TW201222809A - Organic electro-luminescent device - Google Patents

Organic electro-luminescent device Download PDF

Info

Publication number
TW201222809A
TW201222809A TW100136433A TW100136433A TW201222809A TW 201222809 A TW201222809 A TW 201222809A TW 100136433 A TW100136433 A TW 100136433A TW 100136433 A TW100136433 A TW 100136433A TW 201222809 A TW201222809 A TW 201222809A
Authority
TW
Taiwan
Prior art keywords
film
organic
protective film
distribution curve
ratio
Prior art date
Application number
TW100136433A
Other languages
Chinese (zh)
Inventor
Yoshinobu Ono
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201222809A publication Critical patent/TW201222809A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention provides an organic electro-luminescent device which has a first film; an organic electro-luminescent element disposed on the first film; and a protective film covering the organic electro-luminescent element. The protective film contains silicon atoms, oxygen atoms and carbon atoms. A distribution curve of silicon, a distribution curve of oxygen and a distribution curve of carbon obtained from the protective film meet the following conditions: (i) the ratio of number of the silicon atoms being the second greatest value among the ratio of the number of the silicon atoms, the ratio of the number of the oxygen atoms and the ratio of the number of the carbon atoms in 90% or more of the region of the gas barrier layer in the thickness direction of the protective film; (ii) the distribution curve of carbon having at least one extremum; and (ii) the difference between the maximum value and the minimum value of the ratio of the number of the carbon atoms in the distribution curve of carbon being 5 atom% or more.

Description

201222809 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種有機el裝置、照明裝置、面狀光源 以及顯示裝置。 【先前技術】 有機電激發光(Electro Luminescence簡稱為EL,有 稱為「電場發光」之情形)元件係具有複數層薄膜積層之構 成。藉由適當設定各薄膜之厚度或材料等,可對元件本身 賦予可撓性。將此種有機EL元件設置於可撓性薄膜上時, 搭載有機EL元件之裝置全體可成為可撓性裝置。 有機EL元件因曝露於外部空氣而劣化。因此,有機 EL元件一般係藉特定之密封構件而氣密地密封。然而,有 機EL το件在形成有機EL元件後,至設置密封構件期間亦 會劣化為了防止此種劣化,在專利文獻1記載之發明中, 於形成有機EL元件後立刻以保護膜覆蓋有機EL元件。在 專利文獻1中已揭示由Si〇2、SiNx、Si〇xNy、MgF、Ini 聚對二曱笨(p〇1y paraxylylene)等所構成之保護膜。 先前技術文獻 專利文獻 專利文獻1 :日本特開平8-111286號公報 【發明内容】 (發明欲解決之課題) 然而,上述保護膜係阻隔氧及水分之特性,亦即阻氣 性不充分’即使設置保護膜,有機EL元件亦劣化,故必須 323547 4 201222809 在真空環境或惰性氣體環境進行設置密封構件時必須的運 送步驟及密封步驟。因此,為了製造有機EL裝置,必須有 氣體取代或真空取代等複雜的步驟,有製造裝置大型化之 問題。又,上述保護膜在彎曲時阻氣性降低,因此不適用 於以親對親(ro 11 to ro 11)法製作有機EL裝置之方法。 因此,本發明之目的係提供一種有機EL裝置,其具備 高的阻氣性,具備可抑制因彎曲所造成之阻氣性降低的保 護膜。 (解決課題之手段) 本發明係關於一種有機EL裝置,其係具備:第1薄膜、 設置於第1薄膜上之有機EL元件、覆蓋與有機EL元件之 第1薄膜相反側之面的保護膜。保護膜係含有矽(矽原 子)、氧(氧原子)及碳(碳原子),分別表示相對於發原子、 氧原子及碳原子的合計量之矽原子量(數目)的比率(矽之 原子比)、氧原子之量(數目)的比率(氧之原子比)及碳原子 之量(數目)之比率(碳之原子比)與離前述保護膜之厚度方 向(膜厚方向)的前述保護膜之一侧的表面之距離的關係之 矽分布曲線、氧分布曲線及碳分布曲線滿足下述條件: (i)在前述保護膜之厚度方向(膜厚方向)的90%以上之區域 中,矽原子數目的比率、氧原子數目的比率及碳原子數目 之比率之中,矽之數目的比率為第2大之值; (i i)前述碳分布曲線至少具有一個極值;及 (iii)前述碳分布曲線中之碳原子數目的比率之最大值與 最小值的差(絕對值)為5原子%(at%)以上。 5 323547 201222809 有機EL裝置亦可進一步具備:與第1薄膜對向配置且 與第1薄膜一同密封有機EL元件之第2薄膜。於第2薄膜 與第1薄膜之間配置有機EL元件及保護膜。換言之,本發 明係關於一種有機EL裝置,其具有第2薄膜,係於與前述 第1薄膜之間隔著前述有機EL元件及前述保護膜配置於第 1薄膜上,且與前述第1薄膜一同密封前述有機EL元件。 此外,本發明係關於一種製造有機EL裝置之方法,其 係包含:於第1薄膜上形成有機EL元件之步驟、形成覆蓋 與有機EL元件之前述第1薄膜相反側之面的保護膜之步 驟。所形成之保護膜係含有砍原子、氧原子及碳原子,分 別表示相對於石夕原子、氧原子及破原子的合計量之石夕原子 數目的比率、氧原子數目的比率及碳原子數目之比率,與 離前述保護膜之厚度方向的前述保護膜之一側的表面之距 離的關係之矽分布曲線、氧分布曲線及碳分布曲線滿足下 述條件: (i)在前述保護膜之厚度方向的90%以上之區域中,矽原子 數目的比率、氧原子數目的比率及礙原子數目之比率之 中,矽之數目的比率為第2大之值; (i i)前述碳分布曲線至少具有一個極值;及 (iii)前述碳分布曲蟓中之碳原子數目的比率之最大值與 最小值的差為5原子%以上。 上述方法亦可進一步包含:在形成保護膜之步驟後, 以在前述第2薄膜與前述第1薄膜之間配置有前述有機EL 元件及前述保護膜的方式將第2薄膜貼合於第1薄膜之步 6 323547 201222809 驟。換言之,本發明之方法,係亦可進一步包含:在形成 保護膜之步驟後,在與前述第1薄膜之間隔著前述有機EL 元件及前述保護膜,於第1薄膜上貼合第2薄膜之步驟。 此時,將第2薄膜在大氣環境下貼合於第1薄膜。 上述方法亦可進一步包含:在形成保護膜之步驟後, 使第1薄膜與有機EL元件及保護膜一同捲取成輥狀,保管 所捲取之第1薄膜、有機EL元件及保護膜之步驟。此時, 亦可在大氣環境下保管所捲取之第1薄膜、有機EL元件及 保護膜。 在另一方面,本發明係關於一種具有前述有機EL裝置 之照明裝置、面光源裝置、顯示裝置。 (發明之效果) 根據本發明,可將具備有高的阻氣性,且彎曲時阻氣 性不易降低之保護膜覆蓋有機EL元件。因此,形成保護膜 之後,藉密封構件等而密封有機EL元件止,可抑制有機 EL元件劣化。 【實施方式】 以下,詳細說明有關本發明之適當的實施形態。然而, 本發明不限定於以下之實施形態。 本實施形態之有機EL裝置係具有:第1薄膜、設置於 第1薄膜上之有機EL元件、與以覆蓋有機EL元件方式所 形成之保護膜。保護膜係覆蓋與有機EL元件之第1薄膜相 反側的面全體。 於有機EL裝置所搭載之有機EL元件係可大致區分成 7 323547 201222809 如下之3型之元件。亦即’有機EL元件係可大致分成(1) 朝向搭载該有機EL元件之支撐基板而射出光所謂底放射 型之元件;(II)朝向與支樓基板相反侧而射出光所謂頂放 型之元件;以及(III)朝向支樓基板射出光,同時朝向與支 撐基板相反側射出光之雙面發光型的元件。於本實施形態 之有機EL裝置所搭載之有機EL元件亦可為任一型式之元 件。 有機EL裝置必要時進一步具有第2薄膜。此第2薄膜 係與第1薄膜之間挾有機EL元件及保護膜之狀態,配置於 第1薄膜上。有機EL元件及保濩膜係藉由第1薄膜與第2 薄膜而密封。 以下,首先參照第1圖,說明有關未設置有第2薄膜 之有機EL裝置。其後,參照第3圖及第4圖;說明有關 進一步設置有第2薄膜之有機EL裝置。 第1圖係模式地表示本實施形態的有機EL裂置之截面 圖。第1圖所示之實施形態的有機EL裝置13係具有第1 薄膜、搭載於第1薄膜上之有機EL元件2、與保護有機虹 元件2之保護膜3。 保護膜3係因滿足後述之條件(丨)、(Η)及(丨丨丨)而 備高的阻氣性,再者,可抑制彎曲時之阻氣性的降低而^ 由使此種保護膜3形成於有機EL元件上,即使將有機^ 裝置13捲取成親狀,保護膜係可維持高的阻氣性,此外, 由於阻氣性高,所捲取之有機EL裝置亦可保管在大产 境。即使保護膜彎曲,亦可維持高的阻氣性,因此適合= 323547 8 201222809 用幸昆對棍去作為有機EL裝置之製造方法。貼合後述之第2 薄膜時,可藉由輥對輥法而進行貼合。再者此貼合亦可在 大氣環境中進行。 (保護膜) 說明有關保護膜。 本實施形態之有機EL裝置之一特徵係保護膜3。保護 膜含有矽原子、氧原子及碳原子。藉由—邊改變在保護膜 之厚度方向(膜厚方向)離保護膜之一側的表面之距離,一 邊測定相對於矽原子、氧原子及碳原子的合計量之矽原子 數目的比率(石夕之原子比)、氧原子數目(量)的比率(氧之原 子比)及碳原子數目之比率(碳之原子比),可得到分別表示 各原子的原子比與離保護膜之表面的距離之關係之石夕分布 曲線、氧分布曲線及碳分布曲線。從本實施形態之保護膜 所得到之此等曲線係滿足下述條件(i)、(ii)、(iii)。 (i) 在保護膜之厚度方向的90%以上之區域中,矽之原子 比、氧之原子比及碳之原子比之中,矽之原子比為第2大 之值。 (ii) 碳分布曲線至少具有一個極值。 (Hi)碳分布曲線中之碳的原子比之最大值與最小值的差 (絕對值)為5at%以上。 換言之,(i)之條件係意指在保護膜之厚度方向的9〇% 以上之區域中滿足下述式(丨)或下述式(2)。 (氧的原子比)>(矽的原子比)> (碳的原子比).·.〇) (碳的原子比)>(矽的原子比)> (氧的原子比)··.(2) 323547 9 201222809 有機EL裝置係除了上述保護膜外,亦可具有不滿足上 述條件⑴至(iii)之至少任-者的其他之層。保護膜或盆 他之層係亦可進一步含有氮原子及鋁原子等。 石夕的原子比、氧的原子比及碳的原子比不滿足條件 時,保護膜之阻氣性降低。滿足上述式⑴或⑵之區域以 佔保護膜之厚度的m以上為佳。此比率較佳為95% 更佳為100%。 在本實施形態之保護膜中,作為上述條件(ii)必須β 碳分布曲線具有-個極值。在此種保護財,較佳為^ 布曲線至少具有2個極值,更佳為具有3個以上4 = 碳分布曲線不具有極值時,所得到之保護膜在彎曲時,阻 氣性降低。碳分布曲線至少具有3個極值時,在碳分布曲 線鄰接極值_厚度方向較佳為距離·nm町 lOOnm以下。 馬 在本說明書中,所謂極值係將相對於在保護膜之厚度 方^離保護膜表面的距離之元素之原子比作圖,在所得到 之分布曲線中的極值大值或極小值。所謂極大值係在上述 分布曲線中,隨著離保護膜表面之距離的變化,元素之原 子比的值從增加改變成減少之點,且相較於此點之元素的 原子比之值,從該點在保護膜之厚度方向離保護膜表面之 距離進一步改變2〇nm之位置,在元素之原子比的值減少3 at%以上之點的元素之原子比。所謂極小值係隨著離保護膜 表面之距離變化,元素之原子比的值從減少改變成增加之 點且相較於此點之元素的原子比之值,從該點在保護膜 323547 10 之厚度方向離保護膜表面 置’在元素之原子比的值=距離進一步改變離0nm 之位 子比。 以上之點的元素之原 本實施形態之保護螟, 分布曲射之碳的原子比之:為上述條件(iii),必須是碳 上。此種保護臈,較佳為妒、大值與最小值的差為5心以 差為6原子%以上,更佳為灰的原子比之最大值與最小值的 時,彎曲第2薄膜時保護腺7 at%以上。當此差未達5 at% 限並無特別限制,但一般之阻氣性降低 。上述之差的上 (氧分布曲線、極值)3G at%左右。 為至為至少具有1個極值,更佳 馮至少具有2個極值,最 值更佳 布曲線具有極值時具有3個極值。當氧分 氣性的降低之 值時,在氧分布二二:!氧化分布至少具有3個極 極值之Η,欠 ,、有之一個極值與鄰接於該極值之 ^別在保護膜的厚度方向離保護膜表面之距離 的差,較佳為皆為2〇〇nm以下,更佳為 lOOrnn以下。 (氧分布曲線、最大值與最小值之差) 在保護膜之氧分布曲線中的氧之原子比的最大值與最 小值之差較佳為5at%以上,更佳為6 at%以上,最佳為7 &找 =上。當此差為前述下限以上時,有更不易產生因保護膜 彎曲所造成之阻氣性降低之傾向。此差的上限並無特別限 制’但一般為30 at%左右。 保護膜之矽分布曲線中之矽的原子比之最大值與最小 323547 11 201222809 值的差較佳為未達5at%,更佳為未達祕,最佳為未達 3a.若此差為前述未達上限,保護膜之阻氣性有變成特 別而之傾向。 (氧碳分布曲線、最大值與最小值之差) "在表示於保護膜之厚度方向離該層的表面之距離,與 氧原子及碳原子之合計量相對於石夕原子、氧原子及碳原子 之〇 a十里的比率(氧及碳之原子比)之關係的氧碳分 布曲線 中’氧及碳之原子比的合計之最大值與最小值的差較佳為 未達jat%,更佳為未達⑽,最佳為未達3at%。當此差 未達前述上限時’保護膜之阻氣性有變成特別高之傾向。 石夕分布曲線、氧分布曲線、碳分布曲線及氧碳分布曲 線係藉由併用X線光電子分光法(XPS: Xray Ph〇t〇e i㈤tr〇n201222809 VI. Description of the Invention: [Technical Field] The present invention relates to an organic EL device, a lighting device, a planar light source, and a display device. [Prior Art] The organic electroluminescence (Electro Luminescence is abbreviated as EL, which is called "electric field emission") has a structure in which a plurality of thin film layers are laminated. The flexibility of the element itself can be imparted by appropriately setting the thickness or material of each film. When such an organic EL element is provided on a flexible film, the entire device in which the organic EL element is mounted can be a flexible device. The organic EL element is deteriorated by exposure to outside air. Therefore, the organic EL element is generally hermetically sealed by a specific sealing member. However, in the invention described in Patent Document 1, the organic EL element is formed to cover the organic EL element with a protective film immediately after the formation of the organic EL element, in order to prevent such deterioration. . Patent Document 1 discloses a protective film composed of Si〇2, SiNx, Si〇xNy, MgF, Ini, p〇1y paraxylylene or the like. [Problems to be Solved by the Invention] However, the protective film is resistant to oxygen and moisture, that is, gas barrier properties are insufficient. Since the protective film is provided and the organic EL element is also deteriorated, it is necessary to carry out the transport step and the sealing step necessary for providing the sealing member in a vacuum environment or an inert gas atmosphere in 323547 4 201222809. Therefore, in order to manufacture an organic EL device, complicated steps such as gas substitution or vacuum replacement are required, and there is a problem that the manufacturing apparatus is enlarged. Further, since the above protective film has a low gas barrier property at the time of bending, it is not suitable for a method of producing an organic EL device by a method of affinity (ro 11 to ro 11). Accordingly, an object of the present invention is to provide an organic EL device which has high gas barrier properties and is provided with a protective film which can suppress a decrease in gas barrier properties due to bending. (Means for Solving the Problem) The present invention relates to an organic EL device comprising: a first film, an organic EL element provided on the first film, and a protective film covering a surface opposite to the first film of the organic EL element . The protective film contains ruthenium (anthracene atom), oxygen (oxygen atom), and carbon (carbon atom), and represents a ratio of the atomic weight (number) of the total amount of the atom, the oxygen atom, and the carbon atom, respectively. , the ratio of the amount (number of oxygen atoms) (the atomic ratio of oxygen) and the amount (number) of carbon atoms (atomic ratio of carbon) and the aforementioned protective film from the thickness direction (film thickness direction) of the protective film The relationship between the distance of the surface on one side and the enthalpy distribution curve, the oxygen distribution curve, and the carbon distribution curve satisfy the following conditions: (i) In a region of 90% or more in the thickness direction (film thickness direction) of the protective film, 矽In the ratio of the ratio of the number of atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms, the ratio of the number of bismuth is the second largest value; (ii) the aforementioned carbon distribution curve has at least one extreme value; and (iii) the aforementioned carbon The difference (absolute value) between the maximum value and the minimum value of the ratio of the number of carbon atoms in the distribution curve is 5 atom% (at%) or more. 5 323 547 201222809 The organic EL device may further include a second film which is disposed opposite to the first film and which seals the organic EL element together with the first film. An organic EL element and a protective film are disposed between the second film and the first film. In other words, the present invention relates to an organic EL device having a second film which is disposed on the first film and is sealed with the first film while being interposed between the first film and the protective film. The aforementioned organic EL element. Furthermore, the present invention relates to a method of producing an organic EL device, comprising the steps of forming an organic EL element on a first film, and forming a protective film covering a surface opposite to the first film of the organic EL element. . The protective film formed contains a chopping atom, an oxygen atom and a carbon atom, and represents a ratio of the number of the atoms of the stone atom, the ratio of the number of oxygen atoms, and the number of carbon atoms to the total amount of the stone atom, the oxygen atom and the broken atom, respectively. The ratio of the ratio of the distance to the surface of the protective film in the thickness direction of the protective film, the oxygen distribution curve, and the carbon distribution curve satisfy the following conditions: (i) in the thickness direction of the protective film In the region of more than 90%, the ratio of the number of germanium atoms, the ratio of the number of oxygen atoms, and the ratio of the number of atoms to the atomic ratio, the ratio of the number of turns is the second largest value; (ii) the aforementioned carbon profile has at least one And (iii) the difference between the maximum value and the minimum value of the ratio of the number of carbon atoms in the carbon distribution curve is 5 atom% or more. The method may further include bonding the second film to the first film so that the organic EL element and the protective film are disposed between the second film and the first film after the step of forming the protective film. Step 6 323547 201222809. In other words, the method of the present invention may further include: after the step of forming the protective film, the organic EL element and the protective film are interposed between the first film and the second film; and the second film is bonded to the first film. step. At this time, the second film was bonded to the first film in an air atmosphere. Further, the method may further include the steps of: winding the first film together with the organic EL element and the protective film into a roll shape after the step of forming the protective film, and storing the wound first film, the organic EL element, and the protective film . In this case, the first film, the organic EL element, and the protective film which are taken up may be stored in an air atmosphere. In another aspect, the present invention relates to an illumination device, a surface light source device, and a display device having the foregoing organic EL device. (Effect of the Invention) According to the present invention, the organic EL device can be covered with a protective film having high gas barrier properties and having a low gas barrier property at the time of bending. Therefore, after the protective film is formed, the organic EL element is sealed by a sealing member or the like, and deterioration of the organic EL element can be suppressed. [Embodiment] Hereinafter, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. The organic EL device of the present embodiment includes a first thin film, an organic EL element provided on the first thin film, and a protective film formed by covering the organic EL element. The protective film covers the entire surface opposite to the first film of the organic EL element. The organic EL device mounted in the organic EL device can be roughly classified into the following three types of components: 7 323 547 201222809. In other words, the organic EL element can be roughly divided into (1) an element that emits light toward the support substrate on which the organic EL element is mounted, and a light-emitting element; (II) emits light toward the opposite side of the support substrate; And (III) a double-sided illumination type element that emits light toward the support substrate while emitting light toward the opposite side of the support substrate. The organic EL element mounted on the organic EL device of the present embodiment may be any type of element. The organic EL device further has a second film as necessary. The second thin film system and the first thin film are disposed on the first thin film between the organic EL device and the protective film. The organic EL element and the protective film are sealed by the first film and the second film. Hereinafter, first, an organic EL device in which a second film is not provided will be described with reference to Fig. 1 . Thereafter, referring to Figs. 3 and 4, an organic EL device in which a second film is further provided will be described. Fig. 1 is a cross-sectional view showing the organic EL cracking of the present embodiment. The organic EL device 13 of the embodiment shown in Fig. 1 includes a first thin film, an organic EL element 2 mounted on the first thin film, and a protective film 3 for protecting the organic rainbow element 2. The protective film 3 has high gas barrier properties because it satisfies the conditions (丨), (Η), and (丨丨丨) described later, and further, it is possible to suppress the decrease in gas barrier properties during bending. The film 3 is formed on the organic EL element, and even if the organic device 13 is wound into a parent shape, the protective film can maintain high gas barrier properties, and the organic EL device that is wound up can be stored in the gas barrier property. Great production. Even if the protective film is bent, it can maintain high gas barrier properties, so it is suitable for = 323547 8 201222809. It is used as a manufacturing method for organic EL devices. When the second film described later is bonded, it can be bonded by a roll-to-roll method. Furthermore, this fit can also be carried out in an atmospheric environment. (Protective film) Description About the protective film. One of the features of the organic EL device of the present embodiment is the protective film 3. The protective film contains a halogen atom, an oxygen atom and a carbon atom. By measuring the ratio of the number of germanium atoms to the total amount of germanium atoms, oxygen atoms, and carbon atoms by changing the distance from the surface on one side of the protective film in the thickness direction (film thickness direction) of the protective film (stone) The ratio of the atomic ratio of oxygen atoms (the atomic ratio of oxygen atoms) (the atomic ratio of oxygen) and the ratio of the number of carbon atoms (atomic ratio of carbon) can be obtained by indicating the atomic ratio of each atom and the distance from the surface of the protective film. The relationship between the distribution curve, the oxygen distribution curve and the carbon distribution curve. These curves obtained from the protective film of the present embodiment satisfy the following conditions (i), (ii), and (iii). (i) In the region of 90% or more in the thickness direction of the protective film, the atomic ratio of ytterbium, the atomic ratio of oxygen, and the atomic ratio of carbon are the second largest value. (ii) The carbon distribution curve has at least one extreme value. The difference (absolute value) between the maximum value and the minimum value of the atomic ratio of carbon in the (Hi) carbon distribution curve is 5 at% or more. In other words, the condition of (i) means that the following formula (丨) or the following formula (2) is satisfied in a region of 9% or more of the thickness direction of the protective film. (Atomic ratio of oxygen) >(Atomic ratio of bismuth)> (Atomic ratio of carbon)···〇) (Atomic ratio of carbon)>(Atomic ratio of 矽)> (Atomic ratio of oxygen)· (2) 323547 9 201222809 The organic EL device may have other layers that do not satisfy at least any of the above conditions (1) to (iii) in addition to the above protective film. The protective film or the layer of the pot may further contain a nitrogen atom, an aluminum atom or the like. When the atomic ratio of Shixi, the atomic ratio of oxygen, and the atomic ratio of carbon do not satisfy the condition, the gas barrier properties of the protective film are lowered. It is preferable that the region satisfying the above formula (1) or (2) is m or more inclusive of the thickness of the protective film. This ratio is preferably 95% or more preferably 100%. In the protective film of the present embodiment, the β carbon distribution curve is required to have one extreme value as the above condition (ii). In the case of such protection, it is preferred that the curve has at least two extreme values, more preferably three or more. 4 = the carbon distribution curve does not have an extreme value, and the obtained protective film has a low gas barrier property when bent. . When the carbon distribution curve has at least three extreme values, it is preferable that the carbon distribution curve is adjacent to the extremum_thickness direction and the distance nm is less than 100 nm. In the present specification, the extreme value is plotted against the atomic ratio of the element at the distance from the thickness of the protective film to the surface of the protective film, and the extreme value in the obtained distribution curve is large or small. The so-called maximum value is in the above distribution curve, as the distance from the surface of the protective film changes, the value of the atomic ratio of the element changes from an increase to a point of decrease, and the atomic ratio of the element at this point is The point at which the distance from the surface of the protective film in the thickness direction of the protective film is further changed by 2 〇 nm, and the atomic ratio of the element at a point where the atomic ratio of the element is decreased by 3 at% or more. The so-called minimum value varies with the distance from the surface of the protective film, and the value of the atomic ratio of the element changes from decreasing to increasing point and compared with the atomic ratio of the element at this point, from which point the protective film 323547 10 The thickness direction is set from the surface of the protective film to the value of the atomic ratio of the elements = the distance further changes the position ratio from 0 nm. In the protection of the original embodiment, the atomic ratio of the carbon of the distribution curve is: in the above condition (iii), it must be on carbon. The protective enthalpy is preferably 妒, the difference between the large value and the minimum value is 5 cents or more, and the difference is 6 atom% or more, more preferably the maximum value and the minimum value of the atomic ratio of ash, and the protection is performed when the second film is bent. Gland 7 at% or more. When the difference is less than 5 at%, there is no particular limitation, but generally the gas barrier property is lowered. The above difference (oxygen distribution curve, extreme value) is about 3G at%. In order to have at least one extreme value, it is better to have at least two extreme values, and the best value is better. The cloth curve has three extreme values when it has an extreme value. When the value of oxygen gas is lowered, the oxygen distribution is at least 3 extremes, and the oxidization distribution has at least 3 extreme values, and an extreme value is adjacent to the extreme value of the protective film. The difference in the distance between the thickness direction and the surface of the protective film is preferably 2 〇〇 nm or less, more preferably 100 rnn or less. (Oxygen distribution curve, difference between maximum value and minimum value) The difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the protective film is preferably 5 at% or more, more preferably 6 at% or more, most Good for 7 & find = on. When the difference is at least the above lower limit, there is a tendency that the gas barrier properties due to the bending of the protective film are less likely to occur. The upper limit of this difference is not particularly limited' but is generally around 30 at%. The difference between the maximum atomic ratio of 矽 in the 矽 distribution curve of the protective film and the minimum value of 323547 11 201222809 is preferably less than 5 at%, more preferably less than 3, and most preferably less than 3a. If the difference is the aforementioned If the upper limit is not reached, the gas barrier property of the protective film becomes a special tendency. (oxygen carbon distribution curve, the difference between the maximum value and the minimum value) "in the thickness direction of the protective film from the surface of the layer, the total amount of oxygen atoms and carbon atoms relative to the stone atom, oxygen atom and The difference between the maximum value and the minimum value of the sum of the atomic ratios of oxygen and carbon in the oxygen-carbon distribution curve of the ratio of the carbon atom to the ratio of the atomic ratio of oxygen to carbon (the atomic ratio of oxygen to carbon) is preferably less than jat%. Jiawei is not up to (10), and the best is less than 3at%. When the difference does not reach the above upper limit, the gas barrier properties of the protective film tend to be particularly high. The Shixi distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve are combined by X-ray photoelectron spectroscopy (XPS: Xray Ph〇t〇e i (5) tr〇n

Spectroscopy)之測定與氬等之稀有氣體離子濺鍍,一邊使 試料内部露^ -邊依序進行表面組成分析,藉由所謂xps 深度輪廓測定製作。藉由此種XPS深度輪廓測定所得到的 分布曲線,係例如使縱軸為各元素的原子比(單位: at%),以橫軸為蝕刻時間(濺鍍時間)而製作。蝕刻時間係 與於保護膜之厚度方向離保護膜表面的距離大致相關。因 此,就「在保護膜之厚度方向中離阻氣性層之一側的表面 之距離」而言,可採用從於xps深度輪廓測定時所採用之 蝕刻速度與蝕刻時間之關係所算出的離阻氣層表面之距 離。於此種XPS深度輪廓測定時採用之濺鍍法中,採用使 用氬(Ar〇作為蝕刻離子種之稀有氣體離子濺鍍法,其蝕刻 速度(蝕刻率)較佳為〇. 〇5 nm/sec(si〇2熱氧化臈換算值)。 323547 12 201222809 從在膜面全體形成具有均一且優異之阻氣 之觀點,較佳為保護膜在膜㈣向( ^層 (表面)之方向)實質上-樣。在本說明書中,「保 面方向實質上-樣」係指藉由XPS深度輪廓測定在保$ 之膜面的任意2處之測定處製作氧分布曲線、碳分、 分布曲線時,在此任意2處的測定處所得到分 布曲線所具有之極值的數值互相相同,在各別之碳分布二 線中的碳原子比之最大值與最小值的差’互相相 等之差為5 at%以内。 4 b 「碳分布曲線較佳為實質上連續。在本說明書中,所钟 碳分布曲線為宜實質上連蜻 月 之碳原子比不連續變化的有曲線中 =韻刻時間所算出之在保護膜的厚度方向中離該= 表面的距離(X、單位:nm)與碳之原子比&、單位: 之關係中’滿足下述數學式⑽所示之條件: ° -i.〇s(dc/dx) m"(F1)。 述條係只要至少具備-層全部滿足上 滿足上述條件:丨;至:厂)可’保護膜係亦可具備2層全部 ^ # 2 〇之膜。保護膜具備2層以上此種 膜夺,此4複數層膜的㈣可為The measurement of Spectroscopy and the rare gas ion sputtering of argon and the like were carried out by sequentially performing surface composition analysis on the inside of the sample, and the measurement was performed by so-called xps depth profile measurement. The distribution curve obtained by such XPS depth profile measurement is, for example, such that the vertical axis represents the atomic ratio of each element (unit: at%) and the horizontal axis represents the etching time (sputter time). The etching time is roughly related to the distance from the thickness direction of the protective film to the surface of the protective film. Therefore, the "distance from the surface on one side of the gas barrier layer in the thickness direction of the protective film" can be calculated from the relationship between the etching rate and the etching time used in the xps depth profile measurement. The distance from the surface of the gas barrier layer. In the sputtering method used for such XPS depth profile measurement, argon (ar〇 is used as the rare gas ion sputtering method of the etching ion species, and the etching rate (etching rate) is preferably 〇. 5 nm/sec. (Si〇2 thermal enthalpy equivalent value) 323547 12 201222809 From the viewpoint of forming a uniform and excellent gas barrier on the entire film surface, it is preferable that the protective film is substantially in the direction of the film (the direction of the layer (surface)) In the present specification, the term "substantially-oriented direction" means that when an oxygen distribution curve, a carbon component, and a distribution curve are produced at a measurement position of any two of the film faces of the protective film by XPS depth profile measurement, The values obtained by the distribution curves at any two of the measurement sites are the same as each other, and the difference between the maximum value and the minimum value of the carbon atoms in the two carbon lines of the respective carbon distributions is equal to each other by 5 at . 4 b "The carbon distribution curve is preferably substantially continuous. In the present specification, the clock carbon distribution curve is calculated from the curve in which the carbon atom ratio of the month is not continuously changed. In the thickness direction of the protective film away from this = The distance between the surface (X, unit: nm) and the atomic ratio of carbon & unit: 'in the following mathematical formula (10): ° -i.〇s(dc/dx) m"(F1 As long as at least the layer is satisfied, the above conditions are satisfied: 丨; to: factory) The 'protective film system can also have two layers of all ^ 2 〇 film. The protective film has two or more layers of the film. Capture, the 4th layer of the film (four) can be

在矽分布曲線、轰八士“ J ^ b 刀布曲線及碳分布曲線中,矽的原 保物rtt比及碳的原子比滿足式⑴所示的條件時, 二θ、 含量相對於梦原子、氧原子及碳原子的 w I之原子比率較佳為25至45 at%,更佳為3〇至4〇 323547 13 201222809 at%。保護膜中氧原子之含量相對於矽原子、氧原子及碳原 子的合計量之原子比率較佳為33至67 at%,更佳為45至 67 at%。保護膜中碳原子之含量相對於矽原子、氧原子及 碳原子的合計量之原子比率宜較佳為3至33 at%,更佳為 3 至 25 at%。 在石夕分布曲線、氧分布曲線及碳分布曲線中,石夕的原 子比、氧的原子比及碳的原子比滿足前述式(2)所示的條件 時,保護膜中矽原子之含量相對於矽原子、氧原子及碳原 子的合計量之原子比率較佳為25至45 at%,更佳為30至 40 at%。保護膜中氧原子之含量相對於矽原子、氧原子及 碳原子的合計量之原子比率較佳為1至33 at%,更佳為1〇 至27 at%。保護膜中碳原子之含量相對於矽原子、氧原子 及碳原子的合計量之原子比率較佳為33至66 at%,更佳 為 40 至 57 at%。 保遵膜之厚度較佳.為5至3〇〇〇nm,更佳為1〇至2000 二,特=為1〇〇至1〇〇〇nm。當保護膜之厚度在於此等數值 :氣2亇-可得到更優異之氧氣阻氣性、水蒸氣阻隔性等 7 同時可更有效地抑制因彎曲所造成之阻氣性的降 低之傾向。 τ 产之=保_為由複數層膜所構成時,此等複數層膜的厚 Γ十值—般為10至1〇〇〇〇nm,較佳為10至50_m, ^ 至麵nm,最佳為·至2咖静當保護膜之 計值在於此等數值範圍㈣,可得到更優異之氧 ;; 水蒸氣阻隔性等阻氣性,同時可更有效地抑制 323547 14 201222809 因f曲所造成之阻氣性的降低之傾向。 保護膜較佳為藉由 藉罐化學氣相成長法所形成之保護膜更:成之層 膜及設置於1上夕古加 、足佳為使第1 薄 膜及設置於其上之有機EL元雜置於-對之1 一對之成_«“赵賴之 =_上,於 形成之層。於一對之成膜輥間放電=成長法所 膜親之姉交互地㈣。於此種錢 對之成 使用的成職體,較佳為含有有财化合= 目成長法中所 射之躺含量,較佳為使成職體t 4。成膜風 认'庄馬便成膘氣體令之古 全量完全氧化所必需之理論氧量町。㈣夕化合物的 連續的成_崎形成之層。彻 較佳為藉由 法形成保謹蹬夕十、、+ ....... 聚化 法形成保護臈之方法的詳細 方法中說明。 <保護膜之製造方法> 其次,說明有關製造保護祺之方、、 先形成於第1薄膜上之有機队元件去。保護膜係以將預 方式形成。使保護膜形成於有機£1與第1薄膜一起覆蓋的 上之方法,從阻氣性之觀點,較隹=件及第1薄膜的表面 (電漿CVD)。此電漿化學氣相成長法^電襞化學氣相成長法 放電電聚方式的電漿化學氣相成長、/'為潘寧(Penning) 在電聚化學氣相成長法中吝a ' 生電轉_ 成膜輥之間的空間產生電漿玫電,&時,較佳於複數個 輥,於此一對之成膜輥分別配置第隹為使用一對之成膜 輥間進行放電而產生電漿。此種藉缚祺,於一對之成膜 使用〜對之成膜輥, 内容係在後述 學氣相成長 之製造保護膜的 15 201222809 在成膜時,可一邊在存在於其中一成膜輥上之第1薄膜及 於有機EL元件上使保護膜成膜,一邊在存在於另一成膜輥 上之第1薄膜及於有機EL元件上亦同時地使保護膜成臈。 藉此,不僅可有效率地製造保護膜’亦可以2倍之成膜率 同時地使相同之構造的膜成膜。其結果,至少使碳分布曲 線中之極值至少倍增,可有效率地形成完全滿足上述條件 (i)至(iii)之保護膜。從生產性之觀點,較佳為以輥對輥 方式於第1薄膜及有機EL元件之表面上形成保護膜。可藉 由此種電漿化學氣相成長法製造保護膜時所使用之裝置係 無特別限制,但較佳為具備至少一對的成膜輥與電聚電 源,可在前述一對之成膜輥間進行放電之裝置。例如,藉 由使用第2圖所示之製造裝置,可一邊利用電装化學氣相 成長法,一邊以輥對輥方式製造保護膜。 以下…邊參照第2圖’ 一邊更詳細地說明製造保護 膜之方法。第2圖係表示用以製造本實施形態之保護 適當利用之製造裝Ϊ的-例之模式圖。以下之說明及^ 中,於相同威相當之要件錢予相同之符號,適當 複之說明。 里 第2圖所示之製造裝置係具備:送出親?〇1;運 、22、23、24 ’對向而配置之一對的成膜概31、犯 體供給管41 ;電漿產生用電源51 ;設置於成_ Μ及= 之内部的磁場產生装置6卜62;捲取親7〇2 32 源51;磁場農生裝置以,配置於圖示省略之真空= 323547 16 201222809 内。此真空腔室係連接於圖示省略之真空i, 空泵適當調整真空腔室内的壓力。 θ此種真 在第2圖之製造裝置中,以可使―對之 31與臟32)作為一對之對向電極之功能的方 成膜輥分別連接於電㈣生用電源51。藉由從 = 電源51供給電力,可於成_31與成膜輥32之間== 進仃放電,It此,可於成膜輥31與成難32之間的 產生電聚。成雜31與成難32亦可作為電極利用= 只要適當變更其材質及設計為可㈣電極利用即可。一 之成膜輥(成膜輥31及32)較佳為配置成其中心軸在同一 平面上呈大致平行。以此種方式配置—對之成職(成 31及32),在各別之成膜輥上使保護膜成膜,相較於在 個成膜輥上成膜時,可使成膜率倍增。並且,可重疊相3 構造之膜而成膜’故可使在碳分布曲線中之極值的^目目= 少倍增。若依此種製造裝置,可藉由⑽法於第i薄膜及 有機EL元件之表面上形成保護膜,在成膜輥31上於第 薄膜及有機EL it件之表面上堆_成分,同時進—步 在成膜輥32上亦於第1薄膜!及有機EL元件之表面上堆 積膜成分。因此,可於第1薄膜1及有機EL元件之表面上 有效率地形成保護膜。 在成膜輥31及成膜輥32之内部設置有磁場產生襞置 61及62。此磁場產生裝置61及62係以即使成膜輥旋轉, 其本身不旋轉的方式固定。 就成膜輻· 31及成膜輥32而言,可適當使用一般之幸昆。 323547 17 201222809 成膜輥31及*古,- 較佳為心 ’從更有效率地形成薄膜之觀點, 腔室之办R μ 、輥31及32之直视,從放電條件、 間專觀點,較佳為5至100cm。 對向在造裝置中,係為使第1薄狀表面互相 薄膜。葬山之成膜輥(成膜親31與成膜⑽)上配置第! 32之ρΛ,種方式配置f丨賴,於成膜輥31與成膜輕 ㈣仃放電而產生電_,可於存在於-對之成膜輥 ΐ,获f媒各別的表面同時成膜。亦即’若依此種製造裝 侔$ : & CVD法’於成膜輥31上在第1薄膜及有機EL元 面上堆積膜成分,進一步於成膜輥32上 及有機EL元杜夕| LΑ 社弟1厚膜 卜# 堆積膜成分。因此,第1薄膜及有 兀牛之表面上可有效率地形成阻氣層。 之愈送^輥7Q1及運送輥2卜22、23、24係適當使用一般 ”取輥702係只要為可捲取形成有保護膜之第1薄 膜1,則無特別限制,適當地從一般所使用之輥選擇。 靜管41只要可以特定之速度供給或排出原料 、 P可。電漿產生用電源51可適當地使用一般之電聚 產生裝置的電源。電漿產生用電源51係對連接於此等之成 膜輥31與成難32供給電力,可利用此等作為用以放電 子向電極。電漿產生用電源51係可更有效率地實施電漿 CVD’較佳為彻可使-對之成難的極性交互地反轉之電 源(交流電源等)。電聚產生用電源51為了更有效率地實施 電t CVD’更佳為使施加電力設定於1〇吓至1〇kw,使交流 之頻率為50Hz至500kHz。磁場產生裝置61、62係適當地 323547 18 201222809 使用一般之磁場產生裝置。從送出親所送出之基材係除了 第1薄膜及有機EL元件之外,可使用具有預先形成於其等 之上的保護膜之基材。如此地,藉由分成複數次而成保護 膜以進一步增厚保護膜。 使用第2圖所示之製造裝置,可藉由適當調整原料氣 體之種類、電漿產生裝置之電極鼓的電力、真空腔室内之 壓力、成膜輥之直徑、以及薄膜之運送速度形成保護膜。 使用第2圖所示之製造裝置,藉由使成膜氣體(原料氣 體等)供給至真空腔室内,同時並於一對的成膜輥(成膜輥 31及32)間產生放電,使成膜氣體(原料氣體等)藉由電漿 分解,可於成膜輥31上之第1薄膜的表面上及成膜輥32 上之第1薄膜的表面上,藉由電漿CVD法形成保護膜。在 如此成膜時,第1薄膜1藉由送出輥701及成膜輥31等分 別運送,藉由輥對輥方式之連續成膜製程,於第1薄膜1 的表面上形成覆蓋有機EL元件之保護膜。 可使用於保護膜形成之成膜氣體中的原料氣體係依所 形成之保護膜的材質而適當的選擇。原料氣體係例如可使 用含有矽之有機矽化合物。原料氣體係除了有機矽化合物 外,亦可含有作為矽源之單矽烷。 原料氣體係含有例如由六曱基二矽氧烷、1,1,3, 3-四 曱基二矽氧烷、乙烯基三甲基矽烷、曱基三甲基矽烷、六 曱基二矽烷、曱基矽烷、二甲基矽烷、三曱基矽烷、二乙 基矽烷、丙基矽烷、苯基矽烷、乙烯基三乙氧基矽烷、乙 烯基三曱氧基矽烷、四曱氧基矽烷、四乙氧基矽烷、苯基 19 323547 201222809 一曱氧基石夕燒、曱基三乙氧基石夕烧、及八曱基環四石夕氧烧 所構成之群中選出的至少一種之有機矽化合物。此等之有 機夕化s物中,從化合物之處理性及所得到之阻氣層的阻 氣性等特性之觀點,較佳為六甲基二矽氧烷及113, 3一四 甲基一矽氧烷。此等之有機矽化合物係可單獨1種或組合 2種以上而使用。 成膜氣體係除了原料氣體外,亦可含有反應氣體。此 反應氣體係可適當選擇與原料氣體反應而形成氧化物、氮 化物等無機化合物的氣體而使用。用以形成氧化物之反應 氣體係可使用例如氧或臭氧。用以形成氮化物之反應氣體 係可使用例如氮或氨。此等之反應氣體係可單獨丨種或組 合2種以上使用。例如,當形成氧氮化物時,可組合用以 形成氧化物之反應氣體與用以形成氮化物之反應氣體。 成膜氣體係為了使原料氣體供給至真空腔室内,必要 時可使用載體氣體。成膜氣體係為了產生電漿放電,必要 時可使用放電用氣體。此種載體氣體及放電用氣體係可適 當使用公知者。可使用例如氦、氬、氖及氙等稀有氣體或 氫作為載體氣體或放電用氣體。 當成膜氣體含有原料氣體與反應氣體時,原料氣體與 反應氣體之比率較佳為較使原料氣體與反應氣體完全反應 之理論上必要之反應氣體的量之比率,不使反應氣體之比 率太過剩。藉由適當控制反應氣體之比率,可特別有效率 地形成完全滿足上述條件(i)至(Hi)之薄膜(保護膜)。當 成膜氣體含有有機矽化合物與氧時,成臈氣體之氧量較佳 323547 20 201222809 的硬 為使成膜軋體中之有機石夕化合物的全量完全氧化所需 論氧量以下。 以下,就成膜氣體而言,可舉出使用含有作為原料, 體之六甲基二矽氧烷(有機矽化合物、HMDS〇、(CH3)6 $“氰 與作為反應氣體之氧(G2)的氣體,製造石卜氧,㈣保護) 情況為例,更詳細地朗有關成膜氣财之原料氣體與尺 應氣體的適當比率等。 使含有作為原料氣體之六曱基二矽氧烷(HMDS〇、In the 矽 distribution curve, the “J ^ b knives curve and the carbon distribution curve”, when the original rtt ratio of 矽 and the atomic ratio of carbon satisfy the conditions shown in formula (1), the two θ, the content is relative to the dream atom. The atomic ratio of w I of the oxygen atom and the carbon atom is preferably from 25 to 45 at%, more preferably from 3 〇 to 4 〇 323547 13 201222809 at %. The content of oxygen atoms in the protective film is relative to the ruthenium atom, the oxygen atom and The atomic ratio of the total amount of carbon atoms is preferably from 33 to 67 at%, more preferably from 45 to 67 at%, and the atomic ratio of the content of carbon atoms in the protective film to the total of the ruthenium atom, the oxygen atom and the carbon atom is preferably Preferably, it is 3 to 33 at%, more preferably 3 to 25 at%. In the Shishi distribution curve, the oxygen distribution curve, and the carbon distribution curve, the atomic ratio of the stone, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the foregoing. In the case of the formula (2), the atomic ratio of the content of the ruthenium atom in the protective film to the total amount of the ruthenium atom, the oxygen atom and the carbon atom is preferably 25 to 45 at%, more preferably 30 to 40 at%. Atom of the content of oxygen atoms in the protective film relative to the total amount of germanium atoms, oxygen atoms and carbon atoms The ratio is preferably from 1 to 33 at%, more preferably from 1 to 27 at%, and the atomic ratio of the content of carbon atoms in the protective film to the total of the ruthenium atom, the oxygen atom and the carbon atom is preferably from 33 to 66 at. %, more preferably 40 to 57 at%. The thickness of the film is preferably from 5 to 3 〇〇〇 nm, more preferably from 1 〇 to 2,000 Å, and particularly from 1 〇〇 to 1 〇〇〇 nm. When the thickness of the protective film is such a value: gas 2 亇 - more excellent oxygen gas barrier property, water vapor barrier property, etc. can be obtained, and the tendency of the gas barrier property due to bending is more effectively suppressed. When the product is composed of a plurality of layers, the thickness of the plurality of layers is generally 10 to 1 〇〇〇〇 nm, preferably 10 to 50 Å, ^ to nm, preferably When the value of the protective film is in the numerical range (4), more excellent oxygen can be obtained; gas barrier properties such as water vapor barrier property can be more effectively suppressed, and 323547 14 201222809 can be more effectively suppressed. The tendency of the gas barrier property to decrease. The protective film is preferably a protective film formed by a chemical vapor phase growth method of the canister: a layered film and a layered film , Good enough to make the first thin film provided thereon of an organic EL element disposed heteroaryl - on the one pair of 1 percent _ «" _ = Zhao depends on the, in the layer formed. Discharge between a pair of film-forming rolls = growth method The film is intimately interacted with (4). It is preferable to use the amount of money that is used in the production of such money, and it is preferable to make the occupational body t 4 . The film-forming wind recognizes that the 'Zhuang Ma will become the theoretical oxygen meter that is necessary for the complete oxidation of the gas. (4) The continuous formation of the compound of the cerium compound. It is better to describe in the detailed method of forming a method of protecting 臈 by the method of forming a guarantor by the law. <Manufacturing Method of Protective Film> Next, an organic group element which is first formed on the first film will be described with respect to the side where the protective enamel is produced. The protective film is formed in a pre-formed manner. The method of forming the protective film on the organic film 1 to cover the first film is from the viewpoint of gas barrier properties to the surface of the first film and the first film (plasma CVD). This plasma chemical vapor phase growth method ^ electric 襞 chemical vapor phase growth method discharge electropolymerization method of plasma chemical vapor growth, / 'for Penning (Penning) in the electropolymerization chemical vapor growth method 吝 a ' _ The plasma between the film forming rolls generates plasma, and is preferably a plurality of rolls, and the pair of film forming rolls are respectively arranged to discharge between the forming rolls using a pair of film forming rolls. Plasma. In this case, the film is formed by a pair of film-forming rolls, and the film is formed by a film-forming roll which is described later in the vapor phase. 15 201222809 When forming a film, it can be present in one of the film forming rolls. In the first film and the organic EL element, the protective film is formed on the film, and the protective film is simultaneously formed on the first film and the organic EL element which are present on the other film forming roll. Thereby, not only the protective film can be efficiently produced, but also a film having the same structure can be simultaneously formed at a film formation rate of twice. As a result, at least the extreme value in the carbon distribution curve is at least multiplied, and the protective film which satisfies the above conditions (i) to (iii) can be efficiently formed. From the viewpoint of productivity, it is preferred to form a protective film on the surfaces of the first film and the organic EL element by a roll-to-roll method. The apparatus used for producing the protective film by such a plasma chemical vapor phase growth method is not particularly limited, but it is preferable to provide at least one pair of film forming rolls and an electropolymerization source, which can form a film on the aforementioned pair. A device for discharging between rollers. For example, by using the manufacturing apparatus shown in Fig. 2, a protective film can be produced by a roll-to-roll method while using an electrification chemical vapor deposition method. Hereinafter, a method of manufacturing a protective film will be described in more detail with reference to Fig. 2'. Fig. 2 is a schematic view showing an example of a manufacturing device for making the protection of the present embodiment appropriately used. In the following descriptions and ^, the same symbols are given to the same elements, and the appropriate explanations are given. The manufacturing equipment shown in Figure 2 is equipped with: Sending a pro? 〇1; transport, 22, 23, 24 'oppositely arranged one pair of film formation 31, corpus supply tube 41; plasma generating power source 51; magnetic field generating device installed inside _ Μ and = 6 卜 62; take the pro 7 〇 2 32 source 51; magnetic field agricultural device, arranged in the vacuum omitted 323547 16 201222809. The vacuum chamber is connected to the vacuum i omitted from the drawing, and the air pump appropriately adjusts the pressure in the vacuum chamber. θ. True In the manufacturing apparatus of Fig. 2, the film forming rolls which function as a pair of counter electrodes for "pair 31 and dirty 32" are respectively connected to the electric (four) green power source 51. By supplying electric power from the = power source 51, it is possible to make a discharge between the film forming roller 32 and the film forming roller 32, and it is possible to generate electricity between the film forming roller 31 and the forming film 32. It is also possible to use the alloy 31 and the alloy 32 as the electrode. The material can be appropriately changed and the design can be used as the electrode. One of the film forming rolls (film forming rolls 31 and 32) is preferably arranged such that their central axes are substantially parallel on the same plane. In this way, it is configured (for 31 and 32) to form a protective film on each of the film forming rolls, which doubles the film formation rate when filming on a film forming roll. . Further, the film of the structure of the phase 3 can be formed to form a film, so that the value of the extreme value in the carbon distribution curve can be minimized. According to this manufacturing apparatus, a protective film can be formed on the surface of the i-th film and the organic EL element by the method (10), and the composition of the film and the organic EL element can be stacked on the film forming roller 31 while advancing. - Step on the film forming roller 32 also on the first film! And a film component is deposited on the surface of the organic EL element. Therefore, a protective film can be efficiently formed on the surfaces of the first film 1 and the organic EL element. Magnetic field generating devices 61 and 62 are provided inside the film forming roller 31 and the film forming roller 32. The magnetic field generating devices 61 and 62 are fixed in such a manner that they do not rotate themselves even if the film forming roller rotates. As for the film forming spokes 31 and the film forming roll 32, a general Xingkun can be suitably used. 323547 17 201222809 Film-forming roll 31 and *古, - preferably heart 'from the viewpoint of forming a film more efficiently, the chamber R μ, the direct view of the rolls 31 and 32, from the discharge condition, the special point of view, It is preferably 5 to 100 cm. In the opposite device, the first thin surfaces are made into a thin film. The filming roller of the funeral mountain (filming pro 31 and film formation (10)) is placed on the first! 32 Λ Λ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . That is, if the film composition is deposited on the first film and the organic EL element on the film forming roller 31, the film is formed on the film forming roller 32 and the organic EL element | LΑ 社弟一厚膜卜# Stacked film ingredients. Therefore, the gas barrier layer can be efficiently formed on the surface of the first film and the yak. The transfer roller 7Q1 and the transport roller 2, 22, 23, and 24 are suitably used. Generally, the take-up roll 702 is not particularly limited as long as it can take up the first film 1 on which the protective film can be wound, and is appropriately used from the general The static tube 41 can supply or discharge the raw material and P at a specific speed. The plasma generating power source 51 can appropriately use the power source of the general electropolymer generating device. The plasma generating power source 51 is connected to the battery. These film forming rolls 31 and Difficulty 32 supply electric power, and these can be used as electrons to the electrodes. The plasma generating power source 51 can perform plasma CVD more efficiently. A power source (AC power source, etc.) that alternately reverses polarity, and the power generation source 51 is more preferably configured to perform electric t CVD more efficiently, so that the applied power is set to 1 〇 to 1 〇kw, The frequency of the alternating current is 50 Hz to 500 kHz. The magnetic field generating devices 61 and 62 are appropriately 323547 18 201222809. A general magnetic field generating device is used. The substrate sent from the sending parent can be used in addition to the first film and the organic EL element. Pre-formed on it, etc. The substrate of the protective film is formed by dividing the protective film into a plurality of times to further thicken the protective film. By using the manufacturing apparatus shown in Fig. 2, the type of the material gas and the plasma generating device can be appropriately adjusted. The protective film is formed by the electric power of the electrode drum, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport speed of the film. By using the manufacturing apparatus shown in Fig. 2, the film forming gas (raw material gas, etc.) is supplied to the vacuum. In the chamber, a discharge is generated between the pair of deposition rollers (film formation rollers 31 and 32), and the film formation gas (raw material gas or the like) is decomposed by the plasma to form the first film on the film formation roller 31. On the surface and the surface of the first film on the film forming roll 32, a protective film is formed by a plasma CVD method. When the film is formed as described above, the first film 1 is transported by the feed roller 701 and the film forming roller 31, respectively. A protective film covering the organic EL element is formed on the surface of the first film 1 by a roll-to-roll continuous film forming process. The raw material gas system in the film forming gas for forming the protective film can be protected by the formation. The material of the film is appropriately selected. As the raw material gas system, for example, an organic ruthenium compound containing ruthenium may be used. The raw material gas system may contain, in addition to the organic ruthenium compound, monodecane as a ruthenium source. The feed gas system contains, for example, hexamethylene dioxane, 1, 1, 3, 3-tetradecyldioxane, vinyltrimethylnonane, decyltrimethyldecane, hexamethylene dioxane, decyl decane, dimethyl decane, tridecyl decane, diethyl decane , propyl decane, phenyl decane, vinyl triethoxy decane, vinyl trimethoxy decane, tetradecyl decane, tetraethoxy decane, phenyl 19 323547 201222809 At least one organic ruthenium compound selected from the group consisting of triethoxy zephyr and octadecyl cycline. In the organic chemistry of the above, hexamethyldioxane and 113,3-tetramethyl one are preferred from the viewpoints of the rationality of the compound and the gas barrier properties of the obtained gas barrier layer. Oxane. These organic hydrazine compounds may be used alone or in combination of two or more. The film forming gas system may contain a reaction gas in addition to the material gas. The reaction gas system can be suitably selected by using a gas which reacts with a material gas to form an inorganic compound such as an oxide or a nitride. The reaction gas system for forming an oxide may use, for example, oxygen or ozone. As the reaction gas for forming the nitride, for example, nitrogen or ammonia can be used. These reaction gas systems may be used alone or in combination of two or more. For example, when an oxynitride is formed, a reaction gas for forming an oxide and a reaction gas for forming a nitride may be combined. In order to supply the material gas into the vacuum chamber, the film forming gas system may use a carrier gas if necessary. In order to generate a plasma discharge, a film forming gas system may use a discharge gas if necessary. Such a carrier gas and a gas system for discharge can be suitably used. A rare gas such as helium, argon, neon or krypton or hydrogen may be used as the carrier gas or the gas for discharge. When the film forming gas contains the material gas and the reaction gas, the ratio of the material gas to the reaction gas is preferably a ratio of the amount of the reaction gas which is theoretically necessary to completely react the material gas with the reaction gas, and the ratio of the reaction gas is not excessive. . By appropriately controlling the ratio of the reaction gas, a film (protective film) which satisfies the above conditions (i) to (Hi) can be formed particularly efficiently. When the film forming gas contains an organic cerium compound and oxygen, the amount of oxygen in the cerium gas is preferably 323547 20 201222809. The amount of oxygen required for complete oxidation of the organic cerium compound in the film forming body is below. Hereinafter, as the film forming gas, hexamethyldioxane (organoquinone compound, HMDS 〇, (CH3) 6 ""cyanide and oxygen as a reaction gas (G2)) as a raw material may be used. The gas, the production of sulphur, (4) protection, for example, in more detail, the appropriate ratio of the raw material gas to the gas of the film forming gas, etc., and the hexamethylene dioxane as a raw material gas ( HMDS〇,

Si2〇)與作為反應氣體之氧(⑹的賴㈣,藉由電聚^ 使其反應而製作♦-氧系的保護膜時,在此成膜氣體中 以下述反應式(3)所示的反應,形成二氧化矽, (CH〇6Si2〇 ' -1 乙⑴ ’ duj2 + 9H2〇 + Ui〇2 (3) 〇 在此^應中,為了使六甲基二㈣烧1莫耳完全氧化所) 之氧量為12莫耳。因此,於成膜氣體中,相對於六甲基_ 梦魏1莫耳*含有12莫耳以上氧使其完全反應時,^ 的—氧切臈。此時’無法形成完全滿足上述j =至(in)之保護膜的可能性高。因此,形成本實心 心之保遵膜時,為了使上 — 相對於Hi/ ()式應不元全崎,較佳; 莫耳。、: 钱1莫耳,氧量少於化學計量比的] 石夕氧、产際的!tCVD腔室内之反應係將原料的六甲基- 膜,:即氧:氣體供給部供給至成膜區域而) 二發氧燒的莫;耳量(流量)為原料之六甲; 反應不完全地進1 2倍之莫耳量(流量)’實際- 仃,推測大多為相較於化學計量比非心 323547 21 201222809 置地供給^初次反應結束。例如,為了藉由CVD使其完 全氧化而付到氧化矽,亦有將氧之莫耳量(流量)為原料之 六曱基二魏院的莫耳量(流量)之2G倍以上程度。因此, 較佳為氧之莫耳量(流量)相對於原料之六甲基二石夕氧烧的 莫耳里(流+量)係化學計量比之12倍量以下(更佳係1〇倍以 之Sj藉&於賴氣體含有六f基二梦氧烧及 甲基二#氧烧中的碳原子及氫原子被 攝入於保護膜中。其結果為可形成完全滿足上述條件⑴ 至(111)U_°藉此,可發揮所得到之保護膜優異的阻 孤性及^ , °若氣之莫耳量(流量)相對於成膜氣體之 六甲基一碎减的莫耳量(流量)過少時,未被氧化之碳原 子及氫原子被過剩地攝人於保護膜中。此時係因保護膜之 透明性降低,難’用保賴作為以有機EL裝置及有機薄 膜太陽電池等之透明性為必要的裝置用之可撓性基板。從 此種觀點,L為氧之莫耳量(流量)相對於成膜氣體中的 ’、曱基-⑦氧烧的莫耳量(流量),較佳為多於六曱基二石夕 氧炫之莫耳量(流量)的〇·1倍之量,更佳為多於0.5倍之 量。 、真空腔室内之壓力(真空度)係可依原料氣體之種類等 而適當調整,但較佳為〇· 1Pa至5〇Pa之範圍。 在此種電f CVD法中’為了於成膜輥31及32間進行 放電,施加於被連接在電漿產生用電源51之電擊鼓(本實 施形態中係設置於成膜輥31及32)的電力係可依原料氣體 之種類及真空腔室内之壓力等而適當調整,但較佳為〇 323547 22 201222809 :施:2力未達前述下限時,有易於產生粒子之 多,成膜時冤力超過前述上限時,成膜時產生之熱量變 材因受熱日而表面的溫度上昇。若溫度過度上昇’基 而溶融,有可能於成料產生肢,薄膜因受熱 成膜輕本身知,恐於錢㈣1產生大電流之放電而 類及U薄,之運送速度(線速度〕,係可依原料氣體之種 inn 腔至内之壓力等而適當調整,但較佳為〇.1至When a ♦-oxygen protective film is produced by reacting with oxygen as a reactive gas ((4), (4), it is represented by the following reaction formula (3) in the film forming gas. Reaction, formation of cerium oxide, (CH〇6Si2〇' -1 B (1) ' duj2 + 9H2 〇 + Ui 〇 2 (3) 〇 In this ^, in order to make hexamethyl bis(tetra) burn 1 mole complete oxidation The amount of oxygen is 12 moles. Therefore, in the film forming gas, when the hexamethyl _ Meng Wei 1 Moer* contains 12 moles or more of oxygen to completely react, the oxygen-cutting is performed. 'There is no possibility of forming a protective film that fully satisfies the above j = to (in). Therefore, when forming a solid-hearted film, in order to make the upper-relative Hi/() formula Good; Mo Er.,: Money 1 Mo, oxygen less than stoichiometric] Shi Xi oxygen, inter-production! The reaction in the tCVD chamber is the supply of hexamethyl-membrane of the raw material: oxygen: gas supply The part is supplied to the film-forming area and the second part of the oxygen is burned; the amount of the ear (flow rate) is the raw material of the hexagram; the reaction is not completely entered into the 1 2 times the molar amount (flow rate) 'actually - 仃, presumably mostly compared Supplying the heart than the non-stoichiometric 32354721 201 222 809 ^ opposite end of the primary reaction. For example, in order to completely oxidize ruthenium oxide by CVD, the amount of oxygen (flow rate) of oxygen is also 2 G times or more of the molar amount (flow rate) of the hexamethylene hexahydrate. Therefore, it is preferred that the amount of oxygen (flow rate) of oxygen is less than 12 times the stoichiometric ratio of the molar content of the hexamethyl oxazepine of the raw material (more preferably 1 time) The carbon atoms and hydrogen atoms in the Sj borrowing & lysing gas containing hexa-f-octyl-oxygen and methyl-oxygen are taken into the protective film. As a result, the above conditions (1) can be completely satisfied. (111) U_° Thereby, the excellent barrier property of the obtained protective film and the amount of moles of gas (flow rate) relative to the hexamethyl group of the film forming gas can be exhibited ( When the flow rate is too small, carbon atoms and hydrogen atoms which are not oxidized are excessively taken into the protective film. At this time, the transparency of the protective film is lowered, and it is difficult to use the organic EL device and the organic thin film solar cell. The transparency is a flexible substrate for a necessary device. From this point of view, L is the amount of oxygen (flow rate) relative to the amount of ', thiol-7oxygen in the film forming gas. Preferably, the amount of 莫·1 times more than the hexamethylene oxides (flow rate) is more than 0. More preferably, it is more than 0. The pressure in the vacuum chamber (vacuum degree) may be appropriately adjusted depending on the type of the material gas, etc., but is preferably in the range of 〇·1 Pa to 5 〇 Pa. In this electric f CVD method' In order to discharge between the film forming rolls 31 and 32, the electric power applied to the electric shock drum connected to the plasma generating power source 51 (in the present embodiment, the film forming rolls 31 and 32) can be based on the type of the material gas. And the pressure in the vacuum chamber is appropriately adjusted, but it is preferably 〇323547 22 201222809: when the force is less than the above lower limit, there are many particles which are likely to be generated, and when the filming force exceeds the above upper limit, the film formation is performed. The generated heat is increased due to the heat on the surface of the heat. If the temperature rises excessively and the base melts, it is possible to produce a limb in the material. The film is lightly known by the heat film formation, and it is feared that the electricity (4) 1 generates a large current discharge. The transport speed (linear velocity) of the type and U thin may be appropriately adjusted depending on the pressure of the in-cavity of the material gas, etc., but preferably 〇.1 to

Phi &佳為G·5至2Gm/分鐘。線速度未達前述下 二一於薄膜容易產生起因於熱之皺紋的傾向,若線速度 °過則述上限時’所形成之保護膜的厚度有變薄的傾向。 β如以上般形成保護膜後,至貼合後述之第2薄膜之 ~可=第1薄膜與有機EL元件及保護膜一同捲取成輥狀 呆s此等j此保官之步驟係例如在真空中、惰性氣體環境 中^或大氣環境中進行。從步驟之簡易性係較佳為惰性氣 體裱扰中、或大氣環境中,更佳為大氣環境中。藉此,即 使保官之步驟在惰性氣體環境中或大氣環境中進行,捲取 成報狀之狀態的保護膜之阻氣性不易降低,此外由於保護 膜之阻氣性高,故可抑制有機EL元件之劣化。 參照第3圖及第4圖,說明有關於保護膜上設置有第 2薄膜之態樣的有機EL裝置。第3圖係表示設置有頂部放 射型之有機EL元件作為一例之形態,第4圖係表示設置有 底部放射型之有機EL元件之形態。 第3圖係模式地表示本實施形態的有機EL裝置之截面 23 323547 201222809 圖。在第3圖所示之實施形態的有機EL裝置13中係於第 1薄膜1上搭載有機EL元件2,形成保護膜3以覆蓋此有 機EL元件2。第2薄膜11係與第丨薄膜丨之間隔著此有 機EL元件2及保護膜3,並配置於第j薄膜j上。第2薄 膜11係後封第1薄膜1以及有機El元件2。第1薄膜1 與第2薄膜11係隔著設置於此等之間的黏著層4而貼合。 第3圖所示之本實施形態的有機乩元件2係頂部放射 型之70件’使光朝向第2薄膜11射出。因此,第2薄膜 U係必須藉由穿透光之構件而形成。另—方面,在本實施 开人1中’相备於切基板之第i薄膜i亦可藉 之不透明的構件而形成。 就第1薄膜1而言’可使用塑膠薄膜或金屬薄膜,宜 ,金屬薄膜°金屬薄膜若相較於塑膠薄膜等,具有高的阻 :^有機EL裝置之阻氣性。金屬薄膜係可使用 歹’卜〇1或Fe的薄板、及不_#之合金的薄板。 =2薄膜n而言,可適當使用阻氣性高之薄膜。例 如,本只施形態係第2薄膜u係由基材 之有機EL元件2側的主面上 :置於基材6 所構成。 ,、有冋的阻軋性之阻氣層5 阻氣層 , 由交互地積層之有機層及盔機#所;i :阻::r上述保護膜3所說明之薄膜相同= 能之觀點,阻氣層5較佳為 膜。亦即’第2薄膜11較佳 從製造的容易性與阻氣性 與保護臈所說明之薄臈相同的 323547 24 201222809 為具有特定之基材6、於基材6上形成為阻氣層5且與上 述保護膜同樣的薄膜。 … 藉由此種第1薄膜1與第2薄膜而密封有機EL元件 2,可實現可撓性且兼備充分的耐久性與阻氣性之有機此 裝置。尤其,於第i薄膜i使用金屬薄膜時第i薄膜工 與第2薄膜π兩者顯示高的阻氣性,故可實現兼備更高耐 久性與阻氣性之有機EL裝置。 第4圖係模式地表示本發明其他實施形態的有機el裝 置13之截面圖。第4圖所示之實施形態的有機乩裝置13 係與第3圖所示之實施形態之有機EL元件與第i薄膜㈠目 異。亦即,本實施形態之有機EL元件2係底部放射型之元 件,朝向相當於支撐基板之第i薄膜i射出光。因此,第 1 /專膜1係必須為顯示光穿透性之薄膜。 本實施形態之第1薄膜!若為顯示光穿透性之薄膜, 則無特別限制,但從阻氣性之觀點,與第2薄膜u同樣地, 較佳為具有含有石夕、氧及碳之第2阻氣層8。本實施形離 係第1薄臈1由基材7、設置於此基材7上之第2阻氣層: 所構成。此第2阻氣層8係如上述般,藉由滿足條件⑴ 至(ill) ’具備1%的阻氣性,進—步可抑制彎曲時之阻氣性 的降低。 藉由此種第1薄膜1與第2薄膜而密封有機EL元件2, 可實現可撓性且兼具充分的耐久性與阻氣性之有機e 置。 、 上述之第1薄膜或第2薄膜之基材,可舉例如無色透 323547 25 201222809 明之樹脂薄膜或樹脂薄片。使用於此種基材的樹脂例如從 聚對本一曱酸乙二酯(PET)及聚萘二甲酸乙二g旨(pen)等聚 酿系樹脂;聚乙烯(PE)、聚丙烯(PP)及環狀聚烯烴等聚婦 烴系樹脂;聚醯胺系樹脂;聚碳酸酯系樹脂;聚苯乙烯系 樹脂;聚乙烯醇系樹脂;乙烯-醋酸乙烯酯共聚物之鹼化 物;聚丙烯腈系樹脂;縮醛系樹脂;以及聚醯亞胺系樹脂 中選出。在此等之樹脂中’從财熱性高、線膨脹率小、製 造成本低之觀點,較佳為聚酯系樹脂及聚烯烴系樹脂,特 佳為PET及PEN。此等之樹脂係可單獨1種使用,亦可組 合2種以上使用。 上述基材之厚度係可考量例如於第1薄膜上製造俤讓 膜時的安定性而適當設定。基材之厚度係從即使在真多中 亦可運送薄膜之觀點,較佳為5至5〇〇//m之範圍。藉兩電 漿CVD法形成阻氣層時,係通過第i薄膜之基材一邊放電 一邊形成保護膜,故較佳第丨薄膜之基材的厚度為50多 200 _,更佳為 50至 1〇〇/zm。 對於基材’從保護膜或與阻氣層之密著性的觀黠’衫: 佳為實施用以清淨表面之表面活性處理。此種表面漆掉處 理可舉例如電暈處理、電聚處理、及火焰處理。 第1薄膜及/或第2薄臈必要時可進一步具備底爹詹 熱畨封性樹脂層、黏著劑層。底塗層係可使用能提并參讨 或阻氣層與基材之黏著性的底塗劑而形成。熱密封性樹腐 層係可適當使用-般之熱密封性樹脂而形成。黏著劍廣# 可適當使用-般之黏著劑而形成,亦可藉由此種黏著劍廣 26Phi & good is G·5 to 2Gm/min. When the linear velocity is less than the above-mentioned next one, the film tends to cause wrinkles due to heat, and if the linear velocity is too high, the thickness of the protective film formed at the upper limit tends to be thin. After the protective film is formed as described above, the second film can be bonded to the second film, which can be described later, and the first film can be wound into a roll shape together with the organic EL element and the protective film. It is carried out in a vacuum, in an inert gas atmosphere or in an atmospheric environment. The ease of the steps is preferably in the inert gas turbulence or in the atmospheric environment, more preferably in the atmosphere. Therefore, even if the step of the official is carried out in an inert gas atmosphere or in an atmospheric environment, the gas barrier property of the protective film wound up in a state of being reported is not easily lowered, and since the gas barrier property of the protective film is high, the organic film can be suppressed. Degradation of the EL element. An organic EL device in which a second film is provided on a protective film will be described with reference to Figs. 3 and 4 . Fig. 3 shows an example in which an organic EL element having a top emission type is provided as an example, and Fig. 4 shows a form in which an organic EL element having a bottom emission type is provided. Fig. 3 is a view schematically showing a cross section of the organic EL device of the present embodiment 23 323547 201222809. In the organic EL device 13 of the embodiment shown in Fig. 3, the organic EL element 2 is mounted on the first film 1, and a protective film 3 is formed to cover the organic EL element 2. The organic thin element 11 and the protective film 3 are interposed between the second thin film 11 and the second thin film, and are disposed on the jth thin film j. The second film 11 is post-sealed to the first film 1 and the organic EL element 2. The first film 1 and the second film 11 are bonded together via the adhesive layer 4 provided between them. The organic germanium element 2 of the present embodiment shown in Fig. 3 is a 70-piece of the top emission type, and emits light toward the second thin film 11. Therefore, the second film U must be formed by a member that transmits light. On the other hand, in the first embodiment, the i-th film i prepared for the substrate can be formed by an opaque member. For the first film 1, a plastic film or a metal film can be used. Preferably, the metal film and the metal film have a high resistance compared to a plastic film, etc., and the gas barrier property of the organic EL device. As the metal thin film, a thin plate of 歹'b〇1 or Fe and a thin plate of an alloy other than _# can be used. For the film 2, a film having a high gas barrier property can be suitably used. For example, in the present embodiment, the second film u is formed by placing the substrate 6 on the main surface of the substrate on the side of the organic EL element 2. , a gas barrier layer with a barrier property of rolling, a gas barrier layer, an organic layer which is alternately laminated, and a helmet machine; i: resistance::r, the film described above is the same as the film of the protective film 3, The gas barrier layer 5 is preferably a film. That is, the second film 11 is preferably formed from the substrate 321547 24 201222809 which has the same ease of manufacture and gas barrier properties as the protective layer, and has a specific substrate 6 and is formed as a gas barrier layer 5 on the substrate 6. And the same film as the above protective film. By sealing the organic EL element 2 with the first film 1 and the second film, it is possible to realize an organic device which is flexible and has sufficient durability and gas barrier properties. In particular, when the metal film is used for the i-th film i, both the i-th film and the second film π exhibit high gas barrier properties, so that an organic EL device having higher durability and gas barrier properties can be realized. Fig. 4 is a cross-sectional view schematically showing an organic EL device 13 according to another embodiment of the present invention. The organic germanium device 13 of the embodiment shown in Fig. 4 differs from the organic EL device and the i-th film (1) of the embodiment shown in Fig. 3. In other words, the organic EL element 2 of the present embodiment is a bottom emission type element that emits light toward the i-th film i corresponding to the support substrate. Therefore, the 1st / film 1 must be a film that exhibits light transmittance. The first film of this embodiment! The film which exhibits light transmittance is not particularly limited, but from the viewpoint of gas barrier properties, similarly to the second film u, it is preferable to have the second gas barrier layer 8 containing stone, oxygen and carbon. In the present embodiment, the first thin layer 1 is composed of a substrate 7 and a second gas barrier layer provided on the substrate 7. As described above, the second gas barrier layer 8 has a gas barrier property of 1% by satisfying the conditions (1) to (ill), and the step of suppressing the decrease in gas barrier properties during bending can be suppressed. By sealing the organic EL element 2 by the first film 1 and the second film, it is possible to realize an organic layer which is flexible and has both sufficient durability and gas barrier properties. The substrate of the first film or the second film described above may, for example, be a resin film or a resin sheet which is opaque to 323547 25 201222809. The resin used for such a substrate is, for example, a poly-branched resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PE); polyethylene (PE), polypropylene (PP) And a polysulfonated resin such as a cyclic polyolefin; a polyamide resin; a polycarbonate resin; a polystyrene resin; a polyvinyl alcohol resin; an alkali compound of an ethylene-vinyl acetate copolymer; A resin; an acetal resin; and a polyamidene resin. Among these resins, polyester resin and polyolefin resin are preferable, and PET and PEN are preferable from the viewpoints of high heat build-up, small linear expansion ratio, and low production. These resins may be used alone or in combination of two or more. The thickness of the substrate can be appropriately set, for example, in consideration of the stability at the time of producing the ruthenium film on the first film. The thickness of the substrate is preferably in the range of 5 to 5 Å/m from the viewpoint of transporting the film even in many cases. When the gas barrier layer is formed by the two plasma CVD methods, the protective film is formed by discharging the substrate of the i-th film, so that the thickness of the substrate of the second film is preferably more than 50 _, more preferably 50 to 1. 〇〇/zm. For the adhesion of the substrate 'from the protective film or to the gas barrier layer', it is preferred to carry out a surface active treatment for cleaning the surface. Such surface paint removal treatments include, for example, corona treatment, electropolymerization treatment, and flame treatment. Further, the first film and/or the second film may further include a bottom heat insulating resin layer and an adhesive layer. The undercoat layer can be formed using a primer which can be raised and adhered or adhered to the substrate. The heat-sealing resin layer can be formed by suitably using a heat-sealing resin. Adhesive Jianguang # can be formed by the use of a general adhesive, or by this kind of adhesive sword 26

3235^7 S 201222809 黏著複數層第1或第2薄膜彼此。 第4圖所示之實施形態的有機EL裝置中,亦可設置 ^ 型之有機EL元件取代底部放射型之有機el 件。 ^ 在第3圖及第4圖所示之實施形態中,亦可對 之薄膜及/或第2薄膜,進一步貼合附加之薄膜。附加 射舉例如保護有機EL裝置之表面的保護膜、防止入 取出效皁H置之外光的反射之防反㈣膜、具有提高光 之光::::積r整光的相位及偏光 膜的構成之光學薄_具有積層從此等選出之複數層薄 或第2薄膜之單面;=附加之薄膜係貼鄉 (黏著層) 較佳為具有高的阻二接者的層。可使用於黏著層之黏著劑 射出之光,通過黏著;;所示之從有機EL元件2 佳為黏著層4之光穿;朝外界射出之有機此裝置中較 以接著於黏著層4^ = ^時4,從光取出效率的觀點, 小者為佳。 %黏者層4之折射率的差之絕對值 光頌用:黏:層之黏著劑’適宜為熱硬化性黏著劑及 硬化性黏著劑等之硬化性黏著劑。 熱硬化性樹脂黏著劑可舉例如環氧系黏著劑、 酸酯系黏著劑等。 坪 323547 27 201222809 環氧系黏著劑可舉例如 紛F型環氧樹脂、及苯 ^ ς紛A型環氧樹脂、雙 劑。 %所㈣之環氧化合物的黏著 丙婦酸醋系黏著劑可舉例如含有由 酉夂、丙烯酸乙酯、丙烯酸丁酯 -甲基丙烯 :稀腈及___出之作:主二 亥主成分共聚合之單體的黏著劑。 ,_ w 光硬化性黏著劑可舉例如自 系黏著劑等。 自由基靖劑 '及陽離子 :=劑可舉例如含有環氧系樹脂一 (有機EL裝置之製造方法) 以下’參照第5圖說明有關有機虹震置之製 第5圖係概略地表示製造有機虹裳置之裝置的圖 所示之裝置係使第1薄膜1與第2薄膜U貼合,進一步將 附加之薄膜820貼合於第2薄㈣。於第i薄膜i上預先 形成有機EL元件及保護膜。 捲出輥5GG顧出預先形成有機EL元件騎護膜於其 上之第1薄膜卜捲出輥510係送出第2薄膜u。在捲 出輕500所送出之第1薄膜1上藉由第1黏著層用之塗佈 襄置610而塗佈黏著劑,形成第!勡著層。其後,藉由第 1貼合輥51卜512將第i薄膜i與經由運送輕513 323547 28 201222809 之第2薄膜11隔著第1黏著層而貼合,進一步藉由第1黏 著層用之硬化裝置611而使第1黏著層硬化(固化)。 在第2薄膜11上,藉由設置於硬化裝置611之下游側 的第2黏著層用之塗佈裝置62〇塗佈黏著劑,進一步形成 第2黏著層。接著’藉由第2貼合輥521、522將第2薄膜 11與經由捲出輥520所送出且經由運送輥523所供給之附 加的薄膜820隔著第2黏著層貼合,進一步藉由第2黏著 層用之硬化裝置621使第2黏著層硬化(固化)。其後,所 形成之有機EL裝置係藉由捲取輥53〇捲取。 附加之薄膜係可使用例如前述之薄膜。在本實施形態 中係貼合1片之附加的薄膜,但亦可依序貼合2片以上之 :力:膜貼合3片以上之薄膜時,貼合之順序可依有機 裝置之積層順序而適當變更。 藉由第2薄膜密封有機虹元件之前,阻氣性優 料所造成之阻氣性降低的保護臈預先形成 H上,㈣合上料2薄叙㈣,财在任意的驾 兄下進仃。例如可在真空中 境中進行貼合第2薄膜之 =環W、或大氣瑪 境中或大氣環财,更佳从中、’較佳為惰性氣體環 裝置之裝置不會·_錄,能;製作有㈣ 置。 ㈣簡易的步驟製造有機EL裝 f 2圖及第5㈣示之實麵 一旦捲取第1 _,保管具有第 漠膜4 弟濤膜、有機el元件及 «董膜之積層體的I不限於此 什衣 慼,亦可形成保護膜 323547 29 201222809 連續地直接貼合第2薄膜。有機EL元件藉由阻氣性優異且 可抑制因彎曲造成之阻氣性降低的保護膜來保護,故可使 捲取之上述積層體的輥在任意之環境進行保管。例如可在 真空中、惰性氣體環境中、或大氣環境中保管上述積層體。 其中,較佳在惰性氣體環境中或大氣環境中保管含有第1 薄膜之上述積層體,更佳在大氣中環境保管上述積層體。 保管用之設備不會變得複雜,而可簡易地保管上述積層體。 (有機EL元件) 然後,說明有關有機EL元件之構成。有機EL元件係 在貼合第1薄膜與第2薄膜之步驟前,形成於第1薄膜上。 有機EL元件係由陽極及陰極所構成之一對的電極、與 設置於該電極間之發光層所構成。於一對之電極間除了發 光層,必要時設有特定之層。發光層有時不限於1層而設 置有複數層。 於陰極與發光層之間所設置之層可舉例如電子注入 層、電子輸送層及電洞阻隔層等。當陰極與發光層之間設 置有電子注入層與電子輸送層兩者的層時,與陰極連接之 層稱為電子注入層,此電子注入層除外之層稱為電子輸送 層。 電子注入層係具有改善源自陰極之電子注入效率的功 能。電子輸送層係具有改善源自連接陰極側表面的層之電 子注入之功能。電洞阻擋層係具有阻擋電洞輸送之功能。 電子注入層及/或電子輸送層具有阻擋電洞輸送之功能 時,此等之層兼作為電洞阻擋層。 30 323547 201222809 電洞阻擋層具有阻擋電洞輸送之功 霍爾(Haii)電流之元件,可依據其電流值的減ίΓί:; 於陽極與發光層之間所設置的層可舉例如電洞ς入 :有==電子阻擋層等。於陽極與發光層之間設 置有電職料電讀送層兩者的層時,與陽極連接之 :稱為電洞注入層,此電洞注入層除外之層稱為電洞輸送 電洞庄入層係具有改善源自陽極之電洞注入效率的攻 能、。電洞輸送層係具有改善源自連接陽極側表面的層之電 洞注入之功能。電伟擋層有阻擋電子輸送之功能。 電洞注入層及/或電洞輸送層具有阻擒電子輪送之功能 時’此等之層兼作為電子阻擋層。 電子阻擋層具有阻擋電子輸送之功能例如製作僅流過 電子電流之s件’可依據其電流值的減少而確認。 有時總稱電子注入層及電洞注入層為電荷注入層,有 時總稱電子輸送層及電洞輸送層為電荷輸送層。 以下表示可獲得本實施型態之有機EL元件的層構成 之一例。 a) 陽極/發光層/陰極 b) 陽極/電洞注入層/發光層/陰極 c) 陽極/電洞注入層/發光層/電子注入層/陰極 d) 陽極/電洞注入層/發光層/電子輸送層/陰極 e) 陽極/電洞注入層/發光層/電子輸送層/電子注入層/陰 極 323547 31 201222809 f) 陽極/電洞輸送層/發光層/陰極 g) 陽極/電洞輸送層/發光層/電子注入層/陰極 h) 陽極/電洞輸送層/發光層/電子輸送層/陰極 1)陽極/電洞輸送層/發光層/電子輸送層/電子注入層/陰 極 j) 陽極/電洞注入層/電洞輸送層/發光層/陰極 k) 陽極/電洞注入層/電洞輸送層/發光層/電子注入層/陰 極 l) 陽極/電洞注入層/電洞輸送層/發光層/電子輸送層/陰 極 m)陽極/電洞注入層/電洞輸送層/發光層/電子輸送層/電 子注入層/陰極 a η)陽極/發光層/電子注入層/陰極 〇)!%極/發光層/電子輸送層/陰極 /陰極 所記載之2層鄰接 Ρ)陽極/發光層/電子輸送層/電子注入層 (此處,記號「/」係表示挾住記號「/」 而積層。以下相同) ===之有機EL元件亦可具有2層以上之發光 層。在上述a)至p)之層構成中的任—者, 所挾持之誠_為「構造單元A」_ 發= 可舉例如下述。)所示之層= 異早7&quot; A)的㈣祕村目同,亦可相 Q)陽極/(構造單以)/電荷產生層/(構造單元A)/陰極 323547 32 201222809 時構造單以)/電荷產生層」稱為「構造單元B」 時’具有3層以上發光層的有機EL元件之構成係可舉例如 下述r)所示之層構成。 記號「X」係表示2以上之整數,(構造單元Β)χ係表 示由積層—x段之構造單元Β所構成_層體。具有複數個 (構造單元Β)的層構成係亦可相同,亦可相異。 所謂電荷產生層係藉由施加電場以產生電洞與電子之 層。電荷產生層可舉例如含有氧化鈒、銦錫氧化物(ΐη(ΐ_ Tin Oxide :簡稱IT0)、及氧化鉬等之薄膜。 積層之層的順序、層數、及各層之厚度係可考量發光 效率及元件壽命而適當設定。 其次’更具體說明有關構成有機EL元件之各層之材料 及形成方法。 〈陽極〉 從發光層所放射之光通過陽極而射出至外界之構成的 有機EL元件時’於陽極係可使用顯示光穿透性之電極。顯 示光穿透性之電極係可使用金屬氧化物、金屬硫化物及金 屬等的薄膜,適宜為導電度及光穿透率高之電極。具體而 言,可使用氧化銦、氧化鋅、氧化錫、ΙΤ0、銦鋅氧化物 (Indium Zinc Oxide :簡稱ΙΖ0)、金、鉑、銀、及銅等所 構成之薄膜。此等之中,較佳為ΙΤ0、ΙΖ0、或氧化錫所構 成之薄膜。陽極之製作方法可舉例如真空蒸鍍法、濺鍍法、 離子鍍覆法及電鍍法等。作為該陽極亦可使用聚苯胺或其 衍生物、以及聚噻吩或其衍生物等之有機透明導電膜。 323547 33 201222809 陽極之膜厚係考量所要求之特性及步驟之簡易性等而 適當設定,例如1 Onm至10 # m ’較佳為20nm至1 &quot; m,最 佳為 50nm 至 500nm。 〈電洞注入層〉 構成電洞注入層之電洞注入材料,可舉例如氧化鈒、 氧化鉬、氧化釕、及氧化鋁等氧化物、苯基胺系化合物、 星爆型(startburst)胺系(star burst amine)化合物、酞 普(phthalocyanine)系、非晶碳(amorphous carbon)、聚 苯胺、及聚噻吩衍生物等。 電洞注入層之成膜方法’可舉例如由含有電洞注入材 料之溶液的成膜。例如藉由使含有電洞注入材料之溶液藉 由特定之塗佈法而塗佈成膜,進一步藉由固化所成膜之溶 液而形成電洞注入層。 由溶液之成膜所使用之溶劑,只要能溶解電洞注入材 料者即可,無特別限定,可舉例如氣仿、二氣甲烷及二氣 乙烷等氯系溶劑;四氫呋喃等醚系溶劑、曱苯及二曱苯等 芳香族㈣溶劑;丙酮及甲基乙基酮等_系溶劑;醋酸乙 酉曰s如~丁酉曰、乙酸乙赛路蘇(ethyl cel losolve acetate) 等酯系溶劑'以及水等。 塗佈法係可舉例如旋轉塗佈法、澆鑄法、微凹版塗佈 法、,凹版塗佈法、棒塗佈法、輥塗佈法、線棒塗佈法、浸 潰塗佈去、嘴塗法、網版印刷法、柔版印刷法、膠版印刷 法及喷墨印刷法等。 電洞/主入層之厚度係考量所求之特性及步驟之簡易性 323547 34 201222809 等而適當設定,例如1 nm至1 # m,較佳為2nm至500 // m, 更佳為5nm至200nm。 〈電洞輸送層〉 構成電洞輸送層之電洞輸送材料,可舉例如聚乙烯基 °卡°坐或其衍生物、聚碎烧(polysilane)或其衍生物、於側 鏈或主鏈具有芳香族胺之聚矽氧烷衍生物 (polysiloxane)、吡唑啉(pyrazoline)衍生物、芳基胺 (arylamine)衍生物、二苯乙稀(stilbene)衍生物、三苯基 二胺衍生物、聚苯胺或其衍生物、聚。塞吩或其衍生物、聚 芳基胺或其衍生物、聚吡咯(p〇lypyrr〇le)或其衍生物、聚 (對伸笨基伸乙烯基)(P〇ly(P_phenylenevinylene))或其 何生物、或聚(2, 5-伸噻吩基伸乙烯基)(p〇ly(2, 5_ thienylene vinylene))或其衍生物等。 此等之中電洞輸送材料,較佳為聚乙烯基咔唑或其衍 生物、聚魏或其衍生物、於側鏈或主鏈具有芳香族胺之 ,石夕氧烧減物、衫料其触物、㈣吩或其衍生物、 =基胺或其衍生物、聚(對伸笨基伸乙烯基)或其衍生 ^及聚(2’5_㈣吩基伸乙縣)或其衍生物等高分子電 洞輪送材料。更佳之電洞輸送 生抓s Μ料料W射唾或其衍 勿、米矽烷或其衍生物、於侧鏈 聚石夕氧燒衍生物。低分子之電洞具有方香族胺之 分子黏結财使用。 ㈣材㈣佳為分散於高 電洞輸送層之成膜方法並無特 洞輪送材料而言,可舉例如由 _ ’以低*子之電 有巧为子黏結劑與電洞輸 323547 35 201222809 送材料之混合液的成膜,以高分子的電洞輸送材料而兮 可舉例如由含有電洞輪送材料之溶液的成膜。 Q ’ 由溶液成膜所使用之溶劑,只要能溶解電洞輸送 者即可,無特別限定,可舉例如氯仿、二氣甲统及二氣乙 烷等氣系溶劑;四氫呋喃等_系溶劑;曱苯及二曱笨等^ 香族烴系溶劑;丙_及甲基乙基酮等酮系溶劑;醋酸乙酉旨方 醋酸丁酯及乙酸乙赛璐蘇等酯系溶劑等。 9、 由溶液成膜方法,可舉例如與前述電洞注入層的 法同樣之塗佈法。 、 與電洞輸送材料組合之高分子黏結劑,較佳為不極产 阻礙電荷輸送,或對可見光的吸收弱。此高分子黏結劑ς 自例如聚碳酸酯、聚丙烯酸酯、聚丙烯酸甲酯、聚甲基丙 烯酸曱酯、聚苯乙烯、聚氣乙烯及聚矽氧烷。 電洞輸送層之厚度係依所使用之材料而最適值相異, 依據驅動電壓與發光效率適當設定成適宜的值。電洞輸送 膜係必須至少具有不產生針孔(pin hole)之厚度,若太 厚、’兀件之驅動電壓變高。因此,該電洞輸送層之厚度例 如為lnm至1 β m’較佳為2nm至500nm,更佳為5nm至200nm。 〈發光層〉 ,發光層一般係主要由發出榮光及/或碟光之有機物(發 光材料)或該有機物與輔助此等之摻雜物所形成。接雜物 係例如用以提昇發光致率、或改變發光波長而加入。發光 層所3有之有機物可為低分子化合物或高分子化合物,一 般對溶劑之溶解性較低分子高之高分子化合物較適合使用 36 323547 201222809 於塗佈法,故發光層較佳為含有高分子化合物。發光層較 佳為含有換异成聚苯乙晞的數目平均分子量為1〇3至1〇8之 高分子化合物。構成發光層之發光材料,可舉例如以下之 色素系材料、金屬錯合物系材料、高分子系材料、摻雜物 材料。 (色素系材料) 色素系材料係可舉例如環喷達明(Cy C丨〇pendam丨此)衍 生物、四本基丁一烯(tetraphenylbutadiene)衍生物化合 物、二苯基胺衍生物、卩琴二唾(oxadiaz〇ie)衍生物、π比嗤 並喹啉(pyrazoloquinoline)衍生物、二(苯乙稀基)苯 (distyrylbenzene)衍生物、二(苯乙烯基)伸芳基 (distyrylarylene)衍生物、吡咯(pyrr〇ie)衍生物、噻吩 環化合物、吼咬(pyridine)環衍生物、紫環酮(perin〇ne) 竹生物、花(perylene)竹生物、养嗟吩(〇Hg〇thi〇phene) 衍生物、噚二唑二聚物、吡唑啉二聚物、喹吖啶酮 (quinacraidone)衍生物、香豆素(cumerin)衍生物等。 (金屬錯合物系材料) 金屬錯合物系材料例如由Tb、Eu、Dy等稀土族金屬、 或Al、Zn、Be、Ir、Pt等選出之中心金屬、與由噚二唑、 嗔二嗤(thiadiazole)、苯基吼啶、笨基苯並咪唑(phenyl benzimidazole)及喹啉(quinoline)構造等選出之配位基 的金屬錯合物。金屬錯合物系材料可舉例如銀錯合物及翻 錯合物等具有由三重態激發狀態之發光的金屬錯合物、啥 啉酚鋁(aluminum quinolinol)錯合物、笨並喹啉酚鈹錯合 323547 37 201222809 物、苯並曙唾基鋅錯合物、苯㈣ ㈣ 鋅錯合物…卜琳(P_yrine)鋅錯= '物偶,甲基 (phenanthroline)銪錯合物等。° ^非咯啉 (高分子系材料) 物、==係可舉例如聚(對伸苯基伸_衍生 聚乙块(p〇lyacetylene)街生物 物、聚乙婦基味哇衍生物# μ W(P〇lynU〇rene)衍生 物系發光㈣進行高分子化㈣或金屬錯合 稀基^^’^^材射她β苯乙 綺生物苯基心此:二:生: 對伸苯基衍=二:=:聚·卡唾衍生物、聚 發綠色蚊材料可舉例如㈣销 生物、及此等之聚合物、聚(物香足素衍 以及聚第衍生物等。其 _乙烯基)诉生物、 伸乙縣)触分子材料對伸笨基 =色光之材料可舉例如 物、及此等之聚合物 塞吩壤化合 嘆吩衍生物、以及聚第衍^伸本基伸乙婦基)衍生物、聚 :聚(對伸苯基伸。歸基)::高分子材料 生物等。 生物㈣义何生物及聚第衍 發白色光之材料亦可為上述之藍色、綠色或紅色之發 323547 38 201222809 ,亦可混合形成發各色光之材料的3235^7 S 201222809 Adhesive layers of the first or second film are in contact with each other. In the organic EL device of the embodiment shown in Fig. 4, a ^ type organic EL device may be provided instead of the bottom emission type organic EL device. ^ In the embodiment shown in Figs. 3 and 4, an additional film may be further bonded to the film and/or the second film. The additional shots are, for example, a protective film that protects the surface of the organic EL device, an anti-reflection (four) film that prevents reflection of light outside the effect soap H, and a phase and polarizing film that enhances the light of the light:::: The optical thinness of the composition has a single layer of a plurality of thin layers or a second film selected from the above; = a film attached to the home (adhesive layer) is preferably a layer having a high resistance. The light emitted from the adhesive for the adhesive layer can be adhered; the light is visible from the organic EL element 2 as the adhesive layer 4; the organic device which is emitted toward the outside is followed by the adhesive layer 4^ = ^4, from the point of view of light extraction efficiency, the smaller is better. Absolute value of the difference in refractive index of the adhesive layer 4: For the adhesive: the adhesive of the layer is suitably a hardenable adhesive such as a thermosetting adhesive and a curable adhesive. Examples of the thermosetting resin adhesive include an epoxy adhesive, an acid ester adhesive, and the like. Ping 323547 27 201222809 Epoxy adhesives include, for example, F-type epoxy resins, benzophenone A-type epoxy resins, and double agents. The adhesion of the epoxy compound of the epoxy compound of (4) may, for example, be carried out by hydrazine, ethyl acrylate, butyl acrylate-methacryl: dilute nitrile and ___ A monomer-based adhesive that is copolymerized. _ w The photocurable adhesive may, for example, be a self-adhesive or the like. For example, the epoxy resin-based resin (for example, the method for producing an organic EL device) is described below with reference to Fig. 5, which is a schematic diagram showing the production of organic rainbow. In the apparatus shown in the figure of the apparatus, the first film 1 and the second film U are bonded together, and the additional film 820 is further bonded to the second thin (four). An organic EL element and a protective film are formed in advance on the i-th film i. The take-up roll 5GG feeds the second film u by taking out the first film roll 510 which is formed on the organic EL element riding film in advance. The adhesive film is applied to the first film 1 which is fed out of the light 500 by the application layer 610 for the first adhesive layer to form the first! Squatting on the floor. Thereafter, the i-th film i and the second film 11 that transports the light 513 323 547 28 201222809 are bonded to each other via the first adhesive layer by the first bonding roller 51 512, and are further used by the first adhesive layer. The curing device 611 hardens (cures) the first adhesive layer. On the second film 11, an adhesive is applied to the coating device 62 for the second adhesive layer provided on the downstream side of the curing device 611 to further form a second adhesive layer. Then, the second film 11 and the additional film 820 fed through the take-up roll 520 and supplied via the transfer roller 523 are bonded together via the second adhesive layer by the second bonding rolls 521 and 522, and further 2 The curing device 621 for the adhesive layer hardens (cures) the second adhesive layer. Thereafter, the formed organic EL device is taken up by a take-up roll 53. As the additional film, for example, the aforementioned film can be used. In the present embodiment, one sheet of the additional film is bonded, but two or more sheets may be bonded in sequence: force: When the film is bonded to three or more films, the order of bonding may be in the order of lamination of the organic device. And change it as appropriate. Before the organic thin element is sealed by the second film, the protection of the gas barrier property caused by the gas barrier property is preliminarily formed on the H, and (4) the feed material is thinned (4), and the money is fed by any driver. For example, it is possible to bond the second film to the ring W, or the atmosphere or the atmosphere in a vacuum medium, and more preferably, the device which is preferably an inert gas ring device does not record. There are (4) sets. (4) Simple steps to manufacture the organic EL device f 2 map and the fifth (four) show the solid surface. Once the first _ is taken, the storage of the film with the first film 4, the organic EL element and the layer of the film is not limited to this. In addition, a protective film can also be formed. 323547 29 201222809 The second film is continuously bonded directly. The organic EL element is protected by a protective film which is excellent in gas barrier properties and can suppress a decrease in gas barrier properties due to bending. Therefore, the roll of the laminated body which is wound up can be stored in an arbitrary environment. For example, the laminate may be stored in a vacuum, in an inert gas atmosphere, or in an atmospheric environment. Among them, it is preferable to store the layered body containing the first film in an inert gas atmosphere or in an atmosphere, and it is more preferable to store the layered body in an atmosphere. The storage device is not complicated, and the laminate can be easily stored. (Organic EL Element) Next, the configuration of the organic EL element will be described. The organic EL device is formed on the first film before the step of bonding the first film and the second film. The organic EL element is composed of an electrode composed of an anode and a cathode, and a light-emitting layer provided between the electrodes. In addition to the luminescent layer between the electrodes of a pair, a specific layer is provided as necessary. The light-emitting layer is sometimes not limited to one layer but is provided with a plurality of layers. The layer provided between the cathode and the light-emitting layer may, for example, be an electron injecting layer, an electron transporting layer, a hole blocking layer or the like. When a layer of both the electron injecting layer and the electron transporting layer is provided between the cathode and the light emitting layer, the layer connected to the cathode is referred to as an electron injecting layer, and the layer excluding the electron injecting layer is referred to as an electron transporting layer. The electron injecting layer has a function of improving the efficiency of electron injection from the cathode. The electron transport layer has a function of improving electron injection from a layer connecting the cathode side surfaces. The hole barrier layer has the function of blocking the transport of holes. When the electron injecting layer and/or the electron transporting layer have a function of blocking the transport of holes, these layers also serve as a hole blocking layer. 30 323547 201222809 The hole barrier layer has a component that blocks the flow of the work of the hole (Haii) current, which can be reduced according to the current value. For example, the layer provided between the anode and the light-emitting layer can be, for example, a hole ς In: There is == electronic barrier layer. When a layer of both electrical and electrical electrical reading layers is disposed between the anode and the light-emitting layer, the anode is connected to the anode: a hole injection layer, and the layer other than the hole injection layer is called a hole-transporting hole. The in-layer system has the ability to improve the efficiency of hole injection from the anode. The hole transport layer has a function of improving hole injection from a layer connected to the anode side surface. The electric barrier layer has the function of blocking electron transport. When the hole injection layer and/or the hole transport layer have the function of blocking electron transfer, the layers also serve as an electron blocking layer. The electron blocking layer has a function of blocking electron transport, for example, a member s which produces only an electron current flowing, which can be confirmed by a decrease in the current value thereof. Sometimes the electron injection layer and the hole injection layer are collectively referred to as a charge injection layer, and sometimes the electron transport layer and the hole transport layer are charge transport layers. An example of the layer constitution of the organic EL device of the present embodiment can be obtained. a) anode/light-emitting layer/cathode b) anode/hole injection layer/light-emitting layer/cathode c) anode/hole injection layer/light-emitting layer/electron injection layer/cathode d) anode/hole injection layer/light-emitting layer/ Electron transport layer / cathode e) Anode / hole injection layer / luminescent layer / electron transport layer / electron injection layer / cathode 323547 31 201222809 f) anode / hole transport layer / luminescent layer / cathode g) anode / hole transport layer / luminescent layer / electron injection layer / cathode h) anode / hole transport layer / luminescent layer / electron transport layer / cathode 1) anode / hole transport layer / luminescent layer / electron transport layer / electron injection layer / cathode j) anode / hole injection layer / hole transport layer / light-emitting layer / cathode k) anode / hole injection layer / hole transport layer / light-emitting layer / electron injection layer / cathode l) anode / hole injection layer / hole transport layer / luminescent layer / electron transport layer / cathode m) anode / hole injection layer / hole transport layer / luminescent layer / electron transport layer / electron injection layer / cathode a η) anode / luminescent layer / electron injection layer / cathode 〇) !% pole / luminescent layer / electron transport layer / cathode / cathode 2 layers of adjacent Ρ) anode / luminescent layer / electron transport layer / electron injection layer (here The mark "/" indicates that the mark "/" is used to laminate the mark. The same applies to the following.) The organic EL element of === may have two or more light-emitting layers. Any one of the layer configurations of the above a) to p) is assumed to be "structural unit A" _ hair = for example, the following. The layer shown = the same as 7 (a) secret village, can also be phase Q) anode / (construction single) / charge generation layer / (structural unit A) / cathode 323547 32 201222809 The structure of the organic EL element having three or more light-emitting layers when the charge-generating layer is referred to as "structural unit B" is, for example, a layer configuration as shown in the following r). The symbol "X" indicates an integer of 2 or more, and (structural unit Β) indicates a layer body composed of a structural unit of the layer -x segment. The layer constitutions having a plurality of (structural unit 亦可) may be the same or different. The so-called charge generating layer generates a layer of holes and electrons by applying an electric field. The charge generating layer may, for example, be a film containing cerium oxide, indium tin oxide (ITO), IT_ Tin Oxide (ITO0), and molybdenum oxide. The order of the layers, the number of layers, and the thickness of each layer may be considered to be luminous efficiency. In the following, the material and the formation method of each layer constituting the organic EL element are described in more detail. <Anode> When the light emitted from the light-emitting layer is emitted through the anode and emitted to the external organic EL element An electrode for exhibiting light transmittance can be used for the anode, and a film of metal oxide, metal sulfide, or metal can be used as the electrode for exhibiting light transmittance, and an electrode having high conductivity and light transmittance is suitable. In other words, a film composed of indium oxide, zinc oxide, tin oxide, antimony 0, indium zinc oxide (Indium Zinc Oxide: ΙΖ0), gold, platinum, silver, or copper may be used. a film made of ΙΤ0, ΙΖ0, or tin oxide. Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, etc. Polyaniline or a polyaniline may be used as the anode. A derivative, and an organic transparent conductive film such as polythiophene or a derivative thereof, etc. 323547 33 201222809 The film thickness of the anode is appropriately set as required for the characteristics and the ease of the steps, for example, 1 Onm to 10 # m ' is preferable. 20 nm to 1 &quot; m, preferably 50 nm to 500 nm. <Pore injection layer> The hole injection material constituting the hole injection layer may, for example, be an oxide such as yttrium oxide, molybdenum oxide, yttrium oxide or aluminum oxide. a phenylamine compound, a startburst amine burst, a phthalocyanine system, an amorphous carbon, a polyaniline, a polythiophene derivative, etc. The film forming method of the layer may be, for example, a film formation of a solution containing a hole injecting material. For example, a solution containing a hole injecting material is applied to a film by a specific coating method, and further cured by a curing method. The film-forming solution is formed into a hole injection layer. The solvent used for film formation from the solution is not particularly limited as long as it can dissolve the hole injection material, and examples thereof include gas-mold, di-methane, and second gas. Ethyl chloride solvent; ether solvent such as tetrahydrofuran; aromatic (iv) solvent such as toluene and diphenylbenzene; solvent such as acetone and methyl ethyl ketone; acetonitrile acetate such as butyl hydrazine and ethyl acetate Ethyl cel losolve acetate), such as an ester solvent, water, etc. The coating method may, for example, be a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, or a roll coating method. , bar coating method, dip coating method, nozzle coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, etc. The thickness of the hole/main entrance layer is considered. The characteristics and the ease of the steps are appropriately set by 323547 34 201222809, etc., for example, 1 nm to 1 #m, preferably 2 nm to 500 // m, more preferably 5 nm to 200 nm. <Cell Transport Layer> The hole transport material constituting the hole transport layer may, for example, be a polyvinyl-based or a derivative thereof, a polysilane or a derivative thereof, or have a side chain or a main chain. a polysiloxane, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, or a polyphenylene oxide derivative, Polyaniline or its derivative, poly. Cephene or a derivative thereof, a polyarylamine or a derivative thereof, a polypyrrole or a derivative thereof, a poly(P-phenylenevinylene) or a Biological, or poly(2,5-thienylene vinylene) or a derivative thereof. The medium-transporting material is preferably polyvinyl carbazole or a derivative thereof, poly-Wei or a derivative thereof, an aromatic amine in a side chain or a main chain, and a stone oxide reduction material and a woven material. a polymer such as a contact substance, (tetra) phenanthrene or a derivative thereof, a base amine or a derivative thereof, a poly(p-stabilized vinyl group) or a derivative thereof, and a poly(2'5-(tetra) phenyl group) Hole feeding material. Better hole transport Raw s Μ W W 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其 或其The low-molecular hole has the molecular bond of the aromatic amine. (4) Materials (4) Good film-dispersing method for dispersing in the high-porosity transport layer. For example, there is no special hole-wheeling material, for example, _ 'low-powered sub-adhesive agent and hole 323547 35 201222809 The film formation of the mixed material of the material is formed by a solution of a polymer hole transporting material, for example, a solution containing a hole transporting material. The solvent to be used for film formation from a solution is not particularly limited as long as it can dissolve the hole transporter, and examples thereof include a gas solvent such as chloroform, dioxane and di-ethane, and a solvent such as tetrahydrofuran; Aromatic hydrocarbon-based solvents such as benzene and hydrazine; ketone-based solvents such as propyl ketone and methyl ethyl ketone; and ester solvents such as butyl acetate and ethyl acetate. 9. A method of forming a film by a solution, for example, a coating method similar to the method of the above-described hole injection layer. The polymer binder combined with the hole transporting material is preferably incapable of hindering charge transport or weak absorption of visible light. The polymer binder is derived from, for example, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polystyrene, and polyoxyalkylene. The thickness of the hole transport layer varies depending on the material to be used, and is appropriately set to an appropriate value in accordance with the driving voltage and the luminous efficiency. The hole transport film system must have at least a thickness that does not cause pin holes, and if it is too thick, the driving voltage of the device becomes high. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 β m', preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. <Light-emitting layer> The light-emitting layer is generally formed mainly of an organic substance (light-emitting material) that emits glory and/or light, or an organic substance and a dopant that assists the same. The inclusions are added, for example, to increase the luminescence rate or to change the luminescence wavelength. The organic substance in the light-emitting layer 3 may be a low molecular compound or a high molecular compound. Generally, a polymer compound having a low solubility in a solvent and a high molecular weight is suitable for use in the coating method, so the light-emitting layer is preferably high. Molecular compound. The light-emitting layer is preferably a polymer compound having a number average molecular weight of from 1 to 3 to 1 inclusive of polystyrene. Examples of the light-emitting material constituting the light-emitting layer include the following pigment-based materials, metal-based compound materials, polymer-based materials, and dopant materials. (Pigmentary Material) The dye-based material may, for example, be a derivative of Cyclafamine, a tetraphenylbutadiene derivative compound, a diphenylamine derivative, or a xylophone. An oxadiaz〇ie derivative, a pyrazoloquinoline derivative, a distyrylbenzene derivative, a di(styryl)distyrylarylene derivative, Pyrrole (pyrr〇ie) derivative, thiophene ring compound, pyridine ring derivative, perin〇ne bamboo organism, perylene bamboo organism, 嗟Hg〇thi〇phene a derivative, an oxadiazole dimer, a pyrazoline dimer, a quinacraidone derivative, a cumin derivative, or the like. (Metal complex material) The metal complex material is, for example, a rare earth metal such as Tb, Eu or Dy, or a central metal selected from Al, Zn, Be, Ir, Pt or the like, and oxadiazole and ruthenium. A metal complex of a selected ligand such as thiadiazole, phenyl acridine, phenyl benzimidazole, and quinoline structure. The metal complex-based material may, for example, be a metal complex having a luminescence excited by a triplet state, such as a silver complex or a complex compound, an aluminum quinolinol complex, and cumene quinolol.铍 合 323 547 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 323 ° ^Non-rotop (polymer material), == can be, for example, poly(p-phenylene)-derived p乙lyacetylene street organism, poly-glycosyl-wow derivative # μ W (P〇lynU〇rene) Derivatives of luminescence (4) Polymerization (4) or metal mismatched dilute base ^^'^^ material shot her beta phenyl hydrazine bio phenyl heart This: two: raw: phenylene = two: =: poly card derivative, poly hair green mosquito material can be mentioned, for example, (four) pin organisms, and such polymers, poly (sugar derivatives and poly derivatives). Its _ vinyl) (Voice, Shin-Bei) Touching Molecular Materials For the materials of the stupid base = color light, for example, the polymer plugging and stimuli derivatives of the polymer, and the polythene extensions Derivatives, poly: poly (p-phenylene extension. base):: polymer materials and so on. Bio-(4) 义何生物和聚代衍 The white light material can also be the above-mentioned blue, green or red hair 323547 38 201222809, or can be mixed to form a material of various colors of light.

體發白色光之元件。 (摻雜物材料) 各色光的材料之混合物 成分(單體)’將此 烯(rubrene)衍生物 (squaryl ium)衍生物 掺雜物材料可舉例如錢生物、香豆素衍生物、红榮 、唆吖唆酮衍生物、方酸内鏽 、卟啉衍生物、苯乙烯系色素、稠四 本(tetracene)仿生物、π比嗤酮(pyraz〇i〇ne)衍生物、十環 稀(Decacyclene)衍生物、及啡曙哄酮(phen〇xaz〇ne)衍 生物。發光層之厚度一般約為2nm至2〇〇nm。 〈發光層之成膜方法〉 發光層之成膜方法係使用塗佈含有發光材料之溶液的 方法、真空蒸鍍法、及轉印法等。由溶液成膜所使用的溶 劑,可舉例如與從溶液使電洞注入層成膜時所使用之前述 的溶劑同樣的溶劑。 塗佈含有發光材料之溶液的方法,可舉例如旋轉塗佈 法、澆鑄法、微凹版塗佈法、凹版塗佈法、棒蜜法、輥塗 法、線棒塗佈法、浸潰塗佈法、狹縫塗佈法、毛細管塗佈 法、喷塗法及喷嘴塗佈法等塗佈法、以及凹版印刷法、網 版印刷法、.柔版印刷法、膠版印刷法、反轉印刷法、及喷 墨印刷法等印刷法。就圖案形成及多色之分蜜容易性而 言,較佳為凹版印刷法、網版印刷法、柔版印刷法、膠版 印刷法、反轉印刷法及喷墨印刷法等印刷法。顯示昇華性 39 323547 201222809 之低分子化合物時’可使用真空蒸鍍法。藉由以雷射之轉 印或熱轉印’亦可使用只於所希望的部分形成發光層的方 法。. 〈電子輸送層〉 構成電子輸送層之電子輸送材料係可使用一般所使用 之材料’可舉例如曙二唑衍生物、蔥醌二甲院 (anthraquinone dimethane)或其衍生物、苯酿i (benzoquinone)或其衍生物、萘醌(naphthoquinone)或其 衍生物、蒽職(anthraquinone)或其衍生物、四氰蒽醌二甲 烧(tetracyanoanthraquinone dimethane)或其衍生物、苐 酮(fluorenone)衍生物、二苯基二氰乙烯(diphenyl dicyanoethylene)或其衍生物、聯苯醌(diphenoquinone) 衍生物、或8-羥基喹啉(8-hydroxyquinoline)或其衍生物 之金屬錯合物、聚啥嚇·或其衍生物、聚噎卩萼琳 (polyquinoxaline)或其衍生物、聚g或其衍生物等。 此等之中,電子輸送材料較佳為噚二唑衍生物、苯酿 或其衍生物、蒽醌或其衍生物、或8-羥喹啉或其衍生物之 金屬錯合物、聚喹啉或其衍生物、聚喹卩萼啉或其衍生物、 及聚第或其衍生物,更佳為2_(4-聯苯基第三丁基 苯基)-1,3, 4-卩萼二唑、苯醌、蒽醌、三(8—喹啉酚)鋁、及 聚喹琳。 電子輸送層之成膜法並無特別限制。當為低分子之電 子輸送材料時,可舉例如由粉末之真空蒸鍍法、或溶由液 或熔融狀態之成膜,當為高分子之電子輸送材料時命可= 323547 40 201222809 例如由溶液或炼融狀態之成膜。當由溶液或溶融狀態之成 膜時’亦可併用高分子黏結劑。從溶液使電子輸送層成膜 之方法’可舉例如與從前述溶液使電洞注入層成膜的方法 同樣之成膜法。 電子輸送層之厚度係依所使用之材料其最適值相異, 適宜設定使驅動電壓與發光效率成為適度的值。電子輸送 層係必須至少具有不產生針孔的厚度,若太厚,元件之驅 動電壓變高。因此,該電子輸送層之厚度,例如為lnm至 1 // m ’較佳為2nm至500nm,更佳為5nm至200nm。 〈電子注入層&gt; 構成電子注入層之材料係依據發光層之種類而適當選 擇最適的材料。構成電子注入層之材料,可舉例如含^由 驗金屬驗土族金屬、含有驗金屬及驗土族金屬選出之1 種類以上之金屬的合金、鹼金屬或鹼土族金屬之氧化物、 鹵化物、碳酸化物、及此等之物質的混合物等。鹼金屬、 驗金屬之氧化物、^化物、碳酸化物之例,可舉例如鐘、 鈉、鉀、H氧化鐘、氟化鐘、氧化納、氟化納 ::鉀、氧化铷、氟化-、氧化铯、氣化鉋、碳酸 土族金屬之氧化物、自— 氧化約、龜:令鋇、锶、氧化鎂、氟化鎂、 酸鎮等。==鎖、_、氧化錄侧及碳 成,電子注亦可以積層2層以上之積層體構 入層可,可舉例如LiF/Ga、。電子注 二、錄法、_法或印刷法等形成。電子注入層 323547 41 201222809 之膜厚宜為lnm至左右。 〈陰極〉 陰,之材料較佳為功函數小,電子容易注入發光層且 導電度高的材料。從陽極側取出光之構成的有機el元件係 為使從發光層所放射之光在陰極朝陽極側反射,作為陰極 之材料較佳為可見統射率高的材料 。陰極之材料可使用 =如驗金屬、驗土族金屬、過渡金屬及週期表之第Η族金 、等陰極之材料可使用例如趣、鈉、鉀、铷、铯、鈹、 鎮詞^、鋇、紹、筑、銳、辞、紀、姻、姉、彭、銷、 錢、镱等金屬、及含有從此等選出之2種以上金屬之合金、 從所述金屬選出之i種以上與金、銀、翻、銅、猛、欽、 銘、鎳、嫣及錫選出之i種以上的合金、或石墨或石墨層 間化合物等。合金之例可舉例如鎮—銀合金、鎮一姻合金、 鎬-铭合金、銦-銀合金、鋰-銘合金、鋰-鎂合金、鋰-銦合 金及躬-紹合金等。陰極可使用由導電性金屬氧化物及導電 ί1 生,機物等所構成之透明導電性電極。具體而言導電性金 屬氧化物可舉例如氧化銦、氧化辞、氧化錫、⑽、及⑽, 作為導電性有機物,可舉例如聚苯胺或其衍生物、聚嘆吩 或-衍生物等。陰極亦可以積層2層以上之積層體所構 成。有時亦可使用電子注人層作為陰極。 &amp;陰極之厚度係考量所求之特性及步驟之簡易性等而適 :設定,例如1〇nm至10_,較佳為2〇nm至_,最佳 為 50nm 革 500nm。 陰極之製作方法可,舉例如真空蒸鑛法、麟法、及 323547 42 201222809 熱壓附金屬薄膜之積層法等。 以上之有機el裝置藉由追加特定之構成要件可作為 照明裝置、面光源裝置或顯示裝置使用。 (實施例) (參考例A1) 使用則述第2圖所示之製造裝置,於未形成有機乩元 件之基材上直接形成保護獏。亦即,使用雙轴延伸之聚蔡 一甲酸乙一醋薄膜(PEN薄獏、厚度:1〇〇以m、寬度:35〇匪、 帝人杜邦薄膜(股)製、商品名「TeonexQ65FA」)作為基材, #此安裝於送出轉7Q卜繼而,對成膜棍31與成膜輥32 之間施加磁場’同時對成臈輥31與成膜輥32分別供給電 力’於成膜親31與成膜輥32之間放電而產生電漿。於所 形成之放電區域供給成職體(作為原料氣體之六甲基二 石夕氧^OmDSO)與作為反縣體之氧氣(亦作為放電氣體之 功能)的混合氣體),以下述條件藉由電漿CVD法進行薄膜 形成’於基材上形成保護膜。 〈成膜條件〉 原料氣體之供給量:50 seem(零度、換算成latm之A component that emits white light. (Dop material) Mixture of materials of various colors of light (monomer) 'This ruthene derivative derivative material can be, for example, money organism, coumarin derivative, Hongrong , anthrone derivatives, squaric acid rust, porphyrin derivatives, styrene pigments, tetracene imitation organisms, py pyridones (pyraz〇i〇ne) derivatives, decacyclic ( Decacyclene) derivatives, and phenex xaz〇ne derivatives. The thickness of the luminescent layer is generally from about 2 nm to about 2 Å. <Method of Forming Light Emitting Layer> The film forming method of the light emitting layer is a method of applying a solution containing a light emitting material, a vacuum deposition method, a transfer method, or the like. The solvent to be used for film formation from the solution may, for example, be the same solvent as the solvent used for forming the hole injection layer from the solution. Examples of the method of applying the solution containing the luminescent material include a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a stick honey method, a roll coating method, a wire bar coating method, and a dipping coating method. Coating methods such as a method, a slit coating method, a capillary coating method, a spray coating method, and a nozzle coating method, and a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, and a reverse printing method And printing methods such as inkjet printing. In terms of pattern formation and ease of coloring of a plurality of colors, printing methods such as a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an inkjet printing method are preferred. When the sublimation property of 39 323547 201222809 is shown as a low molecular compound, vacuum evaporation can be used. A method of forming a light-emitting layer only for a desired portion can also be used by laser-transfer or thermal transfer. <Electron transport layer> The electron transport material constituting the electron transport layer can be a commonly used material, for example, an oxadiazole derivative, anthraquinone dimethane or a derivative thereof, and benzene brewing i ( Benzoquinone) or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyanoanthraquinone dimethane or a derivative thereof, a fluorenone derivative , diphenyl dicyanoethylene or a derivative thereof, a diphenoquinone derivative, or a metal complex of 8-hydroxyquinoline or a derivative thereof, Or a derivative thereof, polyquinoxaline or a derivative thereof, polyg or a derivative thereof, or the like. Among these, the electron transporting material is preferably an oxadiazole derivative, a benzene styrene or a derivative thereof, hydrazine or a derivative thereof, or a metal complex of 8-hydroxyquinoline or a derivative thereof, polyquinoline. Or a derivative thereof, polyquinoxaline or a derivative thereof, and polydi or a derivative thereof, more preferably 2_(4-biphenylt-butylphenyl)-1,3,4-anthracene Oxazole, benzoquinone, anthracene, tris(8-quinolinol) aluminum, and polyquinoline. The film formation method of the electron transport layer is not particularly limited. When it is a low-molecular electron transporting material, for example, a vacuum vapor deposition method of a powder, or a film formation in a molten liquid or a molten state, when it is a polymer electron transporting material, the life can be = 323547 40 201222809 For example, from a solution Or film formation in a fused state. When a film is formed from a solution or a molten state, a polymer binder may be used in combination. The method of forming the electron transporting layer from the solution is, for example, a film forming method similar to the method of forming a hole in the hole injection layer from the solution. The thickness of the electron transporting layer is different depending on the optimum value of the material to be used, and it is preferable to set a value such that the driving voltage and the luminous efficiency are moderate. The electron transport layer must have at least a thickness that does not cause pinholes, and if it is too thick, the driving voltage of the components becomes high. Therefore, the thickness of the electron transporting layer is, for example, from 1 nm to 1 // m ', preferably from 2 nm to 500 nm, more preferably from 5 nm to 200 nm. <Electron Injection Layer> The material constituting the electron injection layer is appropriately selected depending on the kind of the light-emitting layer. The material constituting the electron injecting layer may, for example, be an alloy containing a metal of a metal test group, a metal containing one or more types selected from a metal and a test group metal, an oxide of an alkali metal or an alkaline earth metal, a halide, or a carbonic acid. a compound, a mixture of such substances, and the like. Examples of the alkali metal, the metal oxide, the compound, and the carbonate include, for example, a clock, a sodium, a potassium, an H oxidation clock, a fluorination clock, a sodium oxide, a sodium fluoride: potassium, cerium oxide, and fluorination- , cerium oxide, gasification planer, oxide of carbonated metal, self-oxidation, turtle: strontium, barium, magnesium oxide, magnesium fluoride, acid town, etc. == lock, _, oxidation recording side, and carbon formation, and the electron injection may be a laminate of two or more layers, and may be, for example, LiF/Ga. E-notes 2. Recording, _ method or printing method. The electron injection layer 323547 41 201222809 film thickness should be about 1 nm to the left and right. <Cathode> The material of the cathode is preferably a material having a small work function and electrons which are easily injected into the light-emitting layer and have high conductivity. The organic EL element having light-removed light from the anode side is such that the light emitted from the light-emitting layer is reflected toward the anode side at the cathode, and the material of the cathode is preferably a material having a high conductivity. The material of the cathode can be used, for example, metals such as metals, soils of the soil tester, transition metals, and metals of the third group of the periodic table, such as fun, sodium, potassium, cesium, cesium, strontium, samarium, Metals such as Shao, Zhu, Rui, Ci, Ji, Marriage, Yi, Peng, Pin, Qian, Qi, and other alloys containing two or more metals selected from the above, and more than one or more selected from the metal and gold, silver , overturned, copper, fierce, chin, ming, nickel, niobium and tin selected more than one type of alloy, or graphite or graphite intercalation compounds. Examples of the alloy include, for example, a town-silver alloy, a town-in-law alloy, a bismuth alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a bismuth-salt alloy. As the cathode, a transparent conductive electrode made of a conductive metal oxide, a conductive material, or the like can be used. Specific examples of the conductive metal oxide include indium oxide, oxidized sugar, tin oxide, (10), and (10). Examples of the conductive organic substance include polyaniline or a derivative thereof, a polystimene or a derivative. The cathode may also be formed by laminating two or more layers. Sometimes an electron injection layer can also be used as the cathode. The thickness of the cathode is determined by considering the characteristics and the ease of the steps, and the like: for example, 1 〇 nm to 10 Å, preferably 2 〇 nm to _, and most preferably 50 nm leather 500 nm. The method for producing the cathode can be, for example, a vacuum distillation method, a lining method, and a lamination method of a hot-pressed metal film of 323547 42 201222809. The above organic EL device can be used as a lighting device, a surface light source device, or a display device by adding a specific constituent element. (Example) (Reference Example A1) Using the manufacturing apparatus shown in Fig. 2, a protective crucible was directly formed on a substrate on which an organic germanium element was not formed. That is, using a biaxially stretched film of polyacetate ethyl vinegar (PEN thin, thickness: 1 inch in m, width: 35 inches, manufactured by Teijin DuPont Film Co., Ltd., trade name "Teonex Q65FA") The material is placed on the transfer roller 7Q, and then a magnetic field is applied between the film formation roller 31 and the film formation roller 32, and the electric power is supplied to the film formation roller 31 and the film formation roller 32, respectively. The rollers 32 are discharged to generate plasma. By supplying a service body (hexamethyldiazepine oxygenOmDSO as a material gas) and a gas mixture (as a function of a discharge gas) in the discharge region formed by the following conditions, by the following conditions The plasma CVD method performs film formation to form a protective film on a substrate. <Film formation conditions> Supply amount of raw material gas: 50 seem (zero degree, converted to lapm

Standard Cubic Centimeter per Minute,以下相同) 氧氣之供給量:500 seem 真空腔室内之真空度:3Pa 自電漿產生用電源之施加電力:0. 8Kw 自電漿產生用電源之頻率:70kHz 薄膜之運送速度:〇.5m /分鐘 43 323547 201222809 形成於基材上之保s蔓膜的厚度為〇.3em。此外’形成 有保護膜之基材的水蒸氣穿透度在溫度4〇°c、低濕度侧之 濕度〇%RH、高濕度側之濕度90%RH之條件中為3. lxlO-4 g/(m2 ·天),在溫度40°C、低濕度側之濕度、高濕 度侧之濕度100%RH之條件中為檢測極限以下之值。再者, 以曲率半徑8mm之條件使基材與保護膜一起彎曲後之溫度 40°C、低濕度侧之濕度10%RH、高濕度側之濕度之 條件的水蒸氣牙透度為檢測極限以下之值,嫁認即使彎曲 保護膜時亦可充分抑制阻氣性之降低。 有關基材上之保護膜,以下述條件進行xps深度輪廊 測定’得_分布曲線、氧分布曲線、碳分布曲線及氧碳 分布曲線。 蝕刻離子種:氬(Ar+) 蝕刻率(si〇2熱氧化膜換算值):〇 〇5nm/sec 蝕刻間隔(Si〇2換算值):i〇nm X射線光電子分光裝置:The咖FisherScientific 公司製 機種名「VG Theta Probe」 照射X射線.早結晶分光A1 κ α X射線之焦點及其大小:800 j uu&gt;&lt;4〇〇/zm之橢圓形 將所得到之矽分布曲線、氣八+ 乳刀布曲線及碳分布曲線分 別表示於第6圖中。有關所得到少^ 』之矽分布曲線、氧分布曲 線及碳分布曲線,合併原子比(眉2 * 、项子濃度)與蝕刻時間之關 係以及原子比(原子濃度)與離保㈣㈤t 323547 44 201222809Standard Cubic Centimeter per Minute, the same as below) Oxygen supply: 500 seem Vacuum in vacuum chamber: 3Pa Applied power from plasma generation power supply: 0. 8Kw Frequency of self-generating power supply: 70 kHz Film transport Speed: 〇.5m / min 43 323547 201222809 The thickness of the smear film formed on the substrate is 〇.3em. l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l (m2 · day), which is a value below the detection limit in a condition of a temperature of 40 ° C, a humidity on a low humidity side, and a humidity of 100% RH on a high humidity side. Further, the water vapor opacity under the condition that the substrate is bent with the protective film at a temperature of 40 ° C, the humidity at the low humidity side is 10% RH, and the humidity at the high humidity side is less than the detection limit, with a radius of curvature of 8 mm. The value is such that even if the protective film is bent, the reduction in gas barrier properties can be sufficiently suppressed. Regarding the protective film on the substrate, the xps depth rim measurement, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve were measured under the following conditions. Etching ion species: argon (Ar+) etching rate (si〇2 thermal oxide film conversion value): 〇〇5nm/sec etching interval (Si〇2 conversion value): i〇nm X-ray photoelectron spectroscopy device: The coffee Fisher Scientific company Model name "VG Theta Probe" Irradiation X-ray. Early crystal spectroscopy A1 κ α X-ray focus and its size: 800 j uu&gt;&lt;4〇〇/zm ellipse will get the 矽 distribution curve, gas eight + The latex cloth curve and the carbon distribution curve are shown in Fig. 6, respectively. Regarding the obtained 少 distribution curve, oxygen distribution curve and carbon distribution curve, the relationship between the atomic ratio (brow 2 *, the concentration of the item) and the etching time, and the atomic ratio (atomic concentration) and the separation (four) (f) t 323547 44 201222809

關係表示於第7圖之R 圖表中。第7圖之圖表的橫軸記載的 π # β」係從蝕刻時間與蝕刻速度計算而求出之值。 從第6圖及第7固 a _ ,圖所示之結果清楚地確認所得到之碳 =複數個明確的極值,.碳原子比之最大值與最 小值之差為5at%以μ ,^ ^ ^ ^ 上’以及在保護膜之厚度方向的90°/〇以 上域中,砂的盾 ./1N 子比、氧的原子比及碳的原子比滿足 刖述式(1)所示之條件。 (參考例A2) 美好,1有參考例A1所得到之厚度G. 3#m的保護膜之 於送㈣701,於保護膜之表面上形成新 右倮、矛、此以外係與參考例Α1同樣做法,而得到形成 膜之基材(A)。在形成有保護膜之基材(A)的基材 (她之保護膜的厚度為〇. 一。 使形成有保護膜之基材(A)安裝於送出輥701,於保護 膜之表面上形成新的保護膜。除此以外係與參考例A1同樣 做法,而得到形成有保護膜之基材⑻。 形成有保護膜之基材(B)的基材之保護膜的厚度為〇. 9 fm。形成有保護臈之基材(B)的水蒸氣穿透度在溫度40 C、低濕度側之濕度⑽RH、高濕度侧之濕度90% RH之條 件中為6.9xl〇-4 g/(m2 •天),在溫度4(rc、低濕度侧之濕 度10% RH、高濕度側之濕度1〇〇% RH之條件中為檢測極限 以下之值。再者,以曲率半徑8mm之條件使基材與保護膜 一起彎曲後之溫度40Ϊ、低濕度側之濕度10%RH、高濕度 侧之濕度100% RH之條件的水蒸氣穿透度為檢測極限以下 323547 45 201222809 之值’確認即使彎曲保護膜時亦可充分抑制阻氣性之降低。 對於形成有保護膜之基材(B),使矽分布曲線、氧分布 曲線、碳分布曲線及氧碳分布曲線藉由與參考例A1之方法 同樣的方法製作。將所得到之結果表示於第8圖中。有關 矽分布曲線、氧分布曲線、碳分布曲線及氧碳分布曲線, 合併原子比(原子濃度)與#刻時間之關係以及原子比(原 子濃度)與離保護膜之表面的距離(nm)之關係表示於第9 圖之圖表中。第9圖之圖表的橫軸記載的「距離(nm)」係 從蝕刻時間與蝕刻速度計算而求出之值。 從第8圖及第9圖所示之結果清楚地確認所得到之碳 分布曲線具有複數個明確的極值,碳原子比之最大值與最 小值之差為5at%以上,以及在保護膜之厚度方向的90%以 上之區域中,矽的原子比、氧的原子比及碳的原子比滿足 前述式(1)所示之條件。 (參考例A3) 除了使原料氣體之供給量為l〇〇SCCH1以外,其餘係與 參考例A1同樣做法而得到形成有保護膜之基材。 基材上之保護瞑的厚度為0.6形成有保護膜之基 材的水蒸氣穿透度在溫度4〇。(:、低濕度側之濕度0% RH、 咼濕度側之濕度90% RH之條件中為3. 2xl0_4g/(m2 ·天), 在溫度40°C、低濕度側之濕度1〇% rh、高濕度側之濕度 100% RH之條件中為檢測極限以下之值。再者’以曲率半 徑8mm之條件使基材與保護膜一起彎曲後之溫度4〇。(:、低 濕度側之濕度10% RH、高濕度側之濕度100% RH之條件的 46 323547 201222809 水蒸氣穿透度為檢測極限以下之值,確認即使彎曲保護膜 時亦可充分抑制阻氣性之降低。 有關形成於基材上之保護膜,使石夕分布曲線、氧分布 曲線、碳分布曲線及氧碳分布曲鍊藉由與參考例A1之方法 同樣的方法製作。將所得到之矽分布曲線、氧分布曲線及 碳分布曲線表示於第10圖中。有關所得到之矽分布曲線、 氧分布曲線、碳分布曲線及氧碳分布曲線,合併原子比(原 子濃度)與蝕刻時間之關係以及原子比(原子濃度)與離保 護膜之表面的距離(nm)之關係表示於第丨丨圖之圖表中。第 Π圖之圖表的橫軸記載的「距離(nm)」係從蝕刻時間與蝕 刻速度計算而求出之值。 從第10圖及第11圖所示之結果清楚地確認所得到之 碳分布曲線具有複數個明確的極值,碳原子比之最大值與 最小值之差為5at%以上,以及在保護膜之厚度方向的90% 以上之區域中,矽的原子比、氧的原子比及碳的原子比滿 足月ϋ述式(1)所示之條件。 (參考比較例Α1) 於雙軸延伸之聚萘二曱酸乙二酯薄膜(ΡΕΝ薄膜、厚 度· 10〇em、寬度:350mm、帝人杜邦薄膜股份公司製、商 品名「TeonexQ65FA」)之表面上,使用矽靶材,在含有氧 的環境中,藉由反應濺.鍍法形成由氧化矽所構成之保護 膜,得到形成有用以比較之保護膜的基材。 基材上之保護膜的厚度為1〇〇#m。此外形成有保護膜 之基材的水蒸氣穿透度在溫度4(rc、低濕度側之濕度1〇0/〇 47 323547 201222809 RH、兩濕度側之濕度1 〇〇%仙之條件中為1. 3 g/(m2 •天), 其阻氣性不足。 有關形成有保護膜之基材,使矽分布曲線、氧分布曲 線、碳分布曲線及氧碳分布曲線藉由與參考例A1之方法同 樣的方法製作。將所得到之料布曲線、氧分布曲線及碳 分布曲線表示於第12圖中。有關所得到之矽分布曲線、氧 分布曲線、碳分布曲線及氧碳分布曲線,合併原子比(原子 濃度)與姓刻時間之關係以及原子比(原子濃度)與離保護 膜之表面的距離(nm)之關係表示於第13圖之圖表中。第 13圖之圖表的橫轴記載的「距離(nm)」係從敍刻時間與蝕 刻速度計算而求出之值。從第12圖及第13圖所示之結果 清楚地確認所得到之碳分布曲線不具有極值。 (產業上之可利用性) ^如以上說明般’在本發明之有機EL元件卡所利用的保 濩膜具有充分的阻氣性,而且即使在彎曲時,亦可充分抑 制阻氣性之降低。 【圖式簡單說明】 第1圖係表示一實施形態的有機EL裝置之截面圖。 第2圖係表示製造保護膜之裝置的一實施形態之模式 圖0 第3圖係表示一實施形態的有機EL裝置之截面圖。 第4圖係表示一實施形態的有機EL裝置之截面圖。 第5圖係表示用以製造有機EL裝置之裝置的一實施形 態之概念圖。 48 323547 201222809 第6圖係表示在參考例A1所得到之保護膜的矽分布曲 線、氧分布曲線及碳分布曲線的圖表。 第7圖係表示在參考例A1所得到之保護膜的矽分布曲 線、氧分布曲線、碳分布曲線及氧碳分布曲線的圖表。 第8圖係表示在參考例A2所得到之保護膜的矽分布曲 線、氧分布曲線、碳分布曲線及氧碳分布曲線的圖表。 第9圖係表示在參考例A2所得到之保護膜的矽分布曲 線、氧分布曲線、碳分布曲線及氧碳分布曲線的圖表。 第10圖係表示在參考例A3所得到之保護膜的矽分布 曲線、氧分布曲線及碳分布曲線的圖表。 第11圖係表示在參考例A3所得到之保護膜的矽分布 曲線、氧分布曲線、碳分布曲線及氧碳分布曲線的圖表。 第12圖係表示在參考比較例A1所得到之保護膜的矽 分布曲線、氧分布曲線及碳分布曲線的圖表。 第13圖係表示在參考比較例A1所得到之保護膜的矽 分布曲線、氧分布曲線、碳分布曲線及氧碳分布曲線的圖 表。 【主要元件符號說明】 1 第1薄膜 2 有機EL元件 3 保護膜 4 黏著層 5 阻氣層 6 第2薄膜之基材 49 323547 201222809 7 8 11 13 2卜 22、23、24 31 ' 32 41 51 61 ' 62 500 、 510 、 520 51卜 512 513 、 523 521 、 522 530 610 、 620 611 ^ 621 701 702 820 第1薄膜之基材 第2阻氣層 第2薄膜 有機EL裝置 運送輥 一對之成膜輥 氣體供給管 電漿產生用電源 磁場產生裝置 捲出輥 第1貼合輥 運送輥 第2貼合輥 捲取輥 塗佈裝置 硬化裝置 送出輥 捲取輥 加成薄膜 50 323547The relationship is shown in the R chart in Figure 7. π #β" described on the horizontal axis of the graph of Fig. 7 is a value obtained by calculation from the etching time and the etching rate. From Fig. 6 and the seventh solid a _ , the results shown in the figure clearly confirm that the obtained carbon = a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the carbon atom ratio is 5 at% to μ, ^ ^ ^ ^ Upper 'and the 90°/〇 above the thickness direction of the protective film, the sand shield. /1N ratio, the atomic ratio of oxygen and the atomic ratio of carbon satisfy the conditions shown in the formula (1) . (Reference Example A2) It is preferable that the protective film of the thickness G. 3#m obtained in Reference Example A1 is sent to (4) 701, and a new right ridge or spear is formed on the surface of the protective film. This is the same as the reference example Α1. Thus, a substrate (A) forming a film is obtained. The substrate of the substrate (A) having the protective film formed thereon (the thickness of the protective film of the film is 〇. 1. The substrate (A) having the protective film formed thereon is attached to the delivery roller 701, and formed on the surface of the protective film. A new protective film was obtained in the same manner as in Reference Example A1, and a substrate (8) having a protective film was formed. The thickness of the protective film of the substrate on which the protective film substrate (B) was formed was 〇. 9 fm The water vapor permeability of the substrate (B) forming the protective crucible is 6.9xl 〇 -4 g / (m2) in the condition of temperature 40 C, humidity on the low humidity side (10) RH, and humidity on the high humidity side 90% RH. • Day), which is the value below the detection limit in the condition of temperature 4 (rc, humidity 10% RH on the low humidity side, and humidity 1〇〇% RH on the high humidity side. Further, the base is made with a radius of curvature of 8 mm. The temperature after the material is bent together with the protective film 40 Ϊ, the humidity on the low humidity side is 10% RH, and the humidity on the high humidity side is 100% RH. The water vapor permeability is below the detection limit 323547 45 201222809 value 'confirm even bending protection In the case of a film, the gas barrier property can be sufficiently suppressed. For the substrate (B) on which the protective film is formed, the enthalpy is divided. The curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve were produced in the same manner as in the method of Reference Example A1, and the obtained results are shown in Fig. 8. Regarding the enthalpy distribution curve, the oxygen distribution curve, and the carbon distribution Curve and oxycarbon distribution curve, the relationship between the combined atomic ratio (atomic concentration) and #刻时间, and the relationship between the atomic ratio (atomic concentration) and the distance from the surface of the protective film (nm) are shown in the graph of Fig. 9. The "distance (nm)" described on the horizontal axis of the graph of Fig. 9 is a value calculated from the etching time and the etching rate. The carbon distribution curve is clearly confirmed from the results shown in Figs. 8 and 9. Having a plurality of distinct extreme values, the difference between the maximum and minimum values of the carbon atom ratio is 5 at% or more, and in the region of more than 90% of the thickness direction of the protective film, the atomic ratio of bismuth, the atomic ratio of oxygen, and carbon The atomic ratio of the above formula (1) is satisfied. (Reference Example A3) A substrate having a protective film was obtained in the same manner as in Reference Example A1 except that the supply amount of the material gas was l〇〇SCCH1. Substrate The thickness of the protective enamel is 0.6. The water vapor permeability of the substrate on which the protective film is formed is at a temperature of 4 〇 (:, humidity on the low humidity side is 0% RH, and humidity on the humidity side is 90% RH). 3. 2xl0_4g/(m2 · day), in the condition of temperature 40 ° C, humidity of 1低% rh on the low humidity side, humidity 100% RH on the high humidity side, the value below the detection limit. The condition of 8 mm makes the substrate and the protective film bend together at a temperature of 4 〇. (:, humidity on the low humidity side is 10% RH, humidity on the high humidity side is 100% RH conditions 46 323547 201222809 Water vapor permeability is detected When the protective film is bent, it is confirmed that the decrease in gas barrier properties can be sufficiently suppressed even when the protective film is bent. With respect to the protective film formed on the substrate, the Shishi distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve were produced in the same manner as in the method of Reference Example A1. The obtained enthalpy distribution curve, oxygen distribution curve and carbon distribution curve are shown in Fig. 10. The relationship between the atomic ratio (atomic concentration) and the etching time, and the atomic ratio (atomic concentration) and the distance from the surface of the protective film (nm) The relationship is shown in the chart of the figure. The "distance (nm)" described on the horizontal axis of the graph of the first diagram is a value obtained by calculating the etching time and the etching speed. It is clearly confirmed from the results shown in Figs. 10 and 11 that the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the carbon atom ratio is 5 at% or more, and in the protective film. In the region of 90% or more in the thickness direction, the atomic ratio of ruthenium, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions shown in the formula (1). (Reference Example 1) On the surface of a biaxially stretched polyethylene naphthalate film (ΡΕΝ film, thickness · 10 〇 em, width: 350 mm, manufactured by Teijin DuPont Film Co., Ltd., trade name "Teonex Q65FA") Using a ruthenium target, a protective film made of ruthenium oxide was formed by a reactive sputtering method in an oxygen-containing environment to obtain a substrate having a protective film to be compared. The thickness of the protective film on the substrate was 1 〇〇 #m. Further, the water vapor permeability of the substrate on which the protective film is formed is 1 in the condition of temperature 4 (rc, humidity on the low humidity side 1 〇 0 / 〇 47 323547 201222809 RH, humidity on both humidity sides 1 〇〇 % 仙) 3 g / (m2 • day), the gas barrier property is insufficient. Regarding the substrate on which the protective film is formed, the enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve are obtained by the method of Reference Example A1. The same method is used to prepare the obtained cloth curve, oxygen distribution curve and carbon distribution curve in Fig. 12. Regarding the obtained enthalpy distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, merge atoms The relationship between the ratio (atomic concentration) and the time of the last name, and the relationship between the atomic ratio (atomic concentration) and the distance (nm) from the surface of the protective film are shown in the graph of Fig. 13. The horizontal axis of the graph of Fig. 13 "Distance (nm)" is a value obtained by calculating the etching time and the etching rate. It is clearly confirmed from the results shown in Fig. 12 and Fig. 13 that the obtained carbon distribution curve does not have an extreme value. Availability) ^ as explained above The ruthenium film used in the organic EL element card of the present invention has sufficient gas barrier properties, and can sufficiently suppress the decrease in gas barrier properties even when it is bent. [Schematic Description] Fig. 1 shows an implementation Fig. 2 is a cross-sectional view showing an organic EL device according to an embodiment of the present invention. Fig. 4 is a cross-sectional view showing an organic EL device according to an embodiment. Fig. 5 is a conceptual view showing an embodiment of an apparatus for manufacturing an organic EL device. 48 323547 201222809 Fig. 6 shows the 矽 distribution of the protective film obtained in Reference Example A1. A graph of a curve, an oxygen distribution curve, and a carbon distribution curve. Fig. 7 is a graph showing a enthalpy distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen-carbon distribution curve of the protective film obtained in Reference Example A1. A graph showing the enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve of the protective film obtained in Reference Example A2. Fig. 9 is a view showing the protective film obtained in Reference Example A2. A graph of the enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve. Fig. 10 is a graph showing the enthalpy distribution curve, the oxygen distribution curve, and the carbon distribution curve of the protective film obtained in Reference Example A3. The graph shows the enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve of the protective film obtained in Reference Example A3. Fig. 12 shows the 矽 distribution of the protective film obtained in Reference Comparative Example A1. A graph of a curve, an oxygen distribution curve, and a carbon distribution curve. Fig. 13 is a graph showing a enthalpy distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen-carbon distribution curve of the protective film obtained in Reference Comparative Example A1. DESCRIPTION OF SYMBOLS 1 First film 2 Organic EL element 3 Protective film 4 Adhesive layer 5 Gas barrier layer 6 Substrate of second film 49 323547 201222809 7 8 11 13 2 Bu 22, 23, 24 31 ' 32 41 51 61 ' 62 500, 510, 520, 51, 512, 513, 523, 521, 522, 530, 610, 620, 611, 621, 701, 702, 820, substrate of the first film, second gas barrier layer, second film, organic EL device, transport roller, a pair of film forming roller gases for Feed tube Plasma generating power source Magnetic field generating device Roll-out roll 1st bonding roll Transfer roll 2nd bonding roll Take-up roll Coating device Hardening device Feed roller Take-up roll Additive film 50 323547

Claims (1)

201222809 七、申請專利範圍: 1. 一種有機EL裝置,其係具備: 第1薄膜、 設置於前述第1薄膜上之有機EL元件、 覆蓋與前述有機EL元件之第1薄膜相反側之面的 保護膜; 前述保護膜係含有碎原子、氧原子及碳原子, 分別表示相對於矽原子、氧原子及碳原子的合計量 之石夕原子數目的比率、氧原子數目的比率及碳原子數目 之比率,與離前述保護膜之厚度方向的前述保護膜之一 侧的表面之距離的關係之矽分布曲線、氧分布曲線及碳 分布曲線滿足下述條件: (i) 在前述保護膜之厚度方向的90%以上之區域中, 梦原子數目的比率、氧原子數目的比率及碳原子 數目之比率之中,矽原子數目的比率為第2大之 值; (i i)前述碳分布曲線至少具有一個極值;及 (iii)前述碳分布曲線中之碳原子數目的比率之最大值 與最小值的差為5原子%以上。 2. 如申請專利範圍第1項所述之有機EL裝置,其中,該 有機EL裝置進一步具備:與前述第1薄膜對向而配置, 且與前述第1薄膜一起密封前述有機EL元件之第2薄 膜, 於前述第2薄膜與前述第1薄膜之間配置前述有機 1 323547 201222809 EL元件及前述保護犋。 3. —種製造有機乩裝窨+一 .. 置之方法,其係包含: 於第1薄膜上形忐古 、 ^ ^ ^ 成有機EL元件之步驟;以及 心成覆盍與前述女^ a 有機乩元件之第1薄膜相反側之 面的保達膜之步驟, 刖述保護膜係含有 。 , i 胥矽原子、氧原子及碳原子, ^表示4目對~原子、氡原子及碳原子的合計量 之石夕原子數目的㈣、氧原子數目的比率及碳原子數目 之比率,與離前述保軸之厚度方向的前述保護膜之一 側的表面之距離的關係之矽分布曲線 、氧分布曲線及破 分布曲線滿足下述條件: (i)在如述保護膜之厚度方向的go%以上之區域中, 梦原子數目的比率、氧原子數目的比率及破原子 數目之比率之中,矽原子之數目的比率為第2大 之值; (ii) 刖述碳分布曲線至少具有一個極值;及 (iii) 前述碳分布曲線中之碳原子數目的比率之最大值 與最小值的差為5原子%以上。 4.如申請專利範圍第3項所述之方法,其中,進一步包 含:在形成前述保護膜之步驟後,以在前述第2薄膜與 前述第1薄膜之間配置有前述有機EL元件及前述保護 膜之方式將第2薄膜貼合於第1薄膜之步驟。 5·如申請專利範圍第4項所述之方法,其中,將前述第2 薄膜在大氣環境下貼合於前述第1薄膜。 2 323547 201222809 6.如申請專利範圍第3纟5項中任 令,進一步包含:在形成前述保之=方法’其 ^薄膜與前述有祕元件及前述 =、,保管所捲取之前述第1 _、前述有機 及則述保濩膜之步驟β π件 7·如申請專利範圍第6項所述之方法,其中 下保管所捲取之前述第i薄膜 礼%境 述保護膜。 有機EL元件及前 8· 一種照明襞置,其係具有如申 面 項所述之有機ELM。 觀圍第1項或第2 9.光源裝置,錢具有如切專利範 2項所述之有機el裝置。 項或第 10· 一種顯示裝置,其係具有如申請專利範 項所述之有機EL裝置。 員或第2 323547 3201222809 VII. Patent application range: 1. An organic EL device comprising: a first film, an organic EL element provided on the first film, and a surface covering a surface opposite to the first film of the organic EL element; The protective film contains a crushed atom, an oxygen atom, and a carbon atom, and represents a ratio of the ratio of the number of atoms of the atomic atom to the total amount of the atomic atom, the oxygen atom, and the carbon atom, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms. The enthalpy distribution curve, the oxygen distribution curve, and the carbon distribution curve in relation to the distance from the surface on one side of the protective film in the thickness direction of the protective film satisfy the following conditions: (i) in the thickness direction of the protective film In more than 90% of the regions, among the ratio of the number of dream atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms, the ratio of the number of germanium atoms is the second largest value; (ii) the aforementioned carbon distribution curve has at least one pole. And (iii) the difference between the maximum value and the minimum value of the ratio of the number of carbon atoms in the carbon distribution curve is 5 atom% or more. 2. The organic EL device according to the first aspect of the invention, wherein the organic EL device further includes: facing the first thin film, and sealing the second organic EL device together with the first thin film In the film, the organic 1 323 547 201222809 EL element and the protective ruthenium are disposed between the second film and the first film. 3. A method for manufacturing an organic armor 窨 + a., comprising: a step of forming an organic EL element on the first film, and forming a ^ ^ ^ into an organic EL element; The step of holding the film on the opposite side of the first film of the organic germanium element is described as a protective film. , i 胥矽 atom, oxygen atom and carbon atom, ^ represents the ratio of the number of the atomic atoms of the four atoms to the atomic, 氡 atom and carbon atom (four), the ratio of the number of oxygen atoms and the number of carbon atoms, and The enthalpy distribution curve, the oxygen distribution curve, and the broken distribution curve of the relationship between the distances of the surfaces on the side of the protective film in the thickness direction of the shaft retention satisfy the following conditions: (i) go% in the thickness direction of the protective film In the above region, among the ratio of the number of dream atoms, the ratio of the number of oxygen atoms, and the ratio of the number of broken atoms, the ratio of the number of germanium atoms is the second largest value; (ii) the carbon distribution curve has at least one pole. And (iii) the difference between the maximum value and the minimum value of the ratio of the number of carbon atoms in the carbon distribution curve is 5 atom% or more. 4. The method according to claim 3, further comprising: after the step of forming the protective film, the organic EL element and the protection are disposed between the second film and the first film The step of bonding the second film to the first film as a film. 5. The method of claim 4, wherein the second film is bonded to the first film in an air atmosphere. 2 323547 201222809 6. The claim of claim 3, 5, further includes: forming the above-mentioned protection = method 'the film and the above-mentioned secret element and the above =, the first one of the above-mentioned storage _, the above-mentioned organic and the step of protecting the film, β π, and the method according to the sixth aspect of the invention, wherein the ith film is protected by the underlying storage. Organic EL element and the first embodiment A lighting device having the organic ELM as described in the above aspect. Regarding the first or second light source device, the money has the organic EL device as described in Patent Item 2. Item 10. The display device of claim 10, which has the organic EL device as described in the patent application. Or 2,323,547 3
TW100136433A 2010-10-08 2011-10-07 Organic electro-luminescent device TW201222809A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228323A JP2012084308A (en) 2010-10-08 2010-10-08 Organic el device

Publications (1)

Publication Number Publication Date
TW201222809A true TW201222809A (en) 2012-06-01

Family

ID=45927737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136433A TW201222809A (en) 2010-10-08 2011-10-07 Organic electro-luminescent device

Country Status (3)

Country Link
JP (1) JP2012084308A (en)
TW (1) TW201222809A (en)
WO (1) WO2012046742A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384326B2 (en) * 2012-10-31 2018-09-05 コニカミノルタ株式会社 Organic electroluminescence device
WO2014136616A1 (en) * 2013-03-08 2014-09-12 富士フイルム株式会社 Organic el laminate
JPWO2015029732A1 (en) * 2013-08-27 2017-03-02 コニカミノルタ株式会社 Gas barrier film and method for producing gas barrier film
JP2017112020A (en) * 2015-12-18 2017-06-22 Dic株式会社 Pressure sensitive adhesive sheet and light emitting device
JP7198607B2 (en) * 2017-08-25 2023-01-04 住友化学株式会社 laminated film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323273A (en) * 1999-05-07 2000-11-24 Dainippon Printing Co Ltd Electroluminescent element
JP4383077B2 (en) * 2003-03-31 2009-12-16 大日本印刷株式会社 Gas barrier substrate
JP2005322599A (en) * 2004-05-11 2005-11-17 Toyota Industries Corp Organic electroluminescent device
JP2005339863A (en) * 2004-05-25 2005-12-08 Toppan Printing Co Ltd Film organic el element
EP1792726A4 (en) * 2004-09-21 2008-12-31 Konica Minolta Holdings Inc Transparent gas barrier film
WO2007034647A1 (en) * 2005-09-20 2007-03-29 Konica Minolta Holdings, Inc. Process for producing organic electroluminescent element and organic electroluminescent display device
JP5251071B2 (en) * 2007-10-22 2013-07-31 凸版印刷株式会社 Barrier film and method for producing the same
JP2010140980A (en) * 2008-12-10 2010-06-24 Sony Corp Functional organic substance element, and functional organic substance apparatus
JP5494648B2 (en) * 2009-03-13 2014-05-21 コニカミノルタ株式会社 Organic electronic device and method for manufacturing the same
CN102387920B (en) * 2009-04-09 2015-01-07 住友化学株式会社 Gas-barrier multilayer film

Also Published As

Publication number Publication date
WO2012046742A1 (en) 2012-04-12
JP2012084308A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2012046738A1 (en) Organic el device
WO2012046741A1 (en) Organic el device
KR100902706B1 (en) Support and Organic Electroluminescence Element Comprising the Support
CN104736336B (en) The manufacture method of gas barrier film, gas barrier film and electronic equipment
JP2000323273A (en) Electroluminescent element
TW200915909A (en) Substrate with barrier layer, display device and manufacturing method thereof
TW200948178A (en) Organic electroluminescence device and fabricating method thereof
TW200924550A (en) Organic electro luminescence apparatus and manufacturing method thereof
JP6332283B2 (en) Gas barrier film
US8809091B2 (en) Method of manufacturing organic electroluminescence element
TW201222809A (en) Organic electro-luminescent device
JP6646352B2 (en) Organic electroluminescence device
WO2012046736A1 (en) Organic el device, and method for producing same
EP3188572B1 (en) Organic electroluminescent element
JP2022010127A (en) Method for manufacturing gas barrier film, method for manufacturing transparent conductive member, and method for manufacturing organic electroluminescent element
JP2012084355A (en) Electronic device
JP2012084353A (en) Organic electroluminescent (el) element
JP5892030B2 (en) Method for producing gas barrier film and gas barrier film
JP5092756B2 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent lighting device, and organic electroluminescent panel manufacturing device
TW201230431A (en) Light-emitting device and method for manufacturing light-emitting device
JP2010147243A (en) Organic electroluminescent element and method of manufacturing the same
JP2015080855A (en) Sealing film, method for producing the same and functional element sealed with sealing film
WO2016084791A1 (en) Sealing film, function element and method for producing sealing film
JP2017130408A (en) Light-emitting device
JP2006089651A (en) Coating liquid for forming anchor layer, substrate having barrier property and method for producing them