WO2024080351A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2024080351A1
WO2024080351A1 PCT/JP2023/037141 JP2023037141W WO2024080351A1 WO 2024080351 A1 WO2024080351 A1 WO 2024080351A1 JP 2023037141 W JP2023037141 W JP 2023037141W WO 2024080351 A1 WO2024080351 A1 WO 2024080351A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
crystal alignment
carbon atoms
component
Prior art date
Application number
PCT/JP2023/037141
Other languages
French (fr)
Japanese (ja)
Inventor
美希 豊田
慎躍 大野
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024080351A1 publication Critical patent/WO2024080351A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film obtained thereby, and a liquid crystal display element having the obtained liquid crystal alignment film. More specifically, the present invention relates to a liquid crystal alignment agent capable of providing a liquid crystal alignment film that has good liquid crystal alignment properties, excellent pretilt angle expression ability, and high reliability, and a liquid crystal display element with excellent display quality.
  • the role of the liquid crystal alignment film is to align the liquid crystal in a certain direction.
  • the main liquid crystal alignment films used industrially are produced by applying a polyimide-based liquid crystal alignment agent made from a polyimide precursor such as polyamide acid (also called polyamic acid), polyamic acid ester, or a polyimide solution to a substrate and forming a film.
  • a polyimide precursor such as polyamide acid (also called polyamic acid), polyamic acid ester, or a polyimide solution
  • a surface stretching process by rubbing is further carried out after film formation.
  • a liquid crystal alignment film is used in which hydrophobic groups such as long-chain alkyl, cyclic groups, or combinations of cyclic and alkyl groups (see, for example, Patent Document 1), or steroid skeletons (see, for example, Patent Document 2) are introduced into the side chains of polyimide.
  • hydrophobic groups such as long-chain alkyl, cyclic groups, or combinations of cyclic and alkyl groups (see, for example, Patent Document 1), or steroid skeletons (see, for example, Patent Document 2) are introduced into the side chains of polyimide.
  • a method of providing protrusions on the substrate for example, a method of providing protrusions on the substrate, a method of providing slits in the display electrode, a method of slightly tilting the liquid crystal molecules from the substrate normal direction toward one direction within the substrate plane by rubbing (pretilting), and a method of adding a photopolymerizable compound to the liquid crystal composition in advance, using it together with a vertical alignment film such as polyimide, and irradiating ultraviolet light while applying a voltage to the liquid crystal cell to pretilt the liquid crystal (see, for example, Patent Document 3) have been proposed.
  • a vertical alignment film such as polyimide
  • VA-type liquid crystal display elements are used in TVs and in-vehicle displays because of their high contrast and wide viewing angle.
  • Liquid crystal display elements for TVs use backlights that generate a large amount of heat to obtain high brightness
  • liquid crystal display elements used in in-vehicle applications such as car navigation systems and meter panels, may be used or left in high-temperature environments for long periods of time. If the pretilt angle gradually changes under such harsh conditions, problems such as the initial display characteristics being no longer obtained and uneven display may occur.
  • the voltage retention characteristics and charge accumulation characteristics when the liquid crystal is driven are also affected by the liquid crystal alignment film, and if the voltage retention rate is low, the contrast of the display screen decreases, and if the charge accumulation relative to the DC voltage is large, the display screen may burn in.
  • the objective of the present invention is to provide a liquid crystal alignment film and liquid crystal alignment agent that can stably generate a tilt angle of 2° or more from the vertical and that is highly reliable.
  • P polymer selected from the group consisting of a polyimide precursor obtained by using, as a component (A), a polymer or low molecular weight compound having a photoalignable group and a thermally crosslinkable group represented by the following formula (pa- 1 ), as a component (B), a diamine component containing a diamine (0) represented by the following formula (D A ), and a polyimide which is an imidized product of the polyimide precursor, and
  • A represents pyrimidine-2,5-diyl, pyridine-2,5-diyl, thiophene-2,5-diyl, furan-2,5-diyl, 1,4- or 2,6-naphthylene or phenylene, which is optionally substituted with a group selected from a fluorine atom, a chlorine atom or a cyano group, or with an alkoxy group having 1 to 5 carbon atoms, a linear or branched alkyl residue (which is optionally substituted with one cyano group or one or more halogen atoms);
  • R 1 represents a single bond, an oxygen atom, -COO- or -OCO-;
  • R 2 represents a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group;
  • R 3 represents a single bond, an oxygen atom, -COO- or -OCO-;
  • R 1s and R 2s each independently have the above definition.
  • X and Y are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms.
  • the "wavy lines" between “C” and “A” and between “C” and “X” mean that the compound may be either an E-form or a Z-form. In this specification, the "wavy line" has the same meaning as above.
  • X 1 and X 2 each independently represent a bonding group selected from a single bond, an ether bond, -COO-, -OCO-, -NHCO-, -CONH-, a urethane bond, a urea bond, a thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms bonded to Si), -Si(R 3 )(R 4 )-O- (R 3 and R 4 each independently represent an alkyl group having 1 to 3 carbon atoms bonded to Si), and -N(R 5 )- (R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms bonded to N), and n is an integer from 1 to 6.
  • Cy represents a non-aromatic cyclic group having 7 to 20 members (however, when X 2 is a single bond, n is 0).
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the present invention can provide a liquid crystal alignment film and a liquid crystal alignment agent that can impart a pretilt angle of 2° or more from the vertical and that are highly reliable. Furthermore, the liquid crystal display element manufactured by the method of the present invention has excellent display characteristics.
  • the liquid crystal aligning agent of the present invention contains, as component (A), at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide which is an imidized product of the polyimide precursor, and a solvent.
  • a polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide which is an imidized product of the polyimide precursor, and a solvent.
  • A represents pyrimidine-2,5-diyl, pyridine-2,5-diyl, thiophene-2,5-diyl, furan-2,5-diyl, 1,4- or 2,6-naphthylene or phenylene, which is optionally substituted with a group selected from a fluorine atom, a chlorine atom or a cyano group, or with an alkoxy group having 1 to 5 carbon atoms, a linear or branched alkyl residue (which is optionally substituted with one cyano group or one or more halogen atoms);
  • R 1 represents a single bond, an oxygen atom, -COO- or -OCO-;
  • R 2 represents a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group;
  • R 3 represents a single bond, an oxygen atom, -COO- or -OCO-;
  • R 1s and R 2s each independently have the above definition.
  • X and Y are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms.
  • the wavy lines between "C” and “A” and between “C” and "X” mean that either the E-form or the Z-form may be used.
  • the liquid crystal aligning agent may satisfy at least one of the following requirements Z1 and Z2.
  • Z1 The polymer which is the component (A) has a thermally crosslinkable group A and a thermally crosslinkable group B.
  • Z2 The polymer that is the component (A) has a thermally crosslinkable group A, and further contains a compound that has two or more thermally crosslinkable groups B in the molecule as the component (C).
  • the thermally crosslinkable group A and the thermally crosslinkable group B are each independently an organic group selected from the group consisting of a carboxy group, a protected carboxy group, an amino group, a protected amino group, an alkoxymethylamide group, a hydroxymethylamide group, a hydroxy group, a protected hydroxy group, an epoxy group, an oxetanyl group, a thiiranyl group, an isocyanate group, and a blocked isocyanate group, and are selected so that the thermally crosslinkable group A and the thermally crosslinkable group B undergo a crosslinking reaction by heat.
  • the thermally crosslinkable group A and the thermally crosslinkable group B may be the same as each other.
  • two or more within the molecule refers to cases where the molecule contains two or more groups of the same type, such as two or more epoxy groups, as well as cases where the molecule contains two or more groups of different types, such as a combination of an epoxy group and a thiirane group.
  • “Two or more within the molecule” preferably refers to cases where the molecule contains two or more groups of the same type.
  • the polymer which is the component (A) contained in the liquid crystal aligning agent of the present invention, has high sensitivity to light, and therefore can exhibit alignment control ability even when irradiated with polarized ultraviolet light with a low exposure dose.
  • a crosslinking reaction including the polymer that is component (A) becomes possible even if the baking time of the liquid crystal alignment agent is short.
  • the anisotropy tends to remain (memory) in the liquid crystal alignment film, so that it becomes possible to enhance the liquid crystal alignment and exhibit a pretilt angle of the liquid crystal.
  • the liquid crystal alignment agent of the present invention can impart a pretilt angle of 2° or more from the vertical by containing the polymer (P) which is the component (B).
  • the highly lipophilic structure of diamine (0) can increase the compatibility between the polymer (P) and the polymer or low molecular weight compound which is the component (A). Since diamine (0) itself does not exhibit vertical alignment properties, it is possible to achieve a larger pretilt angle by the diamine (0) exposed on the surface of the alignment film.
  • the component (A) is a polymer
  • the photoalignable group, the thermally crosslinkable group A, and the thermally crosslinkable group B represented by the above formula (pa-1) can all be side chains in the polymer, and therefore can be referred to as "side chains" as necessary.
  • Photoalignment group represented by formula (pa-1) the moiety having photoalignment property represented by the above formula (pa-1) in the molecule can be represented by, for example, the following formula (a-1).
  • the moiety can be, but is not limited to, a structure derived from a monomer represented by the following formula (a-1-m).
  • Ia represents a monovalent organic group represented by the above formula (pa-1)
  • S a represents a spacer unit
  • the bonding group to the left of S a indicates that it is bonded to the main chain of the specific polymer, optionally via a spacer.
  • S a can be represented, for example, by the structure of the following formula (Sp).
  • W1 , W 2 and W 3 each independently represent a single bond, a divalent heterocycle, -(CH 2 ) n - (wherein n is 1 to 20), -OCH 2 -, -CH 2 O-, -COO-, -OCO-, -CH ⁇ CH-, -CF ⁇ CF-, -CF 2 O-, -OCF 2 -, -CF 2 CF 2 - or -C ⁇ C-, provided that one or more non-adjacent CH 2 groups in these substituents are independently -O-, -CO-, -CO-O-, -O-CO-, -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 may be substituted by —, —NR—, —NR-CO—, —CO-NR—, —NR-CO-O
  • M a represents a polymerizable group.
  • the polymerizable group include radical polymerizable groups of (meth)acrylate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, (meth)acrylamide and derivatives thereof, and siloxane.
  • Preferred are (meth)acrylate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, and acrylamide.
  • r is an integer satisfying 1 ⁇ r ⁇ 3.
  • Mb is a group selected from a single bond, a (r+1)-valent heterocycle, a (r+1)-valent linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, a (r+1)-valent aromatic group, and a (r+1)-valent alicyclic group, each of which may be unsubstituted or have one or more hydrogen atoms substituted with a fluorine atom, a chlorine atom, a cyano group, a methyl group, or a methoxy group, provided that when r is 2 or more, Mb is a group other than the above single bond.
  • Examples of the aromatic groups in A 1 , A 2 and M b include aromatic hydrocarbon groups having 6 to 18 carbon atoms, such as a benzene ring, a biphenyl structure and a naphthalene ring.
  • Examples of the alicyclic groups in A 1 , A 2 and M b include alicyclic hydrocarbon groups having 6 to 12 carbon atoms, such as a cyclohexane ring and a bicyclohexane structure.
  • Examples of the heterocyclic groups in A 1 , A 2 and M b include nitrogen-containing heterocyclic groups, such as a pyridine ring, a piperidine ring and a piperazine ring.
  • Examples of the alkylene groups in A 1 and A 2 include linear or branched alkylene groups having 1 to 10 carbon atoms.
  • the group represented by (pa-1) above is preferably a group represented by (pa-1-a) below.
  • component (A) is a polymer
  • the moiety can be, but is not limited to, a structure derived from a monomer represented by the following formula (pa-1-ma).
  • M a , M b , and S a are defined as above.
  • Z is an oxygen atom or a sulfur atom.
  • Xa and Xb each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group or an alkyl group having 1 to 3 carbon atoms.
  • R 1 is a single bond, an oxygen atom, —COO— or —OCO—.
  • R2 is a divalent aromatic group, a divalent alicyclic group, or a divalent heterocyclic group.
  • R3 is a single bond, an oxygen atom, -COO- or -OCO-.
  • R4 is a monovalent organic group having 3 to 40 carbon atoms which contains a linear or branched alkyl group having 1 to 40 carbon atoms or an alicyclic group.
  • R5 is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine atom or a cyano group, and is preferably a methyl group, a methoxy group or a fluorine atom.
  • a is an integer from 0 to 3
  • b is an integer from 0 to 4.
  • the alkylene group for Sa is preferably a linear or branched alkylene group having 1 to 8 carbon atoms, and examples thereof include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a tert-butylene group, an n-pentylene group, an n-hexylene group, an n-heptylene group, and an n-octylene group.
  • Examples of the divalent aromatic group for S a include a 1,4-phenylene group, a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group, and a 2,3,5,6-tetrafluoro-1,4-phenylene group.
  • examples of the divalent alicyclic group for Sa include a trans-1,4-cyclohexylene group and a trans-trans-1,4-bicyclohexylene group.
  • examples of the divalent heterocyclic group for S a include a pyridine-2,6-diyl group, a pyridine-3,5-diyl group, a furan-2,5-diyl group, a piperazine-1,4-diyl group, and a piperidine-1,4-diyl group.
  • S a is preferably an alkylene group having 1 to 8 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and even more preferably an alkylene group having 1 to 4 carbon atoms.
  • Examples of the divalent aromatic group for R2 include a 1,4-phenylene group, a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group, a 2,3,5,6-tetrafluoro-1,4-phenylene group, and a naphthylene group.
  • Examples of the divalent alicyclic group for R2 include a trans-1,4-cyclohexylene group and a trans-trans-1,4-bicyclohexylene group.
  • Examples of the divalent heterocyclic group for R2 include a pyridine-2,6-diyl group, a pyridine-3,5-diyl group, a furan-2,5-diyl group, a piperazine-1,4-diyl group, and a piperidine-1,4-diyl group.
  • R2 is preferably a 1,4-phenylene group, a trans-1,4-cyclohexylene group, or a trans-trans-1,4-bicyclohexylene group.
  • the linear or branched alkyl group having 1 to 40 carbon atoms for R 4 may be, for example, a linear or branched alkyl group having 1 to 20 carbon atoms, in which some or all of the hydrogen atoms may be substituted with fluorine atoms.
  • alkyl groups include, for example, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-lauryl group, an n-dodecyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, an n-heptadecyl group, an n-octadecyl group, an n-nonadecyl group, an n-eicosyl group, and 4,4 , 4-trifluorobutyl group, 4,4,5,5,5
  • Examples of the monovalent organic group having 3 to 40 carbon atoms and containing an alicyclic group for R4 include a cholestenyl group, a cholestanylic group, an adamantyl group, and a group represented by the following formula (Alc-1) or (Alc-2) (wherein R7 is a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, and * indicates a bonding position).
  • Examples of the monomer represented by the above formula (paa-1-ma) include, but are not limited to, structures represented by formulas (paa-1-ma1) to (paa-1-ma18).
  • E indicates that the monomer is an E-form
  • t indicates that the cyclohexyl group is a trans-form.
  • the thermally crosslinkable group A and the thermally crosslinkable group B are each independently an organic group selected from the group consisting of a carboxy group, a protected carboxy group, an amino group, a protected amino group, an alkoxymethylamide group, a hydroxymethylamide group, a hydroxy group, a protected hydroxy group, an epoxy group, an oxetanyl group, a thiiranyl group, an isocyanate group, and a blocked isocyanate group, and are selected so that the thermally crosslinkable group A and the thermally crosslinkable group B undergo a crosslinking reaction by heat, however, the thermally crosslinkable group A and the thermally crosslinkable group B may be the same as each other.
  • the protecting groups in the protected carboxy group, protected amino group and protected hydroxy group in the thermally crosslinkable group A and the thermally crosslinkable group B are preferably protecting groups which are eliminated by heat.
  • Examples of the protecting group for the carboxy group include acetal-based protecting groups such as a methoxymethyl group, an ethoxyethyl group, and a 2-tetrahydropyranyl group; and cyclic alcohol-based protecting groups.
  • Examples of the protecting group for a hydroxy group include ether-based protecting groups such as a methyl group, an ethyl group, a tert-butyl group, a benzyl group, a p-methoxybenzyl group, and a trityl group; acetal-based protecting groups such as a methoxymethyl group, an ethoxyethyl group, and a 2-tetrahydropyranyl group; acyl-based protecting groups such as an acetyl group, a pivaloyl group, a benzoyl group, and a trichloroacetyl group; allyl-based protecting groups such as an allyl group and a methallyl group; carbamate-based protecting groups such as a tert-butoxycarbonyl group; and silyl ether-based protecting groups such as a trimethylsilyl group, a triethylsilyl group, and a tert-butyl
  • Examples of the protecting group for an amino group include carbamate-based protecting groups such as a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group, a 1,1-dimethyl-2-cyanoethyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, and a 2-(trimethylsilyl)ethoxycarbonyl group; an amide-based protecting group, an imide-based protecting group, and a sulfonamide-based protecting group.
  • carbamate-based protecting groups such as a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group, a 1,1-dimethyl-2-cyanoethyloxycarbonyl group, a 9-fluorenylmethyloxy
  • Such combinations of thermally crosslinkable groups A and B include a combination in which one is a carboxy group or a protected carboxy group and the other is an epoxy group, an oxetanyl group, a thiiranyl group, or a blocked isocyanate group, a combination in which one is a hydroxy group or a protected hydroxy group and the other is a blocked isocyanate group, a combination in which one is a phenolic hydroxy group or a protected phenolic hydroxy group and the other is an epoxy group, an oxetanyl group, or a thiiranyl group, a combination in which one is an amino group or a protected amino group and the other is a blocked isocyanate group, a combination in which both are N-alkoxymethylamide groups, etc. More preferred combinations are a carboxy group and an epoxy group, and a hydroxy group and a blocked isocyanate group, etc.
  • a monomer having the thermally crosslinkable group A may be copolymerized.
  • the liquid crystal aligning agent of the present invention satisfies the requirement Z1
  • both a monomer having a thermally crosslinkable group A and a monomer having a thermally crosslinkable group B may be copolymerized when producing the polymer that is the component (A).
  • Examples of the monomer having a thermal crosslinking group include: Monomers having a carboxy group, such as acrylic acid, methacrylic acid, crotonic acid, mono-(2-(acryloyloxy)ethyl)phthalate, mono-(2-(methacryloyloxy)ethyl)phthalate, N-(carboxyphenyl)maleimide, N-(carboxyphenyl)methacrylamide, and N-(carboxyphenyl)acrylamide;
  • Monomers having a carboxy group such as acrylic acid, methacrylic acid, crotonic acid, mono-(2-(acryloyloxy)ethyl)phthalate, mono-(2-(methacryloyloxy)ethyl)phthalate, N-(carboxyphenyl)maleimide, N-(carboxyphenyl)methacrylamide, and N-(carboxyphenyl)acrylamide;
  • Hydroxy group-containing monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, caprolactone 2-(acryloyloxy)ethyl ester, caprolactone 2-(methacryloyloxy)ethyl ester, poly(ethylene glycol) ethyl ether acrylate, poly(ethylene glycol) ethyl ether methacrylate, 5-acryloyloxy-6-hydroxynorbornene-2-carboxylic-6-lactone, and 5-methacryloyloxy-6-hydroxynorbornene-2-carboxylic-6-lactone;
  • Monomers containing phenolic hydroxy groups such as hydroxystyrene, N-(hydroxyphenyl)methacrylamide, N-(hydroxyphenyl)acrylamide, N-(hydroxyphenyl)maleimide, and N-(hydroxyphenyl)maleimide;
  • Amino group-containing monomers such as aminoethyl acrylate, aminoethyl methacrylate, aminopropyl acrylate, and aminopropyl methacrylate;
  • (Meth)acrylamide compounds substituted with hydroxymethyl or alkoxymethyl groups such as N-hydroxymethyl (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, and N-butoxymethyl (meth)acrylamide;
  • Monomers with epoxy groups such as allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, 2-methyl glycidyl methacrylate, ⁇ -ethyl glycidyl acrylate, ⁇ -n-propyl glycidyl acrylate, ⁇ -n-butyl glycidyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, 6,7-epoxyheptyl acrylate, 6,7-epoxyheptyl methacrylate, ⁇ -ethyl 6,7-epoxyheptyl acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexylmethyl methacrylate
  • 2,3-epithiopropyl acrylate or methacrylate, and monomers containing thiiranyl groups such as 2- or 3- or 4-( ⁇ -epithiopropylthiomethyl)styrene, 2- or 3- or 4-( ⁇ -epithiopropyloxymethyl)styrene, 2- or 3- or 4-( ⁇ -epithiopropylthio)styrene, and 2- or 3- or 4-( ⁇ -epithiopropyloxy)styrene;
  • Monomers having a blocked isocyanate group such as 2-(0-(1'-methylpropylideneamino)carboxyamino)ethyl acrylate, 2-(3,5-dimethylpyrazolyl)carbonylamino)ethyl acrylate, 2-(0-(1'-methylpropylideneamino)carboxyamino)ethyl methacrylate, and 2-(3,5-dimethylpyrazolyl)carbonylamino)ethyl methacrylate; etc.
  • (meth)acrylamide refers to both acrylamide and methacrylamide.
  • Such other monomers include acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, acrylamide compounds such as N-methoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, and acrylamide, and monomers having a nitrogen-containing aromatic heterocyclic group and a polymerizable group.
  • acrylic acid ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate.
  • Methacrylic acid ester compounds include, for example, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, hexadecyl methacrylate, octadecyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2-propyl-2-adamantyl me
  • Examples of the (meth)acrylic acid amide compound include acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, and N,N-diethylacrylamide.
  • vinyl compounds examples include methyl vinyl ether, benzyl vinyl ether, vinyl naphthalene, vinyl carbazole, allyl glycidyl ether, and 3-ethenyl-7-oxabicyclo[4.1.0]heptane.
  • styrene compound examples include styrene, methylstyrene, chlorostyrene, and bromostyrene.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the nitrogen-containing aromatic heterocycle is preferably an aromatic cyclic hydrocarbon having at least one, preferably 1 to 4, structures selected from the group consisting of the following formulas [Na] to [Nb] (wherein Z2 is a linear or branched alkyl group having 1 to 5 carbon atoms):
  • the carbon atoms of these nitrogen-containing aromatic heterocycles may have a substituent containing a heteroatom.
  • An example of the substituent containing a heteroatom is a pyridine ring.
  • Examples of monomers having a nitrogen-containing aromatic heterocyclic group and a polymerizable group include 2-(2-pyridylcarbonyloxy)ethyl (meth)acrylate, 2-(3-pyridylcarbonyloxy)ethyl (meth)acrylate, 2-(4-pyridylcarbonyloxy)ethyl (meth)acrylate, etc.
  • the other monomers used in the present invention may be used alone or in combination of two or more monomers.
  • the photoreactive moiety represented by the above formula (pa-1) contained in the polymer, which is component (A) of the liquid crystal aligning agent of the present invention may be of one type alone or may be of two or more types in combination.
  • the photoreactive moiety represented by the above formula (pa-1) is preferably contained in a proportion of 5 to 95 mol%, 10 to 60 mol%, or 15 to 50 mol% of all repeating units of the polymer that is component (A).
  • the thermal crosslinkable group A may be used alone, or two or more kinds of moieties containing the thermal crosslinkable group A and the thermal crosslinkable group B may be used in combination.
  • the amount of the site having a thermal crosslinkable group introduced is preferably 5 to 95 mol %, 40 to 90 mol %, or 50 to 85 mol % of all repeating units of the polymer which is component (A).
  • the content of the structures derived from the above other monomers is preferably 0 to 40 mol%, 0 to 30 mol%, or 0 to 20 mol% of the total repeating units of the polymer that is component (A).
  • the specific polymer of the component (A) contained in the liquid crystal aligning agent of the present invention is obtained by copolymerizing a monomer having a photoaligning group represented by the above formula (pa-1), a monomer having the above thermal crosslinking group A, and, if desired, a monomer having the above thermal crosslinking group B. In addition, it can be copolymerized with the other monomers described above.
  • the method for producing the specific polymer of the component (A) in the present invention is not particularly limited, and a general-purpose method that is used industrially can be used.
  • the specific polymer can be produced by cationic polymerization, radical polymerization, or anionic polymerization using the vinyl group of the monomer.
  • radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • known compounds such as radical polymerization initiators and reversible addition-fragmentation chain transfer (RAFT) polymerization agents can be used.
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above its decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohexanoic
  • Such radical thermal polymerization initiators can be used alone or in combination of two or more.
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by irradiation with light.
  • examples of such radical photopolymerization initiators include known compounds such as benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, and isopropylxanthone. These compounds may be used alone or in combination of two or more.
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method, etc. can be used.
  • the solvent used in the polymerization reaction of the specific polymer of component (A) is not particularly limited as long as the produced polymer dissolves in the solvent.
  • Specific examples include the solvents described in the section ⁇ Solvent> below, such as N-alkyl-2-pyrrolidones, dialkylimidazolidinones, lactones, carbonates, ketones, the compounds represented by formula (Sv-1) and formula (Sv-2), tetrahydrofuran, 1,4-dioxane, dimethyl sulfone, and dimethyl sulfoxide. These solvents may be used alone or in combination.
  • a solvent does not dissolve the polymer to be produced, it may be mixed with the above-mentioned solvent to the extent that the polymer to be produced does not precipitate.
  • oxygen in a solvent in radical polymerization can inhibit the polymerization reaction, it is preferable to use an organic solvent that has been degassed to the greatest extent possible.
  • the polymerization temperature during radical polymerization can be selected from any temperature between 30 and 150° C., but is preferably in the range of 50 to 100° C.
  • the reaction can be carried out at any concentration, but the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be carried out at a high concentration in the early stage, and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator is high relative to the monomer, the molecular weight of the resulting polymer will be small, and if the ratio is low, the molecular weight of the resulting polymer will be large, so the ratio of the radical initiator is preferably 0.1 to 10 mol% relative to the monomer to be polymerized.
  • various monomer components, solvents, initiators, etc. can also be added during polymerization.
  • the reaction solution may be poured into a poor solvent to precipitate the polymer.
  • poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water.
  • the polymer precipitated by pouring into the poor solvent can be recovered by filtration, and then dried at room temperature or by heating under normal or reduced pressure.
  • the polymer precipitated and recovered can be redissolved in an organic solvent and the reprecipitation and recovery operation can be repeated two to ten times to reduce impurities in the polymer.
  • poor solvents in this case include alcohols, ketones, and hydrocarbons. It is preferable to use three or more poor solvents selected from these because the efficiency of purification is further improved.
  • the molecular weight of the specific polymer of component (A) is preferably a weight average molecular weight of 2,000 to 1,000,000, and more preferably 5,000 to 100,000, measured by GPC (Gel Permeation Chromatography), taking into consideration the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film.
  • GPC Gel Permeation Chromatography
  • component (A) is a low molecular weight compound having a photoalignment group represented by formula (pa-1) and a thermal crosslinking group
  • a low molecular weight compound is preferably a compound having a molecular weight of 2000 or less, having a photoalignment group represented by formula (pa-1), and having, as a thermal crosslinking group, a group capable of reacting with a carboxy group to form a covalent bond.
  • the photoalignable group is as described above.
  • examples of the thermal crosslinkable group include organic groups selected from the group consisting of an epoxy group, an oxetanyl group, a thiiranyl group, and a cyclocarbonate group.
  • the low molecular weight compound that is component (A) can be, but is not limited to, compounds represented by the formulas (paa-1-mb1) to (paa-1-mb22).
  • “(E)” indicates that the compound is an E-form
  • “(E,Z)” indicates that the compound is an E-form or a Z-form
  • "t” indicates that the cyclohexyl group is a trans-form.
  • the low molecular weight compound (A) can be produced by combining known reactions.
  • the component (B) contained in the liquid crystal aligning agent of the present invention is at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by formula ( D A ) and a polyimide which is an imidized product of the polyimide precursor.
  • the liquid crystal aligning agent of the present invention is characterized in that it contains at least one polymer ( P ) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing diamine (0) (also referred to as a specific diamine in the present invention) represented by the following formula (D A ) and a polyimide which is an imidized product of the polyimide precursor:
  • X 1 , X 2 , n, Cy, R 11 and R 12 are each as defined above.
  • X 1 is preferably an ether bond, —COO—, or —OCO— from the standpoint of ease of synthesis.
  • X 2 is preferably an ether bond, —COO—, or —OCO— from the standpoint of ease of synthesis.
  • n is 0 when X 2 is a single bond, and is preferably 2 to 4 when X 2 is a bonding group from the viewpoint of liquid crystal alignment properties.
  • R 11 and R 12 are preferably a hydrogen atom or a methyl group.
  • substitution positions of the amino groups on the benzene ring in the above formula (D A ) are preferably the 2,4-positions or 3,5-positions when the position to which X 1 is bonded is regarded as the 1-position.
  • Preferred examples of the above formula (D A ) include the following formulae (d A -1) to (d A -3).
  • the diamine (0) represented by the formula (D A ) can be produced by combining known reactions using commercially available or known materials.
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention is a polyimide precursor obtained by using a diamine component containing the above diamine (0), or a polyimide which is an imidized product of the polyimide precursor.
  • the polyimide precursor is a polymer which can obtain a polyimide by imidizing a polyamic acid, a polyamic acid ester, or the like.
  • the polyamic acid (P') which is a polyimide precursor of the polymer (P) can be obtained by a polymerization reaction between a diamine component containing the diamine (0) and a tetracarboxylic acid component.
  • the diamine (0) may be used alone or in combination of two or more kinds.
  • the amount of diamine (0) used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, based on the total diamine components.
  • the diamine component used in the production of the polyamic acid (P') may contain a diamine other than the diamine (0) (hereinafter, also referred to as other diamines).
  • the amount of diamine (0) used relative to the diamine component is preferably 95 mol% or less, more preferably 90 mol% or less, and more preferably 80 mol% or less.
  • Examples of the other diamines are given below, but are not limited thereto.
  • the other diamines may be used alone or in combination of two or more thereof.
  • diamines having a group "-N(D)-" D represents a protecting group which is eliminated by heating and replaced with a hydrogen atom, preferably a carbamate protecting group, more preferably a tert-butoxycarbonyl group
  • D represents a protecting group which is eliminated by heating and replaced with a hydrogen atom, preferably a carbamate protecting group, more preferably a tert-butoxycarbonyl group
  • cholestanyloxy-3,5-diaminobenzene cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestanyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, and 3,6-bis(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-inden-6-amine; diamine
  • m and n are each independently an integer of 0 to 3, and satisfy 1 ⁇ m+n ⁇ 4.
  • j is an integer of 0 or 1.
  • X 1 represents -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1 represents a monovalent group such as a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxyalkyl group having 2 to 10 carbon atoms.
  • X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • the amount of the other diamines used is preferably 10 to 90 mol %, more preferably 20 to 80 mol %, based on the total diamine components used in the production of the polymer (P).
  • the tetracarboxylic acid component to be reacted with the diamine component may be not only a tetracarboxylic acid dianhydride, but also a derivative of a tetracarboxylic acid dianhydride such as a tetracarboxylic acid, a tetracarboxylic acid dihalide, a tetracarboxylic acid dialkyl ester, or a tetracarboxylic acid dialkyl ester dihalide.
  • the above-mentioned tetracarboxylic dianhydride or derivative thereof may be an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or a derivative thereof.
  • a tetracarboxylic dianhydride having at least one structure selected from the group consisting of a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring, or a derivative thereof.
  • the tetracarboxylic acid component that can be used in the production of the polyamic acid (P') preferably contains the following tetracarboxylic dianhydrides or derivatives thereof (which are also collectively referred to as specific tetracarboxylic acid derivatives in the present invention):
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butane tetracarboxylic dianhydride; 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-dichloro-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane
  • Preferred examples of the specific tetracarboxylic acid derivatives include 1,2,3,4-butane tetracarboxylic acid dianhydride, 1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,3-difluoro-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,2,3,4-cyclopentane tetracarboxylic acid dianhydride, 1,2,
  • the proportion of the specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, based on the total tetracarboxylic acid components used.
  • the content ratio of the polymer (A) component and the polymer (B) component in the liquid crystal aligning agent of the present invention is preferably 1:99 to 50:50 by mass, more preferably 5:95 to 30:70, and even more preferably 10:90 to 20:80.
  • crosslinking agent (C) examples include low molecular weight compounds such as epoxy compounds, compounds having two or more amino groups, methylol compounds, isocyanate compounds, phenoplast compounds, and blocked isocyanate compounds, as well as polymers such as N-alkoxymethylacrylamide polymers, polymers of compounds having epoxy groups, and polymers of compounds having isocyanate groups.
  • epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, and N,N,N',N'-tetraglycidyl-4,4'-diaminodip
  • Examples of compounds having two or more amino groups include diamines such as alicyclic diamines, aromatic diamines, aromatic-aliphatic diamines, and aliphatic diamines.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4'-diaminodicyclohexylmethane, 4,4'-diamino-3,3'-dimethyldicyclohexylamine, isophoronediamine, etc.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino-2-methoxybenzene, 2,5-diamino-p-xylene, and 1,3-diamino-4-chlorobenzene.
  • aromatic-aliphatic diamines examples include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3-(3-aminopropyl)aniline, 4-(3-aminopropyl)aniline, 3-(3-methylaminopropyl)aniline, 4-(3-methylaminopropyl)aniline, 3-(4-aminopropyl)aniline, 4 ...
  • nobutyl)aniline 4-(4-aminobutyl)aniline, 3-(4-methylaminobutyl)aniline, 4-(4-methylaminobutyl)aniline, 3-(5-aminopentyl)aniline, 4-(5-aminopentyl)aniline, 3-(5-methylaminopentyl)aniline, 4-(5-methylaminopentyl)aniline, 6-amino-2-naphthylmethanamine, 6-amino-3-naphthylmethanamine, 2-(6-amino-2-naphthyl)ethylamine, 2-(6-amino-3-naphthyl)ethylamine, etc.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7-diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, and 1,9-diamino-5-methylnonane.
  • methylol compounds include compounds such as alkoxymethylated glycoluril, alkoxymethylated benzoguanamine, and alkoxymethylated melamine.
  • alkoxymethylated glycoluril examples include 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4,6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, 1,1,3,3-tetrakis(methoxymethyl)urea, 1,3-bis(hydroxymethyl)-4,5-dihydroxy-2-imidazolinone, and 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-imidazolinone.
  • glycoluril compounds manufactured by Mitsui Cytec Co., Ltd. product names: Cymel (registered trademark) 1170, Powderlink (registered trademark) 1174), methylated urea resin (product name: UFR (registered trademark) 65), butylated urea resin (product name: UFR (registered trademark) 300, U-VAN10S60, U-VAN10R, U-VAN11HV), and urea/formaldehyde resins manufactured by DIC Corporation (high condensation type, product names: Beckamin (registered trademark) J-300S, P-955, N).
  • alkoxymethylated benzoguanamine examples include tetramethoxymethylbenzoguanamine.
  • Commercially available products include those manufactured by Allnex (product name: Cymel (registered trademark) 1123) and those manufactured by Sanwa Chemical Co., Ltd. (product names: Nikalac (registered trademark) BX-4000, BX-37, BL-60, and BX-55H).
  • alkoxymethylated melamine examples include hexamethoxymethylmelamine.
  • Commercially available products include methoxymethyl type melamine compounds manufactured by Allnex Co., Ltd. (product names: Cymel (registered trademark) 300, 301, 303, and 350), butoxymethyl type melamine compounds (product names: Mycoat (registered trademark) 506 and 508), methoxymethyl type melamine compounds manufactured by Sanwa Chemical Co., Ltd.
  • a compound obtained by condensing a melamine compound, a urea compound, a glycoluril compound, and a benzoguanamine compound in which the hydrogen atom of the amino group is replaced with a methylol group or an alkoxymethyl group For example, there may be mentioned high molecular weight compounds produced from melamine compounds and benzoguanamine compounds described in U.S. Pat. No. 6,323,310.
  • Commercially available products of the melamine compounds include Cymel (registered trademark) 303 (manufactured by Allnex), and commercially available products of the benzoguanamine compounds include Cymel (registered trademark) 1123 (manufactured by Allnex).
  • isocyanate compounds include VESTANAT B1358/100 and VESTAGON BF 1540 (both are isocyanurate-modified polyisocyanates manufactured by Evonik Japan Co., Ltd.), Takenate (registered trademark) B-882N and Takenate B-7075 (both are isocyanurate-modified polyisocyanates manufactured by Mitsui Chemicals, Inc.), etc.
  • phenoplast compounds include the following compounds, but phenoplast compounds are not limited to the following compound examples.
  • the compound having two or more hydroxyalkylamide groups at the molecular end include the following compound, Primid (registered trademark) QM-1260, and Primid (registered trademark) SF-4510 (all manufactured by EMS-CHEMIE).
  • blocked isocyanate compounds include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (all manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals, Inc.), etc.
  • N-alkoxymethylacrylamide polymers include polymers produced using acrylamide compounds or methacrylamide compounds substituted with hydroxymethyl groups or alkoxymethyl groups, such as N-hydroxymethyl(meth)acrylamide, N-methoxymethyl(meth)acrylamide, N-ethoxymethyl(meth)acrylamide, and N-butoxymethyl(meth)acrylamide.
  • polymers include poly(N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methyl methacrylate, a copolymer of N-ethoxymethylmethacrylamide and benzyl methacrylate, and a copolymer of N-butoxymethylacrylamide, benzyl methacrylate, and 2-hydroxypropyl methacrylate.
  • the weight average molecular weight of such polymers is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
  • polymers of compounds having epoxy groups include polymers produced using compounds having epoxy groups such as glycidyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, and 3,4-epoxycyclohexylmethyl methacrylate.
  • polymers include poly(3,4-epoxycyclohexylmethyl methacrylate), poly(glycidyl methacrylate), a copolymer of glycidyl methacrylate and methyl methacrylate, a copolymer of 3,4-epoxycyclohexylmethyl methacrylate and methyl methacrylate, and a copolymer of glycidyl methacrylate and styrene.
  • the weight average molecular weight of such polymers is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
  • Examples of the polymers of compounds having an isocyanate group mentioned above include polymers produced using compounds having an isocyanate group such as 2-isocyanatoethyl methacrylate (KarenzMOI [registered trademark], manufactured by Showa Denko K.K.) and 2-isocyanatoethyl acrylate (KarenzAOI [registered trademark], manufactured by Showa Denko K.K.), or compounds having a blocked isocyanate group such as 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl methacrylate (KarenzMOI-BM [registered trademark], manufactured by Showa Denko K.K.) and 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate (KarenzMOI-BP [registered trademark], manufactured by Showa Denko K.K.).
  • an isocyanate group such as 2-isocyanatoethyl methacrylate (
  • polymers include poly(2-isocyanatoethyl acrylate), poly(2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl methacrylate), a copolymer of 2-isocyanatoethyl methacrylate and styrene, and a copolymer of 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate and methyl methacrylate.
  • the weight average molecular weight of such polymers is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
  • crosslinking agents can be used alone or in combination of two or more.
  • the liquid crystal alignment agent used in the present invention contains a crosslinking agent (C)
  • the content is preferably 1 to 100 parts by mass, and more preferably 1 to 80 parts by mass, based on 100 parts by mass of the (A) component.
  • the liquid crystal alignment agent used in the present invention is preferably prepared as a coating liquid suitable for forming a liquid crystal alignment film. That is, the liquid crystal alignment agent of the present invention is preferably prepared as a solution in which a resin component for forming a resin coating is dissolved in an organic solvent.
  • the resin components are the already explained (A) component, which is a polymer or a low molecular weight compound, the (B) component, which is a polymer, and, if necessary, the (C) component, which is a crosslinking agent.
  • the total content of the (A) component, the (B) component, and the (C) component, which is a crosslinking agent is preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, even more preferably 1 to 15% by mass, and particularly preferably 1 to 10% by mass, based on the entire liquid crystal alignment agent.
  • the solvent contained in the liquid crystal alignment agent used in the present invention is not particularly limited as long as it dissolves the (A) component, the (B) component, and, if necessary, the (C) component.
  • the solvent contained in the liquid crystal alignment agent may be one type, or two or more types may be mixed and used.
  • the solvent can be used in combination with a solvent that dissolves the (A) component or the (B) component.
  • the surface energy of the solvent that does not dissolve the (A) component or the (B) component is lower than that of the solvent that dissolves the (A) component or the (B) component, because the liquid crystal alignment agent can be applied to the substrate with good properties.
  • N-alkyl-2-pyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone
  • N,N-dimethylformamide such as N,N-dimethylacetamide
  • N-methylcaprolactam tetramethylurea
  • 3-methoxy-N,N-dimethylpropanamide 3-ethoxy-N,N-dimethylpropanamide
  • dialkylimidazolidinones such as 1,3-dimethyl-2-imidazolidinone
  • lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone
  • carbonates such as ethylene carbonate and propylene carbonate
  • methanol ethanol
  • ethanol propanoic acid
  • ketones examples include ketones such as ethanol, isopropanol, 3-methyl-3-methoxybutanol, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, isoamyl methyl ketone, methyl isopropyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, and 4-hydroxy-4-methyl-2-pentanone; compounds represented by the following formula (Sv-1) and compounds represented by the following formula (Sv-2); 4-methyl-2-pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, butyl butyrate, isoamyl butyrate, diisobutyl carbinol, and diisopentyl ether.
  • Y 1 and Y 2 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • X 1 is an oxygen atom or -COO-
  • X 2 is a single bond or a carbonyl group
  • R 1 is an alkylene group having 2 to 4 carbon atoms.
  • n 1 is an integer of 1 to 3. When n 1 is 2 or 3, multiple R 1 's may be the same or different.
  • Z 1 is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • Y 3 and Y 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms for Y1 and Y2 include a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, a monovalent alicyclic hydrocarbon group having 1 to 6 carbon atoms, and a monovalent aromatic hydrocarbon group having 1 to 6 carbon atoms.
  • examples of the monovalent chain hydrocarbon group having 1 to 6 carbon atoms include an alkyl group having 1 to 6 carbon atoms.
  • the alkylene group for R1 may be linear or branched.
  • examples of the divalent hydrocarbon group having 1 to 6 carbon atoms for Z 1 include alkylene groups having 1 to 6 carbon atoms.
  • examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms for Y3 and Y4 include a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, a monovalent alicyclic hydrocarbon group having 1 to 6 carbon atoms, and a monovalent aromatic hydrocarbon group having 1 to 6 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 6 carbon atoms include an alkyl group having 1 to 6 carbon atoms.
  • solvent represented by formula (Sv-1) include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether,
  • the solvent preferably has a boiling point of 80 to 200° C., more preferably 80 to 180° C., and examples of preferred solvents include N,N-dimethylformamide, tetramethylurea, 3-methoxy-N,N-dimethylpropanamide, propanol, isopropanol, 3-methyl-3-methoxybutanol, ethyl amyl ketone, methyl ethyl ketone, isoamyl methyl ketone, methyl isopropyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, 4-hydroxy-4-methyl-2-pentanone, 4-methyl-2-pentyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, butyl butyrate, isoamyl butyrate, diisobutyl
  • the liquid crystal aligning agent used in the present invention may contain other components in addition to the above-mentioned (A) component, (B) component, and, if necessary, the above-mentioned (C) component.
  • other components include, but are not limited to, a crosslinking catalyst, a compound that improves the film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like.
  • a crosslinking catalyst may be added to the liquid crystal alignment agent used in the present invention for the purpose of promoting the reaction between the thermally crosslinkable group A and the thermally crosslinkable group B.
  • crosslinking catalysts include sulfonic acids such as p-toluenesulfonic acid, camphorsulfonic acid, trifluoromethanesulfonic acid, p-phenolsulfonic acid, 2-naphthalenesulfonic acid, mesitylenesulfonic acid, p-xylene-2-sulfonic acid, m-xylene-2-sulfonic acid, 4-ethylbenzenesulfonic acid, 1H,1H,2H,2H-perfluorooctane sulfonic acid, perfluoro(2-ethoxyethane)sulfonic acid, pentafluoroethanesulfonic acid, nonafluorobutane-1-sulf
  • Examples of the compound that generates an acid when heated include bis(tosyloxy)ethane, bis(tosyloxy)propane, bis(tosyloxy)butane, p-nitrobenzyl tosylate, o-nitrobenzyl tosylate, 1,2,3-phenylene tris(methylsulfonate), p-toluenesulfonic acid pyridinium salt, p-toluenesulfonic acid morphonium salt, p-toluenesulfonic acid ethyl ester, p-toluenesulfonic acid propyl ester, p-toluenesulfonic acid butyl ester, p-toluenesulfonic acid isobutyl ester, p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid phenethyl ester, cyanomethyl p
  • Examples of compounds that improve the uniformity of the film thickness and the surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • Specific examples include EFTOP (registered trademark) 301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), MEGAFAC (registered trademark) F171, F173, R-30 (manufactured by DIC Corporation), Fluorad FC430, FC431 (manufactured by Sumitomo 3M Limited), Asahiguard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.), and the like.
  • the proportion of these surfactants used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part
  • compounds that improve the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • the amount used is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass, relative to 100 parts by mass of the resin component contained in the polymer composition.
  • a photosensitizer can be used as an additive to improve the photoreactivity of the photoalignment group.
  • Specific examples include aromatic 2-hydroxyketones (benzophenones), coumarins, ketocoumarins, carbonyl biscoumarins, acetophenones, anthraquinones, xanthones, thioxanthones, and acetophenone ketals.
  • the liquid crystal alignment agent of the present invention can be applied to a substrate, baked, and then subjected to an alignment treatment such as rubbing or light irradiation to form a liquid crystal alignment film, or in some vertical alignment applications, no alignment treatment can be performed.
  • a transparent substrate made of glass such as float glass or soda glass; polyethylene terephthalate, polybutylene terephthalate, polypropylene, polystyrene, polyethersulfone, polycarbonate, poly(alicyclic olefin), polyvinyl chloride, polyvinylidene chloride, polyetheretherketone (PEEK) resin film, polysulfone (PSF), polyethersulfone (PES), polyamide, polyimide, acrylic, triacetyl cellulose, or other plastics can be used.
  • glass such as float glass or soda glass
  • PEEK polyetheretherketone
  • PSF polysulfone
  • PES polyethersulfone
  • the transparent conductive film provided on one side of the substrate may be a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ), or the like.
  • NESA film registered trademark of PPG, USA
  • ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ), or the like.
  • the method of applying the liquid crystal alignment agent of the present invention is not particularly limited, and may be screen printing, flexographic printing, offset printing, inkjet, dip coating, roll coating, slit coating, spin coating, etc., which may be used depending on the purpose.
  • the solvent is evaporated by a heating means such as a hot plate to form a coating film.
  • the baking after coating the liquid crystal alignment agent can be carried out at any temperature between 40 and 300°C, preferably between 40 and 250°C, and more preferably between 40 and 230°C.
  • the thickness of the coating film formed on the substrate is preferably 5 to 1,000 nm, more preferably 10 to 500 nm or 10 to 300 nm.
  • This baking can be carried out using a hot plate, a hot air circulating oven, an infrared oven, or the like.
  • a rayon cloth, a nylon cloth, a cotton cloth, or the like can be used.
  • an alignment treatment by light irradiation may be performed, and may include, for example, a step of applying the above-mentioned liquid crystal alignment agent onto a substrate to form a coating film, and a step of irradiating the coating film with light while the coating film is not in contact with the liquid crystal layer or while the coating film is in contact with the liquid crystal layer.
  • the light irradiated in the alignment treatment by light irradiation can be, for example, ultraviolet light containing light with a wavelength of 150 to 800 nm, visible light, etc. Of these, ultraviolet light containing light with a wavelength of 300 to 400 nm is preferred.
  • the irradiated light may be polarized or unpolarized. As for the polarized light, it is preferable to use light containing linearly polarized light.
  • the light used When the light used is polarized light, the light may be irradiated from a direction perpendicular to the substrate surface, from an oblique direction, or a combination of these.
  • the light used When the light used is non-polarized light, the light is preferably irradiated from an oblique direction relative to the substrate surface.
  • the amount of light irradiation is preferably 0.1 mJ/cm 2 or more and less than 1,000 mJ/cm 2 , more preferably 1 to 500 mJ/cm 2 , and even more preferably 2 to 200 mJ/cm 2 .
  • the liquid crystal display element of the present invention is a vertical alignment type liquid crystal display element having a liquid crystal cell having two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment film provided between the substrates and the liquid crystal layer and formed by the liquid crystal alignment agent of the present invention.
  • the liquid crystal alignment agent of the present invention is applied to two substrates and baked to form a liquid crystal alignment film, the two substrates are arranged so that the liquid crystal alignment film faces each other, a liquid crystal layer made of liquid crystal is sandwiched between the two substrates, and ultraviolet light is irradiated to produce a liquid crystal cell.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving the liquid crystal is formed. Specific examples include the same substrates as those described above for the liquid crystal alignment film.
  • the liquid crystal display element of the present invention may use a substrate having a conventional electrode pattern or protrusion pattern, but since it has a liquid crystal alignment film formed using the liquid crystal alignment agent of the present invention, it can also operate using a substrate having a structure in which a line/slit electrode pattern of 1 to 10 ⁇ m is formed on one substrate and no slit pattern or protrusion pattern is formed on the opposing substrate, which simplifies the process of manufacturing the element and allows for a high transmittance to be obtained.
  • transistor-like elements are formed between the electrodes for driving the liquid crystal and the substrate.
  • transmissive liquid crystal display elements the above substrates are generally used, but in the case of reflective liquid crystal display elements, it is possible to use an opaque substrate such as a silicon wafer for only one of the substrates. In such cases, a light-reflecting material such as aluminum can be used for the electrodes formed on the substrate.
  • the liquid crystal alignment film is formed by applying the liquid crystal alignment agent of the present invention onto this substrate and then baking it, as described in detail above.
  • a nematic liquid crystal having negative dielectric anisotropy can be used as the liquid crystal composition used in the liquid crystal display element of the present invention.
  • dicyanobenzene-based liquid crystal, pyridazine-based liquid crystal, Schiff base-based liquid crystal, azoxy-based liquid crystal, biphenyl-based liquid crystal, phenylcyclohexane-based liquid crystal, terphenyl-based liquid crystal, etc. can be used.
  • an alkenyl-based liquid crystal a conventionally known one can be used.
  • the compound represented by the following formula can be used, but is not limited to this.
  • the liquid crystal composition constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited as long as it is a liquid crystal material used in a vertical alignment method.
  • MLC-6608, MLC-6609, etc. which are liquid crystal compositions having negative dielectric anisotropy manufactured by Merck
  • MLC-3022, MLC-3023 (containing a photopolymerizable compound (RM)), etc. which are liquid crystal compositions containing alkenyl liquid crystals and having negative dielectric anisotropy manufactured by Merck, can be used.
  • the method of sandwiching this liquid crystal layer between two substrates can be a known method, for example, a method of preparing a pair of substrates on which a liquid crystal alignment film is formed, scattering spacers such as beads on the liquid crystal alignment film of one substrate, applying an adhesive around the periphery of the substrate, and then bonding the other substrate so that the surface on which the liquid crystal alignment film is formed faces inward, and injecting liquid crystal under reduced pressure to seal the substrate can be mentioned.
  • a liquid crystal cell can also be produced by a method in which a pair of substrates on which liquid crystal alignment films are formed are prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, liquid crystal is then dropped onto the substrate, and the other substrate is attached so that the surface on which the liquid crystal alignment film is formed faces inward to seal the substrate.
  • the thickness of the spacer in this case is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the step of preparing a liquid crystal cell by irradiating the liquid crystal alignment film and the liquid crystal layer with ultraviolet light may be performed at any time after the liquid crystal is sealed in.
  • the amount of ultraviolet light irradiation is, for example, 1 to 60 J/ cm2 , preferably 40 J/ cm2 or less. The lower the amount of ultraviolet light irradiation, the more the deterioration of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed.
  • the wavelength of the ultraviolet light used is preferably 300 to 500 nm, more preferably 300 to 400 nm.
  • the wavelength of the ultraviolet light used in the step of preparing a liquid crystal cell is preferably different from the wavelength of the ultraviolet light used in the light irradiation step.
  • the wavelength of the ultraviolet light used in the step of preparing a liquid crystal cell is longer than the wavelength of the ultraviolet light used in the light irradiation step, from the viewpoint of preventing the reverse reaction of the light irradiation step from proceeding in the step of preparing a liquid crystal cell.
  • the wavelength of the ultraviolet light used in the light irradiation step is 300 to 350 nm, and that the wavelength of the ultraviolet light used in the step of preparing the liquid crystal cell is 350 to 400 nm.
  • the liquid crystal alignment film and the liquid crystal layer may be irradiated with ultraviolet light by applying a voltage and maintaining the electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, and preferably 5 to 20 Vp-p.
  • the polymerizable compound when the liquid crystal alignment film and liquid crystal layer are irradiated with ultraviolet light, the polymerizable compound reacts to form a polymer, and this polymer memorizes the direction in which the liquid crystal molecules tilt, thereby making it possible to speed up the response speed of the resulting liquid crystal display element.
  • the liquid crystal alignment agent of the present invention is imparted with a tilt angle by the photo-alignment process described above, which causes a photoreaction of the photo-alignable groups of the polymer or low molecular weight compound, which is component (A). Then, during the PSA treatment, radicals are generated from the alkenyl liquid crystal in the liquid crystal composition, which then polymerizes, thereby fixing the imparted tilt angle. This makes it possible to improve the durability of the tilt angle of the resulting liquid crystal display element.
  • liquid crystal alignment agent is not only useful as a liquid crystal alignment agent for producing vertical alignment type liquid crystal display elements such as PSA type liquid crystal displays and SC-PVA type liquid crystal displays, but can also be suitably used for producing liquid crystal alignment films formed by rubbing treatment or photoalignment treatment.
  • CA-1 to CA-2 Compounds (diamines) represented by the following formulas (CA-1) to (CA-2), respectively.
  • DA-1 to DA-7 Compounds (acrylic monomers) represented by the following formulas (DA-1) to (DA-7), respectively.
  • MA-1 to MA-3 Compounds (initiators) represented by the following formulas (MA-1) to (MA-3), respectively.
  • IN-1 A compound (reactant) represented by the following formula (IN-1)
  • DMAP N,N-dimethyl-4-aminopyridine
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
  • GPC apparatus GPC-101 (Showa Denko K.K.); column: GPC KD-803, GPC KD-805 (Showa Denko K.K.) in series; column temperature: 50°C; eluent: N,N-dimethylformamide (additives: lithium bromide monohydrate (LiBr.H 2 O) 30 mmol/L, phosphoric acid anhydrous crystal (o-phosphoric acid) 30 mmol/L, tetrahydrofuran (THF) 10 mL/L); flow rate: 1.0 mL/min.
  • Standard samples for creating calibration curves TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (Tosoh Corporation) and polyethylene glycol (molecular weight: about 12,000, 4,000, and 1,000) (Polymer Laboratory Co., Ltd.).
  • 1,3-dinitrobenzoic acid (42.4 g, 200 mmol) was added with THF (200 g), cyclooctanol (25.6 g, 200 mmol), DMAP (2.44 g, 20.0 mmol), and EDC (37.3 g, 195 mmol), and the mixture was allowed to react for 18 hours under room temperature conditions in a nitrogen atmosphere. After the reaction was completed, insoluble matter was removed by filtration, and the reaction solution was poured into pure water to obtain a crude reaction product. The obtained crude product was slurry washed with pure water/methanol (50/50 (vol%/vol%)) to obtain DA-2-1 (41.7 g, 129 mmol, yield 65%, white solid).
  • DA-2 (3.94 g, 15.0 mmol) and NMP (17.9 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.91 g, 14.8 mmol) and NMP (13.3 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (2) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 13,500 and the Mw was 41,200.
  • DA-3 (5.41 g, 15.0 mmol) and NMP (24.6 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.93 g, 14.9 mmol) and NMP (13.3 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (3) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 10,500 and the Mw was 23,500.
  • DA-4 (1.62 g, 15.0 mmol) and NMP (7.39 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.87 g, 14.6 mmol) and NMP (13.1 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (4) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 11,600 and the Mw was 22,700.
  • DA-5 (0.910 g, 5.98 mmol), DA-6 (1.09 g, 4.50 mmol), DA-1 (1.43 g, 4.49 mmol), CA-2 (0.750 g, 3.00 mmol) and NMP (16.7 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 60 ° C. for 3 hours while feeding nitrogen. Thereafter, CA-1 (2.32 g, 11.8 mmol) and NMP (9.30 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a polyamic acid solution (5) having a solid content concentration of 20 mass%. The Mn of this polyamic acid was 12,500 and the Mw was 33,600.
  • DA-5 (0.910 g, 5.98 mmol), DA-6 (1.09 g, 4.50 mmol), DA-7 (1.71 g, 4.49 mmol), CA-2 (0.750 g, 3.00 mmol) and NMP (17.9 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 60 ° C. for 3 hours while feeding nitrogen. Thereafter, CA-1 (2.33 g, 11.9 mmol) and NMP (9.33 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a polyamic acid solution (6) having a solid content concentration of 20 mass%. The Mn of this polyamic acid was 11,500 and the Mw was 30,000.
  • Example 1 NMP (5.57 g) and BCS (6.00 g) were added to the polyamic acid solution (1) (2.83 g) obtained in Synthesis Example 1 and the polymethacrylate solution (1) (0.60 g) obtained in Synthesis Example 7, and the mixture was stirred at room temperature for 3 hours to obtain a liquid crystal alignment agent (A-1).
  • Examples 2 and 3 Comparative Example 1> Except for using the polyamic acid solutions (2), (3), and (4) instead of the polyamic acid solution (1), the liquid crystal alignment agents (A-2), (A-3), and (B-1) of Examples 2 and 3 and Comparative Example 1 were obtained in the same manner as in Example 1.
  • Example 4 NMP (5.85 g) and BCS (6.00 g) were added to the polyamic acid solution (5) (2.55 g) obtained in Synthesis Example 5 and the polymethacrylate solution (1) (0.60 g) obtained in Synthesis Example 7, and the mixture was stirred at room temperature for 3 hours to obtain a liquid crystal alignment agent (A-4).
  • the liquid crystal alignment agents (A-1) to (A-4) and (B-1) to (B-2) obtained as described above showed no abnormalities such as turbidity or precipitation, and were confirmed to be homogeneous solutions.
  • the pretilt angle was evaluated using the obtained liquid crystal alignment agents.
  • liquid crystal alignment agent obtained above, a liquid crystal cell was produced according to the following procedure.
  • the liquid crystal alignment agent was spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 70 ° C for 90 seconds, and then baked in an infrared heating furnace at 200 ° C for 30 minutes to form a liquid crystal alignment film with a thickness of 100 nm.
  • the coating surface was irradiated with linearly polarized ultraviolet light with a wavelength of 313 nm and an irradiation intensity of 4.3 mW / cm 2 through a polarizing plate at an angle inclined by 40 ° from the substrate normal direction at 50 mJ / cm 2 to obtain a substrate with a liquid crystal alignment film.
  • the linearly polarized ultraviolet light was prepared by passing the ultraviolet light of a high-pressure mercury lamp through a bandpass filter with a wavelength of 313 nm and then through a polarizing plate with a wavelength of 313 nm.
  • the pretilt angle of the liquid crystal cell was measured by the Mueller matrix method using an AxoScan manufactured by Axometrics, Inc. The evaluation results are shown in Table 3. The lower the value, the better the result.
  • the voltage retention rate of the liquid crystal cell was measured using a VHR-1 manufactured by Toyo Corporation, by applying a voltage of 1 V for 60 ⁇ s in a hot air circulating oven at 60° C., and measuring the voltage 1000 msec later, and calculating the voltage retention rate to determine how much voltage was retained.
  • the evaluation results are shown in Table 3. A value of 80% or more is considered good.
  • the examples using the liquid crystal alignment film obtained from the liquid crystal alignment agent containing a specific diamine in the diamine component show a pretilt angle of 2° or more from the vertical, unlike the comparative examples using the liquid crystal alignment film obtained from the liquid crystal alignment agent not containing a specific diamine in the diamine component. It can also be seen that they show a high voltage retention rate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a liquid crystal alignment film and a liquid crystal aligning agent, each of which has good liquid crystal alignment properties and is capable of imparting a pretilt angle of 87° to 88°, while achieving high reliability. The present invention provides a liquid crystal aligning agent which comprises: (A) a low-molecular weight compound or a polymer which is represented by formula (pa-1) (wherein A represents a pyrimidine-2,5-diyl that may be substituted with a substituent, or the like; R1 represents a single bond, an oxygen atom or the like; R2 represents a divalent aromatic group or the like; R3 represents a single bond, an oxygen atom or the like; R4 represents a monovalent organic group having 3 to 40 carbon atoms, including alkyl group or the like; D represents an oxygen atom, a sulfur atom or the like; a is an integer of 0 to 3; * denotes a bonding position; and X and Y each independently represent a hydrogen atom, a fluorine atom or the like) and has a photo-alignment group and a thermally crosslinkable group; (B) at least one polymer (P) which is selected from the group consisting of polyimide precursors obtained by using a diamine component including a diamine (0) that is represented by formula (DA) (wherein X1 and X2 each independently represent a bond group such as a single bond and an ether bond; n is an integer of 1 to 6; Cy represents a non-aromatic cyclic group having a 7-20 membered ring; and R11 and R12 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms) and polyimides which are imidization products of the polyimide precursors; and a solvent.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、これにより得られる液晶配向膜、及び得られた液晶配向膜を具備する液晶表示素子に関する。さらに詳しくは、液晶配向性が良好であり、プレチルト角発現能にも優れ、且つ高い信頼性が得られる液晶配向膜を与えることのできる液晶配向剤及び表示品位に優れる液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film obtained thereby, and a liquid crystal display element having the obtained liquid crystal alignment film. More specifically, the present invention relates to a liquid crystal alignment agent capable of providing a liquid crystal alignment film that has good liquid crystal alignment properties, excellent pretilt angle expression ability, and high reliability, and a liquid crystal display element with excellent display quality.
 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。現在、工業的に使用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸ともいわれる)、ポリアミック酸エステルや、ポリイミドの溶液からなるポリイミド系の液晶配向剤を、基板に塗布し成膜することで作製される。また、基板面に対して液晶を平行配向又は傾斜配向させる場合は、成膜した後、更にラビングによる表面延伸処理が行われている。 In liquid crystal display elements, the role of the liquid crystal alignment film is to align the liquid crystal in a certain direction. Currently, the main liquid crystal alignment films used industrially are produced by applying a polyimide-based liquid crystal alignment agent made from a polyimide precursor such as polyamide acid (also called polyamic acid), polyamic acid ester, or a polyimide solution to a substrate and forming a film. In addition, when aligning the liquid crystal parallel to or at an angle to the substrate surface, a surface stretching process by rubbing is further carried out after film formation.
 一方、基板に対して垂直に液晶を配向させる場合(垂直配向(VA)方式と呼ばれる)は、長鎖アルキルや環状基又は環状基とアルキル基の組み合わせ(例えば特許文献1参照)、ステロイド骨格(例えば特許文献2参照)などの疎水性基をポリイミドの側鎖に導入した液晶配向膜が用いられている。この場合、基板間に電圧を印加して液晶分子が基板に平行な方向に向かって傾く際に、液晶分子が基板法線方向から基板面内の一方向に向かって傾くようにする必要がある。このための手段として、例えば、基板上に突起を設ける方法、表示用電極にスリットを設ける方法、ラビングにより液晶分子を基板法線方向から基板面内の一方向に向けてわずかに傾けておく(プレチルトさせる)方法、さらには、あらかじめ液晶組成物中に光重合性化合物を添加し、ポリイミド等の垂直配向膜と共に用いて、液晶セルに電圧を印加しながら紫外線を照射することで、液晶をプレチルトさせる方法(例えば、特許文献3参照)などが提案されている。 On the other hand, when the liquid crystal is aligned perpendicular to the substrate (called the vertical alignment (VA) method), a liquid crystal alignment film is used in which hydrophobic groups such as long-chain alkyl, cyclic groups, or combinations of cyclic and alkyl groups (see, for example, Patent Document 1), or steroid skeletons (see, for example, Patent Document 2) are introduced into the side chains of polyimide. In this case, when a voltage is applied between the substrates to tilt the liquid crystal molecules in a direction parallel to the substrate, it is necessary to make the liquid crystal molecules tilt from the substrate normal direction toward one direction within the substrate plane. As a means for this, for example, a method of providing protrusions on the substrate, a method of providing slits in the display electrode, a method of slightly tilting the liquid crystal molecules from the substrate normal direction toward one direction within the substrate plane by rubbing (pretilting), and a method of adding a photopolymerizable compound to the liquid crystal composition in advance, using it together with a vertical alignment film such as polyimide, and irradiating ultraviolet light while applying a voltage to the liquid crystal cell to pretilt the liquid crystal (see, for example, Patent Document 3) have been proposed.
 近年、VA方式の液晶配向制御における突起やスリットの形成、及びPSA技術に代わるものとして偏光紫外線照射等による異方的光化学反応を利用する方法(光配向法)も提案されている。すなわち、光反応性を有する垂直配向性のポリイミド膜に、偏光紫外線照射し、配向規制能及びプレチルト角発現性を付与することにより、電圧印加時の液晶分子の傾き方向を均一に制御できることが知られている(特許文献4参照)。 In recent years, a method (photoalignment method) that utilizes anisotropic photochemical reactions caused by irradiation with polarized ultraviolet light, etc., has been proposed as an alternative to the formation of protrusions and slits in the VA method of liquid crystal alignment control and PSA technology. That is, it is known that the tilt direction of liquid crystal molecules when voltage is applied can be uniformly controlled by irradiating a photoreactive vertical alignment polyimide film with polarized ultraviolet light to impart alignment control ability and pretilt angle expression ability (see Patent Document 4).
 VA方式の液晶表示素子はコントラストが高い、視野角が広いといった特徴から、TVや車載ディスプレイに使用されている。TV用の液晶表示素子は高輝度を得るために発熱量が大きいバックライトを使用していたり、車載用途で用いられる液晶表示素子、例えば、カーナビゲーションシステムやメーターパネルでは、長時間高温環境下で使用あるいは放置される場合がある。そのような過酷条件において、プレチルト角が徐々に変化した場合、初期の表示特性が得られなくなったり、表示にムラが発生したりなどの問題が起こる。さらに、液晶を駆動させた際の、電圧保持特性や電荷蓄積特性も液晶配向膜の影響をうけ、電圧保持率が低い場合は表示画面のコントラストが低下する、直流電圧に対する電荷の蓄積が大きい場合は表示画面が焼き付くという現象が生じる。特に、透過率を高めるために、垂直から2°以上の比較的大きなプレチルト角を付与することが求められるが、光配向処理によってそのような大きなチルト角を付与しうるとともに、付与されたチルト角を安定に維持しうるような材料がこれまで存在しなかった。 VA-type liquid crystal display elements are used in TVs and in-vehicle displays because of their high contrast and wide viewing angle. Liquid crystal display elements for TVs use backlights that generate a large amount of heat to obtain high brightness, and liquid crystal display elements used in in-vehicle applications, such as car navigation systems and meter panels, may be used or left in high-temperature environments for long periods of time. If the pretilt angle gradually changes under such harsh conditions, problems such as the initial display characteristics being no longer obtained and uneven display may occur. Furthermore, the voltage retention characteristics and charge accumulation characteristics when the liquid crystal is driven are also affected by the liquid crystal alignment film, and if the voltage retention rate is low, the contrast of the display screen decreases, and if the charge accumulation relative to the DC voltage is large, the display screen may burn in. In particular, in order to increase the transmittance, it is necessary to impart a relatively large pretilt angle of 2° or more from the vertical, but there has been no material that can impart such a large tilt angle by photo-alignment treatment and stably maintain the imparted tilt angle.
特開平3-179323号公報Japanese Patent Application Laid-Open No. 3-179323 特開平4-281427号公報Japanese Patent Application Laid-Open No. 4-281427 特許第4504626号公報Japanese Patent No. 4504626 特許第4995267号公報Patent No. 4995267
 本発明者らが検討した結果、光配向性基の量を調節するだけでは、垂直から2°以上のチルト角を安定して発生させることはできなかった。本発明は、垂直から2°以上のチルト角を安定して発生させることが可能であり、且つ高い信頼性が得られる液晶配向膜ならびに液晶配向剤を提供することを課題とする。 As a result of the inventors' investigations, it was found that it was not possible to stably generate a tilt angle of 2° or more from the vertical by simply adjusting the amount of photoalignable groups. The objective of the present invention is to provide a liquid crystal alignment film and liquid crystal alignment agent that can stably generate a tilt angle of 2° or more from the vertical and that is highly reliable.
 本発明者らは、以下の<X>を要旨とする発明を見出した。
 <X> (A)成分として下記式(pa-1)で表される光配向性基と熱架橋性基とを有する重合体または低分子化合物、(B)成分として下記式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)及び溶媒を含有する液晶配向剤。
The present inventors have discovered the invention having the following gist <X>.
<X> A liquid crystal aligning agent containing at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using, as a component (A), a polymer or low molecular weight compound having a photoalignable group and a thermally crosslinkable group represented by the following formula (pa- 1 ), as a component (B), a diamine component containing a diamine (0) represented by the following formula (D A ), and a polyimide which is an imidized product of the polyimide precursor, and a solvent.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(pa-1)中、Aは場合によりフッ素原子、塩素原子、シアノ基から選択される基によるか、又は炭素数1~5のアルコキシ基、直鎖状若しくは分岐鎖状のアルキル残基(これは、場合により1個のシアノ基又は1個以上のハロゲン原子で置換されている)で置換されている、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、チオフェン-2,5-ジイル、フラン-2,5-ジイル、1,4-若しくは2,6-ナフチレン又はフェニレンを表し、Rは単結合、酸素原子、-COO-または-OCO-であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基または2価の縮合環式基であり、Rは単結合、酸素原子、-COO-または-OCO-であり、Rは炭素数1~40の直鎖又は分岐鎖のアルキル基または脂環式基を含む炭素数3~40の1価の有機基であり、Dは、酸素原子、硫黄原子又は-NR-(ここで、Rは、水素原子又は炭素数1~3のアルキルを表す)を表し、aは0~3の整数であり、*は結合位置を表す。aが2以上の場合、複数個のR及びRはそれぞれ独立して上記定義を有する。X及びYは、それぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基又は炭素数1~3のアルキル基であり、該アルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。
 「C」と「A」との間、及び「C」と「X」との間の「波線」はE体であってもZ体であってもよいことを意味する。なお、本明細書において「波線」は上記と同じ意味である。
In formula (pa-1), A represents pyrimidine-2,5-diyl, pyridine-2,5-diyl, thiophene-2,5-diyl, furan-2,5-diyl, 1,4- or 2,6-naphthylene or phenylene, which is optionally substituted with a group selected from a fluorine atom, a chlorine atom or a cyano group, or with an alkoxy group having 1 to 5 carbon atoms, a linear or branched alkyl residue (which is optionally substituted with one cyano group or one or more halogen atoms); R 1 represents a single bond, an oxygen atom, -COO- or -OCO-; R 2 represents a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group; R 3 represents a single bond, an oxygen atom, -COO- or -OCO-; R 4 is a monovalent organic group having 3 to 40 carbon atoms containing a linear or branched alkyl group having 1 to 40 carbon atoms or an alicyclic group, D is an oxygen atom, a sulfur atom, or -NR d - (wherein R d is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms), a is an integer of 0 to 3, and * represents a bonding position. When a is 2 or more, the multiple R 1s and R 2s each independently have the above definition. X and Y are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms.
The "wavy lines" between "C" and "A" and between "C" and "X" mean that the compound may be either an E-form or a Z-form. In this specification, the "wavy line" has the same meaning as above.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(D)中、X及びXは、それぞれ独立して、単結合、エーテル結合、-COO-、-OCO-、-NHCO-、-CONH-、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合する炭素数1~3のアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合する炭素数1~3のアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又は炭素数1~3のアルキル基を表す。)から選ばれる結合基であり、nは、1~6の整数である。Cyは7~20員環の非芳香族の環状基を表す(但し、Xが単結合の場合、nは0である)。R11及びR12は、それぞれ独立に、水素原子または炭素数1~3のアルキル基を表す。 In formula (D A ), X 1 and X 2 each independently represent a bonding group selected from a single bond, an ether bond, -COO-, -OCO-, -NHCO-, -CONH-, a urethane bond, a urea bond, a thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms bonded to Si), -Si(R 3 )(R 4 )-O- (R 3 and R 4 each independently represent an alkyl group having 1 to 3 carbon atoms bonded to Si), and -N(R 5 )- (R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms bonded to N), and n is an integer from 1 to 6. Cy represents a non-aromatic cyclic group having 7 to 20 members (however, when X 2 is a single bond, n is 0). R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
 本発明により、垂直から2°以上のプレチルト角の付与が可能で、且つ高い信頼性が得られる液晶配向膜ならびに液晶配向剤を提供できる。また、本発明の方法によって製造された液晶表示素子は優れた表示特性を有する。 The present invention can provide a liquid crystal alignment film and a liquid crystal alignment agent that can impart a pretilt angle of 2° or more from the vertical and that are highly reliable. Furthermore, the liquid crystal display element manufactured by the method of the present invention has excellent display characteristics.
 本発明の液晶配向剤は、(A)成分として下記式(pa-1)で表される光配向性基と熱架橋性基とを有する重合体または低分子化合物、(B)成分として式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)及び溶媒を含有する。 The liquid crystal aligning agent of the present invention contains, as component (A), at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (D A ) and a polyimide which is an imidized product of the polyimide precursor, and a solvent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(pa-1)中、Aは場合によりフッ素原子、塩素原子、シアノ基から選択される基によるか、又は炭素数1~5のアルコキシ基、直鎖状若しくは分岐鎖状のアルキル残基(これは、場合により1個のシアノ基又は1個以上のハロゲン原子で置換されている)で置換されている、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、チオフェン-2,5-ジイル、フラン-2,5-ジイル、1,4-若しくは2,6-ナフチレン又はフェニレンを表し、Rは単結合、酸素原子、-COO-または-OCO-であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基または2価の縮合環式基であり、Rは単結合、酸素原子、-COO-または-OCO-であり、Rは炭素数1~40の直鎖又は分岐鎖のアルキル基または脂環式基を含む炭素数3~40の1価の有機基であり、Dは、酸素原子、硫黄原子又は-NR-(ここで、Rは、水素原子又は炭素数1~3のアルキルを表す)を表し、aは0~3の整数であり、*は結合位置を表す。aが2以上の場合、複数個のR及びRはそれぞれ独立して上記定義を有する。X及びYは、それぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基又は炭素数1~3のアルキル基であり、該アルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。
 「C」と「A」との間、及び「C」と「X」との間の「波線」はE体であってもZ体であってもよいことを意味する。
In formula (pa-1), A represents pyrimidine-2,5-diyl, pyridine-2,5-diyl, thiophene-2,5-diyl, furan-2,5-diyl, 1,4- or 2,6-naphthylene or phenylene, which is optionally substituted with a group selected from a fluorine atom, a chlorine atom or a cyano group, or with an alkoxy group having 1 to 5 carbon atoms, a linear or branched alkyl residue (which is optionally substituted with one cyano group or one or more halogen atoms); R 1 represents a single bond, an oxygen atom, -COO- or -OCO-; R 2 represents a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group; R 3 represents a single bond, an oxygen atom, -COO- or -OCO-; R 4 is a monovalent organic group having 3 to 40 carbon atoms containing a linear or branched alkyl group having 1 to 40 carbon atoms or an alicyclic group, D is an oxygen atom, a sulfur atom, or -NR d - (wherein R d is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms), a is an integer of 0 to 3, and * represents a bonding position. When a is 2 or more, the multiple R 1s and R 2s each independently have the above definition. X and Y are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms.
The wavy lines between "C" and "A" and between "C" and "X" mean that either the E-form or the Z-form may be used.
 (A)成分が重合体である場合、液晶配向剤は、下記要件Z1及びZ2の少なくとも一方を満たすものであってもよい。
 Z1:(A)成分である重合体が、熱架橋性基A及び熱架橋性基Bを有する。
 Z2:(A)成分である重合体が熱架橋性基Aを有し、(C)成分として、分子内に2個以上の熱架橋性基Bを有する化合物をさらに含有する。
 熱架橋性基A及び熱架橋性基Bは、それぞれ独立にカルボキシ基、保護カルボキシ基、アミノ基、保護アミノ基、アルコキシメチルアミド基、ヒドロキシメチルアミド基、ヒドロキシ基、保護ヒドロキシ基、エポキシ基、オキセタニル基、チイラニル基、イソシアネート基及びブロックイソシアネート基からなる群から選ばれる有機基であって、熱架橋性基Aと熱架橋性基Bとが熱により架橋反応するように選択されてなる。ここで、熱架橋性基Aと熱架橋性基Bとが、ともに自己架橋性基である場合は、熱架橋性基A及び熱架橋性基Bは互いに同じでもよい。
When the component (A) is a polymer, the liquid crystal aligning agent may satisfy at least one of the following requirements Z1 and Z2.
Z1: The polymer which is the component (A) has a thermally crosslinkable group A and a thermally crosslinkable group B.
Z2: The polymer that is the component (A) has a thermally crosslinkable group A, and further contains a compound that has two or more thermally crosslinkable groups B in the molecule as the component (C).
The thermally crosslinkable group A and the thermally crosslinkable group B are each independently an organic group selected from the group consisting of a carboxy group, a protected carboxy group, an amino group, a protected amino group, an alkoxymethylamide group, a hydroxymethylamide group, a hydroxy group, a protected hydroxy group, an epoxy group, an oxetanyl group, a thiiranyl group, an isocyanate group, and a blocked isocyanate group, and are selected so that the thermally crosslinkable group A and the thermally crosslinkable group B undergo a crosslinking reaction by heat. Here, when the thermally crosslinkable group A and the thermally crosslinkable group B are both self-crosslinkable groups, the thermally crosslinkable group A and the thermally crosslinkable group B may be the same as each other.
 ここで、「分子内に2個以上」とは、例えばエポキシ基を2個以上など、同種の基を2個以上、分子内に含有する場合の他、例えばエポキシ基とチイラン基という組合せのように、異種の基を2個以上、分子内に含有する場合をも含む意である。「分子内に2個以上」は、好ましくは、同種の基を2個以上、分子内に含有するのがよい。 Here, "two or more within the molecule" refers to cases where the molecule contains two or more groups of the same type, such as two or more epoxy groups, as well as cases where the molecule contains two or more groups of different types, such as a combination of an epoxy group and a thiirane group. "Two or more within the molecule" preferably refers to cases where the molecule contains two or more groups of the same type.
 本発明の液晶配向剤中に含有される(A)成分である重合体は、光に対して感度が高いため、低露光量の偏光紫外線照射においても、配向制御能を発現できる。
 また、(A)成分である重合体が熱架橋性基Aを含有するとともに、さらに熱架橋性基Bを成分中に含有することによって、液晶配向剤の焼成時間が短い場合でも(A)成分である重合体を含む架橋反応が可能となる。これにより、光配向性部位が光反応により異方性を発現した際に、液晶配向膜に異方性が残存(メモリー)しやすくなるため、液晶配向性を高め、且つ液晶のプレチルト角を発現することが可能となる。
The polymer, which is the component (A) contained in the liquid crystal aligning agent of the present invention, has high sensitivity to light, and therefore can exhibit alignment control ability even when irradiated with polarized ultraviolet light with a low exposure dose.
In addition, by containing the thermal crosslinkable group A in the polymer that is component (A) and further containing the thermal crosslinkable group B in the component, a crosslinking reaction including the polymer that is component (A) becomes possible even if the baking time of the liquid crystal alignment agent is short. As a result, when the photo-alignable portion exhibits anisotropy due to a photoreaction, the anisotropy tends to remain (memory) in the liquid crystal alignment film, so that it becomes possible to enhance the liquid crystal alignment and exhibit a pretilt angle of the liquid crystal.
 また、本発明の液晶配向剤は、(B)成分である重合体(P)を含有することにより、垂直から2°以上のプレチルト角の付与を図ることができる。ジアミン(0)は、その脂溶性の高い構造により、重合体(P)と(A)成分である重合体または低分子化合物との相溶性を高めることができる。ジアミン(0)自体は、垂直配向性を示さないため、配向膜表層に露出したジアミン(0)により、より大きなプレチルト角を発現することが可能となる。 In addition, the liquid crystal alignment agent of the present invention can impart a pretilt angle of 2° or more from the vertical by containing the polymer (P) which is the component (B). The highly lipophilic structure of diamine (0) can increase the compatibility between the polymer (P) and the polymer or low molecular weight compound which is the component (A). Since diamine (0) itself does not exhibit vertical alignment properties, it is possible to achieve a larger pretilt angle by the diamine (0) exposed on the surface of the alignment film.
 なお、(A)成分が重合体である場合、上記式(pa-1)で表される光配向性基、熱架橋性基A及び熱架橋性基Bは、いずれも重合体における側鎖になりうるものであることから、必要に応じて、「側鎖」と言い換えることもできる。
 以下、本発明の各構成要件につき詳述する。
In addition, when the component (A) is a polymer, the photoalignable group, the thermally crosslinkable group A, and the thermally crosslinkable group B represented by the above formula (pa-1) can all be side chains in the polymer, and therefore can be referred to as "side chains" as necessary.
Each of the constituent elements of the present invention will be described in detail below.
<(A)成分:特定重合体または低分子化合物>
[式(pa-1)で表される光配向性基]
 本発明において、分子内に上記式(pa-1)で表される光配向性を有する部位は、例えば下記式(a-1)で表すことができる。また、該部位は、下記式(a-1-m)で表されるモノマー由来の構造を挙げることができるがこれに限定されない。
 下記式(a-1)又は(a-1-m)中、Iは、上記式(pa-1)で表される1価の有機基であり、Sは、スペーサー単位を表し、Sの左の結合基は、特定重合体の主鎖に、任意にスペーサーを介して結合することを示す。
<Component (A): Specific polymer or low molecular weight compound>
[Photoalignment group represented by formula (pa-1)]
In the present invention, the moiety having photoalignment property represented by the above formula (pa-1) in the molecule can be represented by, for example, the following formula (a-1). In addition, the moiety can be, but is not limited to, a structure derived from a monomer represented by the following formula (a-1-m).
In the following formula (a-1) or (a-1-m), Ia represents a monovalent organic group represented by the above formula (pa-1), S a represents a spacer unit, and the bonding group to the left of S a indicates that it is bonded to the main chain of the specific polymer, optionally via a spacer.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Sは、例えば下記式(Sp)の構造で表すことができる。 S a can be represented, for example, by the structure of the following formula (Sp).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(Sp)中、
 Wの左の結合はMへの結合を表し、
 Wの右の結合はIへの結合を表し、
 W、W及びWは、それぞれ独立して、単結合、二価の複素環、-(CH-(式中、nは1~20を表す)、-OCH-、-CHO-、―COO-、-OCO-、-CH=CH-、-CF=CF-、-CFO-、-OCF-、-CFCF-又は-C≡C-を表すが、これらの置換基において非隣接のCH基の一つ以上は独立して、-O-、-CO-、-CO-O-、-O-CO-、-Si(CH-O-Si(CH―、-NR-、-NR-CO-、-CO-NR-、-NR-CO-O-、-OCO-NR-、-NR-CO-NR-、-CH=CH-、-C≡C-又は-O-CO-O-(式中、Rは独立して水素又は炭素数1~5の直鎖又は分岐鎖のアルキル基を表す)で置換することができ、
 A及びAは、それぞれ独立して、単結合、アルキレン基、2価の芳香族基、2価の脂環式基、又は2価の複素環式基から選ばれる基であり、それぞれの基は無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、シアノ基、メチル基又はメトキシ基によって置換されていても良い。
In formula (Sp),
The left bond of W1 represents a bond to Mb ;
the right bond of W3 represents a bond to Ia ;
W 1 , W 2 and W 3 each independently represent a single bond, a divalent heterocycle, -(CH 2 ) n - (wherein n is 1 to 20), -OCH 2 -, -CH 2 O-, -COO-, -OCO-, -CH═CH-, -CF═CF-, -CF 2 O-, -OCF 2 -, -CF 2 CF 2 - or -C≡C-, provided that one or more non-adjacent CH 2 groups in these substituents are independently -O-, -CO-, -CO-O-, -O-CO-, -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 may be substituted by —, —NR—, —NR-CO—, —CO-NR—, —NR-CO-O—, —OCO-NR—, —NR-CO-NR—, —CH═CH—, —C≡C— or —O-CO-O- (wherein R independently represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms);
A1 and A2 each independently represent a group selected from a single bond, an alkylene group, a divalent aromatic group, a divalent alicyclic group, or a divalent heterocyclic group, and each of these groups may be unsubstituted or one or more hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, a cyano group, a methyl group, or a methoxy group.
 式(a-1-m)中、Mは重合性基を表す。該重合性基として、(メタ)アクリレート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン、(メタ)アクリルアミド及びその誘導体のラジカル重合性基、及びシロキサンを挙げることができる。好ましくは(メタ)アクリレート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、アクリルアミドであるのがよい。
 rは、1≦r≦3を満たす整数である。
 Mは、単結合、(r+1)価の複素環、(r+1)価の炭素数1~10の直鎖状又は分岐状飽和炭化水素基、(r+1)価の芳香族基、(r+1)価の脂環式基から選ばれる基であり、それぞれの基は無置換であるか又は一個以上の水素原子がフッ素原子、塩素原子、シアノ基、メチル基又はメトキシ基によって置換されていても良い。ただし、rが2以上の場合、Mは、上記の単結合以外の基である。
In formula (a-1-m), M a represents a polymerizable group. Examples of the polymerizable group include radical polymerizable groups of (meth)acrylate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene, (meth)acrylamide and derivatives thereof, and siloxane. Preferred are (meth)acrylate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, and acrylamide.
r is an integer satisfying 1≦r≦3.
Mb is a group selected from a single bond, a (r+1)-valent heterocycle, a (r+1)-valent linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, a (r+1)-valent aromatic group, and a (r+1)-valent alicyclic group, each of which may be unsubstituted or have one or more hydrogen atoms substituted with a fluorine atom, a chlorine atom, a cyano group, a methyl group, or a methoxy group, provided that when r is 2 or more, Mb is a group other than the above single bond.
 A、A2、及びMにおける芳香族基としては、例えば、ベンゼン環、ビフェニル構造、ナフタレン環のような炭素数6~18の芳香族炭化水素基を挙げることができる。A、A2、及びMにおける脂環式基としては、例えばシクロヘキサン環、ビシクロヘキサン構造のような炭素数6~12の脂環式炭化水素基を挙げることができる。A、A2、及びMにおける複素環式基としては、例えばピリジン環、ピペリジン環、ピペラジン環等の窒素含有複素環式基を挙げることができる。A、Aにおけるアルキレン基としては、炭素数1~10の直鎖状又は分岐状アルキレン基等を挙げることができる。 Examples of the aromatic groups in A 1 , A 2 and M b include aromatic hydrocarbon groups having 6 to 18 carbon atoms, such as a benzene ring, a biphenyl structure and a naphthalene ring. Examples of the alicyclic groups in A 1 , A 2 and M b include alicyclic hydrocarbon groups having 6 to 12 carbon atoms, such as a cyclohexane ring and a bicyclohexane structure. Examples of the heterocyclic groups in A 1 , A 2 and M b include nitrogen-containing heterocyclic groups, such as a pyridine ring, a piperidine ring and a piperazine ring. Examples of the alkylene groups in A 1 and A 2 include linear or branched alkylene groups having 1 to 10 carbon atoms.
 良好な垂直配向制御能と安定なプレチルト角を発現し得る観点から、上記(pa-1)で表される基は、下記(pa-1-a)で表される基であることが好ましい。また、(A)成分が重合体である場合、該部位は、下記式(pa-1-ma)で表されるモノマー由来の構造を挙げることができるがこれに限定されない。 From the viewpoint of being able to realize good vertical alignment control ability and a stable pretilt angle, the group represented by (pa-1) above is preferably a group represented by (pa-1-a) below. Furthermore, when component (A) is a polymer, the moiety can be, but is not limited to, a structure derived from a monomer represented by the following formula (pa-1-ma).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(pa-1-a)又は(pa-1-ma)中、M、M、及びSは、上述と同じ定義である。
 また、Zは酸素原子、または硫黄原子である。
 X及びXは、それぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基又は炭素数1~3のアルキル基である。
 Rは単結合、酸素原子、-COO-または-OCO-である。
 Rは2価の芳香族基、2価の脂環式基、又は2価の複素環式基である。
 Rは単結合、酸素原子、-COO-または-OCO-である。
 Rは炭素数1~40の直鎖又は分岐鎖のアルキル基または脂環式基を含む炭素数3~40の1価の有機基である。
 Rは炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、フッ素原子またはシアノ基であり、好ましくはメチル基、メトキシ基又はフッ素原子である。
 aは0~3の整数であり、bは0~4の整数である。
In the formula (pa-1-a) or (pa-1-ma), M a , M b , and S a are defined as above.
Furthermore, Z is an oxygen atom or a sulfur atom.
Xa and Xb each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group or an alkyl group having 1 to 3 carbon atoms.
R 1 is a single bond, an oxygen atom, —COO— or —OCO—.
R2 is a divalent aromatic group, a divalent alicyclic group, or a divalent heterocyclic group.
R3 is a single bond, an oxygen atom, -COO- or -OCO-.
R4 is a monovalent organic group having 3 to 40 carbon atoms which contains a linear or branched alkyl group having 1 to 40 carbon atoms or an alicyclic group.
R5 is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine atom or a cyano group, and is preferably a methyl group, a methoxy group or a fluorine atom.
a is an integer from 0 to 3, and b is an integer from 0 to 4.
 式(pa-1-a)又は(pa-1-ma)中、Sのアルキレン基として、炭素数1~8の直鎖又は分岐鎖のアルキレン基であることが好ましく、例えばメチレン基、エチレン基、n-プロピレン基、n-ブチレン基、tert-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基が好ましい。
 Sの2価の芳香族基として、例えば1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、2,3,5,6-テトラフルオロ-1,4-フェニレン基等を挙げることができる。
In formula (pa-1-a) or (pa-1-ma), the alkylene group for Sa is preferably a linear or branched alkylene group having 1 to 8 carbon atoms, and examples thereof include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a tert-butylene group, an n-pentylene group, an n-hexylene group, an n-heptylene group, and an n-octylene group.
Examples of the divalent aromatic group for S a include a 1,4-phenylene group, a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group, and a 2,3,5,6-tetrafluoro-1,4-phenylene group.
 式(pa-1-a)又は(pa-1-ma)中、Sの2価の脂環式基として、例えばトランス-1,4-シクロヘキシレン基、トランス-トランス-1,4-ビシクロヘキシレン基等を挙げることができる。
 Sの2価の複素環式基として、例えばピリジン-2,6-ジイル基、ピリジン-3,5-ジイル基、フラン-2,5-ジイル基、ピペラジン-1,4-ジイル基、ピペリジン-1,4-ジイル基等を挙げることができる。
 Sは、炭素数1~8のアルキレン基であることが好ましく、より好ましくは炭素数1~6のアルキレン基であり、さらに好ましくは炭素数1~4のアルキレン基である。
In formula (pa-1-a) or (pa-1-ma), examples of the divalent alicyclic group for Sa include a trans-1,4-cyclohexylene group and a trans-trans-1,4-bicyclohexylene group.
Examples of the divalent heterocyclic group for S a include a pyridine-2,6-diyl group, a pyridine-3,5-diyl group, a furan-2,5-diyl group, a piperazine-1,4-diyl group, and a piperidine-1,4-diyl group.
S a is preferably an alkylene group having 1 to 8 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and even more preferably an alkylene group having 1 to 4 carbon atoms.
 Rの2価の芳香族基として、例えば1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、2,3,5,6-テトラフルオロ-1,4-フェニレン基、ナフチレン基等を挙げることができる。
 Rの2価の脂環式基として、例えばトランス1,4-シクロヘキシレン基、トランス-トランス-1,4-ビシクロヘキシレン基等を挙げることができる。
 Rの2価の複素環式基として、例えばピリジン-2,6-ジイル基、ピリジン-3,5-ジイル基、フラン-2,5-ジイル基、ピペラジン-1,4-ジイル基、ピペリジン-1,4-ジイル基等を挙げることができる。
 Rは、1,4-フェニレン基、トランス-1,4-シクロヘキシレン基、及びトランス-トランス-1,4-ビシクロヘキシレン基が好ましい。
Examples of the divalent aromatic group for R2 include a 1,4-phenylene group, a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group, a 2,3,5,6-tetrafluoro-1,4-phenylene group, and a naphthylene group.
Examples of the divalent alicyclic group for R2 include a trans-1,4-cyclohexylene group and a trans-trans-1,4-bicyclohexylene group.
Examples of the divalent heterocyclic group for R2 include a pyridine-2,6-diyl group, a pyridine-3,5-diyl group, a furan-2,5-diyl group, a piperazine-1,4-diyl group, and a piperidine-1,4-diyl group.
R2 is preferably a 1,4-phenylene group, a trans-1,4-cyclohexylene group, or a trans-trans-1,4-bicyclohexylene group.
 Rの炭素数1~40の直鎖又は分岐鎖のアルキル基としては、例えば炭素数1~20の直鎖又は分岐鎖のアルキル基を挙げることができ、このアルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。かかるアルキル基の例としては、例えばメチル基、エチル基、n-プロピル、n-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ラウリル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、4,4,4-トリフロロブチル基、4,4,5,5,5-ペンタフルオロペンチル、4,4,5,5,6,6,6-ヘプタフルオロヘキシル基、3,3,4,4,5,5,5-ヘプタフルオロペンチル基、2,2,2-トリフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、2-(パーフルオロブチル)エチル基、2-(パーフルオロオクチル)エチル基、2-(パーフルオロデシル)エチル基等を挙げることができる。 The linear or branched alkyl group having 1 to 40 carbon atoms for R 4 may be, for example, a linear or branched alkyl group having 1 to 20 carbon atoms, in which some or all of the hydrogen atoms may be substituted with fluorine atoms. Examples of such alkyl groups include, for example, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-lauryl group, an n-dodecyl group, an n-tridecyl group, an n-tetradecyl group, an n-pentadecyl group, an n-hexadecyl group, an n-heptadecyl group, an n-octadecyl group, an n-nonadecyl group, an n-eicosyl group, and 4,4 , 4-trifluorobutyl group, 4,4,5,5,5-pentafluoropentyl, 4,4,5,5,6,6,6-heptafluorohexyl group, 3,3,4,4,5,5,5-heptafluoropentyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 2-(perfluorobutyl)ethyl group, 2-(perfluorooctyl)ethyl group, 2-(perfluorodecyl)ethyl group, and the like.
 Rの脂環式基を含む炭素数3~40の1価の有機基としては、例えばコレステニル基、コレスタニル基、アダマンチル基、下記式(Alc-1)または(Alc-2)(式中、Rは、それぞれ、水素原子、フッ素原子または炭素数1~20のアルキル基であり、炭素数1~20のアルキル基はフッ素原子で置換されていてもよく、*は結合位置を示す)で表される基等を挙げることができる。 Examples of the monovalent organic group having 3 to 40 carbon atoms and containing an alicyclic group for R4 include a cholestenyl group, a cholestanylic group, an adamantyl group, and a group represented by the following formula (Alc-1) or (Alc-2) (wherein R7 is a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, and * indicates a bonding position).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(pa-1-ma)で表されるモノマーとして、式(paa-1-ma1)~(paa-1-ma18)で表される構造を挙げることができるがこれらに限定されない。なお、式中、「E」は、E体であることを表し、「t」は、シクロヘキシル基がトランス型であることを表す。 Examples of the monomer represented by the above formula (paa-1-ma) include, but are not limited to, structures represented by formulas (paa-1-ma1) to (paa-1-ma18). In the formula, "E" indicates that the monomer is an E-form, and "t" indicates that the cyclohexyl group is a trans-form.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[熱架橋性基A及び熱架橋性基B] 
 熱架橋性基A及び熱架橋性基Bは、それぞれ独立に、カルボキシ基、保護カルボキシ基、アミノ基、保護アミノ基、アルコキシメチルアミド基、ヒドロキシメチルアミド基、ヒドロキシ基、保護ヒドロキシ基、エポキシ基、オキセタニル基、チイラニル基、イソシアネート基及びブロックイソシアネート基からなる群から選ばれる有機基であって、熱架橋性基Aと熱架橋性基Bとが熱により架橋反応するように選択されてなり、ただし、熱架橋性基A及び熱架橋性基Bは互いに同じでもよい。
[Thermal crosslinkable group A and thermal crosslinkable group B]
The thermally crosslinkable group A and the thermally crosslinkable group B are each independently an organic group selected from the group consisting of a carboxy group, a protected carboxy group, an amino group, a protected amino group, an alkoxymethylamide group, a hydroxymethylamide group, a hydroxy group, a protected hydroxy group, an epoxy group, an oxetanyl group, a thiiranyl group, an isocyanate group, and a blocked isocyanate group, and are selected so that the thermally crosslinkable group A and the thermally crosslinkable group B undergo a crosslinking reaction by heat, however, the thermally crosslinkable group A and the thermally crosslinkable group B may be the same as each other.
 熱架橋性基A及び熱架橋性基B中の保護カルボキシ基、保護アミノ基、保護ヒドロキシ基における保護基は、熱により脱離する保護基であることが好ましい。
 カルボキシ基の保護基として、メトキシメチル基、エトキシエチル基、2-テトラヒドロピラニル基等のアセタール系保護基;環状アルコール系保護基等が挙げられる。
 ヒドロキシ基の保護基として、メチル基、エチル基、tert-ブチル基、ベンジル基、p-メトキシベンジル基、トリチル基等のエーテル系保護基;メトキシメチル基、エトキシエチル基、2-テトラヒドロピラニル基等のアセタール系保護基;アセチル基、ピバロイル基、ベンゾイル基、トリクロロアセチル基等のアシル系保護基;アリル基、メタリル基等のアリル系保護基;tert-ブトキシカルボニル基等のカルバメート系保護基;トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基等のシリルエーテル系保護基が挙げられる。
 アミノ基の保護基として、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、1,1-ジメチル-2-ハロエチルオキシカルボニル基、1,1-ジメチル-2-シアノエチルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、2-(トリメチルシリル)エトキシカルボニル基等のカルバメート系保護基;アミド系保護基、イミド系保護基、スルホンアミド系保護基等が挙げられる。
The protecting groups in the protected carboxy group, protected amino group and protected hydroxy group in the thermally crosslinkable group A and the thermally crosslinkable group B are preferably protecting groups which are eliminated by heat.
Examples of the protecting group for the carboxy group include acetal-based protecting groups such as a methoxymethyl group, an ethoxyethyl group, and a 2-tetrahydropyranyl group; and cyclic alcohol-based protecting groups.
Examples of the protecting group for a hydroxy group include ether-based protecting groups such as a methyl group, an ethyl group, a tert-butyl group, a benzyl group, a p-methoxybenzyl group, and a trityl group; acetal-based protecting groups such as a methoxymethyl group, an ethoxyethyl group, and a 2-tetrahydropyranyl group; acyl-based protecting groups such as an acetyl group, a pivaloyl group, a benzoyl group, and a trichloroacetyl group; allyl-based protecting groups such as an allyl group and a methallyl group; carbamate-based protecting groups such as a tert-butoxycarbonyl group; and silyl ether-based protecting groups such as a trimethylsilyl group, a triethylsilyl group, and a tert-butyldimethylsilyl group.
Examples of the protecting group for an amino group include carbamate-based protecting groups such as a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group, a 1,1-dimethyl-2-cyanoethyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, and a 2-(trimethylsilyl)ethoxycarbonyl group; an amide-based protecting group, an imide-based protecting group, and a sulfonamide-based protecting group.
 このような熱架橋性基Aと熱架橋性基Bとの組み合わせとしては、一方がカルボキシ基または保護カルボキシ基であり、もう一方がエポキシ基、オキセタニル基、チイラニル基またはブロックイソシアネート基である組み合わせ、一方がヒドロキシ基または保護ヒドロキシ基であり、他方がブロックイソシアネート基である組み合わせ、一方がフェノール性ヒドロキシ基またはフェノール性保護ヒドロキシ基であり、他方がエポキシ基、オキセタニル基またはチイラニル基である組み合わせ、一方がアミノ基または保護アミノ基であり、他方がブロックイソシアネート基である組み合わせ、両者がともにN-アルコキシメチルアミド基である組み合わせなどである。より好ましい組み合わせは、カルボキシ基とエポキシ基、ヒドロキシ基とブロックイソシアネート基などである。 Such combinations of thermally crosslinkable groups A and B include a combination in which one is a carboxy group or a protected carboxy group and the other is an epoxy group, an oxetanyl group, a thiiranyl group, or a blocked isocyanate group, a combination in which one is a hydroxy group or a protected hydroxy group and the other is a blocked isocyanate group, a combination in which one is a phenolic hydroxy group or a protected phenolic hydroxy group and the other is an epoxy group, an oxetanyl group, or a thiiranyl group, a combination in which one is an amino group or a protected amino group and the other is a blocked isocyanate group, a combination in which both are N-alkoxymethylamide groups, etc. More preferred combinations are a carboxy group and an epoxy group, and a hydroxy group and a blocked isocyanate group, etc.
 かかる熱架橋性基Aを(A)成分である重合体に導入するには、熱架橋性基Aを有するモノマーを共重合させればよい。
 また、本発明の液晶配向剤が要件Z1を満足する場合、(A)成分である重合体を製造する際に、熱架橋性基Aを有するモノマー及び熱架橋性基Bを有するモノマーの双方を共重合すればよい。
In order to introduce such a thermally crosslinkable group A into the polymer which is the component (A), a monomer having the thermally crosslinkable group A may be copolymerized.
In addition, when the liquid crystal aligning agent of the present invention satisfies the requirement Z1, both a monomer having a thermally crosslinkable group A and a monomer having a thermally crosslinkable group B may be copolymerized when producing the polymer that is the component (A).
 熱架橋性基を有するモノマーとしては、例えば、
 アクリル酸、メタクリル酸、クロトン酸、モノ-(2-(アクリロイルオキシ)エチル)フタレート、モノ-(2-(メタクリロイルオキシ)エチル)フタレート、N-(カルボキシフェニル)マレイミド、N-(カルボキシフェニル)メタクリルアミド、及びN-(カルボキシフェニル)アクリルアミド等のカルボキシ基を有するモノマー;
Examples of the monomer having a thermal crosslinking group include:
Monomers having a carboxy group, such as acrylic acid, methacrylic acid, crotonic acid, mono-(2-(acryloyloxy)ethyl)phthalate, mono-(2-(methacryloyloxy)ethyl)phthalate, N-(carboxyphenyl)maleimide, N-(carboxyphenyl)methacrylamide, and N-(carboxyphenyl)acrylamide;
 2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート、2,3-ジヒドロキシプロピルアクリレート、2,3-ジヒドロキシプロピルメタクリレート、ジエチレングリコールモノアクリレート、ジエチレングリコールモノメタクリレート、カプロラクトン2-(アクリロイルオキシ)エチルエステル、カプロラクトン2-(メタクリロイルオキシ)エチルエステル、ポリ(エチレングリコール)エチルエーテルアクリレート、ポリ(エチレングリコール)エチルエーテルメタクリレート、5-アクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、及び5-メタクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン等のヒドロキシ基を有するモノマー;  Hydroxy group-containing monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, caprolactone 2-(acryloyloxy)ethyl ester, caprolactone 2-(methacryloyloxy)ethyl ester, poly(ethylene glycol) ethyl ether acrylate, poly(ethylene glycol) ethyl ether methacrylate, 5-acryloyloxy-6-hydroxynorbornene-2-carboxylic-6-lactone, and 5-methacryloyloxy-6-hydroxynorbornene-2-carboxylic-6-lactone;
 ヒドロキシスチレン、N-(ヒドロキシフェニル)メタクリルアミド、N-(ヒドロキシフェニル)アクリルアミド、N-(ヒドロキシフェニル)マレイミド、及びN-(ヒドロキシフェニル)マレイミド等のフェノール性ヒドロキシ基を有するモノマー; Monomers containing phenolic hydroxy groups, such as hydroxystyrene, N-(hydroxyphenyl)methacrylamide, N-(hydroxyphenyl)acrylamide, N-(hydroxyphenyl)maleimide, and N-(hydroxyphenyl)maleimide;
 アミノエチルアクリレート、アミノエチルメタクリレート、アミノプロピルアクリレート、及びアミノプロピルメタクリレート等のアミノ基を有するモノマー; Amino group-containing monomers such as aminoethyl acrylate, aminoethyl methacrylate, aminopropyl acrylate, and aminopropyl methacrylate;
 N-ヒドロキシメチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等のヒドロキシメチル基又はアルコキシメチル基で置換された(メタ)アクリルアミド化合物; (Meth)acrylamide compounds substituted with hydroxymethyl or alkoxymethyl groups, such as N-hydroxymethyl (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, and N-butoxymethyl (meth)acrylamide;
 アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジル、メタクリル酸2-メチルグリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸3,4-エポキシブチル、メタクリル酸3,4-エポキシブチル、アクリル酸6,7-エポキシヘプチル、メタクリル酸6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、メタクリル酸3,4-エポキシシクロへキシルメチル、3-エテニル-7-オキサビシクロ[4.1.0]ヘプタン、1,2-エポキシ-5-ヘキセン、1,7-オクタジエンモノエポキサイド等のエポキシ基を有するモノマー;  Monomers with epoxy groups such as allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, 2-methyl glycidyl methacrylate, α-ethyl glycidyl acrylate, α-n-propyl glycidyl acrylate, α-n-butyl glycidyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, 6,7-epoxyheptyl acrylate, 6,7-epoxyheptyl methacrylate, α-ethyl 6,7-epoxyheptyl acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexylmethyl methacrylate, 3-ethenyl-7-oxabicyclo[4.1.0]heptane, 1,2-epoxy-5-hexene, and 1,7-octadiene monoepoxide;
 3-(アクリロイルオキシメチル)オキセタン、3-(アクリロイルオキシメチル)-2-メチルオキセタン、3-(アクリロイルオキシメチル)-3-エチルオキセタン、3-(アクリロイルオキシメチル)-2-トリフルオロメチルオキセタン、3-(アクリロイルオキシメチル)-2-ペンタフルオロエチルオキセタン、3-(アクリロイルオキシメチル)-2-フェニルオキセタン、3-(アクリロイルオキシメチル)-2,2-ジフルオロオキセタン、3-(アクリロイルオキシメチル)-2,2,4-トリフルオロオキセタン、3-(アクリロイルオキシメチル)-2,2,4,4-テトラフルオロオキセタン、3-(2-アクリロイルオキシエチル)オキセタン、3-(2-アクリロイルオキシエチル)-2-エチルオキセタン、3-(2-アクリロイルオキシエチル)-3-エチルオキセタン、3-(2-アクリロイルオキシエチル)-2-トリフルオロメチルオキセタン、3-(2-アクリロイルオキシエチル)-2-ペンタフルオロエチルオキセタン、3-(2-アクリロイルオキシエチル)-2-フェニルオキセタン、3-(2-アクリロイルオキシエチル)-2,2-ジフルオロオキセタン、3-(2-アクリロイルオキシエチル)-2,2,4-トリフルオロオキセタン、3-(2-アクリロイルオキシエチル)-2,2,4,4-テトラフルオロオキセタン、3-(メタクリロイルオキシメチル)オキセタン、3-(メタクリロイルオキシメチル)-2-メチルオキセタン、3-(メタクリロイルオキシメチル)-3-エチルオキセタン、3-(メタクリロイルオキシメチル)-2-トリフルオロメチルオキセタン、3-(メタクリロイルオキシメチル)-2-ペンタフルオロエチルオキセタン、3-(メタクリロイルオキシメチル)-2-フェニルオキセタン、3-(メタクリロイルオキシメチル)-2,2-ジフルオロオキセタン、3-(メタクリロイルオキシメチル)-2,2,4-トリフルオロオキセタン、3-(メタクリロイルオキシメチル)-2,2,4,4-テトラフルオロオキセタン、3-(2-メタクリロイルオキシエチル)オキセタン、3-(2-メタクリロイルオキシエチル)-2-エチルオキセタン、3-(2-メタクリロイルオキシエチル)-3-エチルオキセタン、3-(2-メタクリロイルオキシエチル)-2-トリフルオロメチルオキセタン、3-(2-メタクリロイルオキシエチル)-2-ペンタフルオロエチルオキセタン、3-(2-メタクリロイルオキシエチル)-2-フェニルオキセタン、3-(2-メタクリロイルオキシエチル)-2,2-ジフルオロオキセタン、3-(2-メタクリロイルオキシエチル)-2,2,4-トリフルオロオキセタン、3-(2-メタクリロイルオキシエチル)-2,2,4,4-テトラフルオロオキセタン等のオキセタニル基を有するモノマー; 3-(acryloyloxymethyl)oxetane, 3-(acryloyloxymethyl)-2-methyloxetane, 3-(acryloyloxymethyl)-3-ethyloxetane, 3-(acryloyloxymethyl)-2-trifluoromethyloxetane, 3-(acryloyloxymethyl)-2-pentafluoroethyloxetane, 3-(acryloyloxymethyl)-2-phenyloxetane, 3-(acryloyloxymethyl)-2,2-difluorooxetane, 3-(acryloyloxymethyl)-2,2,4-trifluorooxetane, 3-(acryloyloxymethyl)-2,2,4,4-tetrafluorooxetane, 3-(2-acryloyloxyethyl oxetane, 3-(2-acryloyloxyethyl)-2-ethyloxetane, 3-(2-acryloyloxyethyl)-3-ethyloxetane, 3-(2-acryloyloxyethyl)-2-trifluoromethyloxetane, 3-(2-acryloyloxyethyl)-2-pentafluoroethyloxetane, 3-(2-acryloyloxyethyl)-2-phenyloxetane, 3-(2-acryloyloxyethyl)-2,2-difluorooxetane, 3-(2-acryloyloxyethyl)-2,2,4-trifluorooxetane, 3-(2-acryloyloxyethyl)-2,2,4,4-tetrafluorooxetane, 3-(methacryloyloxymethyl) Oxetane, 3-(methacryloyloxymethyl)-2-methyloxetane, 3-(methacryloyloxymethyl)-3-ethyloxetane, 3-(methacryloyloxymethyl)-2-trifluoromethyloxetane, 3-(methacryloyloxymethyl)-2-pentafluoroethyloxetane, 3-(methacryloyloxymethyl)-2-phenyloxetane, 3-(methacryloyloxymethyl)-2,2-difluorooxetane, 3-(methacryloyloxymethyl)-2,2,4-trifluorooxetane, 3-(methacryloyloxymethyl)-2,2,4,4-tetrafluorooxetane, 3-(2-methacryloyloxyethyl)oxetane, 3 Monomers having an oxetanyl group, such as -(2-methacryloyloxyethyl)-2-ethyloxetane, 3-(2-methacryloyloxyethyl)-3-ethyloxetane, 3-(2-methacryloyloxyethyl)-2-trifluoromethyloxetane, 3-(2-methacryloyloxyethyl)-2-pentafluoroethyloxetane, 3-(2-methacryloyloxyethyl)-2-phenyloxetane, 3-(2-methacryloyloxyethyl)-2,2-difluorooxetane, 3-(2-methacryloyloxyethyl)-2,2,4-trifluorooxetane, and 3-(2-methacryloyloxyethyl)-2,2,4,4-tetrafluorooxetane;
 2,3-エピチオプロピルアクリレートまたはメタクリレート、及び2-または3-または4-(β-エピチオプロピルチオメチル)スチレン、2-または3-または4-(β-エピチオプロピルオキシメチル)スチレン、2-または3-または4-(β-エピチオプロピルチオ)スチレン、2-または3-または4-(β-エピチオプロピルオキシ)スチレン等のチイラニル基を有するモノマー; 2,3-epithiopropyl acrylate or methacrylate, and monomers containing thiiranyl groups such as 2- or 3- or 4-(β-epithiopropylthiomethyl)styrene, 2- or 3- or 4-(β-epithiopropyloxymethyl)styrene, 2- or 3- or 4-(β-epithiopropylthio)styrene, and 2- or 3- or 4-(β-epithiopropyloxy)styrene;
 アクリル酸2-(0-(1’-メチルプロピリデンアミノ)カルボキシアミノ)エチル、アクリル酸2-(3,5-ジメチルピラゾリル)カルボニルアミノ)エチル、メタクリル酸2-(0-(1’-メチルプロピリデンアミノ)カルボキシアミノ)エチル、メタクリル酸2-(3,5-ジメチルピラゾリル)カルボニルアミノ)エチル等のブロックイソシアネート基を有するモノマー;等が挙げられる。なお、(メタ)アクリルアミドとは、アクリルアミドとメタクリルアミドの双方を意味する。 Monomers having a blocked isocyanate group such as 2-(0-(1'-methylpropylideneamino)carboxyamino)ethyl acrylate, 2-(3,5-dimethylpyrazolyl)carbonylamino)ethyl acrylate, 2-(0-(1'-methylpropylideneamino)carboxyamino)ethyl methacrylate, and 2-(3,5-dimethylpyrazolyl)carbonylamino)ethyl methacrylate; etc. Note that (meth)acrylamide refers to both acrylamide and methacrylamide.
 また、本発明においては、特定共重合体を得る際に、上記式(a-1-m)で表される光配向性基を有するモノマー及び熱架橋性基A及び必要に応じて熱架橋性基Bを有するモノマーの他に、これらのモノマーと共重合可能なその他もモノマーを併用することができる。 In addition, in the present invention, in order to obtain the specific copolymer, in addition to the monomer having a photoalignable group represented by the above formula (a-1-m) and the monomer having a thermal crosslinkable group A and, if necessary, a thermal crosslinkable group B, other monomers copolymerizable with these monomers can be used in combination.
 そのようなその他モノマーの具体例としては、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、アクリルアミド等のアクリルアミド化合物、窒素含有芳香族複素環基と重合性基とを有するモノマーが挙げられる。 Specific examples of such other monomers include acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, acrylamide compounds such as N-methoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, and acrylamide, and monomers having a nitrogen-containing aromatic heterocyclic group and a polymerizable group.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of acrylic acid ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ヘキサデシルメタクリレート、オクタデシルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 Methacrylic acid ester compounds include, for example, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, hexadecyl methacrylate, octadecyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2-propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, and 8-ethyl-8-tricyclodecyl methacrylate.
 前記(メタ)アクリル酸アミド化合物としては、例えば、アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド等が挙げられる。 Examples of the (meth)acrylic acid amide compound include acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, and N,N-diethylacrylamide.
 前記ビニル化合物としては、例えば、メチルビニルエーテル、ベンジルビニルエーテル、ビニルナフタレン、ビニルカルバゾール、アリルグリシジルエーテル、及び3-エテニル-7-オキサビシクロ[4.1.0]ヘプタン等が挙げられる。 Examples of the vinyl compounds include methyl vinyl ether, benzyl vinyl ether, vinyl naphthalene, vinyl carbazole, allyl glycidyl ether, and 3-ethenyl-7-oxabicyclo[4.1.0]heptane.
 前記スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、及びブロモスチレン等が挙げられる。 Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, and bromostyrene.
 前記マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 窒素含有芳香族複素環は、下記式[N-a]~[N-b](式中、Zは炭素数1~5の直鎖または分岐アルキル基である)からなる群から選ばれる構造を少なくとも1個、好ましくは1個~4個含有する芳香族環式炭化水素であるのがよい。 The nitrogen-containing aromatic heterocycle is preferably an aromatic cyclic hydrocarbon having at least one, preferably 1 to 4, structures selected from the group consisting of the following formulas [Na] to [Nb] (wherein Z2 is a linear or branched alkyl group having 1 to 5 carbon atoms):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 具体的には、オキサゾール環、チアゾール環、ピリジン環、ピリミジン環、キノリン環、1-ピラゾリン環、イソキノリン環、チアジアゾール環、ピリダジン環、トリアジン環、ピラジン環、フェナントロリン環、キノキサリン環、ベンゾチアゾール環、オキサジアゾール環、アクリジン環などを挙げることができる。さらに、これら窒素含有芳香族複素環の炭素原子には、ヘテロ原子を含む置換基を有していてもよい。該ヘテロ原子を含む置換基としては、ピリジン環が挙げられる。 Specific examples include an oxazole ring, a thiazole ring, a pyridine ring, a pyrimidine ring, a quinoline ring, a 1-pyrazoline ring, an isoquinoline ring, a thiadiazole ring, a pyridazine ring, a triazine ring, a pyrazine ring, a phenanthroline ring, a quinoxaline ring, a benzothiazole ring, an oxadiazole ring, and an acridine ring. Furthermore, the carbon atoms of these nitrogen-containing aromatic heterocycles may have a substituent containing a heteroatom. An example of the substituent containing a heteroatom is a pyridine ring.
 窒素含有芳香族複素環基と重合性基とを有するモノマーとして、例えば、2-(2-ピリジルカルボニルオキシ)エチル(メタ)アクリレート、2-(3-ピリジルカルボニルオキシ)エチル(メタ)アクリレート、2-(4-ピリジルカルボニルオキシ)エチル(メタ)アクリレート、等が挙げられる。 Examples of monomers having a nitrogen-containing aromatic heterocyclic group and a polymerizable group include 2-(2-pyridylcarbonyloxy)ethyl (meth)acrylate, 2-(3-pyridylcarbonyloxy)ethyl (meth)acrylate, 2-(4-pyridylcarbonyloxy)ethyl (meth)acrylate, etc.
 本発明に用いるその他のモノマーは1種類単独で用いてもよく、また2種以上のモノマーを組合せて用いてもよい。 The other monomers used in the present invention may be used alone or in combination of two or more monomers.
 本発明の液晶配向剤の(A)成分である重合体に含有させる上記式(pa-1)で表される光反応性の部位は1種類単独で用いてもよく、また2種以上の部位を組合せて用いてもよい。 The photoreactive moiety represented by the above formula (pa-1) contained in the polymer, which is component (A) of the liquid crystal aligning agent of the present invention, may be of one type alone or may be of two or more types in combination.
 上記式(pa-1)で表される光反応性の部位は、(A)成分である重合体の全繰り返し単位の5~95mol%、10~60mol%、又は15~50mol%の割合で含有されることが好ましい。 The photoreactive moiety represented by the above formula (pa-1) is preferably contained in a proportion of 5 to 95 mol%, 10 to 60 mol%, or 15 to 50 mol% of all repeating units of the polymer that is component (A).
 本発明の重合体に含有させる熱架橋性基を有する部位は熱架橋性基Aを単独で用いてもよく、また熱架橋性基Aと熱架橋性基Bを含む2種以上の部位を組合せて用いてもよい。
 熱架橋性基を有する部位の導入量は、(A)成分である重合体の全繰り返し単位の5~95mol%、40~90mol%、又は50~85mol%であることが好ましい。
As the moiety having a thermal crosslinkable group to be contained in the polymer of the present invention, the thermal crosslinkable group A may be used alone, or two or more kinds of moieties containing the thermal crosslinkable group A and the thermal crosslinkable group B may be used in combination.
The amount of the site having a thermal crosslinkable group introduced is preferably 5 to 95 mol %, 40 to 90 mol %, or 50 to 85 mol % of all repeating units of the polymer which is component (A).
 上記その他のモノマー由来の構造の含有量は、(A)成分である重合体の全繰り返し単位の0~40mol%、0~30mol%、又は0~20mol%含まれることが好ましい。 The content of the structures derived from the above other monomers is preferably 0 to 40 mol%, 0 to 30 mol%, or 0 to 20 mol% of the total repeating units of the polymer that is component (A).
<特定重合体の製造方法>
 本発明の液晶配向剤に含有される(A)成分の特定重合体は、上記の式(pa-1)で表される光配向性基を有するモノマー、上記の熱架橋性基Aを有するモノマー、及び、所望により上記の熱架橋性基Bを有するモノマーを共重合することによって得られる。また、上記その他のモノマーと共重合することができる。
<Method of Producing Specific Polymer>
The specific polymer of the component (A) contained in the liquid crystal aligning agent of the present invention is obtained by copolymerizing a monomer having a photoaligning group represented by the above formula (pa-1), a monomer having the above thermal crosslinking group A, and, if desired, a monomer having the above thermal crosslinking group B. In addition, it can be copolymerized with the other monomers described above.
 本発明における(A)成分の特定重合体の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。
The method for producing the specific polymer of the component (A) in the present invention is not particularly limited, and a general-purpose method that is used industrially can be used. Specifically, the specific polymer can be produced by cationic polymerization, radical polymerization, or anionic polymerization using the vinyl group of the monomer. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
As the polymerization initiator for radical polymerization, known compounds such as radical polymerization initiators and reversible addition-fragmentation chain transfer (RAFT) polymerization agents can be used.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ 2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、及び2,2’-ビス(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。 A radical thermal polymerization initiator is a compound that generates radicals when heated above its decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), and azo compounds (azobisisobutyronitrile, 2,2'-bis(2-hydroxyethyl)azobisisobutyronitrile, etc.).
 このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 Such radical thermal polymerization initiators can be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン等、公知の化合物を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by irradiation with light. Examples of such radical photopolymerization initiators include known compounds such as benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, and isopropylxanthone. These compounds may be used alone or in combination of two or more.
The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method, etc. can be used.
 (A)成分の特定重合体の重合反応に用いる溶媒としては、生成した高分子が溶解するものであれば特に限定されない。具体例としては、後述の<溶媒>の項に記載の溶媒、例えば、N-アルキル-2-ピロリドン類、ジアルキルイミダゾリジノン類、ラクトン類、カーボネート類、ケトン類、式(Sv-1)で表される化合物及び式(Sv-2)で表される化合物、テトラヒドロフラン、1,4-ジオキサン、ジメチルスルホン、ジメチルスルホキシド等が挙げられる。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の溶媒に混合して使用してもよい。
 また、ラジカル重合において溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
The solvent used in the polymerization reaction of the specific polymer of component (A) is not particularly limited as long as the produced polymer dissolves in the solvent. Specific examples include the solvents described in the section <Solvent> below, such as N-alkyl-2-pyrrolidones, dialkylimidazolidinones, lactones, carbonates, ketones, the compounds represented by formula (Sv-1) and formula (Sv-2), tetrahydrofuran, 1,4-dioxane, dimethyl sulfone, and dimethyl sulfoxide.
These solvents may be used alone or in combination. Furthermore, even if a solvent does not dissolve the polymer to be produced, it may be mixed with the above-mentioned solvent to the extent that the polymer to be produced does not precipitate.
In addition, since oxygen in a solvent in radical polymerization can inhibit the polymerization reaction, it is preferable to use an organic solvent that has been degassed to the greatest extent possible.
 ラジカル重合の際の重合温度は30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%であるのがよい。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10mol%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
The polymerization temperature during radical polymerization can be selected from any temperature between 30 and 150° C., but is preferably in the range of 50 to 100° C. The reaction can be carried out at any concentration, but the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The reaction can be carried out at a high concentration in the early stage, and then an organic solvent can be added.
In the above-mentioned radical polymerization reaction, if the ratio of the radical polymerization initiator is high relative to the monomer, the molecular weight of the resulting polymer will be small, and if the ratio is low, the molecular weight of the resulting polymer will be large, so the ratio of the radical initiator is preferably 0.1 to 10 mol% relative to the monomer to be polymerized. In addition, various monomer components, solvents, initiators, etc. can also be added during polymerization.
[重合体の回収]
 上述の反応により得られた反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Polymer Recovery]
When recovering the polymer generated from the reaction solution obtained by the above reaction, the reaction solution may be poured into a poor solvent to precipitate the polymer. Examples of poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer precipitated by pouring into the poor solvent can be recovered by filtration, and then dried at room temperature or by heating under normal or reduced pressure. In addition, the polymer precipitated and recovered can be redissolved in an organic solvent and the reprecipitation and recovery operation can be repeated two to ten times to reduce impurities in the polymer. Examples of poor solvents in this case include alcohols, ketones, and hydrocarbons. It is preferable to use three or more poor solvents selected from these because the efficiency of purification is further improved.
 (A)成分の特定重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2,000~1,000,000が好ましく、より好ましくは、5,000~100,000である。 The molecular weight of the specific polymer of component (A) is preferably a weight average molecular weight of 2,000 to 1,000,000, and more preferably 5,000 to 100,000, measured by GPC (Gel Permeation Chromatography), taking into consideration the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film.
<(A)成分である低分子化合物>
 (A)成分が式(pa-1)で表される光配向性基と熱架橋性基とを有する低分子化合物である場合、そのような低分子化合物としては、分子量2000以下の化合物であって、式(pa-1)で表される光配向性基を有するとともに、熱架橋性基として、カルボキシ基と反応して共有結合を形成しうる基を有する化合物が好ましい。
<Low molecular weight compound as component (A)>
When the component (A) is a low molecular weight compound having a photoalignment group represented by formula (pa-1) and a thermal crosslinking group, such a low molecular weight compound is preferably a compound having a molecular weight of 2000 or less, having a photoalignment group represented by formula (pa-1), and having, as a thermal crosslinking group, a group capable of reacting with a carboxy group to form a covalent bond.
 (A)成分が式(pa-1)で表される光配向性基と熱架橋性基とを有する低分子化合物である場合の光配向性基は、好ましい例も含めて、前記の通りである。
 (A)成分が式(pa-1)で表される光配向性基と熱架橋性基とを有する低分子化合物である場合の熱架橋性基としては、エポキシ基、オキセタニル基、チイラニル基、及びシクロカーボネート基からなる群から選ばれる有機基が挙げられる。
When the component (A) is a low molecular weight compound having a photoalignable group represented by formula (pa-1) and a thermally crosslinkable group, the photoalignable group, including preferred examples, is as described above.
When the component (A) is a low molecular weight compound having a photoalignment group represented by formula (pa-1) and a thermal crosslinkable group, examples of the thermal crosslinkable group include organic groups selected from the group consisting of an epoxy group, an oxetanyl group, a thiiranyl group, and a cyclocarbonate group.
 (A)成分である低分子化合物として、式(paa-1-mb1)~(paa-1-mb22)で表される化合物を挙げることができるがこれらに限定されない。なお、式中、「(E)」は、E体であることを表し、「(E,Z)」は、E体またはZ体であることを表し、「t」は、シクロヘキシル基がトランス型であることを表す。 The low molecular weight compound that is component (A) can be, but is not limited to, compounds represented by the formulas (paa-1-mb1) to (paa-1-mb22). In the formulas, "(E)" indicates that the compound is an E-form, "(E,Z)" indicates that the compound is an E-form or a Z-form, and "t" indicates that the cyclohexyl group is a trans-form.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 (A)成分である低分子化合物は、公知の反応を組み合わせることで製造することができる。 The low molecular weight compound (A) can be produced by combining known reactions.
<(B)成分>
 本発明の液晶配向剤に含まれる(B)成分は、式(D)で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)である。
<Component (B)>
The component (B) contained in the liquid crystal aligning agent of the present invention is at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by formula ( D A ) and a polyimide which is an imidized product of the polyimide precursor.
<特定ジアミン>
 本発明の液晶配向剤は、上記のように、下記式(D)で表されるジアミン(0)(本発明では、特定ジアミンともいう。)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする。
<Specific diamine>
As described above, the liquid crystal aligning agent of the present invention is characterized in that it contains at least one polymer ( P ) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing diamine (0) (also referred to as a specific diamine in the present invention) represented by the following formula (D A ) and a polyimide which is an imidized product of the polyimide precursor:
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(D)において、X、X、n、Cy、R11及びR12は、それぞれ上記で定義したとおりである。
 上記式(D)において、Xは、合成のしやすさ等の観点から、エーテル結合、-COO-、-OCO-が好ましい。
 上記式(D)において、Xは、合成のしやすさ等の観点から、エーテル結合、-COO-、-OCO-が好ましい。
 上記式(D)において、nは、Xが単結合である場合は0であり、Xが結合基である場合は、液晶配向性の観点から、2~4が好ましい。
 上記式(D)において、R11及びR12は、水素原子またはメチル基が好ましい。
In the above formula (D A ), X 1 , X 2 , n, Cy, R 11 and R 12 are each as defined above.
In the above formula (D A ), X 1 is preferably an ether bond, —COO—, or —OCO— from the standpoint of ease of synthesis.
In the above formula (D A ), X 2 is preferably an ether bond, —COO—, or —OCO— from the standpoint of ease of synthesis.
In the above formula (D A ), n is 0 when X 2 is a single bond, and is preferably 2 to 4 when X 2 is a bonding group from the viewpoint of liquid crystal alignment properties.
In the above formula (D A ), R 11 and R 12 are preferably a hydrogen atom or a methyl group.
 上記式(D)におけるベンゼン環上のアミノ基の置換位置は、Xが結合している部分を1位としたときに2,4-位または3,5-位が好ましい。 The substitution positions of the amino groups on the benzene ring in the above formula (D A ) are preferably the 2,4-positions or 3,5-positions when the position to which X 1 is bonded is regarded as the 1-position.
 上記式(D)の好ましい例としては、下記式(d-1)~(d-3)が挙げられる。 Preferred examples of the above formula (D A ) include the following formulae (d A -1) to (d A -3).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(D)で表されるジアミン(0)は、市販の、または公知の材料を用いて、公知の反応を組み合わせることで製造することができる。 The diamine (0) represented by the formula (D A ) can be produced by combining known reactions using commercially available or known materials.
<重合体(P)>
 本発明の液晶配向剤に含有される重合体(P)は、上記ジアミン(0)を含有するジアミン成分を用いて得られるポリイミド前駆体、又は該ポリイミド前駆体のイミド化物であるポリイミドである。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化することによりポリイミドを得ることができる重合体である。
<Polymer (P)>
The polymer (P) contained in the liquid crystal aligning agent of the present invention is a polyimide precursor obtained by using a diamine component containing the above diamine (0), or a polyimide which is an imidized product of the polyimide precursor. Here, the polyimide precursor is a polymer which can obtain a polyimide by imidizing a polyamic acid, a polyamic acid ester, or the like.
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P’)は、上記ジアミン(0)を含有するジアミン成分とテトラカルボン酸成分との重合反応により得ることができる。上記ジアミン(0)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ジアミン(0)の使用量は、全ジアミン成分に対して、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上がさらに好ましい。
The polyamic acid (P') which is a polyimide precursor of the polymer (P) can be obtained by a polymerization reaction between a diamine component containing the diamine (0) and a tetracarboxylic acid component. The diamine (0) may be used alone or in combination of two or more kinds.
The amount of diamine (0) used is preferably 5 mol % or more, more preferably 10 mol % or more, and even more preferably 20 mol % or more, based on the total diamine components.
 上記ポリアミック酸(P’)の製造に用いられるジアミン成分は、ジアミン(0)以外のジアミン(以下、その他のジアミンともいう。)を含んでいてもよい。上記ジアミン(0)に加えて、その他のジアミンを併用する場合は、ジアミン成分に対するジアミン(0)の使用量は、95モル%以下が好ましく、90モル%以下が好ましく、80モル%以下がより好ましい。 The diamine component used in the production of the polyamic acid (P') may contain a diamine other than the diamine (0) (hereinafter, also referred to as other diamines). When other diamines are used in addition to the diamine (0), the amount of diamine (0) used relative to the diamine component is preferably 95 mol% or less, more preferably 90 mol% or less, and more preferably 80 mol% or less.
 以下にその他のジアミンの例を挙げるが、これらに限定されるものではない。上記その他のジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、下記式(dAL-1)~(dAL-10)で表されるジアミン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル 3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-[3-(1H-イミダゾール-1-イル)プロピル] 3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、若しくは下記式(z-1)~式(z-13)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(以下、特定の窒素原子含有構造ともいう。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)エタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;下記式(5-1)~(5-6)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはカルバメート系保護基であり、より好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン、下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。 Examples of the other diamines are given below, but are not limited thereto. The other diamines may be used alone or in combination of two or more thereof. p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4' -diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, and the compounds represented by the following formulae (d AL -1) to (d AL diamines represented by the formula (I-10), 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,8-bis(3-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, 1,10-bis(3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)undecane, 1,11-bis(3-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, 1,12-bis(3-aminophenoxy)dodecane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene Zene, 1,2-bis(6-amino-2-naphthyloxy)ethane, 1,2-bis(6-amino-2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine, 1,4-phenylenebis(4-aminobenzoate), 1,4-phenylenebis(3-aminobenzoate), 1,3-phenylenebis(4-aminobenzoate), 1,3-phenylenebis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4- diamines having a photo-alignable group such as 4,4'-diaminoazobenzene or diaminotolane; diamines having a photo-polymerizable group at the end such as 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N,N-diallylaniline; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl Diamines having a radical polymerization initiator function such as 3,5-diaminobenzoate; diamines having an amide bond such as 4,4'-diaminobenzanilide; diamines having a urea bond such as 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, and 1,3-bis(4-aminophenethyl)urea; 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, and 2,2-bis(3-aminophenyl)hexafluoropropane. Pan, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2,2-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-[3-(1H-imidazol-1-yl)propyl] At least one nitrogen atom-containing structure (hereinafter also referred to as a specific nitrogen atom-containing structure) selected from the group consisting of a nitrogen atom-containing heterocycle, a secondary amino group, and a tertiary amino group, represented by 3,5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzeneamine, or a heterocycle-containing diamine such as a diamine represented by the following formula (z-1) to formula (z-13), or a diamine having a diphenylamine structure such as 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine. ) (provided that the molecule does not have an amino group bonded with a protecting group which is cleaved by heating and replaced with a hydrogen atom); 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid, 4,4'-diaminobiphenyl diamines having a carboxy group such as 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine ... diamines having a group "-N(D)-" (D represents a protecting group which is eliminated by heating and replaced with a hydrogen atom, preferably a carbamate protecting group, more preferably a tert-butoxycarbonyl group) such as those of the following formulae (5-1) to (5-6), cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestanyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, and 3,6-bis(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-inden-6-amine; diamines having a steroid skeleton such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), diamines having two amino groups bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in WO 2018/117239, and the like.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(V-1)中、m、nはそれぞれ独立して0~3の整数であり、1≦m+n≦4を満たす。jは0又は1の整数である。Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び炭素数2~10のアルコキシアルキル基などの1価の基を表す。上記式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。m、n、X、Rが2つ存在する場合、それぞれ独立して上記定義を有する。 In the above formula (V-1), m and n are each independently an integer of 0 to 3, and satisfy 1≦m+n≦4. j is an integer of 0 or 1. X 1 represents -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-. R 1 represents a monovalent group such as a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxyalkyl group having 2 to 10 carbon atoms. In the above formula (V-2), X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-. When m, n, X 1 and R 1 are present twice, each independently has the above definition.
 上記ジアミン(0)に加えてその他のジアミンを使用する場合、上記その他のジアミンの使用量は、重合体(P)の製造に使用される使用される全ジアミン成分に対して、好ましくは10~90モル%であり、より好ましくは20~80モル%である。 When other diamines are used in addition to the diamine (0), the amount of the other diamines used is preferably 10 to 90 mol %, more preferably 20 to 80 mol %, based on the total diamine components used in the production of the polymer (P).
(テトラカルボン酸成分)
 上記ポリアミック酸(P’)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
(Tetracarboxylic acid component)
When producing the above polyamic acid (P'), the tetracarboxylic acid component to be reacted with the diamine component may be not only a tetracarboxylic acid dianhydride, but also a derivative of a tetracarboxylic acid dianhydride such as a tetracarboxylic acid, a tetracarboxylic acid dihalide, a tetracarboxylic acid dialkyl ester, or a tetracarboxylic acid dialkyl ester dihalide.
 上記テトラカルボン酸二無水物又はその誘導体は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。なかでも、ベンゼン環、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましい。特に、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。 The above-mentioned tetracarboxylic dianhydride or derivative thereof may be an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or a derivative thereof. In particular, it is more preferable to include a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring, or a derivative thereof. In particular, it is even more preferable to include a tetracarboxylic dianhydride having at least one structure selected from the group consisting of a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring, or a derivative thereof.
 上記ポリアミック酸(P’)の製造に用いることのできるテトラカルボン酸成分としては、好ましくは、以下のテトラカルボン酸二無水物又はその誘導体(本発明では、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)-2,2-ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレンジオキシ)ビス(フタル酸無水物)、又は4,4’-メチレンジ(1,4-フェニレンジメチレン)ビス(フタル酸無水物)等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。
The tetracarboxylic acid component that can be used in the production of the polyamic acid (P') preferably contains the following tetracarboxylic dianhydrides or derivatives thereof (which are also collectively referred to as specific tetracarboxylic acid derivatives in the present invention):
Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butane tetracarboxylic dianhydride; 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-dichloro-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutane tetracarboxylic dianhydride 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3',4,4'-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic anhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione alicyclic tetracarboxylic dianhydrides such as bicyclo[2.2.2]octane-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic dianhydride, and 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride; pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3, Aromatic tetracarboxylic dianhydrides such as 3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)-2,2-diphenylpropane dianhydride, ethylene glycol bisanhydrotrimellitate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 4,4'-oxydi(1,4-phenylenedioxy)bis(phthalic anhydride), or 4,4'-methylenedi(1,4-phenylenedimethylene)bis(phthalic anhydride); and tetracarboxylic dianhydrides described in JP-A-2010-97188.
 上記特定のテトラカルボン酸誘導体の好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、又はこれらの誘導体である。 Preferred examples of the specific tetracarboxylic acid derivatives include 1,2,3,4-butane tetracarboxylic acid dianhydride, 1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,3-difluoro-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutane tetracarboxylic acid dianhydride, 1,2,3,4-cyclopentane tetracarboxylic acid dianhydride, 1,2,4,5-cyclohexane tetracarboxylic acid dianhydride, 3,3',4,4'-dicyclohexyl tetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, 5-(2,5-dichlorophenyl)-1,2,3,4-tetracarboxylic ... 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenone 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-diphenylethertetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, or derivatives thereof.
 上記特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸成分に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。 The proportion of the specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, based on the total tetracarboxylic acid components used.
 本発明の液晶配向剤における(A)成分と(B)成分である重合体との含有比率は、(A)成分:(B)成分の質量比が1:99~50:50であることが好ましく、5:95~30:70であることがさらに好ましく、10:90~20:80であることがさらに好ましい。 The content ratio of the polymer (A) component and the polymer (B) component in the liquid crystal aligning agent of the present invention is preferably 1:99 to 50:50 by mass, more preferably 5:95 to 30:70, and even more preferably 10:90 to 20:80.
<(C)成分>
 本発明に用いられる液晶配向剤が要件Z2を満たす場合には、(C)成分として架橋剤を含有する。(C)成分としては、熱架橋性基Bを2個以上有する架橋剤が挙げられる。
<Component (C)>
When the liquid crystal aligning agent used in the present invention satisfies the requirement Z2, it contains a crosslinking agent as the component (C). As the component (C), a crosslinking agent having two or more thermal crosslinkable groups B can be mentioned.
 (C)成分である架橋剤としては、エポキシ化合物、アミノ基を2個以上有する化合物、メチロール化合物、イソシアネート化合物、フェノプラスト化合物、ブロックイソシアネート化合物等の低分子化合物、N-アルコキシメチルアクリルアミドの重合体、エポキシ基を有する化合物の重合体、イソシアネート基を有する化合物の重合体等の重合体が挙げられる。 Examples of the crosslinking agent (C) include low molecular weight compounds such as epoxy compounds, compounds having two or more amino groups, methylol compounds, isocyanate compounds, phenoplast compounds, and blocked isocyanate compounds, as well as polymers such as N-alkoxymethylacrylamide polymers, polymers of compounds having epoxy groups, and polymers of compounds having isocyanate groups.
 上述したエポキシ化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、及びN,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of the above-mentioned epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, and N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane.
 アミノ基を2個以上有する化合物の例としては、脂環式ジアミン、芳香族ジアミン、芳香族-脂肪族ジアミン、脂肪族ジアミン等のジアミンが挙げられる。 Examples of compounds having two or more amino groups include diamines such as alicyclic diamines, aromatic diamines, aromatic-aliphatic diamines, and aliphatic diamines.
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。 Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4'-diaminodicyclohexylmethane, 4,4'-diamino-3,3'-dimethyldicyclohexylamine, isophoronediamine, etc.
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン及び1,3-ジアミノ-4-クロロベンゼンなどが挙げられる。 Examples of aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino-2-methoxybenzene, 2,5-diamino-p-xylene, and 1,3-diamino-4-chlorobenzene.
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、6-アミノ-2-ナフチルメタンアミン、6-アミノ-3-ナフチルメタンアミン、2-(6-アミノ-2-ナフチル)エチルアミン、2-(6-アミノ-3-ナフチル)エチルアミンなどが挙げられる。 Examples of aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3-(3-aminopropyl)aniline, 4-(3-aminopropyl)aniline, 3-(3-methylaminopropyl)aniline, 4-(3-methylaminopropyl)aniline, 3-(4-aminopropyl)aniline, 4 ... nobutyl)aniline, 4-(4-aminobutyl)aniline, 3-(4-methylaminobutyl)aniline, 4-(4-methylaminobutyl)aniline, 3-(5-aminopentyl)aniline, 4-(5-aminopentyl)aniline, 3-(5-methylaminopentyl)aniline, 4-(5-methylaminopentyl)aniline, 6-amino-2-naphthylmethanamine, 6-amino-3-naphthylmethanamine, 2-(6-amino-2-naphthyl)ethylamine, 2-(6-amino-3-naphthyl)ethylamine, etc.
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルノナンなどが挙げられる。 Examples of aliphatic diamines include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7-diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, and 1,9-diamino-5-methylnonane.
 メチロール化合物の具体例としては、アルコキシメチル化グリコールウリル、アルコキシメチル化ベンゾグアナミン、及びアルコキシメチル化メラミン等の化合物が挙げられる。 Specific examples of methylol compounds include compounds such as alkoxymethylated glycoluril, alkoxymethylated benzoguanamine, and alkoxymethylated melamine.
 アルコキシメチル化グリコールウリルの具体例としては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、及び1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。市販品として、三井サイテック(株)製グリコールウリル化合物(商品名:サイメル(登録商標)1170、パウダーリンク(登録商標)1174)等の化合物、メチル化尿素樹脂(商品名:UFR(登録商標)65)、ブチル化尿素樹脂(商品名:UFR(登録商標)300、U-VAN10S60、U-VAN10R、U-VAN11HV)、DIC(株)製尿素/ホルムアルデヒド系樹脂(高縮合型、商品名:ベッカミン(登録商標)J-300S、同P-955、同N)等が挙げられる。 Specific examples of alkoxymethylated glycoluril include 1,3,4,6-tetrakis(methoxymethyl)glycoluril, 1,3,4,6-tetrakis(butoxymethyl)glycoluril, 1,3,4,6-tetrakis(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-tetrakis(butoxymethyl)urea, 1,1,3,3-tetrakis(methoxymethyl)urea, 1,3-bis(hydroxymethyl)-4,5-dihydroxy-2-imidazolinone, and 1,3-bis(methoxymethyl)-4,5-dimethoxy-2-imidazolinone. Commercially available products include glycoluril compounds manufactured by Mitsui Cytec Co., Ltd. (product names: Cymel (registered trademark) 1170, Powderlink (registered trademark) 1174), methylated urea resin (product name: UFR (registered trademark) 65), butylated urea resin (product name: UFR (registered trademark) 300, U-VAN10S60, U-VAN10R, U-VAN11HV), and urea/formaldehyde resins manufactured by DIC Corporation (high condensation type, product names: Beckamin (registered trademark) J-300S, P-955, N).
 アルコキシメチル化ベンゾグアナミンの具体例としては、例えば、テトラメトキシメチルベンゾグアナミン等が挙げられる。市販品として、allnex社製(商品名:サイメル(登録商標)1123)、(株)三和ケミカル製(商品名:ニカラック(登録商標)BX-4000、同BX-37、同BL-60、同BX-55H)等が挙げられる。 Specific examples of alkoxymethylated benzoguanamine include tetramethoxymethylbenzoguanamine. Commercially available products include those manufactured by Allnex (product name: Cymel (registered trademark) 1123) and those manufactured by Sanwa Chemical Co., Ltd. (product names: Nikalac (registered trademark) BX-4000, BX-37, BL-60, and BX-55H).
 アルコキシメチル化メラミンの具体例としては、例えば、ヘキサメトキシメチルメラミン等が挙げられる。市販品として、allnex社(株)製メトキシメチルタイプメラミン化合物(商品名:サイメル(登録商標)300、同301、同303、同350)、ブトキシメチルタイプメラミン化合物(商品名:マイコート(登録商標)506、同508)、三和ケミカル製メトキシメチルタイプメラミン化合物(商品名:ニカラック(登録商標)MW-30、同MW-22、同MW-11、同MS-001、同MX-002、同MX-730、同MX-750、同MX-035)、ブトキシメチルタイプメラミン化合物(商品名:ニカラック(登録商標)MX-45、同MX-410、同MX-302)等が挙げられる。 Specific examples of alkoxymethylated melamine include hexamethoxymethylmelamine. Commercially available products include methoxymethyl type melamine compounds manufactured by Allnex Co., Ltd. (product names: Cymel (registered trademark) 300, 301, 303, and 350), butoxymethyl type melamine compounds (product names: Mycoat (registered trademark) 506 and 508), methoxymethyl type melamine compounds manufactured by Sanwa Chemical Co., Ltd. (product names: Nikalac (registered trademark) MW-30, MW-22, MW-11, MS-001, MX-002, MX-730, MX-750, and MX-035), and butoxymethyl type melamine compounds (product names: Nikalac (registered trademark) MX-45, MX-410, and MX-302).
 また、このようなアミノ基の水素原子がメチロール基又はアルコキシメチル基で置換されたメラミン化合物、尿素化合物、グリコールウリル化合物及びベンゾグアナミン化合物を縮合させて得られる化合物であってもよい。例えば、米国特許第6323310号に記載されているメラミン化合物及びベンゾグアナミン化合物から製造される高分子量の化合物が挙げられる。前記メラミン化合物の市販品としては、商品名:サイメル(登録商標)303(allnex社製)等が挙げられ、前記ベンゾグアナミン化合物の市販品としては、商品名:サイメル(登録商標)1123(allnex社製)等が挙げられる。 Also, it may be a compound obtained by condensing a melamine compound, a urea compound, a glycoluril compound, and a benzoguanamine compound in which the hydrogen atom of the amino group is replaced with a methylol group or an alkoxymethyl group. For example, there may be mentioned high molecular weight compounds produced from melamine compounds and benzoguanamine compounds described in U.S. Pat. No. 6,323,310. Commercially available products of the melamine compounds include Cymel (registered trademark) 303 (manufactured by Allnex), and commercially available products of the benzoguanamine compounds include Cymel (registered trademark) 1123 (manufactured by Allnex).
 イソシアネート化合物の具体例としては、例えば、VESTANAT B1358/100、VESTAGON BF 1540(以上、イソシアヌレート型変性ポリイソシアネート、エボニックジャパン(株)製)、タケネート(登録商標)B-882N、同B-7075(以上、イソシアヌレート型変性ポリイソシアネート、三井化学(株)製)等が挙げられる。 Specific examples of isocyanate compounds include VESTANAT B1358/100 and VESTAGON BF 1540 (both are isocyanurate-modified polyisocyanates manufactured by Evonik Japan Co., Ltd.), Takenate (registered trademark) B-882N and Takenate B-7075 (both are isocyanurate-modified polyisocyanates manufactured by Mitsui Chemicals, Inc.), etc.
 フェノプラスト化合物の具体例としては以下の化合物が挙げられるが、フェノプラスト化合物は以下の化合物例に限定されるものではない。 Specific examples of phenoplast compounds include the following compounds, but phenoplast compounds are not limited to the following compound examples.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記分子末端にヒドロキシアルキルアミド基を2個以上有する化合物の具体的な例としては、例えば下記の化合物やPrimid(登録商標) QM-1260、同SF-4510(以上、EMS-CHEMIE社製)が挙げられる。 Specific examples of the compound having two or more hydroxyalkylamide groups at the molecular end include the following compound, Primid (registered trademark) QM-1260, and Primid (registered trademark) SF-4510 (all manufactured by EMS-CHEMIE).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 ブロックイソシアネート化合物としては、例えば、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー(株)製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学(株)製)等を挙げることができる。 Examples of blocked isocyanate compounds include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (all manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals, Inc.), etc.
 さらに、上述したN-アルコキシメチルアクリルアミドの重合体としては、例えば、N-ヒドロキシメチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等のヒドロキシメチル基又はアルコキシメチル基で置換されたアクリルアミド化合物又はメタクリルアミド化合物を使用して製造されるポリマーが挙げられる。 Furthermore, examples of the above-mentioned N-alkoxymethylacrylamide polymers include polymers produced using acrylamide compounds or methacrylamide compounds substituted with hydroxymethyl groups or alkoxymethyl groups, such as N-hydroxymethyl(meth)acrylamide, N-methoxymethyl(meth)acrylamide, N-ethoxymethyl(meth)acrylamide, and N-butoxymethyl(meth)acrylamide.
 そのようなポリマーの具体例としては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンとの共重合体、N-ヒドロキシメチルメタクリルアミドとメチルメタクリレートとの共重合体、N-エトキシメチルメタクリルアミドとベンジルメタクリレートとの共重合体、及びN-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000~200,000であり、より好ましくは3,000~150,000であり、さらに好ましくは3,000~50,000である。 Specific examples of such polymers include poly(N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methyl methacrylate, a copolymer of N-ethoxymethylmethacrylamide and benzyl methacrylate, and a copolymer of N-butoxymethylacrylamide, benzyl methacrylate, and 2-hydroxypropyl methacrylate. The weight average molecular weight of such polymers is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
 エポキシ基を有する化合物の重合体としては、例えば、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート等のエポキシ基を有する化合物を使用して製造されるポリマーが挙げられる。 Examples of polymers of compounds having epoxy groups include polymers produced using compounds having epoxy groups such as glycidyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, and 3,4-epoxycyclohexylmethyl methacrylate.
 そのようなポリマーの具体例としては、例えば、ポリ(3,4-エポキシシクロヘキシルメチルメタクリレート)、ポリ(グリシジルメタクリレート)、グリシジルメタクリレートとメチルメタクリレートとの共重合体、3,4-エポキシシクロヘキシルメチルメタクリレートとメチルメタクリレートとの共重合体、グリシジルメタクリレートとスチレンとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000~200,000であり、より好ましくは3,000~150,000であり、さらに好ましくは3,000~50,000である。 Specific examples of such polymers include poly(3,4-epoxycyclohexylmethyl methacrylate), poly(glycidyl methacrylate), a copolymer of glycidyl methacrylate and methyl methacrylate, a copolymer of 3,4-epoxycyclohexylmethyl methacrylate and methyl methacrylate, and a copolymer of glycidyl methacrylate and styrene. The weight average molecular weight of such polymers is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
 上述したイソシアネート基を有する化合物の重合体としては、例えば、2-イソシアナトエチルメタクリレート(カレンズMOI[登録商標]、昭和電工(株)製)、2-イソシアナトエチルアクリレート(カレンズAOI[登録商標]、昭和電工(株)製)等のイソシアネート基を有する化合物、または2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート(カレンズMOI-BM[登録商標]、昭和電工(株)製)、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(カレンズMOI-BP[登録商標]、昭和電工(株)製)等のブロックイソシアネート基を有する化合物を使用して製造されるポリマーが挙げられる。 Examples of the polymers of compounds having an isocyanate group mentioned above include polymers produced using compounds having an isocyanate group such as 2-isocyanatoethyl methacrylate (KarenzMOI [registered trademark], manufactured by Showa Denko K.K.) and 2-isocyanatoethyl acrylate (KarenzAOI [registered trademark], manufactured by Showa Denko K.K.), or compounds having a blocked isocyanate group such as 2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl methacrylate (KarenzMOI-BM [registered trademark], manufactured by Showa Denko K.K.) and 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate (KarenzMOI-BP [registered trademark], manufactured by Showa Denko K.K.).
 そのようなポリマーの具体例としては、例えば、ポリ(2-イソシアナトエチルアクリレート)、ポリ(2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレート)、2-イソシアナトエチルメタクリレートとスチレンとの共重合体、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレートとメチルメタクリレートとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000~200,000であり、より好ましくは3,000~150,000であり、さらに好ましくは3,000~50,000である。 Specific examples of such polymers include poly(2-isocyanatoethyl acrylate), poly(2-(0-[1'-methylpropylideneamino]carboxyamino)ethyl methacrylate), a copolymer of 2-isocyanatoethyl methacrylate and styrene, and a copolymer of 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl methacrylate and methyl methacrylate. The weight average molecular weight of such polymers is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
 これらの架橋剤は、単独で又は2種以上を組み合わせて使用することができる。 These crosslinking agents can be used alone or in combination of two or more.
 本発明に用いる液晶配向剤に(C)成分の架橋剤を含有させる場合の含有量は、(A)成分の100質量部に基づいて1~100質量部であることが好ましく、より好ましくは1~80質量部である。 When the liquid crystal alignment agent used in the present invention contains a crosslinking agent (C), the content is preferably 1 to 100 parts by mass, and more preferably 1 to 80 parts by mass, based on 100 parts by mass of the (A) component.
[液晶配向剤の調製]
 本発明に用いられる液晶配向剤は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明の液晶配向剤は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した(A)成分である重合体又は低分子化合物、(B)成分である重合体、及び必要に応じて(C)成分である架橋剤である。その際、(A)成分の含有量、(B)成分である重合体の含有量及び(C)成分である架橋剤の含有量の合計は、液晶配向剤全体に対して0.5~20質量%が好ましく、より好ましくは1~20質量%、さらに好ましくは1~15質量%、特に好ましくは1~10質量%であるのがよい。
[Preparation of liquid crystal alignment agent]
The liquid crystal alignment agent used in the present invention is preferably prepared as a coating liquid suitable for forming a liquid crystal alignment film. That is, the liquid crystal alignment agent of the present invention is preferably prepared as a solution in which a resin component for forming a resin coating is dissolved in an organic solvent. Here, the resin components are the already explained (A) component, which is a polymer or a low molecular weight compound, the (B) component, which is a polymer, and, if necessary, the (C) component, which is a crosslinking agent. In this case, the total content of the (A) component, the (B) component, and the (C) component, which is a crosslinking agent, is preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, even more preferably 1 to 15% by mass, and particularly preferably 1 to 10% by mass, based on the entire liquid crystal alignment agent.
<溶媒>
 本発明に用いられる液晶配向剤に含有する溶媒は、(A)成分、(B)成分及び必要に応じて(C)成分を溶解させる溶媒であれば特に限定されない。液晶配向剤に含有する溶媒は1種でも良く、2種類以上混合して使用しても良い。また、(A)成分や(B)成分を溶解させる溶媒でなくとも、(A)成分や(B)成分を溶解させる溶媒と併用することができる。この場合、(A)成分や(B)成分を溶解させない溶媒の表面エネルギーが(A)成分や(B)成分を溶解させる溶媒よりも低いと、液晶配向剤の基板への塗布性を良くすることができるため好ましい。
<Solvent>
The solvent contained in the liquid crystal alignment agent used in the present invention is not particularly limited as long as it dissolves the (A) component, the (B) component, and, if necessary, the (C) component. The solvent contained in the liquid crystal alignment agent may be one type, or two or more types may be mixed and used. In addition, even if the solvent does not dissolve the (A) component or the (B) component, it can be used in combination with a solvent that dissolves the (A) component or the (B) component. In this case, it is preferable that the surface energy of the solvent that does not dissolve the (A) component or the (B) component is lower than that of the solvent that dissolves the (A) component or the (B) component, because the liquid crystal alignment agent can be applied to the substrate with good properties.
 具体例として、水、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンなどのN-アルキル-2-ピロリドン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルカプロラクタム、テトラメチル尿素、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノンなどのジアルキルイミダゾリジノン類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトンなどのラクトン類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、メタノール、エタノール、プロパノール、イソプロパノール、3-メチル-3-メトキシブタノール、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、イソアミルメチルケトン、メチルイソプロピルケトン、ジイソブチルケトン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、4-ヒドロキシ-4-メチル-2-ペンタノンなどのケトン類、下記式(Sv-1)で表される化合物及び下記式(Sv-2)で表される化合物、酢酸4-メチル-2-ペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸シクロヘキシル、酢酸2-メチルシクロヘキシル、酪酸ブチル、酪酸イソアミル、ジイソブチルカルビノール、ジイソペンチルエーテル等をあげることができる。 Specific examples include water, N-alkyl-2-pyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylcaprolactam, tetramethylurea, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, dialkylimidazolidinones such as 1,3-dimethyl-2-imidazolidinone, lactones such as γ-butyrolactone, γ-valerolactone, and δ-valerolactone, carbonates such as ethylene carbonate and propylene carbonate, methanol, ethanol, propanoic acid, etc. Examples of the ketones include ketones such as ethanol, isopropanol, 3-methyl-3-methoxybutanol, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, isoamyl methyl ketone, methyl isopropyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, and 4-hydroxy-4-methyl-2-pentanone; compounds represented by the following formula (Sv-1) and compounds represented by the following formula (Sv-2); 4-methyl-2-pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, butyl butyrate, isoamyl butyrate, diisobutyl carbinol, and diisopentyl ether.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(Sv-1)~(Sv-2)中、Y及びYはそれぞれ独立に水素原子又は炭素数1~6の1価の炭化水素基であり、Xは酸素原子又は-COO-であり、Xは単結合又はカルボニル基であり、Rは炭素数2~4のアルキレン基である。nは1~3の整数である。nが2又は3の場合、複数のRは同じでも異なっていてもよい。Zは炭素数1~6の2価の炭化水素基であり、Y及びYはそれぞれ独立に水素原子又は炭素数1~6の1価の炭化水素基である。 In formulas (Sv-1) to (Sv-2), Y 1 and Y 2 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, X 1 is an oxygen atom or -COO-, X 2 is a single bond or a carbonyl group, and R 1 is an alkylene group having 2 to 4 carbon atoms. n 1 is an integer of 1 to 3. When n 1 is 2 or 3, multiple R 1 's may be the same or different. Z 1 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and Y 3 and Y 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
 式(Sv-1)中、Y及びYの炭素数1~6の1価の炭化水素基として、例えば炭素数1~6の1価の鎖状炭化水素基、炭素数1~6の1価の脂環式炭化水素基及び炭素数1~6の1価の芳香族炭化水素基などが挙げられる。炭素数1~6の1価の鎖状炭化水素基としては、炭素数1~6のアルキル基等を挙げることができる。Rのアルキレン基は直鎖状でも分岐状でもよい。 In formula (Sv-1), examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms for Y1 and Y2 include a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, a monovalent alicyclic hydrocarbon group having 1 to 6 carbon atoms, and a monovalent aromatic hydrocarbon group having 1 to 6 carbon atoms. Examples of the monovalent chain hydrocarbon group having 1 to 6 carbon atoms include an alkyl group having 1 to 6 carbon atoms. The alkylene group for R1 may be linear or branched.
 式(Sv-2)中、Zの炭素数1~6の2価の炭化水素基として、例えば炭素数1~6のアルキレン基等を挙げることができる。
 Y及びYの炭素数1~6の1価の炭化水素基としては、炭素数1~6の1価の鎖状炭化水素基、炭素数1~6の1価の脂環式炭化水素基及び炭素数1~6の1価の芳香族炭化水素基などが挙げられる。炭素数1~6の1価の鎖状炭化水素基としては炭素数1~6のアルキル基などが挙げられる。
In formula (Sv-2), examples of the divalent hydrocarbon group having 1 to 6 carbon atoms for Z 1 include alkylene groups having 1 to 6 carbon atoms.
Examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms for Y3 and Y4 include a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, a monovalent alicyclic hydrocarbon group having 1 to 6 carbon atoms, and a monovalent aromatic hydrocarbon group having 1 to 6 carbon atoms. Examples of the monovalent chain hydrocarbon group having 1 to 6 carbon atoms include an alkyl group having 1 to 6 carbon atoms.
 式(Sv-1)で表される溶媒の具体例としては、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングルコールモノアセタート、エチレングリコールジアセタート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセタート、プロピレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールジアセテート、エチレングリコール、1,4-ブタンジオール、3-メトキシブチルアセテート、3-エトキシブチルアセタート等を;
 (Sv-2)で表される溶媒の具体例としては、例えばグリコール酸メチル、グリコール酸エチル、グリコール酸ブチル、乳酸エチル、乳酸ブチル、乳酸イソアミル、エチル-3-エトキシプロピオネート、メチル-3-メトキシプロピオネート、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチルなどをそれぞれ挙げることができる。
Specific examples of the solvent represented by formula (Sv-1) include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, propylene glycol diacetate, ethylene glycol, 1,4-butanediol, 3-methoxybutyl acetate, and 3-ethoxybutyl acetate;
Specific examples of the solvent represented by (Sv-2) include methyl glycolate, ethyl glycolate, butyl glycolate, ethyl lactate, butyl lactate, isoamyl lactate, ethyl-3-ethoxypropionate, methyl-3-methoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, and butyl 3-methoxypropionate.
 前記溶媒としては沸点が80~200℃にあることが好ましい。より好ましくは、80~180℃であり、好ましい溶媒として、N,N-ジメチルホルムアミド、テトラメチル尿素、3-メトキシ-N,N-ジメチルプロパンアミド、プロパノール、イソプロパノール、3-メチル-3-メトキシブタノール、エチルアミルケトン、メチルエチルケトン、イソアミルメチルケトン、メチルイソプロピルケトン、ジイソブチルケトン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、4-ヒドロキシ-4-メチル-2-ペンタノン、酢酸4-メチル-2-ペンチル、酢酸2-エチルブチル、酢酸シクロヘキシル、酢酸2-メチルシクロヘキシル、酪酸ブチル、酪酸イソアミル、ジイソブチルカルビノール、ジイソペンチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングルコールモノアセタート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセタート、プロピレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシブチルアセテート、グリコール酸メチル、グリコール酸エチル、グリコール酸ブチル、乳酸エチル、乳酸ブチル、乳酸イソアミル、エチル-3-エトキシプロピオネート、メチル-3-メトキシプロピオネート、3-メトキシプロピオン酸エチル等を挙げることができる。
 沸点がこの範囲であることは、特に、前記溶媒を含む液晶配向剤が後述するプラスチック基板上に塗布される場合に好ましい。
The solvent preferably has a boiling point of 80 to 200° C., more preferably 80 to 180° C., and examples of preferred solvents include N,N-dimethylformamide, tetramethylurea, 3-methoxy-N,N-dimethylpropanamide, propanol, isopropanol, 3-methyl-3-methoxybutanol, ethyl amyl ketone, methyl ethyl ketone, isoamyl methyl ketone, methyl isopropyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, 4-hydroxy-4-methyl-2-pentanone, 4-methyl-2-pentyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, butyl butyrate, isoamyl butyrate, diisobutyl carbinol, diisopentyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, and ethylene glycol-i-propyl. ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol monoacetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether, 3-methoxybutyl acetate, methyl glycolate, ethyl glycolate, butyl glycolate, ethyl lactate, butyl lactate, isoamyl lactate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, and ethyl 3-methoxypropionate.
The boiling point being in this range is particularly preferred when the liquid crystal aligning agent containing the solvent is applied onto a plastic substrate, which will be described later.
<他の成分>
 本発明に用いられる液晶配向剤は、上記(A)成分、(B)成分及び必要に応じて上記(C)成分以外の他の成分を含有してもよい。このような他の成分としては、架橋触媒や、液晶配向剤を塗布した際の、膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜と基板との密着性を向上させる化合物、等を挙げることができるが、これに限定されない。
<Other Ingredients>
The liquid crystal aligning agent used in the present invention may contain other components in addition to the above-mentioned (A) component, (B) component, and, if necessary, the above-mentioned (C) component. Examples of such other components include, but are not limited to, a crosslinking catalyst, a compound that improves the film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like.
<架橋触媒>
 本発明に用いられる液晶配向剤に、熱架橋性基Aと熱架橋性基Bとの反応を促進させる目的で、架橋触媒を添加してもよい。このような架橋触媒としては、p-トルエンスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸、p-フェノールスルホン酸、2-ナフタレンスルホン酸、メシチレンスルホン酸、p-キシレン-2-スルホン酸、m-キシレン-2-スルホン酸、4-エチルベンゼンスルホン酸、1H,1H,2H,2H-パーフルオロオクタンスルホン酸、パーフルオロ(2-エトキシエタン)スルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタン-1-スルホン酸、ドデシルベンゼンスルホン酸等のスルホン酸またはその水和物や塩等が挙げられる。熱により酸を発生する化合物としては、例えば、ビス(トシルオキシ)エタン、ビス(トシルオキシ)プロパン、ビス(トシルオキシ)ブタン、p-ニトロベンジルトシレート、o-ニトロベンジルトシレート、1,2,3-フェニレントリス(メチルスルホネート)、p-トルエンスルホン酸ピリジニウム塩、p-トルエンスルホン酸モルフォニウム塩、p-トルエンスルホン酸エチルエステル、p-トルエンスルホン酸プロピルエステル、p-トルエンスルホン酸ブチルエステル、p-トルエンスルホン酸イソブチルエステル、p-トルエンスルホン酸メチルエステル、p-トルエンスルホン酸フェネチルエステル、シアノメチルp-トルエンスルホネート、2,2,2-トリフルオロエチルp-トルエンスルホネート、2-ヒドロキシブチルp-トルエンスルホネート、N-エチル-p-トルエンスルホンアミド等が挙げられる。
<Crosslinking catalyst>
A crosslinking catalyst may be added to the liquid crystal alignment agent used in the present invention for the purpose of promoting the reaction between the thermally crosslinkable group A and the thermally crosslinkable group B. Examples of such crosslinking catalysts include sulfonic acids such as p-toluenesulfonic acid, camphorsulfonic acid, trifluoromethanesulfonic acid, p-phenolsulfonic acid, 2-naphthalenesulfonic acid, mesitylenesulfonic acid, p-xylene-2-sulfonic acid, m-xylene-2-sulfonic acid, 4-ethylbenzenesulfonic acid, 1H,1H,2H,2H-perfluorooctane sulfonic acid, perfluoro(2-ethoxyethane)sulfonic acid, pentafluoroethanesulfonic acid, nonafluorobutane-1-sulfonic acid, and dodecylbenzenesulfonic acid, or hydrates or salts thereof. Examples of the compound that generates an acid when heated include bis(tosyloxy)ethane, bis(tosyloxy)propane, bis(tosyloxy)butane, p-nitrobenzyl tosylate, o-nitrobenzyl tosylate, 1,2,3-phenylene tris(methylsulfonate), p-toluenesulfonic acid pyridinium salt, p-toluenesulfonic acid morphonium salt, p-toluenesulfonic acid ethyl ester, p-toluenesulfonic acid propyl ester, p-toluenesulfonic acid butyl ester, p-toluenesulfonic acid isobutyl ester, p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid phenethyl ester, cyanomethyl p-toluenesulfonate, 2,2,2-trifluoroethyl p-toluenesulfonate, 2-hydroxybutyl p-toluenesulfonate, and N-ethyl-p-toluenesulfonamide.
[膜厚の均一性や表面平滑性を向上させる化合物]
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤及びノ二オン系界面活性剤等が挙げられる。
 具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(三菱マテリアル電子化成社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。
 これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。
[Compounds that improve film thickness uniformity and surface smoothness]
Examples of compounds that improve the uniformity of the film thickness and the surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
Specific examples include EFTOP (registered trademark) 301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), MEGAFAC (registered trademark) F171, F173, R-30 (manufactured by DIC Corporation), Fluorad FC430, FC431 (manufactured by Sumitomo 3M Limited), Asahiguard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.), and the like.
The proportion of these surfactants used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, per 100 parts by mass of the resin component contained in the polymer composition.
[液晶配向膜と基板との密着性を向上させる化合物]
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-3-トリエトキシシリルプロピルトリエチレンテトラミン、N-3-トリメトキシシリルプロピルトリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン等のアミノ系シラン含有化合物が挙げられる。
 基板との密着性を向上させる化合物を使用する場合、その使用量は、重合体組成物に含有される樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。
[Compound for improving adhesion between liquid crystal alignment film and substrate]
Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilylpropyltriethyl Examples of amino-based silane-containing compounds include N-3-trimethoxysilylpropyltriethylenetetramine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-phenyl-3-aminopropyltriethoxysilane.
When a compound for improving adhesion to a substrate is used, the amount used is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass, relative to 100 parts by mass of the resin component contained in the polymer composition.
 ある実施形態において、光配向性基の光反応性を向上させるために添加剤として、光増感剤を用いることもできる。具体例として、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、及びアセトフェノンケタール等を挙げることができる。 In some embodiments, a photosensitizer can be used as an additive to improve the photoreactivity of the photoalignment group. Specific examples include aromatic 2-hydroxyketones (benzophenones), coumarins, ketocoumarins, carbonyl biscoumarins, acetophenones, anthraquinones, xanthones, thioxanthones, and acetophenone ketals.
<液晶配向膜及び液晶表示素子>
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は一部の垂直配向用途などでは配向処理無しで液晶配向膜とすることができる。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリスチレン、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアミド、ポリイミド、アクリル及びトリアセチルセルロースなどのプラスチックからなる透明基板を用いることができる。
 基板の一面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment agent of the present invention can be applied to a substrate, baked, and then subjected to an alignment treatment such as rubbing or light irradiation to form a liquid crystal alignment film, or in some vertical alignment applications, no alignment treatment can be performed. As the substrate, for example, a transparent substrate made of glass such as float glass or soda glass; polyethylene terephthalate, polybutylene terephthalate, polypropylene, polystyrene, polyethersulfone, polycarbonate, poly(alicyclic olefin), polyvinyl chloride, polyvinylidene chloride, polyetheretherketone (PEEK) resin film, polysulfone (PSF), polyethersulfone (PES), polyamide, polyimide, acrylic, triacetyl cellulose, or other plastics can be used.
The transparent conductive film provided on one side of the substrate may be a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 —SnO 2 ), or the like.
<塗膜形成工程>
 本発明の液晶配向剤の塗布方法は特に限定されないが、スクリーン印刷、フレキソ印刷、オフセット印刷、インクジェット、ディップコーティング、ロールコーティング、スリットコーティング、スピンコーティングなどがあり、目的に応じてこれらを用いてもよい。これらの方法により基板上に塗布した後、ホットプレートなどの加熱手段により溶媒を蒸発させて、塗膜を形成させることができる。
<Coating film formation process>
The method of applying the liquid crystal alignment agent of the present invention is not particularly limited, and may be screen printing, flexographic printing, offset printing, inkjet, dip coating, roll coating, slit coating, spin coating, etc., which may be used depending on the purpose. After applying the agent to a substrate by these methods, the solvent is evaporated by a heating means such as a hot plate to form a coating film.
 液晶配向剤を塗布した後の焼成は、40~300℃の任意の温度で行うことができるが、好ましくは40℃~250℃であり、より好ましくは40℃~230℃である。
 基板上に形成される塗膜の膜厚は、好ましくは5~1,000nmであり、より好ましくは10~500nm又は10~300nmである。この焼成はホットプレート、熱風循環炉、赤外線炉などで行うことができる。
 ラビング処理には、レーヨン布、ナイロン布、コットン布などを使用することができる。
The baking after coating the liquid crystal alignment agent can be carried out at any temperature between 40 and 300°C, preferably between 40 and 250°C, and more preferably between 40 and 230°C.
The thickness of the coating film formed on the substrate is preferably 5 to 1,000 nm, more preferably 10 to 500 nm or 10 to 300 nm. This baking can be carried out using a hot plate, a hot air circulating oven, an infrared oven, or the like.
For the rubbing treatment, a rayon cloth, a nylon cloth, a cotton cloth, or the like can be used.
<光照射工程>
 ある実施形態において光照射による配向処理を行ってもよく、例えば上記の液晶配向剤を基板上に塗布して塗膜を形成する工程と、前記塗膜が液晶層と接触していない状態で又は液晶層と接触した状態で前記塗膜に光照射する工程とを含んでもよい。
<Light irradiation process>
In one embodiment, an alignment treatment by light irradiation may be performed, and may include, for example, a step of applying the above-mentioned liquid crystal alignment agent onto a substrate to form a coating film, and a step of irradiating the coating film with light while the coating film is not in contact with the liquid crystal layer or while the coating film is in contact with the liquid crystal layer.
 光照射による配向処理で照射する光としては、例えば150~800nmの波長の光を含む紫外線、可視光線などを挙げることができる。これらのうち、300~400nmの波長の光を含む紫外線が好ましい。照射光は偏光であっても非偏光であってもよい。偏光としては、直線偏光を含む光を使用することが好ましい。 The light irradiated in the alignment treatment by light irradiation can be, for example, ultraviolet light containing light with a wavelength of 150 to 800 nm, visible light, etc. Of these, ultraviolet light containing light with a wavelength of 300 to 400 nm is preferred. The irradiated light may be polarized or unpolarized. As for the polarized light, it is preferable to use light containing linearly polarized light.
 光の照射は、用いる光が偏光である場合には、基板面に垂直の方向から行っても斜め方向から行ってもよく、あるいはこれらを組み合わせて行ってもよい。非偏光を照射する場合には、基板面に対して斜めの方向から行うことが好ましい。
 光の照射量は、0.1mJ/cm以上1,000mJ/cm未満とすることが好ましく、1~500mJ/cmとすることがより好ましく、2~200mJ/cmとすることがさらに好ましい。
When the light used is polarized light, the light may be irradiated from a direction perpendicular to the substrate surface, from an oblique direction, or a combination of these. When the light used is non-polarized light, the light is preferably irradiated from an oblique direction relative to the substrate surface.
The amount of light irradiation is preferably 0.1 mJ/cm 2 or more and less than 1,000 mJ/cm 2 , more preferably 1 to 500 mJ/cm 2 , and even more preferably 2 to 200 mJ/cm 2 .
<液晶表示素子>
 本発明の液晶表示素子は、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ、本発明の液晶配向剤により形成された液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、本発明の液晶配向剤を、2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、紫外線を照射することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。
 このように、本発明の液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に紫外線を照射することで、液晶と本発明の液晶配向膜との間に相互作用が発生し、液晶残留DCが小さく、焼きつきが発生しにくい液晶表示素子となると思われる。
<Liquid crystal display element>
The liquid crystal display element of the present invention is a vertical alignment type liquid crystal display element having a liquid crystal cell having two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment film provided between the substrates and the liquid crystal layer and formed by the liquid crystal alignment agent of the present invention. Specifically, the liquid crystal alignment agent of the present invention is applied to two substrates and baked to form a liquid crystal alignment film, the two substrates are arranged so that the liquid crystal alignment film faces each other, a liquid crystal layer made of liquid crystal is sandwiched between the two substrates, and ultraviolet light is irradiated to produce a liquid crystal cell.
In this way, by using a liquid crystal alignment film formed by the liquid crystal alignment agent of the present invention and irradiating the liquid crystal alignment film and liquid crystal layer with ultraviolet light, an interaction occurs between the liquid crystal and the liquid crystal alignment film of the present invention, resulting in a liquid crystal display element with small liquid crystal residual DC and less susceptible to burn-in.
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。
 本発明の液晶表示素子は、従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、本発明の液晶配向剤を用いて形成された液晶配向膜を有していることにより、片側基板に1~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造の基板を用いても動作可能であり、素子の製造時のプロセスを簡略化でき、高い透過率を得ることができる。
The substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving the liquid crystal is formed. Specific examples include the same substrates as those described above for the liquid crystal alignment film.
The liquid crystal display element of the present invention may use a substrate having a conventional electrode pattern or protrusion pattern, but since it has a liquid crystal alignment film formed using the liquid crystal alignment agent of the present invention, it can also operate using a substrate having a structure in which a line/slit electrode pattern of 1 to 10 μm is formed on one substrate and no slit pattern or protrusion pattern is formed on the opposing substrate, which simplifies the process of manufacturing the element and allows for a high transmittance to be obtained.
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 Furthermore, in high-performance elements such as TFT-type elements, transistor-like elements are formed between the electrodes for driving the liquid crystal and the substrate.
 透過型の液晶表示素子の場合は、上記基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。 In the case of transmissive liquid crystal display elements, the above substrates are generally used, but in the case of reflective liquid crystal display elements, it is possible to use an opaque substrate such as a silicon wafer for only one of the substrates. In such cases, a light-reflecting material such as aluminum can be used for the electrodes formed on the substrate.
 液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後、焼成することにより形成されるものであり、詳しくは上述したとおりである。 The liquid crystal alignment film is formed by applying the liquid crystal alignment agent of the present invention onto this substrate and then baking it, as described in detail above.
 本発明の液晶表示素子に用いる液晶組成物としては、負の誘電異方性を有するネマチック液晶を用いることができる。例えば、ジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、ターフェニル系液晶などを用いることができる。また、アルケニル系液晶を併用することが好ましい。このようなアルケニル系液晶としては、従来公知のものを使用することができる。例えば、下記式で表される化合物などを挙げることができるが、これに限定されるものではない。 As the liquid crystal composition used in the liquid crystal display element of the present invention, a nematic liquid crystal having negative dielectric anisotropy can be used. For example, dicyanobenzene-based liquid crystal, pyridazine-based liquid crystal, Schiff base-based liquid crystal, azoxy-based liquid crystal, biphenyl-based liquid crystal, phenylcyclohexane-based liquid crystal, terphenyl-based liquid crystal, etc. can be used. It is also preferable to use an alkenyl-based liquid crystal in combination. As such an alkenyl-based liquid crystal, a conventionally known one can be used. For example, the compound represented by the following formula can be used, but is not limited to this.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 本発明の液晶表示素子の液晶層を構成する液晶組成物は、垂直配向方式で使用される液晶材料であれば、特に限定されない。例えば、メルク社製の、負の誘電異方性を有する液晶組成物である、MLC-6608、MLC-6609等を用いることができる。さらに、アルケニル系液晶を含み、負の誘電異方性を有する液晶組成物である、メルク社製のMLC-3022、MLC-3023(光重合性化合物(RM)を含む)などを用いることができる。 The liquid crystal composition constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited as long as it is a liquid crystal material used in a vertical alignment method. For example, MLC-6608, MLC-6609, etc., which are liquid crystal compositions having negative dielectric anisotropy manufactured by Merck, can be used. Furthermore, MLC-3022, MLC-3023 (containing a photopolymerizable compound (RM)), etc., which are liquid crystal compositions containing alkenyl liquid crystals and having negative dielectric anisotropy manufactured by Merck, can be used.
 この液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、基板の周囲に接着剤を塗布した後、液晶配向膜が形成された側の面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。
 また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上に、ビーズ等のスペーサーを散布した後に液晶を滴下し、その後、液晶配向膜が形成された側の面が内側になるようにして、もう一方の基板を貼り合わせて封止を行う方法でも、液晶セルを作製することができる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
The method of sandwiching this liquid crystal layer between two substrates can be a known method, for example, a method of preparing a pair of substrates on which a liquid crystal alignment film is formed, scattering spacers such as beads on the liquid crystal alignment film of one substrate, applying an adhesive around the periphery of the substrate, and then bonding the other substrate so that the surface on which the liquid crystal alignment film is formed faces inward, and injecting liquid crystal under reduced pressure to seal the substrate can be mentioned.
A liquid crystal cell can also be produced by a method in which a pair of substrates on which liquid crystal alignment films are formed are prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, liquid crystal is then dropped onto the substrate, and the other substrate is attached so that the surface on which the liquid crystal alignment film is formed faces inward to seal the substrate. The thickness of the spacer in this case is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 液晶配向膜及び液晶層に紫外線を照射することにより液晶セルを作製する工程は、液晶封入後であれば何時でもよい。紫外線の照射量は、例えば、1~60J/cm、好ましくは40J/cm以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制できる。
 用いる紫外線の波長は、300~500nmが好ましく、300~400nmがより好ましい。なお、液晶セルを作成する工程で用いる紫外線の波長は、前記光照射工程で用いる紫外線の波長と異なることが好ましい。中でも、液晶セルを作成する工程で用いる紫外線の波長が、前記光照射工程で用いる紫外線の波長よりも長波長であることが、液晶セルを作成する工程において光照射工程の逆反応が進行することを防ぐという観点から、好ましい。
 例えば、前記光照射工程で用いる紫外線の波長は300~350nmであり、液晶セルを作成する工程で用いる紫外線の波長が、350~400nmであるのが好ましい。こうすることにより、光配向処理後のPSA処理において、光配向性基の逆反応が進行して、光配向性が損なわれるという問題を回避することができる。
The step of preparing a liquid crystal cell by irradiating the liquid crystal alignment film and the liquid crystal layer with ultraviolet light may be performed at any time after the liquid crystal is sealed in. The amount of ultraviolet light irradiation is, for example, 1 to 60 J/ cm2 , preferably 40 J/ cm2 or less. The lower the amount of ultraviolet light irradiation, the more the deterioration of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed.
The wavelength of the ultraviolet light used is preferably 300 to 500 nm, more preferably 300 to 400 nm. The wavelength of the ultraviolet light used in the step of preparing a liquid crystal cell is preferably different from the wavelength of the ultraviolet light used in the light irradiation step. In particular, it is preferable that the wavelength of the ultraviolet light used in the step of preparing a liquid crystal cell is longer than the wavelength of the ultraviolet light used in the light irradiation step, from the viewpoint of preventing the reverse reaction of the light irradiation step from proceeding in the step of preparing a liquid crystal cell.
For example, it is preferable that the wavelength of the ultraviolet light used in the light irradiation step is 300 to 350 nm, and that the wavelength of the ultraviolet light used in the step of preparing the liquid crystal cell is 350 to 400 nm. By doing so, it is possible to avoid the problem that the photoalignment property is impaired due to the reverse reaction of the photoalignable group in the PSA treatment after the photoalignment treatment.
 また、液晶配向膜及び液晶層への紫外線の照射は、電圧を印加し、この電界を保持したまま行ってもよい。ここで、電極間にかける電圧としては、例えば、5~30Vp-p、好ましくは5~20Vp-pである。 In addition, the liquid crystal alignment film and the liquid crystal layer may be irradiated with ultraviolet light by applying a voltage and maintaining the electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, and preferably 5 to 20 Vp-p.
 液晶に重合性化合物が入っているPSA方式の場合は、液晶配向膜及び液晶層に紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。 In the case of the PSA method, where the liquid crystal contains a polymerizable compound, when the liquid crystal alignment film and liquid crystal layer are irradiated with ultraviolet light, the polymerizable compound reacts to form a polymer, and this polymer memorizes the direction in which the liquid crystal molecules tilt, thereby making it possible to speed up the response speed of the resulting liquid crystal display element.
 本発明の液晶配向剤は、上記光配向工程により、(A)成分である重合体または低分子化合物の光配向性基が光反応することにより、チルト角が付与される。そのあと、PSA処理の際に、液晶組成物中のアルケニル液晶からラジカルが発生して重合することで、付与されたチルト角を固定化することができる。このことにより、得られる液晶表示素子のチルト角の耐久性を向上させることができる。 The liquid crystal alignment agent of the present invention is imparted with a tilt angle by the photo-alignment process described above, which causes a photoreaction of the photo-alignable groups of the polymer or low molecular weight compound, which is component (A). Then, during the PSA treatment, radicals are generated from the alkenyl liquid crystal in the liquid crystal composition, which then polymerizes, thereby fixing the imparted tilt angle. This makes it possible to improve the durability of the tilt angle of the resulting liquid crystal display element.
 また、上記液晶配向剤は、PSA型液晶ディスプレイやSC-PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子を作製するための液晶配向剤として有用なだけでなく、ラビング処理や光配向処理によって形成される液晶配向膜の作製にも好適に使用できる。 In addition, the above liquid crystal alignment agent is not only useful as a liquid crystal alignment agent for producing vertical alignment type liquid crystal display elements such as PSA type liquid crystal displays and SC-PVA type liquid crystal displays, but can also be suitably used for producing liquid crystal alignment films formed by rubbing treatment or photoalignment treatment.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。 The present invention will be described in more detail below with reference to examples, but the present invention should not be construed as being limited to these. The abbreviations of the compounds used and the methods for measuring the various physical properties are as follows:
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:エチレングリコールモノブチルエーテル
THF:テトラヒドロフラン
(テトラカルボン酸二無水物)
CA-1~CA-2:それぞれ、下記式(CA-1)~(CA-2)で表される化合物
(ジアミン)
DA-1~DA-7:それぞれ、下記式(DA-1)~(DA-7)で表される化合物
(アクリル系モノマー)
MA-1~MA-3:それぞれ、下記式(MA-1)~(MA-3)で表される化合物
(開始剤)
IN-1:下記式(IN-1)で表される化合物
(反応試剤)
DMAP:N,N-ジメチル-4-アミノピリジン
EDC:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether THF: tetrahydrofuran (tetracarboxylic dianhydride)
CA-1 to CA-2: Compounds (diamines) represented by the following formulas (CA-1) to (CA-2), respectively.
DA-1 to DA-7: Compounds (acrylic monomers) represented by the following formulas (DA-1) to (DA-7), respectively.
MA-1 to MA-3: Compounds (initiators) represented by the following formulas (MA-1) to (MA-3), respectively.
IN-1: A compound (reactant) represented by the following formula (IN-1)
DMAP: N,N-dimethyl-4-aminopyridine EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
<粘度の測定>
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
<Measurement of Viscosity>
The measurement was performed at 25° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1°34′, R24).
<分子量の測定>
 下記の常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値としてMn及びMwを算出した。
 GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<Measurement of molecular weight>
Measurements were carried out using the following room temperature GPC (gel permeation chromatography) device, and Mn and Mw were calculated as values calculated in terms of polyethylene glycol and polyethylene oxide.
GPC apparatus: GPC-101 (Showa Denko K.K.); column: GPC KD-803, GPC KD-805 (Showa Denko K.K.) in series; column temperature: 50°C; eluent: N,N-dimethylformamide (additives: lithium bromide monohydrate (LiBr.H 2 O) 30 mmol/L, phosphoric acid anhydrous crystal (o-phosphoric acid) 30 mmol/L, tetrahydrofuran (THF) 10 mL/L); flow rate: 1.0 mL/min. Standard samples for creating calibration curves: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (Tosoh Corporation) and polyethylene glycol (molecular weight: about 12,000, 4,000, and 1,000) (Polymer Laboratory Co., Ltd.).
[特定ジアミン(DA-1)~(DA-3)の合成]
 式(DA-1)~(DA-3)で表される化合物の合成法を、以下に詳述する。なお、式(DA-1)~(DA-3)で表される化合物は、文献等未公開の新規化合物である。
H-NMRの測定>
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER製)500MHz。
 溶媒:重水素化ジメチルスルホキシド([D]-DMSO、標準物質:テトラメチルシラン)。
[Synthesis of specific diamines (DA-1) to (DA-3)]
The methods for synthesizing the compounds represented by formulae (DA-1) to (DA-3) are described in detail below. The compounds represented by formulae (DA-1) to (DA-3) are novel compounds that have not been disclosed in any literature.
< 1H -NMR Measurement>
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) "AVANCE III" (manufactured by BRUKER) 500 MHz.
Solvent: deuterated dimethylsulfoxide ([D 6 ]-DMSO, standard: tetramethylsilane).
<モノマー合成例1:(DA-1)の合成>
 下記に示す経路に従って、ジアミン(DA-1)を合成した。
<Monomer Synthesis Example 1: Synthesis of (DA-1)>
Diamine (DA-1) was synthesized according to the route shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 フラスコ中、3,5-ジニトロ安息香酸(42.4g、200mmol)に対し、THF(296g)、シクロドデカノール(36.8g、200mmol)、DMAP(2.44g、20.0mmol)、及びEDC(37.3g、195mmol)を加え、窒素雰囲気室温条件下にて18時間反応させた。反応終了後、ろ過により不溶物を除去した後、純水中に反応液を注ぎ込み、反応物の粗物を得た。得られた粗物を純水/メタノール(50/50(vol%/vol%))でスラリー洗浄することで、DA-1-1(55.9g、148mmol、収率74%、白色固体)を得た。 In a flask, 3,5-dinitrobenzoic acid (42.4 g, 200 mmol) was added with THF (296 g), cyclododecanol (36.8 g, 200 mmol), DMAP (2.44 g, 20.0 mmol), and EDC (37.3 g, 195 mmol), and the mixture was allowed to react for 18 hours at room temperature in a nitrogen atmosphere. After the reaction was completed, insoluble matter was removed by filtration, and the reaction solution was poured into pure water to obtain a crude reaction product. The obtained crude product was slurry washed with pure water/methanol (50/50 (vol%/vol%)) to obtain DA-1-1 (55.9 g, 148 mmol, yield 74%, white solid).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 フラスコ中、DA-1-1(55.9g、148mmol)に対し、THF(449g)及びカーボン担持パラジウム(5%Pdカーボン粉末(50%含水品)Kタイプ、N.E.ケムキャット社製)(4.47g)を加え、水素雰囲気下室温にてニトロ還元を行った。反応後、ろ過によりカーボン担持パラジウムを除去した後、ろ液を濃縮することで、DA-1(45.3g、142mmol、収率96%、白色固体)を得た。
 以下に示すH-NMRの結果から、この固体がジアミン(DA-1)であることを確認した。
H-NMR(500MHz,[D]-DMSO):δ(ppm=)6.41(d,2H,J=2.0Hz),6.01(t,1H,J=2.0Hz),5.07(q,1H,J=5.8Hz),4.97(s,4H),1.75-1.35(m,22H).
In a flask, THF (449 g) and carbon-supported palladium (5% Pd carbon powder (50% water content) K type, manufactured by N.E. Chemcat Corp.) (4.47 g) were added to DA-1-1 (55.9 g, 148 mmol), and nitro reduction was carried out at room temperature under a hydrogen atmosphere. After the reaction, the carbon-supported palladium was removed by filtration, and the filtrate was concentrated to obtain DA-1 (45.3 g, 142 mmol, yield 96%, white solid).
From the results of 1 H-NMR shown below, this solid was confirmed to be diamine (DA-1).
1 H-NMR (500 MHz, [D 6 ]-DMSO): δ (ppm =) 6.41 (d, 2H, J = 2.0 Hz), 6.01 (t, 1H, J = 2.0 Hz), 5.07 (q, 1H, J = 5.8 Hz), 4.97 (s, 4H), 1.75-1.35 (m, 22H).
<モノマー合成例2:(DA-2)の合成>
 下記に示す経路に従って、ジアミン(DA-2)を合成した。
<Monomer Synthesis Example 2: Synthesis of (DA-2)>
Diamine (DA-2) was synthesized according to the route shown below.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 フラスコ中、1,3-ジニトロ安息香酸(42.4g、200mmol)に対し、THF(200g)、シクロオクタノール(25.6g、200mmol)、DMAP(2.44g、20.0mmol)、及びEDC(37.3g、195mmol)を加え、窒素雰囲気室温条件下にて18時間反応させた。反応終了後、ろ過により不溶物を除去した後、純水中に反応液を注ぎ込み、反応物の粗物を得た。得られた粗物を純水/メタノール(50/50(vol%/vol%))でスラリー洗浄することで、DA-2-1(41.7g、129mmol、収率65%、白色固体)を得た。 In a flask, 1,3-dinitrobenzoic acid (42.4 g, 200 mmol) was added with THF (200 g), cyclooctanol (25.6 g, 200 mmol), DMAP (2.44 g, 20.0 mmol), and EDC (37.3 g, 195 mmol), and the mixture was allowed to react for 18 hours under room temperature conditions in a nitrogen atmosphere. After the reaction was completed, insoluble matter was removed by filtration, and the reaction solution was poured into pure water to obtain a crude reaction product. The obtained crude product was slurry washed with pure water/methanol (50/50 (vol%/vol%)) to obtain DA-2-1 (41.7 g, 129 mmol, yield 65%, white solid).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 フラスコ中、DA-2-1(41.7g、129mmol)に対し、THF(335g)及びカーボン担持パラジウム(5%Pdカーボン粉末(50%含水品)Kタイプ、N.E.ケムキャット社製)(3.34g)を加え、水素雰囲気下室温にてニトロ還元を行った。反応後、ろ過によりカーボン担持パラジウムを除去した後、ろ液を濃縮することで、DA-2(31.9g、122mmol、収率94%、白色固体)を得た。
 以下に示すH-NMRの結果から、この固体がジアミン(DA-2)であることを確認した。
H-NMR(500MHz,[D]-DMSO):δ(ppm=)6.41(d,2H,J=2.0Hz),6.01(t,1H,J=2.0Hz),4.96(s,4H),5.01-4.94(m,1H),1.84-1.51(m,14H).
In a flask, THF (335 g) and carbon-supported palladium (5% Pd carbon powder (50% water content) K type, manufactured by N.E. Chemcat Corp.) (3.34 g) were added to DA-2-1 (41.7 g, 129 mmol), and nitro reduction was carried out at room temperature under a hydrogen atmosphere. After the reaction, the carbon-supported palladium was removed by filtration, and the filtrate was concentrated to obtain DA-2 (31.9 g, 122 mmol, yield 94%, white solid).
From the results of 1 H-NMR shown below, this solid was confirmed to be diamine (DA-2).
1 H-NMR (500 MHz, [D 6 ]-DMSO): δ (ppm =) 6.41 (d, 2H, J = 2.0 Hz), 6.01 (t, 1H, J = 2.0 Hz), 4.96 (s, 4H), 5.01-4.94 (m, 1H), 1.84-1.51 (m, 14H).
<モノマー合成例3:(DA-3)の合成>
 下記に示す経路に従って、ジアミン(DA-3)を合成した。
<Monomer Synthesis Example 3: Synthesis of (DA-3)>
Diamine (DA-3) was synthesized according to the route shown below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 フラスコ中、3,5-ジニトロ安息香酸(5.74g、27.0mmol)に対し、THF(48.0g)、シクロペンタデカノール(6.10g、26.9mmol)、DMAP(0.328g、2.68mmol)、及びEDC(5.01g、26.1mmol)を加え、窒素雰囲気室温条件下にて18時間反応させた。反応終了後、ろ過により不溶物を除去した後、純水中に反応液を注ぎ込み、反応物の粗物を得た。得られた粗物を純水/メタノール(50/50(vol%/vol%))でスラリー洗浄することで、DA-3-1(6.72g、16.0mmol、収率59%、白色固体)を得た。 In a flask, 3,5-dinitrobenzoic acid (5.74 g, 27.0 mmol) was added with THF (48.0 g), cyclopentadecanol (6.10 g, 26.9 mmol), DMAP (0.328 g, 2.68 mmol), and EDC (5.01 g, 26.1 mmol), and the mixture was allowed to react for 18 hours under room temperature conditions in a nitrogen atmosphere. After the reaction was completed, insoluble matter was removed by filtration, and the reaction solution was poured into pure water to obtain a crude reaction product. The obtained crude product was slurry washed with pure water/methanol (50/50 (vol%/vol%)) to obtain DA-3-1 (6.72 g, 16.0 mmol, yield 59%, white solid).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 フラスコ中、DA-3-1(6.72g、16.0mmol)に対し、THF(53.8g)及びカーボン担持パラジウム(5%Pdカーボン粉末(50%含水品)Kタイプ、N.E.ケムキャット社製)(0.538g)を加え、水素雰囲気下室温にてニトロ還元を行った。反応後、ろ過によりカーボン担持パラジウムを除去した後、ろ液を濃縮することで、DA-3(5.49g、15.2mmol、収率95%、白色固体)を得た。
 以下に示すH-NMRの結果から、この固体がジアミン(DA-3)であることを確認した。
H-NMR(500MHz,[D]-DMSO):δ(ppm=)6.41(d,2H,J=2.0Hz),6.01(t,1H,J=2.0Hz),4.97(s,4H),4.98-4.95(m,1H),1.68-1.33(m,28H).
In a flask, THF (53.8 g) and carbon-supported palladium (5% Pd carbon powder (50% water content) K type, manufactured by N.E. Chemcat Corp.) (0.538 g) were added to DA-3-1 (6.72 g, 16.0 mmol), and nitro reduction was carried out at room temperature under a hydrogen atmosphere. After the reaction, the carbon-supported palladium was removed by filtration, and the filtrate was concentrated to obtain DA-3 (5.49 g, 15.2 mmol, yield 95%, white solid).
From the results of 1 H-NMR shown below, this solid was confirmed to be diamine (DA-3).
1 H-NMR (500 MHz, [D 6 ]-DMSO): δ (ppm =) 6.41 (d, 2H, J = 2.0 Hz), 6.01 (t, 1H, J = 2.0 Hz), 4.97 (s, 4H), 4.98-4.95 (m, 1H), 1.68-1.33 (m, 28H).
[重合体の合成]
<合成例1>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(4.78g、15.0mmol)及びNMP(21.8g)を加えて、窒素を送りながら室温で0.5時間撹拌した。その後、CA-1(2.91g、14.8mmol)及びNMP(13.3g)を加えて、40℃で3時間撹拌することで、固形分濃度18質量%のポリアミック酸溶液(1)を得た。このポリアミック酸のMnは11,500、Mwは28,700であった。
[Polymer synthesis]
<Synthesis Example 1>
DA-1 (4.78 g, 15.0 mmol) and NMP (21.8 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.91 g, 14.8 mmol) and NMP (13.3 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (1) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 11,500 and the Mw was 28,700.
<合成例2>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2(3.94g、15.0mmol)及びNMP(17.9g)を加えて、窒素を送りながら室温で0.5時間撹拌した。その後、CA-1(2.91g、14.8mmol)及びNMP(13.3g)を加えて、40℃で3時間撹拌することで、固形分濃度18質量%のポリアミック酸溶液(2)を得た。このポリアミック酸のMnは13,500、Mwは41,200であった。
<Synthesis Example 2>
DA-2 (3.94 g, 15.0 mmol) and NMP (17.9 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.91 g, 14.8 mmol) and NMP (13.3 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (2) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 13,500 and the Mw was 41,200.
<合成例3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3(5.41g、15.0mmol)及びNMP(24.6g)を加えて、窒素を送りながら室温で0.5時間撹拌した。その後、CA-1(2.93g、14.9mmol)及びNMP(13.3g)を加えて、40℃で3時間撹拌することで、固形分濃度18質量%のポリアミック酸溶液(3)を得た。このポリアミック酸のMnは10,500、Mwは23,500であった。
<Synthesis Example 3>
DA-3 (5.41 g, 15.0 mmol) and NMP (24.6 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.93 g, 14.9 mmol) and NMP (13.3 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (3) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 10,500 and the Mw was 23,500.
<合成例4>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-4(1.62g、15.0mmol)及びNMP(7.39g)を加えて、窒素を送りながら室温で0.5時間撹拌した。その後、CA-1(2.87g、14.6mmol)及びNMP(13.1g)を加えて、40℃で3時間撹拌することで、固形分濃度18質量%のポリアミック酸溶液(4)を得た。このポリアミック酸のMnは11,600、Mwは22,700であった。
<Synthesis Example 4>
DA-4 (1.62 g, 15.0 mmol) and NMP (7.39 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Thereafter, CA-1 (2.87 g, 14.6 mmol) and NMP (13.1 g) were added, and the mixture was stirred at 40° C. for 3 hours to obtain a polyamic acid solution (4) having a solid content concentration of 18% by mass. The Mn of this polyamic acid was 11,600 and the Mw was 22,700.
<合成例5>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-5(0.910g、5.98mmol)、DA-6(1.09g、4.50mmol)、DA-1(1.43g、4.49mmol)、CA-2(0.750g、3.00mmol)及びNMP(16.7g)を加えて、窒素を送りながら60℃で3時間撹拌した。その後、CA-1(2.32g、11.8mmol)及びNMP(9.30g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸溶液(5)を得た。このポリアミック酸のMnは12,500、Mwは33,600であった。
<Synthesis Example 5>
DA-5 (0.910 g, 5.98 mmol), DA-6 (1.09 g, 4.50 mmol), DA-1 (1.43 g, 4.49 mmol), CA-2 (0.750 g, 3.00 mmol) and NMP (16.7 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 60 ° C. for 3 hours while feeding nitrogen. Thereafter, CA-1 (2.32 g, 11.8 mmol) and NMP (9.30 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a polyamic acid solution (5) having a solid content concentration of 20 mass%. The Mn of this polyamic acid was 12,500 and the Mw was 33,600.
<合成例6>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-5(0.910g、5.98mmol)、DA-6(1.09g、4.50mmol)、DA-7(1.71g、4.49mmol)、CA-2(0.750g、3.00mmol)及びNMP(17.9g)を加えて、窒素を送りながら60℃で3時間撹拌した。その後、CA-1(2.33g、11.9mmol)及びNMP(9.33g)を加えて、40℃で3時間撹拌することで、固形分濃度20質量%のポリアミック酸溶液(6)を得た。このポリアミック酸のMnは11,500、Mwは30,000であった。
<Synthesis Example 6>
DA-5 (0.910 g, 5.98 mmol), DA-6 (1.09 g, 4.50 mmol), DA-7 (1.71 g, 4.49 mmol), CA-2 (0.750 g, 3.00 mmol) and NMP (17.9 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 60 ° C. for 3 hours while feeding nitrogen. Thereafter, CA-1 (2.33 g, 11.9 mmol) and NMP (9.33 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a polyamic acid solution (6) having a solid content concentration of 20 mass%. The Mn of this polyamic acid was 11,500 and the Mw was 30,000.
<合成例7>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、MA-1(4.56g、9.00mmol)、MA-2(1.07g、7.50mmol)、MA-3(1.16g、13.5mmol)及びNMP(38.7g)を加えて、窒素を送りながら室温で0.5時間撹拌した。その後、IN-1(0.0493g、0.300mmol)を加えて、75℃で12時間撹拌することで、固形分濃度15質量%のポリメタクリレート溶液(1)を得た。このポリメタクリルレートのMnは14,500、Mwは47,600であった。
<Synthesis Example 7>
MA-1 (4.56 g, 9.00 mmol), MA-2 (1.07 g, 7.50 mmol), MA-3 (1.16 g, 13.5 mmol) and NMP (38.7 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at room temperature for 0.5 hours while feeding nitrogen. Then, IN-1 (0.0493 g, 0.300 mmol) was added, and the mixture was stirred at 75 ° C. for 12 hours to obtain a polymethacrylate solution (1) with a solid content concentration of 15 mass%. The Mn of this polymethacrylate was 14,500 and the Mw was 47,600.
 上記合成例1~6で得られた各重合体の仕様を下記表1に示す。 The specifications of each polymer obtained in Synthesis Examples 1 to 6 above are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
[液晶配向剤の調製]
<実施例1>
 合成例1で得られたポリアミック酸溶液(1)(2.83g)及び合成例7で得られたポリメタクリレート溶液(1)(0.60g)にNMP(5.57g)及びBCS(6.00g)を加えて、室温で3時間撹拌することで、液晶配向剤(A-1)を得た。
[Preparation of liquid crystal alignment agent]
Example 1
NMP (5.57 g) and BCS (6.00 g) were added to the polyamic acid solution (1) (2.83 g) obtained in Synthesis Example 1 and the polymethacrylate solution (1) (0.60 g) obtained in Synthesis Example 7, and the mixture was stirred at room temperature for 3 hours to obtain a liquid crystal alignment agent (A-1).
<実施例2、3、比較例1>
 ポリアミック酸溶液(1)の代わりにそれぞれポリアミック酸溶液(2)、(3)、(4)を用いた以外は、実施例1と同様にして、実施例2、3、比較例1の液晶配向剤(A-2)、(A-3)、(B-1)を得た。
<Examples 2 and 3, Comparative Example 1>
Except for using the polyamic acid solutions (2), (3), and (4) instead of the polyamic acid solution (1), the liquid crystal alignment agents (A-2), (A-3), and (B-1) of Examples 2 and 3 and Comparative Example 1 were obtained in the same manner as in Example 1.
<実施例4>
 合成例5で得られたポリアミック酸溶液(5)(2.55g)及び合成例7で得られたポリメタクリレート溶液(1)(0.60g)にNMP(5.85g)及びBCS(6.00g)を加えて、室温で3時間撹拌することで、液晶配向剤(A-4)を得た。
Example 4
NMP (5.85 g) and BCS (6.00 g) were added to the polyamic acid solution (5) (2.55 g) obtained in Synthesis Example 5 and the polymethacrylate solution (1) (0.60 g) obtained in Synthesis Example 7, and the mixture was stirred at room temperature for 3 hours to obtain a liquid crystal alignment agent (A-4).
<比較例2>
 ポリアミック酸溶液(5)の代わりにポリアミック酸溶液(6)を用いた以外は、実施例4と同様にして、比較例2の液晶配向剤(B-2)を得た。
 上記実施例及び比較例で得られた液晶配向剤の仕様を下記表2に示す。
<Comparative Example 2>
A liquid crystal aligning agent (B-2) of Comparative Example 2 was obtained in the same manner as in Example 4, except that the polyamic acid solution (6) was used instead of the polyamic acid solution (5).
The specifications of the liquid crystal aligning agents obtained in the above Examples and Comparative Examples are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 上記の通り得られた液晶配向剤(A-1)~(A-4)、(B-1)~(B-2)には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。得られた液晶配向剤を用いて、プレチルト角の評価を行った。 The liquid crystal alignment agents (A-1) to (A-4) and (B-1) to (B-2) obtained as described above showed no abnormalities such as turbidity or precipitation, and were confirmed to be homogeneous solutions. The pretilt angle was evaluated using the obtained liquid crystal alignment agents.
[液晶セルの作製]
 上記で得られた液晶配向剤を用いて下記に示すような手順で液晶セルの作製を行った。
 液晶配向剤をITO電極付きガラス基板にスピンコートし、70℃のホットプレート上で90秒間乾燥した後、200℃の赤外線加熱炉で30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して、照射強度4.3mW/cmの波長313nmの直線偏光紫外線を基板法線方向から40°傾斜した角度から50mJ/cm照射し、液晶配向膜付き基板を得た。直線偏光紫外線は高圧水銀ランプの紫外光に波長313nmのバンドパスフィルターを通した後、波長313nmの偏光板を通すことで調製した。
 上記の基板を2枚用意し、一方の基板の液晶配向膜上に4μmのビーズスペーサーを散布した後、シール剤(三井化学社製、XN-1500T)を塗布した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が180°になるようにして張り合わせた後、120℃で90分間シール剤を熱硬化させることで空セルを作製した。
 この空セルに液晶(メルク社製、MLC-3022)を減圧注入法によって注入し、液晶表示素子を得た。
[Preparation of Liquid Crystal Cell]
Using the liquid crystal alignment agent obtained above, a liquid crystal cell was produced according to the following procedure.
The liquid crystal alignment agent was spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 70 ° C for 90 seconds, and then baked in an infrared heating furnace at 200 ° C for 30 minutes to form a liquid crystal alignment film with a thickness of 100 nm. Next, the coating surface was irradiated with linearly polarized ultraviolet light with a wavelength of 313 nm and an irradiation intensity of 4.3 mW / cm 2 through a polarizing plate at an angle inclined by 40 ° from the substrate normal direction at 50 mJ / cm 2 to obtain a substrate with a liquid crystal alignment film. The linearly polarized ultraviolet light was prepared by passing the ultraviolet light of a high-pressure mercury lamp through a bandpass filter with a wavelength of 313 nm and then through a polarizing plate with a wavelength of 313 nm.
Two of the above substrates were prepared, and 4 μm bead spacers were dispersed on the liquid crystal alignment film of one of the substrates, after which a sealant (XN-1500T, manufactured by Mitsui Chemicals, Inc.) was applied. Next, the other substrate was attached so that the liquid crystal alignment film faces were facing each other and the alignment direction was 180°, and then the sealant was thermally cured at 120° C. for 90 minutes to prepare an empty cell.
A liquid crystal (MLC-3022, manufactured by Merck) was injected into this empty cell by a reduced pressure injection method to obtain a liquid crystal display element.
(プレチルト角の評価)
 液晶セルのプレチルト角の測定は、Axometrics社製のAxoScanを用いて、ミューラーマトリックス法により測定した。評価結果を表3に示す。値が低いほど良好である。
(Evaluation of pretilt angle)
The pretilt angle of the liquid crystal cell was measured by the Mueller matrix method using an AxoScan manufactured by Axometrics, Inc. The evaluation results are shown in Table 3. The lower the value, the better the result.
(電圧保持率の評価)
 液晶セルの電圧保持率の測定は、東陽テクニカ社製のVHR-1を使用し、60℃の熱風循環オーブン中で1Vの電圧を60μs間印加し、その後1000msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。評価結果を表3に示す。80%以上の時、良好である。
(Evaluation of voltage holding ratio)
The voltage retention rate of the liquid crystal cell was measured using a VHR-1 manufactured by Toyo Corporation, by applying a voltage of 1 V for 60 μs in a hot air circulating oven at 60° C., and measuring the voltage 1000 msec later, and calculating the voltage retention rate to determine how much voltage was retained. The evaluation results are shown in Table 3. A value of 80% or more is considered good.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表3の結果からわかるように、ジアミン成分に特定ジアミンを含む液晶配向剤から得られる液晶配向膜を用いた実施例は、ジアミン成分に特定ジアミンを含まない液晶配向剤から得られる液晶配向膜を用いた比較例とは異なり、垂直から2°以上のプレチルト角を示すことが分かる。また、高い電圧保持率を示すことが分かる。 As can be seen from the results in Table 3, the examples using the liquid crystal alignment film obtained from the liquid crystal alignment agent containing a specific diamine in the diamine component show a pretilt angle of 2° or more from the vertical, unlike the comparative examples using the liquid crystal alignment film obtained from the liquid crystal alignment agent not containing a specific diamine in the diamine component. It can also be seen that they show a high voltage retention rate.

Claims (8)

  1.  (A)成分として下記式(pa-1)(式中、Aは場合によりフッ素原子、塩素原子、シアノ基から選択される基によるか、又は炭素数1~5のアルコキシ基、直鎖状若しくは分岐鎖状のアルキル残基(これは、場合により1個のシアノ基又は1個以上のハロゲン原子で置換されている)で置換されている、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、チオフェン-2,5-ジイル、フラン-2,5-ジイル、1,4-若しくは2,6-ナフチレン又はフェニレンを表し、Rは単結合、酸素原子、-COO-または-OCO-であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基または2価の縮合環式基であり、Rは単結合、酸素原子、-COO-または-OCO-であり、Rは炭素数1~40の直鎖又は分岐鎖のアルキル基または脂環式基を含む炭素数3~40の1価の有機基であり、Dは、酸素原子、硫黄原子又は-NR-(ここで、Rは、水素原子又は炭素数1~3のアルキルを表す)を表し、aは0~3の整数であり、*は結合位置を表す。aが2以上の場合、複数個のR及びRはそれぞれ独立して上記定義を有する。X及びYは、それぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基又は炭素数1~3のアルキル基であり、該アルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。)で表される光配向性基と熱架橋性基とを有する重合体または低分子化合物;
     (B)成分として下記式(D)(式(D)中、X及びXは、それぞれ独立して、単結合、エーテル結合、-COO-、-OCO-、-NHCO-、-CONH-、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合する炭素数1~3のアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合する炭素数1~3のアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又は炭素数1~3のアルキル基を表す。)から選ばれる結合基であり、nは、1~6の整数である。Cyは7~20員環の非芳香族の環状基を表す。R11及びR12は、それぞれ独立に、水素原子または炭素数1~3のアルキル基を表す。(但し、Xが単結合の場合、nは0である))で表されるジアミン(0)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P);及び
     溶媒;
    を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    The component (A) is represented by the following formula (pa-1) (in the formula, A represents pyrimidine-2,5-diyl, pyridine-2,5-diyl, thiophene-2,5-diyl, furan-2,5-diyl, 1,4- or 2,6-naphthylene, or phenylene, which is optionally substituted with a group selected from a fluorine atom, a chlorine atom, or a cyano group, or with an alkoxy group having 1 to 5 carbon atoms, or a linear or branched alkyl residue (which is optionally substituted with one cyano group or one or more halogen atoms); R 1 represents a single bond, an oxygen atom, -COO-, or -OCO-; R 2 represents a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent fused cyclic group; R 3 represents a single bond, an oxygen atom, -COO-, or -OCO-; R a is an integer of 0 to 3, and * represents a bonding position; and when a is 2 or more, a plurality of R 1 's and R 2's each independently have the above definition; and X and Y each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of the alkyl group may be substituted with fluorine atoms;
    The component (B) is represented by the following formula (D A ): (in formula (D A ), X 1 and X 2 each independently represent a single bond, an ether bond, -COO-, -OCO-, -NHCO-, -CONH-, a urethane bond, a urea bond, a thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group having 1 to 3 carbon atoms bonded to Si), -Si(R 3 )(R 4 )-O- (R 3 and R 4 each independently represent an alkyl group having 1 to 3 carbon atoms bonded to Si), and -N(R 5 )- (R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms bonded to N), and n is an integer from 1 to 6. Cy represents a non-aromatic cyclic group having 7 to 20 members. R 11 and R each of X12 independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, (provided that when X2 is a single bond, n is 0), and at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (0) represented by the following formula (1):
    A liquid crystal aligning agent comprising:
    Figure JPOXMLDOC01-appb-C000001
  2.  さらに、下記要件Z1及びZ2の少なくとも一方を満たす請求項1に記載の液晶配向剤。
     Z1:(A)成分である重合体が、熱架橋性基A及び熱架橋性基Bを有する。
     Z2:(A)成分である重合体が熱架橋性基Aを有し、(C)成分として、分子内に2個以上の熱架橋性基Bを有する化合物をさらに含有する。
     熱架橋性基A及び熱架橋性基Bは、それぞれ独立にカルボキシ基、保護カルボキシ基、アミノ基、保護アミノ基、アルコキシメチルアミド基、ヒドロキシメチルアミド基、ヒドロキシ基、保護ヒドロキシ基、エポキシ基、オキセタニル基、チイラニル基、イソシアネート基及びブロックイソシアネート基からなる群から選ばれる有機基であって、熱架橋性基Aと熱架橋性基Bとが熱により架橋反応するように選択されてなる。ここで、熱架橋性基Aと熱架橋性基Bとが、ともに自己架橋性基である場合は、熱架橋性基A及び熱架橋性基Bは互いに同じでもよい。
    The liquid crystal aligning agent according to claim 1, further satisfying at least one of the following requirements Z1 and Z2:
    Z1: The polymer which is the component (A) has a thermally crosslinkable group A and a thermally crosslinkable group B.
    Z2: The polymer that is the component (A) has a thermally crosslinkable group A, and further contains a compound that has two or more thermally crosslinkable groups B in the molecule as the component (C).
    The thermally crosslinkable group A and the thermally crosslinkable group B are each independently an organic group selected from the group consisting of a carboxy group, a protected carboxy group, an amino group, a protected amino group, an alkoxymethylamide group, a hydroxymethylamide group, a hydroxy group, a protected hydroxy group, an epoxy group, an oxetanyl group, a thiiranyl group, an isocyanate group, and a blocked isocyanate group, and are selected so that the thermally crosslinkable group A and the thermally crosslinkable group B undergo a crosslinking reaction by heat. Here, when the thermally crosslinkable group A and the thermally crosslinkable group B are both self-crosslinkable groups, the thermally crosslinkable group A and the thermally crosslinkable group B may be the same as each other.
  3.  前記ジアミン(0)が、下記式(d-1)~(d-3)からなる群から選ばれるいずれかのジアミンである、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent according to claim 1, wherein the diamine (0) is any diamine selected from the group consisting of the following formulae (d A -1) to (d A -3):
    Figure JPOXMLDOC01-appb-C000002
  4.  前記重合体(P)が、前記ジアミン成分と、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体を含有するテトラカルボン酸成分と、の重縮合反応により得られる、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the polymer (P) is obtained by a polycondensation reaction between the diamine component and a tetracarboxylic acid component containing an acyclic aliphatic tetracarboxylic acid dianhydride, an alicyclic tetracarboxylic acid dianhydride, an aromatic tetracarboxylic acid dianhydride, or a derivative thereof.
  5.  前記ジアミン(0)の使用量が、前記ジアミン成分に対して、5モル%以上である、請求項1に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 1, wherein the amount of the diamine (0) used is 5 mol% or more relative to the diamine component.
  6.  請求項1~請求項5のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal alignment agent according to any one of claims 1 to 5.
  7.  請求項1~請求項5のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程と、前記塗膜が液晶層と接触していない状態で又は液晶層と接触した状態で前記塗膜に光照射する工程と、を含む液晶配向膜の製造方法。 A method for producing a liquid crystal alignment film, comprising the steps of: applying the liquid crystal alignment agent according to any one of claims 1 to 5 onto a substrate to form a coating film; and irradiating the coating film with light while the coating film is not in contact with a liquid crystal layer or while the coating film is in contact with a liquid crystal layer.
  8.  請求項6に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 6.
PCT/JP2023/037141 2022-10-14 2023-10-13 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2024080351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022165906 2022-10-14
JP2022-165906 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080351A1 true WO2024080351A1 (en) 2024-04-18

Family

ID=90669820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037141 WO2024080351A1 (en) 2022-10-14 2023-10-13 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (1)

Country Link
WO (1) WO2024080351A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121049A (en) * 1996-10-16 1998-05-12 Hitachi Ltd Composition for liquid crystal alignment layer
KR20090131541A (en) * 2008-06-18 2009-12-29 주식회사 엘지화학 Composition for liquid crystal aligning, liquid crystal aligning film manufactured by the same, and liquid crystal display comprising the same
WO2020138259A1 (en) * 2018-12-27 2020-07-02 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and novel monomer
WO2020145175A1 (en) * 2019-01-08 2020-07-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121049A (en) * 1996-10-16 1998-05-12 Hitachi Ltd Composition for liquid crystal alignment layer
KR20090131541A (en) * 2008-06-18 2009-12-29 주식회사 엘지화학 Composition for liquid crystal aligning, liquid crystal aligning film manufactured by the same, and liquid crystal display comprising the same
WO2020138259A1 (en) * 2018-12-27 2020-07-02 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and novel monomer
WO2020145175A1 (en) * 2019-01-08 2020-07-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Similar Documents

Publication Publication Date Title
CN107109050B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7234924B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
CN105518521B (en) Polymer composition and liquid crystal alignment film for in-plane switching liquid crystal display element
WO2015033921A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2024037839A (en) Liquid crystal alignment agent, liquid crystal alignment membrane, liquid crystal display element, and novel monomer
TWI816648B (en) Manufacturing method of liquid crystal display element, substrate for liquid crystal display element, and liquid crystal display element assembly
CN116348501A (en) Liquid crystal composition, method for manufacturing liquid crystal display element, and liquid crystal display element
JP7371634B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI816960B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102548025B1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2024080351A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI841588B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7472792B2 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2024058164A1 (en) Liquid crystal aligning agent and liquid crystal display element
WO2023224114A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2023085390A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2019244821A1 (en) Production method for zero azimuthal anchoring film, and liquid crystal display element
WO2023054567A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2019244820A1 (en) Production method for zero azimuthal anchoring film, and liquid crystal display element
TW201938772A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877352

Country of ref document: EP

Kind code of ref document: A1