TW201224043A - Resin composition, liquid crystal alignment material and retardation material - Google Patents

Resin composition, liquid crystal alignment material and retardation material Download PDF

Info

Publication number
TW201224043A
TW201224043A TW100127999A TW100127999A TW201224043A TW 201224043 A TW201224043 A TW 201224043A TW 100127999 A TW100127999 A TW 100127999A TW 100127999 A TW100127999 A TW 100127999A TW 201224043 A TW201224043 A TW 201224043A
Authority
TW
Taiwan
Prior art keywords
component
resin composition
group
film
liquid crystal
Prior art date
Application number
TW100127999A
Other languages
Chinese (zh)
Other versions
TWI535773B (en
Inventor
Isao Adachi
Tadashi Hatanaka
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201224043A publication Critical patent/TW201224043A/en
Application granted granted Critical
Publication of TWI535773B publication Critical patent/TWI535773B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a resin composition which has high birefringence, strong solvent resistance and heat resistance, and high transparency, and which makes it is possible to orientate polymeric liquid crystal with a high degree of sensitivity after thermosetting using photo-orientation technology. A resin composition comprising: (A) an acrylic copolymer having photo-dimerization sites comprising hydrophobic groups and thermo-crosslinking sites comprising hydrophilic groups; (B) a polyimide precursor having aromatic ring sites; and (C) a crosslinking agent for crosslinking components (A) and (B). Component (A) can also be: an acrylic copolymer obtained by polymerization of a monomer mixture including a monomer having photo-dimerization sites and a monomer having thermo-crosslinking sites; an acrylic copolymer obtained by polymerization of a monomer mixture including between 25 and 90 mol% of a monomer having photo-dimerization sites, per total amount of the entire monomer mixture; or an acrylic copolymer obtained by polymerization of a monomer including a monomer having photo-dimerization sites and a monomer having thermo-crosslinking sites.

Description

201224043 六、發明說明: 【發明所屬之技術領域】 本發明爲有關樹脂組成物、液晶配向材料及相位差材 料之發明。 【先前技術】 目前爲止,以補償液晶顯示器之視角爲目的時,多以 於液晶晶元之外部配置相位差薄膜之方式進行。此情形中 ,相位差薄膜之種類則因液晶顯示器中液晶之顯示模式而 有所差異。 例如,VA模式液晶顯示器之情·形,爲單獨使用薄膜 之面內X及y方向以及厚度方向等3方向之折射率相異之 二軸偏光板(plate)作爲相位差薄膜,或,將單軸延伸所 製作之正A偏光板與負C偏光板組合作爲相位差薄膜之 方式作爲視角之補償。前者爲使用二軸延伸所製作者,後 者爲單軸延伸所製作者。其中,使偏光板之薄膜面內X及 y方向之折射率作爲nx及ny,厚度方向之折射率作爲nz 之情形,正A偏光板爲具有nx>ny=nz之特性的相位差 薄膜。又,負C偏光板爲具有nx=ny>nz之特性的相位 差薄膜。 又’近年來’已就於液晶顯示器之液晶晶元內導入相 位差材料以達到高反差化、低費用化或輕量化等目的而進 行各種硏究。隨後,則有形成該些相位差材料而使用聚合 性液晶溶液之提案。具體而言,爲將聚合性液晶溶液塗佈 -5- 201224043 於液晶晶元內之適當部位,進行所期待之配向後,再經光 硬化而形成相位差材料。 正A偏光板之情形中,爲使用顯示水平配向性之聚 合性液晶。又,負C偏光板之情形中,爲使用顯示膽固醇 (Cholesteric )配向或盤形(Discotic )配向性之聚合性 液晶。此外,二軸偏光板之情形中,爲顯示二軸配向性之 聚合性液晶。因此,將具有二軸相位差之相位差材料導入 液晶晶元內時,必須將顯示二軸配向性之聚合性液晶,或 ,顯示膽固醇配向性之聚合性液晶與顯示水平配向性之聚 合性液晶層合使用。 但是,顯示二軸配向性之聚合性液晶,已知其不容易 形成厚膜化,目前尙未發現可顯示出必要之相位差特性的 材料。又,層合顯示膽固醇配向性之聚合性液晶與顯示水 平配向性之聚合性液晶之情形,將會造成製造步驟複雜化 ,而會有增大製造費用或降低產率等問題。 圖2爲,使用以往技術形成液晶配向膜之液晶晶元的 模式構成圖。該圖中,液晶層208爲被挾夾於2片之基板 201、211之間。於基板211上,形成ITO 210與配向膜 209。又,基板201上,依序形成濾光膜202,與濾光膜 (CF)之保護膜(Overcoat)(以下亦稱爲CF保護膜) 203,與配向膜204,與相位差材料205,與ITO 206,與 配向膜207。 以往之液晶晶元中,爲形成上述相位差材料而必須於 聚合性液晶硬化前形成配向,故其下層需具有可使液晶進 -6- 201224043 行配向之膜,即,必須另外設置配向膜。配向膜爲經由摩 擦處理或偏光照射等步驟而形成。即,如圖2所示般,以 往爲於CF保護膜2 03上,形成配向膜2 04之膜後,於其 上再形成由液晶單體等聚合性液晶所得之相位差材料205 爲一般之常用方法。即,形成濾光膜2 02之後,必須再層 合CF保護膜2 03與配向膜2 04之2個層之方式予以形成 ,而造成製造步驟複雜化。 基於上述需求,目前極需要提供一種可以同時滿足不 同需求特性之膜,及形成其之材料。具體而言,例如尋求 可兼顧配向膜與CF保護膜之膜,與形成該膜之材料。如 此,液晶顯示器於製造上,可享受到低費用化、消減製程 數、提高產率等龐大的優點。 又,對於兼具配向膜與CF保護膜之膜,則要求其可 縮短配向處理所需之時間。但,於配向膜之製造步驟中, 則必須使用於光配向技術。因此,兼具配向膜與CF保護 膜之膜,則強力需求其可使用光配向性之材料作爲構成內 容。 此外,兼具配向膜與CF保護膜之膜中,亦要求具有 更大之雙折射率。增大雙折射率時,則可賦予負C偏光板 之特性。又,具備高雙折射特性時,可使層合於其上之二 軸配向性聚合性液晶之膜厚度薄化,此外,僅塗佈水平配 向性聚合性液晶時,亦可得到二軸特性。 —般而言,CF保護膜中,爲使用具有高透明性之丙 烯酸樹脂。隨後,經由熱或光使丙烯酸樹脂硬化時,可產 201224043 生耐熱性或耐溶劑性(例如,專利文獻1或2)。 但是,經由本發明者們之硏究得知,以往之由 性或光硬化性之丙烯酸樹脂所構成之CF保護膜雖 透明性或耐溶劑性之物,但其即使照射偏光UV時 法得到充分之液晶配向性。因此確認以往之CF保 未加工下,則無法適用於上述兼具配向膜與CF保 膜。 又,已知有使用具有聯苯基骨架之四羧酸二酐 脂環結構之二胺所形成之聚醯胺酸,可得到高透明 高雙折射率之聚醯胺酸之報告(專利文獻3)。但 聚醯胺酸即使偏光照射時,也無法得到充分之液晶 。即,該些高折射率之聚醯胺酸於未加工下,則無 於上述兼具配向膜與CF保護膜之膜。 又,亦有提出側鏈具有桂皮醯基或査耳酮基等 化部位之丙烯酸樹脂,於照射偏光UV時,可得到 液晶配向性之報告(專利文獻4)。但是,依本發 之硏究得知,即使使通常之顯示器用液晶進行配向 射充分之偏光UV曝光量(例如100m〗/cm2 )時, 充分賦予上述兼具配向膜與CF保護膜之膜的機能 而言,例如對前述丙烯酸樹脂照射偏光UV後,再 塗佈聚合性液晶溶液之情形,則會降低對丙烯酸樹 之耐性,而使下層之丙烯酸樹脂之膜溶解。因此, 合性液晶而言,也無法得到充分之配向性。 又,經由1 J/cm2以上之大量的偏光UV曝光量 熱硬化 可得到 ,也無 護膜於 護膜之 與具有 且具有 是,該 配向性 法適用 光二聚 充分之 明者們 ,再照 仍無法 。具體 於其上 脂溶液 對於聚 時,亦 -8- 201224043 可提高上述丙烯酸樹脂中的光二聚化反應之反應率》因此 ,增大曝光量對於提高聚合性液晶之配向性仍有其可能性 。但是,爲進行各種配向處理之目的,而對以縮短時間爲 目的而進行光配向技術之硏究時,得知伴隨曝光時間之長 時間化,曝光量之增大仍有其一定之限度。 此外,依本發明者們之硏究結果,得知即使提高反應 率,僅進行以產生液晶配向性爲目的之光二聚化反應時, 仍未能充分進行交聯反應,而無法實現膜所應具有之充分 之耐熱性。即,確認由上述丙烯酸樹脂所形成之膜,於提 高反應率時,在以製造液晶晶元爲目的所進行之加熱處理 時,將會引起極大之膜收縮。 [先前技術文獻] [專利文獻] [專利文獻1]特開2000- 1 0393 7號公報 [專利文獻2]特開2000-1 1 9472號公報 [專利文獻3] W02008010483A1號公報 [專利文獻4]特許40 1 1 652號 【發明內容】 本發明即爲基於以上見解與硏究所提出之發明。即, 本發明之目的爲利用光配向技術,使熱硬化後形成高感度 之聚合性液晶形成配向,又,提供一種具有高雙折射率、 高耐溶劑性、耐熱性及高透明性之樹脂組成物。 -9 - 201224043 本發明之其他目的及優點,可由以下述載而明確得知 〇 本發明之第1之態樣爲,一種樹脂組成物,其特徵爲 含有 (A) 具有由疏水性基所形成之光二聚化部位與由親 水性基所形成之熱交聯部位之丙烯酸共聚物,與 (B) 具有芳香環部位之聚醯亞胺前驅物,與 (C) 使(A)成分與(B)成分交聯之交聯劑。 本發明之第1之態樣中,(A)成分,以含有具有光 二聚化部位之單體與具有熱交聯部位之單體的單體混合物 經聚合反應所得之丙烯酸共聚物爲佳。 本發明之第1之態樣中,(A)成分,相對於全單體 混合物之合計量,以含有25莫耳%至90莫耳%之具有光 二聚化部位之單體的單體混合物經聚合反應所得之丙烯酸 共聚物爲佳。 本發明之第1之態樣中,(A )成分之光二聚化部位 以桂皮醯基爲佳。 本發明之第1之態樣中,(A )成分之熱交聯部位以 羥基或羧基爲佳。 本發明之第1之態樣中,(B)成分之聚醯亞胺前驅 物以主鏈具有聯苯基結構爲佳。 本發明之第1之態樣中,(B)成分,以含有四羧酸 二酐與二胺化合物經共聚反應所得之結構單位之聚醯亞胺 前驅物’且四羧酸二酐及二胺化合物之至少一者爲具有聯 -10- 201224043 苯基結構者爲佳。 本發明之第1之態樣中,四羧酸二酐以聯苯基四羧酸 二酐爲佳。 本發明之第1之態樣中,(B )成分以結構單位具有 三氟甲基之聚醯亞胺前驅物爲佳。 本發明之第1之態樣中,(B )成分之聚醯亞胺前驅 物以主鏈具有脂環結構者爲佳。 本發明之第1之態樣中,(B)成分以含有四羧酸二 酐與二胺化合物經共聚反應所得之結構單位之聚醯亞胺前 驅物,且四羧酸二酐及二胺化合物之至少一者爲具有脂環 結構者爲佳。 本發明之第1之態樣中,(C )成分之交聯劑以具有 羥甲基或丨完氧基羥甲基之交聯劑爲佳。 本發明之第1之態樣中,以(A )成分與(B )成分 之合計量100質量份爲基準,以含有10至1〇〇質量份之 (C)成分爲佳。 本發_之第1之態樣中,以再含有(D )成分之酸或 熱酸發生劑者爲佳。 本發明之第1之態樣中,以(A )成分與(B )成分 之合計量100質量份爲基準,以含有0.1至1〇質量份之 (D )成分爲佳。 本發明之第2之態樣爲,有關使用本發明之第〗之態 樣的樹脂組成物爲特徵所得到之液晶配向材料。 本發明之第3之態樣爲,有關使用本發明之第1之態 -11 - 201224043 樣之樹脂組成物所得之硬化膜爲特徵所形成之相位差材料 [發明之效果] 本發明之第1之態樣之樹脂組成物,可得到除具有高 雙折射率、高透明性、高耐溶劑性及高耐熱性以外,亦可 形成液晶之光配向的硬化膜。 依本發明之第2之態樣時,可得到具有高雙折射率, 且爲優良之光透過性、耐溶劑性及配向性的液晶配向材料 〇 依本發明之第3之態樣時,可得到對液晶晶元內進行 配置之相位差材料。使用該相位差材料之液晶晶元,可提 高其反差比。 本發明爲有關樹脂組成物,與使用該樹脂組成物所形 成之液晶配向材料,與使用該樹脂組成物所得之硬化膜所 形成之相位差材料之發明。更詳言之,爲有關可形成具有 高雙折射率,與高透明性,與液晶配向能,與高输溶劑性 ,與耐熱性之硬化膜的樹脂組成物,與使用該樹脂組成物 所形成之液晶配向材料,與使用該液晶配向材料所形成之 相位差材料之發明。本發明之樹脂組成物,適合作爲液晶 顯示器中,具有作爲CF保護膜之機能的膜,又,對以形 成相位差層爲目的聚合性液晶具有配向機能,故也適合用 於形成內置相位差層。 以下,將列舉具體例示詳細說明本發明之樹脂組成物 -12- 201224043 、液晶配向材料及相位差材料。 本實施形態之樹脂組成物,爲形成具有光配向性之熱 硬化膜爲目的之樹脂組成物,即爲光配向性熱硬化膜形成 用之樹脂組成物之意。又,具有光配向性之熱硬化膜係指 ,經由加熱而硬化,受到偏光曝光而引發液晶之配向性能 的硬化膜之意。 本實施形態之樹脂組成物爲含有,(A )成分之具有 光二聚化部位及熱交聯部位之丙烯酸共聚物,與(B)成 分之聚醯亞胺前驅物,與(C)成分之交聯劑。 更具體而言,(A)成分中,丙烯酸共聚物之光二聚 化部位爲由疏水性基所形成,丙烯酸共聚物之熱交聯部位 爲由親水性基所形成。又,(B)成分之聚醯亞胺前驅物 爲具有芳香環部位者。此外,(C )成分之交聯劑爲,可 使(A)成分與(B)成分交聯之成份。 即,本實施形態之樹脂組成物爲含有, (A )具有疏水性基所形成之光二聚化部位,與親水 性基所形成之熱交聯部位之丙烯酸共聚物,與 (B) 具有芳香環部位之聚醯亞胺前驅物,與 (C) 使(A)成分與(B)成分交聯之交聯劑 所構成者。 此外,本實施形態之樹脂組成物,除(A )成分、( B)成分及(C)成分以外,可再含有(D)成分之酸或光 酸發生劑,及/或,(E)成分之增感劑。 本實施形態之樹脂組成物中,含有(A )成分時,對 -13- 201224043 於使用該樹脂組成物所得之硬化膜,經由光配向處理可賦 予液晶配向性能。即,(A)成分之丙烯酸共聚物,於具 有疏水性基所形成之光二聚化部位與親水性基所形成之熱 交聯部位時,經由塗佈後之加熱,可於後述熱交聯部位進 行熱交聯反應而硬化。此時,疏水性基所形成之光二聚化 部位除存在於硬化膜之表面附近以外,亦以突出於表面之 自由狀態下存在。以該狀態爲基礎時,經由偏光UV曝光 等而進行光二聚化反應時,可於硬化膜之表面附近產生優 良之液晶配向性能。因此,硬化膜上塗佈聚合性液晶時, 會造成高疏水性之聚合性液晶,與由丙烯酸共聚物之疏水 性基所形成之光二聚化部位有效率地進行相互作用,而可 實現高感度之液晶配向。 又,(A)成分具有熱交聯部位。該熱交聯部位可爲 由親水性基所形成者,如此,可與後述(C )成分之交聯 劑之間,產生有效率的熱交聯反應。其結果,除光二聚化 部位以外,亦可經由熱反應而導入交聯化部位,而增大交 聯部位之數目。因此,經由於硬化膜上塗佈聚合性液晶溶 液,即可防止硬化膜之溶解。又,於液晶晶元之製造步驟 中的加熱環境下,亦可抑制硬化膜產生熱收縮現象。 又,本實施形態之樹脂組成物,於含有(B )成分時 ,可調整使用該樹脂組成物所得之硬化膜的雙折射性。即 ,(B)成分之聚醯亞胺前驅物,經由熱反應而形成聚醯 亞胺而構成硬化膜,該聚醯亞胺前驅物之主鏈上於選擇包 含苯環結構或聯苯結構等之分子結構時,則可對硬化膜賦 -14- 201224043 予高雙折射性。 又,此時,仍會有硬化膜之光透過性,即透明性降低 之疑慮,其經由選擇構成聚醯亞胺前驅物之化合物的分子 結構時,則可抑制透過率之降低。例如,構成聚醯亞胺前 驅物之化合物,於選擇具有脂環結構之化合物時,則可賦 予硬化膜高透明性。即,經由適當設計聚醯亞胺前驅物之 分子結構結果,則對硬化膜可同時賦予高雙折射性與高透 明性等二者。 此外,本實施形態之樹脂組成物,因含有(C )成分 ,故對於使用該樹脂組成物所得之硬化膜,可經由熱反應 而導入交聯部位。即,如上所述般,與(A )成分之間, (C)成分會產生熱交聯反應。又,與(B)成分之間, 該聚醯亞胺前驅物所具有之羧基與(C)成分之間會產生 交聯反應。 經調整聚醯亞胺前驅物中之羧基含量時,可控制(B )成分與(C)成分之間的交聯反應,進而可控制(A) 成分與(C )成分之間的交聯反應。其結果,於樹脂組成 物所得之硬化膜全體中,經由熱反應則可實現有效率的交 聯反應,經由導入交聯部位而可形成強固之硬化膜。 以下,將對(A)至(C)成分作詳細之說明, < (A )成分> 本實施形態之(A)成分爲具有光二聚化部位及熱交 聯部位之丙烯酸共聚物。(A)成分之丙烯酸共聚物之光 -15- 201224043 二聚化部位爲由疏水性基所形成,熱交聯部位爲由親水性 基所形成。以下,將列舉具體例示說明該些內容。 本實施形態中,丙烯酸共聚物爲使用由具有丙烯酸酯 、甲基丙烯酸酯、苯乙烯等不飽和雙鍵之單體經聚合所得 之共聚物。 (A)成分之具有光二聚化部位及熱交聯部位之丙烯 酸共聚物(以下,亦稱爲特定共聚物),只要爲具有該結 構之丙烯酸共聚物即可,又,構成丙烯酸共聚物之高分子 的主鏈之骨架及側鏈之種類等,並未有特別限定。 光二聚化部位爲,經由光照射而生成二聚物之部位, 其具體例如,桂皮醯基、查耳酮基、異丙苯基、蒽基等。 該些之中,又以於可見光區域具有高透明性,與具有光二 聚化反應性之桂皮醯基爲佳。特佳之桂皮醯基的部分結構 例如下述式〔A1〕與式〔A2〕所示。 [化1]201224043 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a resin composition, a liquid crystal alignment material, and a phase difference material. [Prior Art] For the purpose of compensating the viewing angle of the liquid crystal display, a retardation film is often disposed outside the liquid crystal cell. In this case, the type of the retardation film differs depending on the display mode of the liquid crystal in the liquid crystal display. For example, the shape of the VA mode liquid crystal display is a two-axis polarizing plate in which the refractive indices of the three directions, such as the in-plane X and y directions and the thickness direction of the film, are different as a retardation film, or The combination of the positive A polarizing plate and the negative C polarizing plate produced by the axial extension as a phase difference film serves as a compensation for the viewing angle. The former is produced by using a two-axis extension, and the latter is produced by a single-axis extension. Here, the refractive index in the X and y directions in the plane of the film of the polarizing plate is taken as nx and ny, and the refractive index in the thickness direction is taken as nz. The positive A polarizing plate is a retardation film having the characteristics of nx > ny = nz. Further, the negative C polarizing plate is a retardation film having the characteristics of nx = ny > nz. Further, in recent years, various phase studies have been conducted for the purpose of introducing a phase difference material into a liquid crystal cell of a liquid crystal display to achieve high contrast, low cost, or light weight. Subsequently, there is a proposal to form a phase difference material and use a polymerizable liquid crystal solution. Specifically, the polymerizable liquid crystal solution is coated with an appropriate portion in the liquid crystal cell of -5-201224043, and the desired alignment is performed, followed by photocuring to form a phase difference material. In the case of a positive A polarizing plate, a polymer liquid crystal exhibiting horizontal alignment is used. Further, in the case of a negative C polarizing plate, a polymerizable liquid crystal exhibiting a Cholesteric alignment or a discotic alignment property is used. Further, in the case of the biaxial polarizing plate, it is a polymerizable liquid crystal which exhibits biaxial alignment. Therefore, when introducing a phase difference material having a two-axis phase difference into a liquid crystal cell, it is necessary to display a polymerizable liquid crystal having biaxial alignment properties, or a polymerizable liquid crystal exhibiting cholesterol alignment property and a polymerizable liquid crystal exhibiting horizontal alignment. Laminated for use. However, it has been known that a polymerizable liquid crystal having a biaxial alignment property is not easily formed into a thick film, and a material which exhibits a necessary phase difference characteristic has not been found. Further, in the case of laminating a polymerizable liquid crystal exhibiting cholesterol alignment and a polymerizable liquid crystal exhibiting horizontal alignment, the manufacturing steps are complicated, and there are problems such as an increase in manufacturing cost or a decrease in productivity. Fig. 2 is a view showing a mode configuration of a liquid crystal cell in which a liquid crystal alignment film is formed by a conventional technique. In the figure, the liquid crystal layer 208 is sandwiched between two substrates 201, 211. On the substrate 211, an ITO 210 and an alignment film 209 are formed. Further, on the substrate 201, a filter film 202, an overcoat (hereinafter also referred to as CF protective film) 203 of the filter film (CF), an alignment film 204, and a phase difference material 205 are formed. ITO 206, and alignment film 207. In the conventional liquid crystal cell, in order to form the phase difference material, it is necessary to form an alignment before the polymerizable liquid crystal is cured. Therefore, the lower layer needs to have a film which can align the liquid crystal into -6-201224043, that is, an alignment film must be separately provided. The alignment film is formed by a step such as rubbing treatment or polarized light irradiation. In other words, as shown in Fig. 2, a film of the alignment film 404 is formed on the CF protective film 203, and a phase difference material 205 obtained by polymerizing a liquid crystal such as a liquid crystal monomer is formed thereon. Common methods. That is, after the filter film 022 is formed, it is necessary to form the two layers of the CF protective film 203 and the alignment film 404, which complicates the manufacturing steps. Based on the above needs, it is highly desirable to provide a film that can simultaneously satisfy different demand characteristics, and a material that forms the same. Specifically, for example, a film which can balance both the alignment film and the CF protective film and a material which forms the film are sought. As a result, the liquid crystal display can enjoy a large advantage such as low cost, reduced number of processes, and improved productivity. Further, for a film having both an alignment film and a CF protective film, it is required to shorten the time required for the alignment treatment. However, in the manufacturing step of the alignment film, it is necessary to use it in the photoalignment technique. Therefore, in the case of a film having both an alignment film and a CF protective film, a material which can use photoalignment is strongly required as a constituent content. Further, in the film having both the alignment film and the CF protective film, a larger birefringence is also required. When the birefringence is increased, the characteristics of the negative C polarizing plate can be imparted. Further, when the birefringence property is high, the film thickness of the biaxially oriented polymerizable liquid crystal laminated thereon can be made thinner, and when only the horizontally oriented polymerizable liquid crystal is applied, the biaxial characteristics can be obtained. In general, in the CF protective film, an acrylic resin having high transparency is used. Then, when the acrylic resin is cured by heat or light, heat resistance or solvent resistance can be produced in 201224043 (for example, Patent Document 1 or 2). However, it has been found by the inventors of the present invention that the CF protective film composed of the conventional or photocurable acrylic resin is transparent or solvent-resistant, but it is sufficiently obtained even when irradiated with polarized UV. Liquid crystal alignment. Therefore, it has not been confirmed that the conventional CF is not processed, and it is not applicable to the above-mentioned alignment film and CF film. Further, a polylysine formed by using a diamine having a tetracarboxylic dianhydride alicyclic structure having a biphenyl skeleton is known, and a report of a highly transparent high birefringence polyamine can be obtained (Patent Document 3) ). However, poly-proline cannot obtain sufficient liquid crystal even when it is irradiated with polarized light. That is, when the high refractive index polyamic acid is not processed, the film having both the alignment film and the CF protective film is not used. Further, an acrylic resin having a cassia sulfhydryl group or a chalcone group-like moiety in the side chain has been proposed, and when the polarized UV is irradiated, a liquid crystal alignment property is reported (Patent Document 4). However, according to the results of the present invention, it is known that the film having the alignment film and the CF protective film is sufficiently provided even when the normal display liquid crystal is used to sufficiently align the amount of polarized UV exposure (for example, 100 m/cm 2 ). In the case of the function, for example, when the polarizing UV is applied to the acrylic resin and the polymerizable liquid crystal solution is applied, the resistance to the acrylic tree is lowered, and the film of the lower acrylic resin is dissolved. Therefore, in the case of a compliant liquid crystal, sufficient alignment property cannot be obtained. Moreover, it can be obtained by a large amount of polarized UV exposure amount of 1 J/cm 2 or more, and there is no protective film on the film, and the alignment method is suitable for the photodimerization. No. Specifically, when the fat solution is used for polymerization, -8-201224043 can increase the reaction rate of the photodimerization reaction in the above acrylic resin. Therefore, it is still possible to increase the exposure amount to improve the alignment of the polymerizable liquid crystal. However, in order to carry out various alignment processing, it is known that the optical alignment technique is performed for the purpose of shortening the time, and it is known that the exposure amount is increased for a long period of time, and the exposure amount is still limited. Further, according to the results of the investigation by the present inventors, it has been found that even when the photodimerization reaction for the purpose of generating liquid crystal alignment is performed even if the reaction rate is increased, the crosslinking reaction is not sufficiently performed, and the film cannot be obtained. It has sufficient heat resistance. In other words, when the film formed of the above acrylic resin is used, when the reaction rate is increased, the film shrinkage is caused to a large extent in the heat treatment for the purpose of producing a liquid crystal cell. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2000- 1 0393 (Patent Document 2) JP-A-2000-1 1 9472 (Patent Document 3) WO 0208010483 A1 (Patent Document 4) LICENSE 40 1 1 652 [ SUMMARY OF THE INVENTION] The present invention is an invention based on the above findings and studies. That is, the object of the present invention is to form a high-sensitivity polymerizable liquid crystal to form an alignment by thermal alignment using a photo-alignment technique, and to provide a resin composition having high birefringence, high solvent resistance, heat resistance, and high transparency. Things. -9 - 201224043 Other objects and advantages of the present invention can be clearly understood from the following description. A first aspect of the present invention is a resin composition characterized in that (A) has a hydrophobic group. An acrylic copolymer of a photodimerization site and a thermal crosslinking site formed by a hydrophilic group, and (B) a polyfluorene precursor having an aromatic ring moiety, and (C) a component (A) and (B) a cross-linking agent cross-linking. In the first aspect of the invention, the component (A) is preferably an acrylic copolymer obtained by polymerization of a monomer mixture containing a monomer having a photodimerization site and a monomer having a thermal crosslinking site. In the first aspect of the present invention, the component (A) is a monomer mixture containing 25 to 20 mol% of a monomer having a photodimerization site, relative to the total amount of the all monomer mixture. The acrylic copolymer obtained by the polymerization reaction is preferred. In the first aspect of the invention, the photodimerization site of the component (A) is preferably a cinnamyl group. In the first aspect of the invention, the thermally crosslinked portion of the component (A) is preferably a hydroxyl group or a carboxyl group. In the first aspect of the invention, the polyimine precursor of the component (B) preferably has a biphenyl structure in the main chain. In the first aspect of the invention, the component (B) is a polyimine precursor precursor containing a structural unit obtained by copolymerization of a tetracarboxylic dianhydride and a diamine compound, and a tetracarboxylic dianhydride and a diamine. It is preferred that at least one of the compounds is a phenyl structure having a -10-201224043. In the first aspect of the invention, the tetracarboxylic dianhydride is preferably biphenyltetracarboxylic dianhydride. In the first aspect of the invention, the component (B) is preferably a polyimine precursor having a trifluoromethyl group in a structural unit. In the first aspect of the invention, the polyimine precursor of the component (B) preferably has an alicyclic structure in the main chain. In the first aspect of the invention, the component (B) is a polyimine precursor containing a structural unit obtained by copolymerization of a tetracarboxylic dianhydride and a diamine compound, and a tetracarboxylic dianhydride and a diamine compound. At least one of them is preferably an alicyclic structure. In the first aspect of the invention, the crosslinking agent of the component (C) is preferably a crosslinking agent having a methylol group or a fluorenyloxymethylol group. In the first aspect of the invention, it is preferred to contain 10 parts by mass to 10 parts by mass based on 100 parts by mass of the total of the components (A) and (B). In the first aspect of the present invention, it is preferred to further contain an acid or a thermal acid generator of the component (D). In the first aspect of the invention, it is preferable to contain the component (D) in an amount of 0.1 to 1 part by mass based on 100 parts by mass of the total of the components (A) and (B). According to a second aspect of the present invention, there is provided a liquid crystal alignment material obtained by using the resin composition of the present invention. The third aspect of the present invention is a phase difference material formed by using a cured film obtained by using the resin composition of the first aspect -11 - 201224043 of the present invention. [Effects of the Invention] The first aspect of the present invention In addition to the resin composition having a high birefringence, high transparency, high solvent resistance, and high heat resistance, a cured film of liquid crystal alignment can be obtained. According to the second aspect of the present invention, a liquid crystal alignment material having high birefringence and excellent light transmittance, solvent resistance and alignment property can be obtained according to the third aspect of the present invention. A phase difference material which is disposed in the liquid crystal cell is obtained. The liquid crystal cell of the phase difference material can be used to increase the contrast ratio. The present invention relates to a resin composition, a liquid crystal alignment material formed using the resin composition, and a phase difference material formed by using a cured film obtained by using the resin composition. More specifically, it relates to a resin composition which can form a cured film having high birefringence, high transparency, liquid crystal alignment energy, high solvent property, and heat resistance, and is formed by using the resin composition. The invention relates to a liquid crystal alignment material and a phase difference material formed by using the liquid crystal alignment material. The resin composition of the present invention is suitable as a film for a function as a CF protective film in a liquid crystal display, and has an alignment function for a polymerizable liquid crystal for forming a phase difference layer, and is therefore suitable for forming a built-in phase difference layer. . Hereinafter, the resin composition of the present invention -12-201224043, a liquid crystal alignment material, and a phase difference material will be described in detail by way of specific examples. The resin composition of the present embodiment is a resin composition for the purpose of forming a thermosetting film having photo-alignment properties, that is, a resin composition for forming a photo-alignment thermosetting film. Further, the thermosetting film having photo-alignment properties means a cured film which is cured by heating and which is exposed to polarized light to cause alignment properties of the liquid crystal. The resin composition of the present embodiment is an acrylic copolymer containing a photodimerization site and a thermal crosslinking site of the component (A), and a polybendimimine precursor of the component (B), and a component of the component (C). Joint agent. More specifically, in the component (A), the photodimerization site of the acrylic copolymer is formed of a hydrophobic group, and the thermal crosslinking site of the acrylic copolymer is formed of a hydrophilic group. Further, the polyimine precursor of the component (B) is a member having an aromatic ring moiety. Further, the crosslinking agent of the component (C) is a component which can crosslink the component (A) and the component (B). That is, the resin composition of the present embodiment is an acrylic copolymer containing (A) a photodimerization site formed by a hydrophobic group, a thermal crosslinking site formed by a hydrophilic group, and (B) an aromatic ring. The polyimine precursor of the part is composed of (C) a crosslinking agent which crosslinks the component (A) and the component (B). Further, the resin composition of the present embodiment may further contain an acid or photoacid generator (D) of the component (D) in addition to the components (A), (B) and (C), and/or (E) component. The sensitizer. In the resin composition of the present embodiment, when the component (A) is contained, the cured film obtained by using the resin composition of -13-201224043 can impart liquid crystal alignment performance via photo-alignment treatment. In other words, the acrylic copolymer of the component (A) can be thermally crosslinked as described later when it is heated at the time of heat transfer by a photodimerization site formed by a hydrophobic group and a hydrophilic group. It is hardened by a thermal crosslinking reaction. At this time, the photodimerization site formed by the hydrophobic group exists in addition to the vicinity of the surface of the cured film, and also exists in a free state protruding from the surface. When the photodimerization reaction is carried out by polarized UV exposure or the like based on this state, excellent liquid crystal alignment performance can be produced in the vicinity of the surface of the cured film. Therefore, when a polymerizable liquid crystal is applied onto the cured film, a highly hydrophobic polymerizable liquid crystal is formed, and the photodimerization site formed by the hydrophobic group of the acrylic copolymer is efficiently interacted to achieve high sensitivity. Liquid crystal alignment. Further, the component (A) has a thermally crosslinked portion. The thermally crosslinked portion may be formed of a hydrophilic group, and thus an efficient thermal crosslinking reaction may be formed between the crosslinking agent of the component (C) described later. As a result, in addition to the photodimerization site, the crosslinked portion can be introduced by thermal reaction, and the number of crosslinking sites can be increased. Therefore, dissolution of the cured film can be prevented by applying a polymerizable liquid crystal solution to the cured film. Further, in the heating environment in the manufacturing process of the liquid crystal cell, the heat shrinkage phenomenon of the cured film can be suppressed. Further, in the resin composition of the present embodiment, when the component (B) is contained, the birefringence of the cured film obtained by using the resin composition can be adjusted. That is, the polyimine precursor of the component (B) forms a polyimine by thermal reaction to form a cured film, and the main chain of the polyimide precursor is selected to include a benzene ring structure or a biphenyl structure. In the molecular structure, the hardened film can be imparted with high birefringence to -14,240,044. Further, in this case, there is still concern that the light transmittance of the cured film, that is, the transparency is lowered, and when the molecular structure of the compound constituting the polyimide precursor is selected, the decrease in transmittance can be suppressed. For example, a compound constituting a polyimide precursor can impart a high transparency to a cured film when a compound having an alicyclic structure is selected. That is, by appropriately designing the molecular structure of the polyimide precursor, the cured film can simultaneously impart both high birefringence and high transparency. Further, since the resin composition of the present embodiment contains the component (C), the cured film obtained by using the resin composition can be introduced into the crosslinked portion via thermal reaction. That is, as described above, the (C) component generates a thermal crosslinking reaction with the component (A). Further, between the component (B) and the component (B), a crosslinking reaction occurs between the carboxyl group and the component (C) of the polyimide precursor. When the carboxyl group content in the polyimide precursor precursor is adjusted, the crosslinking reaction between the component (B) and the component (C) can be controlled, and the crosslinking reaction between the component (A) and the component (C) can be controlled. . As a result, in the entire cured film obtained from the resin composition, an efficient crosslinking reaction can be realized by thermal reaction, and a strong cured film can be formed by introducing a crosslinking portion. Hereinafter, the components (A) to (C) will be described in detail, and the component (A) is an acrylic copolymer having a photodimerization site and a thermal crosslinking site. Light of the acrylic copolymer of the component (A) -15- 201224043 The dimerization site is formed of a hydrophobic group, and the thermal crosslinking site is formed of a hydrophilic group. Hereinafter, the contents will be specifically illustrated by enumeration. In the present embodiment, the acrylic copolymer is a copolymer obtained by polymerizing a monomer having an unsaturated double bond such as acrylate, methacrylate or styrene. The acrylic copolymer (hereinafter, also referred to as a specific copolymer) having a photodimerization site and a thermal crosslinking site of the component (A) may be an acrylic copolymer having the structure, and may constitute a high acrylic copolymer. The skeleton of the main chain of the molecule and the kind of the side chain are not particularly limited. The photodimerization site is a site where a dimer is formed by light irradiation, and specifically, for example, a cinnamyl group, a chalcone group, a cumene group, a fluorenyl group or the like. Among these, it is preferable to have high transparency in the visible light region and cinnabar base having photodimerization reactivity. A partial structure of a particularly preferred cinnabar base is as shown in the following formula [A1] and formula [A2]. [Chemical 1]

Ry/R2 IA1] [Α2] R3 IRe 上述式中,x1表示氫原子、碳原子數1至18之烷基 、苯基或聯苯基。其中,苯基及聯苯基分別可被鹵素原子 及氰基中之任一者所取代。X2表示氫原子、氰基、碳原 子數1至18之烷基、苯基、聯苯基或環己基。其中,碳 原子數1至18之烷基、苯基、聯苯基或環己基可介由共 價鍵、醚鍵、酯鍵、醯胺鍵或脲鍵予以鍵結。 -16- 201224043 R1 ' R2 > R3 R4,各自獨立表示氫原子、碳原子數 1至4之烷基、碳原子數1至4之烷氧基、鹵素原子、三 氟甲基或氰基。 熱交聯部位爲經由加熱而與交聯劑鍵結之部位,其具 體例如,羥基、羧基或縮水甘油基等。 (A)成分之丙烯酸共聚物,其重量平均分子量以 3,000至200,000爲佳,以4,00〇至1 50,000爲較佳,以 5,000至100,000爲最佳。重量平均分子量爲超過200,000 之過大物質時,會降低對溶劑之溶解性,而會有降低控制 性之情形。又,重量平均分子量爲未達3,000之過小物質 時,其熱硬化時會造成硬化不足,而會有降低耐溶劑性及 耐熱性之情形。 如上所述般,(A )成分之側鏈具有光二聚化部位及 熱交聯部位之丙烯酸共聚物之合成方法,以將具有光二聚 化部位之單體,與具有熱交聯部位之單體進行共聚合之方 法爲佳。 具有光二聚化部位之單體,例如,具有桂皮醯基、查 耳酮基、異丙苯基或蒽基等之單體等。該些之中,就可見 光區域具有透明性,與具有良好光二聚化反應性之具有桂 皮醯基的單體爲佳。特別是以具有上述式〔A1〕或式〔 A2〕所表示之結構的桂皮醯基的單體爲佳。該單體之具 體例,例如下述式〔A3〕與式〔A4〕所示。 201224043 R'R2 phTV^VX,iA3]Ry/R2 IA1] [Α2] R3 IRe In the above formula, x1 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a phenyl group or a biphenyl group. Among them, the phenyl group and the biphenyl group may be each substituted by either a halogen atom or a cyano group. X2 represents a hydrogen atom, a cyano group, an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group or a cyclohexyl group. Among them, an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group or a cyclohexyl group may be bonded via a covalent bond, an ether bond, an ester bond, a guanamine bond or a urea bond. -16- 201224043 R1 ' R2 > R3 R4 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, a trifluoromethyl group or a cyano group. The thermal crosslinking site is a site to which a crosslinking agent is bonded via heating, and is specifically, for example, a hydroxyl group, a carboxyl group or a glycidyl group. The acrylic copolymer of the component (A) preferably has a weight average molecular weight of 3,000 to 200,000, preferably 4,00 Å to 150,000, and most preferably 5,000 to 100,000. When the weight average molecular weight is more than 200,000, the solubility in the solvent is lowered, and the controllability is lowered. Further, when the weight average molecular weight is too small as less than 3,000, the hardening may cause insufficient hardening, and the solvent resistance and heat resistance may be lowered. As described above, the side chain of the component (A) has a method of synthesizing an acrylic copolymer having a photodimerization site and a thermal crosslinking site, and a monomer having a photodimerization site and a monomer having a thermal crosslinking site. The method of performing copolymerization is preferred. The monomer having a photodimerization site, for example, a monomer having a cinnamyl group, a chalcone group, a cumene group or a fluorenyl group or the like. Among these, it is found that the light region has transparency, and a monomer having a cinnamyl group having good photodimerization reactivity is preferred. In particular, a monomer having a cinnamyl group having a structure represented by the above formula [A1] or formula [A2] is preferred. Specific examples of the monomer are shown in the following formula [A3] and formula [A4]. 201224043 R'R2 phTV^VX,iA3]

R3 RdR3 Rd

RkR2Vm O R3 R4 x6-xs-RkR2Vm O R3 R4 x6-xs-

(A4J 上述式中、x1表示氫原子、碳原子數1至18之烷基 、苯基或聯苯基。其中,苯基及聯苯基分別可被鹵素原子 及氰基中之任一者所取代。X2表示氫原子、氰基、碳原 子數1至18之烷基、苯基、聯苯基或環己基。其中,碳 原子數1至18之烷基、苯基、聯苯基及環己基可介由共 價鍵、醚鍵、酯鍵、醯胺鍵或脲鍵予以鍵結。X3及X5, 各自獨立表示單鍵、碳原子數1至20之伸烷基、芳香環 基或脂環棊。其中,碳原子數1至20之伸烷基可爲分支 狀或直鏈狀皆可。X4及X6表示聚合性基。該聚合性基之 具體例,例如,丙烯醯基、甲基丙烯醯基、苯乙烯基、馬 來醯亞胺基、丙烯酸醯胺基及甲基丙烯酸醯胺基等。 及R4’各自獨立表示氫原子、碳原子數 1至4之烷基、碳原子數1至4之烷氧基、鹵素原子、三 氟甲基或氰基》例如,4- ( 6-甲基丙烯氧己基-1-氧基)桂 皮酸甲酯及6-(丙烯醯氧基)己基-3- (4 -甲氧苯基)丙 烯酸酯等》 具有熱交聯部位之單體,例如,2 -羥丙烯酸乙酯、2-羥甲基丙烯酸乙酯、2-羥丙基丙烯酸酯、2-羥丙基甲基丙 烯酸酯、4-羥丁基丙烯酸酯、4-羥丁基甲基丙烯酸醋、 2,3-二羥丙基丙烯酸酯、2,3-二羥丙基甲基丙烯酸酯、二 乙二醇單丙烯酸酯、二乙二醇單甲基丙烯酸酯、己內醋 201224043 2-(丙烯醯氧基)乙基酯、己內酯2-(甲基丙烯醯氧基) 乙基酯、聚(乙二醇)乙基醚丙烯酸酯、聚(乙二醇)乙 基醚甲基丙烯酸酯、5-丙烯醯基氧代-6-羥基降冰片烯-2-睃酸酯-6-內酯及5-甲基丙烯醯氧代-6-羥基降冰片烯-2-胺 酸酯-6-內酯等具有羥基之單體、丙烯酸、甲基丙烯酸、 巴豆酸、單- (2-(丙烯醯氧基)乙基)苯二甲酸酯、單_ (2-(甲基丙烯醯氧基)乙基)苯二甲酸酯、N-(羧基苯 基)馬來醯亞胺、N-(羧基苯基)甲基丙烯酸醯胺及N-(羧基苯基)丙烯酸醯胺等具有羧基之單體、羥基苯乙烯 、N-(羥基苯基)甲基丙烯酸醯胺、N·(羥基苯基)丙烯 酸醯胺、N-(羥基苯基)馬來醯亞胺及N-(羥基苯基) 馬來醯亞胺等具有酚性羥基之單體,以及縮水甘油基甲基 丙烯酸酯及縮水甘油基丙烯酸酯等具有縮水甘油基之單體 等。 又,本實施形態中,欲製得特定共聚物之際,除具有 光二聚化部位及熱交聯部位(以下,亦稱爲特定官能基) 之單體以外,亦可與可與該單體共聚,但不具有特定官能 基之單體合倂使用。 不具有上述特定官能基之單體的具體例如,丙烯酸酯 化合物、甲基丙烯酸酯化合物、馬來醯亞胺化合物、丙烯 酸醯胺化合物、丙烯腈、馬來酸酐、苯乙烯化合物及乙烯 基化合物等。該些之具體例如,下述內容等。但並不僅限 定於該些內容之中。 丙烯酸酯化合物,例如,丙烯酸甲酯、丙烯酸乙酯、 -19- 201224043 丙烯酸異丙酯、丙烯酸苄酯、丙烯酸萘酯、丙烯酸蒽酯、 丙烯酸蒽甲酯、丙烯酸苯酯、丙烯酸縮水甘油酯、丙烯酸 2,2,2-三氟乙酯、丙烯酸tert-丁酯、丙烯酸環己酯、丙烯 酸異莰酯、丙烯酸2-甲氧乙酯、丙烯酸甲氧基三乙二醇 酯、丙烯酸2-乙氧乙酯、丙烯酸2-胺基乙酯、丙烯酸四 氫糠酯、丙烯酸3-甲氧基丁酯、丙烯酸2-甲基-2-金剛烷 酯、丙烯酸2-丙基-2-金剛烷酯、丙烯酸8-甲基-8-三環癸 酯及丙烯酸8-乙基-8-三環癸酯等。 甲基丙烯酸酯化合物,例如,甲基丙烯酸甲酯、甲基 丙烯酸乙酯、甲基丙烯酸異丙酯、甲基丙烯酸苄酯、甲基 丙烯酸萘酯、甲基丙烯酸蒽酯、甲基丙烯酸蒽甲酯、甲基 丙烯酸苯酯、甲基丙烯酸縮水甘油酯、甲基丙烯酸2,2,2-三氟乙酯、甲基丙烯酸tert-丁酯、甲基丙烯酸環己酯、 甲基丙烯酸異莰酯、甲基丙烯酸2 -甲氧乙酯、甲基丙烯 酸甲氧基三乙二醇酯、甲基丙烯酸2-乙氧基乙酯、甲基 丙烯酸2-胺基甲酯、甲基丙烯酸四氫糠基酯、甲基丙烯 酸3 -甲氧基丁酯、甲基丙烯酸2 -甲基-2-金剛烷酯、甲基 丙烯酸r-丁內酯、甲基丙烯酸2-丙基-2-金剛烷酯、甲基 丙烯酸8-甲基-8-三環癸酯及甲基丙烯酸8-乙基-8-三環癸 酯等。 乙烯基化合物’例如,甲基乙烯基醚、苄基乙烯基醚 、乙烯基萘、乙烯基卡必醇、烯丙基縮水甘油基醚、3_乙 嫌基-7-氧雜二[4.1.0]庚烷、ι,2-環氧基-5-己烯及1,7-辛 二烯單環氧化物等。 -20- 201224043 苯乙烯化合物,例如,苯乙烯、甲基苯乙烯、氯基苯 乙烯及溴基苯乙烯等。 馬來醯亞胺化合物,例如,馬來醯亞胺、N-甲基馬來 醯亞胺、N-苯基馬來醯亞胺及N-環己基馬來醯亞胺等。 製得特定共聚物所使用之各單體之使用量,以全單體 之合計量爲基準,爲25至90莫耳%之具有光二聚化部位 之單體、10至75莫耳%之具有熱交聯部位之單體、〇至 65莫耳質量%之不具有特定官能基之單體爲佳。具有光 二聚化部位之單體之含量少於25莫耳%時,則難賦予高 感度且具有良好之液晶配向性。又,具有熱交聯部位之單 體之含量低於10莫耳%時,則難賦予充分之熱硬化性, 且難以維持高感度之良好液晶配向性。 本實施形態中,製得特定共聚物之方法並未有特別限 定。例如,於存在有具有特定官能基之單體,與所期待之 不具有特定官能基之單體,與聚合起始劑等之溶劑中,於 50至1 l〇t之溫度下進行聚合反應結果,即可製得特定共 聚物。此時所使用之溶劑,只要可以溶解具有特定官能基 之單體,與所期待之不具有特定官能基之單體,與聚合起 始劑等之溶劑時’並未有特別限定。又,時溶劑於後述< 溶劑 > 欄中亦有說明。 依上述方法所得之特定共聚物,通常爲溶解於溶劑所 得溶液之狀態。 又,上述方法所得之特定共聚物之溶液,於攪拌下投 入二乙基醚或水等後,使其再沈澱,將生成之沈澱物濾過 -21 - 201224043 •洗淨後,於常壓或減壓下’進行常溫乾燥或加熱乾燥, 而形成特定共聚物之粉體。經由前述操作結果,可去除與 特定共聚物共存之聚合起始劑及未反應之單體,其結果, 可得到精製之特定共聚物的粉體。於未能以一次之操作充 分精製之情形,可將所得粉體再溶解於溶劑中,重複上述 之操作即可。 本實施之形態中,特定共聚物可使用粉體形態亦可, 或,使用將精製之粉末再溶解於後述溶劑所得之溶液形態 亦可。 又,本實施形態中,(A)成分之特定共聚物可爲複 數種特定共聚物之混合物。 < (B )成分> 本實施形態中之(B)成分爲聚醯亞胺前驅物。(B )成分之聚醯亞胺前驅物爲具有芳香環部位者。爲達成高 雙折射率之目的,聚醯亞胺前驅物之中,又以具有下述式 (1)所表示之結構單位的聚醯亞胺前驅物爲佳。(A4J In the above formula, x1 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a phenyl group or a biphenyl group. Among them, a phenyl group and a biphenyl group may be each independently a halogen atom and a cyano group. Substituted. X2 represents a hydrogen atom, a cyano group, an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group or a cyclohexyl group, wherein an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group and a ring The hexyl group may be bonded via a covalent bond, an ether bond, an ester bond, a guanamine bond or a urea bond. X3 and X5 each independently represent a single bond, an alkylene group having 1 to 20 carbon atoms, an aromatic ring group or a lipid. The cycloalkyl group may be a branched or linear chain having 1 to 20 carbon atoms. X4 and X6 represent a polymerizable group, and specific examples of the polymerizable group are, for example, a acrylonitrile group or a methyl group. Acrylhydrazine, styryl, maleimine, decyl amide and decyl methacrylate, etc. and R 4 ' each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a carbon number. Alkoxy group of 1 to 4, halogen atom, trifluoromethyl group or cyano group, for example, methyl 4-(6-methylpropoxyhexyl-1-oxy) cinnamate and 6-(propylene Oxy)hexyl-3-(4-methoxyphenyl)acrylate, etc. A monomer having a thermally crosslinked moiety, for example, ethyl 2-hydroxyacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropane Acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl Acrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, caprolactone 201224043 2-(acryloxy)ethyl ester, caprolactone 2-(methacryloxyloxy group Ethyl ester, poly(ethylene glycol) ethyl ether acrylate, poly(ethylene glycol) ethyl ether methacrylate, 5-propenyl methoxy-6-hydroxy norbornene-2-decanoic acid a monomer having a hydroxyl group such as ester-6-lactone and 5-methylpropenyloxy-6-hydroxynorbornene-2-amino acid ester-6-lactone, acrylic acid, methacrylic acid, crotonic acid, single - (2-(Propyloxy)ethyl)phthalate, mono-(2-(methacryloxy)ethyl)phthalate, N-(carboxyphenyl)male Yttrium, N-(carboxyphenyl)methacrylate and N-( a carboxyl group-containing monomer such as carboxyphenyl) decyl acrylate, hydroxystyrene, N-(hydroxyphenyl)methacrylate decylamine, N-(hydroxyphenyl) decylamine amide, N-(hydroxyphenyl) horse A monomer having a phenolic hydroxyl group such as imimentimide or N-(hydroxyphenyl)maleimide, and a monomer having a glycidyl group such as glycidyl methacrylate or glycidyl acrylate. Further, in the present embodiment, in addition to the monomer having a photodimerization site and a thermal crosslinking site (hereinafter, also referred to as a specific functional group), a specific copolymer may be used together with the monomer. A monomer which is copolymerized but does not have a specific functional group is used. Specific examples of the monomer having no specific functional group described above are, for example, an acrylate compound, a methacrylate compound, a maleimide compound, a decylamine compound, Acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, and the like. Specific examples thereof include the following. But it is not limited to this content. Acrylate compound, for example, methyl acrylate, ethyl acrylate, -19-201224043 isopropyl acrylate, benzyl acrylate, naphthalene acrylate, decyl acrylate, decyl methacrylate, phenyl acrylate, glycidyl acrylate, acrylic acid 2,2,2-trifluoroethyl ester, tert-butyl acrylate, cyclohexyl acrylate, isodecyl acrylate, 2-methoxyethyl acrylate, methoxy triethylene glycol acrylate, 2-ethoxy acrylate Ethyl ester, 2-aminoethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate and 8-ethyl-8-tricyclodecyl acrylate. A methacrylate compound, for example, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, decyl methacrylate, methacrylic acid armor Ester, phenyl methacrylate, glycidyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isodecyl methacrylate , 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, 2-aminomethyl methacrylate, tetrahydroanthracene methacrylate Base ester, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, r-butyrolactone methacrylate, 2-propyl-2-adamantyl methacrylate And 8-methyl-8-tricyclodecyl methacrylate and 8-ethyl-8-tricyclodecyl methacrylate. Vinyl compound 'for example, methyl vinyl ether, benzyl vinyl ether, vinyl naphthalene, vinyl carbitol, allyl glycidyl ether, 3 - b succinyl-7-oxa di[4.1. 0] heptane, iota, 2-epoxy-5-hexene and 1,7-octadiene monoepoxide. -20- 201224043 Styrene compounds, for example, styrene, methyl styrene, chlorostyrene and bromostyrene. Maleic imine compounds, for example, maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. The amount of each monomer used in the preparation of the specific copolymer is from 25 to 90 mol% of the monomer having a photodimerization site, and from 10 to 75 mol%, based on the total amount of all monomers. It is preferred that the monomer of the thermal crosslinking site, ruthenium to 65 mol%, of a monomer having no specific functional group. When the content of the monomer having a photodimerization site is less than 25 mol%, it is difficult to impart high sensitivity and have good liquid crystal alignment. Further, when the content of the monomer having the thermally crosslinked portion is less than 10 mol%, it is difficult to impart sufficient thermosetting property, and it is difficult to maintain high liquid crystal alignment with high sensitivity. In the present embodiment, the method of producing a specific copolymer is not particularly limited. For example, in the presence of a monomer having a specific functional group, a desired monomer having no specific functional group, and a polymerization initiator or the like, a polymerization reaction is carried out at a temperature of 50 to 1 l〇t. A specific copolymer can be obtained. The solvent to be used at this time is not particularly limited as long as it can dissolve a monomer having a specific functional group, a monomer which does not have a specific functional group, and a solvent such as a polymerization initiator. Further, the solvent is also described in the <Solvent > column described later. The specific copolymer obtained by the above method is usually in a state of being dissolved in a solvent to obtain a solution. Further, the solution of the specific copolymer obtained by the above method is subjected to diethyl ether or water or the like under stirring, and then reprecipitated, and the resulting precipitate is filtered through - 21 to 24,024, 43. After washing, at normal pressure or minus Pressing 'drying at room temperature or heating to form a powder of a specific copolymer. As a result of the above operation, the polymerization initiator and the unreacted monomer which are present in the specific copolymer can be removed, and as a result, a powder of the purified specific copolymer can be obtained. In the case where the purification cannot be performed in a single operation, the obtained powder may be redissolved in a solvent, and the above operation may be repeated. In the embodiment of the present invention, the specific copolymer may be in the form of a powder, or may be in the form of a solution obtained by redissolving the purified powder in a solvent to be described later. Further, in the present embodiment, the specific copolymer of the component (A) may be a mixture of a plurality of specific copolymers. <(B) component> The component (B) in the present embodiment is a polyimine precursor. The polyimine precursor of the component (B) is one having an aromatic ring moiety. For the purpose of achieving high birefringence, it is preferred that the polyimine precursor is a polyimine precursor having a structural unit represented by the following formula (1).

上述式(1)中,A!爲至少含有1個由1至3個脂環 結構或苯環直接鍵結之骨架、萘環骨架及蒽環骨架等具有 芳香環部位之結構的有機基,B,爲至少含有1個含脂環 -22- 201224043 結構或三氟甲基或三氟甲基之基的苯環等的具有芳香環部 位之結構的有機基,R5、R6各自獨立表示氫原子或碳原 子數1至7之有機基。其中,式(1)中,至少、或Bl 之任一者爲,含有具有芳香環部位之結構的有機基。 式(1)中之Ai的具體例如,含有下述表1所示τΐ至 T9所表示之結構的有機基等。但,並不僅限定於該內容 中〇 [表1]In the above formula (1), A! is an organic group having at least one structure having an aromatic ring moiety such as a skeleton directly bonded to one to three alicyclic structures or a benzene ring, a naphthalene ring skeleton, and an anthracene ring skeleton, B And an organic group having a structure having an aromatic ring moiety such as a benzene ring containing at least one of an alicyclic-22-201224043 structure or a trifluoromethyl group or a trifluoromethyl group, and R5 and R6 each independently represent a hydrogen atom or An organic group having 1 to 7 carbon atoms. In the formula (1), at least or B1 is an organic group having a structure having an aromatic ring moiety. Specific examples of Ai in the formula (1) include an organic group having a structure represented by τ ΐ to T9 shown in Table 1 below. However, it is not limited to this content 〇 [Table 1]

-23- 201224043 脂環結構或含三氟甲基或三氟甲基之基的苯環的有機基。 其中,具有脂環結構或含三氟甲基或三氟甲基之基的苯環 的有機基之具體例如,下述表2所示S1至S7所表示之有 機基等。 [表2] S 1 S 2 PF3 f3c S3 -〇〇 S 4 S 5 h3c 3 ch3 S 6 F3C S 7 p3c cf3 本實施形態中,(B)成分之聚醯亞胺前驅物,可含 有上述式(1)所表示之結構單位以外之其他結構單位。 其中,其他之結構單位並未有特別之限定。又,亦可含有 1種或複數種式(1 )所表示之結構單位以外之結構單位 〇 (B)成分之聚醯亞胺前驅物的重量平均分子量爲 1000至100000,較佳爲1500至60000»聚醯亞胺前驅物 -24- 201224043 之重量平均分子量小於1 000時,會有降低耐溶劑性而減 低配向感度之情形。又,聚醯亞胺前驅物之重量平均分子 量超過100000時,因溶液之黏度過高,而會使控制性降 低。 &lt; (B)成分之製造方法&gt; 本實施形態中,(B)成分之聚醯亞胺前驅物爲由四 羧酸二酐與二胺化合物經共聚合而製得。 四羧酸二酐,以至少含有1個脂環結構之四羧酸二酐 、至少含有1個由1至3個苯環直接鍵結之結構的四羧酸 二酐,或或至少含有1個萘環之四羧酸二酐爲佳。 上述酸二酐之具體例,例如,苯均四酸二酐、 2,3,6,7-萘四羧酸二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘 四羧酸二酐、2,3,6,7-蒽四羧酸二酐、1,2,5,6-蒽四羧酸二 酐、3,3’,4,4’-聯苯基四羧酸二酐、2,2’,3,3’-聯苯基四羧 酸二酐及2,3,3’,4’-聯苯基四羧酸二酐、1,2,3,4-環丁烷四 羧酸二酐、1,2,3,4-環戊烷四羧酸二酐、ι,2,4,5-環己烷四 羧酸二酐、雙環[3.3.0]辛烷-2,4,6,8-四羧酸二酐等。 本實施形態中’四羧酸二酐成分可含有上述以外之其 他的四羧酸二酐。該情形中,其他之四羧酸二酐可含有1 種,或複數種皆可。 其他的四羧酸二酐之具體例,例如,3,3,,4,4’-二苯 甲酮四羧酸二酐、2,3,3,,4’-二苯甲酮四羧酸二酐、雙( 3,4-二羧基苯基)甲烷二酐、雙(3,4_二羧基苯基)醚二 -25- 201224043 酐、雙(3,4-二羧基苯基)颯二酐、2,2-雙(3,4-二羧基 苯基)丙烷二酐、2,2-雙(3,4-二羧基苯基)六氟丙烷二 酐、2,5-二羧甲基對苯二甲酸二酐、4,6-二羧甲基異苯二 甲酸二酐、4- ( 2,5-二氧雜四氫-3-呋喃基)苯二甲酸酐、 1,4-雙(2,5-二氧雜四氫-3-呋喃基)苯、1,4-雙(2,6-二 氧雜四氫-4-吡喃基)苯、1,4-雙(2,5-二氧雜四氫-3 -甲 基-3-呋喃基)苯、1,4-雙(2,6-二氧雜四氫-4-甲基-4-吡 喃基)苯、1,2-二甲基-1,2,3,4-環丁烷四羧酸二酐、1,3-二甲基-1,2,3,4-環丁烷四羧酸二酐、1,2,3,4-四甲基-1,2,3,4-環丁烷四羧酸二酐、2,3,4,5-四氫呋喃四羧酸二酐 、2,3,5-三羧基環戊基乙酸二酐、4- (2,5-二氧雜四氫- 3-呋喃基)-環己烷-1,2-二羧酸酐、四環[2,2,1,1,1]癸烷-2,3,7,8-四羧酸二酐、5- (2,5-二氧雜四氫-3-呋喃基)-3-甲基-3-環己烯-1,2-二羧酸酐、雙環[2.2.2]辛-7-烯- 2.3.5.6- 四羧酸二酐、3,3’,4,4’-二環己基四羧酸二酐、 2.3.5.6- 降冰片烷四羧酸二酐、3,5,6-三羧基降冰片烷-2-乙酸二酐、三環[4.2.1.02,5]壬烷-3,4,7,8-四羧酸二酐、四 環[4.4.1.02’5.07’1()]十一烷-3,4,8,9-四羧酸二酐、六環 [6.6.0.12’7.03’6.19’14.01°’13]十六烷-4,5,11,12-四羧酸二酐 、1,4-雙(2,5-二氧雜四氫-3-呋喃基)己烷、1,4-雙( 2.6- 二氧雜四氫-4-吡喃基)己烷、3,4-二羧-1,2,3,4-四氫-1-萘琥珀酸二酐、1,2-二苯基-1,2,3,4-環丁烷四羧酸二酐 及1,2,3,4,5,6,7,8-八氫-2,3,6,7-蒽四羧酸二酐等。 作爲(B)成分之聚醯亞胺前驅物之原料的二胺成分 -26- 201224043 ,以含有脂環結構或三氟甲基之二胺化合物爲佳,亦可倂 用其以外之二胺化合物。該二胺化合物之具體例,例如, 1,4-二胺基環己烷、1,3-二胺基環己烷、雙(4-胺基環己 基)甲烷、雙(4-胺基-3-甲基環己基)甲烷、1,4’-雙環 己基二胺、2,2,-三氟甲基-4,4’-二胺基聯苯基、3,3’-三氟 甲基-4,4’-二胺基聯苯基、4,4’-二胺基二苯基甲烷、2,2-雙〔心(4-胺基苯氧基)苯基〕六氟丙烷、2,2-雙(3-胺 基-4-甲基苯基)丙烷、2,2-雙(4-胺基苯基)六氟丙烷、 2,2-雙(3-胺基苯基)六氟丙烷、2,2-雙(3-胺基-4-甲基 苯基)六氟丙烷及1,3-雙(4_胺基苯氧基)丙烷等。 本實施形態中,除上述二胺化合物以外,亦可倂用1 種或複數種其他之二胺化合物使用。 其他之二胺化合物,例如,雙(4 -胺基苯基)颯、雙 (3 -胺基苯基)颯、雙(4 -胺基-3-羧基苯基)颯、雙(4-胺基-3,5-二羧基苯基)颯、雙〔4- (4-胺基-3-羧基苯氧 基)苯基〕颯、雙〔4_ ( 4_胺基苯氧基)苯基〕楓 '雙〔 4-(3 -胺基苯氧基)苯基〕颯、雙(3_胺基-4-羥基苯基) 颯、雙(4-胺基-3-羥基苯基)颯、雙(4-胺基-3, 5-二羥 基苯基)楓、3,3’-二胺基-4,4’-二氯基二苯基颯、p-伸苯 基二胺、m-伸苯基二胺、2,4-二胺基甲苯、2,5-二胺基甲 苯、2,6-二胺基甲苯、2,4-二甲基-1,3-二胺基苯、2,5-二 甲基-1,4 -二胺基苯、2,3,5,6-四甲基-1,4-二胺基苯' 2,4-二胺基酚、2,5-二胺基酚、4,6-二胺基間苯二酚、2,5-二 胺基苯甲酸、3,5-二胺基苯甲酸、N,N-二烯丙基-2,4-二胺 -27- 201224043 基苯胺、Ν,Ν-二烯丙基-2,5-二胺基苯胺、4-胺基苄基胺、 3- 胺基苄基胺、2-(4-胺基苯基)乙基胺、2-(3-胺基苯 基)乙基胺、1,5-萘二胺、2,7-萘二胺、4,4’-二胺基聯苯 基、3,4’-二胺基聯苯基、3,3’-二胺基聯苯基、2,2’-二甲 基-4,4’-二胺基聯苯基、3,3’-二甲基-4,4’-二胺基聯苯基、 3,3’-二甲氧基-4,4’-二胺基聯苯基、3,3’-二羥基-4,4’-二 胺基聯苯基、3,3 ’ -二羧-4,4 ’ -二胺基聯苯基、3,3 ’ -二氟-4,4’-二胺基聯苯基、3,3’-二胺基二苯基甲烷、3,4’-二胺 基二苯基甲烷、4,4’-二胺基二苯基醚、3,3’-二胺基二苯 基醚、3,4’-二胺基二苯基醚、4,4’-二胺基二苯基胺、 3,3’-二胺基二苯基胺、3,4’-二胺基二苯基胺、Ν-甲基( 4,4’-二胺基二苯基)胺、Ν-甲基(3,3’-二胺基二苯基) 胺、Ν-甲基(3,4’-二胺基二苯基)胺、4,4’-二胺基二苯 甲酮、3,3’-二胺基二苯甲酮、3,4’-二胺基二苯甲酮、 4,4’-二胺基苯甲醯苯胺、1,2-雙(4-胺基苯基)乙烷、 1,2-雙(3-胺基苯基)乙烷、4,4’-二胺基二苯乙炔、1,3-雙(4-胺基苯基)丙烷、1,3-雙(3-胺基苯基)丙烷、 2,2-雙(4-胺基苯基)丙烷、2,2-雙(3-胺基苯基)丙烷 、:1,4-雙(4-胺基苯氧基)丁烷、1,5-雙(4-胺基苯氧基 )戊烷、1,6-雙(心胺基苯氧基)己烷、1,7-雙(4_胺基 苯氧基)庚烷、1,8-雙(4-胺基苯氧基)辛烷、1,9-雙( 4- 胺基苯氧基)壬烷、1,10-雙(4-胺基苯氧基)癸烷、 1,11-雙(4-胺基苯氧基)十一烷、1,12-雙(4-胺基苯氧 基)十二烷、雙(4-胺基苯基)丙烷二基體(dioate )、 -28- 201224043 雙(4-胺基苯基)丁烷二基體、雙(4-胺基苯基)戊烷二 基體、雙(4-胺基苯基)己烷二基體、雙(4-胺基苯基) 庚烷二基體、雙(4-胺基苯基)辛烷二基體、雙(4-胺基 苯基)壬烷二基體、雙(4-胺基苯基)癸烷二基體、1,4-雙(4-胺基苯基)苯、1,3-雙(4-胺基苯基)苯、1,4-雙 (4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,4-雙(4-胺基苄基)苯、1,3-雙(4-胺基苄基)苯、雙(4-胺基苯基)對苯二甲酸酯、雙(3-胺基苯基)對苯二甲酸 酯、雙(4-胺基苯基)間苯二甲酸酯、雙(3-胺基苯基) 間苯二甲酸酯、1,4-伸苯基雙〔(4-胺基苯基)甲酮〕、 1,4-伸苯基雙〔(3-胺基苯基)甲酮〕、1,3-伸苯基雙〔 (4-胺基苯基)甲酮〕、1,3-伸苯基雙〔(3-胺基苯基) 甲酮〕、1,4-伸苯基雙(4-胺基苯甲酸酯)、1,4_伸苯基 雙(3-胺基苯甲酸酯)、1,3-伸苯基雙(4-胺基苯甲酸酯 )、1,3-伸苯基雙(3-胺基苯甲酸酯)、N,N’-(1,4-伸苯 基)雙(4-胺基苯倂醯胺)、N,N’- ( 1,3-伸苯基)雙(4-胺基苯倂醯胺)、N,N’- ( 1,4-伸苯基)雙(3-胺基苯倂醯 胺)、N,N’- ( 1,3-伸苯基)雙(3-胺基苯倂醯胺)、雙( 4-胺基苯基)對苯二甲醯胺、雙(3-胺基苯基)對苯二甲 醯胺、雙(4-胺基苯基)異苯二甲醯胺、雙(3-胺基苯基 )異苯二甲醯胺、2,2-雙〔4- (4-胺基苯氧基)苯基〕丙 烷、4,4’-雙(4_胺基苯氧基)二苯基碾、2,6-二胺基砒啶 、2,4-二胺基砒啶、2,4-二胺基-1,3,5-三嗪、2,6-二胺基二 苯倂呋喃、2,7-二胺基二苯倂呋喃、3,6-二胺基二苯倂呋 -29- 201224043 喃、2,6-二胺基卡必醇、2,7-二胺基卡必醇、3,6_ 卡必醇、2,4-二胺基-6-異丙基-1,3,5-三嗪、2,5_雙 基苯基)-1,3,4-氧雜二唑、1,3_二胺基丙烷、ι,4-丁烷、1,5-二胺基戊烷、1,6-二胺基己烷、丨,7_二 烷、1,8-二胺基辛烷、1,9-二胺基壬烷、ΐ5ΐ〇·二胺 、1,1 1-二胺基十一烷及1,12-二胺基十二烷等。 上述(B)成分之聚醯亞胺前驅物中,四羧酸 合計量(酸成分之合計量)與二胺化合物之合計量 成分之合計量)的組成比、即,〈二胺化合物之合 數〉/〈四羧酸二酐化合物之合計莫耳數〉以0.5 爲佳。與通常之聚縮合反應相同般,此莫耳比越接 ,其所生成之聚醯亞胺前驅物之聚合度越大,故分 增加。 (B)成分之聚醯亞胺前驅物之末端,受到酸 二胺成分之組成比而產生變化,故於本實施形態中 特別之限定。 使用過量二胺成分進行聚合之情形中,會使末 與羧酸酐進行反應,而可保護末端胺基。該些羧酸 如,苯二甲酸酐、偏苯三甲酸酐、馬來酸酐、萘二 、氫化苯二甲酸酐、甲基-5-降冰片烯-2,3-二羧酸 康酸酐及四氫苯二甲酸酐等。 上述(B)成分之聚醯亞胺前驅物之製造中, 與二胺成分與之反應溫度可於-20至150°C,較佳 至1 00°C之任意溫度內進行選擇。例如,反應溫度 二胺基 胺 二胺基 胺基庚 基癸烷 二酐之 (二胺 計莫耳 至1.5 近1時 子量爲 成分與 並未有 端胺基 酐之例 甲酸酐 酐、衣 酸成分 爲於-5 設定爲 -30- 201224043 5至40°C,反應時間設定爲1至48小時,即可製得 亞胺前驅物。又,末端胺基被酸酐所保護之情形的反 度,可於-20至150°C,較佳爲-5至100°C之任意溫 進行選擇。 上述酸成分與二胺成分與之反應,通常爲於溶劑 行。此時所使用之溶劑,例如,N,N-二甲基甲醯胺' 二甲基乙醯胺、N-甲基吡咯啶酮、N-乙烯基吡咯啶酮 甲基己內醯胺、二甲基亞楓、四甲基脲、二甲基颯、 基亞楓、m-甲酚、丁內酯、3-甲氧基丙酸甲酯、 氧基丙酸甲酯、3-甲氧基丙酸乙酯、2-甲氧基丙酸乙 3-乙氧基丙酸乙酯、2-乙氧基丙酸乙酯、乙二醇二甲 、二乙二醇二甲基醚、二乙二醇二乙基醚、二乙二醇 乙基醚、丙二醇二甲基醚、二丙二醇二甲基醚、乙二 甲基醚、乙二醇單乙基醚、二乙二醇單甲基醚、二乙 單乙基醚、丙二醇單甲基醚、丙二醇單乙基醚、二丙 單甲基醚、二丙二醇單乙基醚、環己酮、甲基乙基酮 基異丁酮及2-庚嗣等。該些可單獨使用或混合使用 。此外,即使不會溶解聚醯亞胺前驅物之溶劑,只要 析出經聚合反應所生成之聚醯亞胺前驅物之範圍時, 上述溶劑混合使用。 依上述方法所得之含有聚醯亞胺前驅物之溶液’ 須加工下製作熱硬化膜形成用樹脂組成物。又,聚醯 前驅物亦可於水、甲醇及乙醇等貧溶劑中沈澱單離後 使用。 聚醯 應溫 度內 中進 Ν,Ν-、Ν- /、甲 2-甲 酯、 基醚 甲基 醇單 二醇 二醇 、甲 皆可 不會 可與 可無 亞胺 回收 -31 - 201224043 &lt; (c)成分&gt; 本實施形態之(c )成分爲交聯劑。該交聯劑爲可使 (A)成分與(B)成分交聯之成份。 (C)成分之交聯劑,例如,環氧化合物、羥甲基化 合物或異氰酸酯化合物等,較佳爲具有2個以上羥甲基或 烷氧基羥甲基的羥甲基化合物。 具體而言,例如甲氧基甲基化乙炔脲、甲氧基甲基化 苯胍胺及甲氧基甲基化三聚氰胺等之化合物等。又,例如 ,六甲氧基甲基三聚氰胺、四甲氧基甲基苯胍胺、 1,3,4,6-四(丁氧甲基)乙炔脲、1,3,4,6 -四(羥基甲基) 乙炔脲、1,3-雙(羥基甲基)脲、ι,ι,3,3_四(丁氧甲基) 脲、1,1,3,3-四(甲氧基甲基)脲、i,3-雙(羥基甲基)-4,5-二羥基-2-四氫咪唑酮及1,3-雙(甲氧基甲基)-4,5-二 甲氧基-2 -四氫咪唑酮等。此外,市售品例如,日本科技 行業(股)製甲氧基甲基型三聚氰胺化合物(商品名賽麥 爾300、賽麥爾301、賽麥爾303、賽麥爾350) 、丁氧甲 基型三聚氰胺化合物(商品名麥克特506、麥克特5 0 8 ) 、乙炔脲化合物(商品名賽麥爾1170、保達靈1174)等 之化合物、甲基化脲樹脂(商品名UFR65 ) 、丁基化脲樹 脂(商品名 UFR300、U-VAN10S60、U-VAN10R、U-VAN11HV)及DIC (股)製脲/甲醛系樹脂(高縮合型 ’商品名倍可明J-300S、倍可明P-955、倍可明N)等。 此外’該些胺基之氫原子被羥甲基或烷氧基甲基所取代之 -32- 201224043 三聚氰胺化合物、脲化合物、乙炔脲化合物及苯胍胺化合 物經縮合所得之化合物亦可。例如,美國特許6,3 23,3 1 0 號所記載之由三聚氰胺化合物(商品名賽麥爾303)與苯 胍胺化合物(商品名賽麥爾1123)所製造之高分子量之 化合物等。 又’ (C)成分,亦可使用被N-羥基甲基丙烯酸醯胺 、N-甲氧基甲基甲基丙烯酸醯胺、N-乙氧基甲基丙烯酸醯 胺、N-丁氧甲基甲基丙烯酸醯胺等羥基甲基或烷氧基甲基 所取代之丙烯酸醯胺化合物或甲基丙烯酸醯胺化合物所製 造之聚合物。該些聚合物,例如,聚(N -丁氧甲基丙烯酸 醯胺)、N-丁氧甲基丙烯酸醯胺與苯乙烯之共聚物、N-羥 基甲基甲基丙烯酸醯胺與甲基丙烯酸甲酯之共聚物、N-乙 氧基甲基甲基丙烯酸醯胺與苄基甲基丙烯酸酯之共聚物, 及N-丁氧甲基丙烯酸醯胺與苄基甲基丙烯酸酯與2-羥丙 基甲基丙烯酸酯之共聚物等。該些聚合物之重量平均分子 量,例如1,〇〇〇至500,000,或例如2,000至200,000,或 ,3,000 至 150,000 ·或,3,000 至 50,000° 以上所例示之(C)成分之交聯劑,可單獨或將2種 以上組合使用。 本實施形態之樹脂組成物中’基於(A )成分之至少 具有光二聚化部位及熱交聯部位之丙烯酸共聚物,與(B )成分之聚醯亞胺前驅物之合計量質量份’ (C)成 分之交聯劑的含量以1 〇至100質量份爲佳。該比例低於 1 〇質量份時,會降低樹脂組成物所得之硬化膜的耐溶劑 -33- 201224043 性或耐熱性,而會降低光配向時之感度。又,大於100質 量份時,除降低光配向性以外,也會有降低保存安定性之 疑慮。 &lt; (D )成分&gt; 本實施形態之樹脂組成物中,(D )成分可含有酸或 熱酸發生劑。該(D )成分,就促進本實施形態之樹脂組 成物的熱硬化性等觀點爲有效者。 (D)成分之酸或熱酸發生劑,爲含有磺酸基之化合 物、鹽酸或其鹽以及預燒焙或後燒焙時會熱分解而產生酸 之化合物’即,只要於80至250°C熱分解而產生酸之化 合物時,並未有特別限定。該化合物,例如,鹽酸、甲烷 磺酸、乙烷磺酸、丙烷磺酸、丁烷磺酸、戊烷磺酸、辛烷 磺酸、苯磺酸、P-甲苯磺酸、樟腦烷磺酸、三氟甲烷磺酸 、P-酚磺酸、2-萘磺酸、1,3,5-三甲苯磺酸、P-甲苯-2-磺 酸、甲苯-2-磺酸、4-乙基苯磺酸、111,111,2^1,211-全氟 辛烷磺酸、全氟(2 -乙氧基乙烷)磺酸、五氟乙烷磺酸、 七氟丁院-1-擴酸、十一院基苯擴酸等之擴酸或其水和物 或鹽等。 經由熱而發生酸之化合物,例如,雙(甲苯磺醯氧基 )乙烷、雙(甲苯磺醯氧基)丙烷、雙(甲苯磺醯氧基) 丁烷' P -硝基苄基甲苯磺酸酯、0 -硝基苄基甲苯磺酸酯、 1,2,3-伸苯基三(甲基磺酸酯)、p-甲苯磺酸吡啶鑰鹽、 P -甲苯磺酸嗎啉鑰鹽、P -甲苯磺酸乙酯、p -甲苯磺酸丙酯 -34- 201224043 、P-甲苯磺酸丁酯、p-甲苯磺酸異丁酯、P-甲苯磺酸甲酯 、p-甲苯磺酸苯乙酯、氰基甲基P-甲苯磺酸酯、2,2,2-三 氟乙基P-甲苯磺酸酯、2-羥丁基p-甲苯磺酸酯、N-乙基-4-甲苯颯醯胺以外,又例如以下之式(5 )至式(9 )、式 (14)至式(49)所示之化合物等。 tm-23- 201224043 An alicyclic structure or an organic group of a benzene ring containing a trifluoromethyl group or a trifluoromethyl group. Specific examples of the organic group of the benzene ring having an alicyclic structure or a trifluoromethyl group or a trifluoromethyl group are, for example, an organic group represented by S1 to S7 shown in Table 2 below. [Table 2] S 1 S 2 PF3 f3c S3 -〇〇S 4 S 5 h3c 3 ch3 S 6 F3C S 7 p3c cf3 In the present embodiment, the polyimine precursor of the component (B) may contain the above formula ( 1) Other structural units than the structural units indicated. Among them, other structural units are not particularly limited. Further, the polyiminoimine precursor having a structural unit 〇 (B) component other than the structural unit represented by the formula (1) may have a weight average molecular weight of 1,000 to 100,000, preferably 1,500 to 60,000. » When the weight average molecular weight of the polyimine precursor-24-201224043 is less than 1 000, the solvent resistance is lowered and the alignment sensitivity is lowered. Further, when the weight average molecular weight of the polyimide precursor exceeds 100,000, the viscosity of the solution is too high, and the controllability is lowered. &lt;Production Method of Component (B)&gt; In the present embodiment, the polyimide precursor of the component (B) is obtained by copolymerizing a tetracarboxylic dianhydride and a diamine compound. a tetracarboxylic dianhydride having a tetracarboxylic dianhydride containing at least one alicyclic structure, a tetracarboxylic dianhydride having at least one structure directly bonded by 1 to 3 benzene rings, or at least one A naphthalene ring tetracarboxylic dianhydride is preferred. Specific examples of the acid dianhydride include, for example, pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4 ,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-nonanetetracarboxylic dianhydride, 1,2,5,6-nonanedicarboxylic dianhydride, 3,3',4,4 '-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride and 2,3,3',4'-biphenyltetracarboxylic dianhydride, 1 , 2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride, iota, 2,4,5-cyclohexanetetracarboxylic dianhydride, Bicyclo[3.3.0]octane-2,4,6,8-tetracarboxylic dianhydride or the like. In the present embodiment, the tetracarboxylic dianhydride component may contain other tetracarboxylic dianhydrides other than the above. In this case, the other tetracarboxylic dianhydride may contain one type or plural types. Specific examples of other tetracarboxylic dianhydrides, for example, 3,3,4,4'-benzophenonetetracarboxylic dianhydride, 2,3,3,,4'-benzophenonetetracarboxylic acid Diacetic anhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)ether di-25- 201224043 anhydride, bis(3,4-dicarboxyphenyl)anthracene Anhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 2,5-dicarboxymethyl Terephthalic acid dianhydride, 4,6-dicarboxymethyl isophthalic dianhydride, 4-(2,5-dioxatetrahydro-3-furanyl) phthalic anhydride, 1,4-double (2,5-dioxatetrahydro-3-furanyl)benzene, 1,4-bis(2,6-dioxatetrahydro-4-pyranyl)benzene, 1,4-bis(2, 5-dioxatetrahydro-3-methyl-3-furanylbenzene, 1,4-bis(2,6-dioxatetrahydro-4-methyl-4-pyranyl)benzene, 1 ,2-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1 , 2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofuran tetracarboxylic dianhydride, 2,3,5-three Carboxycyclopentyl acetic acid dianhydride, 4- (2,5- Oxatetrahydro-3-furanyl)-cyclohexane-1,2-dicarboxylic anhydride, tetracyclo[2,2,1,1,1]nonane-2,3,7,8-tetracarboxylic acid Dihydride, 5-(2,5-dioxatetrahydro-3-furanyl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, bicyclo[2.2.2]oct-7 -ene- 2.3.5.6- tetracarboxylic dianhydride, 3,3',4,4'-dicyclohexyltetracarboxylic dianhydride, 2.3.5.6-norbornane tetracarboxylic dianhydride, 3,5,6 - tricarboxynorbornane-2-acetic acid dianhydride, tricyclo[4.2.1.02,5]decane-3,4,7,8-tetracarboxylic dianhydride, tetracyclo[4.4.1.02'5.07'1 ( )] undecane-3,4,8,9-tetracarboxylic dianhydride, hexacyclo[6.6.0.12'7.03'6.19'14.01°'13]hexadecane-4,5,11,12-tetracarboxylate Acid dianhydride, 1,4-bis(2,5-dioxatetrahydro-3-furanyl)hexane, 1,4-bis(2.6-dioxatetrahydro-4-pyranyl)hexane , 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1,2-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid Anhydride and 1,2,3,4,5,6,7,8-octahydro-2,3,6,7-nonanedicarboxylic dianhydride, and the like. The diamine component -26-201224043 which is a raw material of the polyimine precursor of the component (B), preferably a diamine compound having an alicyclic structure or a trifluoromethyl group, or a diamine compound other than the diamine compound . Specific examples of the diamine compound are, for example, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, bis(4-aminocyclohexyl)methane, bis(4-amino group- 3-methylcyclohexyl)methane, 1,4'-dicyclohexyldiamine, 2,2,-trifluoromethyl-4,4'-diaminobiphenyl, 3,3'-trifluoromethyl -4,4'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 2,2-bis[(4-aminophenoxy)phenyl]hexafluoropropane, 2 , 2-bis(3-amino-4-methylphenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexa Fluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, and 1,3-bis(4-aminophenoxy)propane. In the present embodiment, in addition to the above diamine compound, one or a plurality of other diamine compounds may be used. Other diamine compounds, for example, bis(4-aminophenyl)anthracene, bis(3-aminophenyl)anthracene, bis(4-amino-3-carboxyphenyl)anthracene, bis(4-amine ,3,5-dicarboxyphenyl)anthracene, bis[4-(4-amino-3-carboxyphenoxy)phenyl]anthracene, bis[4-(4-aminophenoxy)phenyl] Maple 'bis[4-(3-aminophenoxy)phenyl]anthracene, bis(3-amino-4-hydroxyphenyl)anthracene, bis(4-amino-3-hydroxyphenyl)anthracene, Bis(4-amino-3, 5-dihydroxyphenyl) maple, 3,3'-diamino-4,4'-dichlorodiphenylanthracene, p-phenylenediamine, m- Phenyldiamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,4-dimethyl-1,3-diaminobenzene, 2,5-Dimethyl-1,4-diaminobenzene, 2,3,5,6-tetramethyl-1,4-diaminobenzene' 2,4-diaminophenol, 2,5 -diaminophenol, 4,6-diaminoresorcinol, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, N,N-diallyl-2,4 -diamine-27- 201224043 phenyl aniline, anthracene, fluorenyl-diallyl-2,5-diaminoaniline, 4-aminobenzylamine, 3-aminobenzylamine, 2-(4-amine Phenyl)ethylamine, 2-(3- Phenyl)ethylamine, 1,5-naphthalenediamine, 2,7-naphthalenediamine, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3, 3'-Diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl , 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-di Carboxy-4,4 '-diaminobiphenyl, 3,3 '-difluoro-4,4'-diaminobiphenyl, 3,3'-diaminodiphenylmethane, 3,4 '-Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4 , 4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, Ν-methyl (4,4'-diamine Diphenyl)amine, Ν-methyl (3,3'-diaminodiphenyl)amine, Ν-methyl (3,4'-diaminodiphenyl)amine, 4,4'- Diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzimidil, 1,2 - bis(4-aminophenyl)ethane, 1,2-double (3-aminophenyl)ethane, 4,4'-diaminodiphenylacetylene, 1,3-bis(4-aminophenyl)propane, 1,3-bis(3-aminophenyl) Propane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 1,4-bis(4-aminophenoxy)butane 1,5-bis(4-aminophenoxy)pentane, 1,6-bis(centraminophenoxy)hexane, 1,7-bis(4-aminophenoxy)heptane 1,8-bis(4-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)decane, 1,10-bis(4-aminophenoxy)anthracene Alkane, 1,11-bis(4-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, bis(4-aminophenyl)propane di-base (dioate), -28- 201224043 bis(4-aminophenyl)butane dibase, bis(4-aminophenyl)pentane dibase, bis(4-aminophenyl)hexanediyl, Bis(4-aminophenyl)heptane diyl, bis(4-aminophenyl)octanediyl, bis(4-aminophenyl)decane diyl, bis(4-aminophenyl) ) decane dibasic, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminobenzene) Benzene, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminobenzyl)benzene , 1,3-bis(4-aminobenzyl)benzene, bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis( 4-aminophenyl)isophthalate, bis(3-aminophenyl)isophthalate, 1,4-phenylphenylbis[(4-aminophenyl)methanone] , 1,4-phenylphenylbis[(3-aminophenyl)methanone], 1,3-phenylene bis[(4-aminophenyl)methanone], 1,3-phenylene Bis[(3-aminophenyl)methanone], 1,4-phenylphenylbis(4-aminobenzoate), 1,4-phenylphenylbis(3-aminobenzoate) ), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylene bis(3-aminobenzoate), N,N'-(1,4- Phenyl) bis(4-aminophenylguanamine), N,N'-(1,3-phenylene)bis(4-aminophenylguanamine), N,N'- (1 4-phenylene) bis(3-aminophenylguanamine), N,N'-(1,3-phenylene)bis(3-aminophenylguanamine), bis(4-amino group) Phenyl)-p-benzene Formamide, bis(3-aminophenyl)terephthalamide, bis(4-aminophenyl)isophthalamide, bis(3-aminophenyl)isophthalazin Amine, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-bis(4-aminophenoxy)diphenyl milling, 2,6-diamine Acridine, 2,4-diaminoacridine, 2,4-diamino-1,3,5-triazine, 2,6-diaminodibenzofuran, 2,7-diamino Diphenylfuran, 3,6-diaminodibenzofuran-29- 201224043 s, 2,6-diaminocarbitol, 2,7-diaminocarbitol, 3,6-carbitol , 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bisphenyl)-1,3,4-oxadiazole, 1,3_2 Aminopropane, iota, butane, 1,5-diaminopentane, 1,6-diaminohexane, hydrazine, 7-dioxane, 1,8-diaminooctane, 1, 9-Diaminodecane, ΐ5ΐ〇·diamine, 1,1 1-diaminoundecane and 1,12-diaminododecane. The composition ratio of the total amount of the tetracarboxylic acid (the total amount of the acid components and the total amount of the diamine compound) in the polyimine precursor of the component (B), that is, the combination of the diamine compounds The number>/<the total number of moles of the tetracarboxylic dianhydride compound> is preferably 0.5. In the same manner as the usual polycondensation reaction, the molar ratio of the polyimine precursor formed is increased as the molar ratio is increased. The terminal of the polyimine precursor of the component (B) is changed by the composition ratio of the acid diamine component, and is particularly limited in the present embodiment. In the case where polymerization is carried out using an excess of the diamine component, the reaction with the carboxylic anhydride is carried out to protect the terminal amine group. The carboxylic acids such as phthalic anhydride, trimellitic anhydride, maleic anhydride, naphthalene dihydride, hydrogenated phthalic anhydride, methyl-5-norbornene-2,3-dicarboxylic acid anhydride and tetrahydrogen Phthalic anhydride and the like. In the production of the polyimine precursor of the above component (B), the reaction temperature with the diamine component can be selected at any temperature of from -20 to 150 ° C, preferably from 100 ° C. For example, the reaction temperature of diaminoamine diamino-based heptyl decane dianhydride (diamine molar amount to 1.5 near 1 hour is a component and there is no terminal amino anhydride such as anhydride anhydride, clothing The acid component is set to -30-201224043 5 to 40 ° C, and the reaction time is set to 1 to 48 hours to obtain an imine precursor. Further, the reverse of the case where the terminal amine group is protected by an acid anhydride It can be selected at any temperature of -20 to 150 ° C, preferably -5 to 100 ° C. The above acid component and the diamine component are reacted therewith, usually in a solvent. The solvent used at this time, for example ,N,N-dimethylformamide' dimethylacetamide, N-methylpyrrolidone, N-vinylpyrrolidone methyl caprolactam, dimethyl sulfoxide, tetramethyl Urea, dimethyl hydrazine, kiram, m-cresol, butyrolactone, methyl 3-methoxypropionate, methyl oxypropionate, ethyl 3-methoxypropionate, 2-methyl Ethyl ethoxypropionic acid ethyl 3-ethoxypropionate, ethyl 2-ethoxypropionate, ethylene glycol dimethyl, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, two Glycol ethyl ether, propylene glycol dimethyl , dipropylene glycol dimethyl ether, ethylene glycol ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, Dipropylene monomethyl ether, dipropylene glycol monoethyl ether, cyclohexanone, methyl ethyl ketone isobutyl ketone, 2-glyoxime, etc. These may be used singly or in combination. The solvent of the quinone imine precursor is used in combination as long as the range of the polyimide precursor formed by the polymerization reaction is precipitated. The solution containing the polyimine precursor obtained by the above method is processed. A resin composition for forming a thermosetting film. Further, the polyfluorene precursor can also be used after being precipitated in a poor solvent such as water, methanol or ethanol. The polyfluorene should be immersed in the temperature, Ν-, Ν-/, A 2-methyl ester, hydryl ether methyl alcohol monodiol diol, and all can be recovered without imine. -31 - 201224043 &lt;(c) Component&gt; The component (c) of the present embodiment is crosslinked. The crosslinking agent is a component which can crosslink the component (A) and the component (B). The crosslinking agent, for example, an epoxy compound, a methylol compound or an isocyanate compound, is preferably a methylol compound having two or more methylol groups or alkoxymethylol groups. Specifically, for example, a methoxy group a compound such as acetylene urea, methoxymethylated benzoguanamine or methoxymethylated melamine, etc. Further, for example, hexamethoxymethyl melamine, tetramethoxymethyl benzoguanamine, 1, 3,4,6-tetrakis(butoxymethyl)acetylene urea, 1,3,4,6-tetrakis(hydroxymethyl)acetylene urea, 1,3-bis(hydroxymethyl)urea, ι,ι,3 , 3_tetrakis (butoxymethyl) urea, 1,1,3,3-tetrakis(methoxymethyl)urea, i,3-bis(hydroxymethyl)-4,5-dihydroxy-2- Tetrahydroimidazolidinone and 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-tetrahydroimidazolidone. In addition, commercially available products such as methoxymethyl melamine compounds (trade names Saimer 300, Saimer 301, Saimer 303, Saimel 350), butoxymethyl groups, are manufactured by the Japanese technology industry. a compound such as a melamine compound (trade name: McTeam 506, McTea 5 0 8 ), an acetylene urea compound (trade name: Semel 1170, Paulin 1174), a methylated urea resin (trade name UFR65), and a butyl group. Urea urea resin (trade name UFR300, U-VAN10S60, U-VAN10R, U-VAN11HV) and DIC (stock) urea/formaldehyde resin (high condensation type 'trade name 倍可明J-300S,倍可明P- 955, Beckham N) and so on. Further, the compound in which the hydrogen atom of the amine group is substituted by a methylol group or an alkoxymethyl group may be a compound obtained by condensation of a melamine compound, a urea compound, an acetylene urea compound and a benzoguanamine compound. For example, a high molecular weight compound produced by a melamine compound (trade name Saimer 303) and a benzoguanamine compound (trade name Saimel 1123) described in U.S. Patent No. 6,323,310. Further, as the component (C), N-hydroxymethyl methacrylate, N-methoxymethyl methacrylate, N-ethoxymethyl decylamine or N-butoxymethyl can also be used. A polymer produced by a decylamine compound or a methacrylic acid methacrylate compound substituted with a hydroxymethyl group such as decylamine methacrylate or an alkoxymethyl group. Such polymers, for example, poly(N-butoxymethyl methacrylate), copolymers of N-butoxy methacrylate and styrene, N-hydroxymethyl methacrylate and methacrylic acid Copolymer of methyl ester, copolymer of N-ethoxymethyl methacrylate and benzyl methacrylate, and N-butoxy methacrylate and benzyl methacrylate and 2-hydroxyl a copolymer of propyl methacrylate or the like. The weight average molecular weight of the polymers, for example, from 1, 〇〇〇 to 500,000, or, for example, from 2,000 to 200,000, or from 3,000 to 150,000 or, from 3,000 to 50,000 °, the cross-linking agent of the component (C) exemplified above. Two or more types may be used alone or in combination. In the resin composition of the present embodiment, 'the total amount of the acrylic copolymer of the (A) component having at least the photodimerization site and the thermal crosslinking site, and the polybenzamine precursor of the component (B)' The content of the crosslinking agent of the component C) is preferably from 1 Torr to 100 parts by mass. When the ratio is less than 1 part by mass, the solvent resistance of the cured film obtained by the resin composition is lowered to be -33 - 201224043 or heat resistance, and the sensitivity at the time of light alignment is lowered. Further, when it is more than 100 parts by mass, in addition to lowering the optical alignment, there is a concern that the preservation stability is lowered. &lt;Component (D)&gt; In the resin composition of the present embodiment, the component (D) may contain an acid or a thermal acid generator. The component (D) is effective in promoting the thermosetting property of the resin composition of the present embodiment. The acid or thermal acid generator of the component (D) is a compound containing a sulfonic acid group, hydrochloric acid or a salt thereof, and a compound which is thermally decomposed to generate an acid upon calcination or post-baking, that is, as long as it is 80 to 250°. When C is thermally decomposed to generate an acid compound, it is not particularly limited. The compound, for example, hydrochloric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentanesulfonic acid, octanesulfonic acid, benzenesulfonic acid, P-toluenesulfonic acid, decanoic acid, Trifluoromethanesulfonic acid, P-phenolsulfonic acid, 2-naphthalenesulfonic acid, 1,3,5-trimethylbenzenesulfonic acid, P-toluene-2-sulfonic acid, toluene-2-sulfonic acid, 4-ethylbenzene Sulfonic acid, 111,111,2^1,211-perfluorooctane sulfonic acid, perfluoro(2-ethoxyethane)sulfonic acid, pentafluoroethanesulfonic acid, heptafluorobutyl-1-propionic acid , the eleventh hospital base benzene acid expansion and other acid expansion or its water and substances or salt. a compound which generates an acid via heat, for example, bis(toluenesulfonyloxy)ethane, bis(toluenesulfonyloxy)propane, bis(toluenesulfonyloxy)butane 'P-nitrobenzyltoluenesulfonate Acid ester, 0-nitrobenzyl tosylate, 1,2,3-phenylphenyl tris(methylsulfonate), p-toluenesulfonic acid pyridyl salt, P-toluenesulfonic acid morpholine salt , P-toluenesulfonate ethyl ester, propyl p-toluenesulfonate-34- 201224043, butyl p-toluenesulfonate, isobutyl p-toluenesulfonate, methyl p-toluenesulfonate, p-toluene Phenylethyl ester, cyanomethyl P-toluenesulfonate, 2,2,2-trifluoroethyl P-toluenesulfonate, 2-hydroxybutyl p-toluenesulfonate, N-ethyl- Other than 4-toluidine, for example, a compound represented by the following formula (5) to formula (9), formula (14) to formula (49), and the like. Tm

N -35- 201224043 [化5]N -35- 201224043 [化5]

式(23)Equation (23)

CF3 式(25&gt; -36- 201224043CF3 type (25&gt; -36- 201224043

-37- 201224043 [化7] 式(33) ad〇CH3-37- 201224043 [化7] (33) ad〇CH3

式(38) 式(40〉 式(42) 201224043Formula (38) Formula (40> Formula (42) 201224043

式(47&gt; ch3Equation (47> ch3

式(49) 本實施形態之樹脂組成物中,(D )成分之含量’相 對於(A)成分與(B)成分之合計量1〇〇質量份’較佳 爲0.01至5質量份。未達0.01質量份時’將造成熱硬化 性降低而使得耐溶劑性不佳以外,也會有降低感受光照射 之感度的情形。又,超過5質量份時’也會有降低組成物 之保存安定性的情形。 -39- 201224043 &lt; (E )成分&gt; 本實施形態中’也可含有(E)成分之增感劑。該( E )成分,就促進本實施形態之熱硬化膜形成後之光二聚 化反應等觀點爲有效者。 (E )成分之增感劑,例如二苯甲酮、蒽、蒽醌、噻 噸酮及其衍生物以及硝基苯基化合物等。其中又以二苯甲 酮衍生物及硝基苯基化合物爲特佳。具體而言’例如 Ν,Ν-二乙基胺基二苯甲酮、2-硝基苐、2-硝基蒹酮、5-硝 基苊萘、9-羥基甲基蒽、4-硝基桂皮酸或4-硝基聯苯基等 。特別是以二苯甲酮衍生物之Ν,Ν-二乙基胺基二苯甲酮 爲佳。此外,增感劑並不限定於上述內容。又,增感劑可 單獨使用或將2種以上之化合物組合使用亦可。 本實施形態中,(Ε )成分之增感劑的使用比例,相 對於(A )成分之1 00質量份,以〇. 1至20質量份爲佳, 更佳爲〇. 2至1 0質量份。該比例遠低於〇. 1質量份時, 將會有無法充分得到作爲增感劑之效果的情形。又,大於 20質量份時,將會有造成透過率降低及塗膜龜裂之情形 &lt;溶劑&gt; 本實施形態之樹脂組成物爲以溶解於溶劑所得之溶液 狀態使用。所使用之溶劑,爲溶解(A )成分(B )成分 ,及(C)成分所得者。又,必要時含有(D)成分或(E )成分之情形’亦爲將其溶解所得之溶夜,又,含有後述 -40- 201224043 其他添加劑之情形時,亦爲將其溶解所得之溶夜。只要具 有溶解能力之溶劑時,其則種類及結構等並未有特別限定 條件。具體而言,例如(A)成分或(B)成分聚合時所 使用之溶劑等。該些溶劑,可單獨使用1種,或將2種以 上組合使用。 &lt;其他添加劑&gt; 此外,本實施形態之樹脂組成物,於無損本發明之效 果之情形,必要時可再添加、含有矽烷偶合劑、界面活性 劑、流動調整劑、顏料、染料、保存安定劑、消泡劑及抗 氧化劑等其他之添加劑。 &lt;樹脂組成物&gt; 本實施形態之樹脂組成物爲含有(A)成分之具有光 二聚化部位及熱交聯部位之丙烯酸共聚物、(B)之聚醯 亞胺前驅物、(C )成分之交聯劑,並配合所期望,可再 含有(D)成分之酸或熱酸發生劑、(E)成分之增感劑 ,此外,可再含有其他添加劑中所選出之1種以上之添加 劑。又,樹脂組成物通常爲使用溶解於該些溶劑所得之溶 液。 樹脂組成物中,(A )成分與(B )成分之組成比, 以質量份比爲5 : 95至60 : 40爲佳。(A)成分之含量 大幅低於該組成比時,會有產生配向不良之疑慮。又,( A )成分之含量大幅高於該組成比時,除雙折射率降低以 -41 - 201224043 外,塗膜也有白濁化之疑慮。 又,(A)成分之羥價通常爲1至3mmol/g,(B)成 分之酸價通常爲2至4mm〇l/g,於上述範圍之中,(A) 成分與(B )成分之組成比爲5 : 95至40 : 60之範圍內之 情形,可使上層之配向成分流動而提高配向感度,進而得 到高雙折射率。 其中,(A )成分之羥價係指,(A )成分1 g中所含 之游離羥基被乙醯化時,爲中和乙酸所需要之氫氧化鈣的 mmol數。又,(B)成分之酸價,係指爲中和(B)成分 lg中所含游離的酸基所需要之氫氧化鈣的mmol數。 本實施形態之樹脂組成物的較佳例示,係如以下所示 〇 〔1〕: (A)成分與(B)成分之合計量100質量份 爲基準,爲含有10至100質量份之(C)成分樹脂組成物 〇 〔2〕: (A)成分與(B)成分之合計量100質量份 爲基準,含有10至100質量份之(C)成分,及溶劑的樹 脂組成物。 〔3〕: (A)成分與(B)成分之合計量100質量份 爲基準,爲含有10至100質量份之(C)成分、0.01至5 質量份之(D )成分,及溶劑的樹脂組成物。 本實施形態之樹脂組成物作爲溶液使用之情形,其組 成比例或製造方法等詳述如以下內容。 本實施形態之樹脂組成物中,固體成分之比例,只g -42- 201224043 使各成分均勻地溶解於溶劑之範圍,並未有特別限定之內 容,一般之固體成分比例爲1至80質量%。其中,較佳 爲3至60質量%,更佳爲5至40質量%。其中,固體成 分係指由溶劑中去除樹脂組成物之全成分後所得之成分。 本實施形態之樹脂組成物之製造方法,並未有特別限 定。例如,將(A)成分溶解於溶劑,再於該溶液中,使 (B)成分,再加入(C)成分及(D)成分依特定比例混 合,形成均勻溶液之方法等。又,於該製造方法之適當階 段中,可配合其必要性再添加其他添加劑,進行混合之方 法等。 本實施形態之樹脂組成物之製造中,溶劑中經聚合反 應所得之丙烯酸聚合物之溶液可無加工處理下使用。該情 形,係於(A)成分之溶液中,與前述內容相同般,加入 (B)成分、(C)成分及(D)成分等而形成均勻之溶液 。此時,於調整濃度等目的時,可再追加溶劑亦可。其中 ,丙烯酸聚合物生成過程中所使用之溶劑,與樹脂組成物 之製造時爲調整濃度等所使用之溶劑,可爲相同之溶劑亦 可,或由不同之適當溶劑中分別選擇使用。 依以上方法所製得之本實施形態之樹脂組成物的溶液 。其以使用孔徑0.2 /z m左右之過濾器過濾以後予以使用 爲佳。 &lt;塗膜、硬化膜及液晶配向層&gt; 使用本實施形態之樹脂組成物,依以下之方法形成塗 -43- 201224043 膜。 首先,於基板上,使用迴轉塗佈、流動塗佈、滾筒塗 佈、縫隙塗佈、縫隙之後進行迴轉塗佈、塗料噴射塗佈或 印刷等方法,塗佈樹脂組成物。隨後,於熱壓板或烘箱等 進行預乾燥(預燒焙)結果,即可形成塗膜。其後,對此 塗膜經由加熱處理(後燒焙)結果,即可形成硬化膜。 塗佈樹脂組成物之基板,例如可使用矽/二氧化矽被 覆基板、氮化矽基板、玻璃基板、石英基板或ITO基板等 。又,例如亦可使用被覆鋁、鉬或鉻等金屬之基板。此外 ,例如,三乙醯纖維素薄膜、聚酯薄膜及丙烯酸薄膜等樹 脂薄膜等作爲基板使用。 塗膜之預燒焙之條件,例如,可採用由溫度70至 160°C、時間0.3至60分鐘之範圍中適當選擇之加熱溫度 及加熱時間。加熱溫度及加熱時間,較佳爲80至1 40°C 、0.5至10分鐘。 塗膜之後燒焙條件,一般爲採用由溫度140至2 5 0°C 之範圍中配合加熱方法等所適當選擇之加熱溫度。又,加 熱時間亦爲同樣,例如,於熱壓板上之情形爲5至3 0分 鐘,於烘箱中之情形爲爲3 0至90分鐘等。 以上述條件爲基礎,經由使本實施形態之樹脂組成物 硬化結果,即可將濾光膜(CF )等所造成之基板之高低 段差充分地覆蓋,而得到平坦化效果,同時亦可形成具有 高透明性之硬化膜。又,硬化膜之膜厚度,例如可爲0.1 至30//Π1,其可考慮所使用之基板的段差或光學、電學性 -44 - 201224043 質等作適當之選擇。 依上述方法所得之硬化膜,爲可進行偏光照射之液晶 配向材料,即,具有可使具有液晶性之化合物形成配向之 液晶配向層的機能。此時,偏光照射所使用之偏光光線, 以偏光uv ( ultraviolet )爲佳。偏光UV ,通常爲使用 150至450nm波長之紫外光。隨後,以垂直或斜射方向對 於室溫或加熱狀態下之硬化膜照射直線偏光。 於依以上方法由本實施形態之樹脂組成物所形成之液 晶配向層之上,塗佈相位差材料之後,加熱至液晶相轉移 溫度,使相位差材料形成液晶狀態後,進行光硬化。如此 ’可於液晶配向層上形成具有光學異向性之層,即形成相 位差材料。經由該方法於液晶晶元內部配置相位差材料之 構成內容,與於液晶晶元之外部配置相位差材料之以往的 構成內容相比較時,得知其可提高液晶晶元之反差比。 相位差材料,例如,可使用具有聚合性基之液晶單體 ,或含有其之組成物等。形成有液晶配向層之基板爲薄膜 之情形,其適合作爲光學異向性薄膜。該些相位差材料, 爲具有水平配向、膽固醇配向、垂直配向、混合配向、二 軸配向等配向性之材料,其可分別配合所需要之相位差使 用。 又,可將具有依上述方式所形成之液晶配向層的2片 基板,介由調距器使液晶配向層相互對向之方式貼合,其 後,於該些基板之間,經由注入液晶,而可作爲形成液晶 配向之液晶顯示元件。 -45- 201224043 如此,本實施形態之樹脂組成物,適合使用於構成各 種光學異向性薄膜或液晶顯示元件。 又,本實施形態之樹脂組成物適合作爲形成薄膜電晶 體(TFT)型液晶顯示元件及有機EL元件等各種顯示器 之保護膜、平坦膜、絕緣膜等硬化膜之材料。特別是除濾 光膜(CF)之保護膜材料(CF保護膜材料)以外,亦適 合作爲可形成TFT型液晶元件之層間絕緣膜,或有機EL 元件之絕緣膜等的材料。 本實施形態之樹脂組成物作爲C F保護膜材料使用之 情形,所得之CF保護膜,除可覆蓋濾光膜之段差,使其 平坦化以外,亦具有液晶配向材料之機能。因此,亦可作 爲具有配向性之CF保護膜使用。 圖1爲本實施形態之液晶晶元模式的構成圖。該圖中 ,液晶層108爲挾夾於2片的基板101、111之間。基板 111上,爲形成ITO110與配向膜109。又,基板101上, 爲依序形成濾光膜102,與CF保護膜103,與相位差材 料105,與ITO106,與配向膜107。該情形中,CF保護 膜103爲具有配向膜之機能,故可不需使用對應於圖2之 配向膜204的膜。 【實施方式】 [實施例] 以下,將列舉實施例,對本發明作更詳細之說明,但 本發明並不受該些實施例所限定。 -46- 201224043 [實施例所使用之簡稱] 以下實施例所使用之簡稱,係具有以下之意義。 &lt;丙烯酸聚合物&gt; HEMA: 2-羥甲基丙烯酸乙酯 C IN: 4- (6-甲基丙烯氧己基-1-氧基)桂皮酸甲酯 ΑΙΒΝ: α、α’-偶氮二異丁腈 &lt;聚醯亞胺前驅物&gt; BPDA: 3,3’,4,4’-聯苯基四羧酸二酐 ODPA: 4,4,-氧代二苯二甲酸酐 CBDA: 1,2,3,4-環丁烷四羧酸二酐 TFMB: 2,2’-三氟甲基-4,4’-二胺基聯苯基 &lt;交聯劑&gt; CYM:賽麥爾303 (三井科技製) &lt;酸或熱酸發生劑&gt; PTSA: ρ -甲苯購酸1水和物 &lt;溶劑&gt; CHN :環己酮 NMP : Ν -甲基吡咯啶酮 -47- 201224043 依以下之合成例所製得之丙烯酸共聚物之數平均分子 量及重量平均分子量爲使用日本分光(股)製GPC裝置 (Shodex (登記商標)管柱KF803L及KF804L),使溶 出之溶劑四氫呋喃於管柱中(管柱溫度4 0 °C )以流量 1 m 1 /分鐘流動進行溶離之條件下所測定之値。又,下述之 數平均分子量(以下,亦稱爲Μη)及重量平均分子量( 以下’亦稱爲Mw),爲以聚苯乙烯換算値表示。 又,聚醯亞胺前驅物之Μη及Mw,爲使用Shodex公 司製GPC裝置(Shodex (登記商標)管柱KD 803及 KD8 05 ),溶出溶劑N,N,-二甲基甲醯胺(添加劑爲,溴 化鋰-水和物(LiBr . H20 )爲30mmol/L、磷酸·無水結 晶(〇-磷酸)爲30mmol/L、四氫呋喃爲l〇ml/L),於管 柱中(管柱溫度5〇t )以流量1ml/分鐘流動進行溶離之 條件下所測定者。又,下述Μη及Mw爲,聚乙二醇、聚 氧化乙烯換算値表示。 &lt;合成例1 &gt; 使 CIN 42.0g、HEMA 18.0g、AIBN 1.3g 溶解於 CHN 1 66.8g之中,於80°C下反應20小時而製得丙烯酸聚合物 溶液(所得固體成分濃度爲2 7質量% ) ( P 1 )。所得之 丙烯酸聚合物之Μη爲8,500、Mw爲1 6,500。 &lt;合成例2 &gt; -48- 201224043 使TFMB 16.0g溶解於NMP 114.1g中。隨後’加入 BPDA 12.5g,於4(TC下反應20小時而製得聚醯亞胺前驅 物溶液(所得固體成分濃度爲20質量% ) ( P2 )。所得 之聚醯亞胺前驅物之Μη爲1 2,600、Mw爲27,500。 &lt;合成例3 &gt; 使 TFMB 5.1g溶解於 NMP 72.2g中。隨後,加入 ODPA 4.7g,於室溫下反應20小時而製得聚醯亞胺前驅 物溶液(所得固體成分濃度爲1 2質量% ) ( P3 )。所得 之聚醯亞胺前驅物之Μη爲7,000、Mw爲1 5,800。 &lt;合成例4 &gt; 使TFMB 233.8g溶解於NMP 2111.6g中。隨後,加 入CBDA 142.9g,於室溫下反應20小時而製得聚醯亞胺 前驅物溶液(所得固體成分濃度爲1 5質量% )( P4 )。 所得之聚醯亞胺前驅物之Μη爲12,400、Mw爲43,000。 &lt;實施例1至實施例3及比較例1至比較例4 &gt; 依表3所示組成內容,分別製造實施例1至實施例3 及比較例1至比較例4之各組成物,並分別評估其耐溶劑 性、透過率、配向性以及雙折射率。 -49- 201224043 [表3】 (A)成分35 溶液(g) ⑻成分58 溶液(g) (C)成分 (g) (D)成分 (g) 溶劑 (g) 實施例1 P1 1 P2 14 CYM 1.6 PTSA 0.014 NMP 5.7 實施例2 P1 1 P3 20 CYM 1.6 PTSA 0.013 NMP 1 實施例3 P1 1 P4 17 CYM 1.7 PTSA 0.0014 NMP 39 比較例1 P1 5 — — — NMP 12 比較例2 — P2 5 — — NMP 1.6 比較例3 — P3 5 — — — 比較例4 — P4 5 — 一 NMP 4.3 ※P 1 :丙烯酸共聚物、P 2至P 4 :聚醯亞胺前驅物 [耐溶劑性之評估] 將實施例1至實施例3及比較例1至比較例4之各組 成物,使用旋轉塗佈器塗佈於矽晶圓上之後,於熱壓板上 以溫度80°C進行120秒鐘之預燒焙。隨後,將此塗膜於 熱風循環式烘箱中以溫度230°C進行30分鐘之後燒焙, 形成膜厚2_0/zm之硬化膜。膜厚爲使用VEECO公司製 DEKTAK1 50進行測定。 其次,將此硬化膜浸漬於CHN或NMP中60秒鐘之 後,分別於溫度1 〇〇 t下乾燥60秒鐘,隨後測定其膜厚 。浸漬CHN或NMP後之膜厚未產生變化者爲〇、觀察出 浸漬後膜厚減少者爲「X」。 -50- 201224043 [光透過率(透明性)之評估] 將實施例1至實施例3及比較例1至比較例4之各組 成物,使用旋轉塗佈器塗佈於石英基板上之後,於熱壓板 上,以溫度80°C、120秒鐘進行預燒焙。隨後,將此塗膜 於熱風循環式烘箱中,進行溫度23 (TC、30分鐘之後燒焙 ,形成膜厚2.0/zm之硬化膜。膜厚爲使用VEECO公司製 DEKTAK150進行測定。 其次,此硬化膜爲使用紫外線可見分光光度計((股 )島津製作所製 SHIMADZU UV-2550 (型號)),測定 波長400nm時之透過率。 [配向感度之評估] 將實施例1至實施例3及比較例1至比較例4之各組 成物使用旋轉塗佈器塗佈於ITO基板上之後,於熱壓板上 以溫度80°C、1 20秒鐘時間進行預燒焙。隨後,將此塗膜 於熱風循環式烘箱中以溫度23 0°C、30分之條件進行後燒 焙,形成膜厚2.0/zm之硬化膜。膜厚爲使用VEECO公司 製 DEKTAK150進行測定》 其次,將偏光UV之波長3 13nm的直線偏光,以相對 於ITO基板上之硬化膜爲垂直之方向下進行照射。隨後, 將由液晶單體所形成之相位差材料溶液使用旋轉塗佈器塗In the resin composition of the present embodiment, the content of the component (D) is preferably 0.01 to 5 parts by mass based on the total amount of the component (A) and the component (B). When it is less than 0.01 parts by mass, the thermosetting property is lowered to make the solvent resistance poor, and the sensitivity of the perceived light irradiation may be lowered. Further, when it exceeds 5 parts by mass, the storage stability of the composition may be lowered. -39-201224043 &lt;(E) component&gt; In the present embodiment, the sensitizer of the component (E) may be contained. The component (E) is effective in promoting the photodimerization reaction after the formation of the thermosetting film of the present embodiment. Sensitizers of the component (E), such as benzophenone, anthraquinone, anthracene, thioxanthone and derivatives thereof, and a nitrophenyl compound. Among them, benzophenone derivatives and nitrophenyl compounds are particularly preferred. Specifically, 'for example, hydrazine, hydrazine-diethylaminobenzophenone, 2-nitroguanidine, 2-nitrofluorenone, 5-nitroguanidine, 9-hydroxymethylhydrazine, 4-nitro Cinnamic acid or 4-nitrobiphenyl. In particular, ruthenium-diethylaminobenzophenone is preferred as the benzophenone derivative. Further, the sensitizer is not limited to the above. Further, the sensitizer may be used singly or in combination of two or more kinds of compounds. In the present embodiment, the use ratio of the sensitizer of the (Ε) component is preferably from 1 to 20 parts by mass, more preferably from 0.1 to 10 parts by mass, based on 100 parts by mass of the component (A). Share. When the ratio is much lower than that of 0.1 part by mass, there is a case where the effect as a sensitizer cannot be sufficiently obtained. When the amount is more than 20 parts by mass, the transmittance is lowered and the coating film is cracked. &lt;Solvent&gt; The resin composition of the present embodiment is used in a solution obtained by dissolving in a solvent. The solvent to be used is obtained by dissolving the component (B) and the component (C). In addition, when the component (D) or the component (E) is contained as necessary, it is also a nighttime solution obtained by dissolving it, and when it contains the other additives of the following -40 - 201224043, it is also dissolved in the night. . When there is a solvent having a dissolving power, the type and structure thereof are not particularly limited. Specifically, for example, a solvent or the like used in the polymerization of the component (A) or the component (B). These solvents may be used alone or in combination of two or more. &lt;Other Additives&gt; Further, in the case where the effect of the present invention is not impaired, the resin composition of the present embodiment may be further added, if necessary, containing a decane coupling agent, a surfactant, a flow regulator, a pigment, a dye, and a storage stability. Other additives such as agents, defoamers and antioxidants. &lt;Resin Composition&gt; The resin composition of the present embodiment is an acrylic copolymer having a photodimerization site and a thermal crosslinking site containing the component (A), a polybendimimine precursor of (B), and (C) The crosslinking agent of the component may further contain an acid or a thermal acid generator of the component (D) and a sensitizer of the component (E), and may further contain one or more selected from the other additives. additive. Further, the resin composition is usually a solution obtained by dissolving in the solvents. In the resin composition, the composition ratio of the component (A) to the component (B) is preferably 5:95 to 60:40 by mass. When the content of the component (A) is significantly lower than the composition ratio, there is a concern that alignment failure occurs. Further, when the content of the component (A) is significantly higher than the composition ratio, in addition to the decrease in the birefringence of -41 - 201224043, the coating film is also cloudy. Further, the hydroxyl value of the component (A) is usually from 1 to 3 mmol/g, and the acid value of the component (B) is usually from 2 to 4 mm〇l/g, and among the above ranges, the components (A) and (B) are In the case where the composition ratio is in the range of 5:95 to 40:60, the alignment component of the upper layer can be flowed to increase the alignment sensitivity, thereby obtaining a high birefringence. Here, the hydroxyl value of the component (A) means the number of mmoles of calcium hydroxide required for neutralizing acetic acid when the free hydroxyl group contained in 1 g of the component (A) is acetylated. Further, the acid value of the component (B) means the number of mmoles of calcium hydroxide required to neutralize the free acid group contained in the component (B). The preferred embodiment of the resin composition of the present embodiment is as follows: 〇 [1]: 100 parts by mass of the total amount of the component (A) and the component (B), and 10 to 100 parts by mass (C) (Component) Resin composition [2]: A resin composition containing 10 to 100 parts by mass of the component (C) and a solvent, based on 100 parts by mass of the total of the components (A) and (B). [3]: a resin containing 10 to 100 parts by mass of the component (C), 0.01 to 5 parts by mass of the component (D), and a solvent, based on 100 parts by mass of the total of the components (A) and (B). Composition. In the case where the resin composition of the present embodiment is used as a solution, the composition thereof, the production method, and the like are described in detail below. In the resin composition of the present embodiment, the ratio of the solid content is only in the range of g -42 to 201224043, and the components are uniformly dissolved in the solvent, and there is no particular limitation. Generally, the solid content ratio is from 1 to 80% by mass. . Among them, it is preferably from 3 to 60% by mass, more preferably from 5 to 40% by mass. Here, the solid component means a component obtained by removing the entire component of the resin composition from a solvent. The method for producing the resin composition of the present embodiment is not particularly limited. For example, a method in which the component (A) is dissolved in a solvent, and the component (B) is further added to the component (C) and the component (D) in a specific ratio to form a homogeneous solution. Further, in the appropriate stage of the production method, other additives may be added in combination with the necessity, and the method of mixing may be carried out. In the production of the resin composition of the present embodiment, the solution of the acrylic polymer obtained by the polymerization reaction in the solvent can be used without processing. In the case of the solution of the component (A), the components (B), (C) and (D) are added in the same manner as described above to form a homogeneous solution. At this time, when adjusting the concentration or the like, a solvent may be added. The solvent used in the formation of the acrylic polymer and the solvent used for adjusting the concentration during the production of the resin composition may be the same solvent or may be selected from different suitable solvents. A solution of the resin composition of the present embodiment obtained by the above method. It is preferably used after being filtered using a filter having a pore size of about 0.2 / z m. &lt;Coating film, cured film, and liquid crystal alignment layer&gt; Using the resin composition of the present embodiment, a film of -43 to 201224043 was formed by the following method. First, a resin composition is applied onto the substrate by a method such as rotary coating, flow coating, roll coating, slit coating, slit, spin coating, paint spray coating or printing. Subsequently, the coating film is formed by pre-drying (pre-baking) on a hot press plate or an oven or the like. Thereafter, the cured film is formed by heat treatment (post-baking) of the coating film. For the substrate to which the resin composition is applied, for example, a ruthenium/ruthenium dioxide-coated substrate, a tantalum nitride substrate, a glass substrate, a quartz substrate, an ITO substrate, or the like can be used. Further, for example, a substrate coated with a metal such as aluminum, molybdenum or chromium may be used. Further, for example, a resin film such as a triacetyl cellulose film, a polyester film or an acrylic film is used as a substrate. The pre-baking conditions of the coating film, for example, a heating temperature and a heating time which are appropriately selected from the range of temperature 70 to 160 ° C and time 0.3 to 60 minutes can be employed. The heating temperature and the heating time are preferably 80 to 140 ° C for 0.5 to 10 minutes. The baking condition after the coating film is generally a heating temperature appropriately selected by a heating method such as a temperature in the range of 140 to 250 °C. Further, the heating time is also the same, for example, 5 to 30 minutes on the hot platen, 30 to 90 minutes in the oven, and the like. By the result of curing the resin composition of the present embodiment, the height difference of the substrate caused by the filter film (CF) or the like can be sufficiently covered to obtain a flattening effect, and at the same time, it can be formed. Highly transparent cured film. Further, the film thickness of the cured film may be, for example, 0.1 to 30//Π1, which may be appropriately selected in consideration of the step difference of the substrate to be used or the optical or electrical property of -44 - 201224043. The cured film obtained by the above method is a liquid crystal alignment material which can be subjected to polarized light irradiation, that is, a liquid crystal alignment layer which can form a liquid crystal compound. At this time, the polarized light used for the polarized light irradiation is preferably polarized uv (ultraviolet light). Polarized UV, usually using ultraviolet light with a wavelength of 150 to 450 nm. Subsequently, the hardened film at room temperature or in a heated state is irradiated with linear polarization in a vertical or oblique direction. The phase difference material is applied onto the liquid crystal alignment layer formed of the resin composition of the present embodiment by the above method, and then heated to a liquid crystal phase transition temperature to form a liquid crystal state of the phase difference material, followed by photocuring. Thus, a layer having optical anisotropy can be formed on the liquid crystal alignment layer, i.e., a phase difference material is formed. When the phase difference material is disposed inside the liquid crystal cell by this method, it is found that the contrast ratio of the liquid crystal cell can be improved when compared with the conventional configuration in which the phase difference material is disposed outside the liquid crystal cell. As the phase difference material, for example, a liquid crystal monomer having a polymerizable group, a composition containing the same, or the like can be used. In the case where the substrate on which the liquid crystal alignment layer is formed is a thin film, it is suitable as an optical anisotropic film. The phase difference materials are materials having an alignment property such as horizontal alignment, cholesterol alignment, vertical alignment, mixed alignment, and biaxial alignment, which can be used in combination with a desired phase difference. Moreover, the two substrates having the liquid crystal alignment layer formed as described above can be bonded to each other via the distance adjuster so that the liquid crystal alignment layers face each other, and then the liquid crystal is injected between the substrates. It can be used as a liquid crystal display element for forming a liquid crystal alignment. -45-201224043 Thus, the resin composition of the present embodiment is suitably used for constituting various optical anisotropic films or liquid crystal display elements. In addition, the resin composition of the present embodiment is suitable as a material for forming a protective film such as a thin film transistor (TFT) liquid crystal display device or an organic EL device, and a cured film such as a flat film or an insulating film. In particular, in addition to the protective film material (CF protective film material) of the filter film (CF), it is also suitable as a material which can form an interlayer insulating film of a TFT-type liquid crystal element or an insulating film of an organic EL element. In the case where the resin composition of the present embodiment is used as a material for a F F protective film, the obtained CF protective film has a function of a liquid crystal alignment material in addition to a step of covering the filter film to be flattened. Therefore, it can also be used as an oriented CF protective film. Fig. 1 is a view showing the configuration of a liquid crystal cell mode in the embodiment. In the figure, the liquid crystal layer 108 is sandwiched between two substrates 101 and 111. On the substrate 111, an ITO 110 and an alignment film 109 are formed. Further, on the substrate 101, the filter film 102, the CF protective film 103, the phase difference material 105, the ITO 106, and the alignment film 107 are sequentially formed. In this case, since the CF protective film 103 functions as an alignment film, it is not necessary to use a film corresponding to the alignment film 204 of Fig. 2. [Embodiment] [Examples] Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited by the examples. -46- 201224043 [Abbreviation used in the examples] The abbreviations used in the following examples have the following meanings. &lt;Acrylic Polymer&gt; HEMA: 2-Hydroxyethyl methacrylate C IN: 4-(6-Methylpropoxyhexyl-1-oxy) cinnamic acid methyl ester ΑΙΒΝ: α, α'-azodi Isobutyronitrile &lt;polyimine precursor&gt; BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride ODPA: 4,4,-oxodiphthalic anhydride CBDA: 1 2,3,4-cyclobutanetetracarboxylic dianhydride TFMB: 2,2'-trifluoromethyl-4,4'-diaminobiphenyl&lt;crosslinking agent&gt; CYM: Saimer 303 (manufactured by Mitsui Science and Technology) &lt;acid or thermal acid generator&gt; PTSA: ρ-toluene acid 1 water and solvent &lt;solvent&gt; CHN: cyclohexanone NMP : Ν -methylpyrrolidone-47- 201224043 The number average molecular weight and the weight average molecular weight of the acrylic copolymer obtained by the following synthesis examples were obtained by using a GPC apparatus (Shodex (registered trademark) column KF803L and KF804L) manufactured by JASCO Corporation, and the solvent tetrahydrofuran was dissolved in the tube. The enthalpy measured under the conditions in which the column (column temperature 40 ° C) flows at a flow rate of 1 m 1 /min. Further, the following average molecular weight (hereinafter also referred to as Μη) and weight average molecular weight (hereinafter also referred to as Mw) are expressed in terms of polystyrene. Further, the Μη and Mw of the polyimide precursor were made using a GPC apparatus (Shodex (registered trademark) column KD 803 and KD8 05 manufactured by Shodex Co., Ltd.), and the solvent N, N,-dimethylformamide (additive) was eluted. Lithium bromide-water (LiBr. H20) is 30 mmol/L, phosphoric acid·anhydrous crystal (〇-phosphoric acid) is 30 mmol/L, tetrahydrofuran is l〇ml/L), in the column (column temperature 5〇) t) The one measured under the conditions of dissolution at a flow rate of 1 ml/min. Further, the following Μη and Mw are expressed in terms of polyethylene glycol and polyethylene oxide. &lt;Synthesis Example 1 &gt; 42.0 g of CIN, 18.0 g of HEMA, and 1.3 g of AIBN were dissolved in 66.8 g of CHN 1 and reacted at 80 ° C for 20 hours to obtain an acrylic polymer solution (the obtained solid content concentration was 2). 7 mass%) (P 1 ). The obtained acrylic polymer had a Μη of 8,500 and a Mw of 1,600. &lt;Synthesis Example 2 &gt; -48- 201224043 16.0 g of TFMB was dissolved in 114.1 g of NMP. Subsequently, 12.5 g of BPDA was added and reacted at 4 (TC for 20 hours to obtain a polyimide precursor solution (the obtained solid content concentration was 20% by mass) (P2). The obtained polyamidene precursor was Μη 1 2,600, Mw was 27,500. &lt;Synthesis Example 3 &gt; 5.1 g of TFMB was dissolved in 72.2 g of NMP. Subsequently, 4.7 g of ODPA was added and reacted at room temperature for 20 hours to obtain a polyimide precursor solution ( The obtained solid content concentration was 12% by mass) (P3). The obtained polyimide precursor had a Μη of 7,000 and a Mw of 15,800. <Synthesis Example 4 &gt; 233.8 g of TFMB was dissolved in NMP 2111.6 g. Subsequently, 142.9 g of CBDA was added and reacted at room temperature for 20 hours to obtain a polyimide precursor solution (the obtained solid content concentration was 15 mass%) (P4). The obtained polyamidene precursor was Μη 12,400 and Mw were 43,000. &lt;Example 1 to Example 3 and Comparative Example 1 to Comparative Example 4 &gt; Examples 1 to 3 and Comparative Examples 1 to 4 were respectively produced according to the composition shown in Table 3. Each composition was evaluated for solvent resistance, transmittance, alignment, and birefringence. -49- 201 224043 [Table 3] (A) Component 35 Solution (g) (8) Component 58 Solution (g) (C) Component (g) (D) Component (g) Solvent (g) Example 1 P1 1 P2 14 CYM 1.6 PTSA 0.014 NMP 5.7 Example 2 P1 1 P3 20 CYM 1.6 PTSA 0.013 NMP 1 Example 3 P1 1 P4 17 CYM 1.7 PTSA 0.0014 NMP 39 Comparative Example 1 P1 5 — — — NMP 12 Comparative Example 2 — P2 5 — — NMP 1.6 Comparative Example 3 - P3 5 — — — Comparative Example 4 — P4 5 — A NMP 4.3 ※P 1 : Acrylic copolymer, P 2 to P 4 : Polyimine precursor [Evaluation of solvent resistance] Example 1 to implementation Each of the compositions of Example 3 and Comparative Example 1 to Comparative Example 4 was applied onto a ruthenium wafer using a spin coater, and then pre-baked on a hot plate at a temperature of 80 ° C for 120 seconds. This coating film was baked in a hot air circulating oven at a temperature of 230 ° C for 30 minutes, and then baked to form a cured film having a thickness of 2_0 / zm. The film thickness was measured using DEKTAK1 50 manufactured by VEECO Co., Ltd. After immersing in CHN or NMP for 60 seconds, it was dried at a temperature of 1 Torr for 60 seconds, and then the film thickness was measured. The film thickness after immersion of CHN or NMP was not changed, and it was observed that the film thickness after immersion was "X". -50-201224043 [Evaluation of Light Transmittance (Transparency)] Each of the compositions of Examples 1 to 3 and Comparative Examples 1 to 4 was applied onto a quartz substrate using a spin coater, and then The hot plate was pre-baked at a temperature of 80 ° C for 120 seconds. Subsequently, the coating film was baked in a hot air circulating oven at a temperature of 23 (TC, 30 minutes, and baked to form a cured film having a film thickness of 2.0/zm. The film thickness was measured using DEKTAK150 manufactured by VEECO Co., Ltd. The film was measured by using an ultraviolet-visible spectrophotometer (SHIMADZU UV-2550 (model) manufactured by Shimadzu Corporation), and the transmittance at a wavelength of 400 nm was measured. [Evaluation of alignment sensitivity] Examples 1 to 3 and Comparative Example 1 were used. Each of the compositions of Comparative Example 4 was applied onto an ITO substrate using a spin coater, and then prebaked on a hot plate at a temperature of 80 ° C for 1200 seconds. Subsequently, the film was applied to hot air. The circulating oven was baked at a temperature of 23 ° C for 30 minutes to form a cured film having a film thickness of 2.0/zm. The film thickness was measured using DEKTAK150 manufactured by VEECO Co., Ltd. Next, the wavelength of the polarized UV was 3 13 nm. The linearly polarized light is irradiated in a direction perpendicular to the cured film on the ITO substrate. Subsequently, the phase difference material solution formed of the liquid crystal monomer is coated with a spin coater.

I 佈於此基板上,隨後,於熱壓板上進行8 0 °C、6 0秒鐘之 預燒焙,形成膜厚1.4从m之塗膜。其次,於氮雰圍下, -51 - 201224043 對此基板上之塗膜,以l,〇〇〇mJ/cm2之UV光進行曝光, 使相位差材料硬化。將依此方式製得之基板挾夾於偏光板 ,確認該硬化之相位差材料的相位差狀態,求取爲使硬化 膜形成配向性之必要的偏光UV之曝光量作爲配向感度。 又,即使使用3,000mJ/cm2之UV光曝光下,也不會顯示 配向性者則以「X」表示。 [雙折射率之評估] 將實施例1至實施例3及比較例1至比較例4之各組 成物使用旋轉塗佈器塗佈於石英基板上之後,於熱壓板上 進行溫度8(TC、120秒鐘之預燒焙。隨後,將此塗膜於熱 風循環式烘箱中,以溫度23 0°C、30分鐘之條件進行後燒 焙,形成膜厚2.0/zm之硬化膜。膜厚度爲使用VEECO公 司製 DEKTAK150進行測定。 此硬化膜,爲使用相位差薄膜測定裝置( AXOMETRICS Inc.製 Axo S can ),測定波長 5 90nm 時之 雙折射率。 [評估結果] 進行以上評估所得之結果係如表4所示。 -52- 201224043 [表4] \ 耐溶劑性 配向感度 (mj/cm2) 雙折射率 (膜厚 2.0 μ m) 透過率(%) CHN NMP 實施例1 〇 〇 10 0.039 81 實施例2 〇 〇 10 0.020 91 實施例3 〇 〇 10 0.035 89 比較例1 X X 3000 0.0029 88 比較例2 〇 〇 X 0.012 83 比較例3 〇 〇 X 0.0064 94 比較例4 〇 〇 X 0.044 93 實施例1至實施例3之組成物所形成之硬化膜,顯示 出高配向感度。因此,得知實施例1至實施例3之組成物 ,可形成有效率之液晶配向材料。此外,亦確認其具有高 度透明性,且對於CHN及NMP之任一者接具有耐性。又 ,亦顯示高雙折射率。 又,比較例1之組成物所形成之硬化膜,其雙折射率 及耐溶劑性皆較低,爲得到其配向性,必須具有相對於實 施例1至實施例3之情形爲3 00倍之曝光量。又,比較例 2至比較例4之組成物所形成之硬化膜,雖可具有高雙折 射率與耐溶劑性,但其未顯示出配向性。 如以上所述般,得知本發明之樹脂組成物所得之硬化 膜,確實具有高雙折射率,且具有優良之光透過性、耐溶 劑性及配向性。因此,本發明之樹脂組成物可提供使用於 具有上述各種優良特性之硬化膜,即,可提供使用於液晶 配向材料,此外,亦可形成相位差材料。 -53- 201224043 [產業上之利用性] 本發明之樹脂組成物,極適合作爲光學異向性薄膜或 液晶顯不兀件之液晶配向材料,此外,於薄膜電晶體( TFT)型液晶顯示元件或有機el元件等各種顯示器中, 亦極適合作爲形成保護膜、平坦膜及絕緣膜等硬化膜之材 料’特別是適合作爲形成TFT型液晶元件之層間絕緣膜 、濾光膜之保護膜或有機EL元件之絕緣膜等的材料。 【圖式簡單說明】 [圖1 ]依本實施形態所得之液晶晶元之結構模式圖》 [圖2 ]以往液晶晶元之結構模式圖。 【主要元件符號說明】 101 :基板 102 :濾光膜 103 : CF保護膜 105 :相位差材料I was placed on the substrate, and then pre-baked at 80 ° C for 60 seconds on a hot plate to form a coating film having a film thickness of 1.4 m. Next, under a nitrogen atmosphere, -51 - 201224043, the coating film on the substrate was exposed to UV light of 1, 〇〇〇mJ/cm2 to harden the phase difference material. The substrate 制 obtained in this manner was sandwiched between polarizing plates, and the phase difference state of the hardened phase difference material was confirmed, and the exposure amount of the polarized light UV necessary for forming the cured film to obtain the alignment property was determined as the alignment sensitivity. Further, even if exposure is performed using 3,000 mJ/cm2 of UV light, the alignment is not indicated by "X". [Evaluation of Birefringence] Each of the compositions of Examples 1 to 3 and Comparative Examples 1 to 4 was applied onto a quartz substrate using a spin coater, and then subjected to a temperature of 8 (TC) on a hot plate. The film was pre-baked for 120 seconds, and then the film was baked in a hot air circulating oven at a temperature of 23 ° C for 30 minutes to form a cured film having a film thickness of 2.0 / zm. The measurement was carried out by using DEKTAK 150 manufactured by VEECO Co., Ltd. The cured film was measured for a birefringence at a wavelength of 5 90 nm using a retardation film measuring device (Axo S can manufactured by AXOMETRICS Inc.) [Evaluation Results] Results of the above evaluation It is shown in Table 4. -52- 201224043 [Table 4] \ Solvent resistance alignment sensitivity (mj/cm2) Birefringence (film thickness 2.0 μm) Transmittance (%) CHN NMP Example 1 〇〇10 0.039 81 Example 2 〇〇10 0.020 91 Example 3 〇〇10 0.035 89 Comparative Example 1 XX 3000 0.0029 88 Comparative Example 2 〇〇X 0.012 83 Comparative Example 3 〇〇X 0.0064 94 Comparative Example 4 〇〇X 0.044 93 Example a cured film formed by the composition of 1 to 3, The high alignment sensitivity is shown. Therefore, it is known that the compositions of Examples 1 to 3 can form an efficient liquid crystal alignment material. Further, it is confirmed to have high transparency and is suitable for either CHN or NMP. It has resistance, and also shows high birefringence. Moreover, the cured film formed by the composition of Comparative Example 1 has low birefringence and solvent resistance, and in order to obtain its alignment property, it is necessary to have relative orientation. The case of 1 to 3 is an exposure amount of 300 times. Further, the cured film formed of the compositions of Comparative Examples 2 to 4 may have high birefringence and solvent resistance, but it is not shown. The above-mentioned cured film obtained by the resin composition of the present invention has a high birefringence and excellent light transmittance, solvent resistance and alignment property. Therefore, the resin of the present invention The composition can provide a cured film which has various excellent properties as described above, that is, can be used for a liquid crystal alignment material, and can also form a phase difference material. -53- 201224043 [Industrial Applicability] Tree of the Invention The fat composition is very suitable as a liquid crystal alignment material for an optical anisotropic film or a liquid crystal display element, and is also suitable as a display in various displays such as a thin film transistor (TFT) type liquid crystal display element or an organic EL element. The material of the cured film such as the protective film, the flat film, and the insulating film is particularly suitable as a material for forming an interlayer insulating film of a TFT-type liquid crystal element, a protective film of a filter film, or an insulating film of an organic EL element. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] A structural pattern diagram of a liquid crystal cell obtained in the present embodiment. [Fig. 2] A structural pattern diagram of a conventional liquid crystal cell. [Main component symbol description] 101 : Substrate 102 : Filter film 103 : CF protective film 105 : Phase difference material

106 : ITO 107 :配向膜106 : ITO 107 : alignment film

I 〇 8 :液晶層 109 :配向膜 110: ITO II 1 :基板 202 :濾光膜 -54- 201224043 204 :配向膜 205 :相位差材料I 〇 8 : liquid crystal layer 109 : alignment film 110 : ITO II 1 : substrate 202 : filter film -54 - 201224043 204 : alignment film 205 : phase difference material

Claims (1)

201224043 七、申請專利範圍: 1. 一種樹脂組成物,其特徵爲含有’ (A )具有由疏水性基所形成之光二聚化部位與@亲見 水性基所形成之熱交聯部位之丙烯酸共聚物’與 (Β)具有芳香環部位之聚醯亞胺前驅物’與 (C)使該(Α)成分與該(Β)成分形成交聯之交聯 劑。 2 ·如申請專利範圍第1項之樹脂組成物,其中’前 述(Α)成分爲,含有具有光二聚化部位之單體’與具有 熱交聯部位之單體的單體混合物經聚合反應所得之丙烯酸 共聚物。 3 .如申請專利範圍第2項之樹脂組成物,其中’前 述(Α)成分相對於全單體混合物之合計量,爲含有25 獒耳%至90莫耳%之由具有光二聚化部位之單體的單體 痕合物經聚合反應所得之丙烯酸共聚物。 4.如申請專利範圍第1〜3項中任一項之樹脂組成物 ’其中,前述(Α)成分之光二聚化部位爲桂皮醯基。 5·如申請專利範圍第1〜4項中任一項之樹脂組成物 ’其中’前述(Α)成分之熱交聯部位爲羥基或羧基。 6.如申請專利範圍第1〜5項中任一項之樹脂組成物 ’其中’前述(Β)成分之聚醯亞胺前驅物,其主鏈具有 聯苯基結構。 1 如申請專利範圍第6項之樹脂組成物,其中,前 遞(Β)成分爲含有由四羧酸二酐與二胺化合物經共聚合 -56- 201224043 反應所得之結構單位的聚醯亞胺前驅物,該四羧酸二酐及 該二胺化合物之至少一者爲具有聯苯基結構者。 8 ·如申請專利範圍第7項之樹脂組成物,其中,前 述四羧酸二酐爲聯苯基四羧酸二酐。 9·如申請專利範圍第7或8項之樹脂組成物,其中 ,前述(B)成分爲前述結構單位具有三氟甲基之聚醯亞 胺前驅物。 1 〇.如申請專利範圍第1〜9項中任一項之樹脂組成 物,其中,前述(B)成分之聚醯亞胺前驅物爲主鏈具有 脂環結構者。 11. 如申請專利範圍第1 〇項之樹脂組成物,其中, 前述(B)成分爲含有由四羧酸二酐與二胺化合物經共聚 合反應所得之結構單位的聚醯亞胺前驅物,且該四羧酸二 酐及該二胺化合物之至少一者爲具有脂環結構者。 12. 如申請專利範圍第1〜1 1項中任一項之樹脂組成 物,其中,前述(C)成分之交聯劑爲具有羥甲基或烷氧 基羥甲基之交聯劑。 1 3 .如申請專利範圍第1〜1 2項中任一項之樹脂組成 物,其中,依前述(A)成分與前述(B)成分之合計量 100質量份爲基準,爲含有10至1〇〇質量份之前述(C) 成分。 1 4.如申請專利範圍第1〜1 3項中任一項之樹脂組成 物,其尙含有(D)成分之酸或熱酸發生劑。 1 5 .如申請專利範圍第1 4項之樹脂組成物,其中, -57- 201224043 依前述(A)成分與前述(B)成分之合計量 爲基準,爲含有0.1至10質量份之前述(D) 16. —種液晶配向材料,其特徵爲,使用 圍第1〜1 5項中任一項之樹脂組成物所得者。 17. 一種相位差材料,其特徵爲,使用申 第丨〜i 5項中任一項之樹脂組成物所得之硬化 1 〇 0質量份 成分。 申請專利範 請專利範圍 膜而形成者 -58-201224043 VII. Patent application scope: 1. A resin composition characterized by containing acrylic acid copolymerization of '(A) having a photodimerization site formed by a hydrophobic group and a thermal crosslinking site formed by @亲见水基基And (C) a cross-linking agent which crosslinks the (Α) component with the (Β) component, and the (醯) polyimine precursor having an aromatic ring portion. 2. The resin composition according to the first aspect of the invention, wherein the above-mentioned (Α) component is obtained by polymerizing a monomer mixture containing a monomer having a photodimerization site and a monomer having a thermal crosslinking site. Acrylic copolymer. 3. The resin composition of claim 2, wherein the total amount of the aforementioned (Α) component relative to the total monomer mixture is from 25 獒 to 90 mol% of the photodimerization site. An acrylic copolymer obtained by polymerization of a monomeric monomeric complex. 4. The resin composition of any one of claims 1 to 3 wherein the photodimerization site of the (Α) component is cinnabarinyl. 5. The resin composition according to any one of claims 1 to 4, wherein the thermal crosslinking site of the above (Α) component is a hydroxyl group or a carboxyl group. 6. The resin composition of any one of claims 1 to 5, wherein the poly(imine) precursor of the above (Β) component has a biphenyl structure in its main chain. [1] The resin composition of claim 6, wherein the pre-polymerization component is a polyimine containing a structural unit obtained by reacting a tetracarboxylic dianhydride with a diamine compound by copolymerization-56-201224043. The precursor, at least one of the tetracarboxylic dianhydride and the diamine compound is a biphenyl structure. 8. The resin composition of claim 7, wherein the tetracarboxylic dianhydride is biphenyltetracarboxylic dianhydride. 9. The resin composition according to claim 7 or 8, wherein the component (B) is a polyamidene precursor having a trifluoromethyl group as the structural unit. The resin composition according to any one of claims 1 to 9, wherein the polyimine precursor of the component (B) has an alicyclic structure as a main chain. 11. The resin composition of claim 1, wherein the component (B) is a polyimine precursor comprising a structural unit obtained by copolymerization of a tetracarboxylic dianhydride and a diamine compound, Further, at least one of the tetracarboxylic dianhydride and the diamine compound has an alicyclic structure. The resin composition according to any one of claims 1 to 11, wherein the crosslinking agent of the component (C) is a crosslinking agent having a methylol group or an alkoxymethylol group. The resin composition according to any one of the above-mentioned (A) component and the component (B) is contained in an amount of 10 to 1 based on 100 parts by mass of the total amount of the component (A) and the component (B). 〇〇 Parts by mass of the above (C) ingredients. The resin composition according to any one of claims 1 to 3, which contains the acid of the component (D) or a thermal acid generator. The resin composition of claim 14 of the patent application, wherein -57-201224043 is contained in an amount of 0.1 to 10 parts by mass based on the total amount of the component (A) and the component (B). D) 16. A liquid crystal alignment material obtained by using the resin composition of any one of items 1 to 15. A phase difference material characterized by using the resin composition of any one of the items of the first to fifth aspects to harden 1 质量 0 parts by mass. Patent application scope, patent scope, film formation, -58-
TW100127999A 2010-08-05 2011-08-05 Resin composition, liquid crystal alignment material and retardation material TWI535773B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176347 2010-08-05

Publications (2)

Publication Number Publication Date
TW201224043A true TW201224043A (en) 2012-06-16
TWI535773B TWI535773B (en) 2016-06-01

Family

ID=45559616

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100127999A TWI535773B (en) 2010-08-05 2011-08-05 Resin composition, liquid crystal alignment material and retardation material

Country Status (5)

Country Link
JP (1) JP5835586B2 (en)
KR (1) KR101844738B1 (en)
CN (1) CN103052680B (en)
TW (1) TWI535773B (en)
WO (1) WO2012018121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596149B (en) * 2012-06-20 2017-08-21 日產化學工業股份有限公司 Cured film forming composition, alignment material and retardation material

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638848B2 (en) 2011-10-14 2017-05-02 Dai Nippon Printing Co., Ltd. Patterned phase difference film and method for manufacturing same
KR101812082B1 (en) 2012-03-27 2018-01-30 후지필름 가부시키가이샤 Active-light-sensitive or radiation-sensitive composition, and resist film, resist coating mask blank, resist pattern formation method, and photomask employing same
KR20130111154A (en) * 2012-03-30 2013-10-10 주식회사 엘지화학 Substrate for organic electronic device
KR102119632B1 (en) * 2012-07-12 2020-06-05 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and phase difference material
WO2014042216A1 (en) * 2012-09-12 2014-03-20 日産化学工業株式会社 Method for producing alignment material, alignment material, method for producing retardation material, and retardation material
JP5994564B2 (en) * 2012-10-22 2016-09-21 Jnc株式会社 Thermosetting composition having photo-alignment
CN103279237B (en) 2012-11-23 2016-12-21 上海天马微电子有限公司 A kind of In-cell touch panel and touch display unit
WO2014104320A1 (en) * 2012-12-27 2014-07-03 日産化学工業株式会社 Composition for forming cured film, orientation material, and phase difference material
JPWO2015019962A1 (en) * 2013-08-09 2017-03-02 日産化学工業株式会社 Cured film forming composition, alignment material and retardation material
KR102205664B1 (en) * 2014-06-02 2021-01-22 삼성디스플레이 주식회사 Method of manufacturing liquid crystal display
KR102481772B1 (en) * 2014-08-28 2022-12-27 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and retardation material
JP6554777B2 (en) * 2014-10-09 2019-08-07 Dic株式会社 Copolymer for photo-alignment film
TWI693470B (en) * 2015-06-30 2020-05-11 日商富士軟片股份有限公司 Photosensitive resin composition, method for producing cured film, cured film, and liquid crystal display device
CN105199387B (en) * 2015-10-12 2018-03-27 深圳市华星光电技术有限公司 The manufacture method of alignment film material and alignment film
KR20180082540A (en) * 2015-11-11 2018-07-18 롤릭 테크놀로지스 아게 Composition of photo-alignable material
JP2019023249A (en) * 2015-12-11 2019-02-14 コニカミノルタ株式会社 Polyimide film, flexible printed circuit board, led illumination device and front member for flexible display
WO2018043467A1 (en) * 2016-08-31 2018-03-08 富士フイルム株式会社 Resin composition and application of same
JP7070122B2 (en) * 2017-12-22 2022-05-18 Dic株式会社 Polymerizable compounds and liquid crystal compositions containing them
JP7008732B2 (en) * 2018-01-29 2022-01-25 富士フイルム株式会社 Photosensitive resin composition, resin, cured film, laminate, method for manufacturing cured film, semiconductor device
JP2019159009A (en) * 2018-03-09 2019-09-19 シャープ株式会社 Liquid crystal display device, manufacturing method therefor, and monomer material for retardation layer
TW202204476A (en) 2020-06-03 2022-02-01 日商富士軟片股份有限公司 Photosensitive resin composition, cured film, laminate, method for producing cured film, and semiconductor device
CN112812347B (en) * 2021-02-23 2022-08-30 新纶新材料股份有限公司 Optical thin film material, preparation method thereof and polarizer
JP2023031196A (en) * 2021-08-24 2023-03-08 株式会社カネカ Resin composition and film
WO2023085325A1 (en) * 2021-11-10 2023-05-19 株式会社カネカ Resin composition, molded body and film
WO2023100806A1 (en) * 2021-11-30 2023-06-08 株式会社カネカ Film, production method therefor, and image display device
CN114685791B (en) * 2022-03-02 2023-10-03 江苏环峰电工材料有限公司 Polyimide polymer with controllable structure and preparation method thereof
WO2023195525A1 (en) * 2022-04-08 2023-10-12 株式会社カネカ Film, method for manufacturing same, and image display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126334A (en) * 1983-12-08 1985-07-05 Howa Mach Ltd Autodoffing in spinning frame or yarn twister and spindle used therein
KR970003683B1 (en) * 1993-09-28 1997-03-21 제일합섬 주식회사 Photosensitive resin composition for liquid crystal display color filter
US6201087B1 (en) * 1994-09-29 2001-03-13 Rolic Ag Coumarin and quinolinone derivatives for the production of orienting layers for liquid crystals
US6107427A (en) * 1995-09-15 2000-08-22 Rolic Ag Cross-linkable, photoactive polymer materials
JP4513191B2 (en) 2000-08-30 2010-07-28 チッソ株式会社 Polyamide acid, polyimide, liquid crystal alignment film using the polyimide film, and liquid crystal display element using the alignment film
EP1219651A1 (en) * 2000-12-29 2002-07-03 Rolic AG Photoactive copolymer
DE60308510D1 (en) * 2002-05-23 2006-11-02 Nissan Chemical Ind Ltd LIQUID CRYSTAL ALIGNMENT, LIQUID CRYSTAL ALIGNMENT FILMS AND LIQUID CRYSTAL DISPLAY EQUIPMENT
EP1567571A2 (en) * 2002-12-06 2005-08-31 Rolic AG Crosslinkable, photoactive polymers and their use
KR101133479B1 (en) * 2003-10-23 2012-04-10 닛산 가가쿠 고교 가부시키 가이샤 Aligning agent for liquid crystal and liquid-crystal display element
JP4554315B2 (en) * 2004-09-22 2010-09-29 日東電工株式会社 Alignment film manufacturing method for aligning liquid crystal material, obtained alignment film, alignment liquid crystal film, optical film, and image display device
CN101467100B (en) * 2006-06-15 2012-06-06 日产化学工业株式会社 Positive photosensitive resin composition containing polymer having ring structure
KR101486301B1 (en) * 2007-06-15 2015-01-26 닛산 가가쿠 고교 가부시키 가이샤 Resin composition for forming heat-cured film
JP5413555B2 (en) * 2008-05-23 2014-02-12 Jsr株式会社 Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
US9733519B2 (en) * 2009-06-23 2017-08-15 Nissan Chemical Industries, Ltd. Composition for forming thermoset film having photo alignment properties
CN102471629B (en) * 2009-07-21 2015-09-09 日产化学工业株式会社 Form the composition with the heat cured film of light orientation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596149B (en) * 2012-06-20 2017-08-21 日產化學工業股份有限公司 Cured film forming composition, alignment material and retardation material

Also Published As

Publication number Publication date
KR20130097175A (en) 2013-09-02
JPWO2012018121A1 (en) 2013-10-28
JP5835586B2 (en) 2015-12-24
KR101844738B1 (en) 2018-04-03
CN103052680B (en) 2016-05-25
WO2012018121A1 (en) 2012-02-09
CN103052680A (en) 2013-04-17
TWI535773B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
TWI535773B (en) Resin composition, liquid crystal alignment material and retardation material
JP5382346B2 (en) Thermosetting film forming resin composition
TWI568796B (en) A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device
TW201518410A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI637043B (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
TWI564283B (en) A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device
TWI627202B (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
TWI633128B (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6008152B2 (en) Resin composition, liquid crystal alignment material and retardation material
TWI499588B (en) Liquid crystal alignment film and a liquid crystal display element to the processing agent, with the liquid crystal
TWI402284B (en) Liquid crystal photo-alignment agent, liquid crystal photo-alignment film manufactured using the same
TWI624494B (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
TW201602242A (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
TWI525129B (en) A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device
KR101736885B1 (en) Polyester composite for forming thermoset films
TWI816960B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI814780B (en) Manufacturing method of liquid crystal display element
KR20120013941A (en) Photosensitive polyester composition for use in forming thermally cured film
KR101736902B1 (en) Polyester composite for forming thermoset films
WO2024080351A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element