TW201221611A - Method for producing flexible solar cell module - Google Patents

Method for producing flexible solar cell module Download PDF

Info

Publication number
TW201221611A
TW201221611A TW100133853A TW100133853A TW201221611A TW 201221611 A TW201221611 A TW 201221611A TW 100133853 A TW100133853 A TW 100133853A TW 100133853 A TW100133853 A TW 100133853A TW 201221611 A TW201221611 A TW 201221611A
Authority
TW
Taiwan
Prior art keywords
solar cell
flexible
sealing sheet
sheet
resin
Prior art date
Application number
TW100133853A
Other languages
Chinese (zh)
Inventor
Hiroshi Hiraike
Masahiro Asuka
Kiyomi Uenomachi
Jia-Mo Guo
Takahiro Nomura
Takahiko Sawada
Masahiro Ishii
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of TW201221611A publication Critical patent/TW201221611A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The objective of the present invention is to provide a method for producing a flexible solar cell module, said method continuously sealing a solar cell element without requiring a cross-linking step, and favorably producing, by a roll-to-roll method, a flexible solar cell module that does not wrinkle or curl and that has superior adhesive properties between the solar cell element and a solar cell sealing sheet. The method for producing a flexible solar cell module has a step for, by means of constriction using a pair of hot rollers, thermocompression bonding a solar cell sealing sheet to at least the light-receiving surface of the solar cell element wherein a photoelectric conversion layer is disposed on a flexible substrate. The solar cell sealing sheet has an adhesion layer comprising a maleic-anhydride-modified olefin resin wherein an a-olefin-ethylene copolymer of which the amount of a-olefin contained is 1-25 wt% has been graft modified by maleic anhydride, the total amount of maleic anhydride contained being 0.1-3 wt%.

Description

201221611 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種可撓性太陽電池模組之製造方 法,其無需交聯步驟而可連續地密封太陽電池元件,可高 效率地製造不產生皺褶或捲曲,太陽電池元件與太陽電池 密封片之接著性優異的可撓性太陽電池模組。 【先前技術】 作為太陽電池’已知有將玻璃作為基材的硬質之太陽 電池模組’及將聚醯亞胺或聚酯系之耐熱高分子材料或不 鏽鋼薄膜作為基材的可撓性之太陽電池模組。近年來,自 因薄型化或輕量化而使得搬運、施工容易或者可耐受衝擊 之方面考慮,可撓性太陽電池模組開始受到關注。 此種可撓性之太陽電池模組係於在可撓性基材上,以 薄膜狀積層由具有光照射時產生電流之功能㈣半導體或 化合物半導體等所構成之光電轉換層等的可撓性太陽電池 疋件之上下表面,積層太陽電池密封片加以密封而成。 上述太陽電池密封片係用以防止來自外 防止太陽電池元件之腐钮者 5 明片上形成有接著層者釘月係於透 電池元杜夕, 目先則以來,用以密封上述太陽 電池疋件之上述接著層係使用 m ( ’ G酉夂乙稀醋(EVA )樹 月曰(例如參照專利文獻1 )。 然而,於使用上述eva李槲 而存在製造心… 系樹脂之情形時,因交聯步驟 子在“時間變長或生成酸等 用石夕燒改質烯_脂㈣EVA系樹’正在研究使 '、· θ作為上述太陽電池密 201221611 封片之上述接著層(例如參照專利文獻2)。 ☆上述可撓性太陽電池模組之製造方法自先前以來—直 用士下方法.預先將可撓性太陽電池元件與太陽電池密 封片切割成所要之形狀後進行積層,並於靜止狀態下藉由 真空層壓使該等積層—體化。此種真空層壓法,存在接著 步驟耗費時間’太陽電池模組之製造效率較低等問題。 作為上述可撓性太陽電池模組之製造方法,就量產化 優異之方面而言’正在研究捲軸法(roll to roU meth〇d )( 如參照專利文獻3 )。 捲軸法係使用將膜狀之太陽電池密封片捲繞之捲軸, 藉由使用—對輥接近自該捲軸中捲出之太陽電池密封片, 而將其熱壓接於太陽電池元件上從而進行密封 造可撓性太陽電池模組之方法。 & 根據此種捲軸法,可期待以極高之效率連續地製造可 挽性太陽電池模組。 然而’於使用先前之太陽電池密封片,利用捲軸法密 封可挽性太陽電池元件來製造可撓性太陽電池㈣之情形 時,存在以下問題:必須進行交聯步驟,並且,利用^對 上述可撓性太陽電池元件與上述太陽電池密封片進行熱壓 接時’會產生皺褶或捲曲因而良率極劇下降,或者上 =太陽電池元件與上述太陽電池密封片之接著性變二 分*# 0 因此’業界探求可充分發揮捲軸法之高量產性,並且 不會產生敵褶或捲曲,可遠綠以丨、 锩曲了連續地且較佳地密封可徺性太陽 201221611 電池元件之方法。 專利文獻1 .曰本特開平7-297439號公報 專利文獻2 .日本特開2004-2 1 464 1號公報 專利文獻3 .曰本特開2000-294815號公報 【發明内容】 鑒於上述現狀,本發明之目的在於提供一種無需交聯 步驟而可連續地密封太陽電池元件且不產生皺褶或播^ 從而可高效率地製造太陽電;也元件與太陽電池密封片之 著性優異之可撓性太陽電池模組的可撓性太陽電池模組之 本發明係-種可撓性太陽電池模組之製造方法 徵在於:包含使用一對熱輥以使得太陽電池密封片接近太 陽電池元件的至少受光面上’藉此進行熱壓接的步驟,該 太%電池密封片係可撓性基材上配置有光電轉換層而成: 上述太陽電池密封片於氣系樹脂片上具有由順丁稀 :文質稀煙系樹脂所構成之接著層,該順丁稀二酸軒 經糸樹脂細-烯烴含量為卜25重量.稀煙乙稀此 聚物經順丁稀二酸料行接枝改質所成之樹脂、且順丁煤 一酸酐之總含量為0 · 1〜3重量〇/0。 以下’對本發明進行詳細說明。 本發明係藉由使用包含由拉中#八^ “…一 匕3由特疋成分構成之接著層與氟 Π 陽電池密封片密封太陽電池元件,而利用捲 ^連續地製造不產生㈣或捲曲,上述太陽電池密封: 與太陽電池元件之接著性優異的可撓性太陽電池模組。 5 201221611 即,本發明人等發現:藉由使用於氟系樹脂片上形成 有由經特定順丁烯二酸酐接枝改質後之烯烴系樹脂所構成 之接著層的太陽電池密封片密封太陽電池元件,可無需交 聯步驟且在相對低之溫度下、短時間内實現熱壓接,可利 用捲軸法連續地密封太陽電池元件,從而完成本發明。 本發明之可撓性太陽電池模組之製造方法包含使用— 對熱輥以使得太陽電池密封片接近太陽電池元件的至少受 光面上,藉此進行熱壓接之步驟,該太陽電池密封片係可 撓性基材上配置有光電轉換層而成。 上述太陽電池密封片於氟系樹脂片上具有由順丁烯二 酸酐改質烯烴系樹脂所構成之接著層。 上述順丁烯二酸酐改質烯烴系樹脂係利用α _烯烴含量 為1〜25重量烯烴乙稀共聚物經順了稀二8㈣接枝 改質所成之樹脂、且順丁稀二酸肝之總含量為〇1〜3重量 於本發明中’藉由使用包含由如此之特定樹脂所構成 之接著層的太陽電池密封片,可利用棬 』不』用捲軸法較佳地製造可 撓性太陽電池模組。 上述稀烴-乙烯共聚物為烯煙邀 .L ,、乙烯之共聚物。 為藉由提南樹脂之非晶性而低溶點化 ,. ‘、柔軟化,上诚 烯烴較佳為碳數為3〜10,更佳為碳數為*〜 1 具體而言,上述〇: 烯烴可列舉: 怯,=& 烯、1-丁烯、1-戊 烯、1-己烯、1-庚烯、1-辛烯等。其中 χ ? t ^ Τ⑸佳為1-丁烯、 己稀、1-辛稀。 201221611 上述a-烯烴-乙烯共聚物較佳為丁烯_乙烯共聚物、己 烯-乙烯共聚物、辛烯-乙烯共聚物。 上述α-烯烴-乙烯共聚物中,烯烴含量為i〜25重 量%。若上述α-烯烴含量未達丨重量%,則上述太陽電池密 封片之柔軟性下降’並且上述太陽電池密封片之熔點變 高,故而密封太陽電池元件需要高溫加熱,從而變得容易 產生皺褶或捲曲。若上述〇: _烯烴含量超過25重量%,則上 述太陽電池密封片之結晶性或流動性變得不均勻而產生應 變,或者上述太陽電池密封片本身之熔點變得過低,故而 於將太陽電池元件保持於高溫之情形時,變得難以保持形 狀,其結果,上述太陽電池密封片對於太陽電池元件之接 著性下降,或者發生㈣。上述肺含量之較佳下限為 10重量%,較佳上限為2〇重量%。 上述α-烯烴-乙烯共聚物中之上述“_烯烴之含量可藉 由3C-NMR之光譜積分值而求出。具體而言,例如於使用 1_丁烯之情形時,使用在氘氯仿中於1〇·9 ppm附近或261 ppm附近、39.1 ppm附近獲得之源自丨_丁烯結構之光譜積 分值,及於26.9 ppm附近、29·7 ppm附近、3〇 2 ppm附近、 3 3.4 ppm附近獲得之源自乙烯結構之光譜積分值而算出。 關於光譜之歸屬,可利用高分子分析手冊(日本分析化學 會編,朝倉書店發行,2008年)等之已知資料。 利用順丁烯二酸酐對上述α _烯烴_乙烯共聚物進行接 枝改員之方去可使用公知之方法。具體而言,例如可列舉 下述等方法:熔融改質法,將含有上述α·烯烴·乙烯共聚 7 201221611 出機中進稀Γ ^酐及自由基聚合起始劑之組成物供給至擠 接…仃炫融混練’使順丁稀二酸奸與上述共聚物進行 接枝聚合;或溶液改質法等 解f ^ 寻使上述α-烯fe-乙烯共聚物溶 解於/合劑中而製作溶解液’向 解液中添加順丁烯二酸 由基聚合起始劑’使順丁嫌-納Μ & 行接枝聚X ^ 使酸酐與上述共聚物進 人口。/、中,上述溶融改質法由於可於擠出機中混 。’生產性優異因而較佳。 士述接枝改質之方法中使用之自由基聚合起始劑只要 j以來自由基聚合中所使转,則無特別限定。且體 而吕’例如可列舉:過氧化芏 甲過氧化氫異丙苯、過 一二異丙冑、過氧化新癸酸異丙笨酿、過氧化辛 西文異丙苯酯、偶氮二異丁腈等。 上述順丁烯二酸酐改質烯炉系福 之總含量“」〜3重量% 2:曰中,順丁稀二酸肝 ,. 曰 3重置A右上述順丁烯二酸酐之總含量 、:.1重里/〇’則上述太陽電池密封片對於太陽電池元件 接著1±下降。右上述順丁烯二酸酐之總含量超過3重旦 0/。,則川IJ稀二酸㈣質稀烴系樹脂產生交聯,製造上述太 陽電池密封片時產生凝膠而變得無法製造該密封片或者 上述太陽電池密封片之擠出成形性下降。上述順丁埽二酸 軒之總含量之較佳下限為0.2重量%,較佳上限為丨 % ’更佳為未達1·〇重量%。 再者’上述順丁烯二酸酐之總含量可使用上述順 二酸肝改質稀㈣樹脂製作試驗膜,敎上述試驗膜之红 外線吸收光譜,根據mow附近之吸收強度而計算出'。 201221611 具體而言,上述順丁烯二酸酐改質烯烴系樹脂中之順丁烯 二酸酐之總含量例如可使用FT_IR(傅裏葉轉換紅外分光裝 置Nicolet 6700 FT_IR),利用高分子分析手冊(日本分^ 化學會編,朝倉書店發行,2008年)等中所記載之已知之 測定方法進行測定。 上述順丁烯二酸酐改質烯烴系樹脂,藉由示差掃描熱 量分析所測定之吸熱曲線之最大波峰溫度(Tm)較佳為 〜125 C。若上述吸熱曲線之最大波峰溫度(Tm)低於 °C,則有太陽電池密封片之耐熱性降低之虞。若上述吸熱 曲線之最大波峰溫度(Tm)高於125t,則有密封步驟中 太陽電池密封片之加熱時間變長,太陽電池模組之生產性 降低,或者太陽電池元件之密封變得不充分之虞。上述吸 熱曲線之最大波峰溫度(Tm)更佳為83〜。再者, 上述藉由示差掃描熱量分析所測定之吸熱曲線之最大波峰 溫度(Tm)可依據jISK7121中所規定之測定方法而測定。 上述順丁烯二酸酐改質烯烴系樹脂較佳為熔融流速 (MFR)為〇.5g/l〇分鐘〜29g/1〇分鐘。若上述熔融流速未 達〇.5g/10分鐘,則有以下顧慮:於製造太陽電池密封片時 該密封片有殘留應變、於製造太陽電池模組後該模組捲 曲。若超過29g/l〇分鐘,則有下顧慮:於製造上述太陽電 池密封片時容易下垂而難以製造厚度均勻之片,且於製造 上述太陽電池模組後模組還是會發生捲曲,或者太陽電池 密封片中容易產生針孔等,從而損害太陽電池模組整體之 絕緣性。上述熔融流速更佳為2g/1〇分鐘〜1〇g/1〇分鐘。 201221611 再者,上述順丁烯二酸酐改質烯烴系樹脂之熔融流速 係指依據聚乙烯系樹脂之熔融流速之測定方法即astm D 1 238 ’於荷重2.1 6kg下測定之值。 上述順丁烯二酸酐改質烯烴系樹脂較佳為3〇<t下之黏 彈性儲存彈性模數為2xl()8pa以下。若上述贼下之黏彈 性儲存彈性模數㈣2x1()8pa,則有太陽電池密封片之柔軟 性下降而操作性降低,或者於利用上述太陽電池密封片二 封太陽電池元件而製造太陽電池模組時,需要急遽地加孰 上述太陽電池密封片之虞。若上㉛听下之黏彈性儲存彈 性,數過低,則存在上述太陽電池密封片於室溫下表現出 著I·生從而上述太陽電池密封片之使用性降低的情況,故 而下限較佳為ixWpa。又,上限更佳為1 5川%。 上述順丁烯二酸酐改質烯烴系樹脂較佳為i〇〇t下之 點彈性儲存彈性模數為5xl〇6pa以下。若上述1〇吖下之黏 料儲存彈性模數超過5xl()6pa,則有太陽電池密封片對於 太陽電池元件之接著性下降之虞。 上述100°c下之黏彈性儲存彈性模數過低,則有以下 d丨用上述太陽電池密封片密封太陽電池元件而製 :陽電池模組時,上述太陽電池密封片因擠壓力而大幅 爪動’從而上述太陽電池密封片之厚度不均增大,故而 限較佳為1Xl〇4 Pa。又,上限更佳為4xl〇6 pa 在®:者’上述順丁烯二酸酐改質烯烴系樹脂之黏彈性儲 '模數係指藉由依冑m K6394 <動態性質試驗方法 所測定之值。 10201221611 VI. Description of the Invention: [Technical Field] The present invention relates to a method for manufacturing a flexible solar cell module, which can continuously seal a solar cell element without a crosslinking step, and can efficiently manufacture no A flexible solar cell module in which wrinkles or curls are generated and the solar cell element and the solar cell sealing sheet are excellent in adhesion. [Prior Art] As a solar cell, it is known that a rigid solar cell module using glass as a substrate and a flexible polymer material or a stainless steel film using a polyimide or a polyester-based film as a substrate Solar battery module. In recent years, flexible solar cell modules have begun to attract attention due to the ease of handling, construction, or impact resistance due to thinning or weight reduction. The flexible solar battery module is a flexible photoelectric substrate, and has a function of forming a current in a film-like layer by a light-emitting layer, and a photoelectric conversion layer composed of a semiconductor or a compound semiconductor. The upper surface of the solar cell element is sealed by a laminated solar cell sealing sheet. The solar cell sealing sheet is used to prevent the solar cell element from being externally prevented from being formed by the outer layer of the solar cell element. In the above-mentioned adhesive layer, m ( ' G 酉夂 Ethyl vinegar (EVA) tree 曰 曰 (for example, refer to Patent Document 1). However, in the case of using the above-mentioned eva 槲 槲 制造 制造 系 系 系 系 系 系 系 系 系 系In the step, the above-mentioned adhesive layer is used as the above-mentioned adhesive layer of the solar cell sealed 201221611 (for example, see Patent Document 2). ☆The manufacturing method of the above flexible solar cell module has been carried out since the previous method. The flexible solar cell element and the solar cell sealing sheet are previously cut into a desired shape and laminated, and at a standstill. The laminate is formed by vacuum lamination. This vacuum lamination method has the problem that the subsequent steps are time-consuming, and the manufacturing efficiency of the solar cell module is low. In the method of manufacturing a positive battery module, in terms of excellent mass production, a roll to roU meth〇d is used (for example, refer to Patent Document 3). The reel method uses a film-like solar cell sealing sheet. The wound reel is a method of sealing a flexible solar cell module by using a solar cell sealing sheet which is rolled up from the reel by a pair of rolls, and is thermocompression bonded to the solar cell element. According to this reel method, it is expected that the splicable solar cell module can be continuously manufactured with extremely high efficiency. However, by using the previous solar cell encapsulant, the retractable solar cell element is sealed by a reel method to manufacture a flexible In the case of the solar cell (4), there is a problem that a crosslinking step must be performed, and when the above-mentioned flexible solar cell element is thermocompression bonded to the above-mentioned solar cell sealing sheet, wrinkles or curls are generated. The rate drops drastically, or the upper = solar cell component and the above solar cell sealing sheet become two-pointed * # 0 Therefore, the industry's search can fully utilize the high volume of the reel method And it does not produce enemy pleats or curls, and the method of continuously and preferably sealing the solar cell 201221611 battery element can be smashed and smashed by far green. Patent Document 1. Japanese Patent Application Laid-Open No. Hei 7-297439 In the light of the above-mentioned status quo, it is an object of the present invention to provide a continuous process without a cross-linking step, as disclosed in Japanese Unexamined Patent Publication No. Hei. No. Hei. The solar cell element is sealed without wrinkles or sowing, so that solar power can be efficiently manufactured; and the flexible solar cell module of the flexible solar cell module having excellent properties of the solar cell sealing sheet is also used. The invention relates to a method for manufacturing a flexible solar cell module, comprising: a step of using a pair of heat rollers to bring a solar cell sealing sheet close to at least a light receiving surface of a solar cell element, thereby performing thermocompression bonding, which is too % of the battery sealing sheet is provided with a photoelectric conversion layer on a flexible substrate: the solar cell sealing sheet has an adhesive layer composed of a cis-butadiene:texture thin-smoke resin on the gas-based resin sheet The content of the fine-olefin of the cis-butyl dibasic acid ruthenium resin is 25 weights. The resin of the dilute-smoke-diethyl methacrylate is grafted and modified by the cis-butyl dicarboxylic acid, and the cis-butanic acid anhydride The total content is 0 · 1 to 3 weight 〇 / 0. The present invention will be described in detail below. The present invention seals a solar cell element by using an adhesive layer comprising a special component composed of a pull-up #八^"3", and a continuous sealing layer is formed by using a roll to continuously produce no (four) or curl. The above-mentioned solar cell seal: a flexible solar cell module excellent in adhesion to a solar cell element. 5 201221611 That is, the present inventors have found that a specific butylene is formed by using a fluorine-based resin sheet. The solar cell sealing sheet of the adhesive layer composed of the olefin resin after the acid anhydride graft modification is used to seal the solar cell element, and the thermocompression bonding can be realized in a short time at a relatively low temperature without using a crosslinking step, and the reel method can be utilized. The present invention is completed by continuously sealing a solar cell element. The method of manufacturing the flexible solar cell module of the present invention comprises the use of a heat roller to bring the solar cell sealing sheet close to at least the light receiving surface of the solar cell element, thereby performing In the step of thermocompression bonding, the solar cell sealing sheet is formed by disposing a photoelectric conversion layer on a flexible substrate. The solar cell sealing sheet is a fluorine resin sheet. There is an adhesive layer composed of maleic anhydride-modified olefin-based resin. The maleic anhydride-modified olefin-based resin is obtained by using an α-olefin content of 1 to 25 parts by weight of an olefin ethylene copolymer. The resin formed by the grafting of the two (4) grafts, and the total content of the liver of the succinated diacid is 〇1 to 3 by weight in the present invention 'by using a solar cell seal comprising an adhesive layer composed of such a specific resin The flexible solar cell module can be preferably manufactured by the reel method using the 棬 不 不 不. The above-mentioned dilute hydrocarbon-ethylene copolymer is a copolymer of olefinic tobacco, L, and ethylene. Amorphous and low-melting point, 'softening, the upper olefin preferably has a carbon number of 3 to 10, more preferably a carbon number of *~1. Specifically, the above hydrazine: an olefin may be exemplified by hydrazine, =& ene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, etc. wherein χ t ^ Τ (5) is preferably 1-butene, hexamethylene, 1-octyl 201221611 The above a-olefin-ethylene copolymer is preferably a butene-ethylene copolymer, a hexene-ethylene copolymer, or an octene-ethylene copolymer. In the olefin-ethylene copolymer, the olefin content is i to 25% by weight. If the α-olefin content is less than 5% by weight, the flexibility of the solar cell sealing sheet is lowered, and the melting point of the solar cell sealing sheet becomes high. Therefore, the solar cell element is required to be heated at a high temperature, and wrinkles or curls are easily generated. If the 〇: olefin content exceeds 25% by weight, the crystallinity or fluidity of the solar cell sealing sheet becomes uneven and strain occurs. Or the melting point of the solar cell sealing sheet itself is too low, so that it is difficult to maintain the shape when the solar cell element is kept at a high temperature, and as a result, the solar cell sealing sheet has a decreased adhesion to the solar cell element. Or (4). The preferred lower limit of the above lung content is 10% by weight, and the upper limit is preferably 2% by weight. The content of the above-mentioned "_olefin" in the above α-olefin-ethylene copolymer can be determined by the spectral integral value of 3C-NMR. Specifically, for example, in the case of using 1-butene, it is used in chloroform. The spectral integral value derived from the 丨-butene structure obtained near 1〇·9 ppm or around 261 ppm, around 39.1 ppm, and around 26.9 ppm, around 29.7 ppm, around 3〇2 ppm, 3 3.4 ppm It is calculated from the spectral integral value of the ethylene structure obtained in the vicinity. For the attribution of the spectrum, the known information such as the Handbook of Polymer Analysis (edited by the Analytical Chemistry Society of Japan, issued by Asakura Shoten, 2008) can be used. A known method can be used for the grafting of the above-mentioned α-olefin-ethylene copolymer. Specifically, for example, a method such as a melt reforming method in which the above α·olefin·ethylene is copolymerized can be used. 7 201221611 Into the machine, the composition of the anhydride and the radical polymerization initiator is supplied to the extrusion... 仃 融 融 混 混 混 混 ' 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺Solving f ^ to find the above α-ene The fe-ethylene copolymer is dissolved in a mixture to prepare a solution, and a maleic acid-based polymerization initiator is added to the solution to make the sulfonium-naphthalene & In the above-mentioned copolymer, the above-mentioned melt modification method can be mixed in an extruder. It is excellent in productivity, and the radical polymerization initiator used in the method of graft modification is only required. Since the radical transfer in the radical polymerization has not been particularly limited, the body may be exemplified by: cumene peroxide, cumene hydroperoxide, perylene diisopropyl hydrazine, peroxy ruthenium oxychloride Brewed, perylene isopropyl phenyl acrylate, azobisisobutyronitrile, etc. The total content of the above maleic anhydride modified olefin furnace is "" ~ 3 wt% 2: 曰, cis-succinic acid liver曰3 resets the total content of maleic anhydride above A, and: 1.1 cc/〇', then the solar cell sealing sheet is subsequently lowered by 1± for the solar cell element. The total content of the above maleic anhydride exceeds 3 denier 0/. In the case where the above-mentioned solar cell sealing sheet is produced, gelation occurs when the solar cell sealing sheet is produced, and the sealing sheet is not produced or the extrusion moldability of the solar cell sealing sheet is lowered. A preferred lower limit of the total content of the above cis-succinic acid oxime is 0.2% by weight, and a preferred upper limit is 丨%' more preferably less than 1% by weight. Further, the total content of the above-mentioned maleic anhydride can be measured by using the above-mentioned cis-acid-modified dilute (tetra) resin, and the infrared absorption spectrum of the above test film is calculated based on the absorption intensity near the mow. 201221611 Specifically, the total content of maleic anhydride in the above maleic anhydride-modified olefin-based resin can be, for example, FT_IR (Fourier-converted infrared spectrometer Nicolet 6700 FT_IR), using a polymer analysis manual (Japan) It is measured by a known measurement method described in the Chemicals Association, issued by Asakura Bookstore, 2008). The above-mentioned maleic anhydride-modified olefin-based resin preferably has a maximum peak temperature (Tm) of -125 C as measured by differential scanning calorimetry. If the maximum peak temperature (Tm) of the above endothermic curve is lower than °C, the heat resistance of the solar cell sealing sheet is lowered. If the maximum peak temperature (Tm) of the above endothermic curve is higher than 125t, the heating time of the solar cell sealing sheet becomes longer in the sealing step, the productivity of the solar cell module is lowered, or the sealing of the solar cell element is insufficient. Hey. The maximum peak temperature (Tm) of the above endothermic curve is more preferably 83 〜. Further, the maximum peak temperature (Tm) of the endothermic curve measured by the differential scanning calorimetry described above can be measured in accordance with the measurement method specified in JIS K7121. The maleic anhydride-modified olefin-based resin preferably has a melt flow rate (MFR) of 〇5 g/l 〇 min to 29 g/1 〇 min. If the melt flow rate is less than g5 g/10 min, there is a concern that the seal sheet has residual strain when the solar cell encapsulant is manufactured, and the module is curled after the solar cell module is manufactured. If it exceeds 29 g/l 〇 minutes, there is a concern that it is easy to sag when manufacturing the above solar cell sealing sheet, and it is difficult to manufacture a sheet having a uniform thickness, and the module may still curl after the solar cell module is manufactured, or a solar cell Pinholes and the like are likely to be generated in the sealing sheet, thereby impairing the insulation of the entire solar cell module. The above melt flow rate is more preferably 2 g / 1 〇 min ~ 1 〇 g / 1 〇 minutes. 201221611 The melt flow rate of the maleic anhydride-modified olefin-based resin is a value measured by a load of 2.16 kg of astm D 1 238 ', which is a method for measuring the melt flow rate of the polyethylene-based resin. The above maleic anhydride-modified olefin-based resin preferably has a viscoelastic storage elastic modulus of 3 〇 < t at 2 x 1 () 8 Pa or less. If the viscoelastic storage elastic modulus (4) 2x1 () 8pa under the thief is lower, the flexibility of the solar cell sealing sheet is lowered and the operability is lowered, or the solar cell module is manufactured by using the solar cell sealing sheet and the solar cell element. At the same time, it is necessary to sharply add the above-mentioned solar cell sealing sheet. If the elasticity of the viscoelastic storage of the upper 31 is too low, the solar cell sealing sheet exhibits a decrease in the usability of the solar cell sealing sheet at room temperature, so the lower limit is preferably ixWpa. Further, the upper limit is more preferably 1 5 %. The maleic anhydride-modified olefin-based resin preferably has an elastic storage modulus of 5 x 10 6 or less at i?t. If the above-mentioned adhesive storage elastic modulus exceeds 5xl () 6pa, there is a possibility that the solar cell sealing sheet is lowered in adhesion to the solar cell element. When the above-mentioned viscoelastic storage elastic modulus at 100 ° C is too low, the solar cell module is sealed by the solar cell sealing sheet described above, and the solar cell sealing sheet is greatly pressed by the pressing force. The claw movement 'and thus the thickness unevenness of the solar cell sealing sheet is increased, so the limit is preferably 1×10 〇 4 Pa. Further, the upper limit is more preferably 4xl 〇 6 pa. In the product: the viscoelastic storage modulus of the above-mentioned maleic anhydride-modified olefin-based resin refers to the value determined by the m K6394 < dynamic property test method. . 10

Cv 201221611 上述接著層較佳為進而含有矽烷化合物。藉由含有上 述夕烷化口物,可更加提高上述接著層與太陽電池元件 面之接著性。 其中,上述接著層較佳為含有具有環氧基之矽烷化合 物。藉由含有具有環氧基之矽烷化合物,可充分發揮捲軸 法之向$產性’並且料所得之可撓性太陽電池模組特別 高之耐熱性。又,即便將表面預先賦形有壓花形狀之太陽 電池也封片熱壓接於太陽電池元件之情形日寺,亦容易維 壓花形狀。 、、 若調配具有環氧基之矽烷化合物’則上述順丁烯二酸 酐改質稀煙系樹脂中的順丁稀二酸酐基與具有環氧基之石夕 烷化&物的%氧基會進行反應而使得矽烷化合物被導入至 樹脂之側鏈l進而,該側鏈之㈣化合物彼此藉由水解 縮合而形成矽氧烷鍵,%而於樹脂間形成交聯結構。即, 上述具有環氧基之#烧化合物對於上述順了稀二酸肝改質 烯烴系樹脂亦具有作為交聯劑之作用。認為藉由於樹脂間 形成交聯結構’高溫下之彈性模數提高,耐熱性提高。 上述具有環氧基之矽烷化合物只要分子中具有至少i 個脂肪族環氧基、脂環式環氧基等環氧基即可。上述具有 環氧基之矽烷化合物較佳為下述通式(1)所示之矽烷化合 物。 [化1]Cv 201221611 The above-mentioned adhesive layer preferably further contains a decane compound. By including the above-described oxime-forming opening, the adhesion between the above-mentioned adhesive layer and the surface of the solar cell element can be further improved. Among them, the above-mentioned adhesive layer preferably contains a decane compound having an epoxy group. By containing a decane compound having an epoxy group, the flexible solar cell module obtained by the reel method can be sufficiently utilized to have a particularly high heat resistance. Further, even if the solar cell in which the surface is preliminarily shaped with an embossed shape is thermoformed to the solar cell element, it is easy to maintain the shape of the flower. And if the decane compound having an epoxy group is formulated, the maleic anhydride is modified to a cis-succinic anhydride group in the dilute-smoke resin and a % oxy group of the epoxidized & The reaction is carried out so that the decane compound is introduced into the side chain 1 of the resin, and further, the (4) compound of the side chain forms a siloxane chain by hydrolysis condensation, and a crosslinked structure is formed between the resins. That is, the above-mentioned anthracene compound having an epoxy group also functions as a crosslinking agent for the above-mentioned diacid diacid-modified olefin-based resin. It is considered that the heat resistance is improved by the increase in the modulus of elasticity at a high temperature due to the formation of a crosslinked structure between resins. The decane compound having an epoxy group may have at least one epoxy group such as an aliphatic epoxy group or an alicyclic epoxy group in the molecule. The decane compound having an epoxy group is preferably a decane compound represented by the following formula (1). [Chemical 1]

R1~Si—(OR^-n 201221611 式中,R1表示3-環氧丙氧基丙基或2_(3,4_環氧環己基) 乙基’ R2表示碳數為i〜3之烷基,r3表示碳數為卜3之 烧基,且η為0或1。 R1表示下述式(II)所示之3_環氧丙氧基丙基或下述 式(III)所不之2-(3,4-環氧環己基)乙基。 [化2] -ch2ch2och2ch—ch2 < ⑻ Ο ^ [化3] 式(冚) 上述R2只要為碳數為1〜3之烧基則無特別⑯定,例如 可列舉甲基、乙基、丙I,較佳為甲基及乙基,更佳為甲 基。 上述R3只要為碳數為i〜3之烧基則無特別p艮定,例如 可列舉甲基、乙基、丙基,較佳為甲基。 於上述通式(1)中,η為0或1,較佳為〇。 上述通式(I )所示之矽烷化合物例如可列舉:環氧 丙氧基丙基曱基二曱氧基矽烷、3_環氧丙氧基丙基甲基二乙 氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、3環氧丙氧基 丙基三乙氧基石夕烧、3_環氧丙氧基丙基三丙氧基矽烧〇 2-(3,4-環氧環己基)乙基三甲氧基矽烷、2 (3,4_環氧環己基) 12 CO. 201221611 ,基三乙氧基钱、2_(3,4_環氧環己基)乙基三丙氧基石夕炫 等。其中’較佳為3·環氧丙氧基丙基三甲氧基錢、2_(3,4· 環氧環己基)乙基三甲氧基残、3_環氧丙氧基丙基三乙氧 基矽烷、3-環氧丙氧基丙基甲基二甲氧基矽烷、3_環氧丙氧 基丙基甲基二乙氧基矽烷。 上述通式⑴所示之矽烷化合物之市售品可列舉:D〇w Corning Toray公司製造之ζ·6〇4〇 ( 3_環氧丙氧基丙基三甲 氧基矽烷)、Ζ6043 ( 2-(3,4·環氧環己基)乙基三甲氧基矽 烷)’或 Shin-Etsu SiliC0nes 公司製造之 κβε·4〇3 ( 3_環氧 丙氧基丙基三乙氧基矽烷)、ΚΒΜ_4〇2。_環氧丙氧基丙基 曱基二甲氧基㈣)、ΚΒΕ_術(3_環氧丙氧基丙基甲基二 乙氧基矽烷)等。 上述接著劑層中之上述石夕烧化合物之含量較佳為相對 於上述順丁稀二酸針改質烯烴系樹脂⑽重量份為〇〇5〜5 重量份。若上述石夕烧化合物之含量未達〇〇5重量份,則有 太陽電池密封片之接著性下降之虞。若上述…合物之 :量超過5重量份,則存在太陽電池密封片之收縮增強而 導致產生敏褶、或者產线膠而損害片之外觀的情況。上 切烧化合物之含量之更佳下限為〇1重量份,更佳 1·5重量份。 形 反 低 於上述接著層含有上述具 時,有時會因上述順丁烯二 應而接著層用樹脂之黏度上 。於此種情形時’較佳為向 有環氧基之矽烷化合物之情 酸酐改質烯烴系樹脂之交聯 升,擠出成形時之操作性降 上述接著層中調配低密度聚 13 201221611 乙烯。藉由調配低浓疮取 低莕度聚乙烯,可維持接著性裳女^ 且改善操作性。 f生專各性能並 再者,上述低密度聚乙稀可為直鍵狀低密 具體而言可為乙嫌I " 又聚乙稀, 马乙烯與烯烴之共聚物。 上述接著層亦可於無損其物性之範圍 穩定劑、紫外矯哄】Λ· ^ 進而含有光 各外線及收劑、熱穩定劑等添加劑。 製造上述接著層$ f 1 @ 烯二酸酐改質烯"/ β 1 +以下方法:將上述順丁 加之二 …院化合物、視需要而添 Μ &之重1比例供給至㈣機進行㈣、混 、東’自擠出機中以片狀擠出而製造接著層。 上述接著層較佳為厚度為 勹手度為80〜700 “ m。若上述接著 之US未達8〇广則有無法保持可撓性太陽電池模組 、、’之虞。若上述接著層之厚度超過70〇 ,則有 對可撓性太陽電池模组之阻燃性造成不良影響,或者可挽 性太陽電池模組之重量變重之虞,且亦不利於經濟性。上 述接著層之厚度之較佳下限為15〇 "m,較佳上限為彻 β m。 述太陽電池在、封片係氟系樹脂片上形成有上述接著 層者。 上述氣系樹脂片只要為透明性、财熱性及阻燃性優異 者,則無特別限定,較佳為由選自下述者所組成之群令之 至乂種氟系树脂所構成:四氟乙烯-乙烯共聚物(ETFE )、 乙稀-氣三a乙蝉樹脂(ECTFE)、聚氣三a乙稀樹脂 (PCTFE )、聚偏二I乙烯樹脂(pvDF )、四氟乙烯-全氟烷 14 201221611 基乙烯醚共聚物(FAP )、聚氟乙烯樹脂(pvF )、四氟乙烯- 六氟丙稀共聚物(FEP )、偏二氟乙烯-六氟丙烯共聚物 (PVDF-HFP )、及聚偏二氟乙烯與聚甲基丙烯酸甲酯之混 合物(PVDF/PMMA )。其中,就耐熱性及透明性更加優異 之方面而言’更佳為聚偏二氟乙烯樹脂(PVDF )、四氟乙烯 -乙烯共聚物(ETFE )、聚氟乙晞樹脂(pVF )。 上述氟系樹脂片較佳為厚度為1〇〜1〇〇 #m。若上述 氟系樹脂片之厚度未達1 〇 # m,則有無法確保絕緣性,或R1~Si—(OR^-n 201221611 where R1 represents 3-glycidoxypropyl or 2-(3,4-epoxycyclohexyl)ethyl 'R2 represents an alkyl group having a carbon number of i~3 And r3 represents a carbon group having a carbon number of 3, and η is 0 or 1. R1 represents a 3-glycidoxypropyl group represented by the following formula (II) or 2 of the following formula (III) -(3,4-epoxycyclohexyl)ethyl. [Chemical 2] -ch2ch2och2ch-ch2 < (8) Ο ^ [Chemical Formula 3] Formula (冚) The above R2 is as long as it is a burning group having a carbon number of 1 to 3 In particular, examples thereof include a methyl group, an ethyl group, and a propidium I, preferably a methyl group and an ethyl group, and more preferably a methyl group. The above R3 has no specific p-position as long as it has a carbon number of i~3. For example, a methyl group, an ethyl group, and a propyl group are preferable, and a methyl group is preferable. In the above formula (1), η is 0 or 1, preferably fluorene. The decane compound represented by the above formula (I) For example, glycidoxypropyl decyl decyloxy decane, 3-glycidoxy propyl methyl diethoxy decane, 3-glycidoxy propyl trimethoxy decane, 3 glycidoxypropyl triethoxy zexi, 3_glycidoxypropyl tripropoxy oxime 2-(3,4- Epoxycyclohexyl)ethyltrimethoxydecane, 2 (3,4-epoxycyclohexyl) 12 CO. 201221611, bistriethoxymethane, 2_(3,4-epoxycyclohexyl)ethyltriproperate Oxygen Shi Xi Xuan et al. Among them, 'preferably 3·glycidoxypropyltrimethoxy ketone, 2—(3,4·epoxycyclohexyl)ethyltrimethoxy residue, 3—epoxypropoxy group Propyltriethoxydecane, 3-glycidoxypropylmethyldimethoxydecane, 3-glycidoxypropylmethyldiethoxydecane. The decane represented by the above formula (1) Commercially available products of the compound include: D〇w Corning Toray Co., Ltd., 6〇4〇(3_glycidoxypropyltrimethoxydecane), Ζ6043 (2-(3,4·epoxy ring) Hexyl)ethyltrimethoxydecane)' or κβε·4〇3 (3_glycidoxypropyltriethoxydecane) manufactured by Shin-Etsu SiliC0nes Co., Ltd., ΚΒΜ_4〇2. Propylmercaptodimethoxy (tetra), oxime (3_glycidoxypropylmethyldiethoxydecane), and the like. The content of the above-mentioned cerium-sintering compound in the above-mentioned adhesive layer is preferably 5 to 5 parts by weight based on 10 parts by weight of the butyl succinic acid-modified olefin-based resin. If the content of the above-mentioned compound is less than 5 parts by weight, the adhesion of the solar cell sealing sheet may be lowered. When the amount of the above-mentioned compound exceeds 5 parts by weight, the shrinkage of the solar cell sealing sheet may be enhanced to cause pleats or line glue to impair the appearance of the sheet. A more preferred lower limit of the content of the upper calcining compound is 〇1 part by weight, more preferably 1.5 parts by weight. The shape is inversely lower than the above-mentioned adhesive layer containing the above-mentioned time, and sometimes the viscosity of the resin for the layer is adhered to by the above-mentioned methacrylic acid. In this case, it is preferred to crosslink the acid anhydride-modified olefin-based resin to the epoxy group-containing decane compound, and the workability at the time of extrusion molding is lowered. The low-density poly 13 201221611 ethylene is blended in the above-mentioned subsequent layer. By blending low-fat sores with low-twisting polyethylene, it is possible to maintain the ergonomics and improve handling. F-specific properties and further, the above-mentioned low-density polyethylene can be a direct-bonded low-density specifically, in particular, it can be a copolymer of ethylene and olefin. The above-mentioned adhesive layer may also contain an additive such as a stabilizer, an ultraviolet ray, a 哄·^, and further an optical external line, a collector, a heat stabilizer, and the like. The above-mentioned adhesive layer $ f 1 @ enedic anhydride modified olefin " / β 1 + is produced by the following method: the above-mentioned cis-butyl compound compound, and if necessary, the weight ratio of 1 is supplied to the (4) machine for (4) The mixture was mixed in a sheet form from an extruder to produce an adhesive layer. Preferably, the adhesive layer has a thickness of 80 to 700" m. If the US is less than 8 inches, the flexible solar cell module cannot be held. If the thickness exceeds 70 〇, it may adversely affect the flame retardancy of the flexible solar cell module, or the weight of the disposable solar cell module may become heavier, and it is also unfavorable for economy. The preferred lower limit is 15 〇" m, and the upper limit is preferably β m. The solar cell is formed on the sealing sheet-based fluorine-based resin sheet. The gas-based resin sheet is transparent and rich in heat. Further, the flame retardancy is not particularly limited, and is preferably composed of a group consisting of a group of the following: a fluorine-based resin: tetrafluoroethylene-ethylene copolymer (ETFE), ethylene- Gas three a acetal resin (ECTFE), polystyrene triethyl ether resin (PCTFE), polyvinylidene di-ethylene resin (pvDF), tetrafluoroethylene-perfluoroalkane 14 201221611-based vinyl ether copolymer (FAP), poly Fluoroethylene resin (pvF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), partial Ethylene-hexafluoropropylene copolymer (PVDF-HFP), and a mixture of polyvinylidene fluoride and polymethyl methacrylate (PVDF/PMMA), in which the heat resistance and transparency are more excellent. Preferably, it is a polyvinylidene fluoride resin (PVDF), a tetrafluoroethylene-ethylene copolymer (ETFE), or a polyfluoroacetone resin (pVF). The fluorine-based resin sheet preferably has a thickness of 1 〇 to 1 〇〇 #m. If the thickness of the fluorine-based resin sheet is less than 1 〇# m, insulation may not be ensured, or

者阻燃性受損之虞。若上述氟系樹脂片孓厚度超過丨〇〇 V m’則有可撓性太陽電池模組之重量變重之虞,而不經濟。 上述氟系樹脂片之厚度之更佳下限為15"m,更佳上限為 80 // m。 上述太陽電池密封片可藉由將上述氟系樹脂片與上述 接著層積層-體化而製造。進行上述積層一體化之方法並 無特別限定,例如可㈣:在上述接著層之-面上擠出上 :敗系樹脂片並層壓來形成之方法;4共擠出上述接著層 與上述I㈣脂片來形成之方法等中 擠出步驟而同時進行製膜 、 -藉由八 才琨仃褽膜加工並積層之方法。 上述共擠出步驟中之擠出設定溫度 系樹脂及上述順τ烯_ _ w A β 為π於上述氟 … 酸肝改質烯烴系樹脂之熔點3rr以 上且低於分解溫度未達3代。 moc以 為上述接著層與 力口工並積層而成 如上所述,上述太陽電池密封片較佳 上述氟系樹脂片經由共擠出步驟同時製膜 之一體型積層體》 、 15 201221611 :场電池密封片較佳為表面具有愿花形狀。上述 一電池抗封片尤佳為於應用時成為受光面側之表面 形狀。更具體而言’較佳為於製造可撓性太陽電池模 二成為受光面側的上述太陽電池密封片之氣系、 面具有壓花形狀。 藉由具有上述壓花形狀’可降低太陽光之反射損失, 防止眩光或提昇外觀。 上述邀花形狀可為規則之凹凸形狀,亦可為 凸形狀。 w 上述塵花形狀可在貼合於太陽電池元件之前進行壓花 賦形’亦可在貼合於太陽電池元件之後進行壓花賦形,或 者在與太陽電池元件貼合之步驟中同時進行賦形。其中, 在貼合於太陽電池元件之前進行壓花賦形而形成之情形因 為無壓花之轉印不均句、可獲得均句之壓花形狀,故而較 佳。 若使用如此般預先在表面具有壓花形狀之太陽電池密 封片,利用捲軸法密封可撓性太陽電池元件,則會有於密 封時熱壓接步驟中一部分壓花形狀消失之情況。因此,通 常在密封可撓性太陽電池^件之後,另外進行對太陽電池 密封片之表面施以壓花形狀之操作。 然而,於本發明之可撓性太陽電池模組之製造方法 中,即便使用預先在表面具有壓花形狀之太陽電池密封 片,利用捲軸法密封可撓性太陽電池元件,亦無壓花形狀 消失之情形。認為其原因在於上述接著層具有充分之接著 (ς. 16 201221611 力’且另一方面亦具有充八a ^ ^ 刀间之黏彈性儲存彈性模數。 對上述太陽電池密封κ 、数 無特別限定,例如較佳為 &之方法並 f方法·藉由共播中斗_ 述太陽電池密封片之接著居 步驟對上 工時,使用壓u“、/、鼠系樹脂片同時進行製膜加 化 …冷卻輥,在冷卻熔融樹脂之同時對 表面進行壓花賦形。 上述太陽電池元件通常由藉由受光而產生電子之光電 轉換層、抽取所產生之電子 卞乏電極層及可撓性基材所構成。 上述光電轉換層例如可列舉由下述者所形成之層:單 晶碎、單晶錯、多晶石夕、他曰从#。^ 日夕微晶矽等晶系半導體,非晶矽等 非晶系半導體,GaAs、InP、A1GaAs、⑽、cdTe、㈣、The flame retardant is impaired. If the thickness of the fluorine-based resin sheet exceeds 丨〇〇 V m', the weight of the flexible solar battery module becomes heavier, which is uneconomical. A lower limit of the thickness of the above fluorine-based resin sheet is 15 " m, and a higher limit is 80 // m. The solar cell encapsulating sheet can be produced by laminating the above-mentioned fluorine-based resin sheet and the layered layer described above. The method for integrating the above-mentioned laminated layer is not particularly limited. For example, (4): a method of extruding a resin sheet on a surface of the adhesive layer and laminating it; and 4 extruding the above-mentioned adhesive layer and the above-mentioned I (four) A method in which a film is formed by a method of forming a fat sheet and the like, and a film is formed at the same time, and the film is processed by an eight-layer film. The extrusion set temperature in the above co-extrusion step is such that the resin and the above-mentioned cis-t-butene _ w A β are π at a melting point of 3 rr or more of the above-mentioned fluoroacid-modified olefin-based resin and less than the decomposition temperature for less than 3 generations. In the above-mentioned solar cell sealing sheet, it is preferred that the above-mentioned fluororesin sheet is simultaneously formed into a film-type laminated body via a co-extrusion step, 15 201221611: Field battery sealing Preferably, the sheet has a desired flower shape. It is particularly preferable that the above-mentioned battery anti-sealing sheet has a surface shape on the light-receiving side when applied. More specifically, it is preferable that the gas system and the surface of the solar cell sealing sheet which is the side of the light-receiving surface of the flexible solar cell module 2 have an embossed shape. By having the embossed shape described above, the reflection loss of sunlight can be reduced, glare is prevented, or the appearance is improved. The above-mentioned invitation flower shape may be a regular concave-convex shape or a convex shape. w The dust shape can be embossed before being attached to the solar cell component. It can also be embossed after bonding to the solar cell component, or simultaneously in the step of bonding with the solar cell component. shape. Among them, the case where the embossing is formed before being bonded to the solar cell element is preferable because the embossed transfer unevenness sentence is obtained and the embossed shape of the uniform sentence can be obtained. When the solar cell sealing sheet having an embossed shape on the surface in advance is used, and the flexible solar cell element is sealed by the reel method, a part of the embossed shape disappears during the thermocompression bonding step at the time of sealing. Therefore, the operation of applying an embossed shape to the surface of the solar cell sealing sheet is usually carried out after sealing the flexible solar cell member. However, in the manufacturing method of the flexible solar cell module of the present invention, even if a solar cell sealing sheet having an embossed shape on the surface is used, the flexible solar cell element is sealed by the reel method, and no embossed shape disappears. The situation. The reason for this is that the above-mentioned adhesive layer has sufficient adhesion (ς.16 201221611 Force' and on the other hand, it has a viscoelastic storage elastic modulus between the knives and the knives. There is no particular limitation on the solar cell seal κ. For example, it is preferably a method of & and a method of performing a film-forming process by simultaneously pressing a U-, /, rat-type resin sheet by co-broadcasting A cooling roll that embosses the surface while cooling the molten resin. The solar cell element is generally composed of a photoelectric conversion layer that generates electrons by receiving light, an electron depletion electrode layer generated by extraction, and a flexible base. The photoelectric conversion layer may be, for example, a layer formed of a single crystal, a single crystal, a polycrystalline stone, a crystalline semiconductor such as a microcrystalline germanium, or the like. Amorphous semiconductors such as germanium, GaAs, InP, A1GaAs, (10), cdTe, (d),

CuInSe2、CuInS2f化合物半導體,酞菁、聚乙炔等有機半 導體等。 上述光電轉換層可為單層或複數層。 上述光電轉換層之厚度較佳為〇.5〜1〇ym。 上述可撓性基材只要為具有可撓性且可用於可撓性太 陽電池者,則無特別限定,例如可列舉由聚醯亞胺、聚醚 鍵酮、聚醚砜等耐熱性樹脂所構成之基材。 上述可撓性基材之厚度較佳為10〜80/im。 上述電極層為由電極材料所構成之層。 上述電極層視需要可位於上述光電轉換層上,亦可位 於上述光電轉換層與可撓性基材之間,亦可位於上述可撓 性基材面上。 上述太陽電池元件亦可具有複數層上述電極層。 17 201221611 受光面側之電極層由於需要透光,故而較佳為透明電 極。上述電極材料只要為金屬氧化物等通常之透明電極材 料則無特別限定,可較佳地使用ITO或ZnO等。 於不使用透明電極之情形時,亦可為利用銀等金屬將 匯流電極或其附帶之指狀電極(finger ele…。和)圖案化所得 由於背面側之電極層無需為透明,故而由通常之電極 材料構成亦可,上述電極材料適合使用銀。 製造上述太陽電池元件之方法只要為公知之方法,則 無特別限;t,例如可藉由在上述可撓性基材上配置上述光 電轉換層或電極層之公知之方法而形成。 、上述太陽電池元件可為捲繞成捲轴狀之長條狀,亦可 為矩形之片狀。 本發明之可撓性太陽電池模組之製造方法係藉由使用 -對熱輥以使得上述太陽電池密封片接近上述太陽電池元 件之至少受光面上,藉此進行熱壓接。 所謂上述太陽電池元件之受光面,係可藉由受光而發 電且對上述可撓性基材配置有上述光電轉換層之面。 於本發明之可撓性太陽電池模組之製造方法中,較佳 為以下方法:於上述太陽電池元件之配置有光電轉換層之 面與上述太陽電池密封片之接著層側之面相對向的狀態 下’將上述太陽電池元件與太陽電池密封片積層,並使用 一對熱輥使該等接近以進行熱壓接。 上述熱輥之溫度 使用上述一對熱輥以使得其接近時 18 201221611 較佳為70〜16(TC。若上述熱輥之溫度未達7〇»c,則有引 起接著不良之虞。若上述熱輥之溫度超過! 6(rc,則於熱壓 接時谷易產生皺褶。上述熱輥之溫度更佳為8〇〜15〇。 上述熱輥之彡疋轉速度較佳為0.1〜l〇m/分鐘。若上述熱 輥之旋轉速度未達0.1m/分鐘,則有熱壓接後容易產生皺褶 之虞。若上述熱輥之旋轉速度超過1〇m/分鐘,則有引起接 著不良之虞。上述熱輥之旋轉速度更佳為0.3〜5m/分鐘。 本發明之可撓性太陽電池模組之製造方法中,如上所 述般使太陽電池密封片之接著層由特定樹脂所構成,因而 無需交聯步驟,故可於短時間内進行熱壓接。又,亦可於 低溫下進行熱壓接。因此,不會產生皺褶或捲曲,可將太 陽電池元件與太陽電池密封片充分接著。因此,可使用捲 軸法效率良好地製造可撓性太陽電池模組。 使用圖1具體地說明本發明之可撓性太陽電池模組之 製造方法。 如圖1所示,太陽電池元件八及太陽電池密封片B為 長條狀者’且分別捲繞成捲軸狀。 首先,捲出太陽電池元件A及太陽電池密封片B之捲 轴,配置成使上述太陽電池元件A之受光面與上述太陽電 池密封片B之接著層面相對向之狀態,積層兩者而製成積 層片C。CuInSe2, CuInS2f compound semiconductor, organic semiconductor such as phthalocyanine or polyacetylene. The above photoelectric conversion layer may be a single layer or a plurality of layers. The thickness of the above photoelectric conversion layer is preferably 〇.5 to 1 〇 ym. The flexible substrate is not particularly limited as long as it is flexible and can be used in a flexible solar cell, and examples thereof include a heat resistant resin such as polyimine, polyether ketone or polyether sulfone. The substrate. The thickness of the above flexible substrate is preferably from 10 to 80 / im. The above electrode layer is a layer composed of an electrode material. The electrode layer may be located on the photoelectric conversion layer as needed, or between the photoelectric conversion layer and the flexible substrate, or on the surface of the flexible substrate. The solar cell element may have a plurality of layers of the electrode layers. 17 201221611 The electrode layer on the light-receiving side is preferably a transparent electrode because it needs to transmit light. The electrode material is not particularly limited as long as it is a usual transparent electrode material such as a metal oxide, and ITO, ZnO or the like can be preferably used. When the transparent electrode is not used, the bus electrode or its attached finger electrodes (finger ele...) can be patterned by using a metal such as silver. Since the electrode layer on the back side does not need to be transparent, it is usually used. The electrode material may be configured, and the electrode material is preferably silver. The method for producing the solar cell element described above is not particularly limited as long as it is a known method; and t can be formed, for example, by a known method of disposing the above-described photoelectric conversion layer or electrode layer on the flexible substrate. The solar cell element may be in the form of a strip wound in a reel shape or a rectangular sheet. The flexible solar cell module of the present invention is produced by thermo-compression bonding by using a heat-contacting roller so that the solar cell sealing sheet is close to at least the light-receiving surface of the solar cell element. The light-receiving surface of the solar cell element can be generated by receiving light and the surface of the photoelectric conversion layer can be disposed on the flexible substrate. In the method for producing a flexible solar cell module of the present invention, preferably, the method is such that a surface of the solar cell element on which the photoelectric conversion layer is disposed faces a surface of the solar cell sealing sheet on the side of the adhesive layer. In the state, the solar cell element and the solar cell sealing sheet are laminated, and the pair is brought into close contact for thermocompression bonding using a pair of heat rollers. The temperature of the heat roller is such that the pair of heat rollers are used such that when they are close to each other, 18 201221611 is preferably 70 to 16 (TC. If the temperature of the heat roller is less than 7 〇»c, there is a problem of causing a defect. The temperature of the heat roller exceeds 6 (rc, the valley is liable to wrinkle at the time of thermocompression bonding. The temperature of the above heat roller is preferably 8 〇 15 〇 15 〇. The tumbling speed of the above heat roller is preferably 0.1 〜1 l 〇m/min. If the rotation speed of the above-mentioned heat roller is less than 0.1 m/min, wrinkles are likely to occur after thermocompression bonding. If the rotation speed of the above-mentioned heat roller exceeds 1 〇m/min, it may cause subsequent The rotation speed of the heat roller is preferably 0.3 to 5 m/min. In the method for producing a flexible solar cell module of the present invention, the adhesive layer of the solar cell sealing sheet is made of a specific resin as described above. Since it is configured, the cross-linking step is not required, so that the thermocompression bonding can be performed in a short time. Moreover, the thermocompression bonding can be performed at a low temperature. Therefore, the solar cell element and the solar cell can be sealed without wrinkles or curling. The sheet is fully followed. Therefore, the scroll method can be used efficiently. Flexible solar cell module. The manufacturing method of the flexible solar cell module of the present invention will be specifically described with reference to Fig. 1. As shown in Fig. 1, the solar cell element 8 and the solar cell sealing sheet B are elongated. First, the reel is wound up. First, the reel of the solar cell element A and the solar cell encapsulating sheet B is wound so that the light receiving surface of the solar cell element A and the subsequent layer of the solar cell sealing sheet B are opposed to each other. The state is laminated to form a laminated sheet C.

其次,將上述積層片C供給至加熱為一定溫度之一對 輥〇、〇間,一面於厚度方向上擠壓一面加熱積層片c而 進行熱壓接,從而將太陽電池元件A與太陽電池密封片B 19 201221611 接著一體化,藉,t|_, 、+. 密封片B密封陽電池元“由上述太陽電池 密封,可獲得可撓性太陽電池模組£。 圖2表示本發明之可撓性太陽電池模組之製 使用的太陽雷、、+分此Δ々 万去中 冑電“件Α之-例之縱剖面示意圖,圖3表_ 太陽電池密封片R,七 表不 ί片B之一例之縱剖面示意圖。如圖2 太陽電池元件Α7不’ 去U 可撓性基材1上配置有光電轉換層2 者。再者,由於電極層可進行各種配置,故而此處省略。 :-:圖3所7^ ’太陽電池密封片Β包含氟系樹脂片4與 接者層3。於上述太陽電池密封片㈣成為捲繞成捲軸狀之 片捲軸之清形時,接著層3可為内側,亦可為外側。 進而’圖4表示藉由本發明之製造方法而獲得的可 性太陽電池模組之一例之縱剖面示意圖。 如圖4所示’太陽電池元件Α之光電轉換層2側之面Next, the laminated sheet C is supplied to a roll and a crucible heated to a certain temperature, and the laminated sheet c is heated while being pressed in the thickness direction to be thermocompression bonded, thereby sealing the solar cell element A and the solar cell. Sheet B 19 201221611 Then integrated, borrowed, t|_, , +. Sealing sheet B sealed solar cell "sealed by the above solar cell, flexible solar cell module can be obtained. Figure 2 shows the flexibility of the present invention. The solar solar module used in the solar cell module, the + 分 々 去 去 去 胄 “ “ “ - - - - - - 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 太阳 太阳 太阳 太阳 太阳 太阳 太阳 太阳A schematic diagram of a longitudinal section of one example. As shown in Fig. 2, the solar cell element Α7 does not go to the U flexible substrate 1 where the photoelectric conversion layer 2 is disposed. Furthermore, since the electrode layers can be variously arranged, they are omitted here. :-: The solar cell sealing sheet of Fig. 3 includes a fluorine-based resin sheet 4 and a connector layer 3. When the solar cell encapsulating sheet (4) is in the form of a clearing of the reel in the form of a reel, the subsequent layer 3 may be the inner side or the outer side. Further, Fig. 4 is a schematic longitudinal sectional view showing an example of a solar cell module obtained by the production method of the present invention. As shown in Fig. 4, the side of the photoelectric conversion layer 2 side of the solar cell element

由太陽電池密封片B之接著層3密封,藉此太陽電池元件A 與太陽電池密封片B積層一體化,獲得可撓性太陽 組E。 本發明之可撓性太陽電池模組之製造方法亦可另外具 有以下步驟:€用-對熱輥以使得上述太陽電池密封片接 近上述太陽電池元件之可撓性基材上面而進行熱壓接之步 驟。 藉由不僅松封上述太陽電池元件之光電轉換層侧之面 (表面),且亦密封可撓性基材側之面(背面),可更加良 好地密封上述太陽電池元件,製作可長期穩定地發電之可 繞性太陽電池模組。The solar cell element A and the solar cell sealing sheet B are laminated and integrated by the adhesive layer 3 of the solar cell sealing sheet B to obtain a flexible solar group E. The manufacturing method of the flexible solar cell module of the present invention may further comprise the steps of: thermo-compression bonding the heat-radiating roller so that the solar cell sealing sheet is close to the flexible substrate of the solar cell element. The steps. By sealing not only the surface (surface) on the photoelectric conversion layer side of the solar cell element but also the surface (back surface) on the side of the flexible substrate, the solar cell element can be sealed more satisfactorily, and the production can be stably performed for a long period of time. Recyclable solar cell module for power generation.

20 201221611 於上述可撓性基材側之面(背面)熱屋接上述太 池密封片之方法例如可列舉下述方法:與上述同樣地,於 上述太陽電池元件之可撓性基材侧之面(背面),以接著層 與可撞性基材相對向之方式配置上述太陽電池密封片,使 用一對熱輥使之接近以進行熱壓接。 又,由於在密封上述太陽電池元件之可挽性基材側之 面之情形時無需透光性,故而亦可使用由接著層與金屬板 所構成之太陽電池密封片。 上述接著層可列舉與上述太陽電池密封片之接著層相 同者。 上述金屬板可列舉由不鏽鋼、鋁等所構成之板。 上述金屬板之厚度較佳為25〜8〇〇//m。 於利用上述接著層及金屬板密封上述太陽電池元件之 :撓性基材側之面(背面)之情形時,例如預先形成由上 接者層及金屬板所構成之片’與上述同樣地,於太陽電 之可撓性基材側之面(背面)使用由接著層及金屬 板所構成之片’熱壓接上述可撓性基材與上述接著層即可。 :上述太陽電池元件之可撓性基材側之面( 述太陽電池密封片或者由上述接著層及金屬板所構 片的步驟可於在上述太陽電池元件之受光面上 =陽電池密封片的步驟前進行,亦可同時進 亦可於之後進行。 〜可 ,用圖5,說明作為本發明之可撓性太陽電池之製造方 去’例如同時密封太陽電池元件之光電轉換層側之面(表 21 201221611 面)與可撓性基材側之面(背面)之方法的一例。 具·體而g ’準備捲繞成捲軸狀之長條狀太陽電池元件 Μ另方面,準備兩捲之捲繞成捲軸狀之長條狀太陽電池 密封片。然後’如® 5所示,分別捲出長條狀太陽電池密 封片Β、Β,並且捲出長條狀太陽電池元件A,形成為兩太 陽電池密封片之接著層相互對向之狀態,%著太陽電池元 件A將太陽電池密封片B、B彼此疊合以製作積層片。。20 201221611 The method of thermally connecting the above-described Taichi sealing sheet to the surface (back surface) on the side of the flexible substrate is, for example, the following method: in the same manner as described above, on the flexible substrate side of the solar cell element In the surface (back surface), the solar cell encapsulating sheet is disposed such that the adhesive layer is opposed to the collapsible substrate, and is brought into close contact with each other for thermocompression bonding. Further, since it is not necessary to transmit light when sealing the surface of the solar cell element on the side of the removable substrate, a solar cell sealing sheet composed of an adhesive layer and a metal plate can be used. The above-mentioned adhesive layer may be the same as the adhesive layer of the above-mentioned solar cell sealing sheet. The metal plate may be a plate made of stainless steel or aluminum. The thickness of the above metal plate is preferably 25 to 8 Å/m. When the surface of the flexible battery substrate (back surface) of the solar cell element is sealed by the above-mentioned adhesive layer and a metal plate, for example, a sheet composed of an upper layer and a metal plate is formed in advance, in the same manner as described above. The flexible substrate and the adhesive layer may be thermocompression bonded to the surface (back surface) of the flexible substrate side of the solar cell using a sheet composed of an adhesive layer and a metal plate. a surface of the solar cell element on the side of the flexible substrate (the solar cell encapsulating sheet or the step of forming the sheet by the adhesive layer and the metal sheet may be on the light receiving surface of the solar cell element = the anode cell sealing sheet) It is also possible to carry out the steps before or after the process. It is possible to use, as shown in Fig. 5, the manufacturer of the flexible solar cell of the present invention to, for example, simultaneously seal the surface of the photoelectric conversion layer of the solar cell element ( Table 21: An example of a method of the surface of the flexible substrate side (back surface). The body is made of a long solar cell element that is wound into a reel shape. In addition, a roll of two rolls is prepared. A long strip of solar cell sealing sheet wound in a reel shape. Then, as shown in Figure 5, the long solar cell sealing sheets Β and Β are rolled out, and the long solar cell element A is rolled out to form two suns. In the state in which the adhesive layers of the battery sealing sheets are opposed to each other, the solar cell element A overlaps the solar cell sealing sheets B and B to each other to form a laminated sheet.

、、;後將積層C供給至加熱為一定溫度之一對觀D、D 間面於厚度方向上擠壓一面加熱積層片c,藉此使太陽 電、、用密封片B、B彼此接著一體化,以太陽電池密封片b、 B密封太陽電池兀件a,從而連續地製造可撓性太陽電池模 組F。 —於上述可撓性太陽電池模組之製造方法中,亦可於隔 著太陽電池元件A將太陽電池密封片B、B彼此疊合以形成 積層片C之同時,一面於厚度方向上擠壓一面加熱積層片 又,圖6表示使用矩形者作為太陽電池元件之情形之 可撓性太陽電池模組的製造要領之一例。 / 具體而S ’準備一定大小之矩形片狀太陽電池元件A 代替捲繞成捲軸狀之長條狀太陽電池元件。繼而,如圖6 所不"刀別捲出捲繞成捲軸狀之長條狀太陽電池密封片B、 B ’將太陽電池元件a每隔一定時間間隔供給至設置成各自 ,接著層相對向之狀態的太陽電池密封片B、BFa,,隔著太 陽電池元件A將太陽電池密封片B、B彼此疊合,而製成積 22 201221611 層片c。然後,將積層片c供給至加熱成一定溫度之一對 輥D、D間,一面於厚度方向上擠壓一面加熱積層片c,藉 此使太陽電池用密封片B、B彼此接著一體化,以太陽電池 密封片B、B密封太陽電池元件a,從而連續地製造可挽性 太陽電池模組F。 於上述可撓性太陽電池模組之製造方法中,亦可與形 成積層片C之同時一面於厚度方向上擠壓一面加熱積層片 C 〇 圖7及圖8表示使用本發明之可撓性太陽電池模組之 製造方法’密封太陽電池元件之光電轉換層側之面(表面) 與可撓性基材側之面(背面)而獲得之可撓性太陽電池模 組之一例。 圖7為太陽電池元件A之光電轉換層2側之面與可撓 性基材1側之面均由太陽電池密封片B之接著層3密封的 可撓性太陽電池模組F之一例的縱剖面示意圖。 圖8為以太陽電池密封片B之接著層3密封太陽電池 元件A之光電轉換層2側之面,且以由接著層3及金屬板5 所構成U密封可撓性基材丨狀面所叙可撓性太陽電 池模組G之一例的縱剖面示意圖。 如此,本發明之可撓性太陽電池模組之製造方法之特 :在於Η吏用特定構成之太陽電池密封片密封太陽電池元 件〇 且 因此,可利用捲軸法較佳地 太陽電池元件與太陽電池密封 製造不會產生皺褶或捲曲 片之接著性優異之可撓性 23 201221611 太陽電池模組。 本發明之可挽性太陽電池模組之製造方法由於為上述 故而於太陽電池模組之製造中,無需交聯步驟即可 :續地密封太陽電池元件,可利用捲軸法較佳地製造不會 產生敏稽或捲曲,太陽電池元件與太陽電池密封片之 性優異的可撓性太陽電池模組。 【實施方式】 以下,列舉實施例更加詳細地說明本發明,但本發明 並不限定於該等實施例。 (實施例1〜29,比較例4、6、7) 將由具有表1〜5所示之—定量之丁稀成分含量及乙稀 成分含量的T烯_乙稀共聚物經順丁烯二酸酐接枝改質而成 之改質丁烯系樹脂10G重量份、與钱化合物即表i〜5所 不之-定量之3-環氧丙氧基丙基三甲氧基矽烷⑶ Corning Toray公司製造,商品名「Z 6〇4〇」)或3-丙稀醯氧 基丙基二甲氧基矽烷(信越化學工業公司製造,商品名 「KBM-5103」)所構成的接著層用組成物供給至第一擠出 機中’於250°C下進行熔融混練。 另一方面,將表1〜5所示之一定之氟系樹脂(聚偏二 氟乙烯(Arkema公司製造,商品名「Kynar-72〇」)、四氟乙 烯-乙烯共聚物(Daikin Industries公司製造,商品名 「Neoflon ETFE」)' 聚氟乙烯樹脂(Dup〇nt公司製造,商 品名「Tedlar」)、四氟乙烯·全氟烷基乙烯醚共聚物(Daikin Industries公司製造,商品名「Ne〇fl〇n pFAj)、乙烯氣三 24 201221611 氟乙烯樹脂(Solvay公司製造,商品名Γ halar ECTFE」)、 聚氣二乱乙稀樹脂(Daikin Industries公司製造,商〇名 「Neoflon PCTFE」)、偏二氟乙烯·六氟丙烯共聚物(紙賺 公司製造,商品名「Kynar-flex 2800」)、及偏二氟乙烯與聚 曱基丙烯酸甲酯之混合物(相對於Arkema公司製造之商品 名「Kynar-720」100重量份,調配有聚甲基丙烯酸甲酯2〇 重量份者))供給至第二擠出機中,於表丨〜5所記载之擠 出設定溫度下進行熔融混練。 然後’將上述接著層用組成物及上述氟系樹脂供給至 同時連接上述第-擠出機與上述第二擠出機之匯流模中使 其等匯流,再將其自連接於匯流模之T型模中以接著層之 厚度成為0_3_且I系樹脂層之厚度成為〇〇3_之方式 擠出成形為片狀。又,於自τ』禮 、目r型模擠出成形為片狀時,使 用具有圖9所示之規則之 凸形狀之表面的冷卻輥,於氟 树月曰層之表面賦形圖10所 P_ 0所不之規則之凹凸形狀。藉此,獲 付既系樹脂層於由上述接著層用組成物所構成之接著層之 面積層一體化’且表面且有壓 A 、有塗化^狀的長條狀且具有固 疋寬度之太陽電池密封片。 上述太陽電池论封片 中’接著層可為㈣卜亦可為外側。 之片捲軸 二1表示片製造裝置之進行壓花賦形之輥之配置。 再者,將所使用之改暫 (_)、藉由示差播h 旨之炼融流速 .,^ 9 田“、、量分析而測定之吸埶曲線t< 波峰溫度(Tm)示於表]Μ 次…曲線之最大 之順丁烯一西m “ 巾。又’將改質丁烯系樹脂中 貝丁烯一酉夂酐之總含量示於表丨〜5中。 25 201221611 其认’使用上述中所獲得之太陽電池密封片,以下述 要領製作可撓性太陽電池模組。首先,如圖6所示,準備 於由具有可撓性之聚醢亞胺膜構成之可撓性基材上形成有 由薄膜狀非晶矽構成之光電轉換層的矩形片狀太陽電池元 件A、及2捲上述中獲得之太陽電池密封片捲繞成捲軸狀之 太陽電池密封片B。 繼而,如圖6所示,分別捲出捲繞成捲軸狀之長條狀 太陽電池密封片B、B,將太陽電池元件A供給至設置成各 自之接著層相對向之狀態的太陽電池密封片B、B間,隔著 太陽電池元件A將太陽電池密封片B、B彼此疊合,以製作 積層片c。然後,將積層片c供給至加熱為表丨〜5記載之 溫度的-對輥D、D間’一面於厚度方向上擠壓一面加熱積 層片c,藉此使太陽電池用密封片B、B彼此接著一體化, 密封太陽電池元件A ’而製造可撓性太陽電池模組f。 (比較例1、2 ) 使用利用低密度聚乙稀(比較例Π或以順丁稀二酸酐 繼質而成之改質聚乙缔(比較例2)代替改質丁稀系樹 月:,且:用表5記載之矽烷化合物與敦系樹脂而獲得的太 %電池密封片’於纟5記載之輥溫度下進行密封,除此方 面以外以與實施例丨相同 ' ,』之方式獲侍可撓性太陽電池模組。 (比較例3) 使用利用護代替改樹脂, 之我化合物與氟系樹脂而獲得的太陽電池密封^ = 方面以外以與實施例丨相 示此 门之方式獲得可撓性太陽電池模 26 201221611 (比較例5 ) 使用利用聚對苯二甲酸乙二酯代替氟系樹脂,且利用 表5 5己載之矽烷化合物而獲得的太陽電池密封片,於表< 記載之親溫度下進行密封’除此方面以外以與實施例\相 同之方式獲得可撓性太陽電池模組。 (比較例8 ) 使用利用藉由使乙烯77.2重量份、丙烯酸乙 份及順丁稀二酸酐28重量 里1伪進仃自由基聚合而得之乙烯_ ;1員丁烯二酸酐-丙烯酸乙酯乒聚 止 a /、永物(EEAM,Arkema公司製 ^之Lotader HX8140 )代替敌暂τ泣么山 改質丁烯系樹脂而獲得的太陽 ,也封片,除此方面以外盘 可榼丄 興貫施例1相同之方式獲得 了撓性太陽電池模組。 (評價) 關於所得之可撓性太陽電 之產生狀況、捲曲之產生狀、兄^ Μ4要領對敏相 性及壓花形狀伴H ’剝離強度、高溫高濕耐夕 f呆持進行評價,並將其結果示於表卜 件之必要條件,故不滿足作為太陽電池元 持之評價。 °恤馬濕耐久性及壓花形狀保 於未獲得充分之剝離強度且 要條件,故而未進行高溫高 又,於比較例4、5中,由 不滿足作為太陽電池元件之必 濕耐久性評價。 <皺褶之產生> 27 201221611 以目視判斷上述中獲得之可撓性太陽電池模組之皺褶 之產生狀況,以下述評分進行打分。4分以上為合格。 5分:完全看不到皺褶產生。 4分·發現1個/m2之〇.5mm以内之皺獨。 3 S ·發現2〜4個/m2之〇.5mm以内之皺指。 2为.發現5個/m2以上之〇.5mm以内之皺糟。 1分:發現0.5mm以上之大的皺褶。 <捲曲之產生> 將尺寸為500mmx500mm之上述可撓性太陽電池模組 放置於平坦之平面上’測定端部自水平面之隆起高度。 ◎:未達20mm 〇:20mm以上且未達 2 5 mm △ : 25mm以上且未達35mm x : 35mm以上 <剝離強度> 對所得之可撓性太陽電池模組,依據JIS K6854測定自 太陽電池元件上剝離太陽電池密封片時之剝離強度。 < 1¾溫高濕耐久性(接著)> 將所得之可撓性太陽電池模組放置於JIC C8991記載 之85 C、相對濕度85%之環境下,開始上述放置後每隔5〇〇 小時觀察一次太陽電池密封片自太陽電池元件之剝離狀 此,測定確認到剝離之時間。 於規疋太%電池模組之認證條件之j IC c 8 9 9 0中,於發 電效率方面要求丨000小時以上之耐久性,將未達1〇〇〇小 28 201221611 時而確認到剥離者判斷為接著性不足。 <咼溫高濕财久性(發電特性)> 將所得之可撓性太陽電池模組放置於C C899〇記载 之85°C、相對濕度85%之環境下,使用NisshinT〇a&司製 造之1116N測定最大功率Pmax之變化量。再者,對未達 1000小時而確認到剝離者不實施測定。又,表i — 5記載之 評價結果表示下述含義。 〉3000H:經過3000小時後功率維持為%%。 2〇〇〇H:至經過2000小時為止功率維持為%%。 ιοοοΗ:至經㉟100"、時為止功率維持為95% (JIS-C8991 標準)。 X :經過1〇〇〇小時後功率無法維持為95%。 由於經過胸小時前已剝離,故而無法測定 <壓花形狀保持> 觀祭所得 —w f\y 之深度係 花深度’藉此確認如圖1 〇所示之最初有〇 i 保持為何種程度。 ◎ : 0.09mm 以上 〇:0.06mm以上且未達〇.〇9mm △ : 0.03mm以上且未達〇.〇6mm x :未達 0.03mm 29 201221611 1實施例8 1 I 250〇c I PVDF I 〇 m oo in O 〇 ο IT) ◎ 78 N/cm 以上 3000 Η 以 上 2000 Η ◎ 1實施例7| I 250〇C 1 PVDF T—Η 〇 cn IT) 00 tn o 〇 § ο in ◎ 125 N/cm 以上 2000 Η 1000 Η ◎ 1實施例6 I 250〇C PVDF (Ν 〇 cn 00 o 〇 in ο in ◎ 50 N/cm 以上 3000 Η 以 上 >3000 Η ◎ |實施例5 1 250〇C 1 PVDF ψ 〇 in s o 〇 ο ◎ 70 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例4 1 250°C 1 PVDF (N jn 〇 o 〇 ΙΤ) Ο in 〇 62 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例3 1 250°C | PVDF | ο cn 00 o 〇 ο in ◎ 70 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例2 | 250〇C | | PVDF I CN (N o o 〇 ιη ο 寸 〇 50 N/cm 以上 3000 Η 以 上 >3000 Η1 ◎ I實施例1 | 250〇C | PVDF v〇 O 00 o 〇 ο 〇 25 N/cm 1500 Η 1000 Η 1 〇 擠出設定溫度 氟系樹脂 容 φ! .Ifhil 裝 h 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) MFR (g/10 分鐘) Tm (t) 3-環氧丙氧基丙基三曱氧基矽烷(重量份) 3-丙烯醯氧基丙基三曱氧基矽烷(重量份) 輥溫度(°c) 速度(m/分鐘) 皺褶之產生 捲曲之產生 剝離強度 高溫高濕耐久性(接著) 高溫高濕耐久性(發電特性) 壓花形狀保持 丁烯-乙烯 共聚物 改質丁烯系 樹脂 201221611 實施例13 250〇C PVDF VO 卜 m 00 卜 〇 c> < 78 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例12 250〇C PVDF 1 < ·_* 卜 m 00 ί〇 〇 in ο 寸 〇 78 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例11 1 250〇c 1 PVDF VO f·^ 卜 m 00 (N 〇 in ο 〇 78 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例10 250〇C PVDF 卜 cn 00 〇 ο ◎ 78 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例^ | 250〇C | PVDF 卜 ΓΟ oo | 0.05 I 〇 ίΤ) Ο in 〇 25 N/cm I 1500 Η 1000 Η 〇 擠出設定溫度 氟系樹脂 丁烯成分(重量%) 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) MFR (g/ΙΟ 分鐘) Tm (°C) 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 3-丙稀醯氧基丙基三甲氧基石夕烧(重量份) 輥溫度(°c) 速度(m/分鐘) 皺褶之產生 捲曲之產生 剝離強度 高溫高濕耐久性(接著) 高溫高濕耐久性(發電特性) 壓花形狀保持 丁稀-乙稀共聚物 改質丁烯系樹脂 201221611 【Γηί 1實施例2l| 290〇C I ECTFE I ΓΠ 〇 00 m o 〇 ο ◎ 50 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例20 290°C FAP m 〇 m in 00 〇 〇 § ο in ◎ 50 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 1實施例19| 250〇C 1 PVF ro Ο iT) 00 o 〇 ο ◎ 70 N/cm 以上 3000 Η 以 上 >3000 Η ◎ |實施例18| 1 290°C 1 ETFE ΓΛ Ο ro 00 o 〇 i〇 d 〇 25 N/cm 1500 Η 1000 Η 〇 |實施例17」 290〇C I ETFE J VO rn d m uo 00 o 〇 in o ◎ 25 N/cm 1500 Η 1000 Η 〇 實施例16 1 250〇c 1 | PVDF | o m ο 寸 冢 in 〇 〇 m 〇 ◎ 50 N/cm 以上 3000 Η 以 上 >3000 Η ◎ |實施例15| 1 250〇c I | PVDF | Ό c\ ο 00 〇 〇 c> ^T) ◎ 78 N/cm 以上 3000 Η 以 上 >3000 Η ◎ |實施例14 | 1 250〇c 1 | PVDF | VO m ON 00 un o 〇 〇 寸 ◎ 78 N/cm 以 上 3000 Η 以 上 1000 Η ◎ 擠出設定溫度 氟系樹脂 Jfhil w\ Η 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) MFR (g/10 分鐘) Tm (°C ) 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 3-丙烯醯氧基丙基三甲氧基矽烷(重量份) 輥溫度(°c) 速度(m/分鐘) 皺褶之產生 捲曲之產生 剝離強度 高溫高濕耐久性(接著) 高溫高濕耐久性(發電特性) 壓花形狀保持 装 ο & h ^ 改質丁烯系 樹脂Then, the laminated layer C is supplied to one of a certain temperature for heating, and the laminated layer c is heated while pressing between the faces D and D in the thickness direction, thereby making the solar electric power and the sealing sheets B and B mutually integrated. The solar cell module F is sealed by the solar cell sealing sheets b and B to continuously manufacture the flexible solar cell module F. In the above-described manufacturing method of the flexible solar cell module, the solar cell sealing sheets B and B may be stacked on each other to form the laminated sheet C via the solar cell element A, while being pressed in the thickness direction. Further, while heating the laminated sheet, FIG. 6 shows an example of a manufacturing method of a flexible solar battery module in which a rectangular person is used as a solar battery element. / Specifically, S 'prepares a rectangular sheet-shaped solar cell element A of a certain size instead of a long-length solar cell element wound in a reel shape. Then, as shown in Fig. 6, the long-shaped solar cell sealing sheets B and B' wound up in a reel shape are supplied to the solar cell elements a at regular intervals to be disposed, and then the layers are opposed to each other. In the state of the solar cell sealing sheets B and BFa, the solar cell sealing sheets B and B are superimposed on each other via the solar cell element A to form a layer 22 201221611 layer c. Then, the laminated sheet c is supplied to the pair of rolls D and D heated to a certain temperature, and the laminated sheet c is heated while being pressed in the thickness direction, whereby the solar cell sealing sheets B and B are integrated with each other. The solar cell element a is sealed with the solar cell sealing sheets B and B to continuously manufacture the solar cell module F. In the manufacturing method of the flexible solar cell module described above, the laminated sheet C may be heated while being pressed in the thickness direction while forming the laminated sheet C. FIG. 7 and FIG. 8 show the flexible sun using the present invention. A method of manufacturing a battery module is an example of a flexible solar battery module obtained by sealing a surface (surface) on a photoelectric conversion layer side of a solar cell element and a surface (back surface) on a flexible substrate side. 7 is a longitudinal example of a flexible solar battery module F in which the surface of the solar cell element A on the photoelectric conversion layer 2 side and the surface of the flexible substrate 1 are sealed by the adhesive layer B of the solar cell sealing sheet B. Schematic diagram of the section. 8 is a view in which the surface of the solar cell element A on the photoelectric conversion layer 2 side is sealed by the adhesive layer 3 of the solar cell sealing sheet B, and the U-sealed flexible substrate is formed by the adhesive layer 3 and the metal plate 5. A schematic longitudinal cross-sectional view of an example of a flexible solar cell module G. Thus, the manufacturing method of the flexible solar cell module of the present invention is characterized in that the solar cell element is sealed with a solar cell sealing sheet of a specific configuration, and therefore, the solar cell element and the solar cell can be preferably used by the reel method. The sealing manufacture does not produce wrinkles or the flexibility of the crimped sheet is excellent. 23 201221611 Solar cell module. In the manufacturing method of the solar cell module of the present invention, in the manufacture of the solar cell module, the cross-linking step is not required: the solar cell element can be continuously sealed, and the reel method can be preferably manufactured. A flexible solar cell module that is sensitive or curled, and has excellent solar cell elements and solar cell sealing sheets. [Embodiment] Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited thereto. (Examples 1 to 29, Comparative Examples 4, 6, and 7) A T-ethylene copolymer having a content of a dilute component and an ethylene component as shown in Tables 1 to 5 was subjected to maleic anhydride. Graft-modified modified butylene-based resin 10G parts by weight, and the money compound, i.e., the amount of 3-glycidoxypropyltrimethoxydecane (3) manufactured by Corning Toray Co., Ltd., The product for the adhesive layer consisting of the product name "Z 6〇4〇") or 3-propoxymethoxypropyl dimethoxy decane (trade name "KBM-5103", manufactured by Shin-Etsu Chemical Co., Ltd.) is supplied to In the first extruder, melt-kneading was carried out at 250 °C. On the other hand, a certain fluorine resin (polyvinylidene fluoride (trade name "Kynar-72" manufactured by Arkema Co., Ltd.) and tetrafluoroethylene-ethylene copolymer (manufactured by Daikin Industries Co., Ltd.) shown in Tables 1 to 5 are used. , trade name "Neoflon ETFE")' Polyfluoroethylene resin (trade name "Tedlar", manufactured by Dup〇nt Co., Ltd.), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (manufactured by Daikin Industries, trade name "Ne〇" Fl〇n pFAj), ethylene gas three 24 201221611 fluoroethylene resin (manufactured by Solvay, trade name Γ halar ECTFE), gas-dissolved ethylene resin (Daikin Industries, trade name "Neoflon PCTFE"), partial Difluoroethylene·hexafluoropropylene copolymer (manufactured by Paper Co., Ltd., trade name “Kynar-flex 2800”), and a mixture of vinylidene fluoride and polymethyl methacrylate (relative to the trade name “Kynar” manufactured by Arkema Corporation -720" 100 parts by weight, prepared with polymethyl methacrylate (2 parts by weight))) was supplied to a second extruder, and melt-kneaded at the extrusion set temperatures described in Tables 1-5. Then, the composition for the adhesive layer and the fluorine-based resin are supplied to a manifold of the first extruder and the second extruder, and are connected to each other, and then self-connected to the sink mold. In the mold, the thickness of the adhesive layer is 0_3_ and the thickness of the I-based resin layer is 〇〇3_. Moreover, when extruding into a sheet shape from a τ 』 、 目 目 目 , , , , , , , , , τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ The concave and convex shape of the rule that P_ 0 does not. Thereby, the area layer of the adhesive layer formed of the composition for the above-mentioned adhesive layer is integrated, and the surface is pressed and has a long shape and has a solid width. Solar cell sealing sheet. In the above solar cell sealing sheet, the 'back layer' may be (four) or outer side. The sheet reel 2 indicates the arrangement of the embossing forming rolls of the sheet manufacturing apparatus. In addition, the use of the temporary (_), by the differential flow h of the smelting flow rate, ^ 9 field ", the quantitative analysis of the measurement of the suction curve t < peak temperature (Tm) shown in the table] Μ times... the largest of the curve is the same as the butt-West m" towel. Further, the total content of benzepene-anthracene anhydride in the modified butylene-based resin is shown in Tables 1-5. 25 201221611 It is recognized that the solar cell encapsulant obtained in the above is used to produce a flexible solar cell module in the following manner. First, as shown in FIG. 6, a rectangular sheet-shaped solar cell element A in which a photoelectric conversion layer made of a film-like amorphous germanium is formed on a flexible substrate made of a flexible polyimide film is prepared. And two rolls of the solar cell sealing sheets obtained in the above-described manner are wound into a reel-shaped solar cell sealing sheet B. Then, as shown in FIG. 6, the long-length solar cell sealing sheets B and B wound in a reel shape are respectively wound up, and the solar cell elements A are supplied to the solar cell sealing sheets provided in a state in which the respective subsequent layers are opposed to each other. Between B and B, the solar cell sealing sheets B and B are superposed on each other via the solar cell element A to form a laminated sheet c. Then, the laminated sheet c is supplied to the pair of rolls D and D heated to the temperature described in Tables 1-5, and the laminated sheet c is heated while being pressed in the thickness direction, thereby sealing the solar cell sealing sheets B and B. The solar cell module A' is then integrated to seal the solar cell element A' to manufacture the flexible solar cell module f. (Comparative Examples 1 and 2) A modified polystyrene (Comparative Example 2) which was replaced with a low-density polyethylene (Comparative Example or Substituted with a butane dicarboxylic acid anhydride) was used instead of the modified D. In addition, the "%% battery sealing sheet obtained by using the decane compound and the Dunnic resin described in Table 5" was sealed at the roll temperature described in 纟5, and was otherwise the same as the Example ,. Flexible solar cell module. (Comparative Example 3) A solar cell seal obtained by using a resin instead of a resin, and a compound obtained by using a fluorine-based resin is obtained in the same manner as in the embodiment. Flexible solar cell module 26 201221611 (Comparative Example 5) A solar cell sealing sheet obtained by using polyethylene terephthalate instead of a fluorine-based resin and using the decane compound contained in Table 5 is described in the table < The sealing was carried out at a temperature of 'in addition to this, a flexible solar cell module was obtained in the same manner as in Example 1. (Comparative Example 8) Using 77.2 parts by weight of ethylene, ethyl acrylate and butadiene 28 liters of dianhydride Ethylene obtained from the polymerization of the base _; 1 member of butenedic anhydride - ethyl acrylate platyrrome a /, eternal (EEAM, Arkema company's Lotader HX8140) instead of the enemy temporarily tauqiushan modified butene The solar cell obtained by the resin is also sealed. In addition to this, a flexible solar cell module can be obtained in the same manner as in Example 1. (Evaluation) Regarding the generation of the flexible solar electric power obtained, The appearance of curling, brother ^ Μ 4 essentials for the sensitivity of the phase and embossed shape with H 'peel strength, high temperature and high humidity resistance 夕 呆 呆 evaluation, and the results are shown in the table necessary conditions, it is not satisfied Evaluation of the solar cell element. The moisture durability and embossed shape of the t-shirt are not sufficient for the peel strength and the conditions, so the high temperature is not high. In the comparative examples 4 and 5, the solar cell is not satisfied. Evaluation of the wet durability of the component. <Production of wrinkles> 27 201221611 The occurrence of wrinkles in the flexible solar cell module obtained above was visually judged and scored by the following score. 5 points: look completely No wrinkles are produced. 4 points · Found 1 / m2 〇. Within 5mm wrinkles alone 3 S · Found 2 ~ 4 / m2 〇. 5mm or less wrinkles. 2 for. Found 5 / m2 The above is less than 5mm wrinkles. 1 point: found large wrinkles of 0.5mm or more. <Production of Curl> Place the above flexible solar cell module of size 500mmx500mm on a flat surface' The height of the end portion from the horizontal plane is measured. ◎: less than 20 mm 〇: 20 mm or more and less than 2 5 mm △ : 25 mm or more and less than 35 mm x : 35 mm or more < peel strength > The obtained flexible solar cell The module measures the peel strength when the solar cell sealing sheet is peeled off from the solar cell element in accordance with JIS K6854. <13⁄4 temperature and high humidity durability (continued)> The obtained flexible solar cell module was placed in an environment of 85 C and a relative humidity of 85% as described in JIC C8991, and every 5 hours after the above-mentioned placement was started. The peeling of the solar cell sealing sheet from the solar cell element was observed once, and the time until peeling was confirmed by the measurement. In the IC IC 8 8 9 0 which is the certification condition for the battery module, the durability of the power generation efficiency is required to be more than 10,000 hours, and the peeler will be confirmed when the time is less than 1 hour 28 201221611. It is judged that the adhesion is insufficient. <Hybrid high humidity and longevity (power generation characteristics)> The obtained flexible solar cell module was placed in an environment of 85 ° C and a relative humidity of 85% as described in C C899, using Nisshin T〇a & The 1116N manufactured by the company measures the amount of change in the maximum power Pmax. In addition, the measurement was not performed for those who had not been removed for 1,000 hours. Further, the evaluation results described in Tables i to 5 indicate the following meanings. 〉3000H: The power is maintained at %% after 3000 hours. 2〇〇〇H: The power is maintained at %% until 2000 hours have elapsed. ιοοοΗ: The power is maintained at 95% by the time of 35100" (JIS-C8991 standard). X: The power cannot be maintained at 95% after 1 hour. Since it has been peeled off after the chest is small, it is impossible to determine the extent of the embossed shape retention > the depth of the wf\y depth, thereby confirming the extent to which the initial 〇i is maintained as shown in Fig. 1 . ◎ : 0.09mm or more 〇: 0.06mm or more and less than 〇.〇9mm △ : 0.03mm or more and less than 〇.〇6mm x : less than 0.03mm 29 201221611 1Example 8 1 I 250〇c I PVDF I 〇 m oo in O 〇ο IT) ◎ 78 N/cm or more 3000 Η or more 2000 Η ◎ 1 Example 7| I 250〇C 1 PVDF T—Η 〇cn IT) 00 tn o 〇§ ο in ◎ 125 N/cm Above 2000 Η 1000 Η ◎ 1 Example 6 I 250〇C PVDF (Ν 〇cn 00 o 〇in ο in ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ | Example 5 1 250〇C 1 PVDF ψ 〇in so 〇ο ◎ 70 N/cm or more 3000 Η or more > 3000 Η ◎ Example 4 1 250 ° C 1 PVDF (N jn 〇o 〇ΙΤ) Ο in 〇 62 N/cm or more 3000 Η or more > 3000 ◎ ◎ Example 3 1 250 ° C | PVDF | ο cn 00 o 〇ο in ◎ 70 N / cm or more 3000 Η or more > 3000 Η ◎ Example 2 | 250〇C | | PVDF I CN (N oo 〇ιη ο inch〇50 N/cm or more 3000 Η or more>3000 Η1 ◎ I Example 1 | 250〇C | PVDF v〇O 00 o 〇ο 〇25 N/cm 1500 Η 1000 Η 1 〇Extrusion set temperature Fluorine resin capacity φ! .Ifhil loaded h ethylene component (% by weight) maleic anhydride total content (% by weight) MFR (g/10 minutes) Tm (t) 3-glycidoxypropyl trioxane Base decane (parts by weight) 3-propenyloxypropyltrimethoxy decane (parts by weight) Roller temperature (°c) Velocity (m/min) Wrinkle generation, peeling strength, high temperature and high humidity durability ( Next) High-temperature and high-humidity durability (power generation characteristics) Embossed shape-maintained butene-ethylene copolymer modified butylene-based resin 201221611 Example 13 250〇C PVDF VO 卜m 00 〇 〇 c>< 78 N/cm or more 3000 Η or more > 3000 Η ◎ Example 12 250 〇 C PVDF 1 < · _ * 卜 m 00 〇〇 〇〇 ο 78 N/cm or more 3000 Η or more > 3000 Η ◎ Example 11 1 250 〇 c 1 PVDF VO f·^ 卜 m 00 (N 〇in ο 〇78 N/cm or more 3,000 Η or more > 3000 Η ◎ Example 10 250 〇C PVDF 卜 00 〇 ◎ 78 N/cm or more 3,000 Η or more >3000 Η ◎ Example ^ | 250〇C | PVDF ΓΟ oo | 0.05 I 〇ίΤ) Ο in 〇25 N/cm I 1500 Η 10 00 Η 〇 Extrusion set temperature Fluororesin butene component (% by weight) Ethylene component (% by weight) Total content of maleic anhydride (% by weight) MFR (g/ΙΟ min) Tm (°C) 3-epoxy Propoxypropyltrimethoxydecane (parts by weight) 3-propenyloxypropyltrimethoxytin (parts by weight) Roller temperature (°c) Velocity (m/min) Generation of wrinkles Peel strength High temperature and high humidity durability (following) High temperature and high humidity durability (power generation characteristics) Embossed shape to maintain butadiene-ethylene copolymer modified butylene resin 201221611 [Γηί 1 Example 2l| 290〇CI ECTFE I ΓΠ 〇00 mo 〇ο ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ Example 20 290 ° C FAP m 〇m in 00 〇〇§ ο in ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ 1 Example 19|250〇C 1 PVF ro Ο iT) 00 o 〇ο ◎ 70 N/cm or more 3000 Η or more > 3000 Η ◎ | Example 18| 1 290 ° C 1 ETFE ΓΛ Ο ro 00 o 〇i 〇d 〇25 N/cm 1500 Η 1000 Η 〇|Example 17” 290〇CI ETFE J VO rn dm uo 00 o 〇in o ◎ 25 N/cm 1500 Η 1000 Η 〇 Example 16 1 250〇c 1 | PVDF | om ο inch 冢 in 〇〇m 〇 ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ | Example 15| 1 250〇c I | PVDF | Ό c\ ο 00 〇〇c> ^T) ◎ 78 N/cm or more 3000 Η or more > 3000 Η ◎ | Example 14 | 1 250〇c 1 | PVDF | VO m ON 00 un o ◎ ◎ 78 N/cm or more 3000 Η or more 1000 Η ◎ Extrusion set temperature fluororesin Jfhil w\ 乙烯 Ethylene component (% by weight) Maleic anhydride total content (% by weight) MFR (g/10 min) Tm (°C) 3-glycidoxypropyltrimethoxydecane (parts by weight) 3-propenyloxypropyltrimethoxydecane (parts by weight) Roller temperature (°c) Speed (m/min) Wrinkle generation curling Peeling strength High temperature and high humidity durability (following) High temperature and high humidity durability (power generation characteristics) Embossed shape retaining device ο & h ^ Modified butylene resin

Vi 201221611 實施例29 230〇C PVDF/PM MA Ο m 00 o 〇 〇 ◎ 50 N/cm 以 上 3000 Η以上 >3000 Η ◎ 1實施例28| | 250〇c 1 PVDF-H FP cn ο 00 IT) o 〇 〇 in ◎ 50 N/cm 以上 3000 Η 以 上 >3000 Η | ◎ 實施例27 1 250〇C 1 PVDF VO m d m l〇 00 m d 〇 d ◎ 50 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例26 1 250〇C PVDF \〇 Os d 00 s 〇 〇 ο iT) 〇 70 N/cm 以上 3000 Η 以 上 >3000 Η 1 ◎ 實施例25 1 250〇C PVDF (N 〇 m 00 in 〇 〇 in ο m 〇 70 N/cm 以上 3000 Η 以 上 >3000 Η 〇 實施例24 | 250〇C PVF VO o in 00 o 〇 00 ON 寸 〇 70 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例23 300°C ETFE o ro yr\ oo o 〇 ί〇 CN 〇 50 N/cm 以上 1500 Η 1000 Η 〇 實施例22 260°C J PCTFE Ό d m in 00 m o 〇 in Ο in ◎ 50 N/cm 以 上 3000 Η 以 上 >3000 Η ◎ 擠出設定溫度 氟系樹脂 ilftiil w\ h1 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) MFR (g/10 分鐘) Tm (°C) 3-環氧丙氧基丙基三曱氧基矽烷(重量份) 3-丙烯醯氧基丙基三曱氧基矽烷(重量份) 輥溫度(°c) 速度(m/分鐘) 皺褶之產生 捲曲之產生 剝離強度 南溫1¾濕财久性(接者) 高溫高濕耐久性(發電特性) 壓花形狀保持 爱 ο 1遂 爱1 卜i)m u 叫 娜率 id ^ 201221611 【s<】 1比較例8 1 250〇C I 1 PVDF I EEAM 00 CN ο (Ν § ir> o 〇 o 〇 70 N/cm 以上 X X X 1比較例7 1 250〇C | PVDF | o 〇 cn o 00 — \D iT) o 〇 in o CO <] 70 N/cm 以上 1000 Η 1 X 比較例6| 250〇C | PVDF | s Os 00 O 〇 〇 〇\ m O 〇 70 N/cm 以上 | 2000 Η 1 X 〇 |比較例5 1 1 | PET | o m 00 〇 〇 o ^T) 〇 未達5 N/cm I 1 〇 比較例4 1 250〇c 1 | PVF | o o cn 00 kr> o 〇 in 〇 產生氣泡I 〇 未達10 N/cm 1 1 X 比較例3 1 290〇C | | ETFE I EVA (VA 含量 28%) 沄 o 〇 § o l產生氣泡I X 剝離 1 1 1 |比較例2| 1 290〇C I | ETFE I o o H o o Ο H in o 〇 〇 X 剝離 1 1 1 比較例1 I 290〇C I | ETFE I o o r-H o KTi CN in o 〇 in m r-H in o (N X 剝離 1 1 1 擠出設定溫度 氟系樹脂 .Imii w\ 爱 Η 乙稀成分(重量%) 順丁烯二酸酐總含量(重量%) MFR (g/10 分鐘) Tm (°C) 3-環氧丙氧基丙基三曱氧基矽烷(重量份) 3-丙烯醯氧基丙基三甲氧基矽烷(重量份) 輥溫度(°c) 速度(m/分鐘) 敏褶之產生 捲曲之產生 剝離強度 高溫高濕耐久性(接著) 高溫高濕耐久性(發電特性) 壓花形狀保持 Ο •玄 h 改質丁烯系樹 脂 201221611 (實施例3 0〜3 4 ) 使用由利用順丁締二酸肝對具有纟6所示之一定量之 丁烯成刀3 S &乙;If成分含量之丁稀_乙烯共聚物進行接枝 改質而成的改質TM樹脂⑽重量份,與作為㈣化合 物的表6所示之一宕县+ 疋里之3-¾虱丙氧基丙基三甲氧基矽烷 j Dow Corning T〇ray 公司製造,商品名「z_6〇4〇」)、2 (3,4_ %氧環己基)乙基三曱氧基矽烷(D〇w c〇rning τ〇—公司製 造,商品名「Z6043」)、3_環氧丙氧基丙基三乙氧基石夕烧 (Shin-Etsu Silicones 公司製造,商品名「kbe 4〇3」)、弘 環氧丙氧基丙基甲基二曱氧基残(ShinEtsu smc〇nes公 司製造,商品名「KBM-402」)、< 3·環氧丙氧基丙基甲基 一乙氧基矽烧(Shin-Etsu Silicones公司製造,商品名 「KBE-402」)所構成的接著層用組成物,除此以外以與實 施例1相同之方式獲得可撓性太陽電池模組,並對其進行 評價。將結果示於表6中。 35 201221611 【9<】 實施例34 250〇C PVDF m 〇 00 1 1 1 1 〇 § iTi ο ◎ 50 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例33 250〇C PVDF ΓΛ 〇 m oo 1 1 1 rn 1 iT) ο ◎ 50 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例32 250〇C PVDF VO ro Ο m oo 1 1 〇 1 1 m ο ◎ 50 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例31 250〇C PVDF Ο m 00 1 ro 〇 1 1 1 in ο ◎ 50 N/cm以上 3000 Η以上 >3000 Η ◎ 實施例30 250〇C PVDF cn ο ro 00 〇 1 1 1 1 m ο in ◎ 50 N/cm以上 3000 Η以上 >3000 Η ◎ 擠出設定溫度 氣系樹脂 丁烯成分(重量%) 乙稀成分(重量°/〇) 順丁烯二酸酐總含量(重量%) MFR (g/10 分鐘) Tm (°C) 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 2-(3,4-環氧環己基)乙基三曱氧基矽烷(重量份) 3-環氧丙氧基丙基三乙氧基矽烷(重量份) 3-環氧丙氧基丙基甲基二甲氧基矽烷(重量份) 3-環氧丙氧基丙基甲基二乙氧基矽烷(重量份) 輥溫度(°C ) 速度(m/分鐘) 皺褶之產生 捲曲之產生 剝離強度 高溫高濕耐久性(接著) 高溫高濕耐久性(發電特性) 壓花形狀保持 丁稀-乙晞共聚物 改質丁烯系樹脂 定量之 聚物進 與作為 基三甲 6040」) 同樣之 將結果 201221611 (實施例3 5〜3 9、比較例9〜11 ) 使用由利用順丁烯二酸酐對具有表7所示之一 α-烯烴成分含量及乙烯成分含量的稀烴-乙稀共 行接枝改質而成的改質烯烴系樹脂1〇〇重量份, 矽烷化合物的表7所示之一定量之3_環氧丙氧基丙 氧基矽烷(Dow Corning Toray公司製造,商品名「ζ_ 所構成的接著層用組成物,除此以外以與實施例i 方式獲得可撓性太陽電池模組,並對其進行評價 示於表7中。 37 201221611 【Α ΐ 比較例11 | 250〇c 1 1 PVDF I 1 1 〇 〇 I1 < 卜 (N o ο ◎ 50 N/cm 以上 1000 Η 1 X 比較例10 250〇C 1 I PVDF | 1 1 〇 〇 m in in 〇 〇 <n ο m ◎ 50 N/cm 以上 1000 Η 1 X |比較例9 I 1 250〇C 1 PVDF Ο 1 1 〇 <N 〇 m o in O ο ◎ 50 N/cm 以上 1000 Η 1 X |實施例391 j 250°C 1 | PVDF | 1 1 〇 〇 卜 oo in 〇 〇 〇\ c5 ◎ 70 N/cm 以上 3000 Η 以 上 >3000 Η | ◎ 實施例38 1 250°C I 1 PVDF I 1 1 〇 ΓΟ 〇 m 00 Os tr> 〇 〇 ON in 〇 〇 62 N/cm 以上 3000 Η 以 上 >3000 Η ◎ 實施例37 | 250〇c 1 | PVDF I 1 1 〇 ro 〇 ro oo o 〇 Os 〇 *T) ◎ 70 N/cm 以上 3000 Η 以 上 >3000 Η 1 ◎ |實施例36 j | 250〇C | | PVDF I 1 〇 1 〇 〇 r—Η CN (N o wo o Ο in 〇 寸 〇 50 N/cm 以上 3000 Η 以 上 >3000 Η ◎ |實施例35 | 250〇C j | PVDF | 1 1 g m Ο ΓΠ g o in o in 〇 25 N/cm 1500 Η 1000 Η 1 〇 擠出設定溫度 乱系樹脂 1-丁烯 1 |1-己烯| |1-辛烯| 順丁烯二酸酐總含量(重量%) MFR (g/10 分鐘) Tm CC) 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 輥溫度re) 速度(m/分鐘) 皺褶之產生 捲曲之產生 剝離強度 高溫高濕耐久性(接著) 高溫高濕耐久性(發電特性) 壓花形狀保持 vlC. 4tftlll 〇 α -稀烴-乙 稀共聚物 改質α -稀 烴系樹脂 201221611 (實施例40、41 ) 使用由利用順丁烯二酸酐對具有表8所示之一定量之 丁稀成分含量及乙烯成分含量之丁烯-乙烯共聚物進行接枝 改質而成之改質丁烯系樹脂90重量份,低密度聚乙烯 (Asahi Kasei Chemicals公司製造,商品名「L 1 780」)或直 鏈狀低密度聚乙烯共聚物(乙烯成分量為84重量%,1-丁 烯成分量為16重量%之乙烯-卜丁烯共聚物)10重量份,及 作為石夕烧化合物的3 -環氧丙氧基丙基三甲氧基石夕烧(Dow Corning Tor ay公司製造,商品名「Z-6 040」)0,5重量份所 構成之接著層用組成物,除此以外以與實施例1相同之方 式獲得可撓性太陽電池模組,並對其進行評價。將結果示 於表8中。 [表8] 實施例40 實施例41 擠出設定溫度 250〇C 250〇C 氟系樹脂 PVDF PVDF 順丁烯二酸酐改質丁 烯-乙烯共聚物 調配份(重量份) 90 90 丁烯成分(重量%) 16 16 乙烯成分(重量%) 84 84 順丁烯二酸酐總含量(重量% ) 0.3 0.3 MFR (g/ΙΟ 分鐘) 3 3 Tm (°C) 85 85 低密度聚乙烯 低密度聚乙烯 10 - 直鏈狀低密度聚乙烯共聚物 - 10 3-環氧丙氧基丙基三曱氧基矽烷(重量份) 0.5 0.5 輥溫度(°C) 90 90 速度(m/分鐘) 0.5 0.5 皺褶之產生 5 4 捲曲之產生 ◎ ◎ 剝離強度 50 N/cm以上 50 N/cm以上 高溫高濕耐久性(接著) 3000 Η以上 3000 H以上 高溫高濕耐久性(發電特性) >3000 Η >3000 Η 壓花形狀保持 ◎ ◎ 39 201221611 [產業上之可利用性] 根據本發明之可撓性太陽電池模組之製造方法,可利 用捲軸法’較佳地製造不會產生皺賴或捲曲,太陽電池元 件與太陽電池來+ U β 务 也在封片之接著性優異的可撓性太陽電池模 組。 【圖式簡單說明】 圖1係表示本發明之可撓性太陽電池模組之製造方法 的製造要領之一例的示意圖。 圖2係表示本發明之可撓性太陽電池模組之製造方法 中所使用的太陽電池元件之—例的縱剖面示意圖。 圖3係表示本發明之可撓性太陽電池模組之製造方法 中所使用的太陽電池密封片之-例的縱剖面示意圖。 圖4係表示藉由本發明之可撓性太陽電池模組之製造 去所得的可撓性太陽電池模組之一例的縱剖面示意圖。 圖5係表示本發明之可撓性太陽電池模組之製造方法 的製造要領之一例的示意圖。 圖6係表示本發明之可撓性太陽電池模組之製造方法 的製造要領之一例的示意圖。 圖7係表示藉由本發明之可撓性太陽電池模組之製造Vi 201221611 Example 29 230〇C PVDF/PM MA Ο m 00 o 〇〇 ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ 1 Example 28| | 250〇c 1 PVDF-H FP cn 00 00 IT o 〇〇in ◎ 50 N/cm or more 3000 Η or more > 3000 Η | ◎ Example 27 1 250 〇C 1 PVDF VO mdml 〇00 md 〇d ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ Example 26 1 250 〇C PVDF \〇Os d 00 s 〇〇ο iT) 〇70 N/cm or more 3000 Η or more>3000 Η 1 ◎ Example 25 1 250〇C PVDF (N 〇m 00 in 〇〇 In ο m 〇70 N/cm or more 3000 Η or more>3000 Η 〇 Example 24 | 250〇C PVF VO o in 00 o 〇00 ON 〇 〇 70 N/cm or more 3000 Η or more > 3000 Η ◎ Example 23 300°C ETFE o ro yr\ oo o 〇ί〇CN 〇50 N/cm or more 1500 Η 1000 Η 〇Example 22 260°CJ PCTFE Ό dm in 00 mo 〇in Ο in ◎ 50 N/cm or more 3000 Η Above >3000 Η ◎ Extrusion set temperature Fluorine resin ilftiil w\ h1 Ethylene component (% by weight) Total content of maleic anhydride (% by weight MFR (g/10 min) Tm (°C) 3-glycidoxypropyltrimethoxy decane (parts by weight) 3-propenyloxypropyltrimethoxy decane (parts by weight) Roll temperature (°c) Speed (m/min) Wrinkles produce curling Peeling strength South temperature 13⁄4 wet longevity (receiving) High temperature and high humidity durability (power generation characteristics) Embossed shape to keep love ο 1遂爱1 Bu i) mu called rate id ^ 201221611 [s<] 1 comparative example 1 1 250 〇 CI 1 PVDF I EEAM 00 CN ο (Ν § ir> o 〇o 〇 70 N/cm or more XXX 1 Comparative Example 7 1 250〇 C | PVDF | o 〇cn o 00 — \D iT) o 〇in o CO <] 70 N/cm or more 1000 Η 1 X Comparative Example 6| 250〇C | PVDF | s Os 00 O 〇〇〇\ m O 〇70 N/cm or more | 2000 Η 1 X 〇|Comparative Example 5 1 1 | PET | om 00 〇〇o ^T) 〇 not up to 5 N/cm I 1 〇Comparative Example 4 1 250〇c 1 | PVF | oo cn 00 kr> o 〇in 〇 produces bubbles I 〇 is less than 10 N/cm 1 1 X Comparative Example 3 1 290〇C | | ETFE I EVA (VA content 28%) 沄o 〇§ ol produces bubbles IX stripping 1 1 1 |Comparative Example 2| 1 290〇CI | ETFE I oo H oo Ο H in o 〇〇X Peeling 1 1 1 Comparative Example 1 I 290〇CI | ETFE I oo rH o KTi CN in o 〇in m rH in o (NX stripping 1 1 1 extrusion set temperature fluororesin. Imii w\ 爱Η Ethylene content (% by weight) Total content of maleic anhydride (% by weight) MFR (g/10 minutes) Tm (°C) 3-glycidoxypropyltrimethoxy decane ( Parts by weight 3-propenyloxypropyltrimethoxydecane (parts by weight) Roller temperature (°c) Velocity (m/min) Creep of the pleats generated Peel strength High temperature and high humidity durability (continued) High temperature Wet durability (power generation characteristics) Embossed shape retention 玄 • Xuan h modified butylene resin 201221611 (Examples 3 0 to 3 4 ) The use of one of the indicated 纟6 Butene into a knife 3 S &B; If content of the dilute-ethylene copolymer graft modified to a modified TM resin (10) parts by weight, and as a (four) compound shown in Table 6 Jixian + 3-3⁄4虱propoxypropyltrimethoxydecane manufactured by J Dow Corning T〇ray, trade name "z_6〇4〇"), 2 (3,4 _% oxocyclohexyl)ethyltrimethoxy decane (D〇wc〇rning τ〇—manufactured by the company, trade name “Z6043”), 3_glycidoxypropyltriethoxy sulphur (Shin- Manufactured by Etsu Silicones Co., Ltd. under the trade name "kbe 4〇3"), Hiroshi-glycidoxypropylmethyldimethoxyl residue (manufactured by ShinEtsu smc〇nes Co., Ltd., trade name "KBM-402"), < 3 - The same composition as in Example 1 except that the composition for the adhesive layer composed of glycidoxypropylmethyl-ethoxy oxime (manufactured by Shin-Etsu Silicones Co., Ltd., trade name "KBE-402") was used. The flexible solar cell module was obtained and evaluated. The results are shown in Table 6. 35 201221611 [9<] Example 34 250〇C PVDF m 〇00 1 1 1 1 〇§ iTi ο ◎ 50 N/cm or more 3000 Η or more> 3000 Η ◎ Example 33 250〇C PVDF ΓΛ 〇m oo 1 1 1 rn 1 iT) ο ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ Example 32 250 〇 C PVDF VO ro Ο m oo 1 1 〇 1 1 m ο ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ Example 31 250 〇C PVDF Ο m 00 1 ro 〇1 1 1 in ο ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ Example 30 250 〇 C PVDF cn ο ro 00 〇 1 1 1 1 m ο in ◎ 50 N/cm or more 3000 Η or more > 3000 Η ◎ Extrusion set temperature gas-based resin butene component (% by weight) Ethylene component (weight ° / 〇) Total content of maleic anhydride ( % by weight MFR (g/10 min) Tm (°C) 3-glycidoxypropyltrimethoxydecane (parts by weight) 2-(3,4-epoxycyclohexyl)ethyltridecyloxy Decane (parts by weight) 3-glycidoxypropyltriethoxydecane (parts by weight) 3-glycidoxypropylmethyldimethoxydecane (parts by weight) 3-glycidoxy Propylmethyldi Oxydecane (parts by weight) Roller temperature (°C) Velocity (m/min) Wrinkle generation, curling, peeling strength, high temperature, high humidity durability (continued) High temperature and high humidity durability (power generation characteristics) Embossed shape The dilute-acetamidine copolymer modified butene-based resin quantitative polymer was added as the base trimethyl 6040"). The result was 201221611 (Examples 3 5 to 39, Comparative Examples 9 to 11). The dianhydride is a modified olefin-based resin having a content of an α-olefin component and an ethylene component content as shown in Table 7, and a modified olefin resin is used in an amount of 1 part by weight, and a decane compound is shown in Table 7. One of the quantified 3_glycidoxypropoxy decane (manufactured by Dow Corning Toray, trade name "ζ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The solar cell module was evaluated and shown in Table 7. 37 201221611 [Α ΐ Comparative Example 11 | 250〇c 1 1 PVDF I 1 1 〇〇I1 < 卜 (N o ο ◎ 50 N/cm or more 1000 Η 1 X Comparative Example 10 250〇C 1 I PVDF | 1 1 〇〇 m in in 〇〇<n ο m ◎ 50 N/cm or more 1000 Η 1 X |Comparative Example 9 I 1 250〇C 1 PVDF Ο 1 1 〇<N 〇mo in O ο ◎ 50 N/cm or more 1000 Η 1 X | Example 391 j 250 ° C 1 | PVDF | 1 1 oo oo in 〇〇〇 \ c5 ◎ 70 N/cm or more 3000 Η or more > 3000 Η | ◎ Example 38 1 250 ° CI 1 PVDF I 1 1 〇ΓΟ 〇m 00 Os tr> 〇〇ON in 〇〇62 N/cm or more 3000 Η or more>3000 Η ◎ Example 37 | 250〇c 1 | PVDF I 1 1 〇ro 〇ro oo o 〇Os 〇*T) ◎70 N/cm or more 3000 Η or more>3000 Η 1 ◎ |Example 36 j | 250〇C | | PVDF I 1 〇1 〇〇r—Η CN (N o wo o Ο in 〇 inch 〇 50 N/cm or more 3000 Η or more > 3000 Η ◎ | Example 35 | 250〇C j | PVDF | 1 1 gm Ο ΓΠ go in o in 〇25 N/cm 1500 Η 1000 Η 1 〇 Extrusion Setting temperature chaotic resin 1-butene 1 | 1-hexene | | 1-octene | total content of maleic anhydride (% by weight) MFR (g/10 min) Tm CC) 3-epoxypropoxy Propyltrimethoxydecane (parts by weight) Roller temperature re) Speed (m /min) Wrinkle generation, curl generation, peel strength, high temperature, high humidity durability (following), high temperature and high humidity durability (power generation characteristics), embossed shape retention vlC. 4tftlll 〇α - dilute hydrocarbon-ethylene copolymer modification α - Dilute hydrocarbon resin 201221611 (Examples 40, 41) Graft modification using a butene-ethylene copolymer having a content of a dilute component and an ethylene component as specified in Table 8 using maleic anhydride 90 parts by weight of the modified butylene resin, low density polyethylene (Asahi Kasei Chemicals, trade name "L 1 780") or linear low density polyethylene copolymer (the ethylene component amount is 84% by weight) 10 parts by weight of an ethylene-butene copolymer having a 1-butene component of 16% by weight, and 3 -glycidoxypropyltrimethoxy zebra as a compound of the smelting compound (Dow Corning Tor ay) A flexible solar cell module was obtained and obtained in the same manner as in Example 1 except that the composition for the adhesive layer composed of 0,5 parts by weight of the product was produced by the company. Evaluation. The results are shown in Table 8. [Table 8] Example 40 Example 41 Extrusion set temperature 250 〇C 250 〇C Fluorocarbon resin PVDF PVDF Maleic anhydride modified butene-ethylene copolymer blending component (parts by weight) 90 90 Butene component ( % by weight) 16 16 Ethylene content (% by weight) 84 84 Total content of maleic anhydride (% by weight) 0.3 0.3 MFR (g/ΙΟ min) 3 3 Tm (°C) 85 85 Low density polyethylene low density polyethylene 10 - Linear low density polyethylene copolymer - 10 3-glycidoxypropyl trimethoxy decane (parts by weight) 0.5 0.5 Roll temperature (°C) 90 90 Speed (m/min) 0.5 0.5 wrinkle Production of pleats 5 4 Generation of curling ◎ ◎ Peeling strength 50 N/cm or more 50 N/cm or more High temperature and high humidity durability (continued) 3000 Η or more 3000 H or more high temperature and high humidity durability (power generation characteristics) >3000 Η &gt 3000 Η embossed shape retention ◎ ◎ 39 201221611 [Industrial Applicability] The manufacturing method of the flexible solar cell module according to the present invention can be preferably manufactured by the reel method without wrinkles or curling , solar cell components and solar cells come + U β Next were mounted in the flexible solar cell excellent in mold set. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an example of a manufacturing method of a method for manufacturing a flexible solar battery module of the present invention. Fig. 2 is a schematic longitudinal cross-sectional view showing an example of a solar cell element used in the method for producing a flexible solar cell module of the present invention. Fig. 3 is a longitudinal sectional view showing an example of a solar cell sealing sheet used in the method for producing a flexible solar battery module of the present invention. Fig. 4 is a schematic longitudinal cross-sectional view showing an example of a flexible solar battery module obtained by manufacturing the flexible solar battery module of the present invention. Fig. 5 is a schematic view showing an example of a manufacturing method of a method of manufacturing a flexible solar battery module of the present invention. Fig. 6 is a schematic view showing an example of a manufacturing method of a method of manufacturing a flexible solar battery module of the present invention. Figure 7 is a diagram showing the manufacture of a flexible solar cell module by the present invention.

^ I 所得的可撓性太陽電池模組之一例的縱剖面示意圖。 圖8係表示藉由本發明之可撓性太陽電池模組之製造 去所彳于的可撓性太陽電池模組之一例的縱剖面示意圖。 圖9係表示製造太陽電池密封片之裝置之一例中之冷 部概表面的凹凸形狀之一例的示意圖。^ I A schematic longitudinal cross-sectional view of an example of a flexible solar cell module. Fig. 8 is a longitudinal sectional view showing an example of a flexible solar battery module which is manufactured by the manufacture of the flexible solar battery module of the present invention. Fig. 9 is a schematic view showing an example of the uneven shape of the surface of the cold portion in an example of the apparatus for producing a solar cell sealing sheet.

40 201221611 圖1 〇係表示太陽電池密封片表面之壓花形狀之一例的 示意圖。 圖11係表示太陽電池密封片之壓花賦形裝置之一例的 示意圖。 【主要元件符號說明】 1 可撓性基材 2 光電轉換層 3 接著層 4 氟系樹脂片 5 金屬板 A 太陽電池元件 B 太陽電池密封片 C 積層片 D 輥 Ε、F、G可撓性太陽電池模組 4140 201221611 Fig. 1 shows a schematic view showing an example of the embossed shape of the surface of a solar cell sealing sheet. Fig. 11 is a view showing an example of an embossing forming device for a solar cell sealing sheet. [Description of main components] 1 Flexible substrate 2 Photoelectric conversion layer 3 Next layer 4 Fluorine resin sheet 5 Metal plate A Solar cell element B Solar cell sealing sheet C Laminated sheet D Roller, F, G flexible sun Battery module 41

Claims (1)

201221611 七、申請專利範圍: ι_一種可撓性太陽電池模組之製造方法,包含使用一對 熱輥以使得太陽電池密封片接近太陽電池元件的至少受光 面上,藉此進行熱壓接之步驟,該太陽電池密封片係可撓 性基材上配置有光電轉換層而成; 該太陽電池密封片於氟系樹脂片上具有由順丁稀二酸 酐改質烯烴系樹脂所構成之接著層,該順丁烯二酸酐改質 烯烴系樹脂係α-烯烴含量為i〜25重量%之〇_烯烴-乙烯 共聚物經順丁烯二酸酐接枝改質所成之樹脂、且順丁烯二 酸針之總含量為0.1〜3重量%。 2. 如申請專利範圍第丨項之可撓性太陽電池模組之製 造方法’其中,氟系樹脂片係由選自下述者所組成之群中 的至少一種氟系樹脂所構成:四氟乙烯-乙烯共聚物、乙烯 氯三氟乙烯樹脂、聚氯三氟乙烯樹脂、聚偏二氟乙烯樹脂、 四氟乙烯-全氟烷基乙烯醚共聚物、聚氟乙烯樹脂、四氟乙 烯-六氟丙烯共聚物、偏二氟乙烯-六氟丙烯共聚物、及聚偏 二氟乙烯與聚甲基丙烯酸甲酯之混合物。 3. 如申請專利範圍第丨項或第2項之可撓性太陽電池模 組之製造方法’其中,接著層係進一步相對於順丁烯二酸 酐改質婦烴系樹脂100重量份,含有下述通式⑴所示之矽 烷化合物0.05〜5重量份: [化1] Μ-Si—(〇R2)3_n ⑴ (式中’R1表示3_環氧丙氧基丙基或2_(3,4_環氧環己基) 42 201221611 乙基’ R2表示碳數為1 烷基,且η為0或1)。 之炫:基’R3表示碳數為1 之 項之可撓性太 封片係由氟系 工並積層而成 4·如申請專利範圍第1項、第2項或第3 陽電池模組之製造方法,其中,太陽電池密 樹脂片與接著層經由共擠出步驟同時製膜加 之一體型積層體。 5.如申清專利範圍第1 軍困乐項、第2項、第3項或第4項之 可撓性太陽電池模组之贺袢 俱組之泉艳方法,其中’太陽電池密封片 於表面具有壓花形狀。 43201221611 VII. Patent application scope: ι_ A manufacturing method of a flexible solar cell module comprising using a pair of heat rollers to bring the solar cell sealing sheet close to at least the light receiving surface of the solar cell element, thereby performing thermocompression bonding In the step, the solar cell sealing sheet is provided with a photoelectric conversion layer on a flexible substrate; the solar cell sealing sheet has an adhesive layer composed of a cis-succinic anhydride-modified olefin-based resin on the fluorine-based resin sheet. The maleic anhydride-modified olefin-based resin has a α-olefin content of i to 25% by weight, and the olefin-ethylene copolymer is modified by maleic anhydride graft modification, and the maleic anhydride The total content of the acid needle is 0.1 to 3% by weight. 2. The method for producing a flexible solar cell module according to the invention of the present invention, wherein the fluorine-based resin sheet is composed of at least one fluorine-based resin selected from the group consisting of: PTFE Ethylene-ethylene copolymer, ethylene chlorotrifluoroethylene resin, polychlorotrifluoroethylene resin, polyvinylidene fluoride resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride resin, tetrafluoroethylene-six a fluoropropylene copolymer, a vinylidene fluoride-hexafluoropropylene copolymer, and a mixture of polyvinylidene fluoride and polymethyl methacrylate. 3. The method of manufacturing a flexible solar cell module according to the invention of claim 2 or 2, wherein the subsequent layer is further contained in an amount of 100 parts by weight relative to the maleic anhydride-modified modified hydrocarbon resin. 0.05 to 5 parts by weight of the decane compound represented by the formula (1): [Chemical Formula 1] Μ-Si-(〇R2)3_n (1) (wherein R1 represents 3_glycidoxypropyl or 2_(3,4) _Epoxycyclohexyl) 42 201221611 Ethyl 'R2 represents a C number of 1 alkyl group, and η is 0 or 1). Hyun: The base 'R3' indicates that the flexibility of the carbon number is 1 and the laminate is made of fluorine and is laminated. 4. For the scope of the patent, the first item, the second item or the third anode battery module. A manufacturing method in which a solar cell dense resin sheet and an adhesive layer are simultaneously formed into a film-type laminated body via a co-extrusion step. 5. For example, the method of applying for the patent scope of the first military trap, item 2, item 3 or item 4 of the flexible solar cell module is the Quanyan method, in which the 'solar battery sealing sheet The surface has an embossed shape. 43
TW100133853A 2010-10-06 2011-09-21 Method for producing flexible solar cell module TW201221611A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226819 2010-10-06
JP2011084718 2011-04-06

Publications (1)

Publication Number Publication Date
TW201221611A true TW201221611A (en) 2012-06-01

Family

ID=45927560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133853A TW201221611A (en) 2010-10-06 2011-09-21 Method for producing flexible solar cell module

Country Status (3)

Country Link
JP (1) JPWO2012046565A1 (en)
TW (1) TW201221611A (en)
WO (1) WO2012046565A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001951A1 (en) * 2013-07-05 2015-01-08 東レ株式会社 Reverse-side protective substrate, solar cell module, and method for producing solar cell module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480106B2 (en) * 2000-05-16 2010-06-16 大日本印刷株式会社 Solar cell module
US20060201544A1 (en) * 2002-12-16 2006-09-14 Isao Inoue Filler sheet for solar cell module, and solar cell module using the same
WO2007088892A1 (en) * 2006-02-02 2007-08-09 Mitsui Chemicals, Inc. Backside protective substrate for solar cell module, solar cell module and electric power generator

Also Published As

Publication number Publication date
JPWO2012046565A1 (en) 2014-02-24
WO2012046565A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
TWI479006B (en) Solar battery seal and flexible solar module
TW201114045A (en) Protecting sheet for solar cell module and method thereof, and solar cell module
CN103168366B (en) Solar cell screening glass and its manufacture method, and solar module
WO2012066848A1 (en) Method for manufacturing flexible solar cell module
JP2012216805A (en) Solar cell module filler sheet
US20120006407A1 (en) Protective sheet for solar cell module and solar cell module including the same
WO2012043304A1 (en) Manufacturing method for flexible solar cell modules
CN102870226A (en) Protective sheet for solar cell module, and solar cell module
WO2012039389A1 (en) Method for manufacturing flexible solar battery module
TW201342646A (en) Protective sheet for solar cell, method for manufacturing same, and solar cell module
TW201221611A (en) Method for producing flexible solar cell module
JP2012099803A (en) Solar cell sealing sheet, production method therefor, and method of manufacturing flexible solar cell module
JP2015073048A (en) Solar cell protective sheet, and solar cell module
WO2014049778A1 (en) Filler sheet for solar cell modules, solar cell sealing sheet, and method for manufacturing solar cell module
WO2014042217A1 (en) Solar cell protective sheet and flexible solar cell module
JP2012079884A (en) Manufacturing method of flexible solar cell module
JP2012222147A (en) Flexible solar cell module
JP2012227280A (en) Solar battery sealing sheet and flexible solar cell module
JP2013199030A (en) Solar cell protection sheet and flexible solar cell module
JP2012222148A (en) Flexible solar cell module
JP6547464B2 (en) Sealant-integrated back surface protection sheet for solar cell module and solar cell module using the same
JP5696172B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP2013065619A (en) Solar cell sealing sheet and flexible solar cell module
TW201412555A (en) Solar cell module filling piece, solar cell sealing piece, and manufacturing method of solar cell module
WO2014054579A1 (en) Filler sheet for solar cell modules and method for manufacturing solar cell module