 15,000 liters per hour.
図1に示した生成装置と同様の構成の生成装置を、家庭用または小規模利用者用として、有効塩素濃度30ppmの微酸性次亜塩素酸水を1時間当たり50リットル生成するスケールで製作した。上述した量の微酸性次亜塩素酸水を生成するために必要な塩素の量は、1時間当たり1.5gであり、生成効率を50%とすると、電流は電解槽全体で1.1A必要である。 A production unit with the same configuration as the production unit shown in FIG. 1 was manufactured on a scale producing 50 liters of slightly acidic hypochlorous acid water with an effective chlorine concentration of 30 ppm per hour for home use or small-scale users. . The amount of chlorine required to produce the above-mentioned amount of slightly acidic hypochlorous acid water is 1.5 g per hour, and if the production efficiency is 50%, the current needs 1.1 A in the entire electrolytic cell It is.
ここでは生成装置を小型化するために、電極間隔を1mm、電流密度を0.6mA/mm2となるように、20mm×50mmの電極を用いた。陽極面は酸化イリジウムを主成分とする混合物をチタン板に被覆し、陰極面は白金をチタン板に被覆した。また、電解槽は、単位電解槽が2個から成る、複極式電解槽とすることで、電解槽全体の大きさを30mm×65mm×15mmと小型化した。 Here, in order to miniaturize the generator, an electrode of 20 mm × 50 mm was used so that the electrode distance was 1 mm and the current density was 0.6 mA / mm 2 . The anode surface was coated with a mixture containing iridium oxide as a main component on a titanium plate, and the cathode surface was coated with platinum on a titanium plate. Moreover, the size of the whole electrolytic cell was miniaturized with 30 mm x 65 mm x 15 mm by setting it as a bipolar electrolytic cell which consists of two unit electrolytic cells.
塩化水素供給量は、式(2)に上記の電流密度および電極間隔を代入して整理すると、0.0013〜0.32mMol/hmm3と算出されるので、中間値の0.15mMol/hmm3とした。この値から、5%塩化水素溶液を1時間当たり0.3リットル供給した。 Amount of hydrogen chloride supplied, and arranging by substituting the above current density and electrode spacing in equation (2), since it is calculated as 0.0013~0.32mMol / hmm 3, the intermediate value 0.15 mmol / hmm 3 And From this value, 0.3 liter of 5% hydrogen chloride solution was supplied per hour.
上記の条件で、単位電解槽当たり2.5Vの電圧を印加し、電気分解したところ、pH5.4〜5.6、有効塩素濃度30ppmの微酸性次亜塩素酸水を1時間当たり50リットルで安定して生成することができた。 Under the above conditions, a voltage of 2.5 V was applied per unit electrolytic cell and electrolyzed, and 50 liters per hour of slightly acidic hypochlorous acid water having a pH of 5.4 to 5.6 and an effective chlorine concentration of 30 ppm. It was able to generate stably.
これまで説明してきた実施形態および実施例から、本発明によれば、微酸性次亜塩素酸水を安定かつ効率的に生成することができる。また、その用途は家庭用の小規模な生成装置から、事業者用の大規模な生成装置まで、幅広く応用することができる。 From the embodiments and examples described above, according to the present invention, slightly acidic hypochlorous acid water can be produced stably and efficiently. Moreover, the application can be widely applied from a small-scale generator for household use to a large-scale generator for business.
1 :原料タンク
2 :供給チューブ
3 :ポンプ
4 :原料供給口
5 :供給開口
6 :下蓋
7 :電極
7a :電極基材
7b :陽極面
7c :陰極面
9 :上蓋
10 :排出開口
11 :開口
12 :微酸性次亜塩素酸水
13 :電源
14 :希釈水
15 :フレーム
16 :電解装置筐体
17 :排出口
18 :給電端子
19 :希釈水供給口
20 :電流計
21 :制御装置
30 :電解装置
1: raw material tank 2: supply tube 3: pump 4: raw material supply port 5: supply opening 6: lower lid 7: electrode 7 a: electrode substrate 7 b: anode surface 7 c: cathode surface 9: upper lid 10: discharge opening 11: opening 12: slightly acidic hypochlorous acid water 13: power supply 14: dilution water 15: frame 16: electrolytic device case 17: outlet 18: power supply terminal 19: dilution water supply port 20: ammeter 21: control device 30: electrolysis apparatus
Claims (6)
チタン、またはチタンを含む合金を含む基材と、前記基材の少なくとも片面を被覆する、酸化イリジウム、白金族の金属の被膜を含む電極を搭載し、前記塩化水素水溶液が供給される供給開口と、電解液を排出するための排出開口と、前記排出開口を取り囲むようにして形成された第2開口とを備え、前記供給開口の総開口面積、前記排出開口の総開口面積、前記第2開口の面積が順に増加する複極式電解槽に電力を供給する工程と、
前記第2開口から排出される前記電解液を水で希釈する工程と、
を含む、方法。 A method of producing a slightly acidic hypochlorous acid water having an effective chlorine concentration of 10 to 80 mg / L and a pH of 5.0 to 6.5 by electrolyzing a hydrogen chloride solution by supplying power to an electrode ,
A substrate containing titanium or an alloy containing titanium, and an electrode containing a film of iridium oxide or platinum group metal covering at least one surface of the substrate, and a supply opening to which the aqueous solution of hydrogen chloride is supplied A discharge opening for discharging the electrolyte, and a second opening formed to surround the discharge opening, wherein a total opening area of the supply opening, a total opening area of the discharge opening, the second opening Supplying power to the bipolar electrolyzer in which the area of the
Diluting the electrolytic solution discharged from the second opening with water;
Method, including.
請求項1に記載の方法。 The supply opening is formed to be 0.018 to 0.45% of the one side area of the electrode, and the discharge opening is formed to be 0.036 to 0.9% of the one side area of the electrode. To be
The method of claim 1.
請求項1または請求項2に記載の方法。 Furthermore the power to the electrode, comprising the step of controlling so that the current density of 0.2mA / mm 2 ~0.6mA / mm 2 ,
A method according to claim 1 or claim 2.
チタン、またはチタンを含む合金を含む基材と、前記基材の少なくとも片面を被覆する、酸化イリジウム、白金族の金属の被膜を含む電極を搭載し、前記塩化水素水溶液が供給される供給開口と、電解液を排出するための排出開口と、前記排出開口を取り囲むようにして形成された第2開口とを備え、前記供給開口の総開口面積、前記排出開口の総開口面積、前記第2開口の面積が順に増加し、前記第2開口から排出される前記電解液を水で希釈する、複極式電解槽。 A bipolar system that produces a slightly acidic hypochlorous acid water having an effective chlorine concentration of 10 to 80 mg / L and a pH of 5.0 to 6.5 by electrolyzing a hydrogen chloride solution by supplying power to an electrode An electrolytic cell,
A substrate containing titanium or an alloy containing titanium, and an electrode containing a film of iridium oxide or platinum group metal covering at least one surface of the substrate, and a supply opening to which the aqueous solution of hydrogen chloride is supplied A discharge opening for discharging the electrolyte, and a second opening formed to surround the discharge opening, wherein a total opening area of the supply opening, a total opening area of the discharge opening, the second opening The area of the electrode increases in order, and the electrolytic solution discharged from the second opening is diluted with water .
請求項4に記載の複極式電解槽。 The supply opening is formed to be 0.018 to 0.45% of the one side area of the electrode, and the discharge opening is formed to be 0.036 to 0.9% of the one side area of the electrode. To be
The bipolar electrolytic cell according to claim 4.
前記複極式電解槽に電解電流を供給する電源と、
前記複極式電解槽に原料を供給するポンプと、
前記電解電流の値を測定する電流計と、
前記電解電流の値が0.2mA/mm2〜0.6mA/mm2の電流密度となるように前記ポンプの動作を制御して前記複極式電解槽の電極間における塩化水素の濃度を制御するように定電流運転する制御装置と
を含む、微酸性次亜塩素酸水を生成する生成装置。 A bipolar electrolyzer according to any one of claims 4 to 5,
A power supply for supplying an electrolytic current to the bipolar electrolyzer;
A pump for supplying a raw material to the bipolar electrolyzer;
An ammeter for measuring the value of the electrolytic current;
The value of the electrolytic current controls the operation of the pump such that the current density of 0.2mA / mm 2 ~0.6mA / mm 2 controlling the concentration of hydrogen chloride between the electrodes of the multi-pole type electrolytic cell And a controller that operates at a constant current so as to generate slightly acidic hypochlorous acid water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017078286A JP6528183B2 (en) | 2017-04-11 | 2017-04-11 | Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017078286A JP6528183B2 (en) | 2017-04-11 | 2017-04-11 | Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015172074A Division JP2017047362A (en) | 2015-09-01 | 2015-09-01 | Generation apparatus and generation method of weak-acidic hypochlorous acid solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017119282A JP2017119282A (en) | 2017-07-06 |
JP6528183B2 true JP6528183B2 (en) | 2019-06-12 |
Family
ID=59271314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017078286A Active JP6528183B2 (en) | 2017-04-11 | 2017-04-11 | Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6528183B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021141202A1 (en) * | 2020-01-06 | 2021-07-15 | 주식회사 심스바이오닉스 | Slightly acidic electrolyzed water supply device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109423661A (en) * | 2017-09-04 | 2019-03-05 | 株式会社北越 | High concentration subacidity electrolysis water generation method and device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10314740A (en) * | 1997-05-19 | 1998-12-02 | Permelec Electrode Ltd | Electrolytic bath for acidic water production |
US6217741B1 (en) * | 1998-10-13 | 2001-04-17 | Morinaga Engineering Co., Ltd. | Method for manufacturing bactericide |
JP2000218271A (en) * | 1999-01-27 | 2000-08-08 | Matsushita Electric Ind Co Ltd | Electrolytic device |
JP2007319775A (en) * | 2006-05-31 | 2007-12-13 | Sanyo Electric Co Ltd | Apparatus for generating weakly-electrolytic water and method for correcting concentration of electrolytic water |
WO2011158279A1 (en) * | 2010-06-14 | 2011-12-22 | 株式会社微酸性電解水研究所 | Electrolytic device and method for producing weakly acidic electrolysed water |
JP5595213B2 (en) * | 2010-10-14 | 2014-09-24 | 株式会社コガネイ | Disinfecting water manufacturing apparatus and disinfecting water manufacturing method |
JP5868630B2 (en) * | 2011-08-05 | 2016-02-24 | オルガノ株式会社 | Electrolyzed water production apparatus and electrolyzed water production method |
-
2017
- 2017-04-11 JP JP2017078286A patent/JP6528183B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021141202A1 (en) * | 2020-01-06 | 2021-07-15 | 주식회사 심스바이오닉스 | Slightly acidic electrolyzed water supply device |
Also Published As
Publication number | Publication date |
---|---|
JP2017119282A (en) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
UA75594C2 (en) | An electrolytic cell and a system for electrolysis | |
CN106430451A (en) | Method and device for producing subacid electrolyzed water | |
KR102277620B1 (en) | Electrolytic cell equipped with concentric electrode pairs | |
US10767270B2 (en) | Electrode for an ozone generator | |
CN106011920B (en) | It is equipped with the electrolytic cell of coaxal electrode pair | |
JP6528183B2 (en) | Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus | |
CN103380232B (en) | Conductive diamond electrode, the sulphuric acid electrolyte method using it and sulphuric acid electrolyte device | |
JP2018150596A (en) | Organic substance production system and manufacturing method thereof | |
JP2017047362A (en) | Generation apparatus and generation method of weak-acidic hypochlorous acid solution | |
Girenko et al. | Selection of the optimal cathode material to synthesize medical sodium hypochlorite solutions in a membraneless electrolyzer | |
KR101506951B1 (en) | Manufacturing equipment of electrolyte for redox flow battery and manufacturing method thereof | |
Vaghela et al. | Electrolytic synthesis of succinic acid in a flow reactor with solid polymer electrolyte membrane | |
Girenko et al. | Electrolysis of NaCl solutions in flow systems | |
CN111032919B (en) | Electrolytic cell and electrode plate for electrolytic cell | |
KR101751987B1 (en) | Manufacturing equipment of electrolyte for redox flow battery enhanced productivity comprising punched electrode with lattice structure | |
JP2019198820A (en) | Method for producing slightly acidic aqueous hypochlorous acid, electrolytic cell unit and production device | |
JP2010126769A (en) | Composite electrolytic bath | |
KR101602952B1 (en) | Manufacturing equipment of electrolyte for redox flow battery comprising punched electrode with lattice structure | |
EP3608444A1 (en) | Method for manufacturing sodium hydroxide and/or chlorine and 2 chamber type saltwater electrolytic cell | |
WO2022219850A1 (en) | Deterioration determination support device, water electrolysis device, and deterioration determination support method | |
JP7110185B2 (en) | Method for producing germane electrochemically | |
TWI689626B (en) | Method for electrochemically manufacturing germane | |
TWI708869B (en) | Method of producing germane by electrochemistry | |
CN110678580B (en) | Hydrogen generator and hydrogen generating method | |
JP2021046568A (en) | Hydrogen peroxide generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180320 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190422 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6528183 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |