TW201226601A - Housing and method for making the same - Google Patents

Housing and method for making the same Download PDF

Info

Publication number
TW201226601A
TW201226601A TW99144861A TW99144861A TW201226601A TW 201226601 A TW201226601 A TW 201226601A TW 99144861 A TW99144861 A TW 99144861A TW 99144861 A TW99144861 A TW 99144861A TW 201226601 A TW201226601 A TW 201226601A
Authority
TW
Taiwan
Prior art keywords
aluminum
metal substrate
magnesium metal
layer
film
Prior art date
Application number
TW99144861A
Other languages
Chinese (zh)
Other versions
TWI471440B (en
Inventor
Hsin-Pei Chang
Wen-Rong Chen
Huan-Wu Chiang
Cheng-Shi Chen
xiao-qiang Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99144861A priority Critical patent/TWI471440B/en
Publication of TW201226601A publication Critical patent/TW201226601A/en
Application granted granted Critical
Publication of TWI471440B publication Critical patent/TWI471440B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

A housing includes an aluminium or magnesium alloy substrate, a corrosion resistance layer and a color layer formed on the aluminium or magnesium substrate alloy in that order. The corrosion resistance layer includes an Al-Cu layer and Al-N layer formed on an aluminium or magnesium alloy substrate. The atom percentages of N in the Al-N graded layer gradedly increase from nearing the aluminum or magnesium alloy substrate to far away from it. A method for making the housing is also provided. The method includes: providing an aluminium or magnesium alloy substrate; forming a corrosion resistance layer on the substrate, forming a color layer on the corrosion resistance layer by magnetron sputtering. The corrosion resistance layer includes an Al-Cu layer and Al-N layer formed on an aluminium or magnesium alloy substrate. a color layer formed on the a color layer formed on the aluminium or magnesium substrate.

Description

201226601 六、發明說明: 【發明所屬之技術領域】 [⑽1] 本發明涉及一種殼體及其製造方法。 【先前技術】 [0002] 真空鍍膜技術(PVD)係一種非常環保的成膜技術。以真 空鍍膜的方式所形成的膜層具有高硬度、高耐磨性、良 好的化學穩定性、與基體結合牢固以及亮麗的金屬外觀 等優點,因此真空鍍膜在鎂、鎂合金及不銹鋼等金屬基 材表面裝飾性處理領域的應用越來越廣。 [0003] 然而,由於鎂或鎂合金的標準電極電位很低,且PVD裝飾 性塗層本身不可避免的會存在微小的孔隙,如針孔、裂 紋,並且鎂及鎂合金基體會發生微電池腐蝕作用,形成 很大的膜-基電位差,加快了微電池的腐蚀速率,因此, 直接於鎂或鎂合金基體表面鍍覆諸如TiN層、TiN層、201226601 VI. Description of the Invention: [Technical Field to Which the Invention Is Applicated] [(10) 1] The present invention relates to a casing and a method of manufacturing the same. [Prior Art] [0002] Vacuum coating technology (PVD) is a very environmentally friendly film forming technology. The film formed by vacuum coating has the advantages of high hardness, high wear resistance, good chemical stability, strong bonding with the substrate and a beautiful metallic appearance. Therefore, the vacuum coating is applied to metal bases such as magnesium, magnesium alloy and stainless steel. The application of decorative surface treatment is becoming more and more extensive. [0003] However, since the standard electrode potential of magnesium or magnesium alloy is very low, and the PVD decorative coating itself inevitably has minute pores, such as pinholes, cracks, and micro-cell corrosion of magnesium and magnesium alloy substrates. The effect is to form a large membrane-base potential difference, which accelerates the corrosion rate of the microbattery. Therefore, the surface of the magnesium or magnesium alloy substrate is directly coated with a layer such as a TiN layer or a TiN layer.

CrN層等具有色彩的PVD裝飾性塗層,不能有效防止所述 鎂或鎂合金基體發生電化學腐蝕,同時該PVD裝飾性塗層 本身也會發生異色、脫落等現象。 【發明内容】 [0004] 鑒於此,提供一種具有良好的耐腐蝕性的殼體。 [0005] 另外,還提供一種上述殼體的製造方法。 [0006] 一種殼體,包括鋁/鎂金屬基體,於該鋁/鎂金屬基體表 面磁控濺射防腐蝕層,所述防腐蝕層包括依次形成於鋁/ 鎂金屬基體表面的鋁銅膜和氮化鋁梯度膜,所述氮化鋁 梯度膜中N原子的數量百分含量由靠近鋁/鎂金屬基體至 099144861 表單編號A0101 第4頁/共15頁 0992077454-0 201226601 [0007] 遠離鋁/鎂金屬基體的方向呈梯度增加。 一種殼體的製造方法,包括以下步驟: [0008] 提供鋁/鎂金屬基體; [0009] 在該鋁/鎂金屬基體上磁控濺射防腐蝕層,所述防腐蝕層 包括依次形成於鋁/鎂金屬基體表面的鋁銅膜和氮化鋁梯 度膜’所述氮化鋁梯度膜中N原子的原子百分含量由靠近 紹/鎂金屬基體至遠離鋁/鎂金屬基體的方向呈梯度增加 〇 ❹ [0010] 所述殼體的製造友法,籍由磁控濺射法依次於鋁/鎂金屬 基體上形成防腐蝕層及具有裝飾性的色彩層。所述防腐 姓層包括依次形成於鋁/鎂金屬基_表面的鋁銅膜和氮化 ❹ 銘梯度膜,一方面,鋁銅膜自身有很好的耐腐蝕性能, 另一方面鋁銅膜與鋁/鎂金屬基體之間的電位差小,減緩 了殼體發生微電池腐蝕的速率,此外,鋁網膜中鋁和銅 的形核能不同,在鋁銅膜的形成過程中兩者之間相互抑 制而使膜層的晶粒更yj、’膜層變得緻密,從而提高了殼 體的耐腐蝕性。所述氮化鋁梯度膜可降低與鋁銅膜或鋁/ 鎂金屬基體之間晶格不匹配的程度,可改善與銘/鎮金屬 基體之間的介面錯配度,並可以借助於該銘銅膜以及銘/ 鎂金屬基體的局部塑性變形實現殘餘應力的釋放,從而 減少所述氮化鋁梯度膜内的殘餘應力,使殼體不易發生 應力腐蝕,在所述殼體防腐蝕性提高的同時,還可避免 所述殼體上形成的色彩層發生異色、脫落等失效現象, 從而使該殼體經長時間使用後仍具有較好的裝飾性外觀 099144861 表單編號A〇101 第5頁/共15頁 匿觀54-0 201226601 [0011] [0012] [0013] [0014] [0015] [0016] 099144861 【實施方式】 請參閱圖1,本發明一較佳實施例的殼體10包括鋁/鎂金 屬基體11、依次形成於該鋁/鎂金屬基體11上的防腐蝕層 13及色彩層15。該殼體10可以為3C電子產品的殼體,也 可為工業、建築用件及汽車等交通工具的零部件等。 所述銘/鎂金屬基體11的材質為銘、IS合金、鎮或鎖合金 〇 所述防腐#層13包括IS銅膜131和氮化銘梯度膜133,所 述鋁銅膜131形成於鋁/鎂金屬基體11的表面,所述氮化 鋁梯度膜133形成於鋁銅膜131的表面。所述鋁銅膜131 的厚度為1.0〜3.Ο/zm;所述氮化鋁梯度膜133的厚度為 0. 5〜1. 。所述氮化銘梯度膜中N原子的數量百分含 量由靠近鋁/鎂金屬基體至遠離鋁/鎂金屬基體的方向呈 梯度增加。 所述色彩層15為氮鈦膜層,其厚度為1.0~3.0//m。可以 理解,所述色彩層15還可以為氮鉻膜層或其他具有裝飾 性的膜層。 所述防腐蝕層13及色彩層15均可籍由磁控濺射法沉積形 成。 本發明一較佳實施例的製造所述殼體1 0的方法主要包括 如下步驟: 提供鋁/鎂金屬基體11,並對鋁/鎂金屬基體11依次進行 研磨及電解拋光。電解拋光後,再依次用去離子水和無 表單編號A0101 第6頁/共15頁 0992077454-0 [0017] 201226601 水乙醇對該鋁/鎂金屬基體11表面進行擦拭。再將擦拭後 的鋁/鎂金屬基體11放入盛裝有丙酮溶液的超聲波清洗器 中進行震動清洗’以除去鋁/鎂金屬基體1丨表面的雜質和 油污等。清洗完畢後吹幹備用。 [0018] Ο ο 對經上述處理後的鋁/鎂金屬基體11的表面進行氬氣電聚 清洗,進一步去除鋁/鎂金屬基體11表面的油污,以改善 鋁/鎂金屬基體11表面與後續塗層的結合力。該電漿清洗 可採用磁控濺射設備並利用該設備磁控濺射的方式形成 。該磁控濺射設備基本操作原理為:結合參閱圖2,提供 一鍍膜機100,鍍膜機100包括一鍍膜室20及用以對所述 鍍膜室20抽真空的一真空泵30 »該鍍臈室20内設有轉架 (未圖示)及擋板(未圖示)、二第一靶材22及二第二 靶材23。轉架帶動基材11沿圓形執跡21運行,且基材11 在沿軌跡21運行時亦自轉;擋板用以‘清洗靶材時隔離 濺射的粒子濺射至基材11 ’其通過電動控制自動打開或 關閉。二第一靶材22與二第二靶材23關於軌跡21的中心 對稱設置,且一第一靶材22相對地設置在軌跡21的内外 侧,二第二靶材23相對地設置在軌跡21的内外側。每一 第一乾材22及每一第一把材23的兩端均設有氣源通道μ ,鍍膜時,氣體經由該氣源通道24進入所述鍍膜室2〇。 當基材11穿過二第一靶材22之間時,將鍍上第一靶材22 表面濺射出的粒子,當基材11穿過二第二靶材23之間時 ,將锻上第二粗材23表面濺射出的粒子。 該電漿清洗的具體操作及工藝參數可為:對該鍍膜室進 行抽真空處理至本底真空度為1. 〇xl(T3pa,以 099144861 表單編號A0101 第7頁/共15頁 0992077454-0 [0019] 201226601 250 ~500sccm (標準狀態毫升/分鐘)的流量向鍍膜室中 通入純度為99· 999%的氬氣,於鋁/鎂金屬基體u上施加 -300〜-800V的偏壓,對鋁/鎂金屬基體u表面進行電漿 清洗,清洗時間為3〜1 0 m i η。 [0020] [0021] 在對鋁/鎂金屬基體11進行電漿清洗後,在該鋁/鎂金屬 基體11上形成防腐蝕層13。首先形成所述防腐蝕層13中 的鋁銅膜131。形成該鋁銅膜131的具體操作及工藝參數 如下:以氬氣為工作氣體,調節氬氣流量為 100~300sccm,設置佔空比為30%〜8〇% ’於鋁/鎂金屬基 體11上施加-50〜-2〇0V的偏凑,蕈加熱鈹膜室至 100〜150°<:(即濺射溫度為1〇〇〜150。(:;);選擇八卜(:11合 金靶材,所述Al-Cu合金靶中銅的原子數量百分含量為 0.5%〜25%,設置其功率為8〜I3kw,沉積防腐餘層13。 沉積該防腐蝕層13的時間為1〇〜30min。 形成鋁銅膜131後,在該鋁銅膜131上形成氮化鋁梯度膜 133,以氬氣為工作氣體,丨命所述鍍膜室中通入初始流量 為1 0~20seem的反應氣體氮氣,於該銘/鎂金屬基體11上 施加-100 — 400V的偏壓,沉積所述氮化鋁梯度膜133。 在沉積該氮化鋁梯度膜133的過程中,每沉積1〇〜i5m in 將氮氣的流量增大2〜20sccm,使N原子在氮化銘梯度膜 133中的原子的數量百分含量由靠近鋁/鎂金屬基體丨丨至 遠離該鋁/鎂金屬基體1丨的方向呈梯度增加。沉積該氮化 在呂梯度膜133的時間為6〇〜i20min。 所述氮化鋁梯度膜133中N原子的數量百分含量由靠近鋁/ 鎂金屬基體11至遠離鋁/鎂金屬基體的方向呈梯度增加 099144861 表單編號A0101 第8頁/共15頁 0992077454-0 [0022] 201226601 Ο [0023] [0024] Ο [0025] ,可降低氮化鋁梯度膜133與鋁銅膜131或鋁/鎂金屬基體 11之間晶格不匹配的程度’有利於將濺射氮化紹梯度膜 133的過移中產生的殘餘應力向铭/鎮金屬基體11方向傳 遞;又因為在氮化鋁梯度膜133和鋁/鎂金屬基體丨丨之間 沉積了塑性較好的鋁銅膜131,可改善氮化鋁梯度膜131 與鋁/鎂金屬基體11之間的介面錯配度,當氮化鋁梯度膜 133中的殘餘應力較大時,可以借助於該鋁銅膜131以及 鋁/鎂金屬基體11的局部塑性變形實現殘餘應力的釋放, 從而減少所述氮化鋁梯度膜133内的殘餘應力,使殼體1〇 不易發生應力腐餘’以提焉.所述殼體1 0的财腐餘性。所 述應力腐蝕是指在殘餘或/和外加應力及肩餑介質的作用 下,引起的金屬失效現象。 另外,所述氮化銘梯度膜133中含Α1-Ν相,可增強所述氮 化鋁梯度膜133的緻密性,提高所述殼體1〇的耐腐蝕性。 在氮化鋁梯度膜133上形成色彩層15,該色彩層15為氮鈦 膜層或氮鉻膜層。形成所述氮鈦膜層或氮鉻膜層的具體 操作及工藝參數:如下.關閉所述Ai.把的電源,開啟已置 於所述鍍膜機内的一鈦靶或鉻靶的電源,設置其功率 8〜10kw,保持上述氬氣的流量不變,並向鍍膜室内通入 流量為20~150sccm的反應氣體氮氣,沉積色彩層15。沉 積該色彩層15的時間為20〜3〇miη。 本發明較佳實施方式的殼體1〇的製造方法,籍由磁控濺 射法依次於鋁/鎂金屬基體1丨上形成防腐蝕層13及色彩層 15。所述防腐蝕層包括依次形成於鋁/鎂金屬基體表面的 099144861 銘銅膜131和氮化鋁梯度膜133, 表單編號Α0101 第9頁/共15頁 一方面,鋁銅膜131自 0992077454-0 201226601 身有报好的耐腐蝕性能,另一方面,鋁銅膜131與鋁合金 或鎂合金基體參前11之間的電位差小,減緩了殼體10發 生微電池腐蝕的速率,此外,鋁銅膜中鋁和銅的形核能 不同,在鋁銅膜1 31的形成過程中兩者之間相互抑制而使 膜層的晶粒更小,膜層變得緻密,從而提高了殼體10的 耐腐蝕性。所述氮化鋁梯度膜133可降低與鋁銅膜131或 鋁/鎂金屬基體11之間晶格不匹配的程度,可改善與鋁/ 鎂金屬基體11之間的介面錯配度,並可以借助於該鋁銅 膜以及鋁/鎂金屬基體11的局部塑性變形實現殘餘應力的 釋放,從而減少所述氮化鋁梯度膜133内的殘餘應力,使 殼體10不易發生應力腐蝕,在所述殼體10防腐蝕性提高 的同時,還可避免所述殼體10上形成的色彩層發生異色 、脫落等失效現象,從而使該殼體10經長時間使用後仍 具有較好的裝飾性外。 【圖式簡單說明】 [0026] 圖1為本發明較佳實施方式殼體的剖視示意圖。 [0027] 圖2是圖1殼體的製作過程中所用鍍膜機結構示意圖。 【主要元件符號說明】 [0028] 殼體:10 [0029] 鎂或鎂合金基體:11 [0030] 防腐蝕層:13 [0031] 鎂層·· 131 [0032] 氮化鎂層:133 099144861 表單編號A0101 第10頁/共15頁 0992077454-0 201226601 [0033] 色彩層:15 [0034] 鍍膜機:100 [0035] 鍍膜室:20 [0036] 真空泵:30 [0037] 軌跡:21 [0038] 第一靶材:22 [0039] 第二靶材:23 u [0040] 氣源通道:24 〇 099144861 表單編號A0101 第11頁/共15頁 0992077454-0A color PVD decorative coating such as a CrN layer cannot effectively prevent electrochemical corrosion of the magnesium or magnesium alloy substrate, and the PVD decorative coating itself may also be colored, peeled off, and the like. SUMMARY OF THE INVENTION [0004] In view of this, a housing having good corrosion resistance is provided. Further, a method of manufacturing the above casing is also provided. [0006] A casing comprising an aluminum/magnesium metal substrate, a magnetron sputtering anticorrosive layer on a surface of the aluminum/magnesium metal substrate, the anticorrosive layer comprising an aluminum copper film sequentially formed on a surface of the aluminum/magnesium metal substrate and Aluminum nitride gradient film, the content of N atoms in the aluminum nitride gradient film is close to the aluminum/magnesium metal substrate to 099144861 Form No. A0101 Page 4 / Total 15 Page 0992077454-0 201226601 [0007] Keep away from aluminum / The direction of the magnesium metal matrix increases in a gradient. A method of manufacturing a housing, comprising the steps of: [0008] providing an aluminum/magnesium metal substrate; [0009] magnetron sputtering an anti-corrosion layer on the aluminum/magnesium metal substrate, the anti-corrosion layer comprising sequentially formed in aluminum /Aluminum-copper film on the surface of the magnesium metal substrate and the aluminum nitride gradient film. The atomic percentage of N atoms in the aluminum nitride gradient film increases gradually from the near-magnesium/magnesium metal matrix to the direction away from the aluminum/magnesium metal matrix. [0010] The manufacturing method of the casing is to form an anti-corrosion layer and a decorative color layer on the aluminum/magnesium metal substrate by magnetron sputtering. The anti-corrosion layer includes an aluminum-copper film and a tantalum nitride gradient film which are sequentially formed on the surface of the aluminum/magnesium metal base. On the one hand, the aluminum-copper film itself has good corrosion resistance, and on the other hand, the aluminum-copper film and The potential difference between the aluminum/magnesium metal matrix is small, which slows the rate of corrosion of the microbattery in the shell. In addition, the nucleation energy of aluminum and copper in the aluminum mesh film is different, and the two are mutually inhibited during the formation of the aluminum copper film. The grain of the film layer is more yj, 'the film layer becomes denser, thereby improving the corrosion resistance of the shell. The aluminum nitride gradient film can reduce the degree of lattice mismatch with the aluminum copper film or the aluminum/magnesium metal substrate, and can improve the interface mismatch between the metal substrate and the metal substrate, and can be improved by means of the The local plastic deformation of the copper film and the inscription/magnesium metal substrate realizes the release of residual stress, thereby reducing residual stress in the aluminum nitride gradient film, making the casing less susceptible to stress corrosion, and improving the corrosion resistance of the casing. At the same time, the color layer formed on the casing may be prevented from being colored, falling off, etc., so that the casing has a good decorative appearance after being used for a long time. 099144861 Form No. A〇101 Page 5/ [0012] [0016] [0016] [0016] [0016] Referring to FIG. 1, a housing 10 of the preferred embodiment of the present invention includes aluminum. / Magnesium metal substrate 11, an anti-corrosion layer 13 and a color layer 15 which are sequentially formed on the aluminum/magnesium metal substrate 11. The casing 10 may be a casing of a 3C electronic product, or may be a component of a vehicle such as an industrial, a building, or an automobile. The material of the inscription/magnesium metal substrate 11 is an inscription, an IS alloy, a town or a lock alloy. The anticorrosion layer 13 includes an IS copper film 131 and a nitride gradient film 133 formed on the aluminum/ On the surface of the magnesium metal substrate 11, the aluminum nitride gradient film 133 is formed on the surface of the aluminum copper film 131. 5〜1. The thickness of the thickness of the aluminum nitride gradient film 133 is 0. 5~1. The amount of N atoms in the nitriding gradient film increases in a gradient from a direction close to the aluminum/magnesium metal matrix to a direction away from the aluminum/magnesium metal matrix. The color layer 15 is a titanium nitride film layer having a thickness of 1.0 to 3.0/m. It can be understood that the color layer 15 can also be a nitrochrome film layer or other decorative film layer. The anti-corrosion layer 13 and the color layer 15 can be formed by magnetron sputtering deposition. The method of manufacturing the housing 10 according to a preferred embodiment of the present invention mainly comprises the steps of: providing an aluminum/magnesium metal substrate 11 and sequentially grinding and electrolytically polishing the aluminum/magnesium metal substrate 11. After electropolishing, deionized water and no form No. A0101, page 6 of 15 0992077454-0 [0017] 201226601 The surface of the aluminum/magnesium metal substrate 11 was wiped with water ethanol. Further, the wiped aluminum/magnesium metal substrate 11 is placed in an ultrasonic cleaner containing an acetone solution for vibration cleaning to remove impurities, oil stains and the like on the surface of the aluminum/magnesium metal substrate. After cleaning, blow dry and set aside. [0018] 氩 ο The surface of the aluminum/magnesium metal substrate 11 subjected to the above treatment is subjected to argon electropolymer cleaning to further remove the oil stain on the surface of the aluminum/magnesium metal substrate 11 to improve the surface of the aluminum/magnesium metal substrate 11 and subsequent coating. The bonding force of the layers. The plasma cleaning can be formed by a magnetron sputtering apparatus using magnetron sputtering of the apparatus. The basic operation principle of the magnetron sputtering apparatus is as follows: Referring to FIG. 2, a coating machine 100 is provided. The coating machine 100 includes a coating chamber 20 and a vacuum pump 30 for vacuuming the coating chamber 20. 20 is provided with a turret (not shown), a baffle (not shown), two first targets 22, and two second targets 23. The turret drives the substrate 11 to run along the circular trace 21, and the substrate 11 also rotates when running along the trajectory 21; the baffle is used to 'sputter the target when the sputtered particles are sputtered onto the substrate 11' The electric control is automatically turned on or off. The second target 22 and the second target 23 are symmetrically disposed with respect to the center of the track 21, and a first target 22 is disposed opposite to the inner side of the track 21, and the second target 23 is oppositely disposed on the track 21. Inside and outside. A gas source channel μ is disposed at each end of each of the first dry material 22 and each of the first materials 23, and the gas enters the coating chamber 2 through the gas source passage 24 during coating. When the substrate 11 passes between the two first targets 22, the particles sputtered on the surface of the first target 22 will be plated, and when the substrate 11 passes between the two second targets 23, the forged portion will be forged. Particles sputtered on the surface of the second coarse material 23. The specific operation and process parameters of the plasma cleaning may be: vacuuming the coating chamber to a background vacuum of 1. 〇xl (T3pa, with 099144861 Form No. A0101 Page 7 / Total 15 Page 0992077454-0 [ 0019] 201226601 250 ~ 500sccm (standard state cc / min) flow rate into the coating chamber into the purity of 99 · 999% argon gas, apply a bias of -300 ~ -800V on the aluminum / magnesium metal substrate u, The surface of the aluminum/magnesium metal substrate u is subjected to plasma cleaning for a cleaning time of 3 to 10 μm. [0021] After the aluminum/magnesium metal substrate 11 is subjected to plasma cleaning, the aluminum/magnesium metal substrate 11 is applied. An anti-corrosion layer 13 is formed thereon. First, the aluminum-copper film 131 in the anti-corrosion layer 13 is formed. The specific operation and process parameters for forming the aluminum-copper film 131 are as follows: argon gas is used as a working gas, and the flow rate of the argon gas is adjusted to 100~ 300sccm, set the duty ratio to 30%~8〇% ' Apply a bias of -50~-2〇0V on the aluminum/magnesium metal substrate 11, and heat the diaphragm chamber to 100~150°<: The injection temperature is 1〇〇~150. (:;); select the 8b (:11 alloy target, the number of atoms of copper in the Al-Cu alloy target The percentage is 0.5%~25%, the power is set to 8~I3kw, and the anti-corrosion layer 13 is deposited. The time for depositing the anti-corrosion layer 13 is 1 〇 30 30 min. After forming the aluminum copper film 131, the aluminum copper film is formed. An aluminum nitride gradient film 133 is formed on 131, and argon gas is used as a working gas, and a reaction gas nitrogen gas having an initial flow rate of 10 to 20 seem is introduced into the coating chamber, and -100 is applied to the inscription/magnesium metal substrate 11. — a bias voltage of 400 V, depositing the aluminum nitride gradient film 133. During the deposition of the aluminum nitride gradient film 133, the flow rate of nitrogen gas is increased by 2 to 20 sccm for each deposition of 1 i to 5 m in, so that the N atom is The amount of atoms in the nitrided gradient film 133 is increased in a gradient from the aluminum/magnesium metal substrate to the direction away from the aluminum/magnesium metal substrate. The time for depositing the nitride in the grading film 133 6〇~i20min. The amount of N atoms in the aluminum nitride gradient film 133 is increased by a gradient from the aluminum/magnesium metal substrate 11 to the direction away from the aluminum/magnesium metal substrate. 099144861 Form No. A0101 Page 8/ A total of 15 pages 0992077454-0 [0022] 201226601 Ο [0023] [0024] Ο [0025] Reducing the degree of lattice mismatch between the aluminum nitride gradient film 133 and the aluminum copper film 131 or the aluminum/magnesium metal substrate 11 is advantageous for the residual stress generated in the over-migration of the sputtering nitride film 133 to the front/ The metal matrix 11 is transferred in the direction of the town; and because the aluminum-copper film 131 with good plasticity is deposited between the aluminum nitride gradient film 133 and the aluminum/magnesium metal substrate, the aluminum nitride gradient film 131 and the aluminum/magnesium metal can be improved. The interface mismatch between the substrates 11 is such that when the residual stress in the aluminum nitride gradient film 133 is large, the residual stress can be released by the local plastic deformation of the aluminum copper film 131 and the aluminum/magnesium metal substrate 11. Thereby, the residual stress in the aluminum nitride gradient film 133 is reduced, so that the stress relief of the casing 1 is less likely to occur. The stress corrosion refers to metal failure caused by residual or/and applied stress and shoulder media. Further, the niobium-first gradient film 133 contains a Α1-Ν phase, which enhances the denseness of the aluminum nitride gradient film 133 and improves the corrosion resistance of the casing 1〇. A color layer 15 is formed on the aluminum nitride gradient film 133, and the color layer 15 is a titanium nitride film layer or a nitrogen chromium film layer. Specific operations and process parameters for forming the nitrogen titanium film layer or the nitrogen chromium film layer: as follows: turning off the power of the Ai., turning on a power source of a titanium target or a chromium target placed in the coating machine, and setting The power is 8 to 10 kW, the flow rate of the argon gas is kept constant, and a reaction gas nitrogen gas having a flow rate of 20 to 150 sccm is introduced into the coating chamber to deposit a color layer 15. The time for depositing the color layer 15 is 20 to 3 〇 miη. In the manufacturing method of the casing 1 of the preferred embodiment of the present invention, the anticorrosive layer 13 and the color layer 15 are sequentially formed on the aluminum/magnesium metal substrate 1 by a magnetron sputtering method. The anti-corrosion layer comprises a 099144861 copper film 131 and an aluminum nitride gradient film 133 which are sequentially formed on the surface of the aluminum/magnesium metal substrate, and the form number Α0101, page 9/15, on the one hand, the aluminum copper film 131 from 0992077454-0 201226601 The corrosion resistance is reported. On the other hand, the potential difference between the aluminum-copper film 131 and the aluminum alloy or magnesium alloy substrate 11 is small, which slows the rate of micro-cell corrosion of the casing 10, and in addition, aluminum-copper The nucleation energy of aluminum and copper in the film is different. During the formation of the aluminum copper film 133, the two are mutually inhibited to make the grain of the film layer smaller, and the film layer becomes dense, thereby improving the corrosion resistance of the casing 10. Sex. The aluminum nitride gradient film 133 can reduce the degree of lattice mismatch with the aluminum copper film 131 or the aluminum/magnesium metal substrate 11, improve the interface mismatch with the aluminum/magnesium metal substrate 11, and can The release of residual stress is achieved by the local plastic deformation of the aluminum copper film and the aluminum/magnesium metal substrate 11, thereby reducing the residual stress in the aluminum nitride gradient film 133, making the casing 10 less susceptible to stress corrosion. When the corrosion resistance of the casing 10 is improved, the color layer formed on the casing 10 may be prevented from being colored, falling off, etc., so that the casing 10 has better decorative properties after being used for a long time. . BRIEF DESCRIPTION OF THE DRAWINGS [0026] FIG. 1 is a cross-sectional view of a housing in accordance with a preferred embodiment of the present invention. 2 is a schematic structural view of a coating machine used in the manufacturing process of the housing of FIG. 1. [Main component symbol description] [0028] Housing: 10 [0029] Magnesium or magnesium alloy substrate: 11 [0030] Anti-corrosion layer: 13 [0031] Magnesium layer · 131 [0032] Magnesium nitride layer: 133 099144861 Form No. A0101 Page 10 of 15 0992077454-0 201226601 [0033] Color layer: 15 [0034] Coating machine: 100 [0035] Coating chamber: 20 [0036] Vacuum pump: 30 [0037] Track: 21 [0038] A target: 22 [0039] Second target: 23 u [0040] Air source channel: 24 〇 099144861 Form number A0101 Page 11 / Total 15 page 0992077454-0

Claims (1)

201226601 七、申請專利範圍: 1 . 一種殼體,包括鋁/鎂金屬基體,其改良在於:該鋁/鎂金 屬基體表面形成防腐蝕層,所述防腐蝕層包括依次形成於 鋁/鎂金屬基體表面的鋁銅膜和氮化鋁梯度膜,所述氮化 鋁梯度膜中N原子的數量百分含量由靠近鋁/鎂金屬基體至 遠離鋁/鎂金屬基體的方向呈梯度增加。 2 .如申請專利範圍第1項所述之殼體,其中所述鋁銅膜的厚 度為 1. 0〜3. Ομηι。 3 .如申請專利範圍第1項所述之殼體,其中所述氮化鋁梯度 膜的厚度為0. 5~1. Ομπι。 4 .如申請專利範圍第1項所述之殼體,其中所述鋁/鎂金屬基 體的材質為銘、銘合金、鎂或錢合金。 5 .如申請專利範圍第1項所述之殼體,其中所述防腐蝕層上 形成色彩層,該色彩層為氮鈦層或氮鉻層。 6 . —種殼體的製造方法,其包括如下步驟: 提供鋁/鎂金屬基體; 在該鋁/鎂金屬基體上磁控濺射防腐蝕層,所述防腐蝕層 包括依次形成於鋁/鎂金屬基體表面的鋁銅膜和氮化鋁梯 度膜,所述氮化鋁梯度膜中Ν原子的原子百分含量由靠近 鋁/鎂金屬基體至遠離鋁/鎂金屬基體的方向呈梯度增加。 7 .如申請專利範圍第6項所述之殼體的製造方法,磁控濺射 所述鋁銅膜的工藝參數為:以氬氣為工作氣體,其流量為 100〜300sccm,設置佔空比為30%〜80%,於鋁/鎂金屬基 體上施加-50〜-200V的偏壓,選擇鋁銅合金靶材,所述合 金靶中銅的原子數量百分含量為0. 5%〜25%,設置其功率 099144861 表單編號A0101 第12頁/共15頁 0992077454-0 201226601 為8〜13kw,濺射溫度為100~150〇C,濺射時間為 10~3Omiη。 8 .如申請專利範圍第6項所述之殼體的製造方法,磁控濺射 所述氮化鋁梯度膜的工藝參數為:以氬氣為工作氣體,其 流量為50〜30Osccm,以氮氣為反應氣體,設置氮氣的初 始流量為10~150sccm,在銘/鎂金屬基體上施加 -100~-400V的偏壓,選擇銘銅合金乾材,所述銘銅合金 靶中銅的原子數量百分含量為0. 5%〜25%,設置其功率為 2~16kw,每沉積10〜151^11將氮氣的流量增大2~2〇3〇〇111 ,沉積時間控制為6 0 ~ 12 0 m i η。 9 .如申請專利範圍第6項所述之殼體的製造方法,所述該防 腐蝕層上形成色彩層,其工藝參數為:開啟一鈦靶或鉻靶 的電源,設置其功率8〜10kw,設置氮氣流量為 20~150sccm,滅射時間為20~30min。 〇 099144861 表單編號A0101 第13頁/共15頁 0992077454-0201226601 VII. Patent application scope: 1. A casing comprising an aluminum/magnesium metal substrate, the improvement comprising: forming an anti-corrosion layer on the surface of the aluminum/magnesium metal substrate, wherein the anti-corrosion layer comprises sequentially forming an aluminum/magnesium metal substrate The surface of the aluminum copper film and the aluminum nitride gradient film, the amount of N atoms in the aluminum nitride gradient film increases in a gradient from the aluminum/magnesium metal substrate to the direction away from the aluminum/magnesium metal substrate. 2. The casing of claim 1, wherein the aluminum-copper film has a thickness of 1. 0 to 3. Ομηι. 5 至1. Ομπι。 The thickness of the aluminum nitride gradient film is 0. 5~1. Ομπι. 4. The casing of claim 1, wherein the aluminum/magnesium metal substrate is made of Ming, Ming alloy, magnesium or money alloy. 5. The casing of claim 1, wherein the corrosion-resistant layer forms a color layer, the color layer being a titanium-titanium layer or a nitrogen-chromium layer. 6. A method of manufacturing a housing, comprising the steps of: providing an aluminum/magnesium metal substrate; magnetron sputtering an anti-corrosion layer on the aluminum/magnesium metal substrate, the anti-corrosion layer comprising sequentially forming aluminum/magnesium An aluminum copper film and an aluminum nitride gradient film on the surface of the metal substrate, the atomic percentage of germanium atoms in the aluminum nitride gradient film increasing in a gradient from a direction close to the aluminum/magnesium metal matrix to a direction away from the aluminum/magnesium metal matrix. 7. The method of manufacturing a casing according to claim 6, wherein the process parameter of the magnetron sputtering the aluminum copper film is: using argon as a working gas, the flow rate is 100 to 300 sccm, and the duty ratio is set. 5%〜25%。 The 5%~25% of the atomic content of the aluminum alloy is 0. 5%~25 %, set its power 099144861 Form No. A0101 Page 12 / Total 15 Page 0992077454-0 201226601 For 8~13kw, the sputtering temperature is 100~150〇C, and the sputtering time is 10~3Omiη. 8. The method of manufacturing a casing according to claim 6, wherein the process parameter of the magnetron sputtering the aluminum nitride gradient film is: using argon as a working gas, the flow rate is 50 to 30 Osccm, and nitrogen is used. For the reaction gas, the initial flow rate of nitrogen gas is set to 10~150sccm, and the bias voltage of -100~-400V is applied on the Ming/magnesium metal substrate to select the dry material of Ming copper alloy. The number of copper atoms in the copper alloy target is 100. The content of the fraction is 0.5% to 25%, and the power is set to 2~16kw. The flow rate of nitrogen is increased by 2~2〇3〇〇111 for each deposition of 10~151^11, and the deposition time is controlled to be 6 0 ~ 12 0 Mi η. 9. The method of manufacturing a casing according to claim 6, wherein the anti-corrosion layer forms a color layer, and the process parameter is: turning on a power source of a titanium target or a chromium target, and setting the power thereof to 8 to 10 kw. Set the nitrogen flow rate to 20~150sccm and the kill time to 20~30min. 〇 099144861 Form No. A0101 Page 13 of 15 0992077454-0
TW99144861A 2010-12-20 2010-12-20 Housing and method for making the same TWI471440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99144861A TWI471440B (en) 2010-12-20 2010-12-20 Housing and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144861A TWI471440B (en) 2010-12-20 2010-12-20 Housing and method for making the same

Publications (2)

Publication Number Publication Date
TW201226601A true TW201226601A (en) 2012-07-01
TWI471440B TWI471440B (en) 2015-02-01

Family

ID=46932839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144861A TWI471440B (en) 2010-12-20 2010-12-20 Housing and method for making the same

Country Status (1)

Country Link
TW (1) TWI471440B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141107A (en) * 2013-05-10 2014-11-12 中国科学院宁波材料技术与工程研究所 Al-Cu-N wear-resistant hard coating and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468908B1 (en) * 2001-07-09 2002-10-22 Taiwan Semiconductor Manufacturing Company Al-Cu alloy sputtering method with post-metal quench
US20030203219A1 (en) * 2002-04-26 2003-10-30 Everskil Technology Co., Ltd. Plastic article with a film sputter deposited thereon
CN101730408A (en) * 2008-10-17 2010-06-09 深圳富泰宏精密工业有限公司 Housing and method for making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141107A (en) * 2013-05-10 2014-11-12 中国科学院宁波材料技术与工程研究所 Al-Cu-N wear-resistant hard coating and preparation method thereof
CN104141107B (en) * 2013-05-10 2016-06-08 中国科学院宁波材料技术与工程研究所 A kind of Al-Cu-N abrasion-resistant hardcoat and its preparation method

Also Published As

Publication number Publication date
TWI471440B (en) 2015-02-01

Similar Documents

Publication Publication Date Title
TW201305356A (en) Coated article and method for making the same
CN102548308A (en) Casing and manufacturing method thereof
CN102487590A (en) Housing and method for manufacturing the same
TW201226601A (en) Housing and method for making the same
CN110565051B (en) Diamond coated cutting tool with color layer, preparation method thereof and processing equipment
CN102409302A (en) Coating, coated part with coating and preparation method of coated part
CN102453853A (en) Shell and manufacturing method thereof
TWI414613B (en) Housing and method for making the same
TW201228838A (en) Housing and method for making the same
CN102548310A (en) Shell and manufacturing method thereof
TWI471437B (en) Housing and method for making the same
CN102345095A (en) Coating, coated member with coating, and preparation method of coated member
CN102560369A (en) Shell and manufacturing method thereof
TW201217164A (en) Housing and method for making the same
TW201226615A (en) Housing and method for making the same
TWI448570B (en) Articles and method for making the same
TWI471444B (en) Housing and method for making the same
TWI468540B (en) Housing and method for making the same
TWI467042B (en) Anticorrosion surface treating for al alloy and articles treated by the same
TWI471430B (en) Anticorrosion surface treating for al alloy and articles treated by the same
TWI467038B (en) Housing and method for making the same
TW201225782A (en) Housing and method for making the same
TWI413483B (en) Housing and method for making the same
TW201233825A (en) Coating and method for manufacturing the coating
TWI413484B (en) Housing and method for making the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees