JP2010126769A - Composite electrolytic bath - Google Patents

Composite electrolytic bath Download PDF

Info

Publication number
JP2010126769A
JP2010126769A JP2008303193A JP2008303193A JP2010126769A JP 2010126769 A JP2010126769 A JP 2010126769A JP 2008303193 A JP2008303193 A JP 2008303193A JP 2008303193 A JP2008303193 A JP 2008303193A JP 2010126769 A JP2010126769 A JP 2010126769A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic cell
electrolysis
voltage
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008303193A
Other languages
Japanese (ja)
Inventor
Toyohiko Doi
土井豊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008303193A priority Critical patent/JP2010126769A/en
Publication of JP2010126769A publication Critical patent/JP2010126769A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic bath which continuously produces a new material by electrolysis, and can reduce a ratio of a remaining unelectrolyzed substance while suppressing the production of by-product, without sacrificing production efficiency. <P>SOLUTION: In continuous electrolysis with the use of one unit of an electrolytic bath, only one type of the combination of voltage and current can be set in the electrolytic bath, and accordingly a substance to be electrolyzed can be electrolyzed only on an electrolytic condition corresponding to the average of the compositions of the substance to be electrolyzed in the inlet and outlet of the electrolytic bath at the most. Accordingly, in order to obtain an electrolytic condition which has further progressed than the outlet composition, there is no other method than that of using a plurality of electrolytic units in combination, in which an electrolytic condition can be set independently. Accordingly, an electrolytic bath which can reduce the ratio of the unelectrolyzed substance in the continuous electrolysis is the composite electrolytic bath that includes two or more of the electrolytic bathes 1 and 2, which are arranged so as to constitute flow channels 8 and 9 in a fixed direction of the substance to be electrolyzed, and in which at least voltages between counter electrodes in the respective electrolytic bathes are independently set. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は物質の電気分解において、複数の電解槽で構成された複合電解槽で、連続的に電解する技術に関する。 The present invention relates to a technique for continuous electrolysis in a composite electrolytic cell composed of a plurality of electrolytic cells in electrolysis of a substance.

電解(電気分解)により物質を生成する方法は古くから、広い分野に亘って行われてきた。その主な理由は、電解が加熱や加圧などの手段と比較し、低いエネルギーで反応を進めることが可能なこと及び、電解電圧を選ぶことで、ある程度反応を選択することが可能であることである。 Methods for producing substances by electrolysis (electrolysis) have been performed over a wide range of fields since ancient times. The main reasons are that electrolysis can proceed with low energy compared to means such as heating and pressurization, and that the reaction can be selected to some extent by selecting the electrolysis voltage. It is.

しかし、電解には欠点があり、その1つは、電圧や電流値が電解原料物質(イオン)濃度に依存してしまうことである。従って、生成純度や電解効率が原料物質濃度に依存することを意味する。連続電解を行う場合、物質の生成効率を維持するために必然的に電流や電圧の範囲を一定に固定する必要があるので、設定電解の下限条件を維持できないイオン濃度以下には電解できないのである。これは、処理後の原料中に一定レベルの未処理物質を含むことを意味し、目的によっては電解の後に、物理化学的処理による分離等の処理工程が必要になる場合がある。また、後処理自体が技術的に困難であったり、実用に適しないような費用がかかる場合は、未電解物の濃度が問題にならない程度になるまで処理速度を落として効率を犠牲にしなければならない場合もある。 However, there are drawbacks in electrolysis, one of which is that the voltage and current values depend on the concentration of the electrolytic raw material (ion). Therefore, it means that the production purity and electrolysis efficiency depend on the raw material concentration. When performing continuous electrolysis, it is necessary to fix the current and voltage ranges to be constant in order to maintain the production efficiency of the substance, so electrolysis cannot be performed below the ion concentration where the lower limit condition of the set electrolysis cannot be maintained. . This means that a certain level of untreated substance is included in the raw material after the treatment, and depending on the purpose, a treatment step such as separation by physicochemical treatment may be required after the electrolysis. Also, if post-treatment itself is technically difficult or costly that is not suitable for practical use, the efficiency must be sacrificed by reducing the processing speed until the concentration of unelectrolytes is not problematic. It may not be possible.

一方、回分式電解であれば、電解条件の選択や電解時間も自由に設定可能であるため、このような問題は解消できる場合もあるが、その反面生成効率は大幅に犠牲にせざるを得ないので、生成コストの大幅な上昇を免れない。 On the other hand, in the case of batch electrolysis, the selection of electrolysis conditions and electrolysis time can be freely set, so this problem may be solved, but the production efficiency must be greatly sacrificed. Therefore, it is inevitable that the generation cost will rise significantly.

そのため、電解反応を進めるための工夫は種々なされている。特許文献1には多段式の電解イオン水生成装置が記載されている。最初の電解槽で生成された酸性電解イオン水にハロゲン化物を添加し次段の電解槽に送り電解することにより強酸性イオン水を効率よく生成するという。一方、特許文献2には、1つの電解槽容器の中に、複数の電解槽ユニットを収容した、水の処置方法および処理装置が記載されている。筒型電解槽の内部液を、次々に隣接する電解槽ユニットに移して電解することにより、最後の電解槽ユニットから良好な性質の処理水が得られるとしている。 Therefore, various devices for advancing the electrolytic reaction have been made. Patent Document 1 describes a multistage electrolytic ionic water generator. It is said that a strongly acidic ionic water is efficiently generated by adding a halide to the acidic electrolytic ionic water produced in the first electrolytic cell, sending it to the electrolytic cell in the next stage, and performing electrolysis. On the other hand, Patent Document 2 describes a water treatment method and a processing apparatus in which a plurality of electrolytic cell units are accommodated in one electrolytic cell container. It is said that treated water having good properties can be obtained from the last electrolytic cell unit by transferring the internal liquid of the cylindrical electrolytic cell to the adjacent electrolytic cell units one after another and performing electrolysis.

特開平7−3987号公報Japanese Patent Laid-Open No. 7-3987 特開平9−314145号公報Japanese Patent Laid-Open No. 9-314145

本発明者は目的とする電解反応を進め、副生成物の生成を抑えながら、未電解物の残存率を極限まで低下させる方法を得ることを目的に検討を重ねた。前述の、多段式の電解イオン水生成装置は、電解物に新たな原料を添加し電解する方法であるので、生成物濃度は高めることは可能と考えられるが、電解反応を進めるための工夫はなされていないため、未分解による不純物濃度も高くなるはずである。このような方法では、生成物の用途が制限されることもあり本来の目的を達成できないことが分かる。 The present inventor has studied for the purpose of obtaining a method of reducing the residual rate of unelectrolyzed substances to the limit while proceeding with the intended electrolytic reaction and suppressing the formation of by-products. The above-mentioned multi-stage electrolytic ionic water generator is a method of electrolysis by adding a new raw material to the electrolyte, so it is considered possible to increase the product concentration. Since it has not been done, the impurity concentration due to undecomposition should be high. It can be seen that such a method cannot achieve the original purpose because the use of the product may be limited.

又、前述の1つの電解槽内に複数の電解槽ユニットを収納した装置では、連続生成において滞留時間を長くするために流速を遅くした状態と同じことであり、生成効率は悪くなる。さらに、各電解槽ユニットの運転条件については触れられていないが、それらが同一であれば、未電解物の比率を変えることは困難である。 Moreover, in the apparatus which accommodated the several electrolytic cell unit in the above-mentioned one electrolytic cell, it is the same as the state which slowed down the flow rate in order to lengthen residence time in continuous production | generation, and production | generation efficiency worsens. Furthermore, the operating conditions of each electrolytic cell unit are not mentioned, but if they are the same, it is difficult to change the ratio of unelectrolyzed substances.

そこで、本発明者は、生成効率を犠牲にしないで、副生成物の生成を抑えながら、未電解物の残存比率を画期的に下げることのできる電解槽を提供することを本発明が解決しようとする課題とした。 Accordingly, the present inventor has solved the problem that the present invention provides an electrolytic cell capable of dramatically reducing the remaining ratio of unelectrolyzed material while suppressing the production of by-products without sacrificing the production efficiency. It was a challenge to try.

連続電解においては、1組の電解槽では、電圧と電流の組み合わせを1種類しか設定できないので、せいぜい、電解槽入口の被電解物の組成と出口の組成の平均に相当する電解条件でしか電解できないことを確認した。そのことから、出口組成よりさらに進んだ電解状態を得るためには、独立に電解条件を設定できる複数の電解ユニットを組み合わせて用いること以外に方法がないことを確認し、それに基づいて以下の各態様を提供した。 In continuous electrolysis, since only one type of voltage and current combination can be set in one set of electrolytic cells, electrolysis can be performed only at the electrolysis conditions corresponding to the average of the composition of the electrolyzed substance at the electrolytic cell inlet and the composition of the outlet. I confirmed that I couldn't. Therefore, in order to obtain an electrolysis state further advanced than the outlet composition, it was confirmed that there was no method other than using a plurality of electrolysis units that can set electrolysis conditions independently, and based on each of the following each An embodiment was provided.

まず、連続電解において、未電解物質の比率を下げることのできる電解槽として、少なくとも対向電極間の電圧が、各電解槽間で独立に設定され、被電解物の一定方向の流路を構成するように配設された2以上の電解槽で構成された複合電解槽を、本課題解決手段の第1の態様とした。 First, in continuous electrolysis, as an electrolytic cell capable of reducing the ratio of unelectrolyzed substances, at least the voltage between the counter electrodes is set independently between the electrolytic cells to constitute a flow path in a certain direction of the object to be electrolyzed. A composite electrolytic cell composed of two or more electrolytic cells arranged as described above was defined as the first aspect of the problem solving means.

又、第1の態様において、複合電解槽を構成する電解槽の内、少なくとも1は他の電解槽と電極構成が異なる複合電解槽を、本課題解決手段の第2の態様とした。 In the first aspect, among the electrolytic cells constituting the composite electrolytic cell, at least one of the electrolytic cells having a different electrode configuration from the other electrolytic cells is defined as the second aspect of the problem solving means.

さらに又、第1又は2の態様において、少なくとも1の単極式電解槽と、少なくとも1の複極式電解槽を含む複合電解槽を、本課題解決手段の第3の態様とした。 Furthermore, in the first or second aspect, a composite electrolytic cell including at least one monopolar electrolytic cell and at least one bipolar electrolytic cell is defined as a third aspect of the problem solving means.

さらに又、第1乃至3の何れかの態様において、複合された全ての電解槽が定電圧電解槽であって、対向電極間電圧が、複合された各電解槽間で異なる複合電解槽を、本課題解決手段の第4の態様とした。 Furthermore, in any one of the first to third aspects, the combined electrolytic cell is a constant voltage electrolytic cell, and the voltage between the counter electrodes is different between the combined electrolytic cells. The fourth aspect of the present problem solving means is provided.

さらに又、第1乃至4の何れかの態様において、複合された各電解槽における電解処理が、時間的に密接し、相互に継続して行われる複合電解槽を、本課題解決手段の第5の態様とした。 Furthermore, in any one of the first to fourth aspects, a composite electrolytic cell in which the electrolytic treatment in each of the combined electrolytic cells is performed in close contact with each other in a continuous manner. It was set as the aspect.

さらに又、第1乃至5の何れかの態様において、時間的に密接し、継続して行われる電解処理において、処理が時間的に早い電解槽ほど対向電極間電圧が低電圧である複合電解槽を、本課題解決手段の第6の態様とした。 Furthermore, in any one of the first to fifth aspects, in the electrolytic treatment performed in close time and continuously, the composite electrolytic cell in which the voltage between the counter electrodes is lower in the electrolytic cell that is earlier in time. Is the sixth aspect of the problem solving means.

そして最後に、第1乃至6の何れかの態様において、複合された各電解槽間の対向電極間電圧の差が、時間的に直前又は直後に密接し継続処理する電解槽間で、0.1ボルト以上3ボルト以下である複合電解槽を、本課題解決手段の第7の態様とし、本発明を完成させた。 And finally, in any one of the first to sixth aspects, the difference in the voltage between the counter electrodes between the combined electrolytic cells is 0. A composite electrolytic cell having a voltage of 1 to 3 volts was used as the seventh aspect of the problem-solving means, thereby completing the present invention.

本発明の効果は以下の通りである。まず、少なくとも対向電極間の電圧が、各電解槽間で独立に設定され、被電解物の一定方向の流路を構成するように配設された2以上の電解槽で構成された複合電解槽としたことにより次の効果が得られる。初めの電解槽における電解電圧と異なる電圧で電解することが可能となることから、本質的に電解条件を変更することが可能になり、連続電解であっても、未電解物質の比率を下げることが容易となった。 The effects of the present invention are as follows. First, a composite electrolytic cell composed of two or more electrolytic cells in which at least the voltage between the counter electrodes is set independently between the electrolytic cells and arranged to form a flow path in a certain direction of the object to be electrolyzed. The following effects can be obtained. Since it is possible to perform electrolysis at a voltage different from the electrolysis voltage in the first electrolytic cell, it becomes possible to change the electrolysis conditions essentially, and even in continuous electrolysis, the ratio of unelectrolyzed substances can be reduced. Became easier.

又、複合電解槽を構成する電解槽の内、少なくとも1は他の電解槽と電極構成が異なる複合電解槽としたことにより、設定した電解条件、つまり電解電圧、電解電流及び被電解物の滞留時間等を自由に設定することが可能になり、一層未電解物の比率を下げる電解条件の設定が容易になった。 In addition, at least one of the electrolytic cells constituting the composite electrolytic cell is a composite electrolytic cell having a different electrode configuration from the other electrolytic cells, so that the set electrolytic conditions, that is, the electrolytic voltage, the electrolytic current, and the retention of the object to be electrolyzed. Time and the like can be set freely, and the setting of electrolysis conditions for further reducing the ratio of unelectrolyzed materials has become easier.

さらに又、少なくとも1の単極式電解槽と、少なくとも1の複極式電解槽を含む複合電解槽としたことにより、前述の電解条件の設定及び電源の選定が一層容易になった。 Furthermore, the use of a composite electrolytic cell including at least one monopolar electrolytic cell and at least one bipolar electrolytic cell makes it easier to set the electrolysis conditions and to select a power source.

さらに又、複合された全ての電解槽が定電圧電解槽であって、対向電極間電圧が、複合された各電解槽間で異なる複合電解槽としたことにより、構成する各電解槽の電圧を固定して、他と異なる設定にすることが可能になり、なお一層、未分解物の比率を下げる電解条件の設定が容易になった。 Furthermore, all the combined electrolytic cells are constant voltage electrolytic cells, and the voltage between the opposing electrodes is different among the combined electrolytic cells. It was possible to fix and set differently from the others, and it became easier to set the electrolysis conditions to further reduce the ratio of undecomposed matter.

さらに又、複合された各電解槽における電解処理が、時間的に密接し、相互に継続して行われる複合電解槽としたことにより、電解未了の被電解物が滞留され、副反応が進む可能性を最少にすることができた。 Furthermore, since the electrolytic treatment in each of the combined electrolytic cells is made in time, and the composite electrolytic cells are continuously performed, the incompletely electrolyzed substances are retained and the side reaction proceeds. The possibility could be minimized.

さらに又、時間的に密接し、継続して行われる電解処理において、処理が、時間的に早い電解槽ほど対向電極間電圧が低電圧である複合電解槽としたことにより、前段の電解における未電解物を効率よく電解することが可能になった。 Furthermore, in the electrolytic treatment performed in close time and continuously, the electrolytic cell which is earlier in time is a composite electrolytic cell in which the voltage between the counter electrodes is lower as the electrolytic cell is earlier in time. Electrolytes can be electrolyzed efficiently.

そして最後に、複合された各電解槽間の対向電極間電圧の差が、時間的に直前又は直後に密接し継続処理する電解槽間で、0.1ボルト以上3ボルト以下である複合電解槽としたことにより、電解副反応を抑えて、未電解物の電解を効率よく行うことが可能になった。 And finally, a composite electrolytic cell in which the voltage difference between the counter electrodes between the combined electrolytic cells is 0.1 volts or more and 3 volts or less between the electrolytic cells that are in close contact with each other immediately before or immediately in time. As a result, it became possible to efficiently perform electrolysis of unelectrolyzed materials while suppressing electrolytic side reactions.

次に、本発明の的確な理解のために、本発明を実施するための最良の形態を示し説明する。
本発明における複合式電解槽とは、それぞれ独立もしくは半独立して機能する複数の電解槽で構成された電解槽をいう。それら構成する各電解槽は被電解液の1の流路を構成するように配設されてもよく、途中で分岐した被電解液の複数の流路を構成するように配設されてもよい。対向電極とは、複極式或いは単極式に拘らず、被電解液を挟んで直接向き合った電極であり、向き合った極面間の計算上の電圧或いは理論電圧を対向電極間の電圧としている。少なくとも対向電極間の電圧が独立に設定された2以上の電解槽とは、複合電階層を構成する個々の電解槽の対向電極間の電圧は、各電解槽間で必ず相互に独立して設定されていなければならない。
Next, the best mode for carrying out the present invention will be described and explained for an accurate understanding of the present invention.
The composite electrolytic cell in the present invention refers to an electrolytic cell composed of a plurality of electrolytic cells functioning independently or semi-independently. Each of the electrolytic cells constituting them may be arranged so as to constitute one flow path of the electrolyte solution, or may be arranged so as to constitute a plurality of flow paths of the electrolyte solution branched in the middle. . A counter electrode is an electrode that directly faces the electrolyte solution, regardless of whether it is a bipolar or monopolar type, and the calculated or theoretical voltage between the facing electrodes is the voltage between the opposing electrodes. . With two or more electrolytic cells in which the voltage between the counter electrodes is set independently, the voltage between the counter electrodes of the individual cell forming the composite electric hierarchy is always set independently of each other. Must have been.

複極式と単極式は電解の目的や規模によって使い分けることができる。生成物の反応や効率が狭い範囲の電解電圧に依存する場合は、より細かい電圧設定が望ましいので、単極式が好適である。複極式においては電極間の被電解液の濃度分布や極面の状態により、実際の電圧分布が微妙に変化することがあるためである。しかし、大能力の電解槽には、電解槽の構成技術面から複極式が好適である。従って、相対的に単位時間でより多くの物質の電解を担うことになる前段の電解に複極式を配置し、後段に単極式を配置する方法が好適と考えられる。 Bipolar and monopolar types can be used properly depending on the purpose and scale of electrolysis. When the product reaction and efficiency depend on a narrow range of electrolysis voltage, a finer voltage setting is desirable, and therefore a monopolar type is preferred. This is because in the bipolar type, the actual voltage distribution may slightly change depending on the concentration distribution of the electrolyte solution between the electrodes and the state of the electrode surface. However, a bipolar type is suitable for a high-capacity electrolytic cell from the viewpoint of construction technology of the electrolytic cell. Therefore, a method of arranging a bipolar type in the former stage electrolysis that will be responsible for electrolysis of more substances in a unit time and arranging a single pole type in the latter stage is considered preferable.

電解方式には定電圧と定電流の2方式から選択されることが多いが、物質の生成量のみが優先される場合は定電流が好都合で、一方、原料の完全な転換が主目的の場合は定電圧が好適である。また、完全な物質の転換を目指すときは、副反応を起こさない範囲の複数の電圧による処理が電解程度の制御に好適である。 The electrolysis method is often selected from the two methods of constant voltage and constant current, but constant current is convenient when priority is given only to the amount of substance produced, while the complete purpose of raw materials is the main purpose. Is preferably a constant voltage. Moreover, when aiming at complete conversion of a substance, the process by the several voltage of the range which does not raise | generate a side reaction is suitable for control of an electrolysis grade.

電解の進捗に伴って、被電解液の原料物質濃度は低くなっていく。従って、後段の電解槽になるに従って、電解抵抗の上昇に見合う電圧の上昇を行わないと電解反応の維持ができなくなる。但し、電圧の上限は副反応による不純物生成が生起しない電圧となる。塩素の生成反応など、多くの電解反応では5V程度が副反応の限界電圧であるため、電解槽間の電圧の上昇幅は、後段の電解槽の対向極間電圧がそれを超えないように 0.1ボルトから3ボルト、場合によっては0.1ボルトから1ボルト程度が好適である。 As the electrolysis progresses, the concentration of the raw material substance in the electrolyte solution decreases. Accordingly, the electrolytic reaction cannot be maintained unless the voltage corresponding to the increase in electrolytic resistance is increased as the subsequent electrolytic cell is formed. However, the upper limit of the voltage is a voltage at which impurity generation due to side reactions does not occur. In many electrolysis reactions such as chlorine production reaction, the limit voltage of side reaction is about 5V. Therefore, the voltage increase between the electrolyzers is 0.1% so that the voltage across the counter electrode in the subsequent electrolyzer does not exceed it. From 3 to 3 volts, and in some cases, from 0.1 to 1 bolt are suitable.

次に実施例によってさらに詳しく本発明を説明する。図1に示したのは、塩素イオンを電解酸化し塩素溶液を生成する複合電解槽の縦断面模式図である。この複合電解槽は2セル複極電解槽(1)と単セル単極電解槽(2)の2の電解槽で構成されている。電極板は全て同じサイズで100×150mmで、陽極側は酸化イリジウム、陰極側は白金で被覆したものである(田中貴金属社製)。電極板は、樹脂製の枠(5、6、7)に設けられた溝に固定され、その枠は外匡体(15)に固定されている。被電解物質である塩酸は原料タンク(11)に貯留され、ポンプ(10)によって、まず主電解槽(1)に供給され電解された後副電解槽(2)に供給される。破線矢印(9)は被電解液の流れ方向を示している。電解槽の周囲には、冷却及び塩素溶解用の水の流れ(8、実線矢印)があり、複合電解槽の出口で、電解槽から排出された被電解液と混合され、塩素溶液(12)となって排出される。主電解槽用の電源(13)にはアステック社製LPS62を使用し、副電解槽用電源(14)にはコーセル社製PBA75F-3R3を使用した。各電解槽の対向電極間電圧はそれぞれ2.2V及び2.8Vとした。この複合式電解槽を使って、6%塩酸溶液を原料として、220ml/hの流量で供給し、希釈水量を300L/hで流し、主電解槽を8A、副電解槽を8Aに設定し電解した。得られた塩素溶液は41ppmで、電解による塩素イオンから塩素への変換率は約98%であった。 Next, the present invention will be described in more detail with reference to examples. FIG. 1 is a schematic vertical sectional view of a composite electrolytic cell that electrolytically oxidizes chlorine ions to produce a chlorine solution. This composite electrolytic cell is composed of two electrolytic cells, a two-cell bipolar electrolytic cell (1) and a single-cell single-electrode electrolytic cell (2). The electrode plates are all the same size and 100 × 150 mm, and the anode side is coated with iridium oxide and the cathode side is coated with platinum (Tanaka Kikinzoku Co., Ltd.). The electrode plate is fixed to a groove provided in the resin frame (5, 6, 7), and the frame is fixed to the outer casing (15). Hydrochloric acid, which is the substance to be electrolyzed, is stored in the raw material tank (11), and is first supplied to the main electrolytic cell (1) and electrolyzed by the pump (10) and then supplied to the secondary electrolytic cell (2). The broken line arrow (9) indicates the flow direction of the electrolyte solution. There is a flow of water for cooling and chlorine dissolution (8, solid line arrow) around the electrolytic cell, which is mixed with the electrolyte to be discharged from the electrolytic cell at the outlet of the composite electrolytic cell, and the chlorine solution (12) And discharged. As a power source (13) for the main electrolytic cell, LPS62 manufactured by ASTEC was used, and as a power source for the secondary electrolytic cell (14), PBA75F-3R3 manufactured by Cosel was used. The voltage between the counter electrodes of each electrolytic cell was 2.2 V and 2.8 V, respectively. Using this combined electrolytic cell, a 6% hydrochloric acid solution is supplied as a raw material at a flow rate of 220 ml / h, the amount of dilution water is made to flow at 300 L / h, the main electrolytic cell is set to 8A, and the auxiliary electrolytic cell is set to 8A for electrolysis. did. The obtained chlorine solution was 41 ppm, and the conversion rate from chlorine ions to chlorine by electrolysis was about 98%.

複合電解槽の断面模式図Cross-sectional schematic diagram of a composite electrolytic cell

符号の説明Explanation of symbols

3 主電解槽電極板
4 副電解槽電極板
3 Main electrolytic cell electrode plate 4 Sub electrolytic cell electrode plate

Claims (7)

少なくとも対向電極間の電圧が、各電解槽間で独立に設定され、被電解物の一定方向の流路を構成するように配設された2以上の電解槽で構成された複合電解槽 A composite electrolytic cell composed of two or more electrolytic cells in which at least the voltage between the counter electrodes is set independently between the electrolytic cells and arranged to form a flow path in a certain direction of the object to be electrolyzed 構成する電解槽の内、少なくとも1は他の電解槽と電極構成が異なることを特徴とする、請求項1記載の複合電解槽 2. The composite electrolytic cell according to claim 1, wherein at least one of the electrolytic cells is different in electrode configuration from the other electrolytic cells. 少なくとも1の単極式電解槽と、少なくとも1の複極式電解槽を含むことを特徴とする、請求項1又は2に記載の複合電解槽 The composite electrolytic cell according to claim 1, comprising at least one monopolar electrolytic cell and at least one bipolar electrolytic cell. 複合された全ての電解槽が定電圧電解槽であって、対向電極間電圧が、複合された各電解槽間で異なることを特徴とする、請求項1乃至3の何れかに記載の複合電解槽 4. The composite electrolysis according to claim 1, wherein all of the combined electrolytic cells are constant voltage electrolytic cells, and the voltage between the counter electrodes is different among the combined electrolytic cells. 5. Tank 複合された各電解槽における電解処理が、時間的に密接し、相互に継続して行われることを特徴とする、請求項1乃至4の何れかに記載の複合電解槽 5. The composite electrolytic cell according to claim 1, wherein the electrolytic treatment in each of the composite electrolytic cells is performed in close contact with each other and continuously. 時間的に密接し、継続して行われる電解処理において、処理が、時間的に早い電解槽ほど対向電極間電圧が低電圧であることを特徴とする、請求項1乃至5の何れかに記載の複合電解槽 6. The electrolytic treatment performed closely in time and continuously, the voltage between the counter electrodes is lower in an electrolytic cell in which the treatment is earlier in time. Composite electrolytic cell 複合された各電解槽間の対向電極間電圧の差が、時間的に直前又は直後に密接し継続処理する電解槽間で、0.1ボルト以上3ボルト以下であることを特徴とする、請求項1乃至6の何れかに記載の複合電解槽
The voltage difference between the counter electrodes between the combined electrolytic cells is 0.1 to 3 volts between the electrolytic cells that are in close contact with each other immediately before or after time, Item 7. The composite electrolytic cell according to any one of Items 1 to 6
JP2008303193A 2008-11-27 2008-11-27 Composite electrolytic bath Withdrawn JP2010126769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303193A JP2010126769A (en) 2008-11-27 2008-11-27 Composite electrolytic bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303193A JP2010126769A (en) 2008-11-27 2008-11-27 Composite electrolytic bath

Publications (1)

Publication Number Publication Date
JP2010126769A true JP2010126769A (en) 2010-06-10

Family

ID=42327361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303193A Withdrawn JP2010126769A (en) 2008-11-27 2008-11-27 Composite electrolytic bath

Country Status (1)

Country Link
JP (1) JP2010126769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712915B1 (en) * 2010-06-14 2011-06-29 株式会社微酸性電解水研究所 Electrolytic device and method for producing slightly acidic electrolyzed water
JP2016196672A (en) * 2015-04-02 2016-11-24 株式会社微酸研 Electric cell and hypochlorite water production device
JP2018529023A (en) * 2015-08-05 2018-10-04 リン,シン−ユン Electrolyzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712915B1 (en) * 2010-06-14 2011-06-29 株式会社微酸性電解水研究所 Electrolytic device and method for producing slightly acidic electrolyzed water
WO2011158279A1 (en) * 2010-06-14 2011-12-22 株式会社微酸性電解水研究所 Electrolytic device and method for producing weakly acidic electrolysed water
CN103080019A (en) * 2010-06-14 2013-05-01 株式会社微酸性电解水研究所 Electrolytic device and method for producing weakly acidic electrolysed water
TWI418662B (en) * 2010-06-14 2013-12-11 Hocl Inc Electrolysis device and a manufacturing method of slightly acid electrolysis water
CN103080019B (en) * 2010-06-14 2014-07-23 株式会社微酸性电解水研究所 Electrolytic device and method for producing weakly acidic electrolysed water
JP2016196672A (en) * 2015-04-02 2016-11-24 株式会社微酸研 Electric cell and hypochlorite water production device
JP2018529023A (en) * 2015-08-05 2018-10-04 リン,シン−ユン Electrolyzer

Similar Documents

Publication Publication Date Title
US10046989B2 (en) Electrochemical system and method for on-site generation of oxidants at high current density
US9611555B2 (en) Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
US5205994A (en) Electrolytic ozone generator
JP2016539252A (en) Method and system for preparing lithium hydroxide
EP0493331B1 (en) Method for electrolytic ozone generation and apparatus thereof
TWI564434B (en) An apparatus and method for electrochemical production of oxidant related compounds
TWI652374B (en) Electrolytic cell equipped with concentric electrode pairs
JPH01142093A (en) Electrolysis method
EP3473750A1 (en) Electrolysis system and electrolysis method using same
JP2018150596A (en) Organic substance production system and manufacturing method thereof
CN106011920A (en) Electrolytic cell equipped with concentric electrode pairs
JP2010126769A (en) Composite electrolytic bath
US20230295815A1 (en) Combined Current Carrier Circulation Chamber and Frame for use in Unipolar Electrochemical Devices
KR101147491B1 (en) Electrolysis apparatus
Tzanetakis et al. Salt splitting with radiation grafted PVDF anion-exchange membrane
WO2008090367A1 (en) Electro-chlorinator
JPH03199387A (en) Manufacture of alkali metal chlorate or perchlorate
JP6528173B2 (en) Electrolytic cell and hypochlorous acid water production device
JP2016503343A (en) Method and apparatus for desalting aqueous solutions by electrodialysis
JP6528183B2 (en) Method for producing slightly acidic hypochlorous acid water, bipolar electrolyzer and producing apparatus
US4725341A (en) Process for performing HCl-membrane electrolysis
US5225054A (en) Method for the recovery of cyanide from solutions
US20230136422A1 (en) Advanced Commercial Electrolysis of Seawater to Produce Hydrogen
JP2006307248A (en) Hydrogen production equipment
TW201241239A (en) Large electrolytic vessel and electrolysis-stopping method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207