WO2007088892A1 - Backside protective substrate for solar cell module, solar cell module and electric power generator - Google Patents

Backside protective substrate for solar cell module, solar cell module and electric power generator Download PDF

Info

Publication number
WO2007088892A1
WO2007088892A1 PCT/JP2007/051604 JP2007051604W WO2007088892A1 WO 2007088892 A1 WO2007088892 A1 WO 2007088892A1 JP 2007051604 W JP2007051604 W JP 2007051604W WO 2007088892 A1 WO2007088892 A1 WO 2007088892A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
cell module
surface protection
back surface
Prior art date
Application number
PCT/JP2007/051604
Other languages
French (fr)
Japanese (ja)
Inventor
Tamio Kawasumi
Yuji Matsui
Minoru Hoshino
Hiroyasu Kido
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2007556891A priority Critical patent/JP4809374B2/en
Publication of WO2007088892A1 publication Critical patent/WO2007088892A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a back surface protection substrate for a solar cell module excellent in bending rigidity, insulation and light weight, and a solar cell module and a power generator using the same.
  • Solar cell modules are usually formed by sandwiching and stacking solar cells made of polycrystalline silicon or the like with a sealing resin layer that also has ethylene blu-acetate (EVA) and the like. It has a structure covered with a protective substrate for use. That is, a typical solar cell module is a solar cell module protective substrate (surface protective sheet).
  • Z-encapsulated resin layer Z solar cell Z-encapsulated resin layer Z It has a laminated structure called a protective substrate for the solar cell module (back surface protective substrate).
  • the solar cell module has weather resistance and is suitable for outdoor use such as a roof portion of a building.
  • a metal plate such as aluminum whose surface has been insulated has been widely used since it has a certain degree of rigidity as a substrate and an excellent barrier property to moisture. It was done. However, it is difficult to make the insulating layer on the surface sufficiently thick due to cost restrictions. As a result, when friction, impact, etc. are applied, the insulating layer may be damaged, leading to insulation breakdown. In addition, when using a metal plate, it is necessary to increase the thickness of the metal plate in order to design a particularly large solar cell module, but there is a problem that the weight increases. This has limited the conditions for manufacturing and using conventional solar cell modules.
  • Patent Document 1 JP 2001-68695 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-68701
  • the inventors have a specific layer structure, and have a structural strength that has a bending rigidity, a weight per area, and a breakdown voltage in a specific range. It has been found that the substrate is excellent in mechanical properties and the deflection is effectively suppressed, and as a result, is suitable for use as a back surface protection for a solar battery module.
  • a back surface protection substrate for a solar cell module including a structure having at least three layers of 10000 kgf / mm 2 or less ( ⁇ ′ layer), and the weight per area of the structure is 0.5 kgZm 2 or more lOkgZm
  • the present invention relates to a back surface protection substrate for a solar cell module that is 2 or less.
  • “consisting of” means that the entire back surface protection substrate for the solar cell module is composed of the structure, and a part of the back surface protection substrate for the solar cell module is the structure. Including both It is the purpose.
  • (2) to (22) are each one of preferred embodiments of the present invention.
  • the back surface protection board for solar cell modules as described in 3).
  • thermoplastic resin is a propylene-based (co) polymer.
  • At least a part of the reinforcing fibers are converged and arranged in one direction.
  • the back protective substrate for a solar cell module according to any one of (3) to (8) above.
  • the C layer is described in (11) to (14) above, wherein the C layer is adhered to the A ′ layer by a layer comprising a crosslinkable ethylene-vinyl acetate copolymer.
  • Back surface protection board for solar cell modules
  • a solar cell module comprising the back protective substrate for a solar cell module according to (1) to (16).
  • the back surface protection substrate (V) for the solar cell module further has a deformation amount of 4% or less and a longitudinal elastic modulus of lOOkgfZmm 2 or more in the section of 30 ° C force at 100 ° C during TMA measurement.
  • a layer including a material (C layer), and the A layer, B layer, A ′ layer, and C layer are laminated in this order, and the A layer is on the sealing material layer (IV) side.
  • the thickness h (mm) of the surface protection sheet (I) for the solar cell module and the thickness h (mm) of the C layer are 0.5 ⁇ h / h ⁇ 2.0.
  • the second invention of the present invention is
  • the present invention relates to a solar cell module.
  • Formula (1): F EX CTE X h
  • the present invention relates to a back surface protection substrate for a solar cell module, wherein the laminate has a composite material layer containing at least one layer of thermoplastic resin and reinforcing fiber, and a layer having a resin foam strength.
  • a back surface protection substrate for a solar cell module that is excellent in mechanical properties and in which deflection is effectively suppressed.
  • Less board deflection can greatly improve workability during module installation, reduce stress caused by module deflection that can occur at the same time, and suppress deflection after module installation.
  • a solar cell module and a power generation device manufactured using such a protective substrate for a solar cell module are excellent in strength, lightness, lifetime, stability, etc., and are particularly suitable for outdoor use, and are practical. High value.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of a back surface protection substrate for a solar cell module that is a preferred embodiment of the present invention.
  • FIG. 2 is a view showing an example of a method for measuring deflection and bending rigidity of a back surface protective film for a solar cell module which is a preferred embodiment of the present invention.
  • the modulus of longitudinal elasticity is 500KgfZmm 2 or more LOOOOkgfZmm 2 or less layers (A layers), modulus of longitudinal elasticity is less than LOkgfZmm 2 or more 500k gfZmm 2 layers (B layers ), and a back surface protection substrate for a solar cell module, including a structure having at least three layers ( ⁇ ′ layers) having a longitudinal elastic modulus of 500 kgfZmm 2 or more and lOOOOkgf Zmm 2 or less, the area of the structure weight per is 0. 5kg / m 2 or more 10 It is a back surface protection substrate for solar cell modules, which is kg / m 2 or less.
  • the dielectric breakdown voltage of the structure is preferably 10 kV or more.
  • the flexural rigidity per 1000 mm width of the structure is 1. OX 10 6 to 10 ⁇ 10 6 kgf′mm 2 or more.
  • At least a longitudinal elastic coefficient is 500KgfZmm 2 or more LOOOOkgfZmm 2 below A layer
  • longitudinal elastic modulus is less than 1 OkgfZmm 2 or more 500kgfZmm 2 B layer
  • the vertical It has three layers of A and layer whose elastic modulus is 500 kgfZmm 2 or more and 1 OOOOkgf Zmm 2 or less.
  • the manufactured back surface protection substrate for a solar cell module can be manufactured relatively easily.
  • the order of stacking of the A layer, the B layer, and the A 'layer is not particularly limited, but sufficient bending rigidity is exhibited on both the upper side and the lower side of the back surface protection substrate for the solar cell module of the present invention. Therefore, it is preferable that the A layer, the B layer, and the A ′ layer are laminated in this order. It is preferable from the viewpoint of preventing warpage that the A layer, the B layer, and the A ′ layer are laminated in this order.
  • the A layer and the A 'layer may be the layers having the same thickness and physical properties, or may be different from each other.
  • the A ′ layer is preferably the same.
  • warping of the back surface protection substrate for solar cell modules is prevented.
  • it is preferable that the A layer and the A ′ layer have the same or at least substantially the same longitudinal elastic modulus and thickness.
  • the thickness of the A layer is ZA, and the thickness of the layer is in the range of 0.5 to 2.0.
  • the longitudinal elastic modulus of the A layer is 0.5 to 2. It is preferably within the range of 0. When such a condition is satisfied, warping during the lamination molding of the back surface protection substrate for the solar cell module can be effectively prevented.
  • the linear expansion coefficient of the A layer is preferably in the range of 0.5 to 2.0. When such conditions are satisfied, warpage due to temperature changes can be effectively prevented. When these ranges are exceeded, it may be necessary to take measures to prevent warping during the production of the laminate.
  • the structure constituting the back surface protection substrate for the solar cell module of the present invention has at least three layers of A layer, B layer, and A 'layer, and has other layers. You may or may not have. From the viewpoint of simplifying the structure and achieving low cost, there is no layer other than the A layer, B layer and A 'layer, and the three layers A layer, B layer and A' layer are directly bonded. From the standpoint of imparting many functions to the preferred structure, it is preferable to have layers other than the A layer, the B layer and the A ′ layer. Examples of the layer other than the A layer, the B layer, and the A ′ layer include, but are not limited to, an adhesive layer, a gas barrier layer, a design layer, and the like.
  • the A layer, the B layer, and the A 'layer are laminated in this order, and the A layer and the A' layer are stacked. It is preferable that the longitudinal elastic modulus is more than 10 times the longitudinal elastic modulus of the B layer. Longitudinal elastic modulus of layer A and layer A 'When the longitudinal elastic modulus of layer B is 10 times or more, the structure constituting the back protective substrate for solar cell module of the present invention has high rigidity and light weight (specific Weight per area) is also preferable.
  • the longitudinal elastic modulus of the A layer and the A ′ layer is more preferably 15 to LOO times the longitudinal elastic modulus of the B layer, and particularly preferably 20 to L 00 times the longitudinal elastic coefficient of the B layer. .
  • the structure constituting the back surface protection substrate for the solar cell module of the present invention has a bending rigidity of 0.5 X 10 6 to 10 X 10 7 kgf'mm 2 per 1000 mm width when the thickness is 3 mm, for example. It is preferable. When the bending rigidity is in the above range, it is effective in suppressing warpage and deflection of the back surface protective substrate for solar cell module, which is preferable.
  • the bending rigidity per width of 1000 mm when the thickness of the structure is 3 mm is preferably 1.010 6 to 10 10 6 13 ⁇ 4 111111 2 , more preferably 1.5 X 10 6 to 10 X 10 6. kgf 'mm 2
  • the bending stiffness per 1000 mm width is usually 2.
  • OX 10 6 to 10 X 10 8 kgf'mm 2 preferably 3.
  • OX 10 6 to 10 X 10 7 kgf 'mm 2 more preferably 5.
  • OX 10 6 to 10 X 10 7 kgf' mm 2 is usually used.
  • the bending stiffness of the structure can be predicted by the following equation when the A layer and the A 'layer are the same layer, and the shape of the structure and the lamination thickness constituting force.
  • the actual measurement value of the bending stiffness can be calculated as follows: Measurement force of deflection amount in cantilever support of substrate.
  • the structure constituting the back surface protection substrate for a solar cell module of the present invention has a weight per area of 0.5 to: LOkg Zm 2 . If the weight per area is in the above range, This is preferable because it is effective in suppressing the deflection of the back surface protection substrate for joule. In addition, since the weight per area is 10 kg / m 2 or less, it can contribute to weight reduction of the back surface protection substrate for the solar cell module and further to the light weight of the solar cell module, and thus has high practical value.
  • the weight per unit area of the structure is preferably 0. 5 ⁇ 7kg / m 2, more preferably 0. 5 ⁇ 5kgZ m C, Mel.
  • the weight per area of the structure can be calculated by measuring the weight of the structure.
  • the structure constituting the back protective substrate for a solar cell module of the present invention preferably has a dielectric breakdown voltage of 10 kV or more.
  • the dielectric breakdown voltage is in the above range, it is easy to maintain electrical insulation between the solar battery cell and Z or its wiring, etc., and the outside in a solar battery module using such a back surface protection substrate. This is preferable because normal and stable operation of the solar cell module can be secured.
  • the dielectric breakdown voltage of the structure is preferably 15 to 50 kV, more preferably 20 to 40 kV.
  • the breakdown voltage of the structure can be measured by a known breakdown voltage measuring device.
  • At least one of the A layer and the A ′ layer contains a thermoplastic resin and a reinforcing fiber, and the volume content of the reinforcing fiber is 30% to 85%.
  • a composite material layer which is%.
  • such a composite material layer is also referred to as a pre-preder in this specification.
  • the pre-preda is preferred that the reinforcing fiber has continuous long fiber strength in the direction.
  • a resin film having an excellent longitudinal elastic modulus can be preferably used for the A layer and the Z or A 'layer.
  • a film obtained by stretching a polyimide film is particularly preferable because it has a high longitudinal elastic modulus.
  • thermoplastic resin used in the preda examples include polypropylene, polystyrene, polyethylene, AS resin, ABS resin, ASA resin (polyacrylonitrile / polystyrene / polyacrylic acid ester), polymethylmethacrylate, nylon, Forces that can include polyacetal, polycarbonate, polyethylene terephthalate, polyphenylene oxide, fluorine resin, polyphenylene sulfide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyimide, polyarylate, etc. These are not limited.
  • propylene-based (co) polymers such as polypropylene are preferable because they are excellent in heat resistance and recyclability and can be obtained at a relatively low cost.
  • One type of these thermoplastic resins may be used alone, or two or more types may be used in combination.
  • the propylene-based (co) polymer preferably used as the thermoplastic resin is not particularly limited as long as it contains propylene as the (co) polymerization component. From the viewpoint of mechanical strength and the like, a crystalline polypropylene-based resin is preferable.
  • crystallinity means that the crystallinity is 30% or more. The degree of crystallinity can be obtained by a conventional wide-angle X-ray diffraction.
  • the crystalline polypropylene-based resin is not particularly limited as long as it satisfies the above-mentioned "crystallinity" condition and has a structural unit derived from propylene force.
  • a propylene homopolymer or a copolymer of 2 to 20 carbon atoms other than propylene and at least one propylene (X-olefin can be mentioned.
  • the number of carbon atoms other than propylene is 2 ⁇ -olefins of ⁇ 20 include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1 -Otadecene, 1 eicosene, etc., but ethylene or ⁇ -olefin with carbon number power of ⁇ 10 is preferred, and these olefins may be used alone or in combination of two or more. These ⁇ -olefins may form a random copolymer with propylene or a block copolymer.
  • These structural units derived from ⁇ -olefin may be contained in polypropylene in a proportion of usually 20 mol% or less, preferably 15 mol% or less. Also good.
  • the crystalline polypropylene-based resin has a melt flow rate (MFR) measured at 230 ° C and a load of 2.16 kgf in accordance with ASTM D 1238 of 0.001 to 500 gZlO, preferably 0.01. It is desirable to be in the range of ⁇ 50g / 10min.
  • the melting point of the crystalline polypropylene-based resin observed with a differential scanning calorimeter is usually 110 ° C or higher, preferably 120 to 165, more preferably 110 to 150 ° C.
  • the crystalline polypropylene-based resin can use either a isotactic structure or a syndiotactic structure, but the isotactic structure is preferred from the viewpoint of heat resistance. Further, if necessary, a plurality of crystalline polypropylene-based resins can be used in combination. For example, two or more kinds of components having different melting points and rigidity can be used.
  • homopolypropylene having excellent heat resistance (usually known is a copolymer having a copolymer component other than propylene of 3 mol% or less is preferable), which has a good balance between heat resistance and flexibility.
  • Excellent block polypropylene (usually known to have 3-30% by weight of normal decane-eluting rubber component), and random polypropylene with excellent balance of flexibility and transparency (usually measured by DSC)
  • a known peak having a melting peak of 100 ° C. or higher, preferably in the range of 110 ° C. to 150 ° C.) may be selected or used in combination so as to obtain desired physical properties. It is possible and preferred.
  • Such a crystalline polypropylene-based resin is, for example, a solid catalyst component containing magnesium, titanium, halogen, and an electron donor as essential components, an organoaluminum compound, and a Ziegler catalyst system having an electron donor power, or a meta port.
  • the polymer can be produced by polymerizing propylene or copolymerizing propylene and other ⁇ -olefins in a meta-cene catalyst system using a synthetic compound as one component of the catalyst.
  • reinforcing fiber examples include glass fiber, carbon fiber, boron fiber, metal fiber, ceramic fiber (such as carbon carbide fiber), polyester fiber, salt bully acrylonitrile copolymer fiber, poly Examples include, but are not limited to, bull alcohol fiber and aramid fiber.
  • glass fibers and carbon fibers are particularly preferable because a pre-preda produced using them has excellent strength and dimensional stability.
  • Such reinforcing fibers may be used alone or in combination of two or more. Glass fibers are usually subjected to various surface treatments to improve adhesion to resins. The surface treatment is preferably performed by combining a coupling agent and a bundling agent described later.
  • the glass fiber that is preferably used is not particularly limited, and a glass fiber that is usually used for a glass fiber reinforcing material can be appropriately used.
  • a glass fiber that is usually used for a glass fiber reinforcing material can be appropriately used.
  • preferred glass fibers include E glass, D glass, S glass, NE glass, and the like, but are not limited thereto. These glass fibers are appropriately selected depending on the intended use and performance of the molded product, and one kind may be used alone, or two or more kinds may be used in combination. More preferred fibers are, by weight, SiO: 50-60%, B 2 O: 15-30%
  • Glass fibers containing 8 to 20% can be mentioned.
  • the glass fiber is
  • the carbon fiber preferably used in the present invention is a concept including both carbon fiber and graphite fiber.
  • This carbon fiber can be obtained by carbonizing a fibrous material such as polyacrylo-tolyl, pitch, etc., which is usually called “precursor”, or by heating to a graphite temperature.
  • Elongation 1 Carbon fiber with high strength and high elongation of 7% or more is preferably used.
  • a carbon fiber whose surface is introduced with a functional group such as a hydroxyl group or a carboxylic acid group by electrolytic oxidation or ozone oxidation can be suitably used.
  • These carbon fibers are also commercially available, and there are no particular limitations on the brand, but examples For example, Toray Power (registered trademark) manufactured by Toray Industries, Inc. can be preferably used.
  • the back surface protection substrate for a solar cell module of the present invention it is preferable that the back surface protection substrate is treated with the reinforcing fiber strength coupling agent.
  • the coupling agent As an example of the usage form of the coupling agent, first, a preferable coupling agent when the reinforcing fiber is glass fiber will be described.
  • the coupling agent in the case of glass fiber it is desirable to select an optimum coupling agent according to the resin to be combined. Specific examples will be given below.
  • the thermoplastic resin used in combination in the pre-preda is nylon resin, it is preferable to use y-aminopropyl-trimethoxysilane, N-
  • polycarbonate resin it is preferable to use ⁇ -aminopropyl monotrimethoxysilane, ⁇ —8- (aminoethyl) - ⁇ -aminopropyl monotrimethoxysilane, and the like.
  • j8 (3,4-epoxycyclohexyl) ethyl monotrimethoxysilane, ⁇ -glycidoxypropyl methoxytrimethoxysilane, ⁇ -aminopropyl monotrimethoxysilane, etc. are used. It is preferable to do this.
  • the coupling agents described above can naturally be used as long as they are polyphenylene oxide, polyphenylene sulfide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyimide, polyarylate, and fluorocarbon resin.
  • ⁇ - ( ⁇ -aminoethyl) -y-aminopropylmethyldimethoxysilane, ⁇ -clopropylpropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminophenoltriethoxysilane, etc. should be used. Is also preferable.
  • ammine-curable epoxy resin is often used as a coupling agent.
  • Specific examples thereof include bisphenol-epoxychlorohydrin resin and epoxy novolac resin.
  • thermoplastic resin generally has a high melting temperature, ordinary coupling agents are thermally decomposed. In some cases, it is not used.
  • a solution obtained by adding a surfactant to the sizing agent and coupling agent to form an aqueous solution is sprayed on the monofilament, and then the temperature is about 100 ° C. Dry and process.
  • the fiber from which the bundling agent has been removed is completely impregnated with a solution obtained by dissolving 0.1 to 3% by weight of a sizing agent and a coupling agent by means such as dipping or spray coating.
  • the fiber containing the coupling agent solution is dried at 60 to 120 ° C. to allow the coupling agent to react with the fiber surface.
  • Solvents that dissolve the coupling agent include water adjusted to pH 2.0 to 12.0 depending on the surface treatment agent used, and organic solvents such as ethanol, toluene acetone, and xylene alone. Sometimes used in combination.
  • the reinforcing fibers are converged and arranged in one direction.
  • the elastic modulus in the fiber direction results in the bow I being efficiently cut out to the maximum elastic modulus.
  • thermoplastic fiber is impregnated into a reinforcing fiber aligned in one direction to form a pre-preda.
  • the most common method is as follows. One is a method in which if the resin is soluble in a solvent, the resin is solution-impregnated and impregnated into a reinforcing fiber, and then the solvent is removed while defoaming to obtain a prepreg.
  • the other is a method in which rosin is heated and melted and impregnated into a reinforcing fiber, defoamed and cooled to prepare a pre-preda.
  • a method for producing a pre-preda for example, Japanese Patent Publication No. 04-042168 Can be mentioned.
  • the surface of a monofilament having a thickness of 13 ⁇ m is treated with ⁇ -methacryloxymonopropyltrimethoxysilane, and 1800 pieces thereof are converged to form an untwisted yarn.
  • the prepredder produced in this way has excellent adhesion between the fiber and the thermoplastic resin, the fiber content can be varied from 30 to 90% by volume, and the thickness can be varied from 0.1 to 1. Omm. Can be manufactured.
  • the reinforcing fiber content of the pre-preda preferably used in the present invention is preferably 30% by volume to 85% by volume. If the reinforcing fiber content is 30% by volume or more, sufficient strength can be secured, and if the reinforcing fiber content is 85% by volume or less, a sufficient amount of resin exists for the reinforcing fiber, and the reinforcing fiber and the resin are filled. It is possible to suppress a decrease in strength due to a decrease in adhesion.
  • the reinforcing fiber content is more preferably 35 to 80% by volume, and even more preferably 40 to 75% by volume.
  • the prepredder preferably used in the present invention contains thermoplastic rosin and reinforcing fibers, but may contain other components. Specific examples include, in addition to the coupling agents and sizing agents described above, various types of resins other than thermoplastic resins and Z or rubber, plasticizers, fillers, pigments, dyes, UV absorbers, Antioxidants, heat stabilizers, antistatic agents, antibacterial agents, antifungal agents, flame retardants, foaming agents, cross-linking agents, cross-linking aids, dispersants, etc. Can be contained.
  • the B layer is preferably a layer that also has a resin foaming power. If layer B is a layer that also has a resin foam strength, it is possible to reduce the weight of the back protection substrate for the solar cell module and, as a result, to reduce the weight of the solar cell module, which is also effective in preventing deflection. There is an advantage of being.
  • thermoplastic resin or thermosetting resin that is not particularly limited can be used. From the viewpoint of ease of molding, ease of recycling, etc. Heat Plastic resin is preferred. Although there is no restriction
  • the resin foam preferably used in the present invention include a propylene-based (co) polymer foam such as polypropylene foam, a polyethylene foam, a polystyrene foam or a polypropylene foam as an outer layer. Forces including, but not limited to, polystyrene foam. Of these, propylene-based (co) polymer foams are particularly preferred from the viewpoints of cost, strength, heat resistance, and the like.
  • the propylene-based (co) polymer preferably used as the thermoplastic resin is not particularly limited as long as it contains propylene as the (co) polymerization component. From the viewpoint of mechanical strength and the like, a crystalline polypropylene-based resin is preferable. The details of the crystalline polypropylene-based resin, and the details of its preferred form, have already been described in detail in the description of the thermoplastic resin that can be used for the pre-preparation.
  • the above-mentioned laminate is used for layer B (waxed foam).
  • a composite structure composed of thermoplastic resin is preferred as the resin used for the resin and the A layer and the A 'layer (preprega).
  • the A layer and the A' layer and the B layer are the same or A composite structure composed of substantially the same thermoplastic resin (for example, a composite structure composed of both propylene-based (co) polymers) is more preferable.
  • substantially the same means a relationship in which a certain amount of mixing phenomenon occurs between the interfaces when both the resins are thermally bonded, and at least the interface before bonding disappears. Say that. Such a phenomenon occurs if both of the cocoons are compatible with each other at the time of melting.
  • the resin foam may be a closed cell or an open cell force.
  • the strength is improved by using closed cells.
  • the force with which the expansion ratio is usually 100 times or less is used.
  • the magnification is selected according to the balance between weight reduction and moldability, and preferably 2 to 50 times.
  • the cocoa foam may be a crosslinked product or a non-crosslinked product.
  • the expansion ratio of the resin foam present near the surface of the surface is lower than the expansion ratio of the resin foam close to the center layer. Therefore, the present invention can be preferably applied.
  • a conventionally known chemical foaming agent can be appropriately used.
  • azodicarbonamide (ADCA) N, N, monodinitrosopentamethylenetetramine, 4, 4'-oxybis (benzenesulfolhydrazide), diphenylsulfone-3,3, -disulfolhydrazide
  • p- Organic pyrolytic foaming agents such as toluenesulfol semicarbazide and trihydrazinotriazine
  • inorganic pyrolytic foaming agents such as sodium bicarbonate, sodium carbonate, ammonium bicarbonate, and ammonium carbonate.
  • Physical foaming agents can also be used as appropriate, for example, vapors of low-boiling organic solvents such as methanol, ethanol, propane, butane, pentane; dichloromethane, chloroform, carbon tetrachloride, chlorofluorocarbon, trifluoride.
  • examples include, but are not limited to, vapors of halogen-based inert solvents such as nitrogen fluorides; inert gases such as carbon dioxide, nitrogen, argon, helium, neon, and astatine.
  • a method using an inert gas is particularly preferable.
  • Foaming with an inert gas is preferable from the viewpoint of safety during production and the environment, and there is no possibility of secondary foaming due to heating when using a foam by chemical foaming. Secondary foaming has the risk of causing substrate dimensional changes and appearance problems.
  • the resin foam can appropriately contain a resin constituting the resin foam and various additives other than the foaming agent.
  • various additives other than the foaming agent.
  • crosslinking agents for example, crosslinking agents, crosslinking aids, plasticizers, fillers, pigments, dyes, UV absorbers, antioxidants, heat stabilizers, antistatic agents, antibacterial agents, antifungal agents, flame retardants, dispersants, etc.
  • One or two or more additives selected from the above can be contained as appropriate.
  • the method for joining the pre-preda that is preferably used as the A layer or the A ′ layer and the resin foam that is preferably used as the B layer. it can.
  • adhesive application a method of applying an adhesive in advance and adhering, a method of applying an application-type hot-melt adhesive and drying it, and then sandwiching it with a heating roll or a hot press, or a film type
  • a hot-melt adhesive may be sandwiched between a hot roll or a hot press and bonded.
  • heat fusion Adhesion is a preferred joining method because it does not require a special adhesive resin, can be joined in a relatively short time, and has a sufficiently high adhesive strength.
  • the laminated prepredder is heated at the same time to the melting temperature or higher and the resin foam to the melting temperature at the same time. Pressurize at a pressure of 2 or less to cool and integrally laminate to make a laminate. At this time, it is necessary to deaerate the air existing between the pre-predator layers of the pre-predator laminate. Usually, deaeration is performed by heating above the melting point of the resin constituting the pre-predder and pressurizing at a pressure of 3 kgfZcm 2 or less.
  • the resin foam is not crushed, so this deaeration can be performed in the step of integrating with the resin foam.
  • the heating of the prepreg and the foam can be carried out in a state where the prepreg and the resin foam are not in contact with each other, or in a state where the prepreg is placed on the resin foam and the two are in contact with each other. It can also be heated.
  • the foaming ratio of the resin foam is high, the foam is easily melted by heat, so that the melted pre-preda can be easily melted and integrated with the heat stored by the heat.
  • the step force for heating is changed to a step for performing the integral cohesion in a short time. Ingenuity is desired.
  • a pre-predder capable of entering and exiting the press and a resin foam are clamped and supported, and in the press A facility equipped with a pre-preda that can enter and exit and a hot plate that heats the resin foam.
  • the procedure for forming a laminate using this equipment is to pull the clamp out of the press board surface, attach the pre-preda and foam, insert the clamp device into the press board surface, and then put the hot plate into the press board surface. Heat pre-preda and resin foam Then, after the heating is completed, the hot plate is pulled out of the press platen surface, and the press is tightened to melt and fuse the pre-preda and the foam in contact. At this time, the clamp must be provided with a mechanism for releasing the material and retreating from the press panel surface at the same time as it touches the press panel surface. Similar to the integration of the foam and the pre-predder, the surface material and the pre-predder can be integrated while the pre-predder is in a molten state.
  • the back surface protection substrate for a solar cell module of the present invention only needs to have at least three layers of A layer, B layer and A, layer. From the viewpoint of imparting many functions to the structure, A It is preferable to have a layer other than the layer, the B layer and the A ′ layer. If the layers other than the A layer, B layer and A 'layer are classified for the purpose, a hard coat layer, an adhesive layer, an antireflection layer, a gas barrier layer, an antifouling layer, etc. are provided for protecting the front or back surface. be able to.
  • a layer made of UV-curable resin a layer made of thermosetting resin, a layer made of polyolefin resin, a layer made of carboxylic acid-modified polyolefin resin, a layer made of fluorine-containing resin, etc.can be provided.
  • a preferred layer configuration is appropriately selected depending on the relationship between the three layers of the A layer, the B layer, and the A 'layer and the other layers without any particular limitation. That is, the layers other than the A layer, the B layer, and the A ′ layer may be provided between the A layer and the B layer, or the B layer and the A ′ layer, or may be provided on the outermost layer of the back surface protection substrate for the solar cell module. It may be provided, or may be provided at other locations. There is no particular limitation on the number of layers other than the A layer, the B layer, and the A ′ layer, and any number of layers may be provided.
  • the back surface protection substrate for a solar cell module of the present invention further includes a layer (C layer) including a material having a deformation amount force or less in a section from 30 ° C to 100 ° C at the time of TMA measurement. May be.
  • a layer including a material having a deformation amount force or less in a section from 30 ° C to 100 ° C at the time of TMA measurement. May be.
  • the deformation rate is further preferably 3% or less, more preferably 2% or less.
  • the back surface protective substrate for a solar cell module has a C layer
  • the A layer, the B layer, the A 'layer, and the C layer are preferably laminated in this order.
  • the longitudinal elastic modulus E (k) is preferably laminated in this order.
  • the linear expansion coefficient of the C layer CTE (10- 6 Z ° C) is preferred to satisfy the relation given by the following formula (B), derived according to the following formula (A) and a.
  • the solar cell module is configured using the back surface protection substrate for solar cell module of the present invention, the space between the back surface protection substrate for solar cell module and the surface protection sheet for solar cell module described later is used. The effect which prevents the curvature considered to originate in the difference (thermal stress) of the linear expansion coefficient of this is acquired.
  • the material included in the C layer preferably has a longitudinal elastic modulus of lOOkgZmm 2 or more.
  • the deformation force is not more than 30 ° C to 100 ° C during TMA measurement.
  • Materials included in the C layer include polyolefins, polystyrenes, polycarbonates, polyesters, polyamides, polyamideimides, polyphenylene ethers, polyacetals, polyarylates, polyphenylene sulfides, polyethers- Examples include tolyl, liquid crystal polymers, polyether ketones, thermoplastic polyimides and the like, and specifically, polymer alloys having two or more of these types of propylene-based (co) polymers, which are preferred. Further, the propylene (co) polymer has a 97 mole 0/0 or more constitutional units derived from propylene, and preferably has a Aisotakuchikku structure.
  • the C layer is preferably substantially unstretched.
  • the longitudinal elastic modulus increases due to molecular orientation, while the linear expansion coefficient becomes extremely small. Therefore, their product becomes smaller than that of an unstretched product. In other words, it is necessary to make the film thicker so that the film coefficient of the C layer as a whole is within the above range.
  • the C layer on the A ′ layer it is possible to adhere the C layer to the A ′ layer using a resin or an adhesive.
  • a resin or an adhesive Prefer to use fat Good.
  • the resin or adhesive that can be used for bonding the C layer and the A ′ layer include a hot melt adhesive, a reactive adhesive, and a solution adhesive.
  • the hot-melt adhesive is an adhesive that is melted between adherends using a thermoplastic resin film or a nonwoven fabric.
  • Such hot-melt adhesives include ethylene butyl acetate copolymer (EVA), ethylene butyl glycidyl methacrylate copolymer terpolymer, ethylene vinyl acetate partial acid mono organic acid graft ethylene-vinyl acetate copolymer and modified ⁇ ethylene vinyl acetate copolymer of quaternary, etc. copolymers, ethylene 'a Orefuin copolymer, propylene' a Orefuin copolymer, propylene-ethylene alpha -..
  • an ethylene copolymer such as an ethylene acetate butyl copolymer or an ethylene ⁇ - olefin copolymer is blended with an initiator such as an organic peroxide to enable thermal crosslinking.
  • an initiator such as an organic peroxide
  • “Solar Enoku” trade name, manufactured by Mitsui Engineering & Technology Co., Ltd., which is an ethylene vinyl acetate copolymer film with a crosslinking agent added, can be suitably used.
  • the reactive adhesive includes a two-component type using a curing agent and a one-component type due to external factors such as heat 'moisture' ultraviolet rays.
  • the reactive adhesive include acrylic, urethane, epoxy, and silicone monomers.
  • “Takelac ⁇ -310” (trade name, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) as the main agent
  • “Takenate ⁇ —3” (trade name, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) as the curing agent Urethane-based adhesives using are preferably used.
  • the solution-based adhesive examples include a polymer such as urethane, chloroprene rubber, and styrene-butadiene rubber, or a polymer obtained by dissolving a polymer in an organic solvent.
  • a polymer such as urethane, chloroprene rubber, and styrene-butadiene rubber
  • a polymer obtained by dissolving a polymer in an organic solvent Specifically, “Unistor®-401” (trade name, manufactured by Mitsui Chemicals, Inc.) mainly composed of maleated polyolefin is used.
  • the above-mentioned adhesive when using a curable adhesive, has the effect of correcting warpage compared to the thermoplastic type. large.
  • the C layer is preferably attached to the A ′ layer by a layer comprising a crosslinkable ethylene acetate butyl copolymer. Specifically, it is preferable to bond the C layer, the A layer, and the above-described “solar energy”.
  • the C layer may be subjected to a surface treatment.
  • the surface treatment include corona discharge, UV ozone treatment, flame treatment, sand blast treatment, and primer treatment.
  • corona discharge, UV ozone treatment, flame treatment, etc. can improve the surface roughness of the C layer and generate functional groups on the surface of the C layer, and surface treatment on the C layer by sandblasting etc. Since the surface roughness can be improved by applying, the adhesive strength can be increased by these treatments.
  • the C layer by thermally fusing it to the A ′ layer in advance when manufacturing the back surface protective substrate for a solar cell module of the present invention.
  • the front force for assembling the module due to the thermal contraction of the C layer may easily cause reverse warping. Therefore, from this point of view, it is preferable to provide an adhesive layer and allow the entire assembly process to pass through.
  • the back surface protection substrate for a solar cell module of the present invention has excellent mechanical properties suitable for a protection substrate for a solar cell module, and can particularly effectively suppress bending and warping. Moreover, it can be provided with excellent dimensional stability, lightness, moisture resistance, scratch resistance, dielectric breakdown strength, etc. as required. Therefore, the solar cell module having the back surface protective substrate for the solar cell module of the present invention has excellent characteristics, and is one of the particularly preferred embodiments of the present invention.
  • a typical solar cell module has a structure in which solar cells made of polycrystalline silicon or the like are sandwiched and laminated with a sealing resin layer that has the same strength as ethylene vinyl acetate (EVA), and both sides are covered with protective sheets. It becomes.
  • a typical solar cell The module is composed of a solar cell module protective sheet (surface protective sheet) Z sealing material layer Z solar cell Z sealing material layer Z solar cell module protective sheet (back surface protection substrate) ( Even if it does not correspond to the above typical configuration, if the back surface protection substrate for the solar cell module of the present invention protects the solar cells in some form such as the back surface side, Needless to say, it is used as a backside protection board).
  • the back surface protection substrate for a solar cell module of the present invention can be preferably used as a back surface protection substrate for protecting the solar cell of the solar cell module.
  • the backside protection board is particularly necessary for large modules with a side length exceeding lm, and there is a high risk of external impact and there is a strong demand for light weight.
  • the back surface protective substrate for solar cell module of the present invention can be particularly preferably used.
  • the solar cell module of the present invention includes the surface protection sheet (I) for the solar cell module, the sealing material layer (II), the solar battery cell ( ⁇ ), and the sealing material layer (IV). It is preferable that the back surface protection substrate (V) for solar cell module of the present invention is laminated directly or indirectly in this order.
  • the back surface protection substrate (V) for the solar cell module of the present invention has a deformation amount of 4% or less and a longitudinal elastic modulus of 100 kg fZmm 2 or more in the section from 30 ° C to 100 ° C at the time of TMA measurement as C layer. It is preferable that the A layer, the B layer, the A ′ layer, and the C layer are laminated in this order.
  • the back surface protective substrate (V) for the solar cell module is preferably laminated so that the A layer is positioned on the sealing material layer (IV) side. That is, the A layer is laminated directly or indirectly with the encapsulant layer (IV).
  • the thickness h (mm) of the surface protection sheet (I) for the solar cell module and the thickness h (mm) of the C layer are 0.5 ⁇ h / h ⁇ 2.0. It is preferable to satisfy the conditions.
  • H Zh satisfies the condition of 0.7 ⁇ h / h ⁇ l.5.
  • the solar cell module of the present invention is guided according to the following formulas (1) and (2). It is preferable that the specific coefficient satisfies the relationship of the following formula (3).
  • the above relationship is not limited to the case where the back surface protection substrate for solar cell module of the present invention is used as the back surface protection substrate (V) for solar cell module.
  • the effect can be obtained even when a protective substrate is used. That is, the surface protection sheet for solar cell module (1), encapsulant layer ( ⁇ ), solar cell (II I), encapsulant layer (IV) And a solar cell module in which the back surface protective substrate (V) for a solar cell module having a laminated structure is laminated directly or indirectly in this order, the longitudinal elasticity of the surface protective sheet (I) for the solar cell module the coefficient E (kgfZmm 2), before Symbol the solar cell module surface protection sheet for the linear expansion coefficient of the (I) CTE (10- 6 Z ° C), before Symbol thickness of the solar cell module surface protective sheet (I) ( mm) and the sun derived from the following formula (1) Film coefficient of surface protection sheet (I) for battery module F (10 " 6 kgf E (kgf / mm 2 ) is the longitudinal elastic modulus of the layer
  • the back surface protection substrate for solar cell modules of the present invention is excellent in bending rigidity, light weight, insulation protection characteristics, etc., the solar cell module having such a protection substrate is light and robust, and is used outdoors. It is expected to be suitable for use and have a long life.
  • the surface protection sheet for a solar cell module used in the solar cell module which is a preferred embodiment of the present invention is not particularly limited. However, since the surface protection sheet is located on the outermost layer of the solar cell module, in order to ensure long-term reliability of the solar cell module in outdoor exposure, including weather resistance, water repellency, contamination resistance, and mechanical strength. It is preferable to have the following performance. Further, in order to effectively use sunlight, a highly transparent sheet having a small optical aperture is preferable. Examples of the material for the surface protection sheet for solar cell modules that are preferably used for the solar cell module include polycarbonate resin, polyester resin, fluorine resin, acrylic resin, cyclic olefin (co) polymer, etc. A glass substrate etc. are mentioned other than a film.
  • the resin film is a polyester resin, particularly polyethylene terephthalate resin, which is excellent in terms of transparency, strength, cost and the like.
  • fluorine resin having particularly good weather resistance is also preferably used.
  • tetrafluorinated ethylene ethylene copolymer ETFE
  • polyfluorinated burr resin PVDF
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene rubber
  • FEP fluorinated ethylene 16-propylene copolymer
  • CTFE polytrifluoride-ethylene resin
  • the surface protective sheet for a solar cell module
  • the total light transmittance of light having a wavelength of 350 to 1400 nm is preferably 80% or more, more preferably 90% or more.
  • white glass with low absorption in the infrared region is used as the glass substrate to be covered.
  • the output characteristics of the solar cell module can be reduced. The impact is small.
  • a float plate glass without force heat treatment that can obtain tempered glass by heat treatment may be used.
  • antireflection coating may be applied.
  • the solar cell module of the present invention usually has a sealing material layer disposed so as to sandwich solar cells.
  • the material of the encapsulant layer is not particularly limited, but may be composed of a resin that is in close contact with the solar cell and melted and softened at a temperature when the solar cell and the front surface or back surface protective layer are laminated. preferable.
  • the lamination temperature is usually below 150 ° C, preferably below 120 ° C.
  • Examples of the resin preferably used for such a sealing material layer include ethylene vinyl acetate copolymer (EVA), ethylene butyl glycidyl methacrylate terpolymer, ethylene vinyl acetate partial oxide, organic acid graft tetra Ethylene vinyl acetate copolymer, ethylene vinyl acetate copolymer, ethylene ' ⁇ -olefin copolymer, propylene' ⁇ -olefin copolymer, propylene 'ethylene' Polyolefins such as a-olefin copolymers, polybutylbutyral, carboxyl group-containing polyolefins such as maleic anhydride-grafted polyethylene, and polyester-modified resins such as ethylene terephthalate mono-modified alkylene ether terephthalate block copolymers Such as, but not limited to.
  • EVA ethylene vinyl acetate copolymer
  • EVA ethylene butyl glycidy
  • ethylene vinyl acetate copolymer strength Its flexibility, transparency, heat resistance Isotropic preferably used.
  • ethylene-butyl acetate copolymer used for the sealing material layer There is no particular limitation on the ethylene-butyl acetate copolymer used for the sealing material layer.
  • a conventionally known ethylene-vinyl acetate copolymer can be appropriately used.
  • an initiator such as an organic peroxide is added to enable thermal crosslinking.
  • “Solar Enoku” (trade name, manufactured by Mitsui Engineering & Technology Co., Ltd.), which is an ethylene vinyl acetate copolymer film with a crosslinking agent added, can be suitably used.
  • the olefin-based copolymer can easily obtain a resin having excellent transparency and flexibility, and can be used as a sealing material without crosslinking. Therefore, it can be preferably used for the sealing material layer from the viewpoint of production cost and the like.
  • Both silicon and compound semiconductors described later have excellent characteristics as solar cell elements. It is known that they are easily damaged by external stress, impact, and the like. If a material having excellent flexibility is used for the solar cell encapsulant layer, the solar cell element is effectively damaged by absorbing stress, impact, etc. on the solar cell element. Furthermore, in the solar cell module which is a preferred embodiment of the present invention, it is desirable that the solar cell sealing material layer is directly joined to the solar cell.
  • the solar cell encapsulant has thermoplasticity, and even after the solar cell module is manufactured, the solar cells can be taken out relatively easily. Excellent recyclability.
  • the solar battery cell in the solar battery module which is a preferred embodiment of the present invention is not particularly limited as long as it can generate power using the photovoltaic effect of a semiconductor.
  • silicon single crystal system, polycrystalline system, Amorphous solar cells, compound semiconductors (Group 3-5, Group 2-6, etc.), solar cells, wet solar cells, organic semiconductor solar cells, etc. can be used.
  • polycrystalline silicon solar cells are preferred from the viewpoint of balance between power generation performance and cost.
  • the solar cell module which is one of the particularly preferred embodiments of the present invention is effectively prevented from warping, and is often excellent in mechanical strength, light weight, life and the like. For this reason A power generator using such a solar cell module is easy to impart excellent impact resistance, weight, life, etc., and has a high practical value.
  • the above power generator is installed on the roof of a house, used as a mobile power source for outdoor activities such as camping, and used as an auxiliary power source for automobile batteries. Is preferred.
  • 'Dielectric breakdown strength The test piece obtained by cutting the back protection substrate for the solar cell module into 100 X 100mm was compliant with JIS C2110, and it was changed to the HAT-3100-100RHO type dielectric breakdown tester manufactured by Yamazaki Sangyo Co., Ltd. The voltage rise rate was 2 kVZs.
  • the electrode used was a spherical type with an upper part of 20 mm in diameter and a lower part with a circular cross section of 25 mm in diameter.
  • the glass fiber-reinforced composite sheet L15 (Puredaron (registered trademark), Mitsui I ⁇ Co., thickness: 0. 25 mm, the longitudinal elastic modulus: 1600 kgf / mm 2, the glass fiber content: 50 volume 0/0 , Weight per area: 300gZm 2 ), PP layer 3 times foam sheet as B layer (trade name paror board, made by Mitsui Engineering Co., Ltd., longitudinal elastic modulus: 50kgfZmm 2 , thickness 8mm, weight per area: 2.
  • glass fiber reinforced composite sheet P30 (Predaron (registered trademark), manufactured by Mitsui Chemicals, Inc., thickness: 0.45 mm, longitudinal elastic modulus: 3300 kgf Zmm 2 , glass fiber content: 50 volume%, area
  • a back protective substrate for a solar cell module was prepared in the same manner as in Example 1 except that the weight per unit was 600 gZm 2 ).
  • the weight per unit area of the back surface protection substrate for solar cell modules was 4. lkgZm 2 , the light deflection was 15mm, and the bending rigidity was very small, 3.4 ⁇ 10 7 kgf 'mm 2 .
  • the dielectric breakdown voltage was 35kV, which was a sufficient value as an insulation protection substrate for solar cells.
  • PP layer 4.5 times expanded sheet (trade name Cellplanlite, manufactured by Mitsui Engineering & Technology Co., Ltd., longitudinal elastic modulus: 25kgfZmm 2 , thickness 19mm, weight per area: 4.2kgZm 2 ) was used as layer B.
  • the dielectric breakdown voltage was 39kV, which was a sufficient value as an insulation protection substrate for solar cells.
  • PP unstretched sheet (trade name Super Pure Ray, Idemitsu Interview - Tech Co., modulus of longitudinal elasticity: 216kgfZmm 2, thickness 0. 2 mm, the weight per unit area: 200gZm 2) other using Produced a back protective substrate for a solar cell module in the same manner as in Example 1.
  • the weight per unit area of the obtained back surface protection substrate for solar cell modules was as light as 3.3 kg / m 2
  • the flexural rigidity was as large as 253 mm and 1.6 x 10 6 kgf 'mm 2
  • Bending rigidity was insufficient as a back protective substrate for solar cell modules with a thickness of about 8 mm.
  • the dielectric breakdown voltage was 33 kV, which was a sufficient value as an insulation protection substrate for solar cells.
  • Glass fiber-reinforced composite sheet L15 (Puredaron (registered trademark), Mitsui I ⁇ Co., thickness 0 25 mm, longitudinal elastic modulus:. 1600kgfZmm 2, glass fibers 50 volume 0/0) 40
  • press molding was performed to obtain a back protective substrate for a solar cell module with a thickness of 8.6 mm.
  • the obtained back surface protection substrate for the solar cell module has a large weight per unit area of 12 kgZm 2 and heavy deflection of 298 mm. Bending rigidity as a back surface protection substrate for a rail was insufficient.
  • a back protective substrate for a solar cell module was obtained in the same manner as in Example 1 except that the thickness of layer B was 3 mm and the size was 250 ⁇ 250 mm.
  • a polycarbonate film (trade name Panlite, manufactured by Teijin Chemicals Ltd.) is used as a surface protection film.
  • L-1225Z thickness: 0.18 mm
  • 2 sheets of ethylene acetate vinyl copolymer film with a crosslinking agent added as a sealant (trade name Solar EVA SC-50B, Mitsui Chemicals) Manufactured by Fabuguchi Co., Ltd.
  • the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 1.00, and the warpage of the simulation module was 0. Omm.
  • the film coefficient ratio between the C layer and the surface protection sheet of the obtained simulation module was 0.51, and the warpage of the simulation module was 1. Omm.
  • the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 1.52, and the warpage of the simulation module was 1. Omm.
  • the film coefficient ratio between the C layer and the surface protection sheet of the obtained simulation module was 1.11, but the amount of deformation in the 30 ° C to 100 ° C interval during TMA measurement However, the warpage of the simulation module was 1.1 mm.
  • a simulation module was obtained in the same manner as in Example 4 except that a polyethylene naphthalate film (manufactured by Teijin DuPont Films, trade name: Teonex Q51, thickness: 0.19 mm) was used as the C layer.
  • a polyethylene naphthalate film manufactured by Teijin DuPont Films, trade name: Teonex Q51, thickness: 0.19 mm
  • the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 0.40, and the warpage of the simulation module was 2.4 mm.

Abstract

Disclosed is a backside protective substrate for solar cell modules, which is excellent in mechanical characteristics while effectively suppressing bending. Specifically disclosed is a backside protective substrate for solar cell modules, which is composed of a structure having at least three layers, namely a layer (A) having a longitudinal elastic coefficient of not less than 500 kgf/mm2 but not more than 10,000 kgf/mm2, a layer (B) having a longitudinal elastic coefficient of not less than 10 kgf/mm2 but less than 500 kgf/mm2, and a layer (A') having a longitudinal elastic coefficient of not less than 500 kgf/mm2 but not more than 10,000 kgf/mm2. The structure has a weight per unit area of not less than 0.5 kg/m2 but not more than 10 kg/m2.

Description

太陽電池モジュール用裏面保護基板、並びに、太陽電池モジュール及 び発電装置  Back surface protection substrate for solar cell module, solar cell module and power generator
技術分野  Technical field
[0001] 本発明は、曲げ剛性、絶縁性および軽量性に優れた太陽電池モジュール用裏面 保護基板、および、それを用いた太陽電池モジュールおよび発電装置に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a back surface protection substrate for a solar cell module excellent in bending rigidity, insulation and light weight, and a solar cell module and a power generator using the same. Background art
[0002] 地球環境問題、エネルギー問題等が深刻さを増す中、クリーンでかつ枯渴のおそ れが無いエネルギー源として、太陽電池が注目されている。太陽電池を建物の屋根 部分等の屋外で使用する場合、太陽電池モジュールの形で使用することが一般的 である。  [0002] As global environmental problems and energy problems become more serious, solar cells are attracting attention as energy sources that are clean and free from drought. When solar cells are used outdoors such as on the roof of a building, they are generally used in the form of solar cell modules.
[0003] 太陽電池モジュールは、通常、多結晶シリコン等により形成された太陽電池セルを エチレンビュルアセテート (EVA)等力もなる封止用榭脂層で挟み積層し、さらに表 裏両面を太陽電池モジュール用保護基板でカバーした構造になって 、る。すなわち 典型的な太陽電池モジュールは、太陽電池モジュール用保護基板 (表面保護シート [0003] Solar cell modules are usually formed by sandwiching and stacking solar cells made of polycrystalline silicon or the like with a sealing resin layer that also has ethylene blu-acetate (EVA) and the like. It has a structure covered with a protective substrate for use. That is, a typical solar cell module is a solar cell module protective substrate (surface protective sheet).
) Z封止榭脂層 Z太陽電池セル Z封止榭脂層 Z太陽電池モジュール用保護基板 ( 裏面保護基板)という積層構造になっている。この結果、太陽電池モジュールは、耐 候性を有し、建物の屋根部分等の屋外での使用にも適したものとなって 、る。 ) Z-encapsulated resin layer Z solar cell Z-encapsulated resin layer Z It has a laminated structure called a protective substrate for the solar cell module (back surface protective substrate). As a result, the solar cell module has weather resistance and is suitable for outdoor use such as a roof portion of a building.
[0004] 太陽電池モジュール用裏面保護基板としては、基板としてある程度の剛性をもつこ と、湿分のバリア性に優れること等から、従来、表面を絶縁化処理したアルミニウム等 の金属板が広く用いられていた。しかし、表面の絶縁層はコスト等の制限から十分に 厚いものとすることが難しぐその結果、摩擦、衝撃等が加わった場合、絶縁層が破 損して絶縁破壊に繋がるおそれがあった。また金属板を用いる場合、特に大型の太 陽電池モジュールの設計をするには金属板の厚みを増す必要があるが、重量が増 えてしまう問題があった。このことが、従来の太陽電池モジュールの製造や使用の条 件を制限していた。  [0004] As a back surface protection substrate for a solar cell module, a metal plate such as aluminum whose surface has been insulated has been widely used since it has a certain degree of rigidity as a substrate and an excellent barrier property to moisture. It was done. However, it is difficult to make the insulating layer on the surface sufficiently thick due to cost restrictions. As a result, when friction, impact, etc. are applied, the insulating layer may be damaged, leading to insulation breakdown. In addition, when using a metal plate, it is necessary to increase the thickness of the metal plate in order to design a particularly large solar cell module, but there is a problem that the weight increases. This has limited the conditions for manufacturing and using conventional solar cell modules.
[0005] 表面を絶縁化処理した金属に代えて、絶縁性に優れ、柔軟性に富む有機高分子 力 なるフィルムを太陽電池モジュール用裏面保護基板として使用することが検討さ れている。有機高分子を用いれば高い絶縁性を実現することができる一方で、機械 的特性が必ずしも十分でない場合があり、金属を用いた場合よりも大きなたわみが生 ずる傾向があるため、その対策が必要である。機械的特性の向上のためには、例え ば、有機高分子中に強化繊維を添加することが提案されている (例えば、特開 2001 — 68695号公報、特開 2001— 68701号公報参照)。 [0005] Instead of metal with an insulating surface, organic polymer with excellent insulation and high flexibility The use of powerful films as backside protection substrates for solar cell modules is being studied. While high insulation can be achieved using organic polymers, mechanical properties may not always be sufficient, and there is a tendency for greater deflection than with metals, so countermeasures are necessary. It is. In order to improve the mechanical properties, for example, it has been proposed to add a reinforcing fiber to the organic polymer (see, for example, JP 2001-68695 A and JP 2001-68701 A).
特許文献 1 :特開 2001— 68695号公報  Patent Document 1: JP 2001-68695 A
特許文献 2:特開 2001— 68701号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-68701
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、従来の強化繊維を添加した有機高分子力もなる裏面保護シートの機械的 特性は、目的との関係で必ずしも十分ではなぐ機械的特性の向上、とりわけたわみ を有効に抑制することが望まれていた。 [0006] However, the mechanical properties of the conventional back protective sheet having organic polymer strength with the addition of reinforcing fibers are not necessarily sufficient in relation to the purpose, and it is possible to effectively suppress the deflection. It was desired.
課題を解決するための手段  Means for solving the problem
[0007] 発明者らは、鋭意検討の結果、特定の層構造を有し、かつ、曲げ剛性、面積あたり 重量、および絶縁破壊電圧が特定の範囲にある構造体力 なる太陽電池モジユー ル用裏面保護基板が、機械的特性に優れ、たわみが有効に抑制され、その結果太 陽電池モジュール用裏面保護としての使用に適して!/、ることを見出し、本発明に至つ た。 [0007] As a result of intensive investigations, the inventors have a specific layer structure, and have a structural strength that has a bending rigidity, a weight per area, and a breakdown voltage in a specific range. It has been found that the substrate is excellent in mechanical properties and the deflection is effectively suppressed, and as a result, is suitable for use as a back surface protection for a solar battery module.
[0008] すなわち、本件第 1発明は、  [0008] That is, the first invention of the present invention,
(1)縦弾性係数が 500kgfZmm2以上 lOOOOkgfZmm2以下である層(A層)、縦 弾性係数が lOkgfZmm2以上 500kgfZmm2未満である層(B層)、および縦弾性係 数が 500kgf/mm2以上 10000kgf/mm2以下である層(Α'層)の少なくとも 3層を 有する構造体を含む太陽電池モジュール用裏面保護基板であって、該構造体の面 積あたりの重量が 0. 5kgZm2以上 lOkgZm2以下である、太陽電池モジュール用裏 面保護基板に関する。なお、ここで「からなる」とは、当該太陽電池モジュール用裏面 保護基板の全部が当該構造体で構成されている場合、および、当該太陽電池モジ ユール用裏面保護基板の一部が当該構造体で構成されている場合、の双方を含む 趣旨である。 (1) Longitudinal elastic modulus of 500 kgfZmm 2 or more lOOOOkgfZmm 2 or less (A layer), longitudinal elastic modulus of lOkgfZmm 2 or more and less than 500 kgfZmm 2 (B layer), and longitudinal elastic modulus of 500 kgf / mm 2 or more A back surface protection substrate for a solar cell module including a structure having at least three layers of 10000 kgf / mm 2 or less (Α ′ layer), and the weight per area of the structure is 0.5 kgZm 2 or more lOkgZm The present invention relates to a back surface protection substrate for a solar cell module that is 2 or less. Here, “consisting of” means that the entire back surface protection substrate for the solar cell module is composed of the structure, and a part of the back surface protection substrate for the solar cell module is the structure. Including both It is the purpose.
[0009] 以下、(2)から(22)は、それぞれ本発明の好ましい実施形態の 1つである。  [0009] Hereinafter, (2) to (22) are each one of preferred embodiments of the present invention.
[0010] (2) 前記 A層、 B層、および A'層がこの順に積層され、前記 A層および A'層の縦 弾性係数が、前記 B層の縦弾性係数の 10倍以上である、上記(1)に記載の太陽電 池モジュール用裏面保護基板。 [0010] (2) The A layer, the B layer, and the A ′ layer are laminated in this order, and the longitudinal elastic modulus of the A layer and the A ′ layer is 10 times or more the longitudinal elastic modulus of the B layer. The back surface protective substrate for a solar cell module as described in (1) above.
[0011] (3) 前記 A層および A'層の少なくとも一方が、熱可塑性榭脂および強化繊維を 含有し、且つ、前記強化繊維の容積含有率が 30%以上 85%以下である複合材料 層である、上記(1)または(2)に記載の太陽電池モジュール用裏面保護基板。 [0011] (3) A composite material layer in which at least one of the A layer and the A 'layer contains a thermoplastic resin and a reinforcing fiber, and the volume content of the reinforcing fiber is 30% or more and 85% or less. The back protective substrate for a solar cell module according to (1) or (2) above.
[0012] (4) 前記 B層が、前記熱可塑性榭脂と略同一の熱可塑性榭脂を含有する、上記( [0012] (4) The above-described (B), wherein the B layer contains a thermoplastic resin substantially the same as the thermoplastic resin.
3)に記載の太陽電池モジュール用裏面保護基板。  The back surface protection board for solar cell modules as described in 3).
[0013] (5) 前記熱可塑性榭脂が、プロピレン系(共)重合体である、上記(3)または (4) に記載の太陽電池モジュール用裏面保護基板。 [0013] (5) The back surface protective substrate for a solar cell module according to the above (3) or (4), wherein the thermoplastic resin is a propylene-based (co) polymer.
[0014] (6) 前記 B層が、プロピレン系(共)重合体を含有する、上記(3)から(5)に記載の 太陽電池モジュール用裏面保護基板。 [0014] (6) The back surface protective substrate for a solar cell module according to (3) to (5), wherein the B layer contains a propylene-based (co) polymer.
[0015] (7) 前記強化繊維が、ガラス繊維または炭素繊維である、上記(3)力も (6)に記載 の太陽電池モジュール用裏面保護基板。 [0015] (7) The back protective substrate for a solar cell module according to (6), wherein the reinforcing fiber is glass fiber or carbon fiber.
[0016] (8) 前記強化繊維がカップリング剤で処理されて!、る、上記(3)から(7)に記載の 太陽電池モジュール用裏面保護基板。 [0016] (8) The back surface protective substrate for a solar cell module according to (3) to (7), wherein the reinforcing fiber is treated with a coupling agent!
[0017] (9) 前記強化繊維の少なくとも一部が複数本集束されて一方向に配列されて 、る[0017] (9) At least a part of the reinforcing fibers are converged and arranged in one direction.
、上記(3)から (8)に記載の太陽電池モジュール用裏面保護基板。 The back protective substrate for a solar cell module according to any one of (3) to (8) above.
[0018] (10) 前記 B層が、榭脂発泡体力もなる層である、上記(1)から(6)に記載の太陽 電池モジュール用裏面保護基板。 [0018] (10) The back surface protection substrate for a solar cell module according to (1) to (6), wherein the B layer is a layer having a resin foam strength.
[0019] (11) 更に、 TMA測定時の 30°Cから 100°Cの区間における変形量が 4%以下で ある素材を含んでなる層(C層)を含み、且つ、前記 A層、 B層、 A'層、および C層が この順に積層されており、更に、前記 C層の縦弾性係数 E (kgfZmm2)と、前記 C層 [0019] (11) Further, a layer (C layer) including a material having a deformation amount of 4% or less in a section from 30 ° C to 100 ° C at the time of TMA measurement, and the A layer, B Layer, A ′ layer, and C layer are laminated in this order, and the longitudinal elastic modulus E (kgfZmm 2 ) of the C layer and the C layer
C  C
の線膨張係数 CTE (10— 6Z°C)と、前記 C層の厚み h (mm)とから下式 (A)に従つ 従Tsu and the linear expansion coefficient CTE (10- 6 Z ° C) , since the thickness h (mm) of the C layer to the following formula (A)
C C  C C
て導かれる、前記 C層のフィルム係数 Fc (10— 6kgfZmm°C)が、下式 (B)の関係を満 たす、上記(2)〜(10)に記載の太陽電池モジュール用裏面保護基板。 式(A): F =E X CTE X h Guided Te, film coefficient Fc of the C layer (10- 6 kgfZmm ° C) is, meet the relation of the following formula (B), the (2) - (10) a solar cell module for the back protection according to substrate. Formula (A): F = EX CTE X h
c c c c  c c c c
式(B): 1000 (10"6kgf/mm°C)≤F ≤ lOOOO (10"6kgf/mm°C) Formula (B): 1000 (10 " 6 kgf / mm ° C) ≤F ≤ lOOOO (10" 6 kgf / mm ° C)
c  c
[0020] (12) 前記 C層が、プロピレン系(共)重合体を含んでなる、上記(11)に記載の太 陽電池モジュール用裏面保護基板。  [0020] (12) The back surface protective substrate for a solar cell module according to (11), wherein the C layer comprises a propylene-based (co) polymer.
[0021] (13) 前記プロピレン系(共)重合体力 97モル0 /0以上のプロピレンより導かれる 構成単位を有し、かつ、ァイソタクチック構造を有する、上記(12)に記載の太陽電池 モジュール用裏面保護基板。 [0021] (13) having said propylene (co) polymer strength 97 mole 0/0 or more constitutional units derived from propylene, and has a Aisotakuchikku structure, the back surface for a solar cell module according to (12) Protective board.
[0022] (14) 前記 C層が、実質的に延伸されていない、上記(12)または(13)に記載の 太陽電池モジュール用裏面保護基板。 [0022] (14) The back protective substrate for a solar cell module according to (12) or (13), wherein the C layer is not substantially stretched.
[0023] (15) 前記 C層が、硬化型接着剤又は架橋可能な榭脂によって前記 A'層に接着 されている、上記(11)から(14)に記載の太陽電池モジュール用裏面保護基板。 (15) The back protective substrate for a solar cell module according to (11) to (14), wherein the C layer is bonded to the A ′ layer with a curable adhesive or a crosslinkable resin. .
[0024] (16) 前記 C層が、架橋可能なエチレン—酢酸ビニル共重合体を含んでなる層に よって、前記 A'層に接着されている、上記(11)から(14)に記載の太陽電池モジュ ール用裏面保護基板。 (16) The C layer is described in (11) to (14) above, wherein the C layer is adhered to the A ′ layer by a layer comprising a crosslinkable ethylene-vinyl acetate copolymer. Back surface protection board for solar cell modules.
[0025] (17) 前記(1)から(16)に記載の太陽電池モジュール用裏面保護基板を有する 、太陽電池モジュール。  [0025] (17) A solar cell module comprising the back protective substrate for a solar cell module according to (1) to (16).
[0026] (18) 太陽電池モジュール用表面保護シート (I)、封止材層 (II)、太陽電池セル (I II)、封止材層 (IV)、および、上記(1)から(16)に記載の太陽電池モジュール用裏 面保護基板 (V)がこの順に直接または間接に積層されてなる、上記(17)に記載の 太陽電池モジュール。  (18) Surface protection sheet for solar cell module (I), encapsulant layer (II), solar cell (I II), encapsulant layer (IV), and (1) to (16 The solar cell module according to (17), wherein the back surface protective substrate (V) for solar cell module according to (8) is laminated directly or indirectly in this order.
[0027] (19) 前記太陽電池モジュール用裏面保護基板 (V)が更に TMA測定時の 30°C 力も 100°Cの区間における変形量が 4%以下及び縦弾性係数が lOOkgfZmm2以 上である素材を含んでなる層(C層)を含み、且つ、前記 A層、 B層、 A'層、および C 層がこの順に積層されており、前記 A層が前記封止材層(IV)側に位置する、上記(1 8)に記載の太陽電池モジュール。 [0027] (19) The back surface protection substrate (V) for the solar cell module further has a deformation amount of 4% or less and a longitudinal elastic modulus of lOOkgfZmm 2 or more in the section of 30 ° C force at 100 ° C during TMA measurement. A layer including a material (C layer), and the A layer, B layer, A ′ layer, and C layer are laminated in this order, and the A layer is on the sealing material layer (IV) side The solar cell module according to (18), which is located in
[0028] (20) 前記太陽電池モジュール用表面保護シート (I)の厚さ h (mm)と、前記 C層 の厚さ h (mm)とが、 0. 5≤h /h≤2. 0の条件を満たす、上記(19)に記載の太陽 c C I  [0028] (20) The thickness h (mm) of the surface protection sheet (I) for the solar cell module and the thickness h (mm) of the C layer are 0.5≤h / h≤2.0. The solar c CI described in (19) above that satisfies the above conditions
電池モジュール。 [0029] (21) 前記太陽電池モジュール用表面保護シート (I)Battery module. [0029] (21) Surface protection sheet for solar cell module (I)
Figure imgf000007_0001
Figure imgf000007_0001
)と、前記太陽電池モジュール用表面保護シート (I)線膨張係数 CT^ (10— 6/°C)と、 前記太陽電池モジュール用表面保護シート (I)の厚み h (mm)とから下式(1)に従つ て導かれる、前記太陽電池モジュール用表面保護シート (I)のフィルム係数 F (10"6k gf/mm°C)と、 ) And the solar cell module surface protective sheet (I) linear expansion coefficient CT ^ and (10- 6 / ° C), the thickness h (mm) from the following equation of the solar cell module surface protective sheet (I) Film coefficient F (10 " 6 k gf / mm ° C) of the surface protection sheet for solar cell module (I), which is guided according to (1),
前記 C層の縦弾性係数 E (kgfZmm2)と、前記 C層の線膨張係数 CTE (10 The longitudinal elastic modulus E (kgfZmm 2 ) of the C layer and the linear expansion coefficient CTE (10
C C  C C
°C)と、前記 C層の厚み h (mm)とから下式(2)に従って導かれる、前記 C層のフィル  ° C) and the thickness h (mm) of the C layer, which is derived according to the following formula (2):
C  C
ム係数 F (10"6kgf/mm°C)と前記太陽電池モジュール用表面保護シート (I)のフィCoefficient F (10 " 6 kgf / mm ° C) and the surface protection sheet (I) for the solar cell module
C C
ルム係数 F (10—6kgfZmm°C)との比 (F ZF )力 下式(3)の関係を満たす、上記( Met Lum coefficient F (10- 6 kgfZmm ° C) and the ratio of (F ZF) forces under formula the relationship (3), the (
I C I  I C I
19)または(20)に記載の太陽電池モジュール。  The solar cell module according to 19) or (20).
式(1): F =E X CTE X h  Formula (1): F = E X CTE X h
式(2): F =E X CTE X h  Formula (2): F = E X CTE X h
c c c c  c c c c
式(3) : 0. 7≤F /F≤l. 3  Formula (3): 0. 7≤F / F≤l. 3
C I  C I
[0030] (22) 上記(17)から(21)に記載の太陽電池モジュールを有する発電装置。  [0030] (22) A power generation device having the solar cell module according to (17) to (21).
[0031] また、本件第 2発明は、  [0031] The second invention of the present invention is
(23) 太陽電池モジュール用表面保護シート (I)、封止材層 (II)、太陽電池セル (I II)、封止材層 (IV)、および、積層構造を有する太陽電池モジュール用裏面保護基 板 (V)がこの順に直接または間接に積層されてなり、  (23) Surface protection sheet for solar cell module (I), encapsulant layer (II), solar cell (I II), encapsulant layer (IV), and back surface protection for solar cell module having a laminated structure The board (V) is laminated directly or indirectly in this order,
前記太陽電池モジュール用表面保護シート (I)の縦弾性係数 E (kgfZmm2)と、前 記太陽電池モジュール用表面保護シート (I)の線膨張係数 CTE (10— 6Z°C)と、前 記太陽電池モジュール用表面保護シート (I)の厚み (mm)とから下式(1)に従って 導かれる、前記太陽電池モジュール用表面保護シート (I)のフィルム係数 F (10"6kgf /mm°C)と、 Wherein the modulus of longitudinal elasticity E of the solar cell module surface protective sheet (I) (kgfZmm 2), and the linear expansion coefficient of the previous SL solar cell module surface protective sheet (I) CTE (10- 6 Z ° C), before The film coefficient F (10 " 6 kgf / mm ° of the surface protection sheet for solar cell module (I) derived from the thickness (mm) of the surface protection sheet for solar cell module (I) according to the following formula (1) C) and
前記太陽電池モジュール用裏面保護基板 (V)の前記封止材層 (IV)と接する側と 逆の面側の層(C層)の縦弾性係数 E (kgfZmm2)と、前記 C層の線膨張係数 CTE Longitudinal elastic modulus E (kgfZmm 2 ) of the layer (C layer) on the side opposite to the side in contact with the sealing material layer (IV) of the back surface protection substrate (V) for the solar cell module, and the line of the C layer Expansion coefficient CTE
C  C
(10"V°C)と、前記 C層の厚み h (mm)とから下式(2)に従って導かれる、前記 C (10 "V ° C) and the thickness h (mm) of the C layer, which is derived according to the following formula (2).
C C C C
層のフィルム係数 F (10— 6kgfZmm°C)との比(F ZF )力 下式(3)の関係を満た Less than the ratio of the film coefficient of the layer F (10- 6 kgfZmm ° C) (F ZF) forces under formula the relationship (3)
C C I  C C I
す、太陽電池モジュールに関する。 式(1): F =E X CTE X h The present invention relates to a solar cell module. Formula (1): F = EX CTE X h
式(2): F =E X CTE X h  Formula (2): F = E X CTE X h
c c c c  c c c c
式(3) : 0. 7≤F /F≤l . 3  Formula (3): 0. 7≤F / F≤l. 3
C I  C I
[0032] さらに、本件第 3発明は、  [0032] Further, the third invention of the present invention is
(24) 少なくとも 3層を積層した積層体を含み、  (24) including a laminate in which at least three layers are laminated,
前記積層体が、少なくとも一層の熱可塑性榭脂および強化繊維を含有する複合材 料層と、榭脂発泡体力 なる層とを有する太陽電池モジュール用裏面保護基板に関 する。  The present invention relates to a back surface protection substrate for a solar cell module, wherein the laminate has a composite material layer containing at least one layer of thermoplastic resin and reinforcing fiber, and a layer having a resin foam strength.
発明の効果  The invention's effect
[0033] 本発明によれば、機械的特性に優れ、たわみが有効に抑制された太陽電池モジュ ール用裏面保護基板を提供することが出来る。基板のたわみが少ないと、モジユー ル設置の際の施工性が大幅に改善できる、またその際に起こり得るモジュールへの たわみに伴う応力付カ卩が低減できる、さらにモジュール設置後のたわみを抑止するこ とで、施工後に発生する積雪や強風時に力かるモジュールへの応力付加も低減でき る。この様な太陽電池モジュール用保護基板を用いて作製された太陽電池モジユー ル、および発電装置は、強度、軽量性、寿命、安定性等に優れ、屋外での使用に特 に好適であり、実用上高い価値を有する。  [0033] According to the present invention, it is possible to provide a back surface protection substrate for a solar cell module that is excellent in mechanical properties and in which deflection is effectively suppressed. Less board deflection can greatly improve workability during module installation, reduce stress caused by module deflection that can occur at the same time, and suppress deflection after module installation. As a result, it is possible to reduce the stress applied to the modules that are applied during snowfall and strong winds that occur after construction. A solar cell module and a power generation device manufactured using such a protective substrate for a solar cell module are excellent in strength, lightness, lifetime, stability, etc., and are particularly suitable for outdoor use, and are practical. High value.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]本発明の好ましい実施形態である太陽電池モジュール用裏面保護基板の一例 の構造を簡略に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing an example of the structure of a back surface protection substrate for a solar cell module that is a preferred embodiment of the present invention.
[図 2]本発明の好ましい実施形態である太陽電池モジュール用裏面保護フィルムの たわみ、および曲げ剛性の測定法の一例を示す図である。  FIG. 2 is a view showing an example of a method for measuring deflection and bending rigidity of a back surface protective film for a solar cell module which is a preferred embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 本発明の太陽電池モジュール用裏面保護基板は、縦弾性係数が 500kgfZmm2 以上 lOOOOkgfZmm2以下である層(A層)、縦弾性係数が lOkgfZmm2以上 500k gfZmm2未満である層(B層)、および縦弾性係数が 500kgfZmm2以上 lOOOOkgf Zmm2以下である層(Α'層)の少なくとも 3層を有する構造体を含む太陽電池モジュ ール用裏面保護基板であって、該構造体の面積あたりの重量が 0. 5kg/m2以上 10 kg/m2以下である、太陽電池モジュール用裏面保護基板である。本発明の太陽電 池モジュール用裏面保護基板においては、該構造体の絶縁破壊電圧が 10kV以上 であることが好ましい。また、本発明の太陽電池モジュール用裏面保護基板におい ては、該構造体の幅 1000mmあたりの曲げ剛性が 1. O X 106〜10 X 106kgf 'mm2 以上であることが好ましい。 [0035] back surface protective substrate for a solar cell module of the present invention, the modulus of longitudinal elasticity is 500KgfZmm 2 or more LOOOOkgfZmm 2 or less layers (A layers), modulus of longitudinal elasticity is less than LOkgfZmm 2 or more 500k gfZmm 2 layers (B layers ), And a back surface protection substrate for a solar cell module, including a structure having at least three layers (Α ′ layers) having a longitudinal elastic modulus of 500 kgfZmm 2 or more and lOOOOkgf Zmm 2 or less, the area of the structure weight per is 0. 5kg / m 2 or more 10 It is a back surface protection substrate for solar cell modules, which is kg / m 2 or less. In the back surface protection substrate for a solar cell module of the present invention, the dielectric breakdown voltage of the structure is preferably 10 kV or more. In the back surface protective substrate for a solar cell module of the present invention, it is preferable that the flexural rigidity per 1000 mm width of the structure is 1. OX 10 6 to 10 × 10 6 kgf′mm 2 or more.
[0036] 上記の特定の縦弾性係数を有する複数の層からなる層構造を有し、かつ、面積あ たり重量が上記の特定の範囲にある構造体力 なる太陽電池モジュール用裏面保 護基板は、機械的特性に優れ、特にたわみが有効に抑制されるので、特に大型の太 陽電池モジュール用裏面保護基板として好適である。また、軽量化も容易で、太陽 電池を正常に、安定的に動作させることも容易である。  [0036] A back surface protection substrate for a solar cell module having a layer structure composed of a plurality of layers having the above specific longitudinal elastic modulus and having a structural power whose weight per area is in the above specific range, Since it has excellent mechanical properties and deflection is particularly effectively suppressed, it is particularly suitable as a back surface protection substrate for large-sized solar cell modules. It is also easy to reduce the weight, and it is easy to operate the solar cell normally and stably.
[0037] 以下、本発明を実施するための最良の形態を順次説明する。  [0037] The best mode for carrying out the present invention will be sequentially described below.
(A層、 B層、および A'の 3層を有する構造体)  (Structure with 3 layers of A, B, and A ')
本発明の太陽電池モジュール用裏面保護基板を構成する構造体は、少なくとも縦 弾性係数が 500kgfZmm2以上 lOOOOkgfZmm2以下である A層、縦弾性係数が 1 OkgfZmm2以上 500kgfZmm2未満である B層および縦弾性係数が 500kgfZmm 2以上 1 OOOOkgf Zmm2以下である A,層の 3層を有する。 Structure constituting the back protective substrate for a solar cell module of the present invention, at least a longitudinal elastic coefficient is 500KgfZmm 2 or more LOOOOkgfZmm 2 below A layer, longitudinal elastic modulus is less than 1 OkgfZmm 2 or more 500kgfZmm 2 B layer and the vertical It has three layers of A and layer whose elastic modulus is 500 kgfZmm 2 or more and 1 OOOOkgf Zmm 2 or less.
[0038] これら 3層を有することで、本発明の太陽電池モジュール用裏面保護基板を構成す る構造体のそれ以外の要件である特定の面積あたりの重量を維持しながら、たわみ が有効に抑制された太陽電池モジュール用裏面保護基板を、比較的容易に製造す ることがでさる。  [0038] By having these three layers, deflection is effectively suppressed while maintaining the weight per specific area, which is another requirement of the structure constituting the back protective substrate for the solar cell module of the present invention. The manufactured back surface protection substrate for a solar cell module can be manufactured relatively easily.
[0039] A層、 B層、および A'層の積層の順番には特に制限は無いが、本発明の太陽電池 モジュール用裏面保護基板の上側および下側の両方に十分な曲げ剛性を発現する ためには、 A層、 B層、 A'層の順に積層されていることが好ましい。上記 A層、 B層、 および A'層がこの順に積層されていることは、反りの発生を防止する観点からも好ま しい。  [0039] The order of stacking of the A layer, the B layer, and the A 'layer is not particularly limited, but sufficient bending rigidity is exhibited on both the upper side and the lower side of the back surface protection substrate for the solar cell module of the present invention. Therefore, it is preferable that the A layer, the B layer, and the A ′ layer are laminated in this order. It is preferable from the viewpoint of preventing warpage that the A layer, the B layer, and the A ′ layer are laminated in this order.
[0040] A層と A'層は同一の厚み及び物性を有する層であっても、異なっていても良いが、 構造や製造プロセスを簡略にし、低コストィ匕を図る観点からは、 A層と A'層とが同一 のものであることが好ましい。また、太陽電池モジュール用裏面保護基板の反りを防 止する観点力もも、 A層と A'層とが同一、あるいは少なくとも略同一の縦弾性係数お よび厚みを有することが好ましい。例えば、 A層の厚み ZA,層の厚みは、 0. 5〜2. 0の範囲内にあることが好ましぐ A層の縦弾性係数 ZA'層の縦弾性係数は、 0. 5 〜2. 0の範囲内にあることが好ましい。この様な条件を満たすとき、太陽電池モジュ ール用裏面保護基板の積層成形時のそりを有効に防止することができる。更に A層 の線膨張係数 ZA'層の線膨張係数は、 0. 5〜2. 0の範囲内にあることが好ましい。 この様な条件を満たすとき、温度変化によるそりの発生を、有効に防止することができ る。これらの範囲を越える場合には、積層体の製造時において、反りを防止するため の対策が必要となる場合もある。 [0040] The A layer and the A 'layer may be the layers having the same thickness and physical properties, or may be different from each other. The A ′ layer is preferably the same. In addition, warping of the back surface protection substrate for solar cell modules is prevented. In terms of stopping power, it is preferable that the A layer and the A ′ layer have the same or at least substantially the same longitudinal elastic modulus and thickness. For example, it is preferable that the thickness of the A layer is ZA, and the thickness of the layer is in the range of 0.5 to 2.0. The longitudinal elastic modulus of the A layer is 0.5 to 2. It is preferably within the range of 0. When such a condition is satisfied, warping during the lamination molding of the back surface protection substrate for the solar cell module can be effectively prevented. Further, the linear expansion coefficient of the A layer is preferably in the range of 0.5 to 2.0. When such conditions are satisfied, warpage due to temperature changes can be effectively prevented. When these ranges are exceeded, it may be necessary to take measures to prevent warping during the production of the laminate.
[0041] 本発明の太陽電池モジュール用裏面保護基板を構成する構造体は、少なくとも A 層、 B層および A'層の 3層を有していれば良ぐそれ以外の層を有していても良いし 、有していなくても良い。構造体を簡略にし、低コストィ匕を図る観点からは、 A層、 B層 および A'層以外の層を有さず A層、 B層および A'層の 3層が直接接合されているこ とが好ましぐ構造体に多くの機能を付与する等の観点からは、 A層、 B層および A' 層以外の層を有していることが好ましい。 A層、 B層および A'層以外の層としては、 例えば、接着剤層、ガスバリア層、意匠層等を挙げることができるが、これらには限定 されない。 [0041] The structure constituting the back surface protection substrate for the solar cell module of the present invention has at least three layers of A layer, B layer, and A 'layer, and has other layers. You may or may not have. From the viewpoint of simplifying the structure and achieving low cost, there is no layer other than the A layer, B layer and A 'layer, and the three layers A layer, B layer and A' layer are directly bonded. From the standpoint of imparting many functions to the preferred structure, it is preferable to have layers other than the A layer, the B layer and the A ′ layer. Examples of the layer other than the A layer, the B layer, and the A ′ layer include, but are not limited to, an adhesive layer, a gas barrier layer, a design layer, and the like.
[0042] 本発明の太陽電池モジュール用裏面保護基板を構成する構造体にお!ヽては、上 記 A層、 B層、および A'層がこの順に積層され、 A層および A'層の縦弾性係数が、 B層の縦弾性係数の 10倍以上であることが好ま U、。 A層および A'層の縦弾性係数 力 B層の縦弾性係数の 10倍以上であると、本発明の太陽電池モジュール用裏面 保護基板を構成する構造体において、高い剛性と、軽量性 (特定の面積あたりの重 量)とを実現することも容易となるので好ましい。 A層および A'層の縦弾性係数は、よ り好ましくは B層の縦弾性係数の 15〜: LOO倍であり、特に好ましくは B層の縦弾性係 数の 20〜: L 00倍である。  [0042] In the structure constituting the back surface protection substrate for the solar cell module of the present invention, the A layer, the B layer, and the A 'layer are laminated in this order, and the A layer and the A' layer are stacked. It is preferable that the longitudinal elastic modulus is more than 10 times the longitudinal elastic modulus of the B layer. Longitudinal elastic modulus of layer A and layer A 'When the longitudinal elastic modulus of layer B is 10 times or more, the structure constituting the back protective substrate for solar cell module of the present invention has high rigidity and light weight (specific Weight per area) is also preferable. The longitudinal elastic modulus of the A layer and the A ′ layer is more preferably 15 to LOO times the longitudinal elastic modulus of the B layer, and particularly preferably 20 to L 00 times the longitudinal elastic coefficient of the B layer. .
[0043] (曲げ剛性)  [0043] (Bending rigidity)
本発明の太陽電池モジュール用裏面保護基板を構成する構造体は、例えば厚み 3mmのとき、幅 1000mmあたり 0. 5 X 106〜10 X 107kgf'mm2の曲げ剛性を有す ることが好ましい。曲げ剛性が上記範囲にあると、太陽電池モジュール用裏面保護基 板の反り、たわみを抑制するにあたって効果的であり、好ましい。 The structure constituting the back surface protection substrate for the solar cell module of the present invention has a bending rigidity of 0.5 X 10 6 to 10 X 10 7 kgf'mm 2 per 1000 mm width when the thickness is 3 mm, for example. It is preferable. When the bending rigidity is in the above range, it is effective in suppressing warpage and deflection of the back surface protective substrate for solar cell module, which is preferable.
[0044] 当該構造体の前記厚み 3mmのときの幅 1000mmあたりの曲げ剛性は、好ましくは 1. 0 106〜10 1061¾ 1111112、さらに好ましくは1. 5 X 106〜10 X 106kgf 'mm2で ある。 [0044] The bending rigidity per width of 1000 mm when the thickness of the structure is 3 mm is preferably 1.010 6 to 10 10 6 1¾ 111111 2 , more preferably 1.5 X 10 6 to 10 X 10 6. kgf 'mm 2
一方、当該構造体の厚みが 8mmのときは、幅 1000mmあたりの曲げ剛性は、通常 2 . O X 106〜10 X 108kgf'mm2、好ましくは 3. O X 106〜10 X 107kgf 'mm2、さらに好 ましくは 5. O X 106〜10 X 107kgf 'mm2である。 On the other hand, when the thickness of the structure is 8 mm, the bending stiffness per 1000 mm width is usually 2. OX 10 6 to 10 X 10 8 kgf'mm 2 , preferably 3. OX 10 6 to 10 X 10 7 kgf 'mm 2 , more preferably 5. OX 10 6 to 10 X 10 7 kgf' mm 2 .
[0045] 当該構造体の曲げ剛性は、 A層と A'層とを同一の層とした場合、その構造体の形 状と積層厚み構成力 次式により予測することができる。 [0045] The bending stiffness of the structure can be predicted by the following equation when the A layer and the A 'layer are the same layer, and the shape of the structure and the lamination thickness constituting force.
[0046] 曲げ剛性 EI = b (Ea (h3 - c3) + Eb · c3) / 12 (kgf · mm2) [0046] Flexural rigidity EI = b (Ea (h 3 -c 3 ) + Eb · c 3 ) / 12 (kgf · mm 2 )
Ea: A層の縦弾性係数 (kgf Zmm2) Ea: Longitudinal elastic modulus of layer A (kgf Zmm 2 )
Eb: B層の縦弾性係数 (kgf Zmm2) Eb: Longitudinal elastic modulus of layer B (kgf Zmm 2 )
h:構造体全体の厚み (mm)  h: Total structure thickness (mm)
c: B層のみの厚み(mm)  c: B layer thickness only (mm)
b :構造体の幅(mm)  b: Structure width (mm)
[0047] 但し、実際の構造体の曲げ剛性は A層および A'層と B層との接着強度の影響を受 け、接着強度が低下すると、上記予測値より低下する。したがって、 A層および A'層 と B層との接着性を向上させることは、実用上高い価値を有する。  [0047] However, the bending stiffness of the actual structure is affected by the adhesive strength between the A layer, the A 'layer, and the B layer. Therefore, improving the adhesion between the A layer and the A ′ layer and the B layer has high practical value.
[0048] 曲げ剛性の実測値は、基板の片持ち支持におけるたわみ量の測定力 以下のよう に算出できる。 [0048] The actual measurement value of the bending stiffness can be calculated as follows: Measurement force of deflection amount in cantilever support of substrate.
曲げ剛性 EI = PL4/8 S (kgf -mm2) Flexural rigidity EI = PL 4/8 S ( kgf -mm 2)
P :等分布荷重 (kgf Zmm)  P: Uniform load (kgf Zmm)
L:はりの長さ(mm)  L: Length of beam (mm)
δ:最大たわみ直 (mm)  δ: Maximum deflection (mm)
[0049] (面積あたり重量) [0049] (weight per area)
本発明の太陽電池モジュール用裏面保護基板を構成する構造体は、 0. 5〜: LOkg Zm2の面積あたり重量を有する。面積あたり重量が上記範囲にあると、太陽電池モ ジュール用裏面保護基板の、たわみの抑制において有効であるので、好ましい。ま た、面積あたり重量が 10kg/m2以下であるので、太陽電池モジュール用裏面保護 基板の軽量化、さらには、太陽電池モジュールの軽量ィ匕に貢献できるので、実用上 高い価値を有する。 The structure constituting the back surface protection substrate for a solar cell module of the present invention has a weight per area of 0.5 to: LOkg Zm 2 . If the weight per area is in the above range, This is preferable because it is effective in suppressing the deflection of the back surface protection substrate for joule. In addition, since the weight per area is 10 kg / m 2 or less, it can contribute to weight reduction of the back surface protection substrate for the solar cell module and further to the light weight of the solar cell module, and thus has high practical value.
[0050] 当該構造体の面積あたり重量は、好ましくは 0. 5〜7kg/m2、さらに好ましくは 0. 5 〜5kgZ m C、める。 [0050] the weight per unit area of the structure is preferably 0. 5~7kg / m 2, more preferably 0. 5 ~5kgZ m C, Mel.
[0051] 当該構造体の面積あたり重量は、構造体の重量を測定することにより算出できる。  [0051] The weight per area of the structure can be calculated by measuring the weight of the structure.
[0052] (絶縁破壊電圧)  [0052] (Dielectric breakdown voltage)
本発明の太陽電池モジュール用裏面保護基板を構成する構造体は、 10kV以上 の絶縁破壊電圧を有することが好ましい。絶縁破壊電圧が上記範囲にあると、このよ うな裏面保護基板を用いた太陽電池モジュールにお 、て、太陽電池セルおよび Zま たはその配線等と外部との電気的絶縁を保つことが容易になり、太陽電池モジユー ルの正常、かつ、安定的な動作を確保できるので、好ましい。  The structure constituting the back protective substrate for a solar cell module of the present invention preferably has a dielectric breakdown voltage of 10 kV or more. When the dielectric breakdown voltage is in the above range, it is easy to maintain electrical insulation between the solar battery cell and Z or its wiring, etc., and the outside in a solar battery module using such a back surface protection substrate. This is preferable because normal and stable operation of the solar cell module can be secured.
[0053] 当該構造体の絶縁破壊電圧は、好ましくは 15〜50kV、さらに好ましくは 20〜40k Vである。  [0053] The dielectric breakdown voltage of the structure is preferably 15 to 50 kV, more preferably 20 to 40 kV.
[0054] 当該構造体の絶縁破壊電圧は、公知の絶縁破壊電圧測定装置により測定すること ができる。  [0054] The breakdown voltage of the structure can be measured by a known breakdown voltage measuring device.
[0055] (プリプレダ (好ま ヽ A層および A'層) )  [0055] (Prepreda (Preferred ヽ A layer and A 'layer))
本発明の太陽電池モジュール用裏面保護基板においては、上記 A層および A'層 の少なくとも一方が、熱可塑性榭脂および強化繊維を含有し、かつ、前記強化繊維 の容積含有率が 30%から 85%である複合材料層であることが好ま 、。この様な複 合材料層を、以下本明細書では、プリプレダとも呼ぶ。プリプレダは、その強化繊維 がー方向に連続な長繊維力も成るものであることが好まし 、。  In the back surface protective substrate for a solar cell module of the present invention, at least one of the A layer and the A ′ layer contains a thermoplastic resin and a reinforcing fiber, and the volume content of the reinforcing fiber is 30% to 85%. Preferred to be a composite material layer, which is%. Hereinafter, such a composite material layer is also referred to as a pre-preder in this specification. The pre-preda is preferred that the reinforcing fiber has continuous long fiber strength in the direction.
[0056] プリプレダ以外では、縦弾性係数に優れた榭脂フィルム、特に延伸した榭脂フィル ムを A層および Zまたは A'層に好ましく使用することができる。ポリイミドフィルムを延 伸して得られたフィルムは、高い縦弾性係数を有するので、特に好ましい。  [0056] Other than the prepreg, a resin film having an excellent longitudinal elastic modulus, particularly a stretched resin film, can be preferably used for the A layer and the Z or A 'layer. A film obtained by stretching a polyimide film is particularly preferable because it has a high longitudinal elastic modulus.
[0057] (熱可塑性榭脂)  [0057] (Thermoplastic resin)
本発明において好ましく使用される、熱可塑性榭脂および強化繊維を含有するプリ プレダに用いられる熱可塑性榭脂としては、例えばポリプロピレン、ポリスチレン、ポリ エチレン、 AS榭脂、 ABS榭脂、 ASA榭脂(ポリアクリロニトリル ·ポリスチレン ·ポリアク リル酸エステル)、ポリメチルメタタリレート、ナイロン、ポリアセタール、ポリカーボネー ト、ポリエチレンテレフタレート、ポリフエ-レンォキシド、フッ素榭脂、ポリフエ-レンス ルフイド、ポリスルフォン、ポリエーテルサルフォン、ポリエーテルケトン、ポリエーテル エーテルケトン、ポリイミド、ポリアリレート等を挙げることが出来る力 これらに限定は されない。中でも、ポリプロピレン等のプロピレン系(共)重合体は、耐熱性、リサイク ル性に優れ、比較的低コストで入手することができるので好ましい。これら熱可塑性 榭脂は、 1種類を単独で使用しても良いし、 2種類以上を組み合わせて使用してもよ い。 Pre-containing thermoplastic rosin and reinforcing fibers preferably used in the present invention Examples of the thermoplastic resin used in the preda include polypropylene, polystyrene, polyethylene, AS resin, ABS resin, ASA resin (polyacrylonitrile / polystyrene / polyacrylic acid ester), polymethylmethacrylate, nylon, Forces that can include polyacetal, polycarbonate, polyethylene terephthalate, polyphenylene oxide, fluorine resin, polyphenylene sulfide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyimide, polyarylate, etc. These are not limited. Among these, propylene-based (co) polymers such as polypropylene are preferable because they are excellent in heat resistance and recyclability and can be obtained at a relatively low cost. One type of these thermoplastic resins may be used alone, or two or more types may be used in combination.
[0058] 上記熱可塑性榭脂として好ましく用いられるプロピレン系(共)重合体は、その(共) 重合成分としてプロピレンを含有していれば良ぐそれ以外に特に制限は無いが、耐 熱性、機械的強度等の観点から、結晶性ポリプロピレン系榭脂であることが好ましい 。ここで「結晶性」とは、結晶化度が 30%以上であることをいう。結晶化度は、定法の 広角 X線回折により求めることができる。  [0058] The propylene-based (co) polymer preferably used as the thermoplastic resin is not particularly limited as long as it contains propylene as the (co) polymerization component. From the viewpoint of mechanical strength and the like, a crystalline polypropylene-based resin is preferable. Here, “crystallinity” means that the crystallinity is 30% or more. The degree of crystallinity can be obtained by a conventional wide-angle X-ray diffraction.
[0059] 結晶性ポリプロピレン系榭脂は、上記の「結晶性」の条件を満たし、かつ、プロピレ ン力 導かれる構成単位を有するものであれば良ぐそれ以外に特に制限はない。 例えば、プロピレン単独重合体またはプロピレンと少なくとも 1種のプロピレン以外の 炭素原子数が 2〜20の (Xーォレフインとの共重合体を挙げることができる。ここで、プ ロピレン以外の炭素原子数が 2〜20の α—ォレフィンとしては、エチレン、 1ーブテン 、 1—ペンテン、 1—へキセン、 4—メチル 1—ペンテン、 1—オタテン、 1—デセン、 1ードデセン、 1ーテトラデセン、 1一へキサデセン、 1ーォクタデセン、 1 エイコセン などが挙げられるが、エチレンまたは炭素原子数力 〜 10の α—ォレフィンが好まし い。これらのひ一ォレフインは、 1種類単独で用いても良ぐ 2種類以上を組み合わせ て用いても良い。これらの α—ォレフインは、プロピレンとランダム共重合体を形成し てもよく、ブロック共重合体を形成してもよ ヽ。  [0059] The crystalline polypropylene-based resin is not particularly limited as long as it satisfies the above-mentioned "crystallinity" condition and has a structural unit derived from propylene force. For example, a propylene homopolymer or a copolymer of 2 to 20 carbon atoms other than propylene and at least one propylene (X-olefin can be mentioned. Here, the number of carbon atoms other than propylene is 2 Α-olefins of ˜20 include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1 -Otadecene, 1 eicosene, etc., but ethylene or α-olefin with carbon number power of ~ 10 is preferred, and these olefins may be used alone or in combination of two or more. These α-olefins may form a random copolymer with propylene or a block copolymer.
[0060] これらの α—ォレフインから導かれる構成単位は、ポリプロピレン中に通常 20モル %以下、好ましくは 15モル%以下の割合で含有されていても良いし、されていなくと も良い。例えば、ポリプロピレンホモポリマー、エチレン含量が 20〜70重量0 /0のプロ ピレン Zエチレンブロック共重合体、エチレン含量が 0. 5〜12重量0 /0のプロピレン Z エチレンランダム共重合体、エチレン含量が 0. 5〜12重量0 /0でブテン 1のような α ーォレフイン含量が 0. 5〜20重量0 /0のプロピレン Ζエチレン Ζ α—ォレフイン三元 共重合体等を好ましく用いることができる。 [0060] These structural units derived from α-olefin may be contained in polypropylene in a proportion of usually 20 mol% or less, preferably 15 mol% or less. Also good. For example, polypropylene homopolymer, pro propylene Z ethylene block copolymer an ethylene content of 20 to 70 weight 0/0, propylene Z ethylene random copolymer ethylene content from 0.5 to 12 weight 0/0, the ethylene content 0.5 to 12 weight 0/0 α Orefuin content such as butene 1 it can be preferably used propylene Zeta ethylene Zeta alpha-Orefuin terpolymers of 0.5 to 20 weight 0/0.
[0061] 結晶性ポリプロピレン系榭脂は、 ASTM D 1238に準拠して 230°C、荷重 2. 16 kgfで測定されるメルトフローレート(MFR)が 0. 001〜500gZlO分、好ましくは 0. 01〜50g/10分の範囲にあることが望ましい。  [0061] The crystalline polypropylene-based resin has a melt flow rate (MFR) measured at 230 ° C and a load of 2.16 kgf in accordance with ASTM D 1238 of 0.001 to 500 gZlO, preferably 0.01. It is desirable to be in the range of ~ 50g / 10min.
[0062] 結晶性ポリプロピレン系榭脂の示差走査熱量計で観測される融点は通常 110°C以 上であり、好ましくは120〜165で、より好ましくは 110〜150°Cである。  [0062] The melting point of the crystalline polypropylene-based resin observed with a differential scanning calorimeter is usually 110 ° C or higher, preferably 120 to 165, more preferably 110 to 150 ° C.
[0063] 結晶性ポリプロピレン系榭脂はァイソタクチック構造、シンジオタクチック構造のどち らも用いることができるが、ァイソタクチック構造の方が耐熱性などの点で好ましい。ま た必要に応じて複数の結晶性ポリプロピレン系榭脂を併用することができ、例えば融 点や剛性の異なる 2種類以上の成分を用いることもできる。  [0063] The crystalline polypropylene-based resin can use either a isotactic structure or a syndiotactic structure, but the isotactic structure is preferred from the viewpoint of heat resistance. Further, if necessary, a plurality of crystalline polypropylene-based resins can be used in combination. For example, two or more kinds of components having different melting points and rigidity can be used.
[0064] また、結晶性ポリプロピレン系榭脂としては、耐熱性に優れるホモポリプロピレン (通 常プロピレン以外の共重合成分が 3mol%以下である公知のものが好ましい)、耐熱 性と柔軟性のバランスに優れるブロックポリプロピレン(通常 3〜30重量%のノルマル デカン溶出ゴム成分を有する公知のものが好ましい)、さらには柔軟性と透明性のバ ランスに優れるランダムポリプロピレン (通常示差走査熱量計 DSCにより測定される 融解ピークが 100°C以上、好ましくは 110°C〜150°Cの範囲にある公知のものが好 ましい)を、所望の物性を得られるように選択して、または併用して用いることが可能 であり、また、好ましい。  [0064] In addition, as the crystalline polypropylene-based resin, homopolypropylene having excellent heat resistance (usually known is a copolymer having a copolymer component other than propylene of 3 mol% or less is preferable), which has a good balance between heat resistance and flexibility. Excellent block polypropylene (usually known to have 3-30% by weight of normal decane-eluting rubber component), and random polypropylene with excellent balance of flexibility and transparency (usually measured by DSC) A known peak having a melting peak of 100 ° C. or higher, preferably in the range of 110 ° C. to 150 ° C.) may be selected or used in combination so as to obtain desired physical properties. It is possible and preferred.
[0065] このような結晶性ポリプロピレン系榭脂は、例えばマグネシウム、チタン、ハロゲンお よび電子供与体を必須成分として含有する固体触媒成分と有機アルミニウム化合物 および電子供与体力 なるチーグラー触媒系、またはメタ口センィ匕合物を触媒の一 成分として用いメタ口セン触媒系でプロピレンを重合あるいはプロピレンと他の α—ォ レフインとを共重合することにより、製造することができる。  [0065] Such a crystalline polypropylene-based resin is, for example, a solid catalyst component containing magnesium, titanium, halogen, and an electron donor as essential components, an organoaluminum compound, and a Ziegler catalyst system having an electron donor power, or a meta port. The polymer can be produced by polymerizing propylene or copolymerizing propylene and other α-olefins in a meta-cene catalyst system using a synthetic compound as one component of the catalyst.
[0066] (強化繊維) 上記プリプレダに用いられる強化繊維としては、例えばガラス繊維、炭素繊維、ホウ 素繊維、金属繊維、(炭化ケィ素繊維等の)セラミック繊維、ポリエステル繊維、塩ィ匕 ビュル.アクリロニトリル共重合体繊維、ポリビュルアルコール繊維、ァラミド繊維等を 挙げることができるが、これらに制限されない。この中でも、ガラス繊維および炭素繊 維は、これらを用いて作製したプリプレダが優れた強度および寸法安定性を有して!/ヽ るので、特に好ましい。この様な強化繊維は、 1種類を単独で使用しても良いし、 2種 以上を組み合わせて使用しても良い。ガラス繊維は通常各種の表面処理を行い、榭 脂との密着性を向上させることが行われる。表面処理は、後述のカップリング剤と集 束剤とを組み合わせて行うことが好まし 、。 [0066] (Reinforcing fiber) Examples of the reinforcing fiber used in the above pre-predder include glass fiber, carbon fiber, boron fiber, metal fiber, ceramic fiber (such as carbon carbide fiber), polyester fiber, salt bully acrylonitrile copolymer fiber, poly Examples include, but are not limited to, bull alcohol fiber and aramid fiber. Among these, glass fibers and carbon fibers are particularly preferable because a pre-preda produced using them has excellent strength and dimensional stability. Such reinforcing fibers may be used alone or in combination of two or more. Glass fibers are usually subjected to various surface treatments to improve adhesion to resins. The surface treatment is preferably performed by combining a coupling agent and a bundling agent described later.
[0067] (ガラス繊維) [0067] (Glass fiber)
本発明にお 、て好ましく用いられるガラス繊維には特に制限はなく、ガラス繊維強 化材料用に通常使用されるガラス繊維を適宜使用することができる。好ましいガラス 繊維の例として、 Eガラス、 Dガラス、 Sガラス、 NEガラス等を挙げることができるが、こ れらには限定されない。これらのガラス繊維は、 目的とする成形物の用途や性能によ り適宜選択され、 1種類を単独で使用しても良いし、 2種類以上を組み合わせて使用 しても良い。より好適な繊維としては、重量%で、 SiO : 50〜60%、 B O : 15〜30%  In the present invention, the glass fiber that is preferably used is not particularly limited, and a glass fiber that is usually used for a glass fiber reinforcing material can be appropriately used. Examples of preferred glass fibers include E glass, D glass, S glass, NE glass, and the like, but are not limited thereto. These glass fibers are appropriately selected depending on the intended use and performance of the molded product, and one kind may be used alone, or two or more kinds may be used in combination. More preferred fibers are, by weight, SiO: 50-60%, B 2 O: 15-30%
2 2 3  2 2 3
、 Al O : 8〜20%を含有するガラス繊維を挙げることができる。該ガラス繊維は、さら , Al 2 O: Glass fibers containing 8 to 20% can be mentioned. The glass fiber is
2 3 twenty three
に TiO、 Li 0、 Na 0、 K 0、 CaOなどの他の成分を含有していてもよぐそれぞれ 0 May contain other components such as TiO, Li 0, Na 0, K 0, CaO.
2 2 2 2 2 2 2 2
〜 10%程度 (CaOの場合は、 0〜 15%程度)含有させることが可能である。  About 10% (in the case of CaO, about 0-15%) can be contained.
[0068] (炭素繊維) [0068] (Carbon fiber)
本発明において好ましく用いられる炭素繊維は、炭素繊維及び黒鉛繊維の両方を 含む概念である。この炭素繊維は、通常「プレカーサ一」と称されるポリアクリロ-トリ ル、ピッチ等の繊維状物を炭化するか、或はグラフアイト温度に加熱することにより得 られ、なかでも引張強度 4500MPa以上、伸度 1. 7%以上の高強度'高伸度の炭素 繊維が好適に用いられる。また、炭素繊維の表面を電解酸化、オゾン酸化することに より、表面に水酸基、カルボン酸基などの官能基を導入したものも好適に用いること ができる。  The carbon fiber preferably used in the present invention is a concept including both carbon fiber and graphite fiber. This carbon fiber can be obtained by carbonizing a fibrous material such as polyacrylo-tolyl, pitch, etc., which is usually called “precursor”, or by heating to a graphite temperature. Elongation 1. Carbon fiber with high strength and high elongation of 7% or more is preferably used. In addition, a carbon fiber whose surface is introduced with a functional group such as a hydroxyl group or a carboxylic acid group by electrolytic oxidation or ozone oxidation can be suitably used.
[0069] これら炭素繊維は商業的にも入手可能であり、その銘柄に特に限定は無いが、例 えば東レ (株)製のトレ力 (登録商標)を好ましく使用することができる。 [0069] These carbon fibers are also commercially available, and there are no particular limitations on the brand, but examples For example, Toray Power (registered trademark) manufactured by Toray Industries, Inc. can be preferably used.
[0070] (カップリング剤)  [0070] (Coupling agent)
本発明の太陽電池モジュール用裏面保護基板においては、前記強化繊維力カツ プリング剤で処理されて ヽることが好ま ヽ。カップリング剤の使用形態の一例として 、まず、前記強化繊維がガラス繊維である場合の好ましいカップリング剤について説 明する。  In the back surface protection substrate for a solar cell module of the present invention, it is preferable that the back surface protection substrate is treated with the reinforcing fiber strength coupling agent. As an example of the usage form of the coupling agent, first, a preferable coupling agent when the reinforcing fiber is glass fiber will be described.
[0071] ガラス繊維の場合のカップリング剤は、組み合わせる榭脂に応じて最適なものを選 ぶことが望ましい。以下、その具体例を例挙する。プリプレダにおいて組み合わせて 使用する熱可塑性榭脂がナイロン榭脂であれば、 y—ァミノプロピル—トリメトキシシ ラン、 N— |8— (アミノエチル) - γ—ァミノプロピル一トリメトキシシラン等を使用する ことが好ましい。ポリカーボネート榭脂であれば、 γ—ァミノプロピル一トリメトキシシラ ン、 Ν— |8— (アミノエチル) - γ—ァミノプロピル一トリメトキシシラン等を使用するこ とが好ましい。ポリエチレンテレフタレートまたは、ポリブチレンテレフタレート、であれ ば、 j8 — (3, 4—エポキシシクロへキシル)ェチル一トリメトキシシラン、 γ—グリシドキ シ一プロピルトリメトキシシラン、 γ—ァミノプロピル一トリメトキシシラン等を使用するこ とが好ましい。ポリエチレンまたはポリプロピレンであれば、ビニルトリメトキシシラン、 ビニル一トリス一(2—メトキシエトキシ)シラン、 γ—メタクリロキシ一プロピルトリメトキ シシラン等を使用することが好ましい。ポリフエ-レンォキシド、ポリフエ二レンスルフィ ド、ポリスルフォン、ポリエーテルサルフォン、ポリエーテルケトン、ポリエーテルエーテ ルケトン、ポリイミド、ポリアリレート、フッ素榭脂であれば、上述したカップリング剤も当 然使用出来るが、その外に、 Ν— ( β—アミノエチル) - y—ァミノプロピルメチルジメ トキシシラン、 γ—クロ口プロピルメチルジメトキシシラン、 γ—メルカプトプロピルトリメ トキシシラン、 ρ—ァミノフエ-ルトリエトキシシラン等を使用することも好ましい。  [0071] As the coupling agent in the case of glass fiber, it is desirable to select an optimum coupling agent according to the resin to be combined. Specific examples will be given below. If the thermoplastic resin used in combination in the pre-preda is nylon resin, it is preferable to use y-aminopropyl-trimethoxysilane, N- | 8- (aminoethyl) -γ-aminopropyl monotrimethoxysilane, or the like. In the case of polycarbonate resin, it is preferable to use γ-aminopropyl monotrimethoxysilane, Ν—8- (aminoethyl) -γ-aminopropyl monotrimethoxysilane, and the like. If polyethylene terephthalate or polybutylene terephthalate is used, j8 — (3,4-epoxycyclohexyl) ethyl monotrimethoxysilane, γ-glycidoxypropyl methoxytrimethoxysilane, γ-aminopropyl monotrimethoxysilane, etc. are used. It is preferable to do this. In the case of polyethylene or polypropylene, it is preferable to use vinyltrimethoxysilane, vinyltris-1- (2-methoxyethoxy) silane, γ-methacryloxymonopropyltrimethoxysilane, or the like. The coupling agents described above can naturally be used as long as they are polyphenylene oxide, polyphenylene sulfide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyimide, polyarylate, and fluorocarbon resin. In addition, Ν- (β-aminoethyl) -y-aminopropylmethyldimethoxysilane, γ-clopropylpropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, ρ-aminophenoltriethoxysilane, etc. should be used. Is also preferable.
[0072] ガラス繊維以外を補強繊維として用いる時は、ァミン硬化型のエポキシ榭脂をカツ プリング剤として処理する場合が多ぐその具体例としてはビスフエノールー Α—ェピ クロルヒドリン榭脂、エポキシノボラック榭脂、脂環式エポキシ榭脂、脂肪族エポキシ 榭脂、グリシジルエステル型榭脂等を挙げることができる。但し、熱可塑性榭脂は一 般的に溶融温度が高ぐ通常のカップリング剤は熱分解するので、全くカップリング剤 を使用しな 、場合もある。カップリング剤を繊維表面に施す方法の好まし ヽ例にっき[0072] When a fiber other than glass fiber is used as a reinforcing fiber, ammine-curable epoxy resin is often used as a coupling agent. Specific examples thereof include bisphenol-epoxychlorohydrin resin and epoxy novolac resin. And alicyclic epoxy resin, aliphatic epoxy resin, glycidyl ester type resin, and the like. However, since thermoplastic resin generally has a high melting temperature, ordinary coupling agents are thermally decomposed. In some cases, it is not used. Preferable method of applying coupling agent to fiber surface
、以下に説明する。一つの方法としては、繊維を溶融してモノフィラメントを引き出す 際に、集束剤とカップリング剤とに界面活性剤を添加して水溶液としたものをモノフィ ラメントに噴霧した後、 100°C程度の温度で乾燥して処理する。他の方法として、集 束剤を除去した繊維に、集束剤及びカップリング剤を 0. 1〜3重量%溶解した液を、 浸漬、噴霧塗布等の手段により完全に含浸させる。このカップリング剤溶液を含んだ 繊維を 60〜120°Cで乾燥し、カップリング剤を繊維表面に反応させる。乾燥時間は 溶媒が揮散してしまう時間で充分であり、 15〜20分間位である。カップリング剤を溶 解する溶媒は、使用する表面処理剤に応じて、 pH2. 0〜12. 0位に調整した水を用 いる場合と、エタノール、トルエンアセトン、キシレン等の有機溶剤を単独で、或は混 合して使用する場合とがある。 This will be described below. As one method, when the fiber is melted and the monofilament is pulled out, a solution obtained by adding a surfactant to the sizing agent and coupling agent to form an aqueous solution is sprayed on the monofilament, and then the temperature is about 100 ° C. Dry and process. As another method, the fiber from which the bundling agent has been removed is completely impregnated with a solution obtained by dissolving 0.1 to 3% by weight of a sizing agent and a coupling agent by means such as dipping or spray coating. The fiber containing the coupling agent solution is dried at 60 to 120 ° C. to allow the coupling agent to react with the fiber surface. The drying time is sufficient for the solvent to evaporate, and is about 15 to 20 minutes. Solvents that dissolve the coupling agent include water adjusted to pH 2.0 to 12.0 depending on the surface treatment agent used, and organic solvents such as ethanol, toluene acetone, and xylene alone. Sometimes used in combination.
[0073] (強化繊維の整列)  [0073] (Alignment of reinforcing fibers)
本発明の太陽電池モジュール用裏面保護基板においては、前記強化繊維の少な くとも一部が複数本集束されて一方向に配列されて ヽることが好ま Uヽ。強化繊維が 一方向に配列されていることにより、繊維方向の弾性率は強化繊維の弾性率を最大 限に効率よく弓 Iき出す結果となる。  In the back surface protection substrate for a solar cell module of the present invention, it is preferable that at least a part of the reinforcing fibers are converged and arranged in one direction. By arranging the reinforcing fibers in one direction, the elastic modulus in the fiber direction results in the bow I being efficiently cut out to the maximum elastic modulus.
[0074] 強化繊維を複数本集束して一方向に配列する方法につ!ヽては、例えば、特公平 0 4— 042168号公報、特開平 7— 178859号公報等に記載されている力 これらに限 定されるものではない。また、本発明においては、次に示す方法で、強化繊維を集束 、配列することが特に好ましい。  [0074] Regarding the method of converging a plurality of reinforcing fibers and arranging them in one direction, for example, the forces described in Japanese Patent Publication No. 04-042168, Japanese Patent Application Laid-Open No. 7-178859, etc. It is not limited to. In the present invention, it is particularly preferable that the reinforcing fibers are converged and arranged by the following method.
[0075] (プリプレダの製造方法)  [0075] (Preparer manufacturing method)
熱可塑性榭脂を一方向に引き揃えた補強繊維に含浸させてプリプレダとすることは 、本発明においてプリプレダを製造する方法として、特に好ましいものの 1つである。 最も一般的な方法は以下の通りである。一つは、溶剤に可溶な榭脂であれば、その 榭脂を溶液ィ匕して補強繊維に含浸させ、その後脱泡しながら溶媒を除去し、プリプレ グとする方法である。  It is one of the particularly preferred methods for producing a pre-preda in the present invention that a thermoplastic fiber is impregnated into a reinforcing fiber aligned in one direction to form a pre-preda. The most common method is as follows. One is a method in which if the resin is soluble in a solvent, the resin is solution-impregnated and impregnated into a reinforcing fiber, and then the solvent is removed while defoaming to obtain a prepreg.
[0076] もう一つは、榭脂を加熱溶融して補強繊維に含浸し、脱泡し、冷却してプリプレダと する方法である。プリプレダの製造法としては、例えば特公平 04— 042168号公報 に開示されている方法が挙げられる。この方法により、ガラス繊維の場合は例えば太 さ 13 μ mのモノフィラメントの表面を γ—メタクリロキシ一プロピルトリメトキシシランで 処理し、それを 1800本集束して撚りのないヤーンとし、そのヤーンを 80本均一な張 力で引張ながら一方向に整列させて、榭脂をヤーンに絡ませて、その榭脂を熱ロー ルでしごきながら、ヤーンに含浸させてプリプレダを製造することが出来る。この様に して製造したプリプレダは、繊維と熱可塑性榭脂の密着性に優れ、繊維含有率も 30 〜90容量%と要求に応じて変えることが出来、厚みも 0. 1〜1. Ommで製造すること が出来る。 [0076] The other is a method in which rosin is heated and melted and impregnated into a reinforcing fiber, defoamed and cooled to prepare a pre-preda. As a method for producing a pre-preda, for example, Japanese Patent Publication No. 04-042168 Can be mentioned. By this method, in the case of glass fiber, for example, the surface of a monofilament having a thickness of 13 μm is treated with γ-methacryloxymonopropyltrimethoxysilane, and 1800 pieces thereof are converged to form an untwisted yarn. It is possible to produce a pre-preda by aligning in one direction while pulling with uniform tension, entanglement of the resin with the yarn, and impregnating the resin with a heat roll while impregnating the yarn. The prepredder produced in this way has excellent adhesion between the fiber and the thermoplastic resin, the fiber content can be varied from 30 to 90% by volume, and the thickness can be varied from 0.1 to 1. Omm. Can be manufactured.
[0077] (含有量比) [0077] (content ratio)
本発明にお 、て好ましく用いられるプリプレダの強化繊維含有率は、 30容量%以 上 85容量以下であることが好ま 、。強化繊維含有率が 30容量%以上であれば十 分な強度を確保することができ、また 85容量%以下であれば強化繊維に対して十分 な量の樹脂が存在し、強化繊維と榭脂の密着性が低下による強度の低下を抑制す ることができる。強化繊維含有率は、より好ましくは、 35〜80容量%であり、さらに好 ましくは、 40〜75容量%である。  In the present invention, the reinforcing fiber content of the pre-preda preferably used in the present invention is preferably 30% by volume to 85% by volume. If the reinforcing fiber content is 30% by volume or more, sufficient strength can be secured, and if the reinforcing fiber content is 85% by volume or less, a sufficient amount of resin exists for the reinforcing fiber, and the reinforcing fiber and the resin are filled. It is possible to suppress a decrease in strength due to a decrease in adhesion. The reinforcing fiber content is more preferably 35 to 80% by volume, and even more preferably 40 to 75% by volume.
[0078] 本発明にお 、て好ましく用いられるプリプレダは、熱可塑性榭脂および強化繊維を 含有するが、それ以外の成分を含んでいても良い。具体的な例としては、既に述べ たカップリング剤および集束剤に加えて、熱可塑性榭脂以外の各種榭脂および Zま たはゴム、可塑剤、充填剤、顔料、染料、紫外線吸収剤、酸化防止剤、耐熱安定剤、 帯電防止剤、抗菌剤、防黴剤、難燃剤、発泡剤、架橋剤、架橋助剤、及び分散剤等 力 選ばれる 1種類または 2種類以上の添加剤を適宜含有することができる。  [0078] The prepredder preferably used in the present invention contains thermoplastic rosin and reinforcing fibers, but may contain other components. Specific examples include, in addition to the coupling agents and sizing agents described above, various types of resins other than thermoplastic resins and Z or rubber, plasticizers, fillers, pigments, dyes, UV absorbers, Antioxidants, heat stabilizers, antistatic agents, antibacterial agents, antifungal agents, flame retardants, foaming agents, cross-linking agents, cross-linking aids, dispersants, etc. Can be contained.
[0079] (榭脂発泡体 (好ましい B層))  [0079] (Resin foam (preferred layer B))
本発明の太陽電池モジュール用裏面保護基板においては、上記 B層が、榭脂発 泡体力もなる層であることが好ましい。上記 B層が、榭脂発泡体力もなる層であると、 太陽電池モジュール用裏面保護基板の軽量ィヒおよびその結果として太陽電池モジ ユールの軽量ィ匕が可能であり、たわみの防止にも有効であるという利点がある。  In the back surface protective substrate for a solar cell module of the present invention, the B layer is preferably a layer that also has a resin foaming power. If layer B is a layer that also has a resin foam strength, it is possible to reduce the weight of the back protection substrate for the solar cell module and, as a result, to reduce the weight of the solar cell module, which is also effective in preventing deflection. There is an advantage of being.
[0080] 榭脂発泡体を構成する榭脂には特に制限はなぐ熱可塑性榭脂、熱硬化性榭脂 のいずれも使用することができるが、成形の容易さ、リサイクルの容易さ等から、熱可 塑性榭脂が好ましい。榭脂発泡体に使用可能な熱可塑性榭脂に特に制限はないが 、プリプレダに用いることができる熱可塑性榭脂を使用することが好ましい。これら榭 脂発泡体を構成する榭脂は 1種類を単独で使用しても良いし、 2種類以上を組み合 わせて使用してもよい。 [0080] For the resin constituting the resin foam, any thermoplastic resin or thermosetting resin that is not particularly limited can be used. From the viewpoint of ease of molding, ease of recycling, etc. Heat Plastic resin is preferred. Although there is no restriction | limiting in particular in the thermoplastic resin which can be used for a resin foam, It is preferable to use the thermoplastic resin which can be used for a prepreader. These resin foams constituting the resin foam may be used alone or in combination of two or more.
[0081] 具体的に本発明で好ましく使用される榭脂発泡体としてはポリプロピレン発泡体等 のプロピレン系(共)重合体発泡体、ポリエチレン発泡体、ポリスチレン発泡体又はポ リプロピレン発泡体を外層に有するポリスチレン発泡体等が挙げられる力 これらに は限定されない。この中でも、コスト、強度、耐熱性等の観点から、プロピレン系(共) 重合体発泡体が特に好まし ヽ。  [0081] Specific examples of the resin foam preferably used in the present invention include a propylene-based (co) polymer foam such as polypropylene foam, a polyethylene foam, a polystyrene foam or a polypropylene foam as an outer layer. Forces including, but not limited to, polystyrene foam. Of these, propylene-based (co) polymer foams are particularly preferred from the viewpoints of cost, strength, heat resistance, and the like.
[0082] 上記熱可塑性榭脂として好ましく用いられるプロピレン系(共)重合体は、その(共) 重合成分としてプロピレンを含有していれば良ぐそれ以外に特に制限は無いが、耐 熱性、機械的強度等の観点から、結晶性ポリプロピレン系榭脂であることが好ましい 。結晶性ポリプロピレン系榭脂の詳細、その好ましい形態の詳細は、プリプレダに用 V、ることができる熱可塑性榭脂にっ 、ての説明にお 、て、既に詳述した。  [0082] The propylene-based (co) polymer preferably used as the thermoplastic resin is not particularly limited as long as it contains propylene as the (co) polymerization component. From the viewpoint of mechanical strength and the like, a crystalline polypropylene-based resin is preferable. The details of the crystalline polypropylene-based resin, and the details of its preferred form, have already been described in detail in the description of the thermoplastic resin that can be used for the pre-preparation.
[0083] 熱溶着の容易性、高い剛性およびそれによるたわみの防止、産業廃棄物の処理の 容易性等の点カゝらは、前記積層体は、 B層 (榭脂発泡体)に用いられる榭脂と A層及 び A'層(プリプレダ)に用いられる榭脂が、共に熱可塑性榭脂で構成される複合構 造体が好ましぐ A層及び A'層と B層とが同一または略同一の熱可塑性榭脂で構成 される複合構造体 (例えば、双方がプロピレン系(共)重合体で構成されている複合 構造体)がさらに好ましい。  [0083] In terms of easiness of heat welding, high rigidity and prevention of bending due thereto, ease of disposal of industrial waste, etc., the above-mentioned laminate is used for layer B (waxed foam). A composite structure composed of thermoplastic resin is preferred as the resin used for the resin and the A layer and the A 'layer (preprega). The A layer and the A' layer and the B layer are the same or A composite structure composed of substantially the same thermoplastic resin (for example, a composite structure composed of both propylene-based (co) polymers) is more preferable.
[0084] ここで、「略同一」とは、双方の榭脂が熱接着を実施した際に界面間である程度の 混合現象が生じ、少なくとも接着前の界面が消失するに至る結果をもたらす関係にあ ることをいう。双方の榭脂が、溶融時に互いに相溶すれば、この様な現象が生ずる。  [0084] Here, "substantially the same" means a relationship in which a certain amount of mixing phenomenon occurs between the interfaces when both the resins are thermally bonded, and at least the interface before bonding disappears. Say that. Such a phenomenon occurs if both of the cocoons are compatible with each other at the time of melting.
[0085] 榭脂発泡体は独立気泡でも連通気泡力 成るものでも良い。独立気泡のものを使 用すると強度は向上する。発泡倍率は通常 100倍以下のものが用いられる力 その 倍率は軽量化と成型性のバランスにより選ばれ、 2〜50倍が好ましい。また、榭脂発 泡体は架橋体でも無架橋体でもよい。更に、面の表面の近くに存在する榭脂発泡体 の発泡倍率の方が、中心層に近い榭脂発泡体の発泡倍率より低いような場合に対し て本発明は好適に適用し得る。 [0085] The resin foam may be a closed cell or an open cell force. The strength is improved by using closed cells. The force with which the expansion ratio is usually 100 times or less is used. The magnification is selected according to the balance between weight reduction and moldability, and preferably 2 to 50 times. The cocoa foam may be a crosslinked product or a non-crosslinked product. Furthermore, the expansion ratio of the resin foam present near the surface of the surface is lower than the expansion ratio of the resin foam close to the center layer. Therefore, the present invention can be preferably applied.
[0086] 榭脂発泡体の製造方法には特に制限はなぐ従来公知の化学発泡剤を適宜使用 することができる。例えば、ァゾジカルボンアミド (ADCA)、 N, N,一ジニトロソペンタ メチレンテトラミン、 4, 4'—ォキシビス(ベンゼンスルホ-ルヒドラジド)、ジフエ-ルス ルホン— 3, 3,—ジスルホ -ルヒドラジド、 p—トルエンスルホ-ルセミカルバジド、トリ ヒドラジノトリアジンなどの有機系熱分解型発泡剤、炭酸水素ナトリウム、炭酸ナトリウ ム、炭酸水素アンモ-ゥム、炭酸アンモ-ゥムなどの無機系熱分解型発泡剤を適宜 使用することができるが、これらに限定されない。また、物理発泡剤も適宜使用するこ とが可能であり、例えば、メタノール、エタノール、プロパン、ブタン、ペンタン等の低 沸点有機溶剤の蒸気;ジクロロメタン、クロ口ホルム、四塩化炭素、フロン、三フッ化窒 素等のハロゲン系不活性溶剤の蒸気;二酸ィ匕炭素、窒素、アルゴン、ヘリウム、ネオ ン、アスタチン等の不活性ガスなどが挙げられるが、これらにも限定されない。中でも 、不活性ガスを用いる方法が特に好ましい。不活性ガスによる発泡は、製造時の安 全面、環境面で好ましぐまた化学発泡による発泡体を用いた場合の加熱による二次 発泡の可能性がない。二次発泡は、基板の寸法の変化と外観上の問題を発生するリ スクがある。  [0086] There are no particular limitations on the method for producing the resin foam, and a conventionally known chemical foaming agent can be appropriately used. For example, azodicarbonamide (ADCA), N, N, monodinitrosopentamethylenetetramine, 4, 4'-oxybis (benzenesulfolhydrazide), diphenylsulfone-3,3, -disulfolhydrazide, p- Organic pyrolytic foaming agents such as toluenesulfol semicarbazide and trihydrazinotriazine, and inorganic pyrolytic foaming agents such as sodium bicarbonate, sodium carbonate, ammonium bicarbonate, and ammonium carbonate. Although it can use suitably, it is not limited to these. Physical foaming agents can also be used as appropriate, for example, vapors of low-boiling organic solvents such as methanol, ethanol, propane, butane, pentane; dichloromethane, chloroform, carbon tetrachloride, chlorofluorocarbon, trifluoride. Examples include, but are not limited to, vapors of halogen-based inert solvents such as nitrogen fluorides; inert gases such as carbon dioxide, nitrogen, argon, helium, neon, and astatine. Among these, a method using an inert gas is particularly preferable. Foaming with an inert gas is preferable from the viewpoint of safety during production and the environment, and there is no possibility of secondary foaming due to heating when using a foam by chemical foaming. Secondary foaming has the risk of causing substrate dimensional changes and appearance problems.
[0087] 榭脂発泡体には、榭脂発泡体を構成する榭脂、および、発泡剤以外の各種添加剤 を適宜含有することができる。例えば、架橋剤、架橋助剤、可塑剤、充填剤、顔料、 染料、紫外線吸収剤、酸化防止剤、耐熱安定剤、帯電防止剤、抗菌剤、防黴剤、難 燃剤、及び分散剤等カゝら選ばれる 1種類または 2種類以上の添加剤を適宜含有する ことができる。  [0087] The resin foam can appropriately contain a resin constituting the resin foam and various additives other than the foaming agent. For example, crosslinking agents, crosslinking aids, plasticizers, fillers, pigments, dyes, UV absorbers, antioxidants, heat stabilizers, antistatic agents, antibacterial agents, antifungal agents, flame retardants, dispersants, etc. One or two or more additives selected from the above can be contained as appropriate.
[0088] (積層体の構成、製造方法)  [0088] (Structure and production method of laminate)
A層または A'層として好ましく用いられるプリプレダと、 B層として好ましく用いられ る榭脂発泡体とを接合する方法には特に制限はなぐ接着剤塗布による接着、また は熱融着のいずれも実施できる。接着剤塗布の場合は、予め接着剤を塗布して接着 する方法と、塗布型のホットメルト系接着剤を塗布して乾燥した後に加熱ロールまた は熱プレスで挟んで接着する方法、またはフィルムタイプのホットメルト系接着剤を挟 んで加熱ロールまたは熱プレスで挟んで接着する方法等が例示できる。中でも熱融 着は、特別な接着性榭脂を必要としないこと、比較的短時間で接合が可能であること 、また十分に高い接着強度が得られること等から、好ましい接合方法である。 There is no particular limitation on the method for joining the pre-preda that is preferably used as the A layer or the A ′ layer and the resin foam that is preferably used as the B layer. it can. In the case of adhesive application, a method of applying an adhesive in advance and adhering, a method of applying an application-type hot-melt adhesive and drying it, and then sandwiching it with a heating roll or a hot press, or a film type For example, a hot-melt adhesive may be sandwiched between a hot roll or a hot press and bonded. Above all, heat fusion Adhesion is a preferred joining method because it does not require a special adhesive resin, can be joined in a relatively short time, and has a sufficiently high adhesive strength.
[0089] プリプレダと榭脂発泡体とを熱融着により接合する方法の一例を以下に示す。例え ば、積層したプリプレダを溶融温度以上に、榭脂発泡体を溶融温度未満に同時に加 熱し、次いでプリプレダと発泡体を重ね合わせて、 60〜80°Cに加熱されているプレ ス中で 3kgfZcm2以下の圧力で加圧し冷却すると共に一体ィ匕を行い積層体とする。 この時に、プリプレダ積層体のプリプレダ層間に存在する空気を脱気する必要があり 、通常は、プリプレダを構成する榭脂の融点以上に加熱し 3kgfZcm2以下の圧力で 加圧して脱気を行う。この範囲の圧力であれば、榭脂発泡体が圧壊することもないの で、榭脂発泡体と一体ィ匕する工程でこの脱気を行うことが出来る。当然のことながら、 脱気をあら力じめ行い冷却し積層板としたものを使用しても差し支えは無い。プリプレ グと発泡体の加熱は、プリプレダと榭脂発泡体とをお互いに接触させな 、状態でカロ 熱することも、榭脂発泡体の上にプリプレダを乗せてぉ互 ヽが接触した状態で加熱 することも出来る。榭脂発泡体の発泡倍率が高い場合は、容易に熱で発泡体が溶け るので溶融したプリプレダが蓄熱した熱で発泡体の表面が容易に溶けて一体ィ匕し得 るので、プリプレダと榭脂発泡体とを接触させずに加熱条件を変えて別々に加熱する ことが望ましい。一方、発泡倍率が低い場合は、榭脂発泡体に熱が伝導しにくいので 溶融プリプレダが蓄熱して 、る熱では榭脂発泡体表面を溶融出来な 、ために、プリ プレダと榭脂発泡体とを接触させて、同時に加熱し榭脂発泡体の表面を溶力しなが ら加熱する方法をとることが望まし 、。 [0089] An example of a method of joining the pre-preda and the resin foam by thermal fusion is shown below. For example, the laminated prepredder is heated at the same time to the melting temperature or higher and the resin foam to the melting temperature at the same time. Pressurize at a pressure of 2 or less to cool and integrally laminate to make a laminate. At this time, it is necessary to deaerate the air existing between the pre-predator layers of the pre-predator laminate. Usually, deaeration is performed by heating above the melting point of the resin constituting the pre-predder and pressurizing at a pressure of 3 kgfZcm 2 or less. If the pressure is within this range, the resin foam is not crushed, so this deaeration can be performed in the step of integrating with the resin foam. As a matter of course, there is no problem even if a laminate is used after degassing and cooling. The heating of the prepreg and the foam can be carried out in a state where the prepreg and the resin foam are not in contact with each other, or in a state where the prepreg is placed on the resin foam and the two are in contact with each other. It can also be heated. When the foaming ratio of the resin foam is high, the foam is easily melted by heat, so that the melted pre-preda can be easily melted and integrated with the heat stored by the heat. It is desirable to heat separately by changing the heating conditions without contacting the oil foam. On the other hand, when the expansion ratio is low, heat does not easily transfer to the resin foam, so the molten prepredder can store heat, and the heat can not melt the surface of the resin foam. It is desirable to take a method in which the surface of the resin foam is heated while simultaneously heating the resin foam while bringing the resin foam into contact with each other.
[0090] プリプレダと榭脂発泡体との一体ィ匕は、通常プリプレダが溶融状態にある間に行う ので、加熱を行うステップ力も一体ィ匕を行うステップへ短時間で移行する様な装置的 な工夫が望まれる。そのような装置の一例として、プリプレダと榭脂発泡体とを一体ィ匕 するプレス内に、プレス内に出入り可能なプリプレダと、榭脂発泡体とをクランプして 支持する装置と、プレス内に出入り可能なプリプレダと榭脂発泡体を加熱する熱板と 、を装備した設備が挙げられる。この設備を使用して積層体を成形する手順は、プレ ス盤面外にクランプを引き出し、プリプレダと発泡体を装着した後クランプ装置をプレ ス盤面内に入れ、次いで熱板をプレス盤面中に入れプリプレダと榭脂発泡体を加熱 し、加熱の終了後プレス盤面外に熱板を引き出し、プレスを締めてプリプレダと発泡 体を接触させながら溶融一体ィ匕させる。このとき、クランプはプレス盤面に触れると同 時に順次材料を離し、プレス盤面外に退避する機構を供えている必要がある。表面 材とプリプレダの一体化は発泡体とプリプレダの一体化と同様に、プリプレダが溶融 状態にある間に、一体ィ匕することが出来る。 [0090] Since the integral of the pre-preda and the resin foam is usually performed while the pre-preda is in a molten state, the step force for heating is changed to a step for performing the integral cohesion in a short time. Ingenuity is desired. As an example of such an apparatus, in a press in which a pre-predator and a resin foam are integrated, a pre-predder capable of entering and exiting the press and a resin foam are clamped and supported, and in the press A facility equipped with a pre-preda that can enter and exit and a hot plate that heats the resin foam. The procedure for forming a laminate using this equipment is to pull the clamp out of the press board surface, attach the pre-preda and foam, insert the clamp device into the press board surface, and then put the hot plate into the press board surface. Heat pre-preda and resin foam Then, after the heating is completed, the hot plate is pulled out of the press platen surface, and the press is tightened to melt and fuse the pre-preda and the foam in contact. At this time, the clamp must be provided with a mechanism for releasing the material and retreating from the press panel surface at the same time as it touches the press panel surface. Similar to the integration of the foam and the pre-predder, the surface material and the pre-predder can be integrated while the pre-predder is in a molten state.
[0091] (太陽電池モジュール用裏面保護基板の構成)  [0091] (Configuration of back surface protection substrate for solar cell module)
本発明の太陽電池モジュール用裏面保護基板は、少なくとも A層、 B層および A, 層の 3層を有していれば良いが、構造体に多くの機能を付与する等の観点からは、 A 層、 B層および A'層以外の層を有していることが好ましい。 A層、 B層および A'層以 外の層としては、目的で分類するならば、表面または裏面保護のためのハードコート 層、接着層、反射防止層、ガスバリア層、防汚層等を設けることができる。材質で分 類するならば、紫外線硬化性榭脂からなる層、熱硬化性榭脂からなる層、ポリオレフ イン樹脂からなる層、カルボン酸変性ポリオレフイン樹脂からなる層、フッ素含有榭脂 力 なる層等を設けることができる。  The back surface protection substrate for a solar cell module of the present invention only needs to have at least three layers of A layer, B layer and A, layer. From the viewpoint of imparting many functions to the structure, A It is preferable to have a layer other than the layer, the B layer and the A ′ layer. If the layers other than the A layer, B layer and A 'layer are classified for the purpose, a hard coat layer, an adhesive layer, an antireflection layer, a gas barrier layer, an antifouling layer, etc. are provided for protecting the front or back surface. be able to. If classified by material, a layer made of UV-curable resin, a layer made of thermosetting resin, a layer made of polyolefin resin, a layer made of carboxylic acid-modified polyolefin resin, a layer made of fluorine-containing resin, etc. Can be provided.
[0092] A層、 B層および A'層の 3層とそれ以外の層との位置関係には特に制限はなぐ発 明の目的との関係で好ましい層構成が適宜選択される。すなわち、 A層、 B層および A'層以外の層は、 A層および B層、または B層および A'層の間に設けられても良い し、太陽電池モジュール用裏面保護基板の最外層に設けられても良いし、それ以外 の箇所に設けられても良い。 A層、 B層および A'層以外の層の層数に特に制限はな ぐ任意の数の層を設けることができるし、設けなくともよい。  [0092] A preferred layer configuration is appropriately selected depending on the relationship between the three layers of the A layer, the B layer, and the A 'layer and the other layers without any particular limitation. That is, the layers other than the A layer, the B layer, and the A ′ layer may be provided between the A layer and the B layer, or the B layer and the A ′ layer, or may be provided on the outermost layer of the back surface protection substrate for the solar cell module. It may be provided, or may be provided at other locations. There is no particular limitation on the number of layers other than the A layer, the B layer, and the A ′ layer, and any number of layers may be provided.
[0093] 本発明の太陽電池モジュール用裏面保護基板は、更に、 TMA測定時の 30°Cから 100°Cの区間における変形量力 以下である素材を含んでなる層(C層)を有して いてもよい。 TMA測定時の 30°Cから 100°Cの区間における変形量が 4%以下であ ると耐熱性が高ぐ本発明の効果を十分に発揮することができる。上記変形率は、 3 %以下が好ましぐ 2 %以下であることがさらに好まし 、。  [0093] The back surface protection substrate for a solar cell module of the present invention further includes a layer (C layer) including a material having a deformation amount force or less in a section from 30 ° C to 100 ° C at the time of TMA measurement. May be. When the amount of deformation in the section from 30 ° C to 100 ° C during TMA measurement is 4% or less, the effect of the present invention with high heat resistance can be sufficiently exerted. The deformation rate is further preferably 3% or less, more preferably 2% or less.
[0094] 太陽電池モジュール用裏面保護基板が C層を有する場合、 A層、 B層、 A'層、およ び C層がこの順に積層されていることが好ましい。更に、前記 C層の縦弾性係数 E (k  [0094] When the back surface protective substrate for a solar cell module has a C layer, the A layer, the B layer, the A 'layer, and the C layer are preferably laminated in this order. Further, the longitudinal elastic modulus E (k
C  C
gfZmm2)と、前記 C層の線膨張係数 CTE (10— 6Z°C)と、前記 C層の厚み h (mm) とから下式 (A)に従って導かれる前記 C層のフィルム係数 Fc (10— 6kgfZmm°C)が、 下記式 (B)の関係を満たすことが好ま 、。 and gfZmm 2), the linear expansion coefficient of the C layer CTE (10- 6 Z ° C) , the thickness of the C layer h (mm) The C layer of the film coefficients Fc (10- 6 kgfZmm ° C) is preferred to satisfy the relation given by the following formula (B), derived according to the following formula (A) and a.
式(A): F =E X CTE X h  Formula (A): F = E X CTE X h
c c c c  c c c c
式(B): 1000 (10"6kgf/mm°C)≤F ≤ lOOOO (10"6kgf/mm°C) Formula (B): 1000 (10 " 6 kgf / mm ° C) ≤F ≤ lOOOO (10" 6 kgf / mm ° C)
c  c
[0095] 前記 C層のフィルム係数 Fcは、 1000 (10"6kgf/mm°C)≤F ≤ 10000 (10— 6kgf [0095] Film coefficient Fc of the C layer, 1000 (10 "6 kgf / mm ° C) ≤F ≤ 10000 (10- 6 kgf
c  c
Zmm°C)であることが好ましぐ 2000 (10— 6kgfZmm°C)≤F ≤5000 (10"6kgf/ Zmm ° C) 2000 (10— 6 kgf Zmm ° C) ≤F ≤5000 (10 " 6 kgf /
c  c
mm°C)であることがさらに好ましい。上記関係を満たすことで、本発明の太陽電池モ ジュール用裏面保護基板を用いて太陽電池モジュールを構成したときに、太陽電池 モジュール用裏面保護基板と後述する太陽電池モジュール用表面保護シートとの間 の線膨張率の差 (熱応力)に起因すると考えられる反りを防止する効果が得られる。  More preferably, it is mm ° C). By satisfying the above relationship, when the solar cell module is configured using the back surface protection substrate for solar cell module of the present invention, the space between the back surface protection substrate for solar cell module and the surface protection sheet for solar cell module described later is used. The effect which prevents the curvature considered to originate in the difference (thermal stress) of the linear expansion coefficient of this is acquired.
[0096] 上記 C層に含まれる素材は、縦弾性係数が lOOkgZmm2以上であることが好まし い。また、モジュール組み立て時に加熱した際の耐熱性の観点から、 TMA測定時の 30°Cから 100°Cの区間における変形量力 以下であることが好ましい。 [0096] The material included in the C layer preferably has a longitudinal elastic modulus of lOOkgZmm 2 or more. In addition, from the viewpoint of heat resistance when heated when assembling the module, it is preferable that the deformation force is not more than 30 ° C to 100 ° C during TMA measurement.
[0097] 上記 C層に含まれる素材としては、ポリオレフイン類、ポリスチレン類、ポリカーボネ ート、ポリエステル類、ポリアミド類、ポリアミドイミド、ポリフエ-レンエーテル、ポリアセ タール、ポリアリレート、ポリフエ-レンスルフイド、ポリエーテル-トリル、液晶ポリマー 、ポリエーテルケトン類、熱可塑性ポリイミドなどが挙げられ、具体的には、プロピレン 系(共)重合体が好ましぐこれらの 2種以上力もなるポリマーァロイなどでも構わない 。さらに、前記プロピレン系(共)重合体が、 97モル0 /0以上のプロピレンより導かれる 構成単位を有し、かつ、ァイソタクチック構造を有することが好ましい。 [0097] Materials included in the C layer include polyolefins, polystyrenes, polycarbonates, polyesters, polyamides, polyamideimides, polyphenylene ethers, polyacetals, polyarylates, polyphenylene sulfides, polyethers- Examples include tolyl, liquid crystal polymers, polyether ketones, thermoplastic polyimides and the like, and specifically, polymer alloys having two or more of these types of propylene-based (co) polymers, which are preferred. Further, the propylene (co) polymer has a 97 mole 0/0 or more constitutional units derived from propylene, and preferably has a Aisotakuchikku structure.
[0098] また、上記 C層は、実質的に延伸を施していないものが好ましい。上記 C層が実質 的に延伸されていると、分子配向により縦弾性率が大きくなる一方で線膨張係数が 極端に小さくなるため、それらの積は未延伸品と比較して小さくなる。つまり C層のフ イルム係数を全体として上記の範囲内にするためにはフィルムを厚くする必要がある [0098] The C layer is preferably substantially unstretched. When the C layer is substantially stretched, the longitudinal elastic modulus increases due to molecular orientation, while the linear expansion coefficient becomes extremely small. Therefore, their product becomes smaller than that of an unstretched product. In other words, it is necessary to make the film thicker so that the film coefficient of the C layer as a whole is within the above range.
1S 延伸品は本来厚手のものが得にくぐフィルム係数 Fの調整に困難が生じるため Since it is difficult to adjust the film coefficient F, it is difficult to obtain a 1S stretched product.
c  c
である。  It is.
上記 C層を上記 A '層上に形成する際には、榭脂又は接着剤を用 ヽて上記 A '層に 上記 C層を接着してもよぐ特に硬化型接着剤又は架橋可能な榭脂を用いるのが好 ましい。 C層及び A'層の接着に用いることのできる榭脂または接着剤としては、ホット メルト系接着剤、反応系接着剤、溶液系接着剤などが挙げられる。 When forming the C layer on the A ′ layer, it is possible to adhere the C layer to the A ′ layer using a resin or an adhesive. Prefer to use fat Good. Examples of the resin or adhesive that can be used for bonding the C layer and the A ′ layer include a hot melt adhesive, a reactive adhesive, and a solution adhesive.
[0099] 前記ホットメルト系接着剤は、熱可塑製榭脂のフィルムゃ不織布などを用い、被着 体の間で溶融される接着剤である。このようなホットメルトタイプの接着剤としては、ェ チレン 酢酸ビュル共重合体(EVA)、エチレン 酢酸ビュルーグリシジルメタクリレ 一ト三元共重合体、エチレン 酢酸ビニル部分酸ィヒ物一有機酸グラフト四元共重合 体などのエチレン 酢酸ビニル共重合体の変性榭脂などのエチレン 酢酸ビニル 系共重合体、エチレン' aーォレフイン共重合体、プロピレン' aーォレフイン共重合 体、プロピレン.エチレン. α—ォレフイン共重合体などのォレフィン系共重合体、ポリ ビュルプチラール、あるいは無水マレイン酸グラフトポリエチレンなどのカルボキシル 基含有ポリオレフイン、エチレンテレフタレート一変性アルキレンエーテルテレフタレ ートブロック共重合体などのポリエステル変性榭脂などが好適に用いられる。 [0099] The hot-melt adhesive is an adhesive that is melted between adherends using a thermoplastic resin film or a nonwoven fabric. Such hot-melt adhesives include ethylene butyl acetate copolymer (EVA), ethylene butyl glycidyl methacrylate copolymer terpolymer, ethylene vinyl acetate partial acid mono organic acid graft ethylene-vinyl acetate copolymer and modified榭脂ethylene vinyl acetate copolymer of quaternary, etc. copolymers, ethylene 'a Orefuin copolymer, propylene' a Orefuin copolymer, propylene-ethylene alpha -.. Orefuin Preferred are olefin-based copolymers such as copolymers, polybutyrral, carboxyl-containing polyolefins such as maleic anhydride grafted polyethylene, and polyester-modified resins such as ethylene terephthalate mono-modified alkylene ether terephthalate block copolymers. Used for.
さらに好ましくは、エチレン 酢酸ビュル共重合体やエチレン αーォレフイン共 重合体などのエチレン共重合体に有機過酸ィ匕物などの開始剤を配合し、熱架橋可 能としたものがより好適である。具体的には、架橋剤添加エチレン 酢酸ビニル共重 合体フィルムである「ソーラーエノく」(商品名、三井ィ匕学フアブ口 (株)製)などを好適に 用!/、ることができる。 More preferably, an ethylene copolymer such as an ethylene acetate butyl copolymer or an ethylene α- olefin copolymer is blended with an initiator such as an organic peroxide to enable thermal crosslinking. . Specifically, “Solar Enoku” (trade name, manufactured by Mitsui Engineering & Technology Co., Ltd.), which is an ethylene vinyl acetate copolymer film with a crosslinking agent added, can be suitably used.
[0100] 反応系の接着剤としては、硬化剤を用いる 2液型のタイプや、熱 '水分'紫外線など の外的要因による 1液型のタイプがある。前記反応系の接着剤としては、アクリル系、 ウレタン系、エポキシ系、シリコーン系などのモノマーが挙げられる。具体的には、主 剤として「タケラック Α— 310」(商品名、三井化学ポリウレタン (株)製)、硬化剤として 「タケネート Α— 3」(商品名、三井ィ匕学ポリウレタン (株)製)を用いたウレタン系接着 剤などが好適に用いられる。  [0100] The reactive adhesive includes a two-component type using a curing agent and a one-component type due to external factors such as heat 'moisture' ultraviolet rays. Examples of the reactive adhesive include acrylic, urethane, epoxy, and silicone monomers. Specifically, “Takelac Α-310” (trade name, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) as the main agent and “Takenate Α—3” (trade name, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) as the curing agent Urethane-based adhesives using are preferably used.
[0101] 溶液系の接着剤としては、ウレタンやクロロプレンゴム、スチレン ブタジエンゴムな どのポリマーまたはプレボリマーを有機溶媒に溶解させたものが挙げられる。具体的 にはマレイン化ポリオレフインを主成分とする「ユニストール Ρ— 401」(商品名、三井 化学 (株)製)などが挙げられる。  [0101] Examples of the solution-based adhesive include a polymer such as urethane, chloroprene rubber, and styrene-butadiene rubber, or a polymer obtained by dissolving a polymer in an organic solvent. Specifically, “Unistor®-401” (trade name, manufactured by Mitsui Chemicals, Inc.) mainly composed of maleated polyolefin is used.
上記接着剤は、硬化型接着剤を用いると熱可塑タイプに比して反りの矯正効果は 大きい。 The above-mentioned adhesive, when using a curable adhesive, has the effect of correcting warpage compared to the thermoplastic type. large.
[0102] 上記接着剤の中では、作業性の観点から、ホットメルトタイプの接着剤が好ましぐ モジュール反り矯正の観点力 硬化'架橋するものがさらに好ましい。前記 C層は、架 橋可能なエチレン 酢酸ビュル共重合体を含んでなる層によって、前記 A'層に接 着されていることが好ましい。具体的には、上述の「ソーラーエノ を用いて C層と A, 層とを接着することが好ましい。  [0102] Among the above adhesives, from the viewpoint of workability, hot melt type adhesives are preferred. From the viewpoint of module warpage correction, those that are cured and cross-linked are more preferable. The C layer is preferably attached to the A ′ layer by a layer comprising a crosslinkable ethylene acetate butyl copolymer. Specifically, it is preferable to bond the C layer, the A layer, and the above-described “solar energy”.
[0103] また、上記 C層には表面処理を施すことができる。前記表面処理としては、コロナ放 電、 UVオゾン処理、フレーム処理、サンドブラスト処理、プライマー処理等が挙げら れる。例えば、コロナ放電、 UVオゾン処理、フレーム処理などによれば C層の表面粗 度の向上や C層の表面に官能基生成させることが可能であり、また、サンドブラストな どによって C層に表面処理を施すと、表面粗度向上を図ることができるため、これらの 処理によって接着強度を増すことができる。  [0103] The C layer may be subjected to a surface treatment. Examples of the surface treatment include corona discharge, UV ozone treatment, flame treatment, sand blast treatment, and primer treatment. For example, corona discharge, UV ozone treatment, flame treatment, etc. can improve the surface roughness of the C layer and generate functional groups on the surface of the C layer, and surface treatment on the C layer by sandblasting etc. Since the surface roughness can be improved by applying, the adhesive strength can be increased by these treatments.
上記 C層を、本発明の太陽電池モジュール用裏面保護基板を製造する際に予め A '層に対して熱融着させておき、それを供することも可能である。し力しこの場合、 C層 の熱収縮によってモジュールを組み立てる前力 逆反りが発生し易くなる場合もある 。したがって、この観点からは、接着層を設け、全部材一括で組立工程を通過させる ことが好ましい。  It is also possible to provide the C layer by thermally fusing it to the A ′ layer in advance when manufacturing the back surface protective substrate for a solar cell module of the present invention. However, in this case, the front force for assembling the module due to the thermal contraction of the C layer may easily cause reverse warping. Therefore, from this point of view, it is preferable to provide an adhesive layer and allow the entire assembly process to pass through.
[0104] (太陽電池モジュール)  [0104] (Solar cell module)
本発明の太陽電池モジュール用裏面保護基板は、太陽電池モジュール用保護基 板に適する優れた機械的特性を有し、特にたわみ、そりを有効に抑制できる。また、 必要に応じて優れた寸法安定性、軽量性、防湿性、耐擦過性、絶縁破壊強度等をも 具備させることが可能である。従って、本発明の太陽電池モジュール用裏面保護基 板を有する太陽電池モジュールは、優れた特性を有し、本発明の特に好ましい実施 形態の 1つである。  The back surface protection substrate for a solar cell module of the present invention has excellent mechanical properties suitable for a protection substrate for a solar cell module, and can particularly effectively suppress bending and warping. Moreover, it can be provided with excellent dimensional stability, lightness, moisture resistance, scratch resistance, dielectric breakdown strength, etc. as required. Therefore, the solar cell module having the back surface protective substrate for the solar cell module of the present invention has excellent characteristics, and is one of the particularly preferred embodiments of the present invention.
[0105] (太陽電池モジュール用裏面保護基板の使用方法)  [0105] (Usage method of back surface protection substrate for solar cell module)
典型的な太陽電池モジュールは、多結晶シリコン等により形成された太陽電池セル をエチレンビニルアセテート (EVA)等力もなる封止用榭脂層で挟み積層し、さらに 表裏両面を保護シートでカバーした構造になって 、る。すなわち典型的な太陽電池 モジュールは、太陽電池モジュール用保護シート (表面保護シート) Z封止材層 Z太 陽電池セル Z封止材層 Z太陽電池モジュール用保護シート (裏面保護基板)と 、う 構成になっている (なお、上記の典型的な構成に該当しなくとも、本発明の太陽電池 モジュール用裏面保護基板が太陽電池セルを裏面側カゝら何らかの形で保護してい れば、本発明の太陽電池モジュール用裏面保護基板としての使用であることは言う までもない)。 A typical solar cell module has a structure in which solar cells made of polycrystalline silicon or the like are sandwiched and laminated with a sealing resin layer that has the same strength as ethylene vinyl acetate (EVA), and both sides are covered with protective sheets. It becomes. Ie a typical solar cell The module is composed of a solar cell module protective sheet (surface protective sheet) Z sealing material layer Z solar cell Z sealing material layer Z solar cell module protective sheet (back surface protection substrate) ( Even if it does not correspond to the above typical configuration, if the back surface protection substrate for the solar cell module of the present invention protects the solar cells in some form such as the back surface side, Needless to say, it is used as a backside protection board).
[0106] 本発明の太陽電池モジュール用裏面保護基板は、太陽電池モジュールの太陽電 池セルを保護する裏面保護基板として好ましく使用することができる。裏面保護基板 は、特に 1辺の長さが lmを超えるような大型モジュールの場合たわみの抑制の必要 性が高ぐ外部からの衝撃が加わるおそれが大きぐまた、軽量ィ匕の要請も強いので 、本発明の太陽電池モジュール用裏面保護基板を、特に好ましく用いることができる  [0106] The back surface protection substrate for a solar cell module of the present invention can be preferably used as a back surface protection substrate for protecting the solar cell of the solar cell module. The backside protection board is particularly necessary for large modules with a side length exceeding lm, and there is a high risk of external impact and there is a strong demand for light weight. The back surface protective substrate for solar cell module of the present invention can be particularly preferably used.
[0107] 上述のように本発明の太陽電池モジュールは、太陽電池モジュール用表面保護シ ート (I)、封止材層 (II)、太陽電池セル (ΠΙ)、封止材層 (IV)、および、本発明の太陽 電池モジュール用裏面保護基板 (V)がこの順に直接または間接に積層されてなるこ とが好ましい。 [0107] As described above, the solar cell module of the present invention includes the surface protection sheet (I) for the solar cell module, the sealing material layer (II), the solar battery cell (ΠΙ), and the sealing material layer (IV). It is preferable that the back surface protection substrate (V) for solar cell module of the present invention is laminated directly or indirectly in this order.
この際、本発明の太陽電池モジュール用裏面保護基板 (V)は、 C層として TMA測 定時の 30°Cから 100°Cの区間における変形量が 4%以下及び縦弾性係数が 100kg fZmm2以上である素材を含んでなる層を有し、且つ、前記 A層、 B層、 A'層、およ び C層がこの順に積層されていることが好ましい。前記太陽電池モジュール用裏面 保護基板 (V)は、前記 A層が前記封止材層 (IV)側に位置するように積層されること が好ましい。即ち、前記 A層は、前記封止材層(IV)と直接または間接に積層される。 At this time, the back surface protection substrate (V) for the solar cell module of the present invention has a deformation amount of 4% or less and a longitudinal elastic modulus of 100 kg fZmm 2 or more in the section from 30 ° C to 100 ° C at the time of TMA measurement as C layer. It is preferable that the A layer, the B layer, the A ′ layer, and the C layer are laminated in this order. The back surface protective substrate (V) for the solar cell module is preferably laminated so that the A layer is positioned on the sealing material layer (IV) side. That is, the A layer is laminated directly or indirectly with the encapsulant layer (IV).
[0108] また、前記太陽電池モジュール用表面保護シート(I)の厚さ h (mm)と、前記 C層の 厚さ h (mm)とが、 0. 5≤h /h≤2. 0の条件を満たすことが好ましい。上記 h /h c C I C I が上述の関係を満たすと、両者の厚みが極端に異なる場合とは異なり、反り防止効 果の要件を満たし易くなる。上記 h Zhは、 0. 7≤h /h≤l. 5の条件を満足するこ [0108] Further, the thickness h (mm) of the surface protection sheet (I) for the solar cell module and the thickness h (mm) of the C layer are 0.5≤h / h≤2.0. It is preferable to satisfy the conditions. When the above h / h c C I C I satisfies the above-mentioned relationship, unlike the case where the thicknesses of the two are extremely different, it becomes easy to satisfy the requirements for the warp prevention effect. H Zh satisfies the condition of 0.7≤h / h≤l.5.
C I C I  C I C I
と力 子ましく、 0. 8≤h /h≤l. 2の条件を満足することが更に好ましい。  It is more preferable that the condition of 0.8≤h / h≤l.2 is satisfied.
C I  C I
[0109] さらに、本発明の太陽電池モジュールは、下記式(1)および(2)に従って導かれる 特定の係数が、下記式 (3)の関係を満たすことが好ま 、。 [0109] Furthermore, the solar cell module of the present invention is guided according to the following formulas (1) and (2). It is preferable that the specific coefficient satisfies the relationship of the following formula (3).
式(1): F =E X CTE X h  Formula (1): F = E X CTE X h
式(2): F =E X CTE X h  Formula (2): F = E X CTE X h
c c c c  c c c c
式(3) : 0. 7≤F /F≤l. 3  Formula (3): 0. 7≤F / F≤l. 3
C I  C I
[0110] 具体的には、  [0110] Specifically,
前記太陽電池モジュール用表面保護シート (I)の縦弾性係数 (kgf/mm2)と、前 記太陽電池モジュール用表面保護シート (I)線膨張係数 CTE, (10— 6Z°C)と、前記 太陽電池モジュール用表面保護シート (I)の厚み h (mm)とから下式(1)に従って導 かれる、前記太陽電池モジュール用表面保護シート (I)のフィルム係数 (10—6kgfZ mm°C)と、 Wherein the longitudinal elastic coefficient of the solar cell module surface protective sheet (I) (kgf / mm 2 ), before Symbol solar cell module surface protective sheet (I) linear expansion coefficient CTE, and (10- 6 Z ° C), Karel guide according thickness h (mm) from the following equation (1) of the solar cell module surface protective sheet (I), the film coefficient (10- 6 kgfZ mm ° C of the solar cell module surface protective sheet (I) )When,
前記 C層の縦弾性係数 E (kgfZmm2)と、前記 C層の線膨張係数 CTE (10 The longitudinal elastic modulus E (kgfZmm 2 ) of the C layer and the linear expansion coefficient CTE (10
C C  C C
°C)と、前記 C層の厚み h (mm)とから下式(2)に従って導かれる、前記フィルム係数  And the film coefficient derived from the thickness h (mm) of the C layer according to the following formula (2):
C  C
F (10— 6kgfZmm°C)との比 (F ZF )が、上式(3)の関係を満たすことが好ましい。 F (10- 6 kgfZmm ° C) and the ratio of (F ZF) preferably satisfies the relationship of the above equation (3).
C C I  C C I
これら各要素が上記式(3)の関係を満足すると、モジュール^ aみ立て工程の加熱 · 冷却過程で発生する反りを防止することが可能であり、不良率の低減に寄与すること ができる。  If each of these elements satisfies the relationship of the above formula (3), it is possible to prevent the warp that occurs in the heating / cooling process of the module preparation process, which can contribute to the reduction of the defect rate.
[0111] 尚、上記関係は、太陽電池モジュール用裏面保護基板 (V)として、本発明の太陽 電池モジュール用裏面保護基板を用いた場合のみではなぐ単に積層構造を有す る太陽電池モジュール用裏面保護基板を用いた場合にも効果を奏することができる 即ち、太陽電池モジュール用表面保護シート (1)、封止材層(Π)、太陽電池セル (II I)、封止材層 (IV)、および、積層構造を有する太陽電池モジュール用裏面保護基 板 (V)がこの順に直接または間接に積層されてなる太陽電池モジュールであれば、 前記太陽電池モジュール用表面保護シート (I)の縦弾性係数 E (kgfZmm2)と、前 記太陽電池モジュール用表面保護シート (I)の線膨張係数 CTE (10— 6Z°C)と、前 記太陽電池モジュール用表面保護シート (I)の厚み (mm)とから下式(1)に従って 導かれる、前記太陽電池モジュール用表面保護シート (I)のフィルム係数 F (10"6kgf 前記太陽電池モジュール用裏面保護基板 (V)の前記封止材層 (IV)と接する側と 逆の面側の層(C層)の縦弾性係数を E (kgf/mm2)と、前記 C層の線膨張係数 CT [0111] The above relationship is not limited to the case where the back surface protection substrate for solar cell module of the present invention is used as the back surface protection substrate (V) for solar cell module. The effect can be obtained even when a protective substrate is used. That is, the surface protection sheet for solar cell module (1), encapsulant layer (Π), solar cell (II I), encapsulant layer (IV) And a solar cell module in which the back surface protective substrate (V) for a solar cell module having a laminated structure is laminated directly or indirectly in this order, the longitudinal elasticity of the surface protective sheet (I) for the solar cell module the coefficient E (kgfZmm 2), before Symbol the solar cell module surface protection sheet for the linear expansion coefficient of the (I) CTE (10- 6 Z ° C), before Symbol thickness of the solar cell module surface protective sheet (I) ( mm) and the sun derived from the following formula (1) Film coefficient of surface protection sheet (I) for battery module F (10 " 6 kgf E (kgf / mm 2 ) is the longitudinal elastic modulus of the layer (C layer) on the side opposite to the side in contact with the sealing material layer (IV) of the back surface protection substrate (V) for the solar cell module; Coefficient of linear expansion CT
C  C
E (10—6Z°C)と、前記 C層の厚み h (mm)とから下式(2)に従って導かれる、前記 CE and (10- 6 Z ° C), derived according to the following equation from the thickness h (mm) of the C layer (2), the C
C C C C
層のフィルム係数 F (10— 6kgfZmm°C)との比(F ZF )力 下式(3)の関係を満た Less than the ratio of the film coefficient of the layer F (10- 6 kgfZmm ° C) (F ZF) forces under formula the relationship (3)
C C I  C C I
すことで、モジュール組み立て工程の加熱 ·冷却過程で発生する反りを防止すること ができる。  By doing so, it is possible to prevent warping that occurs during the heating / cooling process of the module assembly process.
式(1): F =E X CTE X h  Formula (1): F = E X CTE X h
式(2): F =E X CTE X h  Formula (2): F = E X CTE X h
c c c c  c c c c
式(3) : 0. 7≤F /F≤l. 3  Formula (3): 0. 7≤F / F≤l. 3
C I  C I
[0112] 本発明の太陽電池モジュール用裏面保護基板は、曲げ剛性、軽量性、絶縁保護 特性などに優れるので、この様な保護基板を有する太陽電池モジュールは、軽量、 堅牢で、野外等での使用に適し、かつ、長寿命となることが期待される。  [0112] Since the back surface protection substrate for solar cell modules of the present invention is excellent in bending rigidity, light weight, insulation protection characteristics, etc., the solar cell module having such a protection substrate is light and robust, and is used outdoors. It is expected to be suitable for use and have a long life.
[0113] (太陽電池モジュール用表面保護シート)  [0113] (Surface protection sheet for solar cell module)
本発明の好ま 、実施形態である太陽電池モジュールにお 、て用いられる太陽電 池モジュール用表面保護シートには特に制限はない。但し、表面保護シートは、太 陽電池モジュールの最表層に位置するため、耐候性、撥水性、耐汚染性、機械強度 をはじめとして、太陽電池モジュールの屋外暴露における長期信頼性を確保するた めの性能を具備することが好ましい。また、太陽光を有効に活用するために、光学口 スの小さい、透明性の高いシートであることが好ましい。上記太陽電池モジュールに 好適に用いられる太陽電池モジュール用表面保護シートの材料としては、ポリカーボ ネート榭脂、ポリエステル榭脂、フッ素榭脂、アクリル榭脂、環状ォレフィン (共)重合 体等力もなる榭脂フィルムの他、ガラス基板などが挙げられる。  The surface protection sheet for a solar cell module used in the solar cell module which is a preferred embodiment of the present invention is not particularly limited. However, since the surface protection sheet is located on the outermost layer of the solar cell module, in order to ensure long-term reliability of the solar cell module in outdoor exposure, including weather resistance, water repellency, contamination resistance, and mechanical strength. It is preferable to have the following performance. Further, in order to effectively use sunlight, a highly transparent sheet having a small optical aperture is preferable. Examples of the material for the surface protection sheet for solar cell modules that are preferably used for the solar cell module include polycarbonate resin, polyester resin, fluorine resin, acrylic resin, cyclic olefin (co) polymer, etc. A glass substrate etc. are mentioned other than a film.
榭脂フィルムとして特に好適なのは、透明性、強度、コスト等の点で優れたポリエス テル榭脂、とりわけポリエチレンテレフタレート榭脂である。  Particularly preferred as the resin film is a polyester resin, particularly polyethylene terephthalate resin, which is excellent in terms of transparency, strength, cost and the like.
また、特に耐侯性の良いフッ素榭脂も好適に用いられる。具体的には、四フッ化工 チレン エチレン共重合体 (ETFE)、ポリフッ化ビュル榭脂(PVF)、ポリフッ化ビ-リ デン榭脂(PVDF)、ポリ四フッ化工チレン榭脂(TFE)、四フッ化工チレン一六フツイ匕 プロピレン共重合体 (FEP)、ポリ三フッ化塩ィ匕エチレン榭脂(CTFE)がある。耐候性 の観点ではポリフッ化ビ-リデン榭脂が優れて 、るが、耐候性および機械的強度の 両立では四フッ化工チレン エチレン共重合体が優れている。また、封止材層等の 他の層を構成する材料との接着性の改良のために、コロナ処理、プラズマ処理を表 面保護シートに行うことが望ましい。また、機械的強度向上のために延伸処理が施し てあるシート、例えば 2軸延伸のポリプロピレンシートを用いることも可能である。 太陽電池モジュール用表面保護シートとしてガラスを用いる場合には、波長 350乃 至 1400nmの光の全光線透過率が 80%以上であることが好ましぐより好ましくは 90 %以上である。カゝかるガラス基板としては赤外部の吸収の少ない白板ガラスを使用す るのが一般的であるが、青板ガラスであっても厚さが 3mm以下であれば太陽電池モ ジュールの出力特性への影響は少ない。また、ガラス基板の機械的強度を高めるた めに熱処理により強化ガラスを得ることができる力 熱処理無しのフロート板ガラスを 用いてもよい。また、ガラス基板の受光面側に反射を抑えるために、反射防止のコー ティングをしても良い。 In addition, fluorine resin having particularly good weather resistance is also preferably used. Specifically, tetrafluorinated ethylene ethylene copolymer (ETFE), polyfluorinated burr resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene rubber (TFE), tetra There are fluorinated ethylene 16-propylene copolymer (FEP) and polytrifluoride-ethylene resin (CTFE). Weatherability From this point of view, polyvinylidene fluoride resin is excellent. However, in terms of both weather resistance and mechanical strength, a tetrafluoroethylene-ethylene copolymer is excellent. In addition, it is desirable to perform corona treatment and plasma treatment on the surface protective sheet in order to improve adhesion with materials constituting other layers such as a sealing material layer. It is also possible to use a sheet that has been subjected to a stretching treatment to improve mechanical strength, such as a biaxially stretched polypropylene sheet. When glass is used as the surface protective sheet for a solar cell module, the total light transmittance of light having a wavelength of 350 to 1400 nm is preferably 80% or more, more preferably 90% or more. Generally, white glass with low absorption in the infrared region is used as the glass substrate to be covered. However, even with blue glass, if the thickness is 3 mm or less, the output characteristics of the solar cell module can be reduced. The impact is small. Further, in order to increase the mechanical strength of the glass substrate, a float plate glass without force heat treatment that can obtain tempered glass by heat treatment may be used. Further, in order to suppress reflection on the light receiving surface side of the glass substrate, antireflection coating may be applied.
[0114] (封止材層) [0114] (Encapsulant layer)
本発明の太陽電池モジュールは、通常、太陽電池セルをはさんで配置される封止 材層を有する。封止材層の材質には特に制限はないが、太陽電池セルとよく密着し 、太陽電池セルと表面または裏面保護層とを積層させる際の温度で溶融軟化する榭 脂で構成されることが好ましい。積層温度は、通常 150°C未満、好ましくは 120°C以 下で行われる。こうした封止材層に好ましく使われる榭脂としては、エチレン 酢酸ビ -ル共重合体(EVA)、エチレン 酢酸ビュルーグリシジルメタタリレート三元共重合 体、エチレン 酢酸ビニル部分酸化物 有機酸グラフト四元共重合体などのェチレ ン 酢酸ビニル共重合体の変性榭脂などのエチレン 酢酸ビニル系共重合体、ェ チレン' α—ォレフイン共重合体、プロピレン' α—ォレフイン共重合体、プロピレン' エチレン' aーォレフイン共重合体などのォレフィン系共重合体、ポリビュルブチラー ル、あるいは無水マレイン酸グラフトポリエチレンなどのカルボキシル基含有ポリオレ フィン、エチレンテレフタレート一変性アルキレンエーテルテレフタレートブロック共重 合体などのポリエステル変性榭脂などが挙げられるが、これらに限定されな ヽ。  The solar cell module of the present invention usually has a sealing material layer disposed so as to sandwich solar cells. The material of the encapsulant layer is not particularly limited, but may be composed of a resin that is in close contact with the solar cell and melted and softened at a temperature when the solar cell and the front surface or back surface protective layer are laminated. preferable. The lamination temperature is usually below 150 ° C, preferably below 120 ° C. Examples of the resin preferably used for such a sealing material layer include ethylene vinyl acetate copolymer (EVA), ethylene butyl glycidyl methacrylate terpolymer, ethylene vinyl acetate partial oxide, organic acid graft tetra Ethylene vinyl acetate copolymer, ethylene vinyl acetate copolymer, ethylene 'α-olefin copolymer, propylene' α-olefin copolymer, propylene 'ethylene' Polyolefins such as a-olefin copolymers, polybutylbutyral, carboxyl group-containing polyolefins such as maleic anhydride-grafted polyethylene, and polyester-modified resins such as ethylene terephthalate mono-modified alkylene ether terephthalate block copolymers Such as, but not limited to.
[0115] これらの中でもエチレン 酢酸ビニル共重合体力 その柔軟性、透明性、耐熱性 等力 好ましく用いられる。封止材層に用いられるエチレン 酢酸ビュル共重合体に は特に制限はなぐ例えば従来公知のエチレン 酢酸ビニル共重合体を適宜使用 することができる。さら〖こ好ましくは、有機過酸ィ匕物などの開始剤を配合し、熱架橋可 能としたものがより好適である。具体的には、架橋剤添加エチレン 酢酸ビニル共重 合体フィルムである「ソーラーエノく」(商品名、三井ィ匕学フアブ口 (株)製)などを好適に 用!/、ることができる。 [0115] Among these, ethylene vinyl acetate copolymer strength Its flexibility, transparency, heat resistance Isotropic preferably used. There is no particular limitation on the ethylene-butyl acetate copolymer used for the sealing material layer. For example, a conventionally known ethylene-vinyl acetate copolymer can be appropriately used. More preferably, an initiator such as an organic peroxide is added to enable thermal crosslinking. Specifically, “Solar Enoku” (trade name, manufactured by Mitsui Engineering & Technology Co., Ltd.), which is an ethylene vinyl acetate copolymer film with a crosslinking agent added, can be suitably used.
[0116] また、上記の各種樹脂の中でも、ォレフィン系共重合体は透明性、柔軟性に優れた 榭脂を得ることが容易である上に、架橋せずに封止材として使用できる場合があるの で、製造コスト等の観点から、封止材層に好ましく使用することができる。  [0116] Among the above-mentioned various resins, the olefin-based copolymer can easily obtain a resin having excellent transparency and flexibility, and can be used as a sealing material without crosslinking. Therefore, it can be preferably used for the sealing material layer from the viewpoint of production cost and the like.
[0117] 後述のシリコン、化合物半導体とも、太陽電池素子として優れた特性を有している 力 外部からの応力、衝撃等により破損しやすいことで知られている。太陽電池封止 材層に柔軟性に優れた素材を用いれば、太陽電池素子への応力、衝撃等を吸収し て、太陽電池素子の破損を防ぐ効果が大きい。さらに、本発明の好ましい実施形態 である太陽電池モジュールにおいては、太陽電池封止材層が、直接太陽電池セルと 接合されて ヽることが望ま ヽ。  [0117] Both silicon and compound semiconductors described later have excellent characteristics as solar cell elements. It is known that they are easily damaged by external stress, impact, and the like. If a material having excellent flexibility is used for the solar cell encapsulant layer, the solar cell element is effectively damaged by absorbing stress, impact, etc. on the solar cell element. Furthermore, in the solar cell module which is a preferred embodiment of the present invention, it is desirable that the solar cell sealing material layer is directly joined to the solar cell.
[0118] また、太陽電池封止材が熱可塑性を有していると、ー且太陽電池モジュールを作 製した後であっても、比較的容易に太陽電池セルを取り出すことが可能であり、リサイ クル性に優れている。  [0118] Further, if the solar cell encapsulant has thermoplasticity, and even after the solar cell module is manufactured, the solar cells can be taken out relatively easily. Excellent recyclability.
[0119] (太陽電池セル)  [0119] (Solar cell)
本発明の好ましい実施形態である太陽電池モジュールにおける太陽電池セルは、 半導体の光起電力効果を利用して発電できるものであれば特に制限はなぐたとえ ば、シリコン (単結晶系、多結晶系、非結晶(アモルファス)系)太陽電池、化合物半 導体 (3— 5族、 2— 6族、その他)太陽電池、湿式太陽電池、有機半導体太陽電池な どを用いることができる。この中では発電性能とコストとのバランスなどの観点から、多 結晶シリコン太陽電池セルが好ましい。  The solar battery cell in the solar battery module which is a preferred embodiment of the present invention is not particularly limited as long as it can generate power using the photovoltaic effect of a semiconductor. For example, silicon (single crystal system, polycrystalline system, Amorphous solar cells, compound semiconductors (Group 3-5, Group 2-6, etc.), solar cells, wet solar cells, organic semiconductor solar cells, etc. can be used. Of these, polycrystalline silicon solar cells are preferred from the viewpoint of balance between power generation performance and cost.
[0120] (発電装置)  [0120] (Power generation device)
本発明の特に好ましい実施形態の 1つである太陽電池モジュールは、そりが有効 に防止され、さらに機械的強度、軽量性、寿命等に優れている場合が多い。このため 、この様な太陽電池モジュールを用いた発電装置は、優れた耐衝撃性、重量、寿命 等を付与することが容易で、実用上高い価値を有する。 The solar cell module which is one of the particularly preferred embodiments of the present invention is effectively prevented from warping, and is often excellent in mechanical strength, light weight, life and the like. For this reason A power generator using such a solar cell module is easy to impart excellent impact resistance, weight, life, etc., and has a high practical value.
[0121] 上記の発電装置は、家屋の屋根に設置する、キャンプなどアウトドア向けの移動電 源として利用する、自動車バッテリーの補助電源として利用する等の、屋外、屋内を 問わず長期間の使用に好適である。  [0121] The above power generator is installed on the roof of a house, used as a mobile power source for outdoor activities such as camping, and used as an auxiliary power source for automobile batteries. Is preferred.
[実施例]  [Example]
以下に実施例および比較例を挙げ、本発明を具体的に説明する。なお、本発明は V、かなる意味にぉ 、ても、これらの実施例に限定されるものではな!/、。  Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is V, but is not limited to these examples.
[0122] 上述の説明及び後述の実施例および比較例において、試料等の諸物性は次のよ うにして測定した。 [0122] In the above description and the examples and comparative examples described later, various physical properties of samples and the like were measured as follows.
[0123] '曲げ剛性:得られた太陽電池モジュール用裏面保護基板について、幅 1000mm、 長さ 1400mmにカットし、長さ方向片側 400mm分を固定支持した片持ちばりとして 、基板の最大たわみ量 δを測定した。次いで、次式により曲げ剛性 ΕΙを算出した。 曲げ剛性 EI = PL4/8 S (kgf -mm2) [0123] 'Bending rigidity: The obtained back surface protection substrate for the solar cell module was cut into a width of 1000mm and a length of 1400mm, and the maximum deflection of the substrate as a cantilever beam fixedly supported for 400mm on one side in the length direction. Was measured. Next, the bending rigidity ΕΙ was calculated by the following formula. Flexural rigidity EI = PL 4/8 S ( kgf -mm 2)
P :等分布荷重 (kgfZmm)  P: Uniform load (kgfZmm)
L:はりの長さ(1000mm)  L: Length of beam (1000mm)
δ:最大たわみ直 (mm)  δ: Maximum deflection (mm)
[0124] '面積あたり重量:得られた太陽電池モジュール用裏面保護基板について、幅 1000 mm、長さ 1400mmの基板の重量を重量計により測定し、これから単位面積あたり重 量を算出した。 [0124] 'Weight per area: The weight of the substrate having a width of 1000 mm and a length of 1400 mm was measured with a weigher and the weight per unit area was calculated.
[0125] '絶縁破壊強度:得られた太陽電池モジュール用裏面保護基板を 100 X 100mmに カットした試験片を JIS C2110に準拠し、山崎産業社製絶縁破壊試験機 HAT— 3 00— 100RHO型にて電圧上昇速度 2kVZsで測定した。電極は、上部が直径 20m mの球面型、下部は直径 25mmの円形断面のものを用いた。  [0125] 'Dielectric breakdown strength: The test piece obtained by cutting the back protection substrate for the solar cell module into 100 X 100mm was compliant with JIS C2110, and it was changed to the HAT-3100-100RHO type dielectric breakdown tester manufactured by Yamazaki Sangyo Co., Ltd. The voltage rise rate was 2 kVZs. The electrode used was a spherical type with an upper part of 20 mm in diameter and a lower part with a circular cross section of 25 mm in diameter.
[0126] ·たわみ:上記曲げ剛性の測定法にぉ 、て説明した方法にて測定した。 [0126] Deflection: Measured by the method described above in addition to the above-described bending stiffness measurement method.
[0127] ·縦弾性係数:太陽電池モジュール用裏面保護基板に用いる各層について、引張試 験機を用い、引張速度 10mmZmin、チャック間 60mmで試験を行い、初期弾性率 (ヤング率)を測定して縦弾性係数とした。 [0128] '反り:得られた太陽電池モジュール用裏面保護基板を 250 X 250mmにカットし、後 述する構成(実施例 4〜9)で模擬モジュールを作成し、得られた模擬モジュールの 4 隅の浮き上がり量を測定してその平均を反りとした。 [0127] · Longitudinal elastic modulus: Each layer used for the back protection substrate for solar cell modules was tested using a tensile tester at a tensile speed of 10mmZmin and a chuck interval of 60mm to measure the initial elastic modulus (Young's modulus). The longitudinal elastic modulus was used. [0128] 'Warpage: The obtained back surface protection substrate for the solar cell module was cut to 250 x 250 mm, a simulation module was created with the configuration described later (Examples 4 to 9), and the four corners of the obtained simulation module were created. The amount of lifting was measured and the average was taken as warpage.
[0129] <太陽電池モジュール用裏面保護基板 >  [0129] <Back side protection substrate for solar cell module>
[実施例 1]  [Example 1]
A層として、ガラス繊維強化複合シート L15 (プレダロン (登録商標)、三井ィ匕学 (株) 製、厚み: 0. 25mm,縦弾性係数: 1600kgf/mm2、ガラス繊維含量: 50容量0 /0、 面積あたり重量: 300gZm2)、 B層として PP3倍発泡シート(商品名パロ-ァボード、 三井ィ匕学フアブ口 (株)製、縦弾性係数: 50kgfZmm2、厚み 8mm、面積あたり重量: 2. 9kgZm2)、 A'層に前記ガラス繊維強化複合シート L15を用い、これら 3層のシ ートを重ねて熱プレス成形機にて 220°Cで予熱時間 2分の条件で熱融着し、更に冷 却して長さ 1400mm、幅 1000mm、厚み 8. 4mmの太陽電池モジュール用裏面保 護基板を得た。この太陽電池モジュール用裏面保護基板の単位面積あたりの重量 は 3. 5kgZm2と軽ぐたわみは 75mmと小さぐ曲げ剛性は 5. 8 X 106kgf 'mm2で 優れていた。また絶縁破壊電圧は 35kVで、太陽電池の絶縁保護基板としては十分 な値であった。 As A layer, the glass fiber-reinforced composite sheet L15 (Puredaron (registered trademark), Mitsui I匕学Co., thickness: 0. 25 mm, the longitudinal elastic modulus: 1600 kgf / mm 2, the glass fiber content: 50 volume 0/0 , Weight per area: 300gZm 2 ), PP layer 3 times foam sheet as B layer (trade name paror board, made by Mitsui Engineering Co., Ltd., longitudinal elastic modulus: 50kgfZmm 2 , thickness 8mm, weight per area: 2. 9kgZm 2 ), using the above-mentioned glass fiber reinforced composite sheet L15 for the A 'layer, these three layers are stacked and heat-sealed with a hot press molding machine at 220 ° C under a preheating time of 2 minutes, Further cooling was performed to obtain a back surface protection substrate for a solar cell module having a length of 1400 mm, a width of 1000 mm, and a thickness of 8.4 mm. The weight per unit area of the back surface protection substrate for the solar cell module was 3.5 kgZm 2 , the light deflection was 75 mm, and the bending rigidity was 5.8 × 10 6 kgf 'mm 2 . The dielectric breakdown voltage was 35kV, which was a sufficient value as an insulation protection substrate for solar cells.
[0130] [実施例 2] [0130] [Example 2]
A及び A'層として、ガラス繊維強化複合シート P30 (プレダロン (登録商標)、三井 化学 (株)製、厚み: 0. 45mm,縦弾性係数: 3300kgf Zmm2、ガラス繊維含量: 50 容量%、面積あたり重量: 600gZm2)を用いた他は、実施例 1と同様に太陽電池モ ジュール用裏面保護基板を作製した。この太陽電池モジュール用裏面保護基板の 単位面積あたりの重量は 4. lkgZm2と軽ぐたわみは 15mmと非常に小さぐ曲げ 剛性は 3. 4 X 107kgf 'mm2で優れていた。また絶縁破壊電圧は 35kVで、太陽電池 の絶縁保護基板としては十分な値であった。 As A and A 'layers, glass fiber reinforced composite sheet P30 (Predaron (registered trademark), manufactured by Mitsui Chemicals, Inc., thickness: 0.45 mm, longitudinal elastic modulus: 3300 kgf Zmm 2 , glass fiber content: 50 volume%, area A back protective substrate for a solar cell module was prepared in the same manner as in Example 1 except that the weight per unit was 600 gZm 2 ). The weight per unit area of the back surface protection substrate for solar cell modules was 4. lkgZm 2 , the light deflection was 15mm, and the bending rigidity was very small, 3.4 × 10 7 kgf 'mm 2 . The dielectric breakdown voltage was 35kV, which was a sufficient value as an insulation protection substrate for solar cells.
[0131] [実施例 3] [0131] [Example 3]
B層として、 PP4. 5倍発泡シート(商品名セルプランライト、三井ィ匕学フアブ口 (株) 製、縦弾性係数: 25kgfZmm2、厚み 19mm、面積あたり重量: 4. 2kgZm2)を用い た他は、実施例 1と同様に太陽電池モジュール用裏面保護基板を作製した。得られ た太陽電池モジュール用裏面保護基板の単位面積あたりの重量は 4. 8kgZm2と軽 ぐたわみは 10mmと非常に小さぐ曲げ剛性は 6. O X 107kgf 'mm2で優れていた。 また絶縁破壊電圧は 39kVで、太陽電池の絶縁保護基板としては十分な値であった PP layer 4.5 times expanded sheet (trade name Cellplanlite, manufactured by Mitsui Engineering & Technology Co., Ltd., longitudinal elastic modulus: 25kgfZmm 2 , thickness 19mm, weight per area: 4.2kgZm 2 ) was used as layer B. Others produced the back surface protection substrate for solar cell modules similarly to Example 1. Obtained The weight per unit area of the back surface protection substrate for the solar cell module was 4.8 kgZm 2 , the light deflection was 10 mm, the bending rigidity was very small, 6. OX 10 7 kgf 'mm 2 and excellent. The dielectric breakdown voltage was 39kV, which was a sufficient value as an insulation protection substrate for solar cells.
[0132] [比較例 1] [0132] [Comparative Example 1]
Aおよび A,層として、 PP未延伸シート(商品名スーパーピュアレイ、出光ュ-テック (株)製、縦弾性係数: 216kgfZmm2、厚み 0. 2mm、面積あたり重量: 200gZm2) を用いた他は、実施例 1と同様に太陽電池モジュール用裏面保護基板を作製した。 得られた太陽電池モジュール用裏面保護基板の単位面積あたりの重量は 3. 3kg/ m2と軽かったが、たわみは 253mmと大きぐ曲げ剛性は 1. 6 X 106kgf 'mm2であり 、厚み 8mm程度の太陽電池モジュール用裏面保護基板としては曲げ剛性が不足し ていた。一方絶縁破壊電圧は 33kVで、太陽電池の絶縁保護基板としては十分な値 であった。 A and A, as a layer, PP unstretched sheet (trade name Super Pure Ray, Idemitsu Interview - Tech Co., modulus of longitudinal elasticity: 216kgfZmm 2, thickness 0. 2 mm, the weight per unit area: 200gZm 2) other using Produced a back protective substrate for a solar cell module in the same manner as in Example 1. Although the weight per unit area of the obtained back surface protection substrate for solar cell modules was as light as 3.3 kg / m 2 , the flexural rigidity was as large as 253 mm and 1.6 x 10 6 kgf 'mm 2 , Bending rigidity was insufficient as a back protective substrate for solar cell modules with a thickness of about 8 mm. On the other hand, the dielectric breakdown voltage was 33 kV, which was a sufficient value as an insulation protection substrate for solar cells.
[0133] [比較例 2] [Comparative Example 2]
Aおよび A,層として PP3倍発泡シート(商品名パロ-ァボード、三井ィ匕学フアブ口( 株)製、縦弾性係数: 50kgfZmm2、厚み 3mm、面積あたり重量: lkgZm2)、 B層と してガラス繊維強化複合シート L15 (プレダロン (登録商標)、三井ィ匕学 (株)製、厚み 0. 25mm,縦弾性係数: 1600kgfZm2、ガラス繊維 50容量0 /0)とした他は実施例 1 と同様に実施した。得られた太陽電池モジュール用裏面保護基板の単位面積あたり の重量は 2. 3kg/m2と軽かった力 たわみは 625mmと大きぐ曲げ剛性は 4. 6 X 1 05kgf 'mm2と低ぐ太陽電池モジュール用裏面保護基板としての曲げ剛性が不足し ていた。 A and A, PP3 times foamed sheet as the layer (tradename Paro - Abodo, Mitsui I匕学Fuabu port Co., modulus of longitudinal elasticity: 50kgfZmm 2, thickness 3 mm, weight per unit area: lkgZm 2), and B layer glass fiber-reinforced composite sheet L15 Te (Puredaron (registered trademark), Mitsui I匕学Co., thickness 0. 25 mm, the modulus of longitudinal elasticity: 1600kgfZm 2, glass fibers 50 volume 0/0) except that the example 1 It carried out like. The weight per unit area of the obtained back surface protection substrate for solar cell modules was 2.3 kg / m 2 and the force was light. The deflection was large at 625 mm and the bending stiffness was low at 4.6 X 1 0 5 kgf 'mm 2 Bending rigidity as a back surface protection substrate for solar cell modules was insufficient.
[0134] [比較例 3] [Comparative Example 3]
ガラス繊維強化複合シート L15 (プレダロン (登録商標)、三井ィ匕学 (株)製、厚み 0 . 25mm,縦弾性係数: 1600kgfZmm2、ガラス繊維 50容量0 /0) 40枚を熱プレス成 型機にて予熱温度 220°Cで 2分予熱後、プレス成形して厚み 8. 6mmの太陽電池モ ジュール用裏面保護基板を得た。得られた太陽電池モジュール用裏面保護基板の 単位面積あたりの重量は 12kgZm2と重ぐたわみも 298mmと大きく太陽電池モジュ ール用裏面保護基板としての曲げ剛性が不足して ヽた。 Glass fiber-reinforced composite sheet L15 (Puredaron (registered trademark), Mitsui I匕学Co., thickness 0 25 mm, longitudinal elastic modulus:. 1600kgfZmm 2, glass fibers 50 volume 0/0) 40 Like the hot press forming mold machine After preheating at 220 ° C for 2 minutes, press molding was performed to obtain a back protective substrate for a solar cell module with a thickness of 8.6 mm. The obtained back surface protection substrate for the solar cell module has a large weight per unit area of 12 kgZm 2 and heavy deflection of 298 mm. Bending rigidity as a back surface protection substrate for a rail was insufficient.
[0135] <太陽電池モジュール >  [0135] <Solar cell module>
[実施例 4]  [Example 4]
B層の厚みを 3mmとし、大きさを 250 X 250mmとした以外は実施例 1と同様にして 、太陽電池モジュール用裏面保護基板を得た。次に、厚さ 3mmのガラス板上に (こ のガラス板は単なる支持台であり、最終構成には残らない)、表面保護フィルムとして ポリカーボネート製フィルム (帝人化成 (株)製の商品名パンライト L— 1225Zを用い て発明者らが作製、厚み: 0. 18mm,封止材として架橋剤添加エチレン 酢酸ビ- ル共重合体フィルムを 2枚 (商品名ソーラーエバ SC— 50B、三井ィ匕学フアブ口 (株) 製、厚み: 600 m)、上記の太陽電池モジュール用裏面保護基板、接着層として封 止材と同じ SC— 50Bを 1枚、 C層として表面保護フィルムと同じポリカーボネート製フ イルムをこの順序で下から重ね、 2重真空方式の真空ラミネータ装置 (商品名、(株) ェヌ ·ピー ·シー製)を用いて減圧 3分間および加圧 10分間のラミネ シヨンを行った 。装置の温度設定は 124°Cとした。つまり使用時とは上下が逆の状態で積層し、ラミ ネーシヨンにより一体ィ匕した。このようにして、模擬モジュールを得た。本来は光電変 換素子であるシリコンセルが 2枚の封止材の間に挟まる形で包埋される力 ここでは 簡易テストであるため含まない。ラミネート後にガラス板から模擬モジュールを切り離 し、上下を逆にして空気恒温槽に移し、 140°Cで 40分間の熱処理を行い (EVAの架 橋工程)、金網を空中に渡して設けた冷却台上で放冷した。  A back protective substrate for a solar cell module was obtained in the same manner as in Example 1 except that the thickness of layer B was 3 mm and the size was 250 × 250 mm. Next, on a glass plate with a thickness of 3 mm (this glass plate is just a support base and does not remain in the final configuration), a polycarbonate film (trade name Panlite, manufactured by Teijin Chemicals Ltd.) is used as a surface protection film. Made by the inventors using L-1225Z, thickness: 0.18 mm, 2 sheets of ethylene acetate vinyl copolymer film with a crosslinking agent added as a sealant (trade name Solar EVA SC-50B, Mitsui Chemicals) Manufactured by Fabuguchi Co., Ltd. (thickness: 600 m), back protection substrate for the above solar cell module, the same SC-50B as the sealing material as the adhesive layer, and the same polycarbonate film as the surface protection film as the C layer Were stacked in this order from the bottom, and lamination was carried out for 3 minutes under reduced pressure and 10 minutes under pressure using a double vacuum type vacuum laminator (trade name, manufactured by ENPC Co., Ltd.). The temperature setting of the unit was 124 ° C. In this way, a simulation module was obtained, in which a silicon cell, originally a photoelectric conversion element, was sandwiched between two encapsulants. This is a simple test, so it is not included because it is a simple test.After lamination, the simulated module is cut off from the glass plate, turned upside down and transferred to an air thermostat, and heat treated at 140 ° C for 40 minutes. (EVA bridging process), the wire net was passed over the air and allowed to cool on a cooling stand.
表 1に示すように、得られた模擬モジュールの C層と表面保護シートとのフィルム係 数比は 1. 00であり、模擬モジュールの反りは 0. Ommであった。  As shown in Table 1, the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 1.00, and the warpage of the simulation module was 0. Omm.
[0136] [実施例 5] [Example 5]
C層としてアイソタクチック構造のホモポリプロピレンからなるキャストポリプロピレンフ イルム( (株)プライムポリマー製の商品名プライムポリプロ F— 107BVを用いて発明 者らが作製、厚み: 0. 2mmを用いた以外は実施例 4と同様にして、模擬モジュール を得た。  Cast polypropylene film made of homopolypropylene with isotactic structure as the C layer (produced by the inventors using the product name Prime Polypro F-107BV manufactured by Prime Polymer Co., Ltd., except that thickness: 0.2 mm was used) In the same manner as in Example 4, a simulation module was obtained.
表 1に示すように、得られた模擬モジュールの C層と表面保護シートとのフィルム係 数比は 1. 02であり、模擬モジュールの反りは—0. 5mmであった。 [0137] [実施例 6] As shown in Table 1, the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 1.02, and the warpage of the simulation module was -0.5 mm. [Example 6]
C層としてアイソタクチック構造のホモポリプロピレンからなるキャストポリプロピレンフ イルム( (株)プライムポリマー製の商品名プライムポリプロ F— 107BVを用いて発明 者らが作製、厚み: 0. 1mmを用いた以外は実施例 4と同様にして、模擬モジュール を得た。  Cast polypropylene film made of homopolypropylene with isotactic structure as C layer (produced by the inventors using Prime Polypro F-107BV, manufactured by Prime Polymer Co., Ltd., except that thickness: 0.1 mm was used) In the same manner as in Example 4, a simulation module was obtained.
表 1に示すように、得られた模擬モジュールの C層と表面保護シートとのフィルム係 数比は 0. 51であり、模擬モジュールの反りは 1. Ommであった。  As shown in Table 1, the film coefficient ratio between the C layer and the surface protection sheet of the obtained simulation module was 0.51, and the warpage of the simulation module was 1. Omm.
[0138] [実施例 7] [Example 7]
C層としてアイソタクチック構造のホモポリプロピレンからなるキャストポリプロピレンフ イルム( (株)プライムポリマー製の商品名プライムポリプロ F— 107BVを用いて発明 者らが作製、厚み: 0. 3mmを用いた以外は実施例 4と同様にして、模擬モジュール を得た。  Cast polypropylene film made of homopolypropylene with isotactic structure as layer C (produced by the inventors using Prime Polypropylene F-107BV, manufactured by Prime Polymer Co., Ltd., except that thickness: 0.3 mm was used) In the same manner as in Example 4, a simulation module was obtained.
表 1に示すように、得られた模擬モジュールの C層と表面保護シートとのフィルム係 数比は 1. 52であり、模擬モジュールの反りは 1. Ommであった。  As shown in Table 1, the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 1.52, and the warpage of the simulation module was 1. Omm.
[0139] [実施例 8] [Example 8]
C層としてエチレンを共重合成分として含むランダムポリプロピレンフィルム( (株)プ ライムポリマー製の商品名プライムポリプロ F—327BVを用いて発明者らが作製、厚 み: 0. 2mm)を用いた以外は実施例 4と同様にして、模擬モジュールを得た。  Except for using a random polypropylene film (made by Prime Polymer Co., Ltd., trade name Prime Polypro F-327BV, thickness: 0.2 mm) containing ethylene as a copolymer component as layer C In the same manner as in Example 4, a simulation module was obtained.
表 1に示すように、得られた模擬モジュールの C層と表面保護シートとのフィルム係 数比は 1. 11であったが、 TMA測定時の 30°Cから 100°Cの区間における変形量が 4. 3%であり、模擬モジュールの反りは 1. 1mmであった。  As shown in Table 1, the film coefficient ratio between the C layer and the surface protection sheet of the obtained simulation module was 1.11, but the amount of deformation in the 30 ° C to 100 ° C interval during TMA measurement However, the warpage of the simulation module was 1.1 mm.
[0140] [実施例 9] [0140] [Example 9]
C層としてポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、商 品名:テオネックス Q51、厚み: 0. 19mm)を用いた以外は実施例 4と同様にして、模 擬モジュールを得た。  A simulation module was obtained in the same manner as in Example 4 except that a polyethylene naphthalate film (manufactured by Teijin DuPont Films, trade name: Teonex Q51, thickness: 0.19 mm) was used as the C layer.
表 1に示すように、得られた模擬モジュールの C層と表面保護シートとのフィルム係 数比は 0. 40であり、模擬モジュールの反りは 2. 4mmであった。  As shown in Table 1, the film coefficient ratio between the C layer and the surface protection sheet of the simulation module obtained was 0.40, and the warpage of the simulation module was 2.4 mm.
[0141] [表 1]
Figure imgf000036_0001
符号の説明
[0141] [Table 1]
Figure imgf000036_0001
Explanation of symbols
2 2
3 A'層  3 A 'layer
4 L:はりの長さ 5 δ:最大たわみ:!  4 L: Length of beam 5 δ: Maximum deflection :!

Claims

請求の範囲 The scope of the claims
[I] 縦弾性係数が 500kgfZmm2以上 lOOOOkgfZmm2以下である層(A層)、縦弾性 係数が lOkgfZmm2以上 500kgfZmm2未満である層(B層)、および縦弾性係数が 500kgfZmm2以上 lOOOOkgfZmm2以下である層(Α'層)の少なくとも 3層を有す る構造体を含む太陽電池モジュール用裏面保護基板であって、該構造体の面積あ たりの重量が 0. 5kg/m2以上 10kg/m2以下である、太陽電池モジュール用裏面 保護基板。 [I] longitudinal elastic coefficient is 500KgfZmm 2 or more LOOOOkgfZmm 2 or less layers (A layers), modulus of longitudinal elasticity is less than LOkgfZmm 2 more 500KgfZmm 2 layer (B layer), and the modulus of longitudinal elasticity 500KgfZmm 2 more LOOOOkgfZmm 2 or less A back surface protection substrate for a solar cell module including a structure having at least three layers (の ′ layer), and the weight per area of the structure is 0.5 kg / m 2 or more and 10 kg / m Protective substrate for solar cell module that is 2 or less.
[2] 前記 A層、 B層、および A'層がこの順に積層され、前記 A層および A'層の縦弾性 係数が、前記 B層の縦弾性係数の 10倍以上である、請求項 1に記載の太陽電池モ ジュール用裏面保護基板。  [2] The A layer, the B layer, and the A ′ layer are laminated in this order, and the longitudinal elastic modulus of the A layer and the A ′ layer is 10 times or more of the longitudinal elastic modulus of the B layer. The back surface protection substrate for solar cell modules described in 1.
[3] 前記 A層および A'層の少なくとも一方が、熱可塑性榭脂および強化繊維を含有し[3] At least one of the A layer and the A ′ layer contains a thermoplastic resin and a reinforcing fiber.
、且つ、前記強化繊維の容積含有率が 30%以上 85%以下である複合材料層であるAnd a composite material layer having a volume content of the reinforcing fibers of 30% to 85%.
、請求項 1または 2に記載の太陽電池モジュール用裏面保護基板。 The back surface protection substrate for solar cell modules according to claim 1 or 2.
[4] 前記 B層が、前記熱可塑性榭脂と略同一の熱可塑性榭脂を含有する、請求項 3〖こ 記載の太陽電池モジュール用裏面保護基板。 [4] The back protective substrate for a solar cell module according to [3], wherein the B layer contains a thermoplastic resin substantially the same as the thermoplastic resin.
[5] 前記熱可塑性榭脂が、プロピレン系(共)重合体である、請求項 3または 4に記載の 太陽電池モジュール用裏面保護基板。 [5] The back protective substrate for a solar cell module according to claim 3 or 4, wherein the thermoplastic resin is a propylene-based (co) polymer.
[6] 前記 B層が、プロピレン系(共)重合体を含有する、請求項 3から 5のいずれか 1項に 記載の太陽電池モジュール用裏面保護基板。 [6] The back protective substrate for a solar cell module according to any one of claims 3 to 5, wherein the B layer contains a propylene-based (co) polymer.
[7] 前記強化繊維が、ガラス繊維または炭素繊維である、請求項 3から 6のいずれか 1 項に記載の太陽電池モジュール用裏面保護基板。 [7] The back protective substrate for a solar cell module according to any one of claims 3 to 6, wherein the reinforcing fiber is a glass fiber or a carbon fiber.
[8] 前記強化繊維がカップリング剤で処理されて!、る、請求項 3から 7の 、ずれか 1項に 記載の太陽電池モジュール用裏面保護基板。 [8] The back protective substrate for a solar cell module according to any one of claims 3 to 7, wherein the reinforcing fiber is treated with a coupling agent!
[9] 前記強化繊維の少なくとも一部が複数本集束されて一方向に配列されている、請 求項 3から 8のいずれか 1項に記載の太陽電池モジュール用裏面保護基板。 [9] The back surface protection substrate for a solar cell module according to any one of claims 3 to 8, wherein at least a part of the reinforcing fibers are converged and arranged in one direction.
[10] 前記 B層が、榭脂発泡体力もなる層である、請求項 1から 6のいずれか 1項に記載 の太陽電池モジュール用裏面保護基板。 [10] The back surface protective substrate for a solar cell module according to any one of claims 1 to 6, wherein the B layer is a layer having a foamed foam strength.
[II] 請求項 1から 10のいずれ力 1項に記載の太陽電池モジュール用裏面保護基板を 有する、太陽電池モジュール。 [II] The rear surface protective substrate for solar cell module according to any one of claims 1 to 10, A solar cell module.
[12] 太陽電池モジュール用表面保護シート (I)、封止材層 (II)、太陽電池セル (III)、封 止材層(IV)、および、請求項 1から 10のいずれ力 1項に記載の太陽電池モジュール 用裏面保護基板 (V)がこの順に直接または間接に積層されてなる、請求項 11に記 載の太陽電池モジュール。 [12] Surface protection sheet for solar cell module (I), encapsulant layer (II), solar cell (III), encapsulant layer (IV), and any one of claims 1 to 10 12. The solar cell module according to claim 11, wherein the back surface protection substrate (V) for solar cell module is laminated directly or indirectly in this order.
[13] 前記太陽電池モジュール用裏面保護基板 (V)が更に TMA測定時の 30°Cから 10 0°Cの区間における変形量力 以下及び縦弾性係数が lOOkgf Zmm2以上である 素材を含んでなる層(C層)を含み、且つ、前記 A層、 B層、 A'層、および C層がこの 順に積層されており、前記 A層が前記封止材層(IV)側に位置する、請求項 12に記 載の太陽電池モジュール。 [13] The back surface protection substrate (V) for the solar cell module further includes a material having a deformation force in the section of 30 ° C to 100 ° C at the time of TMA measurement and a longitudinal elastic modulus of lOOkgf Zmm 2 or more. A layer (C layer), and the A layer, B layer, A ′ layer, and C layer are laminated in this order, and the A layer is located on the sealing material layer (IV) side. Item 12. The solar cell module according to item 12.
[14] 前記太陽電池モジュール用表面保護シート (I)の縦弾性係数 E (kgf/mm2)と、前 記太陽電池モジュール用表面保護シート (I)の線膨張係数 CTE (10— 6Z°C)と、前 記太陽電池モジュール用表面保護シート (I)の厚み (mm)とから下式(1)に従って 導かれる、前記太陽電池モジュール用表面保護シート (I)のフィルム係数 F (10"6kgf /mm°C)と、 [14] Vertical and modulus E (kgf / mm 2), the linear expansion coefficient of the previous SL solar cell module surface protective sheet (I) CTE (10- 6 Z ° of the solar cell module surface protective sheet (I) C) and the thickness (mm) of the surface protection sheet (I) for the solar cell module described above, the film coefficient F (10 ") of the surface protection sheet (I) for the solar cell module derived from the following formula (1) 6 kgf / mm ° C)
前記 C層の縦弾性係数 E (kgfZmm2)と、前記 C層の線膨張係数 CTE (10 The longitudinal elastic modulus E (kgfZmm 2 ) of the C layer and the linear expansion coefficient CTE (10
C C  C C
°C)と、前記 C層の厚み h (mm)とから下式(2)に従って導かれる、前記 C層のフィノレ  ° C) and the thickness h (mm) of the C layer, which is derived according to the following formula (2):
c  c
ム係数 F (10— 6kgfZmm°C)との比 (F ZF )力 下式 (3)の関係を満たす、請求項 1Satisfies beam coefficient F (10- 6 kgfZmm ° C) and the ratio of (F ZF) forces under formula the relationship (3), according to claim 1
C C I C C I
2または 13に記載の太陽電池モジュール。  14. A solar cell module according to 2 or 13.
式(1): F =E X CTE X h  Formula (1): F = E X CTE X h
式(2): F =E X CTE X h  Formula (2): F = E X CTE X h
c c c c  c c c c
式(3) : 0. 7≤F /F≤l. 3  Formula (3): 0. 7≤F / F≤l. 3
C I  C I
[15] 請求項 11から 14のいずれか 1項に記載の太陽電池モジュールを有する発電装置  [15] A power generator having the solar cell module according to any one of claims 11 to 14.
[16] 太陽電池モジュール用表面保護シート (I)、封止材層 (II)、太陽電池セル (III)、封 止材層 (IV)、および、積層構造を有する太陽電池モジュール用裏面保護基板 (V) 力 の順に直接または間接に積層されてなり、 [16] Surface protection sheet for solar cell module (I), encapsulant layer (II), solar cell (III), encapsulant layer (IV), and back surface protection substrate for solar cell module having a laminated structure (V) are stacked directly or indirectly in the order of force,
前記太陽電池モジュール用表面保護シート (I)の縦弾性係数 E (kgfZmm2)と、前 記太陽電池モジュール用表面保護シート (I)の線膨張係数 CT^ (10— 6/°c)と、前 記太陽電池モジュール用表面保護シート (I)の厚み h (mm)とから下式(1)に従って 導かれる、前記太陽電池モジュール用表面保護シート (I)のフィルム係数 F (10"6kgf /mm°C)と、 The longitudinal elastic modulus E (kgfZmm 2 ) of the surface protection sheet (I) for the solar cell module, Serial photovoltaic linear expansion coefficient of the module surface protective sheet (I) CT ^ and (10- 6 / ° c), before Symbol following equation from the thickness h (mm) of the solar cell module surface protective sheet (I) ( Film coefficient F (10 " 6 kgf / mm ° C) of the surface protection sheet for solar cell module (I), guided according to 1),
前記太陽電池モジュール用裏面保護基板 (V)の前記封止材層 (IV)と接する側と 逆の面側の層(C層)の縦弾性係数 E (kgf/mm2)と、前記 C層の線膨張係数 CTE Longitudinal elastic modulus E (kgf / mm 2 ) of a layer (C layer) on the side opposite to the side in contact with the sealing material layer (IV) of the back surface protection substrate (V) for the solar cell module, and the C layer Linear expansion coefficient of CTE
C  C
(10V°Oと、前記 C層の厚み h (mm)とから下式(2)に従って導かれる、前記 C (10 V ° O and the thickness h (mm) of the C layer, which is derived according to the following formula (2),
C C C C
層のフィルム係数 F (10— 6kgfZmm°C)との比(F ZF )力 下式(3)の関係を満た Less than the ratio of the film coefficient of the layer F (10- 6 kgfZmm ° C) (F ZF) forces under formula the relationship (3)
C C I  C C I
す、太陽電池モジュール。 Solar cell module.
式(1): F =E X CTE X h  Formula (1): F = E X CTE X h
式(2): F =E X CTE X h  Formula (2): F = E X CTE X h
c c c c  c c c c
式(3) : 0. 7≤F /F≤l. 3  Formula (3): 0. 7≤F / F≤l. 3
C I  C I
少なくとも 3層を積層した積層体を含み、  Including a laminate in which at least three layers are laminated,
前記積層体が、少なくとも一層の熱可塑性榭脂および強化繊維を含有する複合材 料層と、榭脂発泡体力 なる層とを有する太陽電池モジュール用裏面保護基板。  A back protective substrate for a solar cell module, wherein the laminate has a composite material layer containing at least one layer of thermoplastic resin and reinforcing fiber, and a layer having a resin foam strength.
PCT/JP2007/051604 2006-02-02 2007-01-31 Backside protective substrate for solar cell module, solar cell module and electric power generator WO2007088892A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556891A JP4809374B2 (en) 2006-02-02 2007-01-31 Back surface protection substrate for solar cell module, solar cell module and power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-025310 2006-02-02
JP2006025310 2006-02-02

Publications (1)

Publication Number Publication Date
WO2007088892A1 true WO2007088892A1 (en) 2007-08-09

Family

ID=38327463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051604 WO2007088892A1 (en) 2006-02-02 2007-01-31 Backside protective substrate for solar cell module, solar cell module and electric power generator

Country Status (3)

Country Link
JP (1) JP4809374B2 (en)
TW (1) TW200735389A (en)
WO (1) WO2007088892A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245380A (en) * 2009-04-08 2010-10-28 Asahi Kasei Chemicals Corp Film for solar cell back sheet, and solar cell back sheet and solar cell module using the same
JP2010278428A (en) * 2009-04-30 2010-12-09 Mitsubishi Plastics Inc Sheet for solar cell, and solar cell module
JP2011096777A (en) * 2009-10-28 2011-05-12 Toppan Printing Co Ltd Base material for back surface protective sheet for solar cell, and back surface protective sheet for solar cell
JP2011146671A (en) * 2009-12-15 2011-07-28 Mitsubishi Plastics Inc Sheet for solar cell, and solar cell module
WO2012046565A1 (en) * 2010-10-06 2012-04-12 積水化学工業株式会社 Method for producing flexible solar cell module
WO2012046564A1 (en) * 2010-10-06 2012-04-12 積水化学工業株式会社 Solar cell sealing sheet and flexible solar cell module
WO2012091771A1 (en) * 2010-12-16 2012-07-05 The Boeing Company Method for bonding solar cells directly to polyimide
JP2013110301A (en) * 2011-11-22 2013-06-06 Koito Mfg Co Ltd Solar cell module
JP2014236155A (en) * 2013-06-04 2014-12-15 積水化学工業株式会社 Solar battery module with hot-melt adhesive
JP2015502659A (en) * 2011-11-18 2015-01-22 ギガ ソーラー エフピーシー Novel solar module, support layer stack, and manufacturing method thereof
EP2814067A4 (en) * 2012-02-06 2015-07-08 Mitsubishi Plastics Inc Sealing sheet for solar cell
WO2018110582A1 (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Solar cell module
CN111108610A (en) * 2017-09-19 2020-05-05 东洋铝株式会社 Solar cell module
WO2021003668A1 (en) * 2019-07-09 2021-01-14 深圳市柔宇科技有限公司 Preparation method for elastic substrate
WO2021079807A1 (en) * 2019-10-21 2021-04-29 東洋アルミニウム株式会社 Solar cell module
WO2021079808A1 (en) * 2019-10-21 2021-04-29 東洋アルミニウム株式会社 Solar battery module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5625311B2 (en) * 2009-10-20 2014-11-19 凸版印刷株式会社 Solar cell back surface protection sheet and solar cell module
CN104428905B (en) * 2012-07-03 2017-04-19 三菱丽阳株式会社 Solar cell protective sheet and solar cell module
CN103580593B (en) * 2012-07-31 2019-10-01 科思创德国股份有限公司 A kind of component being used to support photovoltaic solar module
CN112512203A (en) * 2020-11-27 2021-03-16 上海空间电源研究所 Heat insulation substrate and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138797A (en) * 1991-11-19 1993-06-08 Nhk Spring Co Ltd Composite material
JPH07178859A (en) * 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc Laminate and production thereof
JPH10510494A (en) * 1995-10-04 1998-10-13 イソスポルト・フエアブントバウタイレ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Composite panel and method of manufacturing the same
JP2001068695A (en) * 1999-08-25 2001-03-16 Dainippon Printing Co Ltd Protective sheet for solar cell module and solar cell module using the same
JP2002009323A (en) * 2000-06-22 2002-01-11 Canon Inc Method for manufacturing solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138797A (en) * 1991-11-19 1993-06-08 Nhk Spring Co Ltd Composite material
JPH07178859A (en) * 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc Laminate and production thereof
JPH10510494A (en) * 1995-10-04 1998-10-13 イソスポルト・フエアブントバウタイレ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Composite panel and method of manufacturing the same
JP2001068695A (en) * 1999-08-25 2001-03-16 Dainippon Printing Co Ltd Protective sheet for solar cell module and solar cell module using the same
JP2002009323A (en) * 2000-06-22 2002-01-11 Canon Inc Method for manufacturing solar cell module

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245380A (en) * 2009-04-08 2010-10-28 Asahi Kasei Chemicals Corp Film for solar cell back sheet, and solar cell back sheet and solar cell module using the same
JP2010278428A (en) * 2009-04-30 2010-12-09 Mitsubishi Plastics Inc Sheet for solar cell, and solar cell module
JP2011096777A (en) * 2009-10-28 2011-05-12 Toppan Printing Co Ltd Base material for back surface protective sheet for solar cell, and back surface protective sheet for solar cell
JP2011146671A (en) * 2009-12-15 2011-07-28 Mitsubishi Plastics Inc Sheet for solar cell, and solar cell module
JPWO2012046565A1 (en) * 2010-10-06 2014-02-24 積水化学工業株式会社 Method for manufacturing flexible solar cell module
JP2012211319A (en) * 2010-10-06 2012-11-01 Sekisui Chem Co Ltd Solar cell sealing sheet and method of manufacturing solar cell sealing sheet
JP5075281B2 (en) * 2010-10-06 2012-11-21 積水化学工業株式会社 Flexible solar cell module
WO2012046565A1 (en) * 2010-10-06 2012-04-12 積水化学工業株式会社 Method for producing flexible solar cell module
WO2012046564A1 (en) * 2010-10-06 2012-04-12 積水化学工業株式会社 Solar cell sealing sheet and flexible solar cell module
WO2012091771A1 (en) * 2010-12-16 2012-07-05 The Boeing Company Method for bonding solar cells directly to polyimide
JP2015502659A (en) * 2011-11-18 2015-01-22 ギガ ソーラー エフピーシー Novel solar module, support layer stack, and manufacturing method thereof
JP2013110301A (en) * 2011-11-22 2013-06-06 Koito Mfg Co Ltd Solar cell module
EP2814067A4 (en) * 2012-02-06 2015-07-08 Mitsubishi Plastics Inc Sealing sheet for solar cell
US10062795B2 (en) 2012-02-06 2018-08-28 Dai Nippon Printing Co., Ltd. Sealing sheet for solar cell
JP2014236155A (en) * 2013-06-04 2014-12-15 積水化学工業株式会社 Solar battery module with hot-melt adhesive
WO2018110582A1 (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Solar cell module
CN110073501A (en) * 2016-12-15 2019-07-30 松下知识产权经营株式会社 Solar cell module
CN111108610A (en) * 2017-09-19 2020-05-05 东洋铝株式会社 Solar cell module
WO2021003668A1 (en) * 2019-07-09 2021-01-14 深圳市柔宇科技有限公司 Preparation method for elastic substrate
WO2021079807A1 (en) * 2019-10-21 2021-04-29 東洋アルミニウム株式会社 Solar cell module
WO2021079808A1 (en) * 2019-10-21 2021-04-29 東洋アルミニウム株式会社 Solar battery module
CN114600256A (en) * 2019-10-21 2022-06-07 东洋铝株式会社 Solar cell module

Also Published As

Publication number Publication date
JPWO2007088892A1 (en) 2009-06-25
TW200735389A (en) 2007-09-16
JP4809374B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
WO2007088892A1 (en) Backside protective substrate for solar cell module, solar cell module and electric power generator
JP6314182B2 (en) Multilayer polyolefin-based film having a layer comprising a crystalline block copolymer composite or block copolymer composite resin
TWI499506B (en) Photovoltaic modules with polypropylene based backsheet
CN104040730B (en) The good solar module of outward appearance and its manufacture method
WO2010126088A1 (en) Sheet for solar cell, and solar cell module
US20080302417A1 (en) Filler sheet for solar cell module, and solar cell module using the same
US20130092235A1 (en) Back sheet for solar battery and solar battery module
JP5735225B2 (en) Laminated sheet for solar cell and solar cell module
WO2012029466A1 (en) Solar battery cover film for and solar battery module manufactured using same
JP2004214641A (en) Filler sheet for solar cell module, and the solar cell module using the same
KR102000811B1 (en) Solar battery module and method of manufacture thereof
WO2012115154A1 (en) Solar cell module
JP5608171B2 (en) Solar cell module
JP2013165263A (en) Solar cell module having good appearance and manufacturing method thereof
WO2021253612A1 (en) Adhesive film and electronic device comprising same
WO2013118570A1 (en) Protective sheet for solar cell, and solar cell module
CN114424349A (en) Photovoltaic element
US20130192674A1 (en) Protective sheet for solar cell module and solar cell module
JP2013165264A (en) Solar cell module having good appearance and manufacturing method thereof
US20140230892A1 (en) Edge protected barrier assemblies
JP2011077358A (en) Sealing resin sheet, solar cell module and composite material using the same
AU2018336416A1 (en) Solar cell module
JP2013187472A (en) Cover sheet for solar batteries and solar battery module
JP2012209375A (en) Sealing material/surface protective material laminate for solar cell
JP2012243775A (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707790

Country of ref document: EP

Kind code of ref document: A1