TW201228453A - Full function LED driver for LCD backlighting - Google Patents

Full function LED driver for LCD backlighting Download PDF

Info

Publication number
TW201228453A
TW201228453A TW099144504A TW99144504A TW201228453A TW 201228453 A TW201228453 A TW 201228453A TW 099144504 A TW099144504 A TW 099144504A TW 99144504 A TW99144504 A TW 99144504A TW 201228453 A TW201228453 A TW 201228453A
Authority
TW
Taiwan
Prior art keywords
signal
circuit
voltage
current
trigger
Prior art date
Application number
TW099144504A
Other languages
Chinese (zh)
Inventor
Bo Yu
Yuan-Cheng Ren
Lei Du
nai-xing Kuang
Zhi-Jiang Yang
Original Assignee
Monolithic Power Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monolithic Power Systems Inc filed Critical Monolithic Power Systems Inc
Priority to TW099144504A priority Critical patent/TW201228453A/en
Publication of TW201228453A publication Critical patent/TW201228453A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

This invention discloses a driver for driving multiple LED and the LCD thereof. According to embodyments of this invention, the driver is integrated with the functions of current balance, shifting phase PWM dimming and multiple faults detection and protection. The embodyments also disclose current balance circuit with high accuracy, shifting phase PWM dimming circuit and multiple faults detection and protection circuit adopted to this driver. The scheme may balance the light of LED.

Description

201228453 六、發明說明: 【發明所屬之技術領域】 本發明的實施例涉及發光元件的驅動器及顯示設備, 尤其涉及多個並聯發光元件的驅動器及其顯示設備》 【先前技術】 目前,LED因其具有體積小、功耗低、發光效率高、 壽命長等諸多優點而被廣泛應用於各種電子產品的顯示設 備中,比如作爲液晶顯示器的背光器件其正在不斷取代傳 統的放電燈。在LED作爲背光器件的各種應用中,系統運 行的安全性以及故障檢測、故障保護等是非常重要的,另 外’在採用多個LED/LED串的背光應用中,它們發光的均 勻性和一致性也是用戶所期待的,這就要求流過每個 LED/LED串的電流必須均勻匹配。 現有技術中的LED驅動電路爲了實現上述各種功能, 大多採用DC-DC轉換器作爲LED的供電電路,並且採用各 種分立電路和分立器件與DC-DC轉換器相結合以達到故障 檢測、故障保護以及均流的目的。如圖1所示爲現有技術 中的一種LED驅動電路1〇〇的電路框圖示意圖。該驅動電 路100包括:DC-DC轉換器101,用於接收供電電壓Vin, 並將其轉換爲合適的輸出電壓Vout (未示出)以驅動多個 LED/LED串發光;電流源電路1〇2,電耦接於所述多個 LED/LED串,以調節每個LED/LED串的電流;故障檢測電 路103,用於檢測一個或者多個LED/LED串的開路或者短 -5- 201228453 路並提供故障信號;故障保護電路104,用 障信號,提供觸發信號至所述DC-DC轉換署 執行故障保護功能。通常電流源電路1 02由 個LED/LED串的分立電流鏡電路實現;故障 可能包括分別用於檢測每個LED/LED串的開 況的電路:故障保護電路104則提供相應於 狀況的處理及保護電路。因此,現有技術中 電路102的每個分立電流鏡電路的元件之間 法達到很好的電流匹配效果。 另外,故障檢測電路103和故障保護電g 不同的分立電路以及分立器件來實現對每個 故障檢測及保護以及對DC-DC轉換器101輸 測與保護。這不僅增加了整個驅動電路的複 成本,也增加了設計過程中電路的調試難度 【發明內容】 針對現有技術中的一個或多個問題,本 的是提供一種發光元件的驅動器和顯示設備 在本發明一個方面,提出了一種驅動多 驅動器,包括:電壓轉換單元,接收輸入電 的輸入電壓在輸出端產生輸出電壓,其中所 施加到每個發光元件的一端;以及電流均衡 每個發光元件的另一端,用於爲所述多個發 動電流,其中,所述電流均衡單元還耦接第 於接收所述故 i 1 〇 1以觸發其 對應耦接於每 i檢測電路1 〇 3 路或者短路狀 每種特定故障 ,由於電流源 存在差異而無 各104需要多個 LED/LED 串的 出端短路的檢 雜度以及生產 發明的一個目 〇 個發光元件的 壓,基於接收 述輸出電壓被 單元,耦接到 光元件提供驅 一參考電壓, -6- 201228453 基於所述第一參考電壓來調節流經每個發光元件的驅動電 流的大小,使得各個發光元件的驅動電流匹配。 根據本發明的實施例,所述電流均衡單元從所述第一 參考電壓產生第二參考電壓,並且基於第二參考電壓調節 流過各個發光單元的驅動電流。 根據本發明的實施例’所述電流均衡單元包括:參考 電壓產生單元,基於所述第一參考電壓產生參考電流,並 且基於所述參考電流輸出多個相同的第二參考電壓;以及 電流調整電路’基於所述第二參考電壓以負回饋的方式調 節流過各個發光元件的驅動電流。 根據本發明的實施例,通過調節所述第一參考電壓和 /或與所述第一參考電壓串聯的器件的値來調節所述參考 電流。 根據本發明的實施例,所述參考電壓產生單元包括: 電流參考電路,在其一個輸入端耦接所述第一參考電壓, 在其另一個輸入端耦接所述器件,並基於所述第一參考電 壓與所述器件的値產生參考電流;電流鏡電路,接收所述 參考電流’並以相同的比例產生所述參考電流的多個複製 電流;電壓參考電路,接收所述多個複製電流,並將該多 個複製電流轉換爲多個相同的第二參考電壓。 根據本發明的實施例,所述電流參考電路包括:運算 放大器,其同相輸入端耦接所述第一參考電壓,其反相輸 入端耦接所述器件,其輸出端耦接所述可控電流源的控制 端;可控電流源,其控制端耦接所述運算放大器的輸出端 201228453 ,其一個電流端耦接所述運算放大器的反相輸入端,其另 一個電流端輸出所述參考電流。 根據本發明的實施例,所述可控電流源包括MOSFET ,其閘極耦接所述運算放大器的輸出端,源極耦接所述運 算放大器的反相輸入端,汲極輸出所述參考電流。 根據本發明的實施例,所述電流鏡電路包括多個並聯 耦接的電流鏡,所述多個並聯耦接的電流鏡具有共同的電 流接收端,用於接收所述參考電流,並在各自的電流輸出 端產生所述複製電流。 根據本發明的實施例,所述多個並聯耦接的電流鏡中 的每一個均包括MOSFET。 根據本發明的實施例,所述電壓參考電路包括多個阻 値相同的電阻,每個電阻的一端分別對應耦接所述多個複 製電流中的一個,另一端耦接到地》 根據本發明的實施例,所述電流調整電路接收所述多 個第二參考電壓,檢測所述流經每個發光元件的驅動電流 並提供代表每個驅動電流的多個回饋電壓,將所述多個回 饋電壓分別與所述多個第二參考電壓相比較,以調節所述 流經每個發光元件的驅動電流。 根據本發明的實施例,所述電流調整電路包括多個電 流調整器’每個所述電流調整器均包括:第二可控電流源 ’其一個電流端耦接相應的發光元件並爲與該發光元件提 供驅動電流;電流檢測電路,耦接到所述第二可控電流源 的另~電流端,檢測與其對應耦接的所述第二可控電流源 -8 - 201228453 提供的驅動電流,並產生代表該驅動電流的回饋電壓;第 二運算放大器,其同相輸入端耦接所述多個第二參考電壓 中的一個,其反相輸入端耦接所述回饋電壓,其輸出端耦 接所述可控電流源的控制端。 根據本發明的實施例,所述第二可控電流源爲 MOSFET,其閘極耦接所述第二運算放大器的輸出端,源 極耦接所述電流檢測電路,汲極耦接相應的發光元件^ 根據本發明的實施例,所述電流檢測電路包括電阻器 〇 根據本發明的實施例,所述的驅動器還包括故障檢測 及保護電路,其耦接所述多個發光元件以及所述輸出端, 用於根據每個發光元件另一端處的電壓和/或所述輸出電 壓’檢測各個發光元件的開路或短路故障和/或所述輸出 電壓的過壓或欠壓故障。 根據本發明的實施例,所述故障檢測及保護電路包括 第一回饋電路,其接收所述多個發光元件的另一端處的電 壓’並向所述電壓轉換單元提供第一回饋信號,以便調節 所述輸出電壓,其中,所述第一回饋信號代表所述多個發 光元件的另一端處的電壓中的最小電壓。 根據本發明的實施例,所述電壓轉換單元接收所述第 一回饋信號,並將其與第二參考電壓相比較以提供誤差放 大信號,根據所述誤差放大信號調節所述輸出電壓。 根據本發明的實施例,所述故障檢測及保護電路包括 第二回饋電路,其接收所述輸出電壓,並產生代表所述輸201228453 VI. Description of the Invention: [Technical Field] The present invention relates to a driver and a display device for a light-emitting element, and more particularly to a driver for a plurality of parallel light-emitting elements and a display device thereof. [Prior Art] Currently, an LED is The utility model has the advantages of small volume, low power consumption, high luminous efficiency, long life and the like, and is widely used in display devices of various electronic products, for example, as a backlight device of a liquid crystal display, which is constantly replacing a conventional discharge lamp. In various applications where LEDs are used as backlight devices, system operation safety and fault detection, fault protection, etc. are very important, and 'the uniformity and consistency of their illumination in backlight applications using multiple LED/LED strings. It is also what users expect, which requires that the current flowing through each LED/LED string must be evenly matched. In order to realize the above various functions, the LED driving circuit in the prior art mostly uses a DC-DC converter as a power supply circuit of the LED, and uses various discrete circuits and discrete devices in combination with a DC-DC converter to achieve fault detection and fault protection. The purpose of current sharing. FIG. 1 is a schematic block diagram of a circuit of an LED driving circuit 1〇〇 in the prior art. The driving circuit 100 includes a DC-DC converter 101 for receiving a supply voltage Vin and converting it into a suitable output voltage Vout (not shown) to drive a plurality of LED/LED strings to emit light; the current source circuit 1〇 2, electrically coupled to the plurality of LED / LED strings to adjust the current of each LED / LED string; fault detection circuit 103 for detecting one or more LED / LED string open circuit or short -5 - 201228453 And providing a fault signal; the fault protection circuit 104 provides a trigger signal to the DC-DC conversion unit to perform a fault protection function. Typically, the current source circuit 102 is implemented by a separate current mirror circuit of LEDs/LED strings; the fault may include circuitry for detecting the on condition of each LED/LED string, respectively: the fault protection circuit 104 provides processing corresponding to the condition and protect the circuit. Therefore, the method between the components of each discrete current mirror circuit of the prior art circuit 102 achieves a good current matching effect. In addition, the fault detecting circuit 103 and the fault protection power g are different discrete circuits and discrete devices to realize detection and protection for each fault and for the DC-DC converter 101. This not only increases the complex cost of the entire driving circuit, but also increases the difficulty of debugging the circuit in the design process. SUMMARY OF THE INVENTION In view of one or more problems in the prior art, the present invention provides a driver and a display device for a light-emitting component. In one aspect of the invention, a drive multi-driver is provided, comprising: a voltage conversion unit, an input voltage receiving input power generating an output voltage at an output, wherein one end is applied to each of the light-emitting elements; and a current equalization of each of the light-emitting elements One end is configured to generate a current for the plurality of currents, wherein the current equalization unit is further coupled to receive the first i 1 〇1 to trigger its corresponding coupling to each of the detection circuits 1 〇 3 or short circuit For each specific fault, due to the difference in current sources, there is no need for the detection of the short-circuit of each of the LEDs/LED strings, and the voltage of one of the light-emitting elements of the invention, based on the received output voltage. Coupling to the optical component to provide a reference voltage, -6-201228453 based on the first reference voltage to regulate the flow through each The driving currents of the light-emitting elements are sized such that the driving currents of the respective light-emitting elements match. According to an embodiment of the invention, the current equalization unit generates a second reference voltage from the first reference voltage, and adjusts a drive current flowing through the respective light emitting units based on the second reference voltage. According to an embodiment of the present invention, the current equalization unit includes: a reference voltage generating unit that generates a reference current based on the first reference voltage, and outputs a plurality of identical second reference voltages based on the reference current; and a current adjustment circuit The drive current flowing through the respective light-emitting elements is adjusted in a negative feedback manner based on the second reference voltage. According to an embodiment of the invention, the reference current is adjusted by adjusting the first reference voltage and/or the 値 of the device in series with the first reference voltage. According to an embodiment of the invention, the reference voltage generating unit comprises: a current reference circuit coupled to the first reference voltage at one input thereof and coupled to the device at another input thereof, and based on the a reference voltage and a reference current of the device to generate a reference current; a current mirror circuit receiving the reference current 'and generating a plurality of replica currents of the reference current in the same ratio; a voltage reference circuit receiving the plurality of replica currents And converting the plurality of replica currents into a plurality of identical second reference voltages. According to an embodiment of the invention, the current reference circuit includes an operational amplifier having a non-inverting input coupled to the first reference voltage, an inverting input coupled to the device, and an output coupled to the controllable a control terminal of the current source, the control terminal is coupled to the output end of the operational amplifier 201228453, one current terminal is coupled to the inverting input terminal of the operational amplifier, and the other current terminal is outputting the reference Current. According to an embodiment of the invention, the controllable current source includes a MOSFET having a gate coupled to an output of the operational amplifier, a source coupled to an inverting input of the operational amplifier, and a drain outputting the reference current . According to an embodiment of the invention, the current mirror circuit comprises a plurality of parallel coupled current mirrors, the plurality of parallel coupled current mirrors having a common current receiving end for receiving the reference current and The current output produces the replica current. According to an embodiment of the invention, each of the plurality of parallel coupled current mirrors comprises a MOSFET. According to an embodiment of the invention, the voltage reference circuit includes a plurality of resistors having the same resistance, one end of each resistor is respectively coupled to one of the plurality of replica currents, and the other end is coupled to the ground according to the present invention. In an embodiment, the current adjustment circuit receives the plurality of second reference voltages, detects the driving current flowing through each of the light emitting elements, and provides a plurality of feedback voltages representing each of the driving currents, and the plurality of feedbacks The voltages are respectively compared with the plurality of second reference voltages to adjust the drive current flowing through each of the light emitting elements. According to an embodiment of the invention, the current adjustment circuit includes a plurality of current regulators each of the current regulators including: a second controllable current source 'one of the current terminals coupled to the corresponding light-emitting element and The illuminating element provides a driving current; the current detecting circuit is coupled to the other current end of the second controllable current source, and detects a driving current provided by the second controllable current source -8 - 201228453 coupled thereto, And generating a feedback voltage representative of the driving current; the second operational amplifier has a non-inverting input coupled to one of the plurality of second reference voltages, an inverting input coupled to the feedback voltage, and an output coupled The control end of the controllable current source. According to an embodiment of the invention, the second controllable current source is a MOSFET, the gate is coupled to the output end of the second operational amplifier, the source is coupled to the current detecting circuit, and the drain is coupled to the corresponding light emitting Element ^ According to an embodiment of the invention, the current detecting circuit comprises a resistor 〇 according to an embodiment of the invention, the driver further comprising a fault detecting and protecting circuit coupled to the plurality of light emitting elements and the output And for detecting an open or short circuit fault of each of the light emitting elements and/or an overvoltage or undervoltage fault of the output voltage according to a voltage at the other end of each of the light emitting elements and/or the output voltage. According to an embodiment of the invention, the fault detection and protection circuit comprises a first feedback circuit that receives a voltage ' at the other end of the plurality of light-emitting elements and provides a first feedback signal to the voltage conversion unit for adjustment The output voltage, wherein the first feedback signal represents a minimum voltage among voltages at the other end of the plurality of light emitting elements. According to an embodiment of the invention, the voltage conversion unit receives the first feedback signal and compares it with a second reference voltage to provide an error amplification signal, the output voltage being adjusted according to the error amplification signal. According to an embodiment of the invention, the fault detection and protection circuit includes a second feedback circuit that receives the output voltage and generates a representative representative of the input

S -9 - 201228453 出電壓的第二回饋信號。 根據本發明的實施例,所述故障檢測及保護電路還包 括過壓檢測模組,其基於所述第二回饋信號檢測所述輸出 電壓的過壓,並產生過壓故障信號。 根據本發明的實施例,所述過壓檢測模組包括過壓檢 測比較器,用於接收所述第二回饋信號,將其與過壓閾値 電壓比較並提供過壓故障信號;所述過壓故障信號,在所 述第二回饋信號大於所述過壓閾値電壓時爲代表所述輸出 電壓過壓的邏輯狀態,並觸發所述電壓轉換器將其中的開 關器件關斷,在所述第二回饋信號小於所述過壓閾値電壓 時爲代表所述輸出電壓正常的邏輯狀態。 根據本發明的實施例,所述過壓檢測及保護電路還包 括欠壓檢測模組,其基於所述第二回饋信號檢測所述輸出 電壓的欠壓,並產生欠壓故障信號。 根據本發明的實施例,所述過壓檢測模組包括欠壓檢 測比較器,用於接收所述第二回饋信號,將其與欠壓閩値 電壓比較並提供欠壓故障信號;所述欠壓故障信號,在所 述第二回饋信號小於所述欠壓閩値電壓時爲代表所述輸出 電壓欠壓的邏輯狀態,並將所述的驅動器關斷,在所述第 二回饋信號大於所述欠壓閾値電壓時爲代表所述輸出電壓 正常的邏輯狀態。 根據本發明的實施例,所述故障檢測及保護電路還包 括多個發光元件故障保護模組,每個所述發光元件故障保 護模組耦接相應發光元件的另一端,接收與其對應耦接的 -10- 201228453 另一端處的電壓以及所述過壓故障信號,判斷與其對應稱 接的發光元件的開路或者短路故障,並產生第一觸發信號 ;如果與其對應耦接的發光元件開路並且所述過壓故障信 號爲代表所述輸出電壓過壓的邏輯狀態或者與其對應親接 的發光元件短路,則所述第一觸發信號爲觸發狀態,並將 與其耦接的發光元件關斷;否則所述第一觸發信號爲非觸 發狀態。 根據本發明的實施例,每個所述發光元件故障保護模 組均包括:開路檢測比較器,接收與所述發光元件故障保 護模組對應耦接的發光元件的另一端處的電壓,將其與開 路閾値電壓相比較,產生開路故障信號;所述開路故障信 號,在所述發光元件的另一端處的電壓大於所述開路閾値 電壓時爲代表發光元件正常的邏輯狀態,在所述發光元件 另一端處的電壓小於所述開路閩値電壓時爲代表發光元件 開路的邏輯狀態;短路檢測比較器,接收與所述發光元件 故障保護模組對應耦接的發光元件的另一端處的電壓,將 其與短路閾値電壓相比較,產生短路故障信號:所述短路 故障信號,在所述發光元件另一端處的電壓大於所述短路 閾値電壓時爲代表發光元件短路的邏輯狀態,在所述發光 元件另一端處的電壓小於所述短路閾値電壓時爲代表發光 元件正常的邏輯狀態;觸發電路,接收所述開路故障信號 、所述短路故障信號以及所述過壓故障信號,並提供所述 第一觸發信號:當所述開路故障信號爲代表發光元件開路 的邏輯狀態並且所述過壓故障信號爲代表所述輸出電壓過 5 -11 - 201228453 壓的邏輯狀態時或者所述短路故障信號爲代表發光元件短 路的邏輯狀態的持續時間達到預先設定的閾値時,所述第 一觸發信號爲觸發狀態;否則所述第一觸發信號爲非觸發 狀態。 根據本發明的實施例,所述觸發電路包括:第一邏輯 閘’接收所述開路故障信號和所述過壓故障信號,輸出第 二觸發信號,其中所述第二觸發信號在所述開路故障信號 爲代表發光元件開路的邏輯狀態並且所述過壓故障信號爲 代表所述輸出電壓過壓的邏輯狀態時爲觸發狀態,否則爲 非觸發狀態;計時器,具有所述預先設定的閾値,其接收 所述短路故障信號,並輸出第三觸發信號,其中,當所述 短路故障信號爲代表發光元件短路的邏輯狀態時,所述計 時器開始計時,並且當該計時器達到所述預先設定的閾値 時’所述第三觸發信號爲觸發狀態;如果所述短路故障信 號爲代表發光元件正常的邏輯狀態或所述計時器未達到所 述預先設定的閩値,則所述第三觸發信號爲非觸發狀態; 第一邏輯閘’接收所述第二和第三觸發信號,並輸出所述 第一觸發信號,其中,當所述第二和第三觸發信號中至少 有一個爲觸發狀態時,所述第一觸發信號爲觸發狀態;只 有所述第二和第三觸發信號均爲非觸發狀態時,所述第一 觸發信號爲非觸發狀態。 根據本發明的實施例’所述故障檢測及保護電路還包 括系統關斷觸發電路,其接收所述多個發光元件故障保護 模組輸出的多個所述第一觸發信號,並產生第四觸發信號 -12- 201228453 ,其中,所述第四觸發信號在該多個所述第一觸發信號均 爲觸發狀態時爲觸發狀態,並將所述驅動器關斷,在該多 個所述第一觸發信號中至少有一個爲非觸發狀態時爲非觸 發狀態並不關斷所述驅動器。 根據本發明的實施例,所述的驅動器還包括狀態指示 電路,其接收所述過壓故障信號或者所述欠壓故障信號或 者所述第四觸發信號,並產生指示信號,其中,所述指示 信號在所述過壓故障信號爲代表所述輸出電壓過壓的邏輯 狀態或者所述欠壓故障信號爲代表所述輸出電壓欠壓的邏 輯狀態或者所述第四觸發信號爲觸發狀態時爲代表所述驅 動器故障的邏輯狀態,否則爲代表所述驅動器正常的邏輯 狀態。 根據本發明的實施例,所述的驅動器還包括移相PWM 調光電路,其接收PWM調光輸入信號,將其移相後產生多 個PWM調光信號;所述PWM調光輸入信號和所述多個 PWM調光信號被耦合到所述電流均衡電路,用於以——對 應的方式分別對所述多個發光元件中的不同發光元件進行 調光’其中用於相繼點亮/關斷兩個發光元件的兩個PWM 調光信號之間相差一個預先設定的相位値。 根據本發明的實施例,所述多個發光元件的個數爲N ’所述多個PWM調光信號的個數爲N-1,所述預先設定的 相位値爲2π/Ν,其中N爲大於1的整數。 根據本發明的實施例,所述移相PWM調光電路包括Ν-1個延時電路,其均接收所述PWM調光輸入信號,並且分S -9 - 201228453 The second feedback signal of the voltage. According to an embodiment of the invention, the fault detection and protection circuit further includes an overvoltage detection module that detects an overvoltage of the output voltage based on the second feedback signal and generates an overvoltage fault signal. According to an embodiment of the invention, the overvoltage detection module includes an overvoltage detection comparator for receiving the second feedback signal, comparing it with an overvoltage threshold voltage and providing an overvoltage fault signal; a fault signal, when the second feedback signal is greater than the overvoltage threshold voltage, is a logic state representing the output voltage overvoltage, and triggering the voltage converter to turn off the switching device therein, in the second When the feedback signal is less than the overvoltage threshold voltage, it is a logic state that represents the normal output voltage. According to an embodiment of the invention, the overvoltage detection and protection circuit further includes an undervoltage detection module that detects an undervoltage of the output voltage based on the second feedback signal and generates an undervoltage fault signal. According to an embodiment of the invention, the overvoltage detection module includes an undervoltage detection comparator for receiving the second feedback signal, comparing it with an undervoltage 闽値 voltage and providing an undervoltage fault signal; Pressing a fault signal, when the second feedback signal is less than the undervoltage 闽値 voltage, is a logic state representing the undervoltage of the output voltage, and turning off the driver, where the second feedback signal is greater than When the undervoltage threshold voltage is described, it is a logic state representing that the output voltage is normal. According to an embodiment of the invention, the fault detection and protection circuit further includes a plurality of light-emitting element fault protection modules, each of the light-emitting element fault protection modules being coupled to the other end of the corresponding light-emitting element, and receiving the corresponding coupling -10- 201228453 The voltage at the other end and the overvoltage fault signal determine an open or short circuit fault of the corresponding light emitting element and generate a first trigger signal; if the corresponding light emitting element is open and said The overvoltage fault signal is a logic state representing the output voltage overvoltage or a short circuit corresponding to the corresponding light emitting component, the first trigger signal is a trigger state, and the light emitting component coupled thereto is turned off; otherwise The first trigger signal is in a non-trigger state. According to an embodiment of the present invention, each of the light-emitting element fault protection modules includes: an open-circuit detection comparator that receives a voltage at a other end of the light-emitting element coupled to the light-emitting element fault protection module, and Comparing with the open threshold 値 voltage, generating an open circuit fault signal; the open circuit fault signal is a logic state representing a normal illuminating element when the voltage at the other end of the illuminating element is greater than the open threshold 値 voltage, The voltage at the other end is less than the open circuit voltage, which is a logic state representing the open state of the light emitting element; the short circuit detecting comparator receives the voltage at the other end of the light emitting element coupled to the light emitting element fault protection module, Comparing with the short-circuit threshold voltage, a short-circuit fault signal is generated: the short-circuit fault signal is a logic state representing a short-circuit of the light-emitting element when the voltage at the other end of the light-emitting element is greater than the short-circuit threshold voltage, in the light-emitting When the voltage at the other end of the element is less than the short-circuit threshold voltage, it is a normal logic representing the light-emitting element. a trigger circuit that receives the open circuit fault signal, the short circuit fault signal, and the overvoltage fault signal, and provides the first trigger signal: when the open circuit fault signal is a logic state representing an open state of the light emitting element and When the overvoltage fault signal is in a logic state indicating that the output voltage exceeds 5 -11 - 201228453 or when the duration of the short circuit fault signal is a logic state representing a short circuit of the light emitting element reaches a preset threshold 所述A trigger signal is a trigger state; otherwise, the first trigger signal is a non-trigger state. According to an embodiment of the invention, the trigger circuit includes: the first logic gate receives the open fault signal and the overvoltage fault signal, and outputs a second trigger signal, wherein the second trigger signal is in the open fault The signal is a logic state representing an open state of the light emitting element, and the overvoltage fault signal is a trigger state when it is a logic state representing the output voltage overvoltage, and is otherwise a non-trigger state; the timer has the preset threshold threshold, Receiving the short circuit fault signal, and outputting a third trigger signal, wherein when the short circuit fault signal is a logic state representing a short circuit of the light emitting element, the timer starts counting, and when the timer reaches the preset The third trigger signal is a trigger state; if the short circuit fault signal is a normal logic state representing the light emitting element or the timer does not reach the preset threshold, the third trigger signal is a non-trigger state; the first logic gate 'receives the second and third trigger signals, and outputs the first trigger signal The first trigger signal is a trigger state when at least one of the second and third trigger signals is in a trigger state; and only the second and third trigger signals are in a non-trigger state, The first trigger signal is in a non-trigger state. According to the embodiment of the present invention, the fault detection and protection circuit further includes a system shutdown trigger circuit that receives a plurality of the first trigger signals output by the plurality of light-emitting element fault protection modules, and generates a fourth trigger The signal -12-201228453, wherein the fourth trigger signal is in a trigger state when the plurality of the first trigger signals are in a trigger state, and the driver is turned off, in the plurality of the first triggers A non-trigger state when at least one of the signals is in a non-trigger state does not turn off the drive. According to an embodiment of the invention, the driver further includes a status indicating circuit that receives the overvoltage fault signal or the undervoltage fault signal or the fourth trigger signal and generates an indication signal, wherein the indication The signal is representative when the overvoltage fault signal is a logic state representing the output voltage overvoltage or the undervoltage fault signal is a logic state representing the output voltage undervoltage or the fourth trigger signal is a trigger state. The logical state of the drive failure, otherwise representing the normal logical state of the drive. According to an embodiment of the invention, the driver further includes a phase shifting PWM dimming circuit that receives the PWM dimming input signal and phase shifts it to generate a plurality of PWM dimming signals; the PWM dimming input signal and the a plurality of PWM dimming signals coupled to the current equalization circuit for respectively dimming different ones of the plurality of light emitting elements in a corresponding manner - wherein for successive lighting/shutdown The two PWM dimming signals of the two illuminating elements differ by a predetermined phase 値. According to an embodiment of the invention, the number of the plurality of light-emitting elements is N', the number of the plurality of PWM dimming signals is N-1, and the predetermined phase 値 is 2π/Ν, wherein N is An integer greater than one. According to an embodiment of the invention, the phase shifting PWM dimming circuit comprises Ν-1 delay circuits, each receiving the PWM dimming input signal, and dividing

B -13- 201228453 別對所述PWM調光輸入信號延時,產生Ν-l個PWM調光信 號’其中相鄰的兩個PWM調光信號之間具有1/N倍的所述 PWM調光輸入信號的週期的延時。 根據本發明的實施例,所述移相PWM調光電路包括: 倍頻電路,接收所述PWM調光輸入信號,並且產生第一脈 衝信號和第二脈衝信號,其中,第一脈衝信號以該PWM調 光輸入信號的上升邊緣爲起點對其進行N倍頻,第二脈衝 信號以該PWM調光輸入信號的下降邊緣爲起點對其進行N 倍頻;延時模組,接收所述PWM調光輸入信號以及所述第 —和第二脈衝信號,基於對所述第一和第二脈衝信號分別 以所述PWM調光輸入信號的上升邊緣和下降邊緣爲觸發進 行脈衝計數以實現對所述PWM調光輸入信號的移相。 根據本發明的實施例,所述倍頻電路包括:第一倍頻 電路,接收所述PWM調光輸入信號,並且以該PWM調光輸 入信號的上升邊緣爲觸發對其進行N倍頻,產生第一脈衝 信號;和第二倍頻電路,接收所述PWM調光輸入信號,並 且以該PWM調光輸入信號的下降邊緣爲觸發對其進行N倍 頻,產生第二脈衝信號》 根據本發明的實施例,所述延時模組包括N-1個延時 電路,均接收所述PWM調光輸入信號以及所述第一和第二 脈衝信號,分別輸出第1至Ν-l個所述PWM調光信號;其中 ,第1至Ν-l個所述延時電路分別以所述PWM調光輸入信號 的上升邊緣爲觸發對第一脈衝信號的正脈衝進行計數,同 時以所述PWM調光輸入信號的下降邊緣爲觸發對第二脈衝 -14- 201228453 信號的負脈衝進行計數,並且分別對第一脈衝信號的正脈 衝計數到2至N時對應產生所述第1至N-1個PWM調光輸入 信號的上升邊緣,分別對第二脈衝信號的負脈衝計數到2 至N時對應產生所述第1至N-1個PWM調光輸入信號的下降 邊緣。 根據本發明的實施例,所述N-1個延時電路均包括正 脈衝計數器 '負脈衝計數器和觸發器,其中,對於第X個 所述延時電路:所述正脈衝計數器在其致能輸入端接收所 述PWM調光輸入信號,在其計數輸入端接收所述第—脈衝 信號,並且在所述PWM調光輸入信號的上升邊緣時被觸發 致能’對所述第一脈衝信號的高電平脈衝進行計數,當計 數爲(X+1)時,輸出第一單脈衝,該第一單脈衝將正脈衝 計數器重設而停止計數;所述負脈衝計數器在其致能輸入 端接收所述PWM調光輸入信號,在其計數輸入端接收所述 第二脈衝信號,並且在所述PWM調光輸入信號的下降邊緣 時被觸發致能’對所述第二脈衝信號的低電平脈衝進行計 數’當計數爲(X+1)時,輸出第二單脈衝,該第二單脈衝 將負脈衝計數器重設而停止計數;所述觸發器,在其置位 端接收所述第一單脈衝,在其重設端接收所述第二單脈衝 ,輸出第X個PWM調光信號;其中X從1變化到N-1。 根據本發明的實施例,所述第一和第二倍頻電路爲鎖 相迴路電路。 在本發明的另一方面,提出了一種顯示設備,它包括 如上所述的驅動器。B -13- 201228453 Don't delay the PWM dimming input signal, generate Ν-1 PWM dimming signals' 1×N times the PWM dimming input between two adjacent PWM dimming signals The delay of the period of the signal. According to an embodiment of the invention, the phase shifting PWM dimming circuit comprises: a frequency multiplying circuit, receiving the PWM dimming input signal, and generating a first pulse signal and a second pulse signal, wherein the first pulse signal is The rising edge of the PWM dimming input signal is N times the starting point, and the second pulse signal is N-multiplied by the falling edge of the PWM dimming input signal; the delay module receives the PWM dimming The input signal and the first and second pulse signals are pulsed based on triggering the rising edge and the falling edge of the PWM dimming input signal respectively to the first and second pulse signals to implement the PWM Phase shifting of the dimming input signal. According to an embodiment of the invention, the frequency multiplying circuit comprises: a first frequency multiplying circuit, receiving the PWM dimming input signal, and performing N multiplication on the rising edge of the PWM dimming input signal to generate a first pulse signal; and a second frequency multiplying circuit, receiving the PWM dimming input signal, and performing N multiplication on the falling edge of the PWM dimming input signal to generate a second pulse signal. According to the present invention In an embodiment, the delay module includes N-1 delay circuits, each receiving the PWM dimming input signal and the first and second pulse signals, and outputting the first to the first one of the PWM tones respectively. An optical signal; wherein, the first to the first ones of the delay circuits respectively count a positive pulse of the first pulse signal by using a rising edge of the PWM dimming input signal, and simultaneously input the signal by the PWM dimming The falling edge is for triggering the counting of the negative pulse of the second pulse -14 - 201228453 signal, and correspondingly generating the first to N -1 PWM dimming when counting the positive pulse of the first pulse signal to 2 to N respectively Input signal rise Generating a falling edge corresponding to the N-1 of said first input signal to the PWM dimming of the trailing edge, respectively of the negative pulse of the second pulse signal is counted to 2 N. According to an embodiment of the invention, the N-1 delay circuits each comprise a positive pulse counter 'negative pulse counter and a flip flop, wherein for the Xth delay circuit: the positive pulse counter is at its enable input Receiving the PWM dimming input signal, receiving the first pulse signal at its counting input terminal, and being triggered to enable 'high power to the first pulse signal when rising edge of the PWM dimming input signal The flat pulse counts, when the count is (X+1), the first single pulse is output, the first single pulse resets the positive pulse counter to stop counting; the negative pulse counter receives the said at its enable input a PWM dimming input signal, receiving the second pulse signal at a count input thereof, and being enabled to enable a low level pulse of the second pulse signal at a falling edge of the PWM dimming input signal Counting 'when the count is (X+1), outputting a second single pulse, the second single pulse resets the negative pulse counter to stop counting; the flip-flop receives the first single pulse at its set terminal ,In its Provided receiving said second one-shot pulse, the output of a PWM dimming signal X; wherein X varying from 1 to N-1. According to an embodiment of the invention, the first and second frequency multiplying circuits are phase locked loop circuits. In another aspect of the invention, a display device is provided which includes a driver as described above.

S -15- 201228453 利用上述方案,LED發光元件的發光均句性和一致性 得到提高。 另外,本發明的實施例還提供了故障檢測和保護功能 ,以及PWM調光功能。 式 方 施 下面詳細說明本發明實施例的發光元件的驅動器。在 接下來的說明中,一些具體的細節,例如實施例中的具體 電路結構和這些電路兀件的具體參數,都用於對本發明的 實施例提供更好的理解。本技術領域的技術人員可以理解 ,即使在缺少一些細節或者其他方法、元件、材料等結合 的情況下,本發明的實施例也可以被實現。 本發明的一個實施例提供具有高精度電流匹配功能的 LED驅動器,它包括下面所述的DC-DC轉換器和電流均衡 電路。 本發明的不同實施例還爲該LED驅動器提供了多種故 障檢測與保護功能。本發明不同的實施例還提供適用於 LED驅動電路的高精度電流匹配電路以及多功能故障檢測 與保護電路》 另外,在採用多個並聯的LED/LED串的應用中,如果 要對這些LED/LED串進行調光,則當這些並聯的LED/LED 串在一個週期中以相同的相位被點亮或者被熄滅時,會引 起一個週期內驅動電路輸出總電流的較大躍變,因而會在 驅動電路的輸入以及輸出電感和電容上引起較大的負荷, -16- 201228453 從而造成較大的雜訊,還會減短電路器件的使用壽命。 本發明的不同實施例針對上述問題,還提供移相PWM 調光電路,以使得多個並聯的LED/LED串在一個週期中以 不同的相位被點亮或者被熄滅,從而達到降低雜訊、減小 驅動電路的輸入或者輸出濾波電感及電容尺寸以及延長電 路器件使用壽命的目的。 本發明的不同實施例涉及包括上述的驅動器和/或相 關電路的顯示設備,例如LED顯示器、OLED顯示器等。 在接下來的詳細說明中,將以DC-DC轉換器作爲LED 的供電電路爲例對本發明一個實施例的LED驅動器進行闡 述,以使本領域技術人員能夠更好的理解本發明。然而本 領域的技術人員應該理解,這些說明只是示例性的,並不 用於限定本發明的範圍。 如圖2所示,爲根據本發明一個實施例的led驅動器 200的電路模組示意圖。該LED驅動器200具備DC-DC轉換 器20 1,用於接收供電電壓Vin,並將其轉換爲合適的輸出 電壓Vout以驅動多個LED/LED串202發光。 該LED驅動器200還包括電流均衡電路203,它通過該 LED驅動器200的多個LED驅動引腳LEDp LED2……LEDN 電耦接於所述多個LED/LED串2〇2,以調節流經每個 LED/LED 串 202的電流 Iledx ( X=1、2......N)。根據本發 明的一個實施例,電流均衡電路2〇3從一第一參考電壓產 生一第二參考電壓,並且基於第二參考電壓調節流過各個 LED串202的驅動電流。 -17- 201228453 該LED驅動器200還包括故障檢測及保護電路204,它 耦接LED驅動器200的多個LED驅動引腳LED,、LED2...... LEDn及其輸出端OUT,檢測每個LED驅動引腳LEDi、 LED2...... LEDN處的電壓VLEDX ( X=1、2......N )以及所述 輸出電壓Vout。另外,故障檢測及保護電路204還提供代 表該多個LED驅動引腳處的電壓VLEDX(X=1、2......N)中S -15- 201228453 With the above scheme, the illumination uniformity and consistency of the LED light-emitting elements are improved. In addition, embodiments of the present invention also provide fault detection and protection functions, as well as PWM dimming functions. The driver of the light-emitting element of the embodiment of the present invention will be described in detail below. In the following description, some specific details, such as specific circuit configurations in the embodiments and specific parameters of these circuit components, are used to provide a better understanding of the embodiments of the invention. Those skilled in the art will appreciate that embodiments of the present invention can be implemented even in the absence of some detail or a combination of other methods, elements, materials, and the like. One embodiment of the present invention provides an LED driver having a high precision current matching function including the DC-DC converter and current balancing circuit described below. Different embodiments of the present invention also provide a variety of fault detection and protection functions for the LED driver. Different embodiments of the present invention also provide a high-precision current matching circuit suitable for an LED driving circuit and a multi-function fault detecting and protecting circuit. In addition, in applications in which multiple parallel LED/LED strings are used, if these LEDs are to be When the LED string is dimmed, when these parallel LED/LED strings are lit or extinguished in the same phase in one cycle, it will cause a large jump in the total current output of the drive circuit in one cycle, and thus The input of the driver circuit and the output inductor and capacitor cause a large load, which causes large noise and shortens the service life of the circuit device. Different embodiments of the present invention are directed to the above problems, and further provide a phase shifting PWM dimming circuit such that a plurality of parallel LED/LED strings are illuminated or extinguished in different phases in one cycle, thereby reducing noise, Reduce the input or output filter inductor and capacitor size of the driver circuit and extend the life of the circuit device. Various embodiments of the present invention are directed to display devices including the above described drivers and/or associated circuits, such as LED displays, OLED displays, and the like. In the following detailed description, an LED driver of one embodiment of the present invention will be described by taking a DC-DC converter as a power supply circuit for an LED as an example, so that those skilled in the art can better understand the present invention. However, it should be understood by those skilled in the art that these descriptions are only illustrative and are not intended to limit the scope of the invention. As shown in FIG. 2, it is a schematic diagram of a circuit module of a LED driver 200 according to an embodiment of the present invention. The LED driver 200 is provided with a DC-DC converter 20 1 for receiving a supply voltage Vin and converting it to a suitable output voltage Vout to drive a plurality of LED/LED strings 202 to emit light. The LED driver 200 further includes a current balancing circuit 203 that is electrically coupled to the plurality of LED/LED strings 2〇2 through a plurality of LED driving pins LEDp LED2...LEDN of the LED driver 200 to regulate flow through each The current Iledx (X=1, 2...N) of the LED/LED string 202. In accordance with an embodiment of the present invention, current equalization circuit 2〇3 generates a second reference voltage from a first reference voltage and regulates the drive current flowing through each of the LED strings 202 based on the second reference voltage. -17- 201228453 The LED driver 200 further includes a fault detection and protection circuit 204 coupled to a plurality of LED drive pin LEDs of the LED driver 200, LEDs 2... LEDn and its output terminal OUT, detecting each LED drive pins LEDi, LED2... voltage VLEDX (X=1, 2...N) at LEDN and the output voltage Vout. In addition, the fault detection and protection circuit 204 is also provided to represent the voltage VLEDX (X = 1, 2, ... N) at the plurality of LED drive pins.

最小電壓的第一回饋信號以及代表該輸出電壓Vout的第二 回饋信號,基於該第一和第二回饋信號以及所述多個LED 驅動引腳處的電壓Vledx (X=l、2...... N)檢測一個或者 多個LED/LED串的開路或者短路以及集成LED驅動器200的 輸出過壓或者輸出端OUT短路等故障狀態,並提供故障信 號以及觸發信號,以觸發LED驅動器200執行故障保護功 能。 該LED驅動器200還包括狀態指示電路205,它接收所 述故障信號及觸發信號,並提供指示信號以表明驅動器 2 00的運行狀態,比如正常狀態或者故障及保護狀態,從 而與驅動器200相關的其他外部電路通過該指示信號即可 判斷該驅動器200的運行狀況。 根據本發明的一個實施例,所述第一回饋信號還被饋 送至所述DC-DC轉換器201以調節其輸出電壓Vout»所述 DC-DC轉換器201通過其內部的誤差放大器將所述第一回 饋信號與一參考電壓相比較並提供誤差放大信號。如果所 述第一回饋信號小於所述參考電壓,所述誤差信號將增大 並調節輸出電壓Vout增大。如果所述第一回饋信號大於所 -18- 201228453 述參考電壓,所述誤差信號將減小並調節輸出電壓Vout減 小。這樣,通過回饋調節使得LED驅動器200的輸出電壓 Vout保持在合適的値以驅動多個LED/LED串202正常工作 〇 根據本發明的不同實施例,LED驅動器200還包括移 相PWM調光電路206,電耦接於所述電流均衡電路203,調 節其在一個週期T內以不同的相位對所述多個LED/LED串 202進行調光。也就是說,在一個週期T內提供給所述多個 LED/LED 串 202 的 PWM 電流 ILEDX ( X=1、2...... N )之間的 相位不同。比如,相繼被點亮的LED/LED串202的電流(a first feedback signal of a minimum voltage and a second feedback signal representative of the output voltage Vout, based on the first and second feedback signals and a voltage Vledx (X=l, 2... N) detecting an open or short circuit of one or more LED/LED strings and a fault state such as an output overvoltage of the integrated LED driver 200 or a short circuit of the output terminal OUT, and providing a fault signal and a trigger signal to trigger the LED driver 200 to execute Fault protection. The LED driver 200 further includes a status indicating circuit 205 that receives the fault signal and the trigger signal and provides an indication signal to indicate an operating state of the driver 200, such as a normal state or a fault and a protection state, thereby being associated with the driver 200. The external circuit can determine the operating condition of the driver 200 by the indication signal. According to an embodiment of the invention, the first feedback signal is also fed to the DC-DC converter 201 to regulate its output voltage Vout»the DC-DC converter 201 will be described by its internal error amplifier The first feedback signal is compared to a reference voltage and provides an error amplification signal. If the first feedback signal is less than the reference voltage, the error signal will increase and the regulated output voltage Vout increases. If the first feedback signal is greater than the reference voltage of -18-201228453, the error signal will decrease and regulate the output voltage Vout to decrease. Thus, the output voltage Vout of the LED driver 200 is maintained at a suitable level by the feedback adjustment to drive the plurality of LED/LED strings 202 to operate normally. According to various embodiments of the present invention, the LED driver 200 further includes a phase shift PWM dimming circuit 206. And electrically coupled to the current equalization circuit 203 to adjust the plurality of LED/LED strings 202 to be dimmed in different phases within one period T. That is, the phase between the PWM currents ILEDX (X = 1, 2, ... N) supplied to the plurality of LED/LED strings 202 in one cycle T is different. For example, the current of the LED/LED string 202 that is successively illuminated (

Uedx與Ued(x+1))的相位之間相差一個預先設定的相位値 〇 根據本發明的實施例,該預先設定的相位値爲2π/Ν ’ 其中Ν爲多個LED/LED串202的個數。如圖3所示爲假設 N = 3,即有3個LED/LED串202時,流經每個LED/LED串的 電流 Iledi、IlED2 和 IlED3 之間的相移示意圖,以及這種情 況下LED驅動器200輸出的總電流It〇tal的示意圖。 如圖3所示,在一個週期T內,電流Iledi、Iled2和 ILED3兩兩之間的相位差爲2π/3,反映到時間軸上即Iledi、 ILED2和UED3的導通與關斷時間相繼有T/3的延時。這樣’ 總電流Itotal幅値的相對躍變數與電流UED1、UED2和UED3 以相同的相位導通與關斷時(如圖3中虛線部分所示)相 比幾乎降低了 2/3。因此,採用移相PWM調光電路206可以 降低LED驅動器200在一個週期內輸出總電流的幅値的相 -19- 201228453 對變化量,從而降低了其輸入以及輸出電感和電容上的負 荷,也相應地降低了由於輸出總電流的幅値的躍變在輸入 以及輸出電感和電容上引起的雜訊。 另外,採用移相PWM調光電路206還意味著LED驅動 器200採用較小的輸入及輸出電容即可以滿足大多數應用 場合的雜訊指標,採用較小的電容有助於降低集成LED驅 動器的體積與生產成本。 根據本發明的一個實施例,DC-DC轉換器201可以是 任何類型的將直流電壓轉換爲直流電壓的直流轉換器,比 如降壓型轉換器(Buck Converter )、升壓型轉換器( Boost Converter)以及升壓-降壓型轉換器(Buck-Boost Converter )等。 根據本發明的一個實施例,電流均衡電路203可以採 用如圖4所示的電路實現,其包括電流參考電路401、電流 鏡電路402、電壓參考電路403、電流調整電路404。根據 本發明的實施例,可以將電流參考電路401、電流鏡電路 402和電壓參考電路403稱爲參考電壓產生單元,它基於一 參考電壓產生參考電流,並且基於該參考電流輸出多個相 同的另一參考電壓,然後電流調整電路4 04基於該另一參 考電壓以負回饋的方式調節流過各個LED串202的驅動電 流。 如圖4所示,電流參考電路40 1的一個輸入端耦接內部 參考電壓Vref,其另一個輸入端耦接集成LED驅動器200的 I SET引腳,並通過該ISET引腳耦接用戶可選擇的外部器件 -20- 201228453 ,比如電阻。該電流參考電路401基於所述參考電壓Vref 和所述外部器件的値產生參考電流Iref,從而允許用戶通 過設定該外部器件的値,比如電阻値,即可設定參考電流 Iref的大小。 電流鏡電路402可以包括多個並聯連接的電流鏡,它 們共用一個電流接收端用於接收所述參考電流Iref,並以 相同的比例N〇複製該參考電流Iref,從而在各自的電流輸 出端提供複製電流N〇* Iref給電壓參考電路403。 電壓參考電路403接收所述多個複製電流N〇*Iref,並 且將其相應地轉化爲多個相同的參考電壓Vref’。 電流調整電路404包括多個相同的並且對應耦接於每 個參考電壓Vref’的電流調整器4〇5,每個電流調整器405在 其輸出端耦接於所述多個LED/LED串202中的一個,以爲 與其對應耦接的LED/LED串提供電流ILEDX ( χ=1 ' 2……N ),同時檢測該電流Iledx並將代表該電流UEDX的回饋電 壓作爲電流調整器405的輸入與參考電壓Vref’比較。這樣 ,通過負回饋調節Iledx穩定並且使得流經所述每個 LED/LED串202的電流ILEDX均勻匹配。 由此可見,用戶通過設定耦接於IS ET引腳的外部器件 的値,比如電阻値,可以設定參考電流Iref的大小,從而 調節所述多個參考電壓Vref’的大小,進而可以調節流經多 個LED/LED串202的電流大小。 在一個示例性的實施例中,電流參考電路401包括運 算放大器406和可控電流源407 ^ -21 - 201228453 在一個實施例中,可控電流源407爲MO SFET,所述運 算放大器406的同相輸入端耦接所述內部參考電壓Vref, 其反相輸入端通過IS ET引腳耦接電阻RSET,其輸出端耦接 可控電流源407的控制端。可控電流源407的一個電流端耦 接運算放大器406的反相輸入端,其另一個電流端輸出參 考電流Iref。這樣,通過負回饋調節,如果內部參考電壓 Vref—定,則用戶通過選擇合適阻値的外部電阻RSET就可 以方便地設定參考電流Iref的値,進而達到調節流經多個 LED/LED串202的電流的目的。 在一個實施例中,可控電流源407爲MOSFET,其閘極 耦接運算放大器406的輸出端,源極耦接運算放大器406的 反相輸入端,汲極輸出參考電流Iref。 在一個示例性的實施例中,電流鏡電路402包括由相 互匹配的MOSFET Μ。〜MN組成的多個電流鏡,其中 MOSFET M〇在其源極接收所述參考電流Iref,並且其閘極 與源極親接,同時其閘極還鍋接至MOSFET Μι〜MN的鬧 極,這樣就構成了多個並聯耦接的電流鏡。根據本發明的 實施例,設置MOSFET IVh-MN中的每一個的尺寸與 MOSFET M〇的尺寸之間的比例,比如MOSFET M,〜MN中 每一個的溝道寬長比與MOSFET M〇的溝道寬長比之間的比 値爲N〇 ’則MOSFET M】〜MN將分SU在其源極輸出複製電 流 N〇*Iref 〇 在一個示例性的實施例中,電壓參考電路403由多個 阻値相等的電阻Rref組成,該多個電阻Rref的一個輸入端均 -22- 201228453 耦接到地,它們的另一個輸入端分別耦接所述多個參考電 流N〇*Iref,並且分別提供參考電壓Vref’。該多個參考電 壓 Vref’=Rref* N〇*Iref。The phase of Uedx and Ued(x+1)) differs by a predetermined phase. According to an embodiment of the invention, the predetermined phase 値 is 2π/Ν ' where Ν is a plurality of LED/LED strings 202 Number. Figure 3 shows a schematic diagram of the phase shift between the currents Iledi, IlED2 and IlED3 flowing through each LED/LED string, assuming N = 3, ie with 3 LED/LED strings 202, and in this case the LED A schematic diagram of the total current It〇tal output by the driver 200. As shown in FIG. 3, in one cycle T, the phase difference between the currents Iledi, Iled2, and ILED3 is 2π/3, which is reflected on the time axis, that is, the turn-on and turn-off times of Iledi, ILED2, and UED3 are successively T. /3 delay. Thus, the relative transition number of the total current Itotal amplitude is almost 2/3 lower than when the currents UED1, UED2, and UED3 are turned on and off in the same phase (as shown by the broken line in Fig. 3). Therefore, the phase shifting PWM dimming circuit 206 can reduce the amplitude of the phase -19-201228453 of the total output current of the LED driver 200 in one cycle, thereby reducing the load on its input and output inductance and capacitance. Correspondingly, the noise caused by the amplitude of the output total current transition on the input and output inductors and capacitors is reduced. In addition, the use of phase-shifted PWM dimming circuit 206 also means that LED driver 200 uses smaller input and output capacitors to meet the noise specifications of most applications, and the use of smaller capacitors helps to reduce the size of integrated LED drivers. With production costs. According to an embodiment of the present invention, the DC-DC converter 201 can be any type of DC converter that converts a DC voltage into a DC voltage, such as a Buck converter or a Boost Converter. ) and boost-buck converters (Buck-Boost Converter). According to an embodiment of the present invention, the current equalization circuit 203 can be implemented by a circuit as shown in FIG. 4, which includes a current reference circuit 401, a current mirror circuit 402, a voltage reference circuit 403, and a current adjustment circuit 404. According to an embodiment of the present invention, the current reference circuit 401, the current mirror circuit 402, and the voltage reference circuit 403 may be referred to as a reference voltage generating unit that generates a reference current based on a reference voltage, and outputs a plurality of identical others based on the reference current. A reference voltage, and then the current adjustment circuit 402 adjusts the drive current flowing through the respective LED strings 202 in a negative feedback manner based on the other reference voltage. As shown in FIG. 4, one input terminal of the current reference circuit 40 1 is coupled to the internal reference voltage Vref, and the other input terminal is coupled to the I SET pin of the integrated LED driver 200, and is coupled to the user through the ISET pin. External device -20- 201228453, such as resistance. The current reference circuit 401 generates a reference current Iref based on the reference voltage Vref and the 器件 of the external device, thereby allowing the user to set the magnitude of the reference current Iref by setting a 値 of the external device, such as a resistor 値. The current mirror circuit 402 may include a plurality of current mirrors connected in parallel, which share a current receiving end for receiving the reference current Iref, and copy the reference current Iref at the same ratio N , to provide at respective current outputs The replica current N〇* Iref is applied to the voltage reference circuit 403. The voltage reference circuit 403 receives the plurality of replica currents N?*Iref and converts them into a plurality of identical reference voltages Vref', respectively. The current adjustment circuit 404 includes a plurality of current regulators 〇5 that are identical and correspondingly coupled to each of the reference voltages Vref'. Each current regulator 405 is coupled at its output to the plurality of LED/LED strings 202. One of them is that the LED/LED string coupled thereto is supplied with current ILEDX (χ=1 ' 2...N ), and the current Iledx is detected and the feedback voltage representing the current UEDX is used as the input of the current regulator 405. The reference voltage Vref' is compared. Thus, Iledx is stabilized by negative feedback and the current ILEDX flowing through each of the LED/LED strings 202 is evenly matched. It can be seen that the user can set the magnitude of the reference current Iref by setting the 値, such as the resistor 値, of the external device coupled to the IS ET pin, thereby adjusting the size of the plurality of reference voltages Vref′, thereby adjusting the flow through The current magnitude of multiple LED/LED strings 202. In an exemplary embodiment, current reference circuit 401 includes operational amplifier 406 and controllable current source 407^-21 - 201228453. In one embodiment, controllable current source 407 is a MO SFET, and the operational amplifier 406 is in phase. The input terminal is coupled to the internal reference voltage Vref, and the inverting input terminal is coupled to the resistor RSET through an IS ET pin, and the output end thereof is coupled to the control terminal of the controllable current source 407. One current terminal of the controllable current source 407 is coupled to the inverting input of the operational amplifier 406, and the other current terminal outputs the reference current Iref. Thus, by the negative feedback adjustment, if the internal reference voltage Vref is fixed, the user can conveniently set the reference current Iref by selecting an external resistor RSET of a suitable resistance, thereby achieving regulation of the flow through the plurality of LED/LED strings 202. The purpose of the current. In one embodiment, the controllable current source 407 is a MOSFET having a gate coupled to the output of the operational amplifier 406, a source coupled to the inverting input of the operational amplifier 406, and a drain outputting the reference current Iref. In an exemplary embodiment, current mirror circuit 402 includes MOSFETs 相 that are matched to each other. a plurality of current mirrors composed of ~MN, wherein the MOSFET M〇 receives the reference current Iref at its source, and its gate is in contact with the source, and its gate is also connected to the MOSFET Μι~MN This constitutes a plurality of current mirrors coupled in parallel. According to an embodiment of the present invention, a ratio between a size of each of the MOSFETs IVh-MN and a size of the MOSFET M?, such as a channel width-to-length ratio of each of the MOSFETs M, MN, and a trench of the MOSFET M? The ratio between the channel width to length ratio is N〇', then the MOSFET M]~MN will divide the SU at its source output replica current N〇*Iref. In an exemplary embodiment, the voltage reference circuit 403 is composed of multiple An equal resistance Rref is formed, and one input end of the plurality of resistors Rref is coupled to the ground -22-201228453, and the other input ends thereof are respectively coupled to the plurality of reference currents N〇*Iref, and respectively provided Reference voltage Vref'. The plurality of reference voltages Vref' = Rref * N 〇 * Iref.

在一個示例性的實施例中,所述多個電流調整器405 中的每一個均包括運算放大器408、可控電流源409和電流 檢測電路410。運算放大器40 8在其同相輸入端耦接參考電 壓Vref’,在其反相輸入端耦接電流檢測電路410的輸出端 ,在其輸出端耦接可控電流源409的控制端。可控電流源 409的一個電流端耦接集成驅動器200的多個LED驅動引腳 LED, ' LED2……LEDN中的一個,進而耦接於所述多個 LED/LED串202中的一個,以爲與其對應耦接的LED/LED 串提供電流Iledx ( X=1、2...... N)。可控電流源409的另 一個電流端耦接電流檢測電路4 1 0的輸入端。電流檢測電 路4 1 0檢測與其對應耦接的可控電流源409提供的電流,即 與該可控電流源409對應耦接的LED/LED串的電流ILEDX ( X=1 ' 2……N),並將其轉化爲回饋電壓VSenseX ( X=1、2 ……N )回饋到運算放大器408的反相輸入端,與參考電壓 Vref’比較,其比較結果作用於可控電流源409的控制端, 這一調節過程基於負回饋使得可控電流源409工作於恒流 模式,從而使得流經每個LED/LED串202的電流UEDX穩定 並且相同,即均勻匹配。 在一個實施例中,可控電流源409爲MOSFET,其閘極 耦接運算放大器408的輸出端,源極耦接電流檢測電路410 ,汲極耦接耦接集成驅動器200的多個LED驅動引腳LED, -23- 201228453 、LED2...... LEDn 中的 一個。 在一個實施例中,電流檢測電路4 1 0包括檢測電阻 RSENSE,其一個輸入端耦接可控電流源409的所述另一個 電流端以及運算放大器4〇8的反相輸入端並提供所述回饋 電壓VsenseX"其另一個輸入朗稱接到地。 根據本發明的一個實施例,故障檢測及保護電路2 04 可以採用如圖5所示的電路實現。如圖5所示,故障檢測及 保護電路204包括回饋電路501、回饋電路502、過壓檢測 比較器503、欠壓檢測比較器504、多個LED故障保護模組 505以及系統關斷觸發電路506。 回饋電路501檢測多個LED驅動引腳處的電壓VLEDX ( X= 1、2……N )及其中的最小電壓,並提供代表該最小電 壓的第一回饋信號VFB1,回饋電路501可以採用現有技術 中的多種最小電壓選擇電路實現,這裏不作詳述。 回饋電路5 02提供代表集成LED驅動器200的輸出電壓 ¥〇\^的第二回饋電壓乂!^2。示例性地,該回饋電路5 02包 括串聯耦接於LED驅動器200的輸出端OUT與地之間的分壓 電阻Rfbi和RfB2。 過壓檢測比較器503接收所述第二回饋電壓VFB2,將 其與過壓閩値電壓Vov比較並提供過壓故障信號。如果所 述第二回饋電壓VFB2大於該過壓閾値電壓V〇v,則所述過 壓故障信號爲代表LED驅動器200輸出過壓的邏輯狀態, 並觸發DC-DC轉換器201將其中的開關器件關斷。如果所 述第二回饋電壓VFB2小於所述過壓閎値電壓v〇v,則所述 -24- 201228453 過壓故障信號爲代表集成LED驅動器輸出正常的邏輯狀態 〇 欠壓檢測比較器5 04接收所述第二回饋電壓vFB2,將 其與欠壓閾値電壓Vuv比較並提供欠壓故障信號。如果所 述第二回饋電壓VFB2小於所述欠壓閾値電壓vuv,則所述 欠壓故障信號爲代表集成LED驅動器200輸出欠壓的邏輯 狀態。如果所述第二回饋電壓VFB2大於所述欠壓閾値電壓 Vuv ’則所述欠壓故障信號爲代表集成LED驅動器輸出正 常的邏輯狀態。這裏所謂的LED驅動器200輸出欠壓是指 由於LED驅動器200的輸出端OUT短路到地或者由於DC-DC 轉換器201中的肖特基二極體(Schottky)未連接所造成的 輸出電壓Vout過低。 每個LED故障保護模組5 05對應耦接於所述多個LED驅 動弓1腳LEDi' LED2...... LEDN中的一個,接收與其對應耦In an exemplary embodiment, each of the plurality of current regulators 405 includes an operational amplifier 408, a controllable current source 409, and a current sensing circuit 410. The operational amplifier 40 8 is coupled to the reference voltage Vref' at its non-inverting input, coupled to the output of the current sensing circuit 410 at its inverting input, and coupled to the control terminal of the controllable current source 409 at its output. One current terminal of the controllable current source 409 is coupled to the plurality of LED driving pin LEDs of the integrated driver 200, and one of the 'LED 2 . . . LEDN is coupled to one of the plurality of LED/LED strings 202, The corresponding LED/LED string coupled to it provides current Iledx (X=1, 2...N). The other current terminal of the controllable current source 409 is coupled to the input of the current detecting circuit 410. The current detecting circuit 410 detects the current supplied by the controllable current source 409 coupled thereto, that is, the current ILEDX (X=1 ' 2...N) of the LED/LED string coupled to the controllable current source 409. And converting it into a feedback voltage VSenseX (X=1, 2...N) is fed back to the inverting input terminal of the operational amplifier 408, compared with the reference voltage Vref', and the comparison result is applied to the control end of the controllable current source 409. This adjustment process is based on negative feedback such that the controllable current source 409 operates in a constant current mode such that the current UEDX flowing through each LED/LED string 202 is stable and identical, i.e., evenly matched. In one embodiment, the controllable current source 409 is a MOSFET, the gate of which is coupled to the output of the operational amplifier 408, the source is coupled to the current detecting circuit 410, and the drain is coupled to the plurality of LED driving leads of the integrated driver 200. One of the LEDs, -23- 201228453, LED2... LEDn. In one embodiment, the current detecting circuit 410 includes a sense resistor RSENSE, one input of which is coupled to the other current terminal of the controllable current source 409 and an inverting input of the operational amplifier 4〇8 and provides the The feedback voltage VsenseX" its other input is called the ground. According to one embodiment of the invention, the fault detection and protection circuit 206 can be implemented using a circuit as shown in FIG. As shown in FIG. 5, the fault detection and protection circuit 204 includes a feedback circuit 501, a feedback circuit 502, an overvoltage detection comparator 503, an undervoltage detection comparator 504, a plurality of LED fault protection modules 505, and a system shutdown trigger circuit 506. . The feedback circuit 501 detects the voltage VLEDX (X=1, 2...N) at a plurality of LED drive pins and the minimum voltage therein, and provides a first feedback signal VFB1 representing the minimum voltage, and the feedback circuit 501 can adopt the prior art. A variety of minimum voltage selection circuits are implemented and will not be described in detail herein. The feedback circuit 52 provides a second feedback voltage 乂!^2 representing the output voltage of the integrated LED driver 200. Illustratively, the feedback circuit 502 includes voltage dividing resistors Rfbi and RfB2 coupled in series between the output terminal OUT of the LED driver 200 and ground. The overvoltage detection comparator 503 receives the second feedback voltage VFB2, compares it with the overvoltage V voltage Vov and provides an overvoltage fault signal. If the second feedback voltage VFB2 is greater than the overvoltage threshold voltage V〇v, the overvoltage fault signal is a logic state representing an output overvoltage of the LED driver 200, and triggers the switching device of the DC-DC converter 201 Shut down. If the second feedback voltage VFB2 is less than the overvoltage 〇 voltage v 〇 v, the -24-201228453 overvoltage fault signal is a logic state representing a normal LED driver output 〇 undervoltage detection comparator 504 receiving The second feedback voltage vFB2 is compared with the undervoltage threshold voltage Vuv and provides an undervoltage fault signal. If the second feedback voltage VFB2 is less than the undervoltage threshold voltage vuv, the undervoltage fault signal is a logic state representing an output undervoltage of the integrated LED driver 200. If the second feedback voltage VFB2 is greater than the undervoltage threshold voltage Vuv', the undervoltage fault signal is a logic state representative of the integrated LED driver output. The output undervoltage of the LED driver 200 herein refers to the output voltage Vout caused by the output terminal OUT of the LED driver 200 being short-circuited to the ground or due to the unconnected Schottky diode in the DC-DC converter 201. low. Each of the LED fault protection modules 505 is coupled to one of the plurality of LED drive bows, one of the LEDi's LED2, LEDN, and the corresponding one of the LEDs.

接的LED驅動弓|腳LEDX ( X=1、2...... N )處的電壓VLEDX (X=1 ' 2……N )以及所述過壓故障信號,並基於該電壓 Vledx及所述過壓故障信號產生觸發信號TrigX ( X=1、2… …N )。如果耦接於驅動引腳LEDX ( X=1、2……N )的 LED/LED串2 02開路並且使得輸出過壓或者耦接於該驅動 弓| 腳 LEDx(X=l、2...... N)的 LED/LED 串 202 短路,則觸 發信號TrigX ( χ=1、2……N )爲觸發狀態,並將耦接於 該驅動引腳LEDx(X=l、2......N)的LED/LED串202關斷 〇 系統關斷觸發電路5 06接收所述多個LED故障保護模Connected LED drive bow | pin LEDX (X = 1, 2 ... N) voltage VLEDX (X = 1 ' 2 ... N) and the overvoltage fault signal, and based on the voltage Vledx and The overvoltage fault signal generates a trigger signal TrigX (X=1, 2...N). If the LED/LED string 02 coupled to the driving pin LEDX (X=1, 2...N) is open circuit and the output is overvoltage or coupled to the driving bow|foot LEDx (X=l, 2... ... N) LED / LED string 202 short circuit, the trigger signal TrigX ( χ = 1, 2 ... N) is the trigger state, and will be coupled to the drive pin LEDx (X = l, 2... ...N) LED/LED string 202 is turned off, system shutdown trigger circuit 5 06 receives the plurality of LED fault protection modes

S -25- 201228453 組5 05輸出的全部觸發信號TrigX ( X = 1、2……N ),並產 生關斷觸發信號SHDN。如果全部觸發信號TrigX ( X=1、2 ……N)均爲觸發狀態,則所述關斷觸發信號SHDN爲觸發 狀態並將LED驅動器關斷。否則,如果至少有一個觸發信 號TrigX ( X=1、2……N )爲非觸發狀態,則所述關斷觸 發信號SHDN爲非觸發狀態並且不關斷LED驅動器。 在一個實施例中,每個LED故障保護模組505均包括 LED開路檢測比較器507、LED短路檢測比較器508以及觸 發電路509。LED開路檢測比較器507接收與LED故障保護 模組5〇5對應耦接的LED驅動引腳(例如LEDX)處的電壓 (VlEDX) ^並將該電壓VlEDX與開路閾値電壓V〇TH相比較 以產生開路故障信號〇Px。如果該電壓VLEDX大於該開路閾 値電壓VOTH,則所述開路故障信號〇Px爲代表LED正常的 邏輯狀態,如果該電壓VLEDX小於該開路閩値電壓VOTH, 則所述開路故障信號ΟΡχ爲代表LED開路的邏輯狀態。 LED短路檢測比較器508接收與LED故障保護模組505 對應耦接的LED驅動引腳(例如LEDX )處的電壓(VLEDX ),並將該電壓與短路閩値電壓VSTH相比較以產生短路故 障信號SHTX。如果該電壓VLEDX小於該短路閾値電壓vSTH ,則所述短路故障信號SHTX爲代表LED正常的邏輯狀態, 如果該電壓VLEDX大於該短路閾値電壓VSTH,則所述短路 故障信號SHTX爲代表LED短路的邏輯狀態。S -25- 201228453 Group 5 05 outputs all trigger signals TrigX (X = 1, 2...N) and generates shutdown trigger signal SHDN. If all of the trigger signals TrigX (X = 1, 2, ... N) are in the trigger state, the shutdown trigger signal SHDN is the trigger state and the LED driver is turned off. Otherwise, if at least one of the trigger signals TrigX (X = 1, 2, ... N) is in a non-trigger state, the shutdown trigger signal SHDN is in a non-trigger state and does not turn off the LED driver. In one embodiment, each LED fault protection module 505 includes an LED open circuit detection comparator 507, an LED short circuit detection comparator 508, and a trigger circuit 509. The LED open circuit detection comparator 507 receives the voltage (VlEDX) at the LED drive pin (eg, LEDX) coupled to the LED fault protection module 5〇5 and compares the voltage VlEDX with the open threshold voltage V〇TH. An open circuit fault signal 〇Px is generated. If the voltage VLEDX is greater than the open threshold voltage VOTH, the open fault signal 〇Px is a logic state representing a normal LED. If the voltage VLEDX is less than the open circuit voltage VOTH, the open fault signal ΟΡχ represents an open LED. The logical state. The LED short detection comparator 508 receives the voltage (VLEDX) at the LED drive pin (eg, LEDX) coupled to the LED fault protection module 505, and compares the voltage to the short circuit voltage VSTH to generate a short circuit fault signal. SHTX. If the voltage VLEDX is less than the short-circuit threshold voltage vSTH, the short-circuit fault signal SHTX is a logic state representing a normal LED. If the voltage VLEDX is greater than the short-circuit threshold voltage VSTH, the short-circuit fault signal SHTX is a logic representing a short circuit of the LED. status.

觸發電路509接收所述開路故障信號〇px、所述短路故 障信號SHTX和所述過壓故障信號,以產生觸發信號TrigX -26- 201228453 (χ= 1、2...... Ν )。根據本發明的一個實施例,當耦接於 驅動引腳LEDX的LED/LED串202開路時,該驅動引腳LEDX 將被拉到地,因而該驅動引腳LEDX處的電壓VLEDX將小於 所述開路閾値電壓 V〇th,那麼所述開路故障信號ΟΡχ將爲 代表LED開路的邏輯狀態。另外,在這種情況下,所述第 —回饋信號VFB1將小於所述DC-DC轉換器201中誤差放大 器的參考電壓,因而誤差放大器輸出的誤差放大信號將持 續增大,從而導致輸出電壓Vout持續增大,這將導致集成 LED驅動器輸出過壓。如果在過壓檢測比較器5 03檢測到 輸出過壓之前,這種開路故障狀態仍未消除,即,如果所 述開路故障信號ΟΡχ爲代表LED開路的邏輯狀態並且所述 過壓故障信號爲代表集成LED驅動器輸出過壓的邏輯狀態 ,則觸發信號TrigX將爲觸發狀態並將發生開路故障的 LED/LED串202關斷。當耦接於驅動弓|腳LEDX的LED/LED 串202短路時,該驅動引腳LEDX將被拉到高電位,因而該 驅動引腳LEDX處的電壓VLEDX將大於所述短路閩値電壓 VSTH,那麼所述短路故障信號SHTXM爲代表LED短路的邏 輯狀態。如果該代表LED短路的邏輯狀態持續時間達到某 個預先設定的閾値,則觸發信號TrigX將爲觸發狀態並將 發生短路故障的LED/LED串202關斷。 在一個實施例中,觸發電路5 09包括邏輯閘510、計時 器5 1 1和邏輯閘5 1 2。邏輯閘5 1 0用於接收所述開路故障信 號ΟΡχ和所述過壓故障信號,輸出觸發信號丁卜。如果所述 開路故障信號ΟΡχ爲代表LED開路的邏輯狀態並且所述過 -27- 201228453 壓故障信號爲代表集成LED驅動器輸出過壓的邏輯狀態, 則所述觸發信號Tlx爲觸發狀態,否則所述觸發信號Tixg 非觸發狀態。 計時器511具有設定的閩値,其接收所述短路故障信 號SHTX,並輸出觸發信號τ2χ。當所述短路故障信號^7^ 爲代表LED短路的邏輯狀態時,計時器51 i開始計時,並 且當計時器511達到其設定的閩値時,所述觸發信號Τ2Χ爲 觸發狀態’否則,如果所述短路故障信號S Η Τ X爲代表L E D 正常的邏輯狀態或者計時器5 1 1並未達到其設定的閾値, 則所述觸發信號Τ2Χ爲非觸發狀態。 邏輯閘512接收所述觸發信號τΐχ和Τ2Χ,並輸出所述 觸發信號TrigX;當所述觸發信號τΐχ和Τ2Χ中至少有一個 爲觸發狀態時,所述觸發信號TrigX爲觸發狀態,並將耦 接於驅動引腳LEDX ( X=1、2...... N)的LED/LED串202關 斷。只有所述觸發信號1^和T2X均爲非觸發狀態時,所述 觸發信號TrigX爲非觸發狀態。 根據本發明的一個實施例,狀態指示電路205接收所 述過壓故障信號、所述欠壓故障信號以及所述關斷觸發信 號SHDN,並產生指示信號。當所述過壓故障信號爲代表 集成LED驅動器輸出過壓的邏輯狀態,或者所述欠壓故障 信號爲代表集成LED驅動器輸出欠壓的邏輯狀態,或者所 述關斷觸發信號SHDN爲觸發狀態時,所述指示信號爲代 表集成LED驅動器故障的邏輯狀態。只有在所述過壓故障 信號和所述欠壓故障信號均爲代表集成LED驅動器輸出正 -28- 201228453 常的邏輯狀態並且所述關斷觸發信號SHDN爲非觸發狀態 時,所述指示信號爲代表集成LED驅動器正常的邏輯狀態 〇 在一個實施例中,狀態指示電路205由邏輯電路實現 ,比如,包括或閘或者其等同電路,如圖6所示,或閘601 在其三個輸入端分別接收所述過壓故障信號、所述欠壓故 障信號以及所述關斷觸發信號SHDN,並輸出指示信號。 在如圖5和圖6所示的電路實現中,所述代表集成LED 驅動器輸出過壓的邏輯狀態、代表集成LED驅動器輸出欠 壓的邏輯狀態、代表LED開路的邏輯狀態、代表LED短路 的邏輯狀態以及觸發狀態爲高電平,所述代表集成LED驅 動器輸出正常的邏輯狀態以及所述非觸發狀態爲低電平。 這種情況下,邏輯閘在本發明的不同實施例中,所述代表 集成LED驅動器輸出過壓的邏輯狀態、代表集成LED驅動 器輸出欠壓的邏輯狀態、代表LED開路的邏輯狀態、代表 LED短路的邏輯狀態以及觸發狀態可以爲高電平。相反地 ’所述代表集成LED驅動器輸出正常的邏輯狀態以及所述 非觸發狀態爲高電平。這種情況下,只要將如圖5所示的 電路做相應的修改即可實現,比如將分別耦接於比較器的 同相輸入端和反相輸入端的信號調換,選擇合適的邏輯閘 或者邏輯電路以實現期望的邏輯功能。這些替換以及變換 對本領域的技術人員來說是清楚的,因而不超出本發明的 精神和保護範圍。 根據本發明的一個實施例,移相PWM調光電路206接 29 - 201228453 收PWM調光輸入信號PWM1N,將其-移相後產生多個PWM 調光信號。所述PWM調光輸入信號PWMIN以及所述多個 PWM調光信號被耦合到所述電流均衡電路203,用於以一 —對應的方式分別對LED/LED串202中的不同LED/LED串 進行調光。用於相繼點亮/關斷兩個1^〇/1^£〇串202的兩個 PWM調光信號之間相差一個預先設定的相位値。對於具有 N個LED/LED串202的情形,所述多個PWM調光信號的個數 爲N-1,其中,N爲大於1的整數,優選地,所述預先設定 的相位値爲2π/Ν。也就是說,反映到時間軸上,用於相繼 點亮/關斷兩個LED/LED串202的兩個PWM調光信號之間具 有T/N的延時,其中T爲所述PWM調光輸入信號PWMIN的週 期。 在一個實施例中,移相PWM調光電路206包括N-1個延 時電路,其中N爲LED/LED串202的個數。所述N-1個延時 電路均接收所述PWM調光輸入信號PWMIN,並依次將該The trigger circuit 509 receives the open circuit fault signal 〇px, the short circuit fault signal SHTX, and the overvoltage fault signal to generate a trigger signal TrigX -26-201228453 (χ = 1, 2, ... Ν). According to an embodiment of the present invention, when the LED/LED string 202 coupled to the driving pin LEDX is open, the driving pin LEDX will be pulled to the ground, and thus the voltage VLEDX at the driving pin LEDX will be smaller than the The open circuit threshold voltage V〇th, then the open circuit fault signal ΟΡχ will be a logic state representing the LED open circuit. In addition, in this case, the first feedback signal VFB1 will be smaller than the reference voltage of the error amplifier in the DC-DC converter 201, and thus the error amplification signal outputted by the error amplifier will continue to increase, thereby causing the output voltage Vout. Continue to increase, which will cause the integrated LED driver output to overvoltage. If the overvoltage fault is detected before the overvoltage detection comparator 503 detects an output overvoltage, that is, if the open fault signal ΟΡχ is a logic state representing the LED open circuit and the overvoltage fault signal is representative When the integrated LED driver outputs an overvoltage logic state, the trigger signal TrigX will be the trigger state and the LED/LED string 202 with an open fault will be turned off. When the LED/LED string 202 coupled to the driving bow|foot LEDX is short-circuited, the driving pin LEDX will be pulled to a high potential, and thus the voltage VLEDX at the driving pin LEDX will be greater than the short-circuiting voltage VSTH, Then the short circuit fault signal SHTXM is a logic state representing a short circuit of the LED. If the logic state representing the short circuit of the LED reaches a predetermined threshold, the trigger signal TrigX will be the trigger state and the LED/LED string 202 where the short circuit fault has occurred is turned off. In one embodiment, the trigger circuit 5 09 includes a logic gate 510, a timer 5 1 1 and a logic gate 5 1 2 . The logic gate 5 10 is configured to receive the open circuit fault signal ΟΡχ and the overvoltage fault signal, and output a trigger signal. If the open circuit fault signal ΟΡχ is a logic state representing an LED open circuit and the over -27-201228453 pressure fault signal is a logic state representing an integrated LED driver output overvoltage, the trigger signal Tlx is a trigger state, otherwise Trigger signal Tixg is not triggered. The timer 511 has a set 闽値 which receives the short-circuit fault signal SHTX and outputs a trigger signal τ2 χ. When the short circuit fault signal ^7^ is a logic state representing a short circuit of the LED, the timer 51 i starts counting, and when the timer 511 reaches its set threshold, the trigger signal Τ2 Χ is the trigger state 'otherwise, if The trigger signal Η2Χ is a non-trigger state when the short circuit fault signal S Η Τ X is a logic state representing the normal state of the LED or the timer 5 1 1 does not reach its set threshold. The logic gate 512 receives the trigger signals τ ΐχ and Τ 2 Χ and outputs the trigger signal TrigX; when at least one of the trigger signals τ ΐχ and Τ 2 为 is in a trigger state, the trigger signal TrigX is a trigger state, and is coupled The LED/LED string 202 on the drive pin LEDX (X=1, 2...N) is turned off. The trigger signal TrigX is in a non-trigger state only when the trigger signals 1^ and T2X are in a non-trigger state. According to an embodiment of the present invention, the status indicating circuit 205 receives the overvoltage fault signal, the undervoltage fault signal, and the turn-off trigger signal SHDN, and generates an indication signal. When the overvoltage fault signal is a logic state representing an integrated LED driver output overvoltage, or the undervoltage fault signal is a logic state representing an integrated LED driver output undervoltage, or the shutdown trigger signal SHDN is a trigger state The indication signal is a logic state representing an integrated LED driver failure. The indication signal is only when the overvoltage fault signal and the undervoltage fault signal represent a logic state of the integrated LED driver output positive -28-201228453 and the shutdown trigger signal SHDN is a non-trigger state. Representing the normal logic state of the integrated LED driver. In one embodiment, the state indicating circuit 205 is implemented by a logic circuit, such as an OR gate or its equivalent circuit, as shown in FIG. 6, or the gate 601 is respectively at its three inputs. Receiving the overvoltage fault signal, the undervoltage fault signal, and the shutdown trigger signal SHDN, and outputting an indication signal. In the circuit implementation shown in Figures 5 and 6, the logic state representing the output overvoltage of the integrated LED driver, the logic state representing the undervoltage of the integrated LED driver output, the logic state representing the open LED, and the logic representing the LED short circuit The state and the trigger state are high, the representative integrated LED driver outputs a normal logic state and the non-trigger state is a low level. In this case, the logic gate is in a different embodiment of the invention, the logic state representing the output overvoltage of the integrated LED driver, the logic state representing the undervoltage of the integrated LED driver output, the logic state representing the open circuit of the LED, and the short circuit representing the LED. The logic state and the trigger state can be high. Conversely, the representative integrated LED driver outputs a normal logic state and the non-trigger state is a high level. In this case, as long as the circuit shown in FIG. 5 is modified accordingly, for example, the signals respectively coupled to the non-inverting input terminal and the inverting input terminal of the comparator are switched, and an appropriate logic gate or logic circuit is selected. To achieve the desired logic function. These alternatives and modifications will be apparent to those skilled in the art, and thus do not depart from the spirit and scope of the invention. According to an embodiment of the present invention, the phase shifting PWM dimming circuit 206 receives the PWM dimming input signal PWM1N from 29 - 201228453, and phase shifts it to generate a plurality of PWM dimming signals. The PWM dimming input signal PWMIN and the plurality of PWM dimming signals are coupled to the current equalization circuit 203 for respectively performing different LED/LED strings in the LED/LED string 202 in a corresponding manner. Dimming. The two PWM dimming signals for successively turning on/off the two 1/〇/1^〇 strings 202 differ by a predetermined phase 値. For the case of having N LED/LED strings 202, the number of the plurality of PWM dimming signals is N-1, where N is an integer greater than 1, preferably, the predetermined phase 値 is 2π/ Hey. That is, reflected on the time axis, there is a T/N delay between the two PWM dimming signals for sequentially turning on/off the two LED/LED strings 202, where T is the PWM dimming input. The period of the signal PWMIN. In one embodiment, phase shifting PWM dimming circuit 206 includes N-1 delay circuits, where N is the number of LED/LED strings 202. The N-1 delay circuits each receive the PWM dimming input signal PWMIN, and sequentially

PWM調光輸入信號 PWMIN延時 T/N、2T/N...... ( N-1 ) T/N ,產生PWM調光信號PWM,、PWM2...... PWMm.d,所述 PWM調光輸入信號PWM1N以及所述多個PWM調光信號 PWM, ' PWM2...... ?”1^(>1-|)用於依次對第1、2、3......N個 LED/LED串202進行調光。 以如圖4所示的電流均衡電路203的實現爲例,在一個 實施例中,PWM調光輸入信號PWM,N以及所述多個PWM調 光信號PWlVh、PWM2……?\¥^1(?1.1)分別輸入到與第1'2、 3……N個LED/LED串202對應耦接的所述多個電流調整器 -30- 201228453 405的致能端和非致能端(圖中未示出)’通過控制電流 調整器405致能與不致能,間歇性地爲LED/LED串2〇2提供 電流,從而達到調光的目的。更具體地,與第1、2、3… …N個LED/LED串 202對應耦接的所述多個電流調整器405 中的運算放大器408設有致能端,分別耦接所述PWM調光 輸入信號PWMin以及所述多個PWM調光信號PWM丨、PWM2 ……。這種情況下,通過控制運算放大器408的 致能與不致能以達到調光的目的。 在一個示例性的實施例中,移相PWM調光電路206包 括第一倍頻電路701、第二倍頻電路702和Ν-1個延時模組 703,其中Ν爲LED/LED串202的個數,如圖7所示。 第一倍頻電路701接收所述PWM調光輸入信號PWMin ,並且以該PWM調光輸入信號PWM1n的上升邊緣爲觸發對 其進行N倍頻,產生第一脈衝信號PULSE 1。 第二倍頻電路702接收所述PWM調光輸入信號PWMin ,並且以該PWM調光輸入信號PWM1n的下降邊緣爲觸發對 其進行N倍頻,產生第二脈衝信號PULSE2 » N-1個延時模組703中第X個延時模組703,包括正脈衝 計數器CXA、負脈衝計數器CXB以及觸發器FFX,其中X=1 ' 3……(N-1 )。正脈衝計數器CXA在其致能輸入端接收 所述PWM調光輸入信號PWM1N,在其計數輸入端接收第一 脈衝信號PULSE1,並且在所述PWM調光輸入信號PWMin 的上升邊緣時被觸發致能,對第一脈衝信號PULSE1的高 電平脈衝進行計數,當計數爲(X+1)時,輸出一個單脈衝 -31 - 201228453PWM dimming input signal PWMIN delay T / N, 2T / N ... ( N-1 ) T / N, generate PWM dimming signal PWM, PWM2 ... PWMm.d, the The PWM dimming input signal PWM1N and the plurality of PWM dimming signals PWM, 'PWM2...?' 1^(>1-|) are used to sequentially select the first, second, third... The N LED/LED string 202 is dimmed. Taking the implementation of the current equalization circuit 203 as shown in FIG. 4 as an example, in one embodiment, the PWM dimming input signals PWM, N and the plurality of PWM tones The optical signals PWlVh, PWM2, ..., \¥^1 (?1.1) are respectively input to the plurality of current regulators -30-201228453 correspondingly coupled to the 1st, 2, ..., N LED/LED strings 202 The enable and disable terminals (not shown) of 405 are enabled and disabled by the control current regulator 405 to intermittently supply current to the LED/LED string 2〇2 for dimming purposes. More specifically, the operational amplifiers 408 of the plurality of current regulators 405 coupled to the first, second, and third N LED/LED strings 202 are provided with enable terminals respectively coupled to the PWM modulations. The optical input signal PWMin and the plurality of PWM dimming signals PWM丨, PWM2, ... In other words, the purpose of dimming is controlled by controlling the enabling and disabling of the operational amplifier 408. In an exemplary embodiment, the phase shifting PWM dimming circuit 206 includes a first frequency multiplying circuit 701 and a second frequency multiplying circuit. 702 and Ν-1 delay modules 703, wherein Ν is the number of LED/LED strings 202, as shown in Figure 7. The first frequency multiplying circuit 701 receives the PWM dimming input signal PWMin and uses the PWM modulation The rising edge of the optical input signal PWM1n is multiplied by N for the trigger to generate the first pulse signal PULSE 1. The second frequency multiplying circuit 702 receives the PWM dimming input signal PWMin, and the PWM dimming input signal PWM1n The falling edge is multiplied by the trigger to generate a second pulse signal PULSE2 » N-1 delay module 703, the Xth delay module 703, including a positive pulse counter CXA, a negative pulse counter CXB, and a flip-flop FFX, Where X = 1 '3 (N-1). The positive pulse counter CXA receives the PWM dimming input signal PWM1N at its enable input, receives the first pulse signal PULSE1 at its count input, and PWM dimming input signal PWMin rising edge Triggered, the high pulse of the first pulse signal PULSE1 is counted, and when the count is (X+1), a single pulse is output -31 - 201228453

Qxa,該單脈衝將正脈衝計數器CXA重設而停止計數。 負脈衝計數器CXB,在其致能輸入端接收所述PWM調 光輸入信號PWMIN,在其計數輸入端接收第二脈衝信號 PULSE2,並且在所述PWM調光輸入信號下降邊 緣時被觸發致能,對第二脈衝信號PULS E2的低電平脈衝 進行計數,當計數爲(X+1)時,輸出一個單脈衝Qxb,該單 脈衝將計數器CXB重設而停止計數。 觸發器FFX,在其置位端接收單脈衝QXA,在其重設端 接收單脈衝Qxb,輸出PWM調光信號PWMX。如圖8所示爲 圖7的電路中關鍵信號的波形示意圖。Qxa, this single pulse resets the positive pulse counter CXA and stops counting. The negative pulse counter CXB receives the PWM dimming input signal PWMIN at its enable input terminal, receives the second pulse signal PULSE2 at its count input terminal, and is triggered to be enabled when the PWM dimming input signal falls to the edge, The low-level pulse of the second pulse signal PULS E2 is counted. When the count is (X+1), a single pulse Qxb is output, which resets the counter CXB to stop counting. The flip-flop FFX receives a single pulse QXA at its set terminal, receives a single pulse Qxb at its reset terminal, and outputs a PWM dimming signal PWMX. Figure 8 is a waveform diagram of the key signals in the circuit of Figure 7.

PWM調光信號 PWMi、PWM2...... PWM^n.d爲所述 PWMPWM dimming signal PWMi, PWM2... PWM^n.d is the PWM

調光輸入信號PWMIN分別延時T/N、2T/N...... ( N-1 ) T/N 後的複製,其中T爲所述PWM調光輸入信號PWMIN的週期 〇 在一個示例性的實施例中,所述第一倍頻電路701和 第二倍頻電路702可以分別由鎖相迴路電路PLL1和PLL2來 實現。 上述本發明的說明書和實施方式僅僅以示例性的方式 對本發明實施例的LED驅動器進行了說明,並不用於限定 本發明的範圍。對於公開的實施例進行變化和修改都是可 能的,其他可行的選擇性實施例和對實施例中元件的等同 變化可以被本技術領域的普通技術人員所瞭解。本發明所 公開的實施例的其他變化和修改並不超出本發明的精神和 保護範圍。 -32- 201228453 【圖式簡單說明】 下面的附圖表明了本發明的實施方式。這些附圖和實 施方式以非限制性、非窮舉性的方式提供了本發明的一些 實施例。 圖1爲現有技術中的一種LED驅動電路的示意圖。 圖2爲根據本發明—個實施例的集成LED驅動器的電 路不意圖。 圖3示出了以三個LED串爲例,在移相PWM調光的情 況下’流經每個LED串的電流以及集成LED驅動器輸出的 總電流的波形示意圖。 圖4爲根據本發明—個實施例的集成LED驅動器中電 流均衡電路的示意圖。 圖5爲根據本發明一個實施例的集成led驅動器中故 障檢測及保護電路的示意圖9 圖6爲根據本發明一個實施例的集成LED驅動器中狀 態指示電路的示意圖。 圖7爲根據本發明一個實施例的集成LED驅動器中移 相PWM調光電路的示意圖。 圖8爲如圖7所示的電路中關鍵信號的波形示意圖。 【主要元件符號說明】 1 0 0 .驅動電路 101 : DC-DC轉換器 102 :電流源電路 -33- 201228453 1 Ο 3 :故障檢測電路 104 :故障保護電路 105 :調光電路 200 : LED驅動器 20 1 : DC-DC轉換器 202 : LED/LED 串 203 :電流均衡電路 204 :故障檢測及保護電路 205 :狀態指示電路 206 :移相PWM調光電路 4 0 1 :電流參考電路 4 0 2 :電流鏡電路 403 :電壓參考電路 404:電流調整電路 405 :電流調整器 406 :運算放大器 407 :可控電流源 408 :運算放大器 409 :可控電流源 4 1 0 :電流檢測電路 501 :回饋電路 502 :回饋電路 503 :過壓檢測比較器 5 04 :欠壓檢測比較器 -34- 201228453 5 0 5 : LED故障保護模組 5 06 :系統關斷觸發電路 507 : LED開路檢測比較器 5 08 : LED短路檢測比較器 509 :觸發電路 5 1 0 :邏輯閘 5 1 1 :計時器 5 1 2 :邏輯閘 6 0 1 :或閘 701 :第一倍頻電路 702 :第二倍頻電路 703 :延時模組 -35-The dimming input signal PWMIN delays the repetition of T/N, 2T/N, respectively... (N-1) T/N, where T is the period of the PWM dimming input signal PWMIN 〇 in an exemplary In the embodiment, the first frequency multiplying circuit 701 and the second frequency multiplying circuit 702 can be implemented by the phase locked loop circuits PLL1 and PLL2, respectively. The above description of the invention and the embodiments of the invention are merely illustrative of the LED driver of the embodiments of the invention and are not intended to limit the scope of the invention. Variations and modifications of the disclosed embodiments are possible, and other possible alternative embodiments and equivalent variations to the elements of the embodiments will be apparent to those of ordinary skill in the art. Other variations and modifications of the disclosed embodiments of the invention do not depart from the spirit and scope of the invention. -32- 201228453 [Schematic Description of the Drawings] The following drawings illustrate embodiments of the present invention. These drawings and embodiments provide some embodiments of the invention in a non-limiting, non-exhaustive manner. 1 is a schematic diagram of an LED driving circuit in the prior art. 2 is a circuit diagram of an integrated LED driver in accordance with an embodiment of the present invention. Figure 3 shows a waveform diagram of the current flowing through each LED string and the total current output by the integrated LED driver with three LED strings as an example, in the case of phase-shifted PWM dimming. 4 is a schematic diagram of a current balancing circuit in an integrated LED driver in accordance with an embodiment of the present invention. 5 is a schematic diagram of a fault detection and protection circuit in an integrated LED driver in accordance with one embodiment of the present invention. FIG. 6 is a schematic diagram of a state indicating circuit in an integrated LED driver in accordance with one embodiment of the present invention. 7 is a schematic diagram of a phase shift PWM dimming circuit in an integrated LED driver in accordance with one embodiment of the present invention. Figure 8 is a waveform diagram of key signals in the circuit shown in Figure 7. [Main component symbol description] 1 0 0 . Drive circuit 101 : DC-DC converter 102 : Current source circuit - 33 - 201228453 1 Ο 3 : Fault detection circuit 104 : Fault protection circuit 105 : Dimming circuit 200 : LED driver 20 1 : DC-DC converter 202 : LED/LED string 203 : current equalization circuit 204 : fault detection and protection circuit 205 : state indication circuit 206 : phase shift PWM dimming circuit 4 0 1 : current reference circuit 4 0 2 : current Mirror circuit 403: voltage reference circuit 404: current adjustment circuit 405: current regulator 406: operational amplifier 407: controllable current source 408: operational amplifier 409: controllable current source 4 1 0: current detection circuit 501: feedback circuit 502: Feedback circuit 503: Overvoltage detection comparator 5 04 : Undervoltage detection comparator -34- 201228453 5 0 5 : LED fault protection module 5 06 : System shutdown trigger circuit 507 : LED open detection comparator 5 08 : LED short circuit Detection comparator 509: trigger circuit 5 1 0 : logic gate 5 1 1 : timer 5 1 2 : logic gate 6 0 1 : or gate 701 : first frequency multiplying circuit 702 : second frequency multiplying circuit 703 : delay module -35-

Claims (1)

201228453 七、申請專利範固: 1. 一種驅動多個發光元件的驅動器’包括: 電壓轉換單元’接收輸入電壓’基於接收的輸入電壓 在輸出端產生輸出電壓,其中該輸出電壓被施加到每個發 光元件的一端;以及 電流均衡單元’耦接到每個發光元件的另一端,用於 爲該多個發光元件提供驅動電流’其中,該電流均衡單元 還耦接第一參考電壓’基於該第一參考電壓來調節流經每 個發光元件的驅動電流的大小’使得各個發光元件的驅動 電流匹配。 2·如申請專利範圍第1項所述的驅動器,其中,該電 流均衡單元從該第一參考電壓產生第二參考電壓,並且基 於第二參考電壓調節流過各個發光單元的驅動電流。 3 .如申請專利範圍第2項所述的驅動器,其中,該電 流均衡單元包括: 參考電壓產生單元,基於該第一參考電壓產生參考電 流’並且基於該參考電流輸出多個相同的第二參考電壓; 以及 電流調整電路’基於該第二參考電壓以負回饋的方式 調節流過各個發光元件的驅動電流。 4·如申請專利範圍第3項所述的驅動器,其中,通過 調節該第一參考電壓和/或與該第一參考電壓串聯的器件 的値來調節該參考電流》 5.如申請專利範圍第4項所述的驅動器,其中,該參 -36- 201228453 考電壓產生單元包括: 電流參考電路,在其一個輸入端耦接該第一參考電壓 ,在其另一個輸入端耦接該器件,並基於該第一參考電壓 與該器件的値產生參考電流; 電流鏡電路,接收該參考電流,並以相同的比例產生 該參考電流的多個複製電流; 電壓參考電路,接收該多個複製電流,並將該多個複 製電流轉換爲多個相同的第二參考電壓。 6. 如申請專利範圍第5項所述的驅動器,其中,該電 流參考電路包括: 運算放大器,其同相輸入端耦接該第一參考電壓,其 反相輸入端耦接該器件,其輸出端耦接該可控電流源的控 制端; 可控電流源,其控制端耦接該運算放大器的輸出端, 其一個電流端耦接該運算放大器的反相輸入端,其另一個 電流端輸出該參考電流。 7. 如申請專利範圍第6項所述的驅動器,其中,該可 控電流源包括MOSFET,其閘極耦接該運算放大器的輸出 端,源極耦接該運算放大器的反相輸入端,汲極輸出該參 考電流。 8. 如申請專利範圍第5項所述的驅動器,其中,該電 流鏡電路包括多個並聯耦接的電流鏡,該多個並聯耦接的 電流鏡具有共同的電流接收端,用於接收該參考電流,並 在各自的電流輸出端產生該複製電流。 -37- 201228453 9. 如申請專利範圍第8項所述的驅動器,其中,該多 個並聯耦接的電流鏡中的每一個均包括MOSFET。 10. 如申請專利範圍第5項所述的驅動器,其中,該電 壓參考電路包括多個阻値相同的電阻,每個電阻的一端分 別對應耦接該多個複製電流中的一個,另一端耦接到地。 11·如申請專利範圍第3項所述的驅動器,其中,該電 流調整電路接收該多個第二參考電壓,檢測該流經每個發 光元件的驅動電流並提供代表每個驅動電流的多個回饋電 壓,將該多個回饋電壓分別與該多個第二參考電壓相比較 ,以調節該流經每個發光元件的驅動電流。 1 2 ·如申請專利範圍第1 1項所述的驅動器,其中,該 電流調整電路包括多個電流調整器,每個該電流調整器均 包括: 第二可控電流源,其一個電流端耦接相應的發光元件 並爲與該發光元件提供驅動電流: 電流檢測電路,耦接到該第二可控電流源的另一電流 端,檢測與其對應耦接的該第二可控電流源提供的驅動電 流,並產生代表該驅動電流的回饋電壓; 第二運算放大器,其同相輸入端耦接該多個第二參考 電壓中的一個,其反相輸入端耦接該回饋電壓,其輸出端 耦接該可控電流源的控制端。 13.如申請專利範圍第12項所述的驅動器,其中,該 第二可控電流源爲MOSFET,其閘極耦接該第二運算放大 器的輸出端,源極耦接該電流檢測電路,汲極耦接相應的 -38- 201228453 發光元件。 I4·如申請專利範圍第12項所述的驅動器,其中,該 電流檢測電路包括電阻器。 I5·如申請專利範圍第1項所述的驅動器,還包括故障 檢測及保護電路,其耦接該多個發光元件以及該輸出端, 用於根據每個發光元件另一端處的電壓和/或該輸出電壓 ’檢測各個發光元件的開路或短路故障和/或該輸出電壓 的過壓或欠壓故障。 1 6 .如申請專利範圍第1 5項所述的驅動器,其中,該 故障檢測及保護電路包括第一回饋電路,其接收該多個發 光元件的另一端處的電壓,並向該電壓轉換單元提供第一 回饋信號,以便調節該輸出電壓,其中,該第一回饋信號 代表該多個發光元件的另一端處的電壓中的最小電壓。 1 7 ·如申請專利範圍第1 6項所述的驅動器,其中,該 電壓轉換單元接收該第一回饋信號,並將其與第二參考電 壓相比較以提供誤差放大信號,根據該誤差放大信號調節 該輸出電壓。 18.如申請專利範圍第15項所述的驅動器,其中,該 故障檢測及保護電路包括第二回饋電路,其接收該輸出電 壓,並產生代表該輸出電壓的第二回饋信號。 19·如申請專利範圍第18項所述的驅動器,其中,該 故障檢測及保護電路還包括過壓檢測模組,其基於該第二 回饋信號檢測該輸出電壓的過壓,並產生過壓故障信號。 2 0 .如申請專利範圍第1 9項所述的驅動器,其中,該 S -39- 201228453 過壓檢測模組包括過壓檢測比較器,用於接收該第二回饋 信號,將其與過壓閩値電壓比較並提供過壓故障信號;該 過壓故障信號,在該第二回饋信號大於該過壓閩値電壓時 爲代表該輸出電壓過壓的邏輯狀態,並觸發該電壓轉換器 將其中的開關器件關斷,在該第二回饋信號小於該過壓閾 値電壓時爲代表該輸出電壓正常的邏輯狀態。 2 1 .如申請專利範圍第1 9項所述的驅動器,其中,該 過壓檢測及保護電路還包括欠壓檢測模組,其基於該第二 回饋信號檢測該輸出電壓的欠壓,並產生欠壓故障信號。 22 .如申請專利範圍第2 1項所述的驅動器,其中,該 過壓檢測模組包括欠壓檢測比較器,用於接收該第二回饋 信號,將其與欠壓閾値電壓比較並提供欠壓故障信號;該 欠壓故障信號,在該第二回饋信號小於該欠壓閩値電壓時 爲代表該輸出電壓欠壓的邏輯狀態,並將該驅動器關斷, 在該第二回饋信號大於該欠壓閾値電壓時爲代表該輸出電 壓正常的邏輯狀態。 23.如申請專利範圍第21項所述的驅動器,其中,該 故障檢測及保護電路還包括多個發光元件故障保護模組, 每個該發光元件故障保護模組耦接相應發光元件的另一端 ,接收與其對應耦接的另一端處的電壓以及該過壓故障信 號,判斷與其對應耦接的發光元件的開路或者短路故障, 並產生第一觸發信號;如果與其對應耦接的發光元件開路 並且該過壓故障信號爲代表該輸出電壓過壓的邏輯狀態或 者與其對應耦接的發光元件短路,則該第一觸發信號爲觸 -40- 201228453 發狀態,並將與其耦接的發光元件關斷;否則該第一觸發 信號爲非觸發狀態。 24.如申請專利範圍第23項所述的驅動器,其中,每 個該發光元件故障保護模組均包括: 開路檢測比較器,接收與該發光元件故障保護模組對 應耦接的發光元件的另一端處的電壓,將其與開路閾値電 壓相比較,產生開路故障信號;該開路故障信號,在該發 光元件的另一端處的電壓大於該開路閩値電壓時爲代表發 光元件正常的邏輯狀態,在該發光元件另一端處的電壓小 於該開路閾値電壓時爲代表發光元件開路的邏輯狀態; 短路檢測比較器,接收與該發光元件故障保護模組對 應耦接的發光元件的另一端處的電壓,將其與短路閾値電 壓相比較,產生短路故障信號;該短路故障信號,在該發 光元件另一端處的電壓大於該短路閩値電壓時爲代表發光 兀件短路的邏輯狀態,在該發光元件另一端處的電壓小於 該短路閩値電壓時爲代表發光元件正常的邏輯狀態; 觸發電路,接收該開路故障信號、該短路故障信號以 及該過壓故障信號,並提供該第一觸發信號;當該開路故 障信號爲代表發光元件開路的邏輯狀態並且該過壓故障信 號爲代表該輸出電壓過壓的邏輯狀態時或者該短路故障信 號爲代表發光元件短路的邏輯狀態的持續時間達到預先設 定的閾値時,該第一觸發信號爲觸發狀態;否則該第一觸 發信號爲非觸發狀態。 2 5.如申請專利範圍第24項所述的驅動器,其中,該 5 • 41 - 201228453 觸發電路包括: 第一邏輯閘,接收該開路故障信號和該過壓故障信號 ,輸出第二觸發信號,其中該第二觸發信號在該開路故障 信號爲代表發光元件開路的邏輯狀態並且該過壓故障信號 爲代表該輸出電壓過壓的邏輯狀態時爲觸發狀態,否則爲 非觸發狀態; 計時器,具有該預先設定的閾値,其接收該短路故障 信號,並輸出第三觸發信號,其中,當該短路故障信號爲 代表發光元件短路的邏輯狀態時,該計時器開始計時,並 且當該計時器達到該預先設定的閩値時,該第三觸發信號 爲觸發狀態;如果該短路故障信號爲代表發光元件正常的 邏輯狀態或該計時器未達到該預先設定的閾値,則該第三 觸發信號爲非觸發狀態; 第二邏輯閘,接收該第二和第三觸發信號,並輸出該 第一觸發信號,其中,當該第二和第三觸發信號中至少有 一個爲觸發狀態時,該第一觸發信號爲觸發狀態;只有該 第二和第三觸發信號均爲非觸發狀態時,該第一觸發信號 爲非觸發狀態。 2 6.如申請專利範圍第24項所述的驅動器,其中,該 故障檢測及保護電路還包括系統關斷觸發電路,其接收該 多個發光元件故障保護模組輸出的多個該第一觸發信號, 並產生第四觸發信號,其中,該第四觸發信號在該多個該 第一觸發信號均爲觸發狀態時爲觸發狀態,並將該驅動器 關斷,在該多個該第一觸發信號中至少有一個爲非觸發狀 -42- 201228453 態時爲非觸發狀態並不關斷該驅動器。 27.如申請專利範圍第26項所述的驅動器,還包括狀 態指不電路,其接收該過壓故障信號或者該欠壓故障信號 或者該第四觸發信號,並產生指示信號,其中,該指示信 號在該過壓故障信號爲代表該輸出電壓過壓的邏輯狀態或 者該欠壓故障信號爲代表該輸出電壓欠壓的邏輯狀態或者 該第四觸發信號爲觸發狀態時爲代表該驅動器故障的邏輯 狀態,否則爲代表該驅動器正常的邏輯狀態。 2 8 ·如申請專利範圍第1項所述的驅動器,還包括移相 PWM調光電路’其接收PWM調光輸入信號,將其移相後產 生多個PWM調光信號;該PWM調光輸入信號和該多個 PWM調光信號被耦合到該電流均衡電路,用於以——對應 的方式分別對該多個發光元件中的不同發光元件進行調光 ,其中用於相繼點亮/關斷兩個發光元件的兩個PWM調光 信號之間相差一個預先設定的相位値。 29.如申請專利範圍第28項所述的驅動器,其中該多 個發光元件的個數爲N,該多個PWM調光信號的個數爲N-1,該預先設定的相位値爲2π/Ν,其中N爲大於1的整數。 3 0.如申請專利範圍第29項所述的驅動器,其中,該 移相PWM調光電路包括Ν-1個延時電路,其均接收該PWM 調光輸入信號,並且分別對該PWM調光輸入信號延時,產 生Ν-1個PWM調光信號,其中相鄰的兩個PWM調光信號之 間具有1/Ν倍的該PWM調光輸入信號的週期的延時。 3 1.如申請專利範圍第29項所述的驅動器,其中,該 5 -43- 201228453 移相PWM調光電路包括: 倍頻電路,接收該PWM調光輸入信號,並且產生第一 脈衝信號和第二脈衝信號,其中,第一脈衝信號以該PWM 調光輸入信號的上升邊緣爲起點對其進行N倍頻,第二脈 衝信號以該PWM調光輸入信號的下降邊緣爲起點對其進行 N倍頻; 延時模組,接收該PWM調光輸入信號以及該第一和第 二脈衝信號,基於對該第一和第二脈衝信號分別以該PWM 調光輸入信號的上升邊緣和下降邊緣爲觸發進行脈衝計數 以實現對該PWM調光輸入信號的移相。 3 2 .如申請專利範圍第3 1項所述的驅動器,其中,該 倍頻電路包括: 第一倍頻電路,接收該PWM調光輸入信號,並且以該 PWM調光輸入信號的上升邊緣爲觸發對其進行N倍頻,產 生第一脈衝信號;和 第二倍頻電路,接收該PWM調光輸入信號,並且以該 PWM調光輸入信號的下降邊緣爲觸發對其進行N倍頻,產 生第二脈衝信號。 33.如申請專利範圍第31項所述的驅動器,其中,該 延時模組包括N-1個延時電路,均接收該PWM調光輸入信 號以及該第一和第二脈衝信號,分別輸出第1至N-1個該 PWM調光信號;其中’第1至N-1個該延時電路分別以該 PWM調光輸入信號的上升邊緣爲觸發對第一脈衝信號的正 脈衝進行計數,同時以該PWM調光輸入信號的下降邊緣爲 -44 - 201228453 觸發對第二脈衝信號的負脈衝進行計數,並且分別對第一 脈衝信號的正脈衝計數到2至N時對應產生該第1至N-1個 PWM調光輸入信號的上升邊緣,分別對第二脈衝信號的負 脈衝計數到2至N時對應產生該第1至N-1個PWM調光輸入 信號的下降邊緣。 34.如申請專利範圍第33項所述的驅動器,其中,該 N-1個延時電路均包括正脈衝計數器、負脈衝計數器和觸 發器,其中,對於第X個該延時電路: 該正脈衝計數器在其致能輸入端接收該PWM調光輸入 信號,在其計數輸入端接收該第一脈衝信號,並且在該 PWM調光輸入信號的上升邊緣時被觸發致能,對該第一脈 衝信號的高電平脈衝進行計數,當計數爲(X+1)時,輸出 第一單脈衝,該第一單脈衝將正脈衝計數器重設而停止計 數; 該負脈衝計數器在其致能輸入端接收該PWM調光輸入 信號,在其計數輸入端接收該第二脈衝信號,並且在該 PWM調光輸入信號的下降邊緣時被觸發致能,對該第二脈 衝信號的低電平脈衝進行計數,當計數爲(X+1)時,輸出 第二單脈衝,該第二單脈衝將負脈衝計數器重設而停止計 數; 該觸發器,在其置位端接收該第一單脈衝,在其重設 端接收該第二單脈衝,輸出第X個PWM調光信號; 其中X從1變化到N -1。 3 5 ·如申請專利範圍第3 4項所述的驅動器,其中,該 -45- 201228453 第一和第二倍頻電路爲鎖相迴路電路。 3 6. —種顯示設備,包括如申請專利範圍第1項所述的 驅動器。 -46-201228453 VII. Patent application: 1. A driver for driving a plurality of light-emitting elements 'includes: a voltage conversion unit that receives an input voltage' generates an output voltage at an output based on the received input voltage, wherein the output voltage is applied to each One end of the light emitting element; and a current equalization unit 'coupled to the other end of each of the light emitting elements for providing a driving current for the plurality of light emitting elements, wherein the current equalizing unit is further coupled to the first reference voltage based on the first A reference voltage is used to adjust the magnitude of the drive current flowing through each of the light-emitting elements such that the drive currents of the respective light-emitting elements match. 2. The driver of claim 1, wherein the current equalization unit generates a second reference voltage from the first reference voltage and adjusts a drive current flowing through each of the light emitting units based on the second reference voltage. 3. The driver of claim 2, wherein the current equalization unit comprises: a reference voltage generating unit that generates a reference current based on the first reference voltage and outputs a plurality of identical second references based on the reference current The voltage and the current adjustment circuit adjust the drive current flowing through the respective light-emitting elements in a negative feedback manner based on the second reference voltage. 4. The driver of claim 3, wherein the reference current is adjusted by adjusting the first reference voltage and/or the 値 of the device in series with the first reference voltage. The driver of claim 4, wherein the reference voltage generating unit comprises: a current reference circuit coupled to the first reference voltage at one input thereof and coupled to the device at the other input end thereof, and Generating a reference current based on the first reference voltage and the 値 of the device; receiving a reference current and generating a plurality of replica currents of the reference current at the same ratio; a voltage reference circuit receiving the plurality of replica currents, And converting the plurality of replica currents into a plurality of identical second reference voltages. 6. The driver of claim 5, wherein the current reference circuit comprises: an operational amplifier having a non-inverting input coupled to the first reference voltage, an inverting input coupled to the device, and an output thereof a control terminal coupled to the controllable current source; a controllable current source having a control terminal coupled to the output end of the operational amplifier, a current terminal coupled to the inverting input terminal of the operational amplifier, and another current terminal outputting the Reference current. 7. The driver of claim 6, wherein the controllable current source comprises a MOSFET, the gate of which is coupled to the output of the operational amplifier, and the source is coupled to the inverting input of the operational amplifier, The pole outputs the reference current. 8. The driver of claim 5, wherein the current mirror circuit comprises a plurality of current mirrors coupled in parallel, the plurality of parallel coupled current mirrors having a common current receiving end for receiving the current mirror The reference current is generated and the replica current is generated at the respective current outputs. 9. The driver of claim 8, wherein each of the plurality of parallel coupled current mirrors comprises a MOSFET. 10. The driver of claim 5, wherein the voltage reference circuit comprises a plurality of resistors having the same resistance, and one end of each resistor is coupled to one of the plurality of replica currents, and the other end is coupled Received the land. The driver of claim 3, wherein the current adjustment circuit receives the plurality of second reference voltages, detects a drive current flowing through each of the light-emitting elements, and provides a plurality of currents representing each of the drive currents. The feedback voltage is compared with the plurality of second reference voltages to adjust the driving current flowing through each of the light emitting elements. The driver of claim 1, wherein the current adjustment circuit comprises a plurality of current regulators, each of the current regulators comprising: a second controllable current source, a current terminal coupling Connecting a corresponding light-emitting element and providing a driving current to the light-emitting element: a current detecting circuit coupled to the other current end of the second controllable current source, detecting the second controllable current source coupled thereto Driving current and generating a feedback voltage representative of the driving current; the second operational amplifier has a non-inverting input coupled to one of the plurality of second reference voltages, an inverting input coupled to the feedback voltage, and an output coupled Connect to the control terminal of the controllable current source. 13. The driver of claim 12, wherein the second controllable current source is a MOSFET, a gate thereof is coupled to an output end of the second operational amplifier, and a source is coupled to the current detecting circuit, The pole is coupled to the corresponding -38- 201228453 illuminating element. The driver of claim 12, wherein the current detecting circuit comprises a resistor. The driver of claim 1, further comprising a fault detection and protection circuit coupled to the plurality of light emitting elements and the output terminal for voltage and/or according to voltage at the other end of each of the light emitting elements The output voltage 'detects an open or short circuit fault of each of the light emitting elements and/or an overvoltage or undervoltage fault of the output voltage. The driver of claim 15, wherein the fault detecting and protecting circuit comprises a first feedback circuit that receives a voltage at the other end of the plurality of light emitting elements and supplies the voltage to the voltage converting unit A first feedback signal is provided to adjust the output voltage, wherein the first feedback signal represents a minimum voltage among voltages at the other end of the plurality of light emitting elements. The driver of claim 16, wherein the voltage conversion unit receives the first feedback signal and compares it with a second reference voltage to provide an error amplification signal, and amplifies the signal according to the error Adjust the output voltage. 18. The driver of claim 15 wherein the fault detection and protection circuit comprises a second feedback circuit that receives the output voltage and produces a second feedback signal representative of the output voltage. The driver of claim 18, wherein the fault detection and protection circuit further comprises an overvoltage detection module that detects an overvoltage of the output voltage based on the second feedback signal and generates an overvoltage fault signal. The driver of claim 19, wherein the S-39-201228453 overvoltage detection module includes an overvoltage detection comparator for receiving the second feedback signal and overvoltage闽値 voltage comparison and providing an overvoltage fault signal; the overvoltage fault signal is a logic state representing the overvoltage of the output voltage when the second feedback signal is greater than the overvoltage , voltage, and triggers the voltage converter to The switching device is turned off, and when the second feedback signal is less than the overvoltage threshold voltage, it is a logic state representing that the output voltage is normal. The driver of claim 19, wherein the overvoltage detection and protection circuit further comprises an undervoltage detection module, which detects an undervoltage of the output voltage based on the second feedback signal, and generates Undervoltage fault signal. The driver of claim 21, wherein the overvoltage detection module comprises an undervoltage detection comparator for receiving the second feedback signal, comparing it with an undervoltage threshold voltage and providing an owed a voltage fault signal; the undervoltage fault signal is a logic state representing the undervoltage of the output voltage when the second feedback signal is less than the undervoltage signal, and the driver is turned off, wherein the second feedback signal is greater than the The undervoltage threshold voltage is a logic state that represents the normal output voltage. The driver of claim 21, wherein the fault detection and protection circuit further comprises a plurality of light-emitting element fault protection modules, each of the light-emitting element fault protection modules being coupled to the other end of the corresponding light-emitting element Receiving a voltage at the other end coupled thereto and the overvoltage fault signal, determining an open or short circuit fault of the correspondingly coupled light emitting element, and generating a first trigger signal; if the corresponding light emitting element is open and The overvoltage fault signal is a logic state representing the overvoltage of the output voltage or a short circuit of the corresponding light emitting component, and the first trigger signal is in the state of the touch-40-201228453, and the light emitting component coupled thereto is turned off. Otherwise, the first trigger signal is in a non-trigger state. 24. The driver of claim 23, wherein each of the light-emitting element fault protection modules comprises: an open-circuit detection comparator that receives another light-emitting element coupled to the light-emitting element fault protection module The voltage at one end is compared with the open threshold 値 voltage to generate an open circuit fault signal; the open circuit fault signal is a normal logic state of the light emitting element when the voltage at the other end of the light emitting element is greater than the open circuit voltage. a logic state representing an open state of the light emitting element when the voltage at the other end of the light emitting element is less than the open threshold voltage; a short circuit detecting comparator receiving a voltage at the other end of the light emitting element coupled to the light emitting element fault protection module Comparing with the short-circuit threshold voltage, generating a short-circuit fault signal; the short-circuit fault signal is a logic state representing a short-circuit of the light-emitting element when the voltage at the other end of the light-emitting element is greater than the short-circuit voltage, in the light-emitting element When the voltage at the other end is less than the short-circuit voltage, it is the logic that represents the normality of the light-emitting element. a trigger circuit that receives the open fault signal, the short fault signal, and the overvoltage fault signal, and provides the first trigger signal; when the open fault signal is a logic state representing an open state of the light emitting component and the overvoltage fault signal is The first trigger signal is a trigger state when the logic state representing the output voltage overvoltage or the duration of the logic state indicating that the short circuit fault signal is shorted by the light emitting element reaches a preset threshold; otherwise the first trigger signal is non- Trigger status. 2. The driver of claim 24, wherein the 5:41 - 201228453 trigger circuit comprises: a first logic gate receiving the open fault signal and the overvoltage fault signal, and outputting a second trigger signal, The second trigger signal is a trigger state when the open circuit fault signal is a logic state representing an open state of the light emitting element, and the overvoltage fault signal is a logic state representing the output voltage overvoltage, otherwise it is a non-trigger state; Receiving the short-circuit fault signal and outputting a third trigger signal, wherein the timer starts counting when the short-circuit fault signal is a logic state indicating that the light-emitting element is short-circuited, and when the timer reaches the When the preset trigger is set, the third trigger signal is a trigger state; if the short circuit fault signal is a normal logic state representing the light-emitting element or the timer does not reach the preset threshold, the third trigger signal is non-trigger a second logic gate, receiving the second and third trigger signals, and outputting the first trigger a signal, wherein, when at least one of the second and third trigger signals is in a trigger state, the first trigger signal is a trigger state; and only the second and third trigger signals are in a non-trigger state, the first The trigger signal is in a non-trigger state. 2. The driver of claim 24, wherein the fault detection and protection circuit further comprises a system shutdown trigger circuit that receives the plurality of the first triggers output by the plurality of light component fault protection modules a signal, and generating a fourth trigger signal, wherein the fourth trigger signal is in a trigger state when the plurality of the first trigger signals are in a trigger state, and the driver is turned off, and the plurality of the first trigger signals are At least one of the non-trigger-42-201228453 states is non-triggered and does not shut down the drive. 27. The driver of claim 26, further comprising a state indicating circuit that receives the overvoltage fault signal or the undervoltage fault signal or the fourth trigger signal and generates an indication signal, wherein the indication The signal is a logic representing the fault of the driver when the overvoltage fault signal is a logic state representing the overvoltage of the output voltage or the undervoltage fault signal is a logic state representing the undervoltage of the output voltage or the fourth trigger signal is a trigger state. State, otherwise a normal logic state representing the drive. 2. The driver of claim 1, further comprising a phase shifting PWM dimming circuit that receives the PWM dimming input signal and phase shifts it to generate a plurality of PWM dimming signals; the PWM dimming input a signal and the plurality of PWM dimming signals are coupled to the current equalization circuit for dimming different ones of the plurality of light-emitting elements in a corresponding manner, wherein for successively lighting/turning off The two PWM dimming signals of the two illuminating elements differ by a predetermined phase 値. 29. The driver according to claim 28, wherein the number of the plurality of light-emitting elements is N, the number of the plurality of PWM dimming signals is N-1, and the predetermined phase 値 is 2π/ Ν, where N is an integer greater than one. The driver of claim 29, wherein the phase shifting PWM dimming circuit comprises Ν-1 delay circuits, each receiving the PWM dimming input signal, and separately inputting the PWM dimming input The signal delay generates Ν-1 PWM dimming signals, wherein the adjacent two PWM dimming signals have a delay of 1/Ν times the period of the PWM dimming input signal. 3. The driver of claim 29, wherein the 5-43-201228453 phase shift PWM dimming circuit comprises: a frequency multiplying circuit that receives the PWM dimming input signal and generates a first pulse signal and a second pulse signal, wherein the first pulse signal is N-multiplied starting from a rising edge of the PWM dimming input signal, and the second pulse signal is N based on a falling edge of the PWM dimming input signal. a frequency doubling module, receiving the PWM dimming input signal and the first and second pulse signals, based on the rising edge and the falling edge of the PWM dimming input signal respectively for the first and second pulse signals A pulse count is performed to effect phase shifting of the PWM dimming input signal. The driver of claim 3, wherein the frequency multiplying circuit comprises: a first frequency multiplying circuit that receives the PWM dimming input signal, and the rising edge of the PWM dimming input signal is Triggering it N times to generate a first pulse signal; and a second frequency multiplying circuit, receiving the PWM dimming input signal, and performing N multiplication on the falling edge of the PWM dimming input signal to generate Second pulse signal. 33. The driver of claim 31, wherein the delay module comprises N-1 delay circuits, each receiving the PWM dimming input signal and the first and second pulse signals, respectively outputting the first Up to N-1 PWM dimming signals; wherein '1st to N-1th delay circuits respectively count the positive pulse of the first pulse signal with the rising edge of the PWM dimming input signal, and simultaneously The falling edge of the PWM dimming input signal is -44 - 201228453. The trigger counts the negative pulse of the second pulse signal, and respectively generates the first to N-1 when the positive pulse of the first pulse signal is counted to 2 to N. The rising edges of the PWM dimming input signals respectively generate a falling edge of the first to N-1 PWM dimming input signals when the negative pulse of the second pulse signal is counted to 2 to N. 34. The driver of claim 33, wherein the N-1 delay circuits each comprise a positive pulse counter, a negative pulse counter, and a flip flop, wherein, for the Xth delay circuit: the positive pulse counter Receiving the PWM dimming input signal at its enable input terminal, receiving the first pulse signal at its count input terminal, and being enabled to be enabled at the rising edge of the PWM dimming input signal, for the first pulse signal The high level pulse counts, when the count is (X+1), the first single pulse is output, the first single pulse resets the positive pulse counter to stop counting; the negative pulse counter receives the input at its enable input a PWM dimming input signal, receiving the second pulse signal at a counting input end thereof, and being triggered to be enabled at a falling edge of the PWM dimming input signal, counting a low level pulse of the second pulse signal, when When the count is (X+1), a second single pulse is output, and the second single pulse resets the negative pulse counter to stop counting; the trigger receives the first single pulse at its set end, and is heavy in it Receiving a second end of the single pulse, the output of a PWM dimming signal X; wherein X varies from 1 to N -1. The driver described in claim 4, wherein the -45-201228453 first and second frequency multiplying circuits are phase-locked loop circuits. 3 6. A display device comprising the driver as described in claim 1 of the patent application. -46-
TW099144504A 2010-12-17 2010-12-17 Full function LED driver for LCD backlighting TW201228453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099144504A TW201228453A (en) 2010-12-17 2010-12-17 Full function LED driver for LCD backlighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099144504A TW201228453A (en) 2010-12-17 2010-12-17 Full function LED driver for LCD backlighting

Publications (1)

Publication Number Publication Date
TW201228453A true TW201228453A (en) 2012-07-01

Family

ID=46933640

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099144504A TW201228453A (en) 2010-12-17 2010-12-17 Full function LED driver for LCD backlighting

Country Status (1)

Country Link
TW (1) TW201228453A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968963A (en) * 2012-11-30 2013-03-13 深圳市华星光电技术有限公司 LED (light-emitting diode) backlight driving circuit, liquid crystal display and driving method
TWI483652B (en) * 2012-12-21 2015-05-01 Upi Semiconductor Corp Led driving circuit and protection method thereof
CN109859681A (en) * 2019-03-28 2019-06-07 北京集创北方科技股份有限公司 A kind of LED display driver circuit, display, driving method and driving chip
TWI691947B (en) * 2019-03-28 2020-04-21 大陸商北京集創北方科技股份有限公司 LED display driving circuit and LED display
TWI719391B (en) * 2018-01-22 2021-02-21 矽創電子股份有限公司 Reference voltage generator of display device
CN113096585A (en) * 2020-11-20 2021-07-09 友达光电股份有限公司 Pixel driving device and driving method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968963A (en) * 2012-11-30 2013-03-13 深圳市华星光电技术有限公司 LED (light-emitting diode) backlight driving circuit, liquid crystal display and driving method
TWI483652B (en) * 2012-12-21 2015-05-01 Upi Semiconductor Corp Led driving circuit and protection method thereof
TWI719391B (en) * 2018-01-22 2021-02-21 矽創電子股份有限公司 Reference voltage generator of display device
CN109859681A (en) * 2019-03-28 2019-06-07 北京集创北方科技股份有限公司 A kind of LED display driver circuit, display, driving method and driving chip
TWI691947B (en) * 2019-03-28 2020-04-21 大陸商北京集創北方科技股份有限公司 LED display driving circuit and LED display
CN113096585A (en) * 2020-11-20 2021-07-09 友达光电股份有限公司 Pixel driving device and driving method thereof
TWI765423B (en) * 2020-11-20 2022-05-21 友達光電股份有限公司 Pixel driving device and driving method thereof
CN113096585B (en) * 2020-11-20 2023-11-03 友达光电股份有限公司 Pixel driving device and driving method thereof

Similar Documents

Publication Publication Date Title
CN101916547B (en) Driver for driving a plurality of light emitting elements and display device
KR101775159B1 (en) Control circuit and control method of switching power supply and light emitting apparatus and electronic device using the same
US8120280B2 (en) Circuits and methods for controlling a light source
US8643301B2 (en) LED driver circuit and LED lighting device using the same
EP1860922B1 (en) Method and apparatus to power light emitting diode arrays
KR101910669B1 (en) Control circuit of switching power supply for driving light emitting elements, and light emitting device and electronic apparatus using the same
US7948455B2 (en) Apparatus and method for regulating white LEDs
TWI403080B (en) A charge pump circuit with current detecting and method thereof
US8569975B2 (en) Control circuit for switching power supply
TWI437912B (en) Apparatus for lighting leds
US20090225020A1 (en) Backlight controller for driving light sources
US9288857B2 (en) Light-emitting diode driving apparatus and light-emitting diode illumination system using the same
US20120104964A1 (en) Led driver with pwm dimming and method thereof
TW200950589A (en) Light emitting diode driving circuit and controller thereof
KR20120064636A (en) Driving circuit of light emitting element, light emitting device using the same, and electronic device
TW201034371A (en) Load driving device and liquid crystal display using such load driving device
TW201228453A (en) Full function LED driver for LCD backlighting
CN102970803A (en) Apparatus and method for driving multiple strings of light emitting diodes
CN202941027U (en) Device for driving multiple strings of light emitting diodes
JP5960982B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
JP5973164B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
JP2010130810A (en) Led drive device
US9661705B1 (en) Power conversion apparatus for decreasing number of pins
JP5735832B2 (en) Control circuit for switching power supply for driving light emitting element, light emitting device and electronic device
KR101129287B1 (en) LED Driving System