TW201226582A - High-strength steel plate and producing method thereof - Google Patents

High-strength steel plate and producing method thereof Download PDF

Info

Publication number
TW201226582A
TW201226582A TW100139995A TW100139995A TW201226582A TW 201226582 A TW201226582 A TW 201226582A TW 100139995 A TW100139995 A TW 100139995A TW 100139995 A TW100139995 A TW 100139995A TW 201226582 A TW201226582 A TW 201226582A
Authority
TW
Taiwan
Prior art keywords
less
steel
iron
strength
mpa
Prior art date
Application number
TW100139995A
Other languages
Chinese (zh)
Other versions
TWI418641B (en
Inventor
Tatsuya Kumagai
Michinori Gotoh
Norimasa Kawabata
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of TW201226582A publication Critical patent/TW201226582A/en
Application granted granted Critical
Publication of TWI418641B publication Critical patent/TWI418641B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Abstract

A high-strength steel plate includes the following chemical composition: by mass%, C: 0.05% to less than 0.10%, Si: 0.20% to 0.50%, Mn: 0.20% to less than 1.20%, Cr: 0.20% to 1.20%, Mo: 0.20% to 0.60%, Nb: 0.010% to 0.050%, Ti: 0.005% to 0.030%, Al: 0.01% to 0.10%, B: 0.0003% to 0.0030%, V: 0% to 0.10%, Cu: 0% to 0.50%, Ca: 0% to 0.0030%, and the balance consisting of Fe and inevitable impurities. In the high-strength steel plate, the amounts of Ni, P, S, and N are limited to 0.1% or less, 0.012% or less, 0.005% or less, and 0.0080% or less, respectively. In addition, in the high-strength steel plate, Pcm is 0.22% or less, A is 2.0 or less, the sum of the ratio of lower bainite and the ratio of martensite is 90% or more, the ratio of lower bainite is 70% or more, the aspect ratio of prior-austenite grains is 2 or more, the yield strength is 885 MPa or higher, and the tensile strength is from 950 MPa to 1130 MPa.

Description

201226582 六、發明說明: I[發明所厲技術領域】 技術領域 本發明係有關於熔接性優異之高強度厚鋼板及其製造 方法。特別是,本發明係有關使用於營造機械或工業機械 之構造構件,降伏強度為885MPa以上,抗拉強度為950MPa 以上且1130MPa以下’大多為板厚6mm以上且25mm以下之 高強度厚鋼板及其製造方法。 本申請案依據2010年11月5日,在日本申請之特願 2010-248032號主張優先權’且在此引用其内容。 【先前技術3 背景技術 起重機或混凝土系等營造機械隨著近年來建築物之高 層化,有越增大型化的傾向。為了控制隨著營造機械之大 型化帶來的重量增加,對於構造構件之輕量化需求又更加 提升,即有對100公斤鋼級(例如,降伏強度885MPa以上、 抗拉強度950MPa以上)之高強度鋼的需要更為增加之傾 向。另一方面,於如此之高強度鋼中,因所添加之合金元 素量變多,故為避免熔接施工時之熔接裂痕,一般會進行 預熱。然而,為更有效率地進行熔接施工,正追求不需預 熱之鋼材。 熔接裂縫敏感度因非常容易受擴散氫之影響,故以抑 制炼接金屬之擴散氫量為低為佳。然而,例如,於營造機 械或工業機械之構造構件的熔接上廣泛使用之二氧化碳電 201226582 孤熔接施工中,為特別壓低擴散氫量,不僅是熔接材料之 選定或管理,亦需要包含使熔接施工時不混入氫的熔接金 屬線之潤滑油的管理或開槽面之清淨化等各種管理,於施 工上之負擔變大。因此,二氧化碳電弧熔接中,可能於鋼 中含有被視為熔接施工管理稍不充分時混入之 3.0〜5.0ml/100g左右的量之擴散氫的情形下,亦以未預熱而 進行熔接時未產生裂痕之具有充分低的裂縫敏感度之鋼材 為佳。 100公斤鋼級之鋼板一般之強度規定係降伏強度通常 為885MPa以上,降伏強度雖無上限,但抗拉強度係例如, 950MPa以上且1130MPa以下等之範圍,抗拉強度係有上 限。營造機械用途等雖多對鋼板進行折彎加工,但於鋼板 之抗拉強度大於規格上限時,折彎加工所需之負載變大。 因此,亦需考量加工受限於設備能力的情形,需不使鋼板 之抗拉強度過高。 關於降伏強度885MPa級之高強度鋼板,例如,專利文 獻1及專利文獻2中揭示有抗拉強度95〇Mpa級的高張力鋼 板。然而,該等鋼板係使用於壓力鋼管等較厚之厚鋼板。 因此,該等鋼板,尤其未考量到折彎加工性,添加了大量 之Νι作為用以確保韌性之必需元素,於營建機具用途上欠 缺經濟性。 專利文獻3中揭示了關於熔接性、經濟性優異之高張力 鋼的技術。該技術係將熔接裂縫敏感度指數pcm抑制於〇 29 以下,確保熔接性。然而,7型熔接裂痕試驗中裂痕停止預 201226582 熱溫度最低係100°c,被視為未預熱之熔接下無法確保熔接 性。 專利文獻4中揭示了關於熔接性、停止性(附咖 property)優異之高張力鋼的技術。該技術為了確保韌性而 必需添加Ni,於營建機具用途上欠缺經濟性。又,於丫型熔 接裂痕試驗中即使未預熱亦未產生裂痕,但該試驗之條件 係擴散氫量為1.2ml/l〇〇g。因此,預料此時用以管理熔接金 屬之擴散氫量的溶接施工時之負荷變高。 專利文獻5中揭示了關於熔接性、耐HIC特性優異之高 張力鋼的技術。該技術需添加用以確保韌性之Ni,與〇 6% 以上之Mo,於營建機具用途上欠缺經濟性。又,於;型J 接裂痕試驗中即使未預熱亦未產生裂痕,但該試驗之條件 係限制擴散氫量為1.5ml/l〇〇g,故預料用以管理溶接金屬之 擴散氫量的熔接施工時之負荷變高。 專利文獻6中揭示了-種以非熱處理製造抗拉強度大 於980MPa之鋼板的方法。該方法為了以㈣外。以下之極低 C量確保大於_MPa之抗拉強度,需於鋼中添加丨州以上 之Μη等多量的合金元素’特別是於量多時,有偏析部之 裂縫敏感度下降的疑慮。然而,對娜接性並未有任何評 價’無法期待優異之熔接性。 專利文獻7中揭示了考量到折彎加工性及炼接性之抗 拉強度95GMPam的熱軋鋼板。該熱軋鋼板因需添加多量 之Tl’故可知雜性下降。又,為解決因添加多量之Ti導致 勒性下降’需添加Ni,亦有經濟性的問題。 201226582 專利文獻8中揭示了 一種主要使用於管線,韌性及熔接 性優異之抗拉強度950MPa以上的鋼板之製造方法。因Μη 量需為1.8%以上,故有偏析部之裂縫敏感度下降的疑慮, 因需肥粒鐵-沃斯田鐵2相區下之低溫軋延,故生產性低。 先前技術文獻 專利文獻 專利文獻1:日本國特開平10-265893號公報 專利文獻2:曰本國特開平8-269542號公報 專利文獻3:日本國特開平6-158160號公報 專利文獻4:曰本國特開平11-36042號公報 專利文獻5:日本國特開平1M72365號公報 專利文獻6:日本國特開2004-84019號公報 專利文獻7:曰本國特開平5-230529號公報 專利文獻8:曰本國特開平8-269546號公報 【發明内容3 發明概要 發明欲解決之課題 本發明之目的係經濟性地提供使用於營造機械或工業 機械的構造構件、熔接性優異、降伏強度為885MPa以上、 抗拉強度為950MPa以上且1130MPa以下,大多為板厚6mm 以上且25mm以下之高強度厚鋼板及其製造方法。 用以欲解決課題之手段 本發明之要旨係如以下所述。 (1)本發明之一態樣的高強度鋼板,其化學組成以質量 201226582 %計含有:C : 0.05%以上且小於0.10%、Si : 0.20%以上且0. 50%以下、Μη : 0.20%以上且小於1.20%、Cr : 0.20%以上 且 1.20%以下、Mo : 0.20%以上且0.60%以下、Nb : 0.010% 以上且0.050%以下、Ti : 0.005%以上且〇.〇3〇〇/0以下、A1 : 0. 01%以上且0.10%以下、B : 0.0003%以上且0.0030%以下、 V : 0%以上且0.10%以下、Cu : 0%以上且0.50%以下、及C a : 0%以上且0.0030%以下,並限制成:Ni : 0.1%以下、P : 0.012%以下、S : 0.005%以下、及N : 0.0080%以下,且剩 餘部分係由Fe及不可避免的雜質所構成,藉下述(式1)所定 義之Pcm係0.22%以下,藉下述(式2)所定義之A係2.0以下, 下變韌鐵之組織分率與麻田散鐵之組織分率的和係90%以 上,前述下變韌鐵之組織分率係以上’前沃斯田鐵粒 之縱橫比係2以上,降伏強度係885MPa以上,抗拉強度係9 50MPa以上且1130MPa以下。201226582 VI. Description of the Invention: [Technical Field] The present invention relates to a high-strength thick steel plate excellent in weldability and a method for producing the same. In particular, the present invention relates to a structural member used for constructing a machine or an industrial machine, and has a tensile strength of 885 MPa or more and a tensile strength of 950 MPa or more and 1130 MPa or less. Most of the high-strength steel plates having a thickness of 6 mm or more and 25 mm or less Production method. The present application claims priority from Japanese Patent Application No. 2010-248032, filed on Jan. [Prior Art 3] A construction machine such as a crane or a concrete system tends to increase in size as the building is highly stratified in recent years. In order to control the increase in weight with the increase in the size of the construction machinery, the lightweighting requirements for structural members are further enhanced, that is, high strength for 100 kg steel grade (for example, a relief strength of 885 MPa or more and a tensile strength of 950 MPa or more). The need for steel is increasing. On the other hand, in such a high-strength steel, since the amount of the alloy element to be added is increased, preheating is generally performed in order to avoid welding cracks during welding. However, in order to carry out the welding construction more efficiently, it is pursuing steel that does not require preheating. Since the sensitivity of the fusion crack is very susceptible to the diffusion of hydrogen, it is preferable to suppress the amount of diffusion hydrogen of the metal to be welded. However, for example, in the construction of carbon dioxide electricity 201226582, which is widely used in the welding of structural members of machinery or industrial machinery, it is particularly necessary to reduce the amount of diffused hydrogen, not only the selection or management of the welding material, but also the welding construction. Various managements such as the management of the lubricating oil of the welded metal wire which does not mix hydrogen or the cleaning of the grooved surface, and the burden on the construction become large. Therefore, in the case of carbon dioxide arc welding, in the case where the steel contains diffused hydrogen in an amount of about 3.0 to 5.0 ml/100 g which is considered to be mixed when the welding construction management is slightly insufficient, the steel may be welded without preheating. A steel having a crack with a sufficiently low crack sensitivity is preferred. The general strength specification of a 100 kg steel grade steel plate is usually 885 MPa or more. Although there is no upper limit for the strength of the fall, the tensile strength is, for example, a range of 950 MPa or more and 1130 MPa or less, and the tensile strength is limited. Although many steel sheets are bent for mechanical use, the load required for bending processing becomes large when the tensile strength of the steel sheet is larger than the upper limit of the specification. Therefore, it is also necessary to consider the case where the processing is limited by the ability of the equipment, and the tensile strength of the steel sheet is not excessively high. Regarding a high-strength steel sheet having a relief strength of 885 MPa, for example, Patent Document 1 and Patent Document 2 disclose a high-tensile steel sheet having a tensile strength of 95 〇 Mpa. However, these steel plates are used for thick steel plates such as pressure steel pipes. Therefore, these steel sheets, in particular, have not considered the bending workability, and a large amount of ruthenium is added as an essential element for securing toughness, and it is economically disadvantageous in the use of construction equipment. Patent Document 3 discloses a technique for high-tensile steel excellent in weldability and economy. This technique suppresses the weld crack sensitivity index pcm below 〇 29 to ensure weldability. However, in the Type 7 weld crack test, the crack stops pre-201226582. The minimum heat temperature is 100 °C, and it is considered that the weldability cannot be ensured under the welding without preheating. Patent Document 4 discloses a technique for high-tensile steel excellent in weldability and cessation property. In order to ensure toughness, this technology requires the addition of Ni, which is economical in the use of construction equipment. Further, in the 丫-type weld crack test, no crack was generated even if it was not preheated, but the condition of the test was that the amount of diffused hydrogen was 1.2 ml/l 〇〇g. Therefore, it is expected that the load at the time of the welding construction for managing the amount of diffusion hydrogen of the welded metal becomes high. Patent Document 5 discloses a technique for high-tensile steel excellent in weldability and HIC resistance. This technology needs to be added to ensure the toughness of Ni, and 〇 6% or more of Mo, which is not economical in the use of construction equipment. Moreover, in the type J joint crack test, no crack occurred even if it was not preheated, but the condition of the test was to limit the amount of diffused hydrogen to 1.5 ml/l〇〇g, so it is expected to manage the amount of diffused hydrogen of the molten metal. The load during welding is increased. Patent Document 6 discloses a method of producing a steel sheet having a tensile strength of more than 980 MPa without heat treatment. This method is intended to be in (4). The following extremely low C amount ensures a tensile strength of more than _MPa, and it is necessary to add a large amount of alloying elements such as Μη or more in the steel to the steel. In particular, when the amount is large, there is a concern that the crack sensitivity of the segregation portion is lowered. However, there is no evaluation of Na's connectivity. 'Excellent weldability cannot be expected. Patent Document 7 discloses a hot-rolled steel sheet having a tensile strength of 95 GMPam in consideration of bending workability and refining property. This hot-rolled steel sheet is known to have a large amount of Tl', so that the wetness is lowered. Further, in order to solve the problem that the addition of Ni is caused by the addition of a large amount of Ti, it is economical. 201226582 Patent Document 8 discloses a method for producing a steel sheet having a tensile strength of 950 MPa or more which is mainly used for pipelines and excellent in toughness and weldability. Since the amount of Μη needs to be 1.8% or more, there is a concern that the crack sensitivity of the segregation portion is lowered, and the productivity is low because of the low-temperature rolling under the 2-phase region of the ferrite-iron-Worstian iron. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. OBJECTS OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The object of the present invention is to economically provide a structural member for use in a machine or an industrial machine, which is excellent in weldability, has a lodging strength of 885 MPa or more, and is resistant to tensile stress. The strength is 950 MPa or more and 1130 MPa or less, and is a high-strength thick steel plate having a thickness of 6 mm or more and 25 mm or less and a method for producing the same. Means for Solving the Problems The gist of the present invention is as follows. (1) A high-strength steel sheet according to one aspect of the present invention has a chemical composition of: 201226582% by mass: C: 0.05% or more and less than 0.10%, Si: 0.20% or more and 0.50% or less, Μη: 0.20% The above is less than 1.20%, Cr: 0.20% or more and 1.20% or less, Mo: 0.20% or more and 0.60% or less, Nb: 0.010% or more and 0.050% or less, Ti: 0.005% or more, and 〇.〇3〇〇/0 Hereinafter, A1: 0.01% or more and 0.10% or less, B: 0.0003% or more and 0.0030% or less, V: 0% or more and 0.10% or less, Cu: 0% or more and 0.50% or less, and C a : 0% The above is 0.0030% or less, and is limited to: Ni: 0.1% or less, P: 0.012% or less, S: 0.005% or less, and N: 0.0080% or less, and the remainder is composed of Fe and unavoidable impurities. The Pcm defined by the following (Formula 1) is 0.22% or less, and the A-system 2.0 or less defined by the following (Formula 2) is the sum of the tissue fraction of the lower toughened iron and the tissue fraction of the granulated iron. % or more, the structural fraction of the lower toughened iron is more than 2 in the aspect ratio of the former Wostian iron particles, the undulation strength is 885 MPa or more, and the tensile strength is above 90 50 MPa and 1130 MPa. .

Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5x[B]·..(式 1) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · ·(式2) 此處,[C]、[Si]、[Μη]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、 [B]分別係前述化學組成中C、Si、Mn、Cu、Ni、Cr、Mo ' V、B之質量%。 (2) 如前述(1)記載之高強度鋼板,其中5〇nm以上之雪明 碳鐵的個數密度亦可為20個/μπι3以下。 (3) 如前述(1)或(2)記載之高強度鋼板,其中板厚亦可為 6mm以上且25mm以下。 201226582 (4)本發明之一態樣的高強度鋼板之製造方法,其係將 具有下述化學組成之鋼加熱至1100°C以上,該化學組成以 質量%計含有:C : 0.05%以上且小於0.10%、Si : 0.20%以 上且0.50%以下、Μη : 0.20%以上且小於1.20%、Cr : 0.20 %以上且1.20%以下、Mo : 0.20%以上且0.60%以下、Nb : 0· 010%以上且0.050%以下、Ti : 0.005%以上且0.030%以下、 A1 : 0.01%以上且0.10%以下、b : 0,0003%以上且0.0030% 以下、V: 0%以上且0.10%以下、Cu : 0%以上且0.50%以下、 及Ca : 0%以上且0.0030%以下,並限制成:Ni : 0.1%以下、 P : 0.012%以下、S : 0.005%以下、及N : 0.0080%以下,且 剩餘部分係由Fe及不可避免的雜質所構成,藉下述(式3)所 定義之Pcm係0.22%以下,藉下述(式4)所定義之A係2.0以 下;於前述鋼進行熱軋延,使未再結晶溫度區域之累積軋 縮率為60%以上;及於線上(on-line)以1〇。(:/s以上之冷卻速 度將前述鋼由Ar3以上之溫度加速冷卻至450°C以下且300 °C以上之溫度,並於停止加速冷卻後放冷。Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5x[ B]·.. (Formula 1) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · (Expression 2) Here, [C], [Si ], [Μη], [Cu], [Ni], [Cr], [Mo], [V], [B] are respectively C, Si, Mn, Cu, Ni, Cr, Mo ' V in the above chemical composition And the mass% of B. (2) The high-strength steel sheet according to the above (1), wherein the number density of the stellite carbon iron of 5 〇 nm or more may be 20 / μπι 3 or less. (3) The high-strength steel sheet according to the above (1) or (2), wherein the sheet thickness may be 6 mm or more and 25 mm or less. 201226582 (4) A method for producing a high-strength steel sheet according to one aspect of the present invention, which is characterized in that a steel having a chemical composition having a chemical composition of 1100 ° C or higher is contained, and the chemical composition contains, by mass %: C: 0.05% or more Less than 0.10%, Si: 0.20% or more and 0.50% or less, Μη: 0.20% or more and less than 1.20%, Cr: 0.20% or more and 1.20% or less, Mo: 0.20% or more and 0.60% or less, and Nb: 0· 010% The above is 0.050% or less, Ti: 0.005% or more and 0.030% or less, A1: 0.01% or more and 0.10% or less, b: 0,0003% or more and 0.0030% or less, and V: 0% or more and 0.10% or less, Cu: 0% or more and 0.50% or less, and Ca: 0% or more and 0.0030% or less, and are limited to: Ni: 0.1% or less, P: 0.012% or less, S: 0.005% or less, and N: 0.0080% or less, and remaining The part is composed of Fe and unavoidable impurities, and the Pcm system defined by the following (Formula 3) is 0.22% or less, and the A system is 2.0 or less as defined by the following (Formula 4); The cumulative reduction ratio of the non-recrystallization temperature region is 60% or more; and the on-line is 1 Torr. The cooling rate of (:/s or more) is accelerated by the temperature of Ar3 or higher to a temperature of 450 ° C or lower and 300 ° C or higher, and is allowed to cool after the accelerated cooling is stopped.

Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5x[B] . · ·(式3) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · ·(式4) 此處’ [C]、[Si]、[Μη]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、 [B]分別係前述化學組成中C、Si、Mn、Cu、Ni、Cr、M。、 V、B之質量%。 發明效果 依據本發明,可經濟性地提供一種使用於營造機械或 201226582 工業機械之構造構件,降伏強度為885MPa以上,大多為板 厚6mm以上且25mm以下的熔接性優異之高強度厚鋼板。 圖式簡單說明 第1圖係顯示Pcm與y型熔接裂痕試驗中裂痕停止預熱 溫度之關係的圖表。 第2圖係顯示下變韌鐵之組織分率與降伏比之關係的 圖表。 第3圖係顯示A值與下變韌鐵之組織分率之關係的圖 表。 第4圖係顯示本發明之一實施形態的高強度鋼板之製 造方法之概略的流程圖。 C實施方式3 用以實施發明之形態 眾所皆知的是為了降低熔接裂縫敏感度,降低熔接裂 縫敏感度指數Pcm係為有效。發明人等檢討了,即使二氧化 碳電弧熔接中可能於鋼中含有被視為熔接施工管理不充分 時混入之3_0〜5.0ml/100g左右的量之擴散氫,為了於未預熱 下不產生熔接裂痕,需降低多少pcm。相對於具有各種化學 組成之鋼材,調整溫度及濕度,實施了 JIS z 3158(1993)中 規定之y型溶接裂痕試驗(1 7kJ/mm之溶接入熱量)。試驗材 之板厚均為25mm,一定要以同一條件對2個試驗材實施試 驗。其中’將1個作為氫分析用之試驗材使用,於試驗後立 刻由該试驗材取樣,並藉由氣相層析儀測定擴散氫量。分 析結果,僅於擴散氫量大於5 〇1111/1〇〇§時,將剩餘之丨個試 9 201226582 驗材使用於評價有無裂痕之試驗。由所得之結果,可得第1 圖所示之鋼材的Pcm與防止裂痕預熱溫度之關係。換言之, 第1圖中顯示鋼材之Pcm與預熱溫度對有無裂痕之影響。由 該第1圖可知,只要使Pcm降低至〇22%以下的話於擴散 氫里為5.1〜6.0ml/100g之範圍内,未預熱(試驗溫度25。〇)之 條件下不產生裂痕。 然而,以往之100公斤鋼級的厚鋼板係以多次回火製程 所製造,一般係包含回火麻田散鐵作為主要之組織。然而, 以滿足0.22%以下之低pcm的成分組成(化學組成), 於主要 之組織為回火麻田散鐵時,並不容易得到1〇〇公斤鋼之強 度。為以如此低之P c m得到高強度之簡易的一個方法,係不 多次回火麻田散鐵組織,即直接利用淬火之麻田散鐵組 織。然而,淬火之麻田散鐵組織因可動差排多,有降伏比(降 伏強度/抗拉強度)低之特徵,為確保限定規格之降伏強度, 必須提咼抗拉強度。JIS規格中1〇〇公斤鋼之強度規格值係 降伏強度為885MPa以上,抗拉強度為95〇MPa以上且 1130MPa以下。前述規格值中考量到製造上品質(強度)之不 均勻等,將降伏強度之下限目標值設為915MPa、抗拉強度 之上限目標值設為llOOMPa時,可知降伏比(降伏強度/抗拉 強度)為830/〇以上係必要條件。淬火之麻田散鐵組織中不易 得到該降伏比。發明人等檢討各種組織與強度之關係,結 果’做出了為於泮火狀態下得到高降伏比,將淬火組織控 制為下變韌鐵主體之組織,降低麻田散鐵組織之分率係為 有效的結論。 10 201226582 此外,發明人等詳細地調查c量為〇〇5%以上且小於 0.10% ’ Pcm為0.22%以下之具有各種成分組成的鋼材之組 織分率與強度及降伏比的關係。結果,可知首先,為確保 5MPa以上之降伏強度’下變勒鐵之組織分率(下變勤鐵分 率)與麻田散鐵之組織分率(麻田散鐵分率)的和必須為冒。 以上(上變韌鐵及肥粒鐵之組織分率小於1〇%)。此外,得到 為滿足83/〇以上之降伏比,鋼板之組織必須為以下變勃鐵 作為主制組織(下變勃料相纟讀或下變減與麻田散 鐵之混合組織)’具體而言,鋼板之組織所含的下變_之 組織分率為7G%以上(第2圖)的觀察所得知識。另,於第2圖 及後述之第3圖中’使用板厚6〜心爪、下變勒鐵分率與麻 田散鐵分率之和為90%以上的鋼板,該鋼板中於3〇〇〜45〇<t 停止水冷,控制組織。 接著’發明人等檢討了於下變韌鐵主體之組織中穩定 地控制鋼板組織的方法。例如,雖控制淬火時之冷卻速度 於一定範圍’即可得下變韌鐵,但可得下變韌鐵之冷卻速 度範圍一般係小,故如此之冷卻速度的控制,於工業上來 說並非良策。穩定且簡易地得到下變韌鐵主體之組織的製 造製程’係於淬火時,並非加速冷卻至室溫,而係於冷卻 途中於適當之溫度停止水冷,之後藉由放冷減缓冷卻速度 係為有效。於使停止水冷溫度(由水冷轉換至放冷之鋼板溫 度)低於3〇〇°C時,麻田散鐵分率變得過高。反之,於停止 水冷溫度高於450。(:時,將容易生成上變韌鐵。因此,以停 止水冷溫度為300。(:以上且450°C以下為佳。 11 201226582 發明人專對C量為0.05%以上且小於〇. 1 〇%,pcm為 0.22%以下之各種成分組成之鋼種,以板厚為6〜25mm、停 止水冷溫度為300°C以上且450°C以下之條件製造鋼板,並 針對下變韌鐵之組織分率與麻田散鐵之組織分率的和為 9 0 %以上之鋼材詳細地調查強度與組織分率的關係。 結果’可知Μη及Ni因具有抑制下變物鐵變態之作用, 故特別於中途停止水冷之製程中,使下變韌鐵之組織分率 下降’停止水冷溫度低時提高麻田散鐵之組織分率,停止 水冷溫度高時提高上變勃鐵之組織分率(上變勃鐵分率)的 傾向高。又,亦確認Mo及V抑制肥粒鐵或上變勃鐵之生成, 提高下變勃鐵之組織分率的傾向高。因此,可知於中途停 止水冷之製程中’為容易穩定地得到下變勒鐵主體之組 織,抑制Μη及Ni之量,使Mo及V之量增加係非常有效。具 體而言’可知除了 C量為0.05%以上且小於〇· 1〇%,藉下述(式 5)所定義之Pcm為0.22%以下的成分組成條件以外,將藉下 述(式6)所定義之A(A值)調整至2.0以下的話,於麻田散鐵之 組織分率與下變韌鐵之組織分率的和為90%以上時,可確 實地得到下變韌鐵分率為7 0 %以上之組織(第3圖)。 藉由得到如此下變韌鐵主體之組織,因降伏比為83% 以上,考量到某程度之強度的不均勻,可穩定地滿足降伏 強度之下限(885MPa)與抗拉強度之上限(1130MPa)。Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5x[ B] . · (Expression 3) A = ([Mn] + 1.5x [Ni]) / ([Mo] + 1.2x [V]) · · · (Expression 4) Here '[C], [Si ], [Μη], [Cu], [Ni], [Cr], [Mo], [V], [B] are respectively C, Si, Mn, Cu, Ni, Cr, M in the above chemical composition. , V, B mass%. Advantageous Effects of Invention According to the present invention, it is possible to economically provide a structural member for use in a construction machine or a 201226582 industrial machine, and has a high-strength steel plate having a high-strength welding strength of 885 MPa or more and a thickness of 6 mm or more and 25 mm or less. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the relationship between the crack stop preheating temperature in the Pcm and y-type weld crack test. Figure 2 is a graph showing the relationship between the tissue fraction of the lower toughened iron and the ratio of the drop. Figure 3 is a graph showing the relationship between the A value and the tissue fraction of the lower toughened iron. Fig. 4 is a flow chart showing the outline of a method for producing a high-strength steel sheet according to an embodiment of the present invention. C Embodiment 3 Mode for Carrying Out the Invention It is well known that in order to reduce the sensitivity of welding cracks, it is effective to reduce the welding crack sensitivity index Pcm. The inventors have reviewed that, in the case of carbon dioxide arc welding, diffusion of hydrogen in an amount of about 3_0 to 5.0 ml/100 g which is considered to be insufficient when the welding construction management is insufficient may be contained in the steel, so that no weld crack occurs in the case of not preheating. How much pcm needs to be reduced. The y-type fusion crack test (1 7 kJ/mm of heat of dissolution) specified in JIS z 3158 (1993) was carried out to adjust the temperature and humidity with respect to the steel having various chemical compositions. The test piece has a plate thickness of 25 mm, and it is necessary to test two test materials under the same conditions. Among them, one was used as a test material for hydrogen analysis, and the test material was immediately sampled after the test, and the amount of diffused hydrogen was measured by a gas chromatograph. As a result of the analysis, only when the amount of diffused hydrogen is greater than 5 〇1111/1〇〇§, the remaining test piece 9 201226582 is used for the test to evaluate the presence or absence of cracks. From the results obtained, the relationship between the Pcm of the steel material shown in Fig. 1 and the preheating temperature for preventing cracks can be obtained. In other words, Fig. 1 shows the influence of the Pcm of the steel material and the preheating temperature on the presence or absence of cracks. As is apparent from the first drawing, if the Pcm is reduced to 〇22% or less, it is in the range of 5.1 to 6.0 ml/100 g in the diffused hydrogen, and cracks are not generated under the conditions of no preheating (test temperature: 25 Å). However, the previous 100 kg steel grade thick steel plate was manufactured by multiple tempering processes, generally containing tempered granita iron as the main organization. However, in order to satisfy the composition (chemical composition) of a low pcm of 0.22% or less, when the main structure is tempered granulated iron, it is not easy to obtain the strength of 1 〇〇 kg of steel. In order to obtain a high strength with such a low P c m , it is not necessary to temper the granulated iron structure, that is, to directly use the quenched granulated iron structure. However, the quenched granulated loose iron structure has many characteristics of low displacement ratio (lowering strength/tensile strength) due to the difference in movable displacement, and the tensile strength must be improved in order to ensure the fall strength of the specified specification. The strength specification value of 1 kg steel in the JIS specification is 885 MPa or more, and the tensile strength is 95 MPa or more and 1130 MPa or less. When the above-mentioned specification value is considered to be uneven in the quality (strength) of the manufacturing, the lower limit target value of the drop strength is 915 MPa, and the upper limit target value of the tensile strength is set to llOO MPa, and the fall ratio (falling strength/tensile strength) is known. ) is a necessary condition of 830 / 〇 or more. This ratio is not easily obtained in the quenched granulated iron structure. The inventors reviewed the relationship between various organizations and strengths, and as a result, 'make a high-ratio ratio in the bonfire state, control the quenching structure to the structure of the lower tough iron body, and reduce the rate of the granulated iron structure in the field. Effective conclusions. In addition, the inventors of the present invention investigated in detail the relationship between the composition ratio of the steel material having various component compositions, the strength, and the ratio of the drop ratio, in which the amount of c is 5% or more and less than 0.10% Å Pcm is 0.22% or less. As a result, it has been found that, in order to ensure the declination strength of 5 MPa or more, the sum of the tissue fraction of the lower iron (the lower fraction of diligent iron) and the tissue fraction of the granulated iron (the balance of the granules of the granules) must be taken. Above (the tissue fraction of upper toughened iron and fertilized iron is less than 1%). In addition, in order to meet the drop ratio of 83/〇 or more, the structure of the steel plate must be the following as the main structure (the mixed structure of the lower or the lower and the lower and the mixed structure of the granulated iron) The knowledge of the microstructure of the steel sheet is 7 G% or more (Fig. 2). In addition, in Fig. 2 and Fig. 3 which will be described later, 'the steel plate having a thickness of 6 to a claw, a lower tensile iron fraction, and a balance of the granulated iron is 90% or more, and the steel plate is 3 〇〇. ~45〇<t Stop water cooling and control the organization. Then, the inventors reviewed the method of stably controlling the steel sheet structure in the structure of the lower tough iron body. For example, although the cooling rate during quenching is controlled to a certain range, the toughened iron can be obtained, but the cooling rate of the lower toughening iron is generally small, so the control of the cooling rate is not a good strategy in the industry. . The manufacturing process for obtaining the structure of the lower toughened iron body stably and simply is not accelerated cooling to room temperature during quenching, but is stopped at a suitable temperature during cooling, and then the cooling rate is slowed down by cooling. To be effective. When the temperature at which the water cooling is stopped (the temperature of the steel sheet which is switched from water cooling to cooling) is lower than 3 °C, the distribution of the iron in the field becomes too high. Conversely, the water cooling temperature is above 450. (: When it is easy to generate the upper toughening iron. Therefore, stop the water cooling temperature to 300. (: Above and 450 °C or less is preferred. 11 201226582 The inventor specializes in the amount of C is 0.05% or more and less than 〇. 1 〇 %, steel with a composition of 0.22% or less, having a plate thickness of 6 to 25 mm, stopping the water-cooling temperature of 300 ° C or more and 450 ° C or less, and forming a steel sheet for the lower toughened iron The relationship between the strength and the tissue fraction was investigated in detail with the steel with a mass fraction of more than 90% of the tissue of the granulated iron. The result 'is known that Μη and Ni have the effect of suppressing the deformation of the lower iron, so it is especially stopped halfway. In the water-cooling process, the microstructure of the lower toughened iron is decreased. 'When the water cooling temperature is low, the tissue fraction of the granulated iron is increased. When the water cooling temperature is high, the tissue fraction of the upper ferrous iron is increased. The tendency of the rate is high. It is also confirmed that Mo and V inhibit the formation of ferrite iron or up-regulated iron, and the tendency to increase the tissue fraction of the lower iron is high. Therefore, it can be known that in the process of stopping the water cooling in the middle Easy to stably obtain the lower iron body Weaving, suppressing the amount of Μη and Ni, and increasing the amount of Mo and V is very effective. Specifically, it is understood that the amount of C is 0.05% or more and less than 〇·1〇%, which is defined by the following (Formula 5). In addition to the component composition conditions of the Pcm of 0.22% or less, when the A (A value) defined by the following (Formula 6) is adjusted to 2.0 or less, the tissue fraction of the granulated iron and the microstructure fraction of the lower toughened iron are determined. When the sum is 90% or more, the structure of the lower tough iron fraction of 70% or more can be surely obtained (Fig. 3). By obtaining the structure of the lower tough iron body, the drop ratio is 83% or more. Considering the unevenness of the strength to a certain extent, the lower limit of the drop strength (885 MPa) and the upper limit of the tensile strength (1130 MPa) can be stably satisfied.

Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5x[B] · · ·(式5) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · ·(式6) 12 201226582 此處,[c]、[Si]、[Μη]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、 [B]分別係4匕學組成中C、Si、Mn、Cu、Ni、Cr、Mo、V、 B之質量%。 以下,詳細地說明本發明之一實施形態的高強度鋼板。 首先,說明本實施形態之鋼成分的限定理由。另,以 下,「%」係指「質量%」。 C係大幅地影響具有以下變韌鐵作為主體之組織的本 實施形態之鋼的強度之重要元素。為得885MPa以上之降伏 強度,C量需為〇.〇5°/。以上,以0.055%以上或0.060%以上為 佳。然而,於C量為0.10%以上時抗拉強度將變得過高。因 此,C量以小於0.10%,以0.095%以下或〇_〇9〇%以下為佳。Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5x[ B] · · · (Expression 5) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · ·(Formula 6) 12 201226582 Here, [c], [Si], [Μη], [Cu], [Ni], [Cr], [Mo], [V], [B] are respectively C, Si, Mn, Cu, Ni, Cr, Mo, V, B mass%. Hereinafter, a high-strength steel sheet according to an embodiment of the present invention will be described in detail. First, the reason for limiting the steel component of the present embodiment will be described. In addition, "%" means "% by mass". The C system greatly affects the important element of the strength of the steel of the present embodiment having the following toughened iron as the main structure. In order to obtain a drop strength of 885 MPa or more, the amount of C needs to be 〇.〇5°/. The above is preferably 0.055% or more or 0.060% or more. However, the tensile strength will become too high when the amount of C is 0.10% or more. Therefore, the amount of C is preferably less than 0.10%, preferably less than 0.095% or less than 〇_〇9〇%.

Si係於後述之中途停止水冷的製程中,抑制停止水冷 後之緩冷卻中的雪明碳鐵之粗大化,故為得高強度,以提 高Si量為佳。因此,Si量係〇.2〇°/。以上’以0.25%以上或〇 3〇% 以上為佳。然而’於鋼中過剩地添加Si時,有阻礙細性之 疑慮,故Si量之上限係0.50%,以〇.45。/。或0.40%為佳。 Μη係有助於提高可硬化性、提升強度之元素。因此, Μη量係0.20%以上,以0.30%以上或0_50%以上為佳。然而, Μη因有抑制下變韌鐵變態之作用,特別是於中途停止水冷 之製程中,降低下變韌鐵之組織分率,於停止水冷溫度低 時提向麻田散鐵之組織分率,於停止水冷溫度高時提高上 邊韌鐵分率的傾向高。特別是,於Μη量為1.2〇。/。以上時, 將不易得到83%以上之降伏比’故Μη量係小於12〇%,以 l.OO/o或〇.9〇%以下為佳。 13 201226582In the process of stopping the water cooling in the middle of the process described later, the Si system suppresses the coarsening of the swarf carbon in the slow cooling after the water cooling is stopped. Therefore, it is preferable to increase the amount of Si in order to increase the amount of Si. Therefore, the amount of Si is 〇.2〇°/. The above is preferably 0.25% or more or 〇3% or more. However, when Si is excessively added to the steel, there is a concern that the fineness is impeded, so the upper limit of the amount of Si is 0.50%, which is 〇45. /. Or 0.40% is preferred. The Μη system contributes to the improvement of the hardenability and the strength of the element. Therefore, the amount of Μη is 0.20% or more, preferably 0.30% or more or 0-50% or more. However, Μη has the effect of suppressing the transformation of the toughened iron, especially in the process of stopping the water cooling in the middle, reducing the tissue fraction of the lower toughened iron, and the organization rate of the iron to the granulated iron when the water cooling temperature is low. When the water cooling temperature is stopped, the tendency to increase the upper tough iron fraction is high. In particular, the amount of Μη is 1.2〇. /. In the above case, it is difficult to obtain a fall ratio of 83% or more. Therefore, the amount of Μη is less than 12〇%, preferably l.OO/o or 〇.9〇% or less. 13 201226582

Cr因有助於提升可硬化性、提升強度,故&量係〇扣% 以上,以0.25Ο/Ο以上或0‘30%以上為佳。‘然而,因於鋼中添0 加過剩之Cr時,將降低熔接性,故Cr量係丨2〇%以下,= 1.10%以下或1.00%以下為佳。Since Cr contributes to the improvement of the hardenability and the strength, the amount of the & is more than 0.25 Ο / Ο or more than 0 の 30%. ‘However, when adding Cr to the steel and adding excess Cr, the weldability will be lowered. Therefore, the amount of Cr is 丨2〇% or less, and 1.10% or less or 1.00% or less is preferable.

Mo可抑制肥粒鐵之生成,於後述之中途停止水冷的製 程中,有助於穩定地生成下變韌鐵。因此,M〇量需為〇 以上,以0_25〇/〇以上或〇.30%以上為佳。然*,於鋼中添二 過多之Mo時,有熔接性受損的情形,M〇亦為高價之元 因此,Mo量係0.60〇/〇以下,以〇.58%以下或〇 55%以下為佳。Mo suppresses the formation of ferrite iron, and contributes to the stable formation of the toughened iron in the process of stopping the water cooling in the middle of the following. Therefore, the amount of M〇 needs to be 〇 or more, preferably 0_25〇/〇 or more. 30.30% or more. However, when adding too much Mo to the steel, there is a case where the weldability is impaired, and M〇 is also a high-priced element. Therefore, the Mo amount is 0.60 〇/〇 or less, and 〇.58% or less or 〇55% or less. It is better.

Ni亦與Μη同樣地具有抑制下變韌鐵變態之作用古 別於中途停止水冷的製程中,降低下變軸之組織分=特 於停止水冷溫度低時提高麻田散鐵之組織分率,於^止水 冷溫度高時提高上變韌鐵之分率的傾向高。 Κ LJ此,於鋼中 添加Ni時,不易得到83%以上之降伏強度。於是, 於鋼中添加Ni,並控制Ni量於不可避免地於鋼= 圍内。具體而言,Ni量之上限係〇.1%,以。〇5%或二“ 佳。Ni量之下限並未特別限制,係〇%。 ’‘ 乃,於鋼中添加作 為選擇元素之⑽’亦可-面獅量抑制於前侧量以 下,一面於鋼中添加Cu之0.5倍以上的Ni also has the effect of suppressing the transformation of the lower toughening iron in the same manner as the Μη. In the process of stopping the water cooling in the middle, the structure of the lowering of the lower axis is made to increase the tissue fraction of the granulated iron in the case of stopping the water cooling temperature. ^ When the water-cooling temperature is high, the tendency to increase the fraction of the upper toughening iron is high. Κ LJ, when Ni is added to steel, it is not easy to obtain a drop strength of 83% or more. Thus, Ni is added to the steel, and the amount of Ni is controlled to be inevitably in the steel = square. Specifically, the upper limit of the amount of Ni is 〇.1%. 〇 5% or two is better. The lower limit of the amount of Ni is not particularly limited, and is 〇%. '' 乃, added to the steel as a selection element (10)' can also be - the amount of lion is suppressed below the amount of the front side, while Adding 0.5 times or more of Cu to steel

Nb於軋延中生成微細碳化物,增大未再結晶溫度區 域,提高控制軋延效果,藉由結晶粒微細化提高祕。因 此,Nb量係0·_%以上,以〇.〇15%以上或^上為 佳。‘然而’因於鋼中過剩地添加_時’有阻礙炫接性之情 ^ - itNbf ^0.050〇/〇ατ « α〇.045〇/〇,χτ^〇 〇4〇%^τ^ 14 201226582 佳。 本貫鈀形態中,使用用以確保可得下變韌鐵組織之適 當可硬化性的B。為得該適當可硬化性,需於直接淬火時確 保自由之BM因會生成BN,使自由之b減少,故於鋼令添 加適量之Ti,而未生成BN,作為TiN固定。Nb forms fine carbides during rolling, increases the area of the non-recrystallization temperature, improves the control rolling effect, and improves the secret by refining the crystal grains. Therefore, the amount of Nb is 0% or more, preferably 15% or more. 'However' because of the excessive addition of _ in the steel, there is a hindrance to the splicing. ^ - itNbf ^0.050〇/〇ατ « α〇.045〇/〇,χτ^〇〇4〇%^τ^ 14 201226582 good. In the present palladium form, B is used to ensure proper hardenability of the toughened iron structure. In order to obtain the appropriate hardenability, it is necessary to ensure that the free BM during the direct quenching generates BN and reduces the free b. Therefore, an appropriate amount of Ti is added to the steel, and BN is not formed, and TiN is fixed.

Ti係用以將N作為TiN固定而含有於鋼中。換言之,於 鋼中’ Τι董係0.005%以上’以0〇1〇%或〇〇12%以上為佳。 然而,因有過剩地添加Ti造成熔接性下降的情形,故Ti量之 上限係0.030%,以0.025%或0.020%為佳。 B具有提高鋼之可硬化性的效果,為發揮該效果,B量 需為0.0003%以上,以0.0005%以上或〇 〇〇1〇%以上為佳。然 而,於鋼中添加大於0.0030%iB時,有熔接性或韌性下降 的情形。因此,B量係0.0030%以下,以〇〇〇25%以下或 0.0020%以下為佳。 N於鋼十過剩地含有時,如前述,將生成81^,阻礙B 之提升可硬化性效果,且降低韌性。因此,將1^量抑制於 0.0080%以下,以0.0060%以下或0.0050%以下為佳。又,因 N係不可避免地含有於鋼中,故n量之下限不需特別限制, 係0%。 A1係添加於鋼中作為脫氧材,於該鋼中,Μ量通常係 0.01%以上。然而,因A1之過剩添加有降低韌性之情形,故 A1量之上限係0.10%,以0.08%或0.05%為佳。 P係降低韌性之有害元素。因此,將P量抑制於〇〇12% 以下,以0.010%以下或0.008%以下為佳。又,因?係不可避 15 201226582 免的雜質’故p量之下限不需特別限制,係〇%。 S係形成MnS,降低折彎加工性之有害元素,故以儘量 降低s量為佳。因此,將s量抑制於〇〇〇5%以下以〇〇〇4% 以下或0.003%以下為佳。又,因s係不可避免的雜質,故s 量之下限不需特別限制,係〇%。 以上之元素係本實施形態f鋼之基本成分(基本元 素)’包含該基本元素,且剩餘部分係由&及不叮避免的雜 質所構成的化學組成係本實施形態之基本組成。然而,除 了該基本組成(取代剩餘部分F e之一部分)以外,本實施形態 中,亦可視需要含有以下之元素(選擇元素)。另,即使於鋼 中不可避免地混入該等選擇元素,仍不損及本實施形態中 之效果。 換言之,選擇元素除了前述基本成分以外,亦可於鋼 中添加V、Cu、Ca中之一種以上。 V可提升可硬化性,亦有回火麻田散鐵組織或回火變知 鐵組織中之析出強化效果,因有助於提升強度,故亦可视 需要添加V。然而,添加多量之v有阻礙熔接性之情形,且 因係咼價之元素,故¥量係〇.1〇。/。以下,以〇〇9〇%以下或 0_080%以下為佳。X ’為降低合金成本,不需故意於鋼中 添加V,V量之下限係〇〇/0。Ti is used to fix N as TiN and is contained in steel. In other words, in steel, 'Τι董系0.005% or more' is preferably 0〇1〇% or 〇〇12% or more. However, since the addition of Ti excessively causes the weldability to decrease, the upper limit of the amount of Ti is 0.030%, preferably 0.025% or 0.020%. B has an effect of improving the hardenability of steel, and in order to exert this effect, the amount of B needs to be 0.0003% or more, preferably 0.0005% or more or 〇1% or more. However, when more than 0.0030% iB is added to the steel, the weldability or toughness is lowered. Therefore, the amount of B is 0.0030% or less, preferably 5% or less or 0.0020% or less. When N is excessively contained in the steel ten, as described above, 81^ is formed, which hinders the effect of improving the hardenability of B and lowers the toughness. Therefore, the amount of 1 is suppressed to 0.0080% or less, preferably 0.0060% or less or 0.0050% or less. Further, since the N system is inevitably contained in the steel, the lower limit of the amount of n is not particularly limited and is 0%. A1 is added to steel as a deoxidizing material, and in this steel, the amount of niobium is usually 0.01% or more. However, since the excess of A1 is added to reduce the toughness, the upper limit of the amount of A1 is 0.10%, preferably 0.08% or 0.05%. P is a harmful element that reduces toughness. Therefore, the amount of P is suppressed to 〇〇12% or less, preferably 0.010% or less or 0.008% or less. Also, because? It is unavoidable that the lower limit of the amount of p is not particularly limited, and is 〇%. S forms MnS and reduces the harmful elements of the bending processability, so it is preferable to reduce the amount of s as much as possible. Therefore, it is preferable to suppress the amount of s to 5% or less and 〇〇〇4% or less or 0.003% or less. Further, since s is an unavoidable impurity, the lower limit of the s amount is not particularly limited, and is 〇%. The above elements are the basic components of the present embodiment, the basic components (basic elements) of the steel include the basic elements, and the remaining part is composed of & and the chemical composition which is unavoidable, which is the basic composition of this embodiment. However, in addition to the basic composition (instead of a part of the remaining portion F e ), in the present embodiment, the following elements (selective elements) may be contained as needed. Further, even if these selective elements are inevitably mixed into the steel, the effects of the present embodiment are not impaired. In other words, in addition to the above-described basic components, one or more of V, Cu, and Ca may be added to the steel. V can improve the hardenability, and there is also the tempering of the granulated iron structure or tempering. The precipitation strengthening effect in the iron structure is known. Since it helps to increase the strength, it is also possible to add V as needed. However, the addition of a large amount of v has a hindrance to the fusion, and because of the element of the price, the quantity is 〇.1〇. /. Hereinafter, it is preferably 〇〇9〇% or less or 0_080% or less. X ′ is to reduce the cost of the alloy, and it is not necessary to intentionally add V to the steel. The lower limit of the amount of V is 〇〇/0.

Cu係藉由固溶強化提升強度之元素,亦可視需要添加 Cu。例如,可於鋼中添加€:11,使〇1量為〇 〇5%以上。然而, 於多量地添加Cu時,藉固溶強化提升強度之效果將到達極 限。因此,Cu量係〇.5〇。/。以下,以〇4〇。/((以下或〇3〇%以下 201226582 意 為佳又’ Cu係高價之元素,為降低合金成本,不需故 於鋼中添加Cu,Cli旦+ . u Ujh:之下限係〇〇/〇。 * ^係具有將崎之魏物球狀化,餘MnS造成之折 4加工性下降的效果,亦可視需要於鋼中添加Ca。另,為 了 °亥目的於鋼中添加Ca,’亦可於鋼中含有0.0001%以上之 Ca。然而’因添加多量之Ca將使熔接性下降,故Ca量之上 限係0.,0030%以下,以〇〇〇2〇%以下或〇〇〇1〇%以下為佳。 又,為降低合金成本,不需故意於鋼中添加Ca,Ca量之下 限係0°/〇。 如以上,本實施形態之高強度鋼板具有包含前述基本 元素,且剩餘部分係由Fe及不可避免的雜質所構成的化學 組成、或包含前述基本元素與選自於前述選擇元素之至少i 種,且剩餘部分係由Fe及不可避免的雜質所構成的化學組 成。 除了以上各元素之量的範圍條件以外,如前述,為確 保充分之熔接性’調整成分組成,使藉前述(式5)所定義之 Pcm為0.22%以下。 如前述,於Pcm為0·22%以下之條件下,為滿足83%以 上之降伏比,鋼板組織中之麻田散鐵分率與下變韌鐵分率 的和係90%以上’其中下變初鐵之分率需為以上。為穩 定地容易得到該下變韌鐵主體之組織,調整成分組成,使 藉前述(式6)所定義之Α(Α值)為2.〇以下。 另外,於鋼中未含有作為選擇元素之v&Cu時,Pcm及 A分別係藉下述(式7)及(式8)所定義。該等(式7)及(式8)分別 17 201226582 對應前述(式5)及(式6)。Cu is an element that enhances strength by solid solution strengthening, and Cu may be added as needed. For example, €:11 can be added to the steel so that the amount of 〇1 is 〇 5% or more. However, when Cu is added in a large amount, the effect of strengthening the strength by solid solution strengthening will reach the limit. Therefore, the amount of Cu is 〇.5〇. /. Below, take 〇4〇. /((The following or 〇3〇% 201226582 means good and 'Cu is a high-priced element, in order to reduce the cost of the alloy, it is not necessary to add Cu to the steel, Clidan + . u Ujh: the lower limit system 〇〇 / 〇 * ^ has the effect of spheroidizing the spheroidal material of Kawasaki, and the workability of the remaining MnS is reduced. It is also possible to add Ca to the steel as needed. In addition, in order to add Ca to steel for the purpose of hai, it is also possible to steel. It contains 0.0001% or more of Ca. However, 'the addition of a large amount of Ca reduces the weldability, so the upper limit of the amount of Ca is 0.,0030% or less, and 〇〇〇2〇% or less or 〇〇〇1〇% or less. Further, in order to reduce the alloy cost, it is not necessary to intentionally add Ca to the steel, and the lower limit of the amount of Ca is 0°/〇. As described above, the high-strength steel sheet of the present embodiment has the aforementioned basic elements, and the remaining portion is a chemical composition composed of Fe and unavoidable impurities, or a chemical composition comprising the above-mentioned basic element and at least one selected from the above-mentioned selected elements, and the remainder being composed of Fe and unavoidable impurities. In addition to the range of conditions, as mentioned above, Sufficient weldability 'adjusts the composition of the component so that the Pcm defined by the above formula (5) is 0.22% or less. As described above, under the condition that the Pcm is 0.22% or less, the plate is satisfied to have an embedding ratio of 83% or more. The sum of the distribution of the granulated iron and the lower toughening iron in the organization is more than 90%. The fraction of the lower tempering iron needs to be above. In order to stably obtain the structure of the lower tough iron body, the composition is adjusted. The composition is such that the enthalpy (Α value) defined by the above (Formula 6) is 2. 〇 or less. When the steel does not contain v&Cu as a selective element, Pcm and A respectively are as follows (Formula 7) And (Expression 8). These (Formula 7) and (Formula 8) respectively correspond to (Formula 5) and (Formula 6) above.

Pcm=[C]+[Si]/30+[Mn]/20+[Ni]/60+[Cr]/20+[Mo]/15+5 x[B] · · ·(式 7) A=([Mn]+1.5x[Ni])/[Mo] · ·.(式 8) 另外,前述(式5)〜(式8)中’於鋼中未含有對應於式中 各變數之元素(例如,V、Cu、Ni)時,將〇代入該變數。 滿足前述各元素之量的範圍與Pcm及A之條件的成分 組成係本實施形態中之成分組成。 接著,說明本實施形態之鋼的組織。 如前述’為一面確保通常之熔接施工管理所需的熔接 性一面滿足83%以上之降伏比,麻田散鐵分率與下變韌鐵 分率之和係90%以上,其中下變韌鐵之分率需為7〇%以上。 此處’下變韌鐵中多量之微細的雪明碳鐵存在於肥粒 鐵薄晶(ferrite lath)之界面或肥粒鐵薄晶内。該微細之雪明 碳鐵被視為提高降伏強度,特別是直徑(圓等效直徑)為 1〜l〇mn左右的雪明碳鐵之降伏強度提升效果大,以如此微 細之雪明碳鐵多為佳。然而,不易精確地測定數nm之雪明 碳鐵。另一方面,考量到對應於C量等製造條件,於鋼中生 成—定量之雪明碳鐵時’有微細之雪明碳鐵越多,粗大之 ㈣碳鐵越少_向。因此’本發明人等詳細地調查降伏 強度與雪明碳鐵之大小、個數密度,結果,發現具體而言, 鋼板組織中之直徑(圓等效直徑)50nm以上之較粗大的雪明 碳鐵之個數密度為20個W以下者,係、含有眾多微細之雪 明碳鐵’顯著地提升降伏強度的較佳條件。藉於鋼板組織 201226582 中含有眾多如此微細之雪明碳鐵,可㈣地達成83%以上 的降伏比。另,該雪明碳鐵之個數密度的下限係〇個/叫3。 /外,製作利用電解溶出預定體積之鋼板的基體材料 並藉由萃取印模法萃取出㈣碳鐵之試樣,制用穿透式 電子顯微鏡(TEM)觀察該試樣,可得具有5()nm以上之圓等 效直徑的雪明碳鐵(50腿以上之雪明碳鐵)之每單位體積個 數(個數密度)。 以外,如後述,前沃斯田鐵(前沃斯田鐵粒)之縱橫比係 2以上。前沃斯田鐵之縱橫比係㈣於前沃斯喊之短轴長 的長轴長之比(軸比),係各前沃斯田鐵粒之軸比的平均值。 因此,該縱橫比之下限係1。 此外,詳細地說明本發明之—實施形態的高強度鋼板 =造方法。㈣由添加等難鋼中之成分組成,以滿足 前述實施形態之成分組成的條件,所製成的扁鋼胚(鋼),使 用=下方法製造高強度鋼板。另,於第4圖顯示本實施形態 之高強度鋼板的製造方法之概略。 將前述扁鋼胚於之溫度(加熱溫度)加熱 ⑻)’使提高控制軋延效果之灿、或賦與可硬化性之m〇等 合金元素的碳化物或錢化物充分地歸於鋼卜該加熱 溫度之上限並未制_,但时生產性下降、或加執時 沃斯田鐵之粒徑變㈣常地大的情形,以】細。c為佳。 對該經加熱之扁鋼胚進行熱耗延至目標之板厚(S2), 使未再結晶溫度區域下之累積軋縮率為嶋以上。經減 延之扁鋼胚’即鋼板(鋼)中,其板厚多為6〜25咖,但並未 19 2〇1226582 限定為該板厚。此處,於未再結晶溫度區域下之累積軋縮 率為60%以上時,可於鋼中導入充分之加工應變,可適當 地控制鋼板之強度特性。另,未再結晶溫度區域係Ar3以上 且960°C以下之溫度區域,於該溫度區域中,可防止軋延後 之再結晶(加工應變之減少)。又,Ar3(Ar3變態點)係冷卻時 肥粒鐵開始變態之溫度,可使用富士電波工機製之熱加工 模擬試驗裝置(THE RME CMA STOR-Z)測定。該Ar3之測定 係將鋼(試樣)加熱至1200。(:後保持1〇分鐘,再以2.5。(:/分冷 卻’測定冷卻時之體積變化,依據該體積變化決定Ar3。另, 未再結晶溫度區域下之累積軋縮率小於10〇〇/〇。 對由熱軋延所得之鋼板(鋼),熱軋延後接著於線上由 Ar3以上之溫度(開始水冷溫度)進行加速冷卻(水冷)。於線 上進行加速冷卻,可提高淬火性,有利於降低pcm。將開始 加速冷卻溫度設為Ar3以上之溫度,係於由小於Ar3之溫度 開始加速冷卻時,將生成肥粒鐵或上變韌鐵,大幅地降低 鋼板之強度的緣故。於開始加速冷卻後,於3〇〇。〇以上且45〇 C以下之/瓜度(停止水冷溫度)停止該加速冷卻,之後進行放 冷(S3)。於停止水冷溫度大於45(rc時,容易生成上變韌鐵, 有降伏強度及抗拉強度下降的傾向高。又,於停止水冷溫 度小於300 C時,因麻田散鐵之組織分率變高,降伏比下 降,故不易兼顧降伏強度之下限與抗拉強度之上限。此處, 加速冷卻(水冷)係於前述冷卻停止溫度以上且Ar3以下之p 度區域中,鋼板之l/4t部分的平均冷卻速度為忉它々以上2 冷卻,該加速冷卻之平均冷卻速度的上限縣特別限制之Pcm=[C]+[Si]/30+[Mn]/20+[Ni]/60+[Cr]/20+[Mo]/15+5 x[B] · · · (Expression 7) A= ([Mn]+1.5x[Ni])/[Mo] · (Expression 8) In the above (Formula 5) to (Formula 8), the element corresponding to each variable in the formula is not contained in the steel ( For example, in the case of V, Cu, and Ni), 〇 is substituted into the variable. The component composition satisfying the range of the amounts of the above respective elements and the conditions of Pcm and A is the component composition in the present embodiment. Next, the structure of the steel of this embodiment will be described. As described above, the weldability required for the usual welding construction management meets the fall ratio of 83% or more, and the sum of the balance of the granulated iron and the lower toughened iron is more than 90%, of which the lower toughening iron is The rate must be above 7〇%. Here, a large amount of fine swarf carbon iron in the lower toughening iron exists in the interface of ferrite lath or ferrite iron thin crystal. The fine snow-capped carbon iron is considered to increase the strength of the fall, especially the diameter of the snow (equivalent diameter) is about 1~l〇mn, and the effect of the lifting strength of the snow-capped carbon iron is large, so that the fine snow-minding carbon iron More is better. However, it is difficult to accurately measure a few nm of smectite carbon iron. On the other hand, considering the production conditions corresponding to the amount of C and the like, when the amount of swarf carbon iron is generated in the steel, the more the fine swarf carbon iron is, the smaller the (four) carbon iron is. Therefore, the inventors of the present invention investigated in detail the magnitude of the fall strength and the number and density of the ferritic carbon iron. As a result, it was found that the diameter of the steel sheet structure (circle equivalent diameter) of the coarser snow carbon of 50 nm or more was found. The number density of iron is less than 20 W, which is a preferable condition for containing a large number of fine Xueming carbon irons to significantly increase the strength of the fall. Thanks to the steel plate structure 201226582, there are many such fine snow-minding carbon irons, which can achieve a drop-over ratio of 83% or more. In addition, the lower limit of the number density of the Xueming carbon iron is 〇/3. / Outside, preparing a base material of a steel plate of a predetermined volume by electrolytic dissolution and extracting a sample of (tetra) carbon iron by an extraction impression method, and observing the sample by a transmission electron microscope (TEM), which has 5 ( ) The number of units per unit volume (number density) of stellite carbon iron (snow carbon iron of 50 legs or more) of a circle equivalent to a diameter of nm or more. In addition, as will be described later, the aspect ratio of the former Wostian Iron (formerly Vostian Iron) is 2 or more. The ratio of the length of the long axis of the former Woostian Iron (4) to the short axis length of the former Voss (the axial ratio) is the average of the axial ratios of the former Worthfield iron particles. Therefore, the lower limit of the aspect ratio is 1. Further, a high-strength steel sheet according to the embodiment of the present invention will be described in detail. (4) A high-strength steel sheet is produced by using the following method to form a flat steel preform (steel) which is composed of components in a hard steel such as the addition to satisfy the composition of the above embodiment. Further, Fig. 4 is a view showing the outline of a method for producing a high-strength steel sheet according to the present embodiment. Heating the above-mentioned flat steel at a temperature (heating temperature) (8)) to sufficiently improve the effect of controlling the rolling effect or the carbide or the carbide of the alloying element such as m to be hardenable. The upper limit of the temperature is not made, but the productivity is reduced, or the particle size of the Worthite iron is changed when the time is increased. c is better. The heated flat steel is heat-deferred to a target thickness (S2) so that the cumulative rolling reduction ratio in the non-recrystallization temperature region is 嶋 or more. In the flat steel slab which is reduced, that is, the steel plate (steel), the plate thickness is usually 6 to 25 coffee, but it is not limited to 19 2 〇 12265582. Here, when the cumulative rolling reduction ratio in the non-recrystallization temperature region is 60% or more, sufficient processing strain can be introduced into the steel, and the strength characteristics of the steel sheet can be appropriately controlled. Further, the non-recrystallization temperature region is a temperature region of Ar3 or more and 960 °C or lower, and in this temperature region, recrystallization after rolling (reduction in processing strain) can be prevented. Further, when Ar3 (Ar3 metamorphic point) is cooled, the temperature at which the ferrite iron starts to be metamorphosed can be measured by a thermal processing simulation tester (THE RME CMA STOR-Z) of Fuji Electric Wave mechanism. This Ar3 was measured by heating steel (sample) to 1200. (: After holding for 1 minute, then 2.5. (: / minute cooling 'measures the volume change during cooling, and determines Ar3 according to the volume change. In addition, the cumulative rolling reduction rate under the non-recrystallization temperature region is less than 10 〇〇 /钢板. For the steel sheet (steel) obtained by hot rolling, the hot rolling is followed by accelerated cooling (water cooling) from the temperature above Ar3 (starting water cooling temperature) on the line. Accelerated cooling on the line improves the hardenability. In order to lower the pcm, the accelerated cooling temperature is set to a temperature equal to or higher than Ar3, and when accelerated cooling is started from a temperature lower than Ar3, ferrite iron or upper toughening iron is formed, and the strength of the steel sheet is greatly reduced. After the accelerated cooling, the accelerated cooling is stopped at 3 〇〇 above and below 45 ° C (the water cooling temperature is stopped), and then the cooling is performed (S3). When the water cooling temperature is stopped above 45 (rc, it is easy to generate) The upper toughened iron has a high tendency to decrease the tensile strength and the tensile strength. Moreover, when the water cooling temperature is less than 300 C, the tissue fraction of the granulated iron is higher and the drop ratio is decreased, so it is difficult to balance the strength of the fall. The upper limit of the tensile strength is limited. Here, the accelerated cooling (water cooling) is in the p degree region above the cooling stop temperature and below Ar3, and the average cooling rate of the l/4t portion of the steel sheet is 忉 々 or more 2 cooling. The upper limit of the average cooling rate of the accelerated cooling is particularly limited.

20 201226582 又,放冷(於大氣中保持)係於室溫以上且小於前述冷卻停止 溫度之溫度區域中,鋼板之1/41部分的平均冷卻速度為 /s以下之冷卻,職冷之平均冷卻速度的下限並未^別限 制。另,鋼板之l/4t部分係由鋼板之表面朝板厚中心(深度) 方向距離有板厚之1/4的距離之部分,該_部分之冷卻^ 度係由進行溫度解析後所得的溫度變化求得。又藉由驴 述加速冷卻後之放冷,得_%以上之下㈣鐵,;確: 充分之微細的雪明碳鐵。此時,所得之鋼板的大部分中, 5 0 n m以上之較粗大的雪明碳鐵之個數密度係2 〇個小以3以 下。 藉由本實施形態所製造之鋼板中,以前沃斯田鐵的縱 橫比係2以上,作為下變動鐵分率與麻田散鐵分率的和係 90%以上、下_鐵分率係為以上,並於線上加速冷卻製 造之鋼板的組織特徵。X,本實施形態中,不需進行回火 即可達成885略以上之降伏強度,與9mip⑽上且 1130MPa以下之抗拉強度。 另一方面,於未於線上對鋼板進行加速冷卻,而於結 束冷卻後進行再加熱與淬火時,鋼板之前沃斯田鐵的縱棒 比小於2_〇。此時,為確保降伏比,因需回火,故增加工程 數及工程所需時間,提高工業上之成本。 又,於加速冷卻後捲取鋼板,以線圈之狀態放置鋼板 時,放冷時之冷卻速度將㈣㈣小,心威上之較粗大 的雪明碳鐵之個數密度將大於2_哗2。因此,對線圈狀 態之鋼板進行加速冷卻後之放冷係、為不佳,以將鋼板一片 21 201226582 一片地放置直到鋼板之溫度為250°C以下地進行空冷為 佳。換言之,直到鋼板之溫度為25〇°C以下為止,不重疊堆 放鋼板(例如,使鋼板表面可與空氣接觸)地放冷為佳。亦可 於鋼板之溫度到達250°C以下後,將鋼板重疊放冷。 另外’以局溫回火藉熱軋延後進行加速冷卻所得之鋼 板’雪明奴鐵將谷易粗大化’而不易充分地確保微細之雪 明碳鐵。 實施例 由炼製具有表1及表2所示之成分組成的鋼組成 No.A〜AP之鋼後所得的鋼片,藉由表3及表4所示之製造條 件製造板厚6〜25mm的鋼板No.1〜55。於表1及表2中,於故 意未於鋼中添加Cu、Ni、V ' Ca時,於該等化學成分之量 賦與括弧。又,於表3及表4中,於停止加速冷卻(水冷)後, 至鋼板之溫度為25〇t為止,不捲取鋼板而將鋼板一片一片 地放冷。 藉由以下所示之方法,對該等鋼板N〇.卜55,測定下變 韌鐵及麻田散鐵之組織分率、5〇11〇1以上之雪明碳鐵的個數 (個數密度)' 前麟喊之縱橫比、y型祕祕試驗下之 熔接金屬的擴散氫量,評價降伏強度、抗拉強度、熔接性、 韌性。於表5及6顯示藉由該等測定及評價所得之鋼板的組 織及特性。 2220 201226582 In addition, in the temperature range where the cooling (maintained in the atmosphere) is at room temperature or more and less than the cooling stop temperature, the average cooling rate of the 1/41 portion of the steel sheet is /s or less, and the average cooling of the occupational cooling The lower limit of the speed is not limited. In addition, the l/4t portion of the steel plate is a portion from the surface of the steel plate toward the center of the plate thickness (depth) at a distance of 1/4 of the thickness of the plate, and the cooling degree of the portion is the temperature obtained by performing temperature analysis. Change is sought. Further, by arranging the cooling after the accelerated cooling, it is obtained by _% or more (four) iron, and indeed: sufficient fine swarf carbon iron. At this time, in most of the obtained steel sheets, the number density of the coarser stellites of 50 n m or more is 2 or less and 3 or less. In the steel sheet manufactured by the present embodiment, the aspect ratio of the former Worth iron is 2 or more, and the sum of the lower fluctuation iron fraction and the methadrite fraction is 90% or more, and the lower _ iron fraction is more than or equal to And the structural characteristics of the steel plate produced by the accelerated cooling on the line. X. In the present embodiment, the undulation strength of 885 or more and the tensile strength of 9130 ip (10) and 1130 MPa or less are achieved without tempering. On the other hand, when the steel sheet is accelerated and cooled on the line, and the reheating and quenching are performed after the end of the cooling, the longitudinal rod ratio of the steel sheet before the steel sheet is less than 2 〇. At this time, in order to ensure the ratio of undulation, it is necessary to temper, so the number of projects and the time required for the project are increased, and the cost of the industry is increased. Further, after the steel sheet is taken up after the accelerated cooling, and the steel sheet is placed in the state of the coil, the cooling rate at the time of cooling is small (4) (four), and the number density of the coarser stellite carbon on the heart is larger than 2_哗2. Therefore, it is preferable that the cooling system after the accelerated cooling of the steel sheet in the coil state is not preferable, and it is preferable to leave the steel sheet 21 201226582 one by one until the temperature of the steel sheet is 250 ° C or less. In other words, it is preferable that the steel sheet is not overlapped with the stacking steel sheet (for example, the surface of the steel sheet can be brought into contact with air) until the temperature of the steel sheet is 25 〇 ° C or lower. Alternatively, after the temperature of the steel sheet reaches 250 ° C or lower, the steel sheets may be placed in an overlapping manner. In addition, the steel plate obtained by the accelerated cooling by the hot tempering at the local temperature tempering, and the snow-stained steel, is not easy to sufficiently ensure the fine carbon-carbon. EXAMPLES A steel sheet obtained by refining steel having the composition of the components shown in Tables 1 and 2 and having a steel composition No. A to AP was produced by the manufacturing conditions shown in Tables 3 and 4 to a thickness of 6 to 25 mm. Steel plate No. 1 to 55. In Tables 1 and 2, when Cu, Ni, and V ' Ca were not added to the steel, the amount of these chemical components was added to the brackets. Further, in Tables 3 and 4, after the accelerated cooling (water cooling) was stopped, the steel sheet was cooled one by one without winding the steel sheet until the temperature of the steel sheet was 25 Torr. According to the method shown below, the steel plate N〇.Bu 55, the microstructure fraction of the lower toughening iron and the granulated iron, and the number of stellite carbons (number density) of 5〇11〇1 or more were measured. )] The aspect ratio of the front lining, the amount of diffused hydrogen of the fused metal under the y-type secret test, and the evaluation of the drop strength, tensile strength, weldability, and toughness. The compositions and characteristics of the steel sheets obtained by these measurements and evaluations are shown in Tables 5 and 6. twenty two

ON as r** (N 5 卜 o o 卜 (N 卜 m oo (N 卜 o JO ON (N o ㈠ 9 CN VO 〇〇 o <N v〇 S vq 〇 〇〇 s CN (N cn 00 (N V) A V£> (N 〇 (N (N * N®' •ϋ· ε μ 0.204 | 0.207 | I 0.196 | I 0.198 | | 0.187 | | 0.210 | 1 0.196 | 0.192 [0.206 | 0.206 I 0.185 | | 0.203 | I 0.196 0.184 :0.202 1 0.193 0.189 | 0.188 ,0.209 | I 0.193 1 ! 0.192 | *裒 | 0.446 | | 0.477 | | 0.442 1 1 0.473 | 1 0.481 | I 0.468 | | 0.457 | 0.463 | 0.428 1 0.468 1 0.474 | 1 0.464 | 0.455 | 0.538 1 | 0.366 | | 0.470 1 | 0.369 1 0.415 | 0.527 | | 0.429 | I 0.432 1 成分元素(質量%) ca U 1 (0.0001) | o N 〇 o s o 0 o o 0 r? o o | 0.0012 | o s /—*N 〇 0 o o s o | 0.0009 1 o 0 o o o, 〇 o o, S"' 〇 /—N o o o /•""N 〇 o o s o 0 〇 〇 > I (o.ooi) 1 o o, | 0.031 | (0.001) 1 gs o I 0.092 | o I 0.047 | s s 〇 o, o o, s o o, ! 0.062 I (0.003) o (0.002) 1 s o ! (0.003) | (0.000) ,(0.001) 1 (o.oon 1 | 0.0041 I | 0.0031 | | 0.0037 | | 0.0031 | | 0.0051 | | 0.0034 | 1 0.0044 I | 0.0052 | I 0.0042 I I 0.0036 | I 0.0044 | | 0.0048 | 0.0041 0.0036 | 0.0034 | I 0.0048 | | 0.0035 1 I 0.0033 | 0.0046 [0.0031 | | 0.0034 1 κη | 0.002 1 | 0.003 | | 0.001 | | 0.001 | | 0.001 | I 0.002 | I 0.001 I | 0.003 | I 0.001 I | 0.001 | | 0.001 | | 0.002 | 0.003 0.001 | 0.002 | | 0.002 | | 0.001 | | 0.001 | | 0.002 | | 0.001 1 1 0.009 1 α 一 1 0.003 I I 0.003 I I 0.004 I I 0.004 I I 0.003 I | 0.003 I 1 0.002 I I 0.004 I I 0.008 I I 0.003 I I 0.004 I I 0.002 ! | 0.001 | | 0.003 I I 0.005 I | 0.004 | I 0.004 I | 0.003 | | 0.004 | | 0.018 I 0.004 CQ 1 0.0009 I I 0.0012 I I 0.0012 I I 0.0010 I I 0.0012 I | 0.0011 I | 0.0009 I I 0.0009 I I 0.0011 I I 0.0015 I I 0.0010 I I 0.0022 I [0.0019 | 0.0012 I 0.0011 I | 0.0012 | I 0.0011 I I 0.0014 I 0.0009 I 0.0021 I 0.0015 < 1 s o s o s o g o s o i s o s o 1 s o i S O S 〇 1 s o S O s d i s o s o 1 0.015 I I 0.014 I | 0.021 I | 0.011 I | 0.012 I | 0.012 I 1 0.015 I I 0.009 I | 0.018 I 0.012 I 0.010 1 | 0.012 I | 0.009 | | 0.012 I I 0.015 I ! 0.015 I 1 0.012 I 0.011 ,0.012 | 0.020 I 0.011 I 0.034 I 0.021 0.017 | 0.022 I 0.044 0.015] 0.035 0.016 0.028 0.027 0.021 0.021 0.035」 0.021 | 0.016 0.012 0.015 I 0.014 ,0.020 | 0.024 I I 0.022 | (0.02) (0.03) /—*s S O, (0.01) (0.02) 〇 g S s g o (0.01) (0.02) (0.03) (0.01) s o, Q o, 〇 Q g· o. s 〇, 3 υ (0.01) (0.02) /—s (0.03) (0.02) 〇 S' s s % CN o 〇, (0.03) (0.02) (0.01) (0.02) o, 0 gs o g" 0 /—V s e 色 ο s 〇 v〇 o ON ro 〇 o 00 (N o o g o 导 o’ 00 o o O »n o ON (N d (N i〇 o P; o o 〇 a; o 穿 o (N cn d 00 o in (N O (N 00 o & o o 00 VO d o CN o oo 00 o O 00 o 〇\ o S o v〇 〇 On <N 〇 On 〇 o o c % 00 o o 落 o OS (N d JO o 00 o δ o 00 o ON v〇 d s m ό O ON VO d d CN ON d 5 〇 VO o o 〇 P o (N 00 o yn cn d 寸 o 00 m O ON CN c> 艺 o o 穸 o m o o CO 〇s ΓΛ 〇 00 CN d CO 00 CN o 〇 5; O o m 〇 沄 o d U 0.094 0.088 0.076 0.081 0.059 0.090 0.079 0.068 0.087 0.081 0.061 0.072 0.077 0.034 1 0.124 0.077 0.085 0.087 0.065 I 0.078 0.080 鋼組成 No. < CQ U Q ω (X a X O CL 〇 C/3 H D (>】 X(N. I+0S】)/(【! κ】X ΓI+CS】)=V * * * 【ars+ol/>】+sl/ow】+o<N/【J3】+09/【!N】+o(N/3u】+o(N/cs】+oi:/【!s】+u】=E3d** 寸1/>】+寸/ow】+s/【Ju】+0w【!N】+9/【uw】+寸Z7【!s】+u】=b3u* 23 201226582 【<N<】 00 pi r- P 卜 m 卜 P; 卜 Os P Os P 卜 ο ΓΛ 卜 (Ν cn ιη ΓΛ 卜 (Ν as Ρ 簧 * §| 00 〇\\ P s <N 00 OO (N VO 卜 oo ν〇 SO νο ΓΟ δ σν SS mi SI (ΝΙ SI < (nI — — v〇l o — — — — — 一 — — — (Ν! (ν| <νΙ * Co1 菁 〇、 B Os 2 1 0.230 1 0.193 m (N 00 冃 2 00 o rs 0.191 1 0.193 1 1 0.207 I 00 寸 m (Ν 00 m (Ν (Ν ο 另 § 00 (Ν <Ν (Ν 习 £ tK s—✓ 〇 O O o o 〇 o o ο ο ο Ο ο ο Ο Ο g* Φ1 v〇 ?? I 0.412 | 〇\ m VO JO r- (N m 0.428 ON CN 寸 o 00 00 ϊ? m m m *Τ) ο (Ν Ο JO Ό OS 吞 m m in νο S u o o o o O 〇 o o ο ο ο ο ο ο ο ο ο ο ο /«—s /<—N rs N o o 〇 〇 N s 豸 g' 运 /—Ν /-Ν 穿 U o 〇 o o o o o o Ο ο ο ο ό ο ο ο ο Ο ο 〇 色 o o ο, ο ο ο 0 ο > o /*—s s o o, /<—N o /«—s s s /«—Ν S S /-"-ν /<-Ν S o, o, o ο, ο, ο, ο ό, ο, s o m s o | 0.0043 | m m m m o 00 1 0.0050 1 5 00 m S 00 ΓΛ (Ν ? 5 苕 ? o o o o o o o o Ο ο ο ο ο ο ο ο Ο ο Ο ο ο o o o o o o o o o ο ο Ο ο ο ο ο ο CN o o o o | 0.002 | s o o ΓΛ o o s o ο 1 0.003 1 1 0.002 ι 1 0.002 ι 1 0.003 ι ο ο ο ο ο ο o o o o o o o o o ο ο ο ο ο ο ο CU s o | 0.005 | | 0.003 | o S | 0.003 | g o I 0.005 I I 0.003 | | 0.003 1 s o 1 0.003 1 1 0.005 ι 1 0.005 ι 1 0.004 1 1 0.003 ι 1 0.005 1 1 0.003 ι 1 0.005 ι 1 0.005 ι 1 0.005 1 1 0.005 ι d d o o 笑 (N o o 2 二 o 2 00 1 0.0045 1 1 0.0011 1 1 0.0011 1 (Ν as 1 0.0011 1 二 CQ o 〇 O o s o o o o o ο ο Ο ο ο ο ο o o o o o o o o o o ο ο Ο ο ο ο ο < s s & s s Ol Ol s s s S S S S S S S S S S S φ«{ o o o o o ol ol o o o ο ο ο ο ο ο ο ο ο ο ο Φ p 0.016 0.012 0.013 0.015 0.021 0.013 0.013 0.015 0.014 0.001 0.055 0.011 0.014 0.013 0.015 0.014 0.012 0.014 0.014 0.014 0.014 0.027 0.015 | 0.021 0.015 I 0.015 | 0.030 0.024 I 0.001 | 0.080 0.015 0.013 1 0.012 0.018 Ι 0.022 0.032 0.024 1 0.022 1 0.029 0.023 1 0.023 0.021 2 ;l /—N S /—N rn s rn /—S S /-'ν g 8 /—Ν ΓΠ ol 0 o o 0 o ο, 0 ο 0 0 ο, S ο 0 3 /—N o g" N gv /«—s g' /—Ν /«—S g1 /—S g' /—S q S /—Ν /«—Ν U o, 0 o. o, o, Ο, 0 ο, έ ο, ο, 色 Ο, 〇 00 v〇 m irj m Os\ 00 *T) (N *〇 m 吞 艺 Os ΓΛ 妄 «η α; 寸 卜 (Ν Ο ΓΛ cn 容 o O d ol o o o o o o Ο Ο ο ο ο ο ο ο ο ο ύ CjJ SI fN On m (N (N <N »n jn VjJ ΟΝ 习 α\ 〇\ 茬 σΐ r-i o d 一 〇 〇 d o 〇 o O ο Ο Ο ο ο — ο ο Ο ο c s 00 m Os s v〇 v〇 ON Os (N ON 00 o s S ΓΛ 00 s 5; 00 ΟΝ Ον 00 α\ ΟΝ SS SS Os o o d d 〇 o o d o ο ο Ο d ο ο Ο ο ο ο Ο π oo (N 荛 m m On <N CO (N ΓΛ ΓΛ wm rn m 沄 寸 ΟΝ ΓΛ 艺 o o o o 〇 o 〇 ο ο ο ο Ο ο ο ο ο Ο u 1 0.080 I | 0.084 I I 0.079 I I 0.086 I I 0.071 I I 0.069 I I 0.089 I | 0.079 I I 0.084 I | 0.088 I I 0.080 1 1 0.090 1 1 0.078 Ι 1 0.091 I I 0.092 Ι Ι 0Ό72 Ι 1 0.086 I 1 0.085 I I 0.061 I I 0.094 Ι 1 0.088 ι 鋼組成 d > X >- N < ϊ (【>X(N. I+0S】)/(【!zl x S. 1+ns】)=v * * * 【ars+0l/【>+sl/ow】i(N/【Ju】+09/【!N】+0(N/【nu】+0<N/【uw】+0i:/【!s】+u】=E3d** H/【>+寸/ow】+s/【Ju】+0w【!z】+9/【uw】+々(N/【!s】+u】=b3u* 24 201226582 [表3] 鋼板 No. 鋼組成 No. 熱軋延及加速冷卻 軋延 加熱溫度 (°C) 板厚 (mm) 於未再結晶 溫度區域下 之軋縮Φ (%) 開始水 冷溫皮 CC) 停止水 冷溫度 (°C) 加速冷卻時 之冷卻速度 (°C/s) 實 施 例 1 A 1180 25 64 804 325 42 2 A 1170 6 70 761 420 105 3 B 1150 25 66 819 360 40 4 B 1175 9 62 750 425 71 5 C 1200 25 64 794 330 38 6 D 1165 25 63 820 370 40 7 D 1130 12 61 767 410 66 8 E 1150 25 64 809 335 41 9 E 1135 12 66 764 395 67 10 F 1160 25 66 798 405 40 11 G 1155 25 64 802 375 44 12 H 1135 25 70 799 360 37 13 I 1125 25 64 779 375 38 14 J 1180 25 65 794 410 37 15 K 1150 25 67 804 350 38 16 L 1160 25 66 787 320 41 17 M 1180 25 66 784 335 37 18 M 1145 16 69 765 365 58 比 較 例 19 N 1170 25 67 820 350 43 20 0 1175 25 68 782 360 40 21 P 1150 25 64 820 380 40 22 Q 1150 25 66 816 370 37 23 R 1150 25 66 810 375 42 24 S 1165 25 65 789 315 38 25 s 1165 25 68 792 435 43 26 T 1160 25 67 804 345 39 27 u 1160 25 62 798 330 40 28 V 1150 25 65 802 430 40 25 201226582 [表4] 比較例 鋼板 No. 鋼組成 No. 熱軋延及加速冷卻 乳延加 熱溫度 (°C) 板厚 (mm) 於未再結晶 溫度區域下 之軋縮率 (%) 開始水 冷溫度 CC) 停止水 冷溫度 CC) 加速冷卻時 之冷卻速度 CC/s) 29 V 1150 25 66 797 320 43 30 W 1150 25 66 785 410 41 31 X 1140 25 67 799 375 37 32 Y 1155 25 66 805 370 42 33 Z 1180 25 65 801 375 38 34 AA 1175 25 66 798 350 40 35 AB 1160 25 64 788 370 35 36 AC 1165 25 66 813 380 43 37 AD 1160 25 66 778 340 39 38 AE 1160 25 68 800 375 41 39 AF 1165 25 65 779 350 43 40 AG 1160 25 67 804 360 41 41 AH 1175 25 66 799 345 37 42 AI 1165 25 64 802 350 39 43 AJ 1145 25 66 789 355 40 44 AK 1155 25 66 800 405 40 45 AL 1125 25 65 785 380 37 46 AM 1160 25 67 805 440 39 47 AN 1160 25 66 799 325 38 48 AO 1130 25 66 784 435 40 49 AP 1130 25 67 769 330 38 50 D 1050 25 65 799 355 35 51 B 1170 25 63 680 360 30 52 A 1150 25 68 801 495 13 53 A 1140 25 64 798 150 41 54 A 1150 25 62 本氺 ** ** 55 A 1170 25 64 802 333 7 **軋延及放冷後,再加熱至930°C,再以40°C/s之冷卻速度冷卻至810°C〜350°C。 26 201226582 Sο'ωΛ 3寸 lsl1 f! 95 一寸 99 '"' 0rl I寸 0寸1 —Ml 86 zq s g ZL s 98 36 38 H 36 96 卜8 *6e 16 MA 寸6 s f t $ ^—i 绝hpl— $ f I 竣Kpl 浚Kpl 难KDI 逾Kpl s I f— s €"w^瑕 (00。。—) 峒碱鉍喫啣球钱 (SW) -¾ ^*2 (-) -*绥 W 恝田绽 -ΕΠ/學) 福·S黎楚驭S WTV^ios (%) -1° L- s1- 9- 9.g 1^,HM MM ΤΓ 9.11°MMMH 寸1-1ΥΓ "7Γs.g 11°寸 01 '-'01 1 到 ϋΠΐ L66 £TISI S6 ^TT/,86 3901 osl Z601 6C01 3901 8901 I" 卜卜01 0901 0601 igo1-1 lool£or 3lsll 6801 ZZQl 卜寸2 §1 e60-' βε6 I寸6 s LZ6 g£6 園 卜寸6 0 寸Z6 eg 961001 i lr~'e66Ϊ6 S6 '-'6 IS6 916 og 0£6 9£6 '-'ό" 8Z6 '-'6 寸s 6.1 MM LZ MM 8.3 IT 3'" ΓΤ FT 7T 1^,re HM HM ''3 t-£ L'Z WM 寸·ε 0'-' ~§τ TT— L.z 1·1寸 Trl 寸-1 °寸 - 寸π ~91001 u^ H 1^1 ~ZL ul8~ —Ml u6T6A ~LS "91001 yn叫6<u6Τ6ΛΙ 10011001ul6 Mrlun 「6<T6< i6< lsl 1^1ON as r** (N 5 oo oo (N 卜 m oo (N 卜 o JO ON (N o (一) 9 CN VO 〇〇o <N v〇S vq 〇〇〇s CN (N cn 00 (NV AV£> (N 〇(N (N * N®' •ϋ· ε μ 0.204 | 0.207 | I 0.196 | I 0.198 | | 0.187 | | 0.210 | 1 0.196 | 0.192 [0.206 | 0.206 I 0.185 | | 0.203 I 0.196 0.184 :0.202 1 0.193 0.189 | 0.188 ,0.209 | I 0.193 1 ! 0.192 | *裒| 0.446 | | 0.477 | | 0.442 1 1 0.473 | 1 0.481 | I 0.468 | | 0.457 | 0.463 | 0.428 1 0.468 1 0.474 1 0.464 | 0.455 | 0.538 1 | 0.366 | | 0.470 1 | 0.369 1 0.415 | 0.527 | | 0.429 | I 0.432 1 Component (% by mass) ca U 1 (0.0001) | o N 〇oso 0 oo 0 r? oo 0.0012 | os /—*N 〇0 ooso | 0.0009 1 o 0 ooo, 〇oo, S"' 〇/—N ooo /•""N 〇ooso 0 〇〇> I (o.ooi) 1 Oo, | 0.031 | (0.001) 1 gs o I 0.092 | o I 0.047 | ss 〇o, oo, soo, ! 0.062 I (0.003) o (0.002) 1 so ! (0.003) | (0.000) , (0.001) 1 (o.oon 1 | 0.0041 I | 0.0031 | | 0.0037 | | 0.0031 | | 0.0051 | | 0.00 34 | 1 0.0044 I | 0.0052 | I 0.0042 II 0.0036 | I 0.0044 | | 0.0048 | 0.0041 0.0036 | 0.0034 | I 0.0048 | | 0.0035 1 I 0.0033 | 0.0046 [0.0031 | | 0.0034 1 κη | 0.002 1 | 0.003 | | 0.001 | 0.001 | | 0.001 | I 0.002 | I 0.001 I | 0.003 | I 0.001 I | 0.001 | | 0.001 | | 0.002 | 0.003 0.001 | 0.002 | | 0.002 | | 0.001 | | 0.001 | | 0.002 | | 0.001 1 1 0.009 1 α -1 0.003 II 0.003 II 0.004 II 0.004 II 0.003 I | 0.003 I 1 0.002 II 0.004 II 0.008 II 0.003 II 0.004 II 0.002 ! | 0.001 | | 0.003 II 0.005 I | 0.004 | I 0.004 I | 0.003 | | 0.004 | 0.018 I 0.004 CQ 1 0.0009 II 0.0012 II 0.0012 II 0.0010 II 0.0012 I | 0.0011 I | 0.0009 II 0.0009 II 0.0011 II 0.0015 II 0.0010 II 0.0022 I [0.0019 | 0.0012 I 0.0011 I | 0.0012 | I 0.0011 II 0.0014 I 0.0009 I 0.0021 I 0.0015 < 1 sososogosoisoso 1 soi SOS 〇1 so SO sdisoso 1 0.015 II 0.014 I | 0.021 I | 0.011 I | 0.012 I | 0.012 I 1 0.015 II 0.009 I | 0.018 I 0.012 I 0.010 1 | 0.012 I | 0.01 | | 0.012 II 0.015 I ! 0.015 I 1 0.012 I 0.011 , 0.012 | 0.020 I 0.011 I 0.034 I 0.021 0.017 | 0.022 I 0.044 0.015] 0.035 0.016 0.028 0.027 0.021 0.021 0.035" 0.021 | 0.016 0.012 0.015 I 0.014 ,0.020 | 0.024 II 0.022 | (0.02) (0.03) /—*s SO, (0.01) (0.02) 〇g S sgo (0.01) (0.02) (0.03) (0.01) so, Q o, 〇Q g· o. s 〇 , 3 υ (0.01) (0.02) /-s (0.03) (0.02) 〇S' ss % CN o 〇, (0.03) (0.02) (0.01) (0.02) o, 0 gs o g" 0 /—V Se color ο s 〇v〇o ON ro 〇o 00 (N oogo guide o' 00 oo O »no ON (N d (N i〇o P; oo 〇a; o wear o (N cn d 00 o in ( NO (N 00 o & oo 00 VO do CN o oo 00 o O 00 o 〇\ o S ov〇〇On <N 〇On 〇ooc % 00 oo o OS (N d JO o 00 o δ o 00 o ON v〇dsm ό O ON VO dd CN ON d 5 〇VO oo 〇P o (N 00 o yn cn d inch o 00 m O ON CN c> oo oo 穸 o o CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN o 〇5; O om 〇沄od U 0.094 0.088 0.076 0.081 0.059 0.090 0.079 0.068 0.087 0.081 0.0 61 0.072 0.077 0.034 1 0.124 0.077 0.085 0.087 0.065 I 0.078 0.080 Steel composition No. < CQ U Q ω (X a X O CL 〇 C/3 H D (>] X(N. I+0S))/([! κ]X ΓI+CS】)=V * * * [ars+ol/>]+sl/ow】+o<N/[J3]+09/[! N]+o(N/3u)+o(N/cs]+oi:/[!s]+u]=E3d** inch 1>]+inch/ow】+s/[Ju]+0w [!N]+9/[uw]+inch Z7[!s]+u]=b3u* 23 201226582 [<N<] 00 pi r- P Bu m Bu P; Bu Os P Os P Bu ο ΓΛ (Ν cn ιη ΓΛ 卜 (Ν as Ρ * * P P N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 〇lo — — — — — 一 — — — (Ν! (ν| <νΙ * Co1 〇, B Os 2 1 0.230 1 0.193 m (N 00 冃2 00 o rs 0.191 1 0.193 1 1 0.207 I 00 inch) m (Ν 00 m (Ν Ν ο § 00 (Ν Ν Ν Ν Ν t t t t t t t t t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * \ m VO JO r- (N m 0.428 ON CN inch o 00 00 ϊ mm mm mm mm mm «—s /<—N rs N oo 〇〇N s 豸g' 运/-Ν/-Ν UU o 〇oooooo Ο ο ο ο ό ο ο ο ο Ο ο 〇 oo oo ο ο ο ο ο ο ο > o /*—ssoo, /<—N o /«—sss /«—Ν SS /-"-ν /<-Ν S o, o, o ο, ο, ο, ο ό, ο , somso | 0.0043 | mmmmo 00 1 0.0050 1 5 00 m S 00 ΓΛ (Ν ? 5 苕 oooooooo Ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο Soo ΓΛ ooso ο 1 0.003 1 1 0.002 ι 1 0.002 ι 1 0.003 ι ο ο ο ο ο ο ooooooooo ο ο ο ο ο ο ο ο CU so | 0.005 | | 0.003 | o S | 0.003 | go I 0.005 II 0.003 | 0.003 1 so 1 0.003 1 1 0.005 ι 1 0.005 ι 1 0.004 1 1 0.003 ι 1 0.005 1 1 0.003 ι 1 0.005 ι 1 0.005 ι 1 0.005 1 1 0.005 ι ddoo Laughter (N oo 2 2 o 2 00 1 0.0045 1 1 0.0011 1 1 0.0011 1 (Ν as 1 0.0011 1 2 CQ o 〇O osooooo ο ο Ο ο ο ο ο oooooooooo ο ο ο ο ο ο ο ο ο s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s ο ο ο ο ο ο ο ο ο ο Φ p 0.016 0.012 0.013 0.015 0.021 0.013 0.013 0.015 0.014 0.001 0.055 0.011 0.014 0.013 0.015 0.014 0.012 0.014 0.014 0.014 0.014 0.027 0.015 | 0.021 0.015 I 0.015 | 0.030 0.024 I 0.001 | 0.080 0.015 0.013 1 0.012 0.018 Ι 0.022 0.032 0.024 1 0.022 1 0.029 0.023 1 0.023 0.021 2 ;l /—NS /—N rn s rn /—SS /-'ν g 8 /—Ν ΓΠ ol 0 oo 0 o ο, 0 ο 0 0 ο, S ο 0 3 /—N o g" N gv /«—sg' /—Ν /«—S g1 /—S g' /—S q S /—Ν /«—Ν U o, 0 o. o, o, Ο, 0 ο, έ ο, ο, 色Ο, 〇00 v〇m irj m Os\ 00 *T) (N *〇m 吞艺Os ΓΛ 妄«η α; 寸卜(Ν Ο ΓΛ cn 容 o O d ol oooooo Ο Ο ο ο ο ο ο ο ο ο ύ j CjJ SI fN On m (N (N <N »n jn VjJ α α α 〇 茬 茬 ΐ ΐ ri ri O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ο cs 00 m Os sv〇v〇ON Os (N ON 00 os S ΓΛ 00 s 5; 00 ΟΝ Ον 00 α\ ΟΝ SS SS Os oodd 〇oodo ο ο Ο d ο ο Ο ο ο ο Ο π oo (N 荛mm On <N CO (N ΓΛ ΓΛ wm rn m 沄 ΟΝ oo oooo 〇o 〇ο ο ο ο Ο ο ο ο ο Ο 1 u 1 0.080 I | 0.084 II 0.079 II 0.086 II 0.071 II 0.069 II 0.089 I | 0.079 II 0.084 I | 0.088 II 0.080 1 1 0.090 1 1 0.078 Ι 1 0.091 II 0.092 Ι Ι 0Ό72 Ι 1 0.086 I 1 0.085 II 0.061 II 0.094 Ι 1 0.088 ι Steel composition d > X >- N < ϊ ([>X(N. I+0S))/([! Zl x S. 1+ns])=v * * * [ars+0l/[>+sl/ow]i(N/[Ju]+09/[!N]+0(N/[nu]+ 0<N/[uw]+0i:/[!s]+u]=E3d** H/[>+inch/ow]+s/[Ju]+0w[!z]+9/[uw] +々(N/[!s]+u]=b3u* 24 201226582 [Table 3] Steel plate No. Steel composition No. Hot rolling and accelerated cooling rolling heating temperature (°C) Thickness (mm) The rolling shrinkage Φ (%) in the crystallization temperature region starts the water cooling temperature cycle CC) Stops the water cooling temperature (°C) The cooling rate at the accelerated cooling (°C/s) Example 1 A 1180 25 64 804 325 42 2 A 1170 6 70 761 420 105 3 B 1150 25 66 819 360 40 4 B 1175 9 62 750 425 71 5 C 1200 25 64 794 330 38 6 D 1165 25 63 820 370 40 7 D 1130 12 61 767 410 66 8 E 1150 25 64 809 335 41 9 E 1135 12 66 764 395 67 10 F 1160 25 66 798 405 40 11 G 1155 25 64 802 375 44 12 H 1135 25 70 799 360 37 13 I 1125 25 64 779 375 38 14 J 1180 25 65 794 410 37 15 K 1150 25 67 804 350 38 16 L 1160 25 66 787 320 41 17 M 1180 25 66 784 335 37 18 M 1145 16 69 765 365 58 Comparative example 19 N 1170 25 67 820 350 43 20 0 1175 25 68 782 360 40 21 P 1150 25 64 820 380 40 22 Q 1150 25 66 816 370 37 23 R 1150 25 66 810 375 42 24 S 1165 25 65 789 315 38 25 s 1165 25 68 792 435 43 26 T 1160 25 67 804 345 39 27 u 1160 25 62 798 330 40 28 V 1150 25 65 802 430 40 25 201226582 [Table 4] Comparative Example Steel Plate No. Steel Composition No. Hot Rolling and Accelerated Cooling Delay Heating Temperature ( °C) Plate thickness (mm) Rolling rate in the region of non-recrystallization temperature (%) Start water cooling temperature CC) Stop water cooling temperature CC) Cooling rate CC/s during accelerated cooling 29 V 1150 25 66 797 320 43 30 W 1150 25 66 785 410 41 31 X 1140 25 67 799 375 37 32 Y 1155 25 66 805 370 42 33 Z 1180 25 65 801 375 38 34 AA 1175 25 66 798 350 40 35 AB 1160 25 64 788 370 35 36 AC 1165 25 66 813 380 43 37 AD 1160 25 66 778 340 39 38 AE 1160 25 68 800 375 41 39 AF 1165 25 65 779 350 43 40 AG 1160 25 67 804 360 41 41 AH 1175 25 66 799 345 37 42 AI 1165 25 64 802 350 39 43 AJ 1145 25 66 789 355 40 44 AK 1155 25 66 800 405 40 45 AL 1125 25 65 785 380 3 7 46 AM 1160 25 67 805 440 39 47 AN 1160 25 66 799 325 38 48 AO 1130 25 66 784 435 40 49 AP 1130 25 67 769 330 38 50 D 1050 25 65 799 355 35 51 B 1170 25 63 680 360 30 52 A 1150 25 68 801 495 13 53 A 1140 25 64 798 150 41 54 A 1150 25 62 氺 ** ** 55 A 1170 25 64 802 333 7 ** After rolling and cooling, reheat to 930 ° C, It was further cooled to 810 ° C to 350 ° C at a cooling rate of 40 ° C / s. 26 201226582 Sο'ωΛ 3 inch lsl1 f! 95 one inch 99 '"' 0rl I inch 0 inch 1 —Ml 86 zq sg ZL s 98 36 38 H 36 96 Bu 8 *6e 16 MA inch 6 sft $ ^—i Hpl— $ f I 竣Kpl 浚Kpl Hard KDI Over Kpl s I f— s €"w^瑕(00..) 峒 铋 铋 衔 衔 ( (SW) -3⁄4 ^*2 (-) -*绥W 恝田绽-ΕΠ/学) Fu·S Li Chu驭S WTV^ios (%) -1° L- s1- 9- 9.g 1^, HM MM ΤΓ 9.11°MMMH inch 1-1ΥΓ " 7Γs.g 11° inch 01 '-'01 1 to ϋΠΐ L66 £TISI S6 ^TT/,86 3901 osl Z601 6C01 3901 8901 I" Bub 01 0901 0601 igo1-1 lool£or 3lsll 6801 ZZQl Bu inch 2 §1 E60-' βε6 I inch 6 s LZ6 g£6 Yuan Bu inch 60 inch Z6 eg 961001 i lr~'e66Ϊ6 S6 '-'6 IS6 916 og 0£6 9£6 '-'ό" 8Z6 '-'6 Inch s 6.1 MM LZ MM 8.3 IT 3'" FT FT 7T 1^,re HM HM ''3 t-£ L'Z WM inch·ε 0'-' ~§τ TT- Lz 1·1 inch Tr1 inch -1 ° inch - inch π ~91001 u^ H 1^1 ~ZL ul8~ —Ml u6T6A ~LS "91001 yn is 6<u6Τ6ΛΙ 10011001ul6 Mrlun "6<T6<i6< lsl 1^1

OL· &<g6< TL· l,ol6< W 36 '"' 36 S6< £6< l,ol6< ~Y6— g6<— C6 受 S6< l,ol6< n6<— '^'6< 夸 ·°'6< s< 36 g6A N, 1^1 1^. MM ㈣ ΊΤ 叫ΤΓ ΎΓ ㈣ ΤΓΤΓ ΤΓ ΤΓ ΤΓ "^Γ K^^^^(sis-qns) W^UIE^ " f# ^ - 27 201226582 ττΜ^Μ ΰ Li 99 πie 6寸 Li 6£ 一寸 79— 0£「 ιοοι6 Tg is lsl1 寸寸 寸6 ee 9「 s 0·ω> 傘Ka__^_ 难♦ 寸'-' Γπ 傘κρι3'-' 难伞 寸1-1 途14011^11'-'g 难κριι±— 3'-' 傘Kfll£'-' f — 9'-' 傘|<0||± I I1-' I 6.g 难φ1^11I 寸'-'I L'-1 f zr1 $ £_g I t Z% t I1-1— $ e1-1 s'-'g i L'-'I f'-'g '^Kpllltfl1I l1-1 难KDI'·''1 傘咖^11I $ 傘伞^119_gXI (°°οοι/ιε)笔均 翁蹲命球域 QZ6 wr '"6 ^ττ S6 lsln6Z.6 il SSI 们601 劄 I TU 寸gl 一寸,sl '-'IQ l §1 lslQI 6寸Ql 51 ilϋ¥ΤΤodw)铡缌4^ z 寸100 Z.06 I 3 碧 寸06 澍ZM U6 loole6 LL6 目 '-'6βε63寸6 LZ6 卩6 ι00ιζ,6 们£6 (¾¾ ^«2 Γ3TT '•'ε η FT ττ 1 ''£ ^ l.e ρ 6.3 ί £.ε Π 63 — ^ ί 3Τ ΓΖ: 寸_ϋ '·'£ ζτ I 寸_3 ρ '•'e _^_ ι寸e— ο (esrv 學) WT'EuogOL· &<g6< TL· l6,lt6< W 36 '"' 36 S6<£6<l,ol6< ~Y6- g6<- C6 by S6<l,ol6<n6<- '^' 6<夸·°'6<s< 36 g6A N, 1^1 1^. MM (4) ΊΤ ΤΓ ΎΓ 四 (4) ΤΓΤΓ ΤΓ ΤΓ ΤΓ "^Γ K^^^^(sis-qns) W^UIE^ &quot f# ^ - 27 201226582 ττΜ^Μ ΰ Li 99 πie 6 inch Li 6£ One inch 79-0 0" ιοοι6 Tg is lsl1 inch inch 6 ee 9" s 0·ω> Umbrella Ka__^_ difficult ♦ inch '-' Γπ Umbrella κρι3'-' difficult umbrella inch 1-1 way 14011^11'-'g difficult κριι±-3'-' Umbrella Kfll£'-' f — 9'-' Umbrella|<0||± I I1- ' I 6.g difficult φ1^11I inch '-'I L'-1 f zr1 $ £_g I t Z% t I1-1— $ e1-1 s'-'gi L'-'I f'-' g '^Kpllltfl1I l1-1 Difficult KDI'·''1 Umbrella ^11I $ Umbrella ^119_gXI (°°οοι/ιε) Pen Weng's life ball QZ6 wr '"6 ^ττ S6 lsln6Z.6 il SSI 601 II TU inch gl one inch, sl '-'IQ l §1 lslQI 6 inch Ql 51 ilϋ¥ΤΤodw)铡缌4^ z inch 100 Z.06 I 3 Bi inch 06 澍ZM U6 loole6 LL6 目'- '6βε63 inch 6 LZ6 卩6 ι00ιζ,6 us £6 (3⁄43⁄4 ^«2 Γ3TT '•'ε η FT ττ 1 ''£ ^ le ρ 6.3 ί £.ε Π 63 — ^ ί 3Τ ΓΖ: inch _ϋ '·' £ ζτ I inch _3 ρ '•'e _^_ ι inch e- ο (esrv) WT'Euog

9e τ PIο ~JT &quot; τι 一寸一 c__s s'-'I 刻 g6&lt; I it u I '&quot;'i§ I ~W ff n g6A - '&quot;'^ I n 。6&lt; I 匁 I 36 I g6&lt; 1 ~~^ ^ g6&lt;llol6&lt; I '&quot;'I g6A I g6A 到 — IT 卜8 I 06 ^ I ^ I l,nl6&lt; 夸— LL ㈡ — 06 1 W6&lt; o'001'-'— 《6&lt; I s&lt; I ^ n I IS ς6〈 I zl TL — K 刼 - (%) E 鲦令璲趄田璲 蔬鉍i +济令镣态鉍i.9e τ PIο ~JT &quot; τι 一寸一 c__s s'-'I engraved g6&lt; I it u I '&quot;'i§ I ~W ff n g6A - '&quot;'^ I n . 6&lt; I 匁I 36 I g6&lt; 1 ~~^ ^ g6&lt;llol6&lt; I '&quot;'I g6A I g6A to - IT 卜 8 I 06 ^ I ^ I l,nl6&lt; 夸— LL (b) — 06 1 W6&lt ; o'001'-'- "6&lt; I s&lt; I ^ n I IS ς 6 < I zl TL — K 刼- (%) E 鲦 璲趄 璲趄 璲 璲 璲 + + + + + + + +

28 201226582 於鏡面研磨鋼板截面後,以硝太钱劑腐餘,以掃描式 電子顯微鏡(SEM)觀察鋼板截面之前述_部分附近。此 处4口率係3〇00倍,於25μΓηχ2〇μιη範圍 視野。藉由該觀察所得之影像測定下㈣鐵及麻^鐵的 面積,求出分別之組織分率(面積率)。又,由以與該等影像 相同之方法觀察於l/4t部分附近的鋼板之軋延方向(長度方 向)上平行的截面(L截面,於板厚中心方向上垂直之截面) 所得之影像’測定前沃斯w鐵之絲長與短轴長,以長軸 長除以短軸長求得縱橫比。此外,製作利用電解溶出鋼板 No.l〜55之預定體積之鋼板的基體材料並藉由萃取印模法 萃取雪明碳鐵之試樣,利用穿透式電子顯微鏡(TEM)觀察該 試樣,求出具有50nm以上之圓等效直徑的雪明碳鐵之個數 岔度。於測定個數時,係藉由EDX區別雪明碳鐵以外之析 出物,但鋼板No.l〜55中,幾未存在雪明碳鐵以外之5〇nm 以上的析出物。 又’ Ar3(Ar3變態點)係使用富士電波工機製之熱加工 模擬試驗裝置(THE RME CMA STOR-Z)測定,該Ar3之測定 中,將鋼(試樣)加熱至1200°C後保持10分鐘,再以2.5°C/分 冷卻’測定冷卻時之體積變化,並依據該體積變化決定Αγ3。 又,由鋼板No.l〜55取出依JIS Ζ 2201(1998)規定之ία 號抗拉試驗片,再藉由JISZ 2241(1998)規定之抗拉試驗測 定降伏強度及抗拉強度。該抗拉試驗之結果,於降伏強度 為885MPa以上,抗拉強度為950MPa以上且1130MPa以下 時,分別評價鋼板之降伏強度及抗拉強度為「合袼 29 201226582 以JIS Z 3158(1993)規定之y型熔接裂痕試驗評價鋼板 No.l〜55的熔接性。於該y型熔接裂痕試驗中,進行溫度及 濕度之調整,以入熱15kJ/cm進行二氧化碳電弧熔接,用於 評價之鋼板的板厚係25mm。該試驗結果,於未預熱(室溫 25 C )下之根部裂痕率為〇時,評價鋼板之熔接性為「合 格」。又’由可將板厚為6mm〜16mm之鋼板N〇 2、4、7、9、 18與具有類似成分之鋼板No卜3、6、8、17視為具有同樣 的熔接性,對該等鋼板No.2、4、7、9、18省略y型熔接裂 痕試驗。 又,於y型熔接裂痕試驗中,分別對2個試驗材進行相 同設定有溫度及濕度或入熱等條件的熔接,將其中丨者於熔 接後立刻作為試樣,藉由JIS Z 3118(2007)規定之氣相層析 儀法,測疋溶接金屬的擴散氫量。分析之結果,僅於擴散 氫量大於5.0ml/100g時,將剩餘之丨者試驗材用於前述熔接 性(有無裂痕)的評價試驗。 由板厚中心部朝軋延方向垂直之方向上取出JIS z 2201(1998)規定之4號沙丕試驗片,測定_4〇»c中之衝擊試驗 的吸收能,由3條試驗片之吸收能的平均值(vE_4〇)評價韌 性’ 5又疋動性之目彳示值為27J。另’對板厚⑽!^及9mm之鋼 板,取出5mm次尺寸的沙丕試驗片,設定韌性之目標值為 每lcm2的吸收能值為27J以上。 另外,表1及表2中標有底線之化學成分的量、pcm、 及A之值並未滿足本發明鋼板之組成條件。同樣地,表3及 表4中標有底線之數值並未滿足本發明之製造條件。表5及 30 201226582 表6中h有H數值縣滿足本發明鋼板之組織 、或鋼板 特性不充分。 表2中之鋼板N〇 1〜1 8 , β 18 ’均係下變韌鐵分率與麻田散鐵 分率的和(下變域分率+麻田散鐵分率)為90%以上,且下 _鐵分率為鳩以上,降伏強度、抗拉強度、降伏比、 炼接f生韋刀I·生滿足别述之目標值。此處,由為評價溶接性 而實施之y型溶接裂痕試驗中,炼接金屬中擴散氫的量於 5」〜6.〇ml/1〇〇g之範圍,可確認該範圍下不會產生炼接裂 痕。因此’被視為於二氧化碳電⑽接巾,可能於炼接施 工管理稍不充分時混人之㈣氫量為3.0〜5.Gml/1〇〇g左右 的話’因該擴散氫量較前述範圍之擴散氫量低,可知不會 產生炼接裂痕。此處,於對鋼板N。」〜18更以綱。c進行回 火時,5〇nm以上之較粗大的雪明碳鐵之個數密度增加,降 伏強度較未進行回火的情形低。又,例如,於鋼板n〇7之 製k條件中’將未再結晶溫度區域下之累積軋縮率變更成 J於60/。時,因無法於鋼中導入充分之加工應變,故強度 特性之任一者(例如,韌性)較鋼板No.7低。 相對於此,於表1及表2中以底線所示之各化學成分的 量未滿足本發明條件之鋼板N〇 19〜42中,儘管滿足本發明 之製造條件,但降伏強度、抗拉強度、熔接性、韌性中之 一者以上仍未達到目標值。 鋼板Νο·43〜49中,各化學成分之量滿足本發明的條 件然而’於Pcm之值未滿足本發明條件的鋼板ν〇.43-45 中,熔接性係不合格。同樣地,於Α之值未滿足本發明條件 31 201226582 的鋼板No.46〜47中,降伏強度係不合格。又,於pcm值與A 值均未滿足本發明條件之鋼板No.48〜49中,熔接性與降伏 強度均不合格。 於鋼板Νο·50〜55中,各化學成分之量、pcm、A之值均 滿足本發明的條件。然而,於鋼板Νο·50〜55中,製造條件 之至少任一者未滿足本發明條件。因此,於鋼板Ν〇.50〜55 中,除了鋼板之組織條件(下變韌鐵+麻田散鐵分率、下變 韌鐵分率中一者以上)未滿足本發明條件,且降伏強度、抗 拉強度'韌性中之至少一者係不合格。 另外,於鋼板Νο·54中,於軋延鋼片製造鋼板,進行放 冷後,將鋼板再加熱至930°C,再以40°C/s之冷卻速度冷卻 至810 C〜3 5 0 C的溫度區域。因此,例如,相較於鋼板 1^〇.52,鋼板他.54增加了製造成本。 產業上之可利用性 可經濟性地提供降伏強度為885Mpa以上、抗拉強度為 950MPa以上且U3〇MPa以下,且熔接性優異之高強度厚鋼 板、及其製造方法。 【圖式簡單說明】 第1圖係顯示PCm與y型熔接裂痕試驗中裂痕停止預熱 溫度之關係的圖表。 第2圖係顯示下變韌鐵之組織分率與降伏比之關係的 圖表。 第3圖係顯示A值與下變韌鐵之組織分率之關係的圖 表。 32 201226582 第4圖係顯示本發明之一實施形態的高強度鋼板之製 造方法之概略的流程圖。 【主要元件符號說明】 S1〜S3...步驟 3328 201226582 After the cross section of the steel plate was mirror-polished, the surface of the steel plate was observed by scanning electron microscopy (SEM) with a nitrite solution. The 4-port rate is 3〇00 times, and the field of view is in the range of 25μΓηχ2〇μιη. The area of (4) iron and hemp iron was measured by the image obtained by the observation, and the respective tissue fractions (area ratio) were determined. Further, an image obtained by observing a cross section parallel to the rolling direction (longitudinal direction) of the steel sheet in the vicinity of the l/4t portion in the same manner as the image is obtained (the cross section perpendicular to the center of the sheet thickness direction). Before measuring the length and short axis length of the Worth w iron, the aspect ratio is obtained by dividing the long axis length by the short axis length. Further, a base material of a steel sheet of a predetermined volume of electrolytically eluted steel sheets No. 1 to 55 was produced, and a sample of Xueming carbon iron was extracted by an extraction stamping method, and the sample was observed by a transmission electron microscope (TEM). The number of stellites having a circle equivalent diameter of 50 nm or more was determined. When the number of the samples was measured, the precipitates other than the smectite carbon were distinguished by EDX. However, in the steel sheets No. 1 to 55, precipitates of 5 〇 nm or more other than the ferritic carbon iron were not present. Further, 'Ar3 (Ar3 metamorphic point) was measured using a thermal processing simulation tester (THE RME CMA STOR-Z) of Fuji Electric Wave Mechanism. In the measurement of Ar3, steel (sample) was heated to 1200 ° C and kept 10 Minutes, then cooling at 2.5 ° C / min 'measures the volume change during cooling, and determines Α γ 3 according to the volume change. Further, the tensile test pieces of ία specified in JIS Ζ 2201 (1998) were taken out from the steel sheets No. 1 to 55, and the tensile strength and the tensile strength were measured by a tensile test prescribed in JIS Z 2241 (1998). As a result of the tensile test, when the tensile strength is 885 MPa or more and the tensile strength is 950 MPa or more and 1130 MPa or less, the tensile strength and the tensile strength of the steel sheet are respectively evaluated as "合袼29 201226582, as defined in JIS Z 3158 (1993). The y-type weld crack test was used to evaluate the weldability of the steel sheets No. 1 to 55. In the y-type weld crack test, the temperature and humidity were adjusted, and carbon dioxide arc welding was performed at a heat of 15 kJ/cm, and the steel plate for evaluation was used. The thickness was 25 mm. As a result of the test, when the root crack rate was 〇 without preheating (room temperature 25 C), the weldability of the steel sheet was evaluated as "acceptable". Further, steel sheets N〇2, 4, 7, 9, and 18 having a thickness of 6 mm to 16 mm can be regarded as having the same weldability as steel sheets No. 3, 6, 8, and 17 having similar compositions. The steel plate No. 2, 4, 7, 9, and 18 were omitted from the y-type weld crack test. Further, in the y-type weld crack test, the two test materials were respectively subjected to welding under the conditions of temperature, humidity, or heat, and the latter was used as a sample immediately after welding, by JIS Z 3118 (2007). The gas chromatograph method is prescribed to measure the amount of diffused hydrogen of the molten metal. As a result of the analysis, only when the amount of diffused hydrogen was more than 5.0 ml/100 g, the remaining test materials were used for the evaluation test of the aforementioned weldability (with or without cracks). The No. 4 satay test piece specified in JIS z 2201 (1998) was taken out from the center of the plate thickness in the direction perpendicular to the rolling direction, and the absorption energy of the impact test in _4〇»c was measured and absorbed by the three test pieces. The average value of energy (vE_4〇) is evaluated as toughness' 5 and the turbulent target value is 27J. On the other hand, for a steel plate having a thickness of (10)!^ and 9 mm, a sandpaper test piece of 5 mm order size was taken out, and the target value of the toughness was set to be 27 J or more per lcm2. Further, the amounts of the chemical components indicated in Tables 1 and 2, the values of pcm, and A did not satisfy the composition conditions of the steel sheets of the present invention. Similarly, the values marked with the bottom line in Tables 3 and 4 do not satisfy the manufacturing conditions of the present invention. Tables 5 and 30 201226582 Table 6 shows that H has a numerical value of the structure of the steel sheet of the present invention or the steel sheet is insufficient. In Table 2, the steel sheets N〇1~1 8 and β 18 ' are both the ratio of the lower tough iron fraction and the Ma Tian iron fraction (lower domain fraction + Ma Tian iron fraction) of 90% or more, and The lower _ iron fraction is above 鸠, the lodging strength, the tensile strength, the drop ratio, and the refining splicing knife I·sheng meet the target values. Here, in the y-type fusion crack test performed to evaluate the meltability, the amount of diffusible hydrogen in the refined metal is in the range of 5" to 6. 〇ml/1 〇〇g, and it is confirmed that the range does not occur in the range. Refining cracks. Therefore, it is considered to be a carbon dioxide (10) towel, which may be mixed when the refining construction management is slightly insufficient. (IV) The amount of hydrogen is about 3.0~5.Gml/1〇〇g. The amount of diffused hydrogen is low, and it is known that no cracks in the refining process occur. Here, the steel plate N is used. "~18 is more important." When c is tempered, the number density of coarser stellites above 5 〇 nm increases, and the undulation strength is lower than that in the case where tempering is not performed. Further, for example, in the condition k of the steel sheet n〇7, the cumulative rolling reduction ratio in the non-recrystallization temperature region is changed to J at 60/. In the case where sufficient processing strain cannot be introduced into the steel, any of the strength characteristics (for example, toughness) is lower than that of the steel sheet No. 7. On the other hand, in the steel sheets N〇19 to 42 which do not satisfy the conditions of the present invention in the amounts of the respective chemical components shown by the bottom line in Tables 1 and 2, although the manufacturing conditions of the present invention are satisfied, the lodging strength and the tensile strength are satisfied. One of the weldability and toughness has not yet reached the target value. In the steel sheets Νο·43 to 49, the amount of each chemical component satisfies the conditions of the present invention. However, in the steel sheet ν〇.43-45 in which the value of Pcm does not satisfy the conditions of the present invention, the weldability is unacceptable. Similarly, in the steel sheets No. 46 to 47 in which the value of the crucible did not satisfy the condition 31 201226582 of the present invention, the fall strength was unacceptable. Further, in the steel sheets No. 48 to 49 in which the pcm value and the A value did not satisfy the conditions of the present invention, the weldability and the fall strength were unacceptable. In the steel sheets Νο·50 to 55, the amounts of the respective chemical components, the values of pcm and A satisfy the conditions of the present invention. However, at least one of the manufacturing conditions in the steel sheets Νο. 50 to 55 does not satisfy the conditions of the present invention. Therefore, in the steel sheet Ν〇.50~55, in addition to the structural conditions of the steel sheet (one or more of the lower toughening iron + the maitian iron fraction and the lower toughening iron fraction), the conditions of the present invention are not satisfied, and the lodging strength, At least one of the tensile strength 'toughness is unacceptable. In addition, in the steel plate Νο·54, the steel sheet is produced on the rolled steel sheet, and after cooling, the steel sheet is further heated to 930 ° C, and then cooled to 810 C to 3 50 C at a cooling rate of 40 ° C / s. Temperature zone. Therefore, for example, compared with the steel plate 1^〇.52, the steel plate.54 increases the manufacturing cost. Industrial Applicability It is economically possible to provide a high-strength thick steel plate having a tensile strength of 885 MPa or more, a tensile strength of 950 MPa or more, and a U3 〇 MPa or less, and excellent weldability, and a method for producing the same. [Simple description of the drawing] Fig. 1 is a graph showing the relationship between the crack stop preheating temperature in the PCm and y-type weld crack test. Figure 2 is a graph showing the relationship between the tissue fraction of the lower toughened iron and the ratio of the drop. Figure 3 is a graph showing the relationship between the A value and the tissue fraction of the lower toughened iron. 32 201226582 Fig. 4 is a flow chart showing an outline of a method for producing a high-strength steel sheet according to an embodiment of the present invention. [Main component symbol description] S1~S3...Step 33

Claims (1)

201226582 七、申請專利範圍: 1. 一種高強度鋼板,其特徵在於:其化學組成以質量%計 含有: C : 0.05%以上且小於(U0%、 Si : 0.20%以上且0.50%以下、 Μη : 0.20%以上且小於1.20%、 Cr : 0·20°/。以上且 1.20%以下、 Mo : 0.20%以上且0.60%以下、 Nb : 0.010%以上且0.050%以下、 Ti : 0.005%以上且0.030%以下、 A1 : 0.01%以上且0.10%以下、 B : 0.0003%以上且0.0030%以下、 V : 0%以上且0.10%以下、 Cu : 0%以上且0·50%以下、及 Ca : 0%以上且0.0030%以下, 並限制成: Ni : 0.1%以下、 P : 0.012%以下、 S : 0.005%以下、及 N : 0.0080%以下,且 剩餘部分係由Fe及不可避免的雜質所構成,藉下述 (式1)所定義之Pcm係0.22%以下,藉下述(式2)所定義之 A係2·0以下,下變韌鐵之組織分率與麻田散鐵之組織分 率的和係90%以上,前述下變韌鐵之組織分率係70%以 34 201226582 上’前沃斯田鐵粒之縱橫比係2以上,降伏強度係 885MPa以上,抗拉強度係950MPa以上且1130MPa以下; Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/2 0+[Mo]/15+[V]/10+5x[B]· · ·(式 1) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · ·(式2) 此處,[C]、[Si]、[Μη]、[Cu]、[Ni]、[Cr]、[Mo]、 [V]、[B]分別係前述化學組成中c、Si、Mn、Cu、Ni、 Cr、Mo、V、B之質量 〇/〇。 2. 如申請專利範圍第1項之高強度鋼板’其中5〇nm以上之 雪明碳鐵的個數密度係20個/μπι3以下。 3. 如申請專利範圍第1或2項之高強度鋼板’其中板厚係 6mm以上且25mm以下。 4. 一種高強度鋼板之製造方法,其特徵在於: 將具有下述化學組成之鋼加熱至ll〇0°c以上,該化 學組成以質量%計含有: C : 0.05%以上且小於〇.1〇〇/0、 Si : 0.20%以上且0.50%以下、 Μη : 0.20%以上且小於1.20%、 Cr : 0.20%以上且1.20%以下、 Mo : 0.20%以上且0.60%以下、 Nb : 0.010%以上且0.050%以下、 Ti : 0.005%以上且0.030%以下、 A1 : 0.01%以上且〇.i〇Q/。以下、 B : 0.0003%以上且0.0030%以下、 35 201226582 V : 0%以上且0.10%以下、 Cu : 0%以上且0.50%以下、及 Ca : 0%以上且0.0030%以下, 並限制成: Ni : 0.1%以下、 P : 0.012%以下、 S : 0.005%以下、及 N : 0.0080%以下,且 剩餘部分係由Fe及不可避免的雜質所構成,藉下述 (式3)所定義之Pcm係0.22。/。以下,藉下述(式句所定義之 A係2.0以下; 於前述鋼進行熱軋延,使於未再結晶溫度區域下之 累積軋縮率為60%以上;及 於線上(on-line)以10°C/s以上之冷卻速度,將前述 鋼由Ar3以上之溫度加速冷卻至45〇。〇以下且300°C以上 之溫度,並於停止加速冷卻後放冷; Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/2 0+[Mo]/15+[V]/10+5x[B] · . ·(式3) A = ([Mn]+1.5x[Ni])/([Mo]+1.2x[V])· · ·(式4) 此處,[C]、[Si]、[Μη]、[Cu]、[Ni]、[Cr]、[Mo]、 [V]、[B]分別係前述化學組成中c、Si、Mn、Cu、Ni、 Cr、Mo、V、B之質量%。 36201226582 VII. Patent application scope: 1. A high-strength steel sheet characterized in that its chemical composition is contained in mass%: C: 0.05% or more and less than (U0%, Si: 0.20% or more and 0.50% or less, Μη: 0.20% or more and less than 1.20%, Cr: 0·20°/. or more and 1.20% or less, Mo: 0.20% or more and 0.60% or less, Nb: 0.010% or more and 0.050% or less, Ti: 0.005% or more and 0.030% Hereinafter, A1: 0.01% or more and 0.10% or less, B: 0.0003% or more and 0.0030% or less, V: 0% or more and 0.10% or less, Cu: 0% or more and 0. 50% or less, and Ca: 0% or more And 0.0030% or less, and is limited to: Ni: 0.1% or less, P: 0.012% or less, S: 0.005% or less, and N: 0.0080% or less, and the remainder is composed of Fe and unavoidable impurities. The Pcm defined by (Formula 1) is 0.22% or less, and the sum of the microstructure fraction of the lower toughened iron and the tissue fraction of the granulated iron is defined by the following A (2) of the formula (2). More than 90%, the above-mentioned lower toughening iron has a tissue fraction of 70% to 34 201226582, and the aspect ratio of the former Vostian iron particles is more than 2, The drop strength is 885 MPa or more, and the tensile strength is 950 MPa or more and 1130 MPa or less; Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/ 2 0+[Mo]/15+[V]/10+5x[B]· · · (Formula 1) A=([Mn]+1.5x[Ni])/([Mo]+1.2x[V] ) · · · (Formula 2) Here, [C], [Si], [Μη], [Cu], [Ni], [Cr], [Mo], [V], [B] are the aforementioned chemistry The mass 〇/〇 of c, Si, Mn, Cu, Ni, Cr, Mo, V, B in the composition. 2. The high-strength steel plate of the first application of the patent scope 'the sulphur carbon iron of 5 〇 nm or more The number density is 20/μπι3 or less. 3. The high-strength steel sheet according to claim 1 or 2 wherein the thickness is 6 mm or more and 25 mm or less. 4. A method for producing a high-strength steel sheet, characterized in that: The steel having the chemical composition described below is heated to ll 〇 0 ° C or more, and the chemical composition is contained in mass %: C: 0.05% or more and less than 〇〇.1 〇〇 /0, Si : 0.20% or more and 0.50% or less Μη : 0.20% or more and less than 1.20%, Cr: 0.20% or more and 1.20% or less, Mo: 0.20% or more and 0.60% or less, Nb: 0.010% or more and 0.050% or less, Ti: 0.005% or less And 0.030% or less, A1: 0.01% or more and 〇.i〇Q /. Hereinafter, B: 0.0003% or more and 0.0030% or less, 35 201226582 V: 0% or more and 0.10% or less, Cu: 0% or more and 0.50% or less, and Ca: 0% or more and 0.0030% or less, and are limited to: Ni : 0.1% or less, P: 0.012% or less, S: 0.005% or less, and N: 0.0080% or less, and the remainder is composed of Fe and unavoidable impurities, and the Pcm system defined by the following (Formula 3) 0.22. /. Hereinafter, the following is the following: (A is 2.0 or less as defined in the formula; hot rolling is performed on the steel, and the cumulative reduction ratio in the non-recrystallization temperature region is 60% or more; and on-line The steel is accelerated to a temperature of 45 C or more at a cooling rate of 10 ° C/s or more, and is cooled to a temperature of 300 ° C or more, and is cooled after stopping the accelerated cooling; Pcm = [C] + [Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/2 0+[Mo]/15+[V]/10+5x[B] · . (Formula 3) A = ([Mn]+1.5x[Ni])/([Mo]+1.2x[V]) · · (Expression 4) Here, [C], [Si], [Μη] [Cu], [Ni], [Cr], [Mo], [V], [B] are the mass % of c, Si, Mn, Cu, Ni, Cr, Mo, V, B in the above chemical composition, respectively. 36
TW100139995A 2010-11-05 2011-11-02 High-strength steel plate and producing method thereof TWI418641B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248032 2010-11-05

Publications (2)

Publication Number Publication Date
TW201226582A true TW201226582A (en) 2012-07-01
TWI418641B TWI418641B (en) 2013-12-11

Family

ID=46024518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100139995A TWI418641B (en) 2010-11-05 2011-11-02 High-strength steel plate and producing method thereof

Country Status (7)

Country Link
EP (1) EP2612945B1 (en)
JP (1) JP5037744B2 (en)
KR (1) KR101374422B1 (en)
CN (1) CN103189537B (en)
BR (1) BR112013010765B1 (en)
TW (1) TWI418641B (en)
WO (1) WO2012060405A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486460B (en) * 2012-08-21 2015-06-01 Nippon Steel & Sumitomo Metal Corp Steel
TWI507536B (en) * 2013-12-26 2015-11-11 Nippon Steel & Sumitomo Metal Corp A hot-pressed steel sheet member, a method for manufacturing the same, and a steel sheet for hot pressing
US10344351B2 (en) 2013-12-20 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
TWI724782B (en) * 2019-02-20 2021-04-11 日商Jfe鋼鐵股份有限公司 Square steel pipe and its manufacturing method, and building structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825224B2 (en) * 2012-08-20 2015-12-02 新日鐵住金株式会社 High tensile steel sheet with excellent surface arrestability and method for producing the same
JP6191268B2 (en) * 2013-06-19 2017-09-06 新日鐵住金株式会社 High yield ratio high strength hot-rolled steel sheet with less variation in strength in the coil width direction and excellent toughness, and method for producing the same
JP6582590B2 (en) * 2015-06-17 2019-10-02 日本製鉄株式会社 Steel sheet for LPG storage tank and method for producing the same
WO2018020660A1 (en) * 2016-07-29 2018-02-01 新日鐵住金株式会社 High-strength steel sheet
KR102339890B1 (en) * 2017-09-08 2021-12-15 제이에프이 스틸 가부시키가이샤 Steel plate and method of producing same
KR102164074B1 (en) * 2018-12-19 2020-10-13 주식회사 포스코 Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same
CN111979494B (en) * 2020-08-28 2021-11-12 东风商用车有限公司 Ti-containing carburizing steel for thin-wall annular gear, manufacturing method thereof and thin-wall annular gear forming method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107033B2 (en) 1987-12-26 1995-11-15 キッセイ薬品工業株式会社 Optically active 3-amino-4-cyclohexyl-2-hydroxybutyric acid hydrochloride and method for producing the same
JPH02250941A (en) * 1989-03-24 1990-10-08 Sumitomo Metal Ind Ltd Low carbon chromium-molybdenum steel and its manufacture
JP2556411B2 (en) 1992-02-25 1996-11-20 新日本製鐵株式会社 Method for producing high-strength hot-rolled steel sheet with good workability and weldability
JPH06158160A (en) 1992-11-19 1994-06-07 Sumitomo Metal Ind Ltd Production of high tensile strength heat treated steel excellent in cost effectiveness
JPH08269546A (en) 1995-03-30 1996-10-15 Nippon Steel Corp Production of ultrahigh strength steel plate remarkably excellent in toughness at low temperature
JPH08269542A (en) 1995-03-27 1996-10-15 Nippon Steel Corp Production of high tensile strength steel plate of 950n/mm2 class or above, excellent in weldability
JPH10237583A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP3499705B2 (en) 1997-03-26 2004-02-23 株式会社神戸製鋼所 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JP3387371B2 (en) 1997-07-18 2003-03-17 住友金属工業株式会社 High tensile steel excellent in arrestability and weldability and manufacturing method
JP3812108B2 (en) * 1997-12-12 2006-08-23 住友金属工業株式会社 High-strength steel with excellent center characteristics and method for producing the same
JP3344308B2 (en) * 1998-02-09 2002-11-11 住友金属工業株式会社 Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP3885691B2 (en) 2002-08-27 2007-02-21 Jfeスチール株式会社 Manufacturing method of non-tempered thick steel plate exceeding 980 MPa
RU2331698C2 (en) * 2003-12-19 2008-08-20 Ниппон Стил Корпорейшн Steel sheets for ultrahigh-strength header pipes and ultrahigh-strength header pipes possessing excellent low temperature impact resistance and methods of their fabrication
CN100434562C (en) * 2005-11-30 2008-11-19 鞍钢股份有限公司 Chromium-containing high-strength pipeline steel hot-rolled plate
JP4502947B2 (en) * 2005-12-27 2010-07-14 株式会社神戸製鋼所 Steel plate with excellent weldability
JP4969915B2 (en) * 2006-05-24 2012-07-04 新日本製鐵株式会社 Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP4848966B2 (en) 2007-01-29 2011-12-28 住友金属工業株式会社 Thick-wall high-tensile steel plate and manufacturing method thereof
JP4410836B2 (en) * 2008-04-09 2010-02-03 新日本製鐵株式会社 Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
JP5176885B2 (en) * 2008-11-10 2013-04-03 新日鐵住金株式会社 Steel material and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486460B (en) * 2012-08-21 2015-06-01 Nippon Steel & Sumitomo Metal Corp Steel
US9994942B2 (en) 2012-08-21 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel material
US10344351B2 (en) 2013-12-20 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
TWI507536B (en) * 2013-12-26 2015-11-11 Nippon Steel & Sumitomo Metal Corp A hot-pressed steel sheet member, a method for manufacturing the same, and a steel sheet for hot pressing
TWI724782B (en) * 2019-02-20 2021-04-11 日商Jfe鋼鐵股份有限公司 Square steel pipe and its manufacturing method, and building structure

Also Published As

Publication number Publication date
CN103189537A (en) 2013-07-03
KR101374422B1 (en) 2014-03-17
CN103189537B (en) 2016-01-20
KR20130051518A (en) 2013-05-20
TWI418641B (en) 2013-12-11
EP2612945B1 (en) 2014-04-16
EP2612945A1 (en) 2013-07-10
EP2612945A4 (en) 2013-07-24
BR112013010765A2 (en) 2018-05-02
JP5037744B2 (en) 2012-10-03
WO2012060405A1 (en) 2012-05-10
BR112013010765B1 (en) 2018-12-18
JPWO2012060405A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
TW201226582A (en) High-strength steel plate and producing method thereof
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
KR101512257B1 (en) Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP5729803B2 (en) High-tensile steel plate and manufacturing method thereof
JP2008308736A (en) Low-yield-ratio and high-strength thick steel plate superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP2007177266A (en) Low-yield-ratio high-strength thick steel plate and manufacturing method
JP5031531B2 (en) Low yield ratio high strength steel sheet excellent in base metal low temperature toughness and HAZ low temperature toughness and its manufacturing method
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP6811854B2 (en) Cold-rolled steel sheet for flux-cored wire and its manufacturing method
JP5201301B1 (en) Steel for welding
JP2007051321A (en) 490 MPa CLASS THICK HIGH-TENSILE STRENGTH FIRE-RESISTANT STEEL FOR WELDED STRUCTURE HAVING EXCELLENT WELDABILITY AND GAS CUTTING PROPERTY, AND ITS MANUFACTURING METHOD
JP5157257B2 (en) Low yield ratio steel sheet
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP5287553B2 (en) Non-tempered high-tensile steel plate with yield strength of 885 MPa or more and method for producing the same
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP2010111924A (en) Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP6056236B2 (en) Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more
JP4656416B2 (en) Refractory steel with excellent weldability
JP2009287081A (en) High-tension steel and producing method therefor
JP2006283187A (en) Production method of high-strength/high-toughness steel
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees