WO2014054579A1 - Filler sheet for solar cell modules and method for manufacturing solar cell module - Google Patents

Filler sheet for solar cell modules and method for manufacturing solar cell module Download PDF

Info

Publication number
WO2014054579A1
WO2014054579A1 PCT/JP2013/076537 JP2013076537W WO2014054579A1 WO 2014054579 A1 WO2014054579 A1 WO 2014054579A1 JP 2013076537 W JP2013076537 W JP 2013076537W WO 2014054579 A1 WO2014054579 A1 WO 2014054579A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
filler sheet
weight
sheet
cell module
Prior art date
Application number
PCT/JP2013/076537
Other languages
French (fr)
Japanese (ja)
Inventor
石居 正裕
平池 宏至
一成 八木
博之 野本
順一 中楯
飛鳥 政宏
清巳 上ノ町
嘉謨 郭
良隆 国広
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014507789A priority Critical patent/JPWO2014054579A1/en
Publication of WO2014054579A1 publication Critical patent/WO2014054579A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is excellent in adhesion, durability and heat resistance with a transparent protective material and a solar cell element, and even when a rigid or flexible solar cell module is manufactured by a vacuum laminating method, the solar cell element and the filler sheet
  • the present invention relates to a solar cell module filler sheet that can prevent voids from being generated between the solar cell module and the solar cell module, and a solar cell module manufacturing method using the solar cell module filler sheet.
  • solar cells have been attracting attention as a clean energy source as the awareness of environmental issues and energy issues has increased.
  • solar cell modules having various forms have been developed and proposed. For example, a rigid solar cell module based on glass or the like, a flexible solar cell module based on a polyimide or polyester heat-resistant polymer material or a stainless thin film, and the like are known.
  • Such a solar cell module is generally composed of a transparent protective material, a filler sheet, a solar cell element as a photovoltaic element, a filler sheet, a back surface protective material, and the like. Then, these members are manufactured by a method (vacuum laminating method) in which these members are cut into a desired shape in advance and laminated, and these are laminated and integrated by vacuum lamination in a stationary state.
  • the vacuum laminating method is particularly suitable for manufacturing a rigid solar cell module using glass or the like as a base material.
  • the filler sheet is a layer for protecting the solar cell element in which the solar cell absorbs sunlight and generates electric power, and also maintains the performance and strength of the solar cell element and the solar cell module. And a layer for adhering a transparent protective material for maintaining durability and a back surface protective material.
  • seat needs the adhesiveness with a solar cell element, a transparent protective material, and a back surface protective material, durability, heat resistance, etc. of filler material itself.
  • EVA ethylene-vinyl acetate resin
  • Patent Document 1 ethylene-vinyl acetate resin
  • EVA can also exhibit excellent heat resistance by crosslinking in the step of bonding to the solar cell element.
  • this cross-linking process has a problem that the manufacturing time becomes long.
  • the acetic acid contained in EVA contaminates the light emitting layer and transparent electrode layer of a solar cell element.
  • Patent Document 2 discloses 1 selected from the group consisting of a copolymer of an ⁇ -olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof, a light-resistant material, an ultraviolet absorber, and a heat stabilizer. It is described that a resin film made of a resin composition containing seeds or two or more kinds is used as a filler sheet that is laminated on the front surface side and the back surface side of a solar cell element.
  • the present inventors examined a filler sheet made of a non-EVA resin that has been proposed so far.
  • the conventional filler sheet made of non-EVA resin it is difficult to achieve both adhesion to the solar cell element and high heat resistance within a short manufacturing time.
  • a rigid or flexible solar cell module is manufactured by a vacuum laminating method using a conventional filler sheet made of non-EVA resin, a gap is generated between the solar cell element and the filler sheet, There is a problem that the durability and appearance of the obtained solar cell module may be inferior.
  • the present invention has excellent adhesion, durability, and heat resistance with a transparent protective material and a solar cell element, and even when a rigid or flexible solar cell module is manufactured by a vacuum laminating method, the solar cell element And a filler sheet for a solar cell module that can prevent a void from being generated and reduce deterioration of the solar cell, and a solar cell module using the filler sheet for a solar cell module It aims at providing the manufacturing method of.
  • an ⁇ -olefin-ethylene copolymer having an ⁇ -olefin content of 1 to 25% by weight is graft-modified with maleic anhydride, and the total content of maleic anhydride is 0.1 to 3% by weight.
  • R 1 represents a 3-glycidoxypropyl group or a 2- (3,4-epoxycyclohexyl) ethyl group
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • R 3 represents an alkyl group having 1 to 3 carbon atoms
  • n is 0 or 1.
  • FIG. 1 is a schematic diagram showing a cross section of a general rigid solar cell module.
  • a laminated body in which a transparent protective material 5 made of a glass substrate, a filler sheet 8, a solar cell element B, a filler sheet 8, and a back surface protective material 6 are laminated in this order is vacuum-treated. It is thermocompression bonded by the laminating method.
  • the thickness of the solar cell element B is about 200 ⁇ m for a crystalline silicon solar cell or the like that does not use a base material, but about 2 mm for a thin film silicon solar cell or a compound solar cell. And relatively thick.
  • the present inventors tried to use a maleic anhydride-modified olefin resin as a resin constituting a solar cell module filler sheet (hereinafter also simply referred to as “filler sheet”).
  • the maleic anhydride-modified olefin-based resin can be melted by heating to be in close contact with the solar cell element, so that a solar cell module can be efficiently produced without requiring a crosslinking step as in EVA. Further, unlike the case where EVA is used, the light emitting layer and the transparent electrode layer of the solar cell element are not contaminated by the acetic acid contained therein.
  • maleic anhydride-modified olefin resin cannot solve the above-mentioned problem of voids, and there is also a problem of adhesion to a transparent protective material made of glass or a glass substrate.
  • the present inventors combined a specific maleic anhydride-modified olefin resin with a low-density polyethylene resin or a linear low-density polyethylene resin and a silane compound having a specific epoxy group, The inventors have found that it is possible to prevent the generation of voids during the production of a solar cell module and to improve the adhesion to a transparent protective material made of glass or a glass substrate, and the present invention has been completed.
  • the filler sheet of the present invention contains a maleic anhydride-modified olefin resin.
  • the maleic anhydride-modified olefin resin is a resin obtained by graft-modifying an ⁇ -olefin-ethylene copolymer with maleic anhydride.
  • the filler sheet of the present invention can be melted by heating to be in close contact with the solar cell element and sealed.
  • the ⁇ -olefin preferably has 3 to 10 carbon atoms, and more preferably 4 to 8 carbon atoms, in order to lower the melting point and improve flexibility by improving the amorphous nature of the resin.
  • Specific examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene. Of these, 1-butene, 1-hexene and 1-octene are preferable.
  • the ⁇ -olefin-ethylene copolymer is preferably a butene-ethylene copolymer, a hexene-ethylene copolymer, or an octene-ethylene copolymer.
  • the ⁇ -olefin-ethylene copolymer has an ⁇ -olefin content of 1 to 25% by weight.
  • the ⁇ -olefin content is less than 1% by weight, the flexibility of the filler sheet is lowered and the melting point thereof is increased, so that high-temperature heating is required for sealing the solar cell element.
  • the ⁇ -olefin content exceeds 25% by weight, the crystallinity or fluidity of the filler sheet is not uniform and distortion occurs, or the melting point of the filler sheet itself is too low. When held at a high temperature, it becomes difficult to maintain the shape, and as a result, the adhesion of the filler sheet to the solar cell element is reduced or deformed.
  • the preferable lower limit of the ⁇ -olefin content is 10% by weight, and the preferable upper limit is 20% by weight.
  • the content of the ⁇ -olefin in the ⁇ -olefin-ethylene copolymer can be determined from the spectrum integrated value of 13 C-NMR. Specifically, for example, when 1-butene is used, a spectral integral value derived from the 1-butene structure obtained in deuterated chloroform at around 10.9 ppm, 26.1 ppm, or 39.1 ppm, and around 26.9 ppm. , 29.7 ppm vicinity, 30.2 ppm vicinity, 33.4 ppm vicinity, it calculates using the spectrum integral value derived from the ethylene structure. For spectral attribution, known data such as a polymer analysis handbook (edited by the Analytical Society of Japan, published by Asakura Shoten, 2008) may be used.
  • a known method is used as a method of graft-modifying the ⁇ -olefin-ethylene copolymer with maleic anhydride, and includes, for example, the ⁇ -olefin-ethylene copolymer, maleic anhydride, and a radical polymerization initiator.
  • the obtained composition is supplied to an extruder and melt-kneaded to melt-modify the graft copolymer with maleic anhydride, or the ⁇ -olefin-ethylene copolymer is dissolved in a solvent to obtain a solution.
  • a solution modification method in which maleic anhydride and a radical polymerization initiator are added to the solution to graft polymerize maleic anhydride to the copolymer.
  • the melt modification method is preferable because it can be mixed with an extruder and has excellent productivity.
  • the radical polymerization initiator used in the graft modification method is not particularly limited as long as it is conventionally used for radical polymerization. Specific examples include benzoyl peroxide, cumene hydroperoxide, diisopropyl peroxydicarbonate, cumyl peroxyneodecanoate, cumyl peroxy octoate, azobisisobutyronitrile, and the like.
  • the maleic anhydride-modified olefin resin has a total maleic anhydride content of 0.1 to 3% by weight.
  • the total content of maleic anhydride is less than 0.1% by weight, the adhesiveness of the filler sheet to the solar cell element is lowered.
  • the total content of maleic anhydride exceeds 3% by weight, the maleic anhydride-modified olefin resin is cross-linked, and a gel is generated during the production of the filler sheet. Formability may be reduced.
  • the minimum with preferable total content of the said maleic anhydride is 0.2 weight%, and a preferable upper limit is 1.5 weight%, and it is more preferable that it is less than 1.0 weight%.
  • the total maleic anhydride content was determined from the absorption intensity around 1790 cm ⁇ 1 by preparing a test film using the maleic anhydride-modified olefin resin and measuring the infrared absorption spectrum of the test film. Can be calculated.
  • the total content of maleic anhydride in the maleic anhydride-modified olefin resin is, for example, FT-IR (Fourier Transform Infrared Spectrometer Nicolet 6700 FT-IR) Polymer Analysis Handbook ( It can be measured by a known measurement method described in the Japan Analytical Chemical Society, published by Asakura Shoten, 2008).
  • the maleic anhydride-modified olefin resin preferably has a maximum peak temperature (Tm) of an endothermic curve measured by differential scanning calorimetry of 80 to 125 ° C.
  • Tm maximum peak temperature
  • the maximum peak temperature (Tm) of the endothermic curve is more preferably 83 to 110 ° C.
  • the maximum peak temperature (Tm) of the endothermic curve measured by the differential scanning calorimetry can be measured according to the measurement method defined in JIS K7121.
  • the maleic anhydride-modified olefin resin preferably has a melt mass flow rate (MFR) of 0.5 g / 10 min to 29 g / 10 min. If the MFR is less than 0.5 g / 10 min, the sheet may remain distorted during curling of the filler sheet and curl. If it exceeds 29 g / 10 minutes, it tends to be drawn down during the production of the filler sheet, and it may be difficult to produce a sheet having a uniform thickness.
  • the MFR is more preferably 2 g / 10 min to 10 g / 10 min.
  • the MFR of the maleic anhydride-modified olefin resin means a value measured under conditions of a load of 2.16 kg and a temperature of 190 ° C. in accordance with ASTM D1238, JIS K7210 and the like.
  • the maleic anhydride-modified olefin resin preferably has a viscoelastic storage elastic modulus at 30 ° C. of 2 ⁇ 10 8 Pa or less.
  • a viscoelastic storage elastic modulus at 30 ° C. exceeds 2 ⁇ 10 8 Pa, the flexibility of the filler sheet is lowered and the handleability is lowered, or the solar cell element is sealed with the filler sheet and When manufacturing a battery module, it may be necessary to heat the filler sheet rapidly. If the viscoelastic storage elastic modulus at 30 ° C. is too low, the filler sheet may exhibit adhesiveness at room temperature and the handleability of the filler sheet may be lowered, so the lower limit is 1 ⁇ 10 7. Pa is preferred.
  • the upper limit is more preferably 1.5 ⁇ 10 8 Pa.
  • the maleic anhydride-modified olefin resin preferably has a viscoelastic storage elastic modulus at 100 ° C. of 5 ⁇ 10 6 Pa or less.
  • the viscoelastic storage elastic modulus at 100 ° C. exceeds 5 ⁇ 10 6 Pa, the adhesiveness of the filler sheet to the solar cell element may be reduced.
  • the viscoelastic storage elastic modulus at 100 ° C. is too low, when the solar cell element is produced by sealing the solar cell element with the filler sheet, the thickness of the filler sheet greatly flows due to the pressing force.
  • the lower limit is preferably 1 ⁇ 10 4 Pa because there is a risk that non-uniformization will increase.
  • the upper limit is more preferably 4 ⁇ 10 6 Pa.
  • the viscoelastic storage elastic modulus of the maleic anhydride-modified olefin resin refers to a value measured by a dynamic property test method based on JIS K6394.
  • the filler sheet of the present invention contains a low density polyethylene resin or a linear low density polyethylene resin.
  • the low-density polyethylene resin or linear low-density polyethylene resin has a role of imparting fluidity to the filler sheet of the present invention at the time of thermocompression bonding and preventing the generation of voids.
  • the low-density polyethylene resin or linear low-density polyethylene resin is excellent in affinity with the maleic anhydride-modified olefin resin, so that the transparency of the filler sheet is maintained even if both are used in combination. Thus, it is difficult to prevent sunlight from being transmitted to the solar cell element.
  • the low density polyethylene resin means a crystalline thermoplastic resin in which ethylene as a repeating unit is randomly branched and bonded.
  • the low density polyethylene resin has a soft property that the crystallization does not proceed so much due to its branched structure, and the melting point is relatively low.
  • the linear low-density polyethylene resin means that a repeating unit of ethylene and a small amount of ⁇ -olefin (for example, propylene, 1-butene, 1-hexene, 4-methylpentene, 1-octene, etc.) are used together. It means a polymerized thermoplastic resin.
  • a low density polyethylene resin and a linear low density polyethylene resin may be used independently, and may use both together.
  • the minimum with a preferable melt mass flow rate (MFR) is 20 g / 10min, and a preferable upper limit is 200 g / 10min.
  • MFR melt mass flow rate
  • the filler sheet can exhibit high fluidity during the thermocompression bonding in the manufacturing process of the solar cell element module to prevent the generation of voids and can exhibit high flexibility. If the MFR is less than 20 g / 10 min, the fluidity of the filler sheet at the time of thermocompression bonding becomes insufficient, and there is a possibility that voids are generated after modularization and durability is lowered.
  • MFR of the said low density polyethylene resin or a linear low density polyethylene resin means the value measured on conditions of load 2.16kg and temperature 190 degreeC based on ASTMD1238, JISK7210, etc.
  • the low density polyethylene resin or a linear low-density polyethylene resins preferable lower limit is 0.870 g / cm 3 of density, and the desirable upper limit is 0.920 g / cm 3.
  • the density is less than 0.870 g / cm 3 , the filler sheet is brittle and difficult to stretch, and other physical properties may be lowered.
  • the density exceeds 0.920 g / cm 3 , the transparency of the filler sheet may be reduced.
  • a more preferred lower limit of the density is 0.880 g / cm 3, and a more preferred upper limit is 0.915 g / cm 3.
  • the said density is a value obtained by the measuring method prescribed
  • the low density polyethylene resin or the linear low density polyethylene resin has a preferable lower limit of the melting point of 55 ° C. and a preferable upper limit of 110 ° C.
  • the melting point is lower than 55 ° C., when cooled after thermocompression bonding, the droplets aggregate and large crystals are formed, which may reduce transparency.
  • the melting point exceeds 110 ° C., when cooled after thermocompression bonding, large crystals may be formed first and transparency may be lowered.
  • fusing point is a value obtained by the measuring method prescribed
  • the low-density polyethylene resin or linear low-density polyethylene resin preferably has a haze value of 50% or less when the resin is molded into a sheet having a thickness of 700 ⁇ m. If the haze value exceeds 50%, the resulting filler sheet may be inferior in transparency.
  • the haze value is more preferably 30% or less.
  • the said haze value is a value obtained by the measuring method prescribed
  • the low-density polyethylene resin or linear low-density polyethylene resin preferably has a tensile elongation at break of 400% or more when the resin is molded into a sheet having a thickness of 700 ⁇ m. If the tensile elongation at break is less than 400%, the tensile elongation at break of the resulting filler sheet may be reduced.
  • the tensile elongation at break is more preferably 600% or more.
  • the tensile elongation at break is a value obtained by a measurement method defined in JIS K7162.
  • the lower limit of the content of the low-density polyethylene resin or linear low-density polyethylene resin is 100 parts by weight and the upper limit is 400 parts by weight with respect to 100 parts by weight of the maleic anhydride-modified olefin resin.
  • the content of the low-density polyethylene resin or linear low-density polyethylene resin is less than 100 parts by weight, sufficient fluidity can be imparted to the filler sheet during thermocompression bonding in the manufacturing process of the solar cell element module. It is not possible to prevent the generation of voids.
  • the preferable lower limit of the content of the low density polyethylene resin or the linear low density polyethylene resin is 120 parts by weight, the preferable upper limit is 300 parts by weight, the more preferable lower limit is 150 parts by weight, and the more preferable upper limit is 200 parts by weight. .
  • the filler sheet of the present invention contains a silane compound having an epoxy group represented by the general formula (I).
  • the silane compound not only improves the adhesion to a transparent protective material made of glass or a glass substrate, but also serves as a crosslinking agent for the maleic anhydride-modified olefin resin. That is, when the silane compound having an epoxy group represented by the general formula (I) is blended with the maleic anhydride-modified olefin resin, the maleic anhydride group and the epoxy group in the maleic anhydride-modified olefin resin are combined.
  • the epoxy group of the silane compound has a reaction and the silane compound is taken into the side chain of the resin.
  • the silane compounds in the side chains form siloxane bonds by hydrolysis condensation, and a crosslinked structure is formed between the resins.
  • a crosslinked structure between the resins the elastic modulus at high temperature of the filler sheet of the present invention is improved, and high high temperature and high humidity durability can be realized.
  • R 1 represents a 3-glycidoxypropyl group or a 2- (3,4-epoxycyclohexyl) ethyl group.
  • a 2- (3,4-epoxycyclohexyl) ethyl group is preferable because higher durability at high temperature and high humidity can be realized.
  • R 2 is not particularly limited as long as it is an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. And a methyl group is more preferable.
  • R 3 is not particularly limited as long as it is an alkyl group having 1 to 3 carbon atoms. Examples thereof include a methyl group, an ethyl group, and a propyl group, and a methyl group is preferable.
  • Examples of the silane compound having an epoxy group represented by the general formula (I) include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltrimethoxysilane. 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane and the like.
  • the lower limit of the content of the silane compound having an epoxy group represented by the general formula (I) is 0.1 parts by weight and the upper limit is 100 parts by weight of the maleic anhydride-modified olefin resin. 3.0 parts by weight.
  • the minimum with preferable content of the silane compound which has an epoxy group represented by the said general formula (I) is 0.2 weight part, a preferable upper limit is 1.0 weight part, A more preferable minimum is 0.3 weight part, A more preferred upper limit is 0.8 parts by weight.
  • the filler sheet of the present invention may further contain other additives as long as the physical properties thereof are not impaired.
  • the other additives include UV stabilizers, plasticizers, fillers, colorants, pigments, antioxidants, antistatic agents, surfactants, toning liquids, refractive index matching additives, and dispersion aids. Agents and the like.
  • the filler sheet of the present invention has a preferable lower limit of thickness of 200 ⁇ m and a preferable upper limit of 1000 ⁇ m.
  • the thickness is less than 200 ⁇ m, the gap shown in 7 of FIG. 1 is likely to occur during thermocompression bonding in the manufacturing process of the solar cell element module, and the load on the solar cell element due to the pressure is increased. There is a risk of insufficiency and durability and power generation performance degradation.
  • the thickness exceeds 1000 ⁇ m, the resin may protrude during thermocompression bonding in the manufacturing process of the solar cell element module.
  • a more preferable lower limit of the thickness is 300 ⁇ m, and a more preferable upper limit is 700 ⁇ m.
  • the filler sheet of the present invention preferably has a tensile elongation at break of 700% or more. If the tensile elongation at break is less than 700%, the adhesive strength may decrease due to cohesive failure.
  • the tensile elongation at break is more preferably 1000% or more. In this specification, the tensile elongation at break is a value obtained by a measurement method defined in JIS K7162.
  • the filler sheet of the present invention has a preferred lower limit of tensile tensile modulus of 50 MPa and a preferred upper limit of 150 MPa.
  • the tensile tensile modulus is less than 50 MPa, the stress to be peeled concentrates on the interface between the filler sheet and the solar cell element, or the interface between the filler sheet and the transparent protective material, and peels due to cohesive failure. Is likely to occur.
  • the tensile tensile modulus exceeds 150 MPa, it becomes brittle and peeling due to cracking breakage easily occurs with respect to the stress to be peeled off.
  • a more preferable lower limit of the tensile tensile modulus is 60 MPa, and a more preferable upper limit is 130 MPa.
  • the tensile rupture modulus is a value obtained by a measurement method defined in JIS K7162.
  • the filler sheet of the present invention has a thermal dimensional change rate before and after vacuum laminating under the conditions for sealing solar cell elements in the sheet forming direction and the sheet width direction of -10% or more and 10% or less. Preferably there is.
  • the thermal dimensional change rate within this range, the durability of the solar cell can be further improved without generating excessive internal stress in the solar cell after sealing.
  • the sealing of the solar cell element was obtained by, for example, laminating a transparent protective material, a solar cell module filler sheet, a solar cell element, a solar cell module filler sheet, and a back surface protective material in this order.
  • the laminate is heated by applying a pressing force in the thickness direction under reduced pressure (vacuum lamination).
  • the vacuum lamination conditions for sealing the solar cell element are generally that vacuum pressing is performed at 120 ° C. for 300 seconds after heating and degassing at 80 ° C. for 150 seconds.
  • the method for producing the filler sheet of the present invention includes the maleic anhydride-modified olefin resin, the low density polyethylene resin or the linear low density polyethylene resin, and the silane having an epoxy group represented by the general formula (I).
  • Examples include a method in which a compound and an additive to be blended as necessary are supplied to an extruder at a predetermined weight ratio, melted and kneaded, and extruded into a sheet from the extruder.
  • the extrusion conditions in the extruder are performed at a resin temperature at which the viscoelastic storage elastic modulus of the filler sheet is 1 ⁇ 10 5 Pa or less, and the extrusion sheet is wound while being cooled by a cooling roll cooled to, for example, 20 ° C. or less.
  • a resin temperature at which the viscoelastic storage elastic modulus of the filler sheet is 1 ⁇ 10 5 Pa or less
  • the extrusion sheet is wound while being cooled by a cooling roll cooled to, for example, 20 ° C. or less.
  • a solar cell element can be sealed to produce a solar cell module.
  • the solar cell element is generally composed of a photoelectric conversion layer in which electrons are generated by receiving light, an electrode layer for taking out the generated electrons, and a heat resistant substrate.
  • the photoelectric conversion layer examples include crystal semiconductors such as single crystal silicon, single crystal germanium, polycrystalline silicon, and microcrystalline silicon, amorphous semiconductors such as amorphous silicon, GaAs, InP, AlGaAs, Cds, CdTe, and Cu 2. Examples thereof include compounds formed from compound semiconductors such as S, CuInSe 2 and CuInS 2 , and organic semiconductors such as phthalocyanine and polyacetylene.
  • the photoelectric conversion layer may be a single layer or a multilayer. The thickness of the photoelectric conversion layer is preferably 0.1 to 200 ⁇ m.
  • the heat-resistant substrate is a glass substrate that can withstand the process of laminating photoelectric conversion layers and electrode materials, and does not contain a substance that contaminates the photoelectric conversion layer when used as a solar cell. If it is, it will not specifically limit, For example, the glass substrate which consists of soda-lime glass etc., the resin substrate which consists of a polyimide film etc., the metal substrate which consists of stainless steel foil etc. are mentioned.
  • the thickness of the glass substrate is preferably 0.1 to 3 mm.
  • the electrode layer is a layer made of an electrode material.
  • the electrode layer may be on the photoelectric conversion layer, between the photoelectric conversion layer and the glass substrate, or on the glass substrate surface as necessary. Further, the solar cell element may have a plurality of the electrode layers.
  • the electrode material is preferably a general transparent electrode material such as a metal oxide. Although it does not specifically limit as said transparent electrode material, ITO or ZnO etc. are used suitably.
  • the bus electrode or the finger electrode attached thereto may be patterned with a metal such as silver.
  • the electrode layer on the back side (back side) does not need to be transparent and may be made of a general electrode material, but silver is preferably used as the electrode material.
  • the method for producing the solar cell element is not particularly limited as long as it is a publicly known method.
  • a method of forming a pn junction surface on a silicon wafer and printing the electrode after baking, or the method described above on the glass substrate It can be formed by a known method such as a method of arranging a photoelectric conversion layer or an electrode layer.
  • Examples of the method for sealing the solar cell element using the filler sheet of the present invention include a transparent protective material, the solar cell module filler sheet of the present invention, the solar cell element, and the solar cell module filling of the present invention.
  • the laminated body obtained by laminating the material sheet and the back surface protective material in this order is heated in a stationary state under reduced pressure while applying a pressing force in the thickness direction to the solar cell element for the solar cell module.
  • bonding a filler material sheet is mentioned.
  • a transparent protective material is laminated
  • the step of heating the laminate while applying a pressing force in the thickness direction under reduced pressure can be performed using a conventionally known apparatus such as a vacuum laminator.
  • seat are good to use the rectangular thing adjusted to the desired magnitude
  • the transparent protective material, the solar cell module filler sheet of the present invention, the solar cell element, the solar cell module filler sheet of the present invention, and the back surface protective material are laminated in this order to obtain a laminate, and obtained.
  • a method for producing a solar cell module comprising: heating the laminated body under reduced pressure while applying a pressing force in a thickness direction thereof, and crimping the solar cell module filler sheet to the solar cell element. It is one of the present inventions.
  • the step of heating the laminate while applying a pressing force in the thickness direction under reduced pressure is preferably performed in a reduced pressure atmosphere of 1000 Pa or less, and more preferably in a reduced pressure atmosphere of 80 to 1000 Pa.
  • the laminate is preferably heated to 100 to 170 ° C., more preferably 130 to 160 ° C.
  • the heating time is preferably 1 to 15 minutes, and more preferably 2 to 5 minutes.
  • the said transparent protective material is a layer which can become the outermost layer by the side of the light-receiving surface of the photoelectric converting layer of a solar cell module. It is preferable that the said transparent protective material consists of glass at the point which is excellent in transparency, heat resistance, and a flame retardance.
  • the thickness of the transparent protective material is preferably 0.1 to 5 mm, and more preferably 1.0 to 3.5 mm.
  • the back surface protective material is a layer that can be the outermost layer on the back surface side of the solar cell module (that is, the side opposite to the light receiving surface of the photoelectric conversion layer).
  • the said back surface protection material may consist of resin sheets, such as glass, stainless steel, a polyvinyl fluoride / polyester / polyvinyl fluoride laminated sheet, a polyester / aluminum / polyester laminated sheet, in the point which is excellent in water vapor
  • the said back surface protection material does not need to be especially transparent.
  • the thickness of the back surface protective material is preferably 0.1 to 5 mm, and more preferably 1.0 to 3.5 mm.
  • the thickness of the back surface protective material is preferably 10 to 500 ⁇ m, and more preferably 100 to 300 ⁇ m.
  • the transparent protective material preferably has an embossed shape on the outermost surface.
  • emboss shape By having the said emboss shape, the reflection loss of sunlight can be reduced, glare can be prevented, and an external appearance can be improved.
  • the embossed shape may be a regular uneven shape or a random uneven shape.
  • the embossed shape is a step of embossing before the transparent protective material is bonded to the solar cell element, embossing after bonding to the solar cell element, or bonding with the solar cell element. You may mold at the same time.
  • the transparent protective material or the back protective material may have an adhesive layer on one surface.
  • the transparent protective material or the back surface protective material is laminated so that the adhesive layer is in contact with the laminated body on the laminated body in which the solar cell module filler sheet of the present invention is laminated above and below the photoelectric conversion layer. Thereby, sealing can be made more reliable.
  • the adhesive layer is not particularly limited as long as it is made of a known component as a sealing material for a solar cell element, but the adhesion of the above-described filler sheet is further enhanced in terms of further improving the adhesiveness with the filler sheet of the present invention. It is preferable that it consists of the same component as an agent layer.
  • the thickness of the adhesive layer is preferably 10 to 200 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the solar cell element and the filler are excellent in adhesiveness, durability, and heat resistance with the transparent protective material and the solar cell element.
  • Formation of a solar cell module filler material sheet capable of preventing generation of voids between the sheet and reducing deterioration of the solar cell, and a solar cell module manufacturing method using the solar cell module filler material sheet Can be provided.
  • Example 1 100% by weight of a maleic anhydride-modified olefin resin in which a butene-ethylene copolymer having a butene content of 16% by weight is graft-modified with maleic anhydride and the total maleic anhydride content is 0.9% by weight
  • linear low-density polyethylene resin A 100 parts by weight listed in Table 1 below
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (trade name “Z6043” manufactured by Toray Dow Corning) 0.6 part by weight was supplied to an extruder, melt-kneaded at 250 ° C., and extruded to obtain a filler sheet having a thickness of 500 ⁇ m.
  • a solar cell module was manufactured by the following method using the obtained filler sheet.
  • a solar cell element in which a photoelectric conversion layer made of thin-film CIGS is formed on a glass substrate (manufactured by Asahi Glass Co., Ltd., blue plate float glass), and a filler sheet obtained in Examples and Comparative Examples.
  • a material cut into a predetermined shape was prepared.
  • a transparent protective material made of glass, a filler sheet, a solar cell element, a filler sheet, and a back surface protective material are laminated in this order, and after heating and degassing at 80 ° C. for 150 seconds, 120 Vacuum lamination was performed under the conditions of pressing at 300 ° C. for 300 seconds to produce a solar cell module.
  • Examples 2 to 25, Comparative Examples 1 to 8 A filler sheet and a solar cell module were produced in the same manner as in Example 1 except that the compositions shown in Tables 2 to 6 were used.
  • the values of density, MFR, melting point, elongation at break and haze of the low density polyethylene resin or linear low density polyethylene resin shown in Tables 2 to 6 are shown in Table 1.
  • Example 26 100% by weight of a maleic anhydride-modified olefin resin in which a butene-ethylene copolymer having a butene content of 16% by weight is graft-modified with maleic anhydride and the total maleic anhydride content is 0.9% by weight
  • 400 parts by weight of low density polyethylene resin N manufactured by Nippon Polyethylene Co., Ltd., “Kernel KS340T”
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane manufactured by Dow Corning Toray, trade name “Z6043”)
  • Z6043 Dow Corning Toray
  • Example 27 A filler sheet and a solar cell module were produced in the same manner as in Example 26 except that the amount of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 0.2 parts by weight.
  • the solar cell element and the filler are excellent in adhesiveness, durability, and heat resistance with the transparent protective material and the solar cell element.
  • Formation of a solar cell module filler material sheet capable of preventing generation of voids between the sheet and reducing deterioration of the solar cell, and a solar cell module manufacturing method using the solar cell module filler material sheet Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

The purpose of the present invention is to provide: a filler sheet for solar cell modules, which exhibits excellent durability, heat resistance and adhesion to a transparent protective material or to a solar cell element, and which is capable of preventing the formation of a gap between a solar cell element and the filler sheet even in cases where a rigid or flexible solar cell module is manufactured by a vacuum lamination method, and which enables the reduction in deterioration of a solar cell; and a method for manufacturing a solar cell module, which uses the filler sheet for solar cell modules. The present invention is a filler sheet for solar cell modules, which contains: 100 parts by weight of a maleic acid anhydride-modified olefin resin that is obtained by graft-modifying an α-olefin/ethylene copolymer having an α-olefin content of 1-25% by weight with maleic acid anhydride and has a total maleic acid anhydride content of 0.1-3% by weight; 100-400 parts by weight of a low-density polyethylene resin or a linear low-density polyethylene resin; and 0.1-3.0 parts by weight of a silane compound having an epoxy group represented by general formula (I). In general formula (I), R1 represents a 3-glycidoxypropyl group or a 2-(3,4-epoxycyclohexyl)ethyl group; R2 represents an alkyl group having 1-3 carbon atoms; R3 represents an alkyl group having 1-3 carbon atoms; and n represents 0 or 1.

Description

太陽電池モジュール用充填材シート及び太陽電池モジュールの製造方法Filler sheet for solar cell module and method for producing solar cell module
本発明は、透明保護材や太陽電池素子との接着性、耐久性及び耐熱性に優れ、真空ラミネート法によりリジッドやフレキシブルな太陽電池モジュールを製造した場合にでも、太陽電池素子と充填材シートとの間に空隙が発生するのを防止することができ、太陽電池の劣化を低減できる太陽電池モジュール用充填材シート、及び、該太陽電池モジュール用充填材シートを用いる太陽電池モジュールの製造方法に関する。 The present invention is excellent in adhesion, durability and heat resistance with a transparent protective material and a solar cell element, and even when a rigid or flexible solar cell module is manufactured by a vacuum laminating method, the solar cell element and the filler sheet The present invention relates to a solar cell module filler sheet that can prevent voids from being generated between the solar cell module and the solar cell module, and a solar cell module manufacturing method using the solar cell module filler sheet.
近年、環境問題やエネルギー問題に対する意識が高まる中、クリーンなエネルギー源として太陽電池が注目されており、現在、種々の形態からなる太陽電池モジュールが開発され、提案されている。例えば、ガラス等を基材とするリジッドな太陽電池モジュールや、ポリイミドやポリエステル系の耐熱高分子材料やステンレス薄膜を基材とするフレキシブルな太陽電池モジュール等が知られている。 In recent years, solar cells have been attracting attention as a clean energy source as the awareness of environmental issues and energy issues has increased. Currently, solar cell modules having various forms have been developed and proposed. For example, a rigid solar cell module based on glass or the like, a flexible solar cell module based on a polyimide or polyester heat-resistant polymer material or a stainless thin film, and the like are known.
このような太陽電池モジュールは、一般に、透明保護材、充填材シート、光起電力素子としての太陽電池素子、充填材シート、及び、裏面保護材等で構成される。
そして、これらの部材を予め所望の形状に切断したうえで積層し、これらを静止状態にて真空ラミネートによって積層一体化する方法(真空ラミネート法)により製造される。真空ラミネート法は、特にガラス等を基材とするリジッドな太陽電池モジュールの製造に適している。
Such a solar cell module is generally composed of a transparent protective material, a filler sheet, a solar cell element as a photovoltaic element, a filler sheet, a back surface protective material, and the like.
Then, these members are manufactured by a method (vacuum laminating method) in which these members are cut into a desired shape in advance and laminated, and these are laminated and integrated by vacuum lamination in a stationary state. The vacuum laminating method is particularly suitable for manufacturing a rigid solar cell module using glass or the like as a base material.
太陽電池モジュールにおいて、上記充填材シートは、太陽電池が太陽光を吸収して発電を行う太陽電池素子を保護するための層であり、かつ、太陽電池素子と、太陽電池モジュールの性能維持や強度、耐久性を保持するための透明保護材、裏面保護材とを接着させるための層である。このため、上記充填材シートは、太陽電池素子や透明保護材、裏面保護材との接着性や、充填材シート自体の耐久性及び耐熱性等が必要とされる。また、上記真空ラミネート法やロールツーロール法の製造工程で、シワ等が発生せず、太陽電池素子を好適に封止して太陽電池モジュールを製造できる、ラミネート適性も必要とされる。 In the solar cell module, the filler sheet is a layer for protecting the solar cell element in which the solar cell absorbs sunlight and generates electric power, and also maintains the performance and strength of the solar cell element and the solar cell module. And a layer for adhering a transparent protective material for maintaining durability and a back surface protective material. For this reason, the said filler sheet | seat needs the adhesiveness with a solar cell element, a transparent protective material, and a back surface protective material, durability, heat resistance, etc. of filler material itself. Further, in the production process of the vacuum laminating method or the roll-to-roll method, there is no need for wrinkles or the like, and there is also a need for laminating properties that can produce a solar cell module by suitably sealing solar cell elements.
このような充填材シートとしては、従来からエチレン-酢酸ビニル樹脂(EVA)が使用されてきた(特許文献1)。EVAは、太陽電池素子と接着させる工程において架橋させることにより優れた耐熱性を発揮することもできる。しかしながら、この架橋工程のために、製造時間が長くなってしまうという問題があった。また、EVA中に含まれる酢酸が、太陽電池素子の発光層や透明電極層を汚染するという問題もあった。 Conventionally, ethylene-vinyl acetate resin (EVA) has been used as such a filler sheet (Patent Document 1). EVA can also exhibit excellent heat resistance by crosslinking in the step of bonding to the solar cell element. However, this cross-linking process has a problem that the manufacturing time becomes long. Moreover, there also existed a problem that the acetic acid contained in EVA contaminates the light emitting layer and transparent electrode layer of a solar cell element.
このため、充填材シートとして、非EVA系の樹脂の使用が検討されていた。
例えば、特許文献2には、α-オレフィンとエチレン性不飽和シラン化合物との共重合体又はその変性ないし縮合体と、耐光材、紫外線吸収剤、及び熱安定剤からなる群から選択された1種ないし2種以上とを含む樹脂組成物による樹脂膜を、太陽電池素子の表面側と裏面側に積層する充填材シートとして用いることが記載されている。
For this reason, the use of a non-EVA resin has been studied as a filler sheet.
For example, Patent Document 2 discloses 1 selected from the group consisting of a copolymer of an α-olefin and an ethylenically unsaturated silane compound or a modified or condensed product thereof, a light-resistant material, an ultraviolet absorber, and a heat stabilizer. It is described that a resin film made of a resin composition containing seeds or two or more kinds is used as a filler sheet that is laminated on the front surface side and the back surface side of a solar cell element.
本発明者らは、現在までに提案されている非EVA系の樹脂からなる充填材シートを検討した。しかしながら、これらの従来の非EVA系の樹脂からなる充填材シートでは、太陽電池素子への接着性と高い耐熱性とを、短い製造時間の中で両立させることは困難であった。また、従来の非EVA系の樹脂からなる充填材シートを用いて真空ラミネート法によりリジッドやフレキシブルな太陽電池モジュールを製造した場合、太陽電池素子と充填材シートとの間に空隙が発生し、得られた太陽電池モジュールの耐久性や外観が劣ることがあるという問題があった。更に、ガラスからなる透明保護材やガラス基材に対して充分な接着性が得られないことがあるという問題もあった。 The present inventors examined a filler sheet made of a non-EVA resin that has been proposed so far. However, in the conventional filler sheet made of non-EVA resin, it is difficult to achieve both adhesion to the solar cell element and high heat resistance within a short manufacturing time. In addition, when a rigid or flexible solar cell module is manufactured by a vacuum laminating method using a conventional filler sheet made of non-EVA resin, a gap is generated between the solar cell element and the filler sheet, There is a problem that the durability and appearance of the obtained solar cell module may be inferior. Furthermore, there is a problem that sufficient adhesiveness may not be obtained for a transparent protective material made of glass or a glass substrate.
特開平7-297439号公報JP 7-297439 A 特開2004-214641号公報JP 2004-214641 A
本発明は、上記現状に鑑み、透明保護材や太陽電池素子との接着性、耐久性及び耐熱性に優れ、真空ラミネート法によりリジッドやフレキシブルな太陽電池モジュールを製造した場合にでも、太陽電池素子と充填材シートとの間に空隙が発生するのを防止することができ、太陽電池の劣化を低減できる太陽電池モジュール用充填材シート、及び、該太陽電池モジュール用充填材シートを用いる太陽電池モジュールの製造方法を提供することを目的とする。 In view of the above situation, the present invention has excellent adhesion, durability, and heat resistance with a transparent protective material and a solar cell element, and even when a rigid or flexible solar cell module is manufactured by a vacuum laminating method, the solar cell element And a filler sheet for a solar cell module that can prevent a void from being generated and reduce deterioration of the solar cell, and a solar cell module using the filler sheet for a solar cell module It aims at providing the manufacturing method of.
本発明は、αオレフィン含有量が1~25重量%であるαオレフィン-エチレン共重合体が無水マレイン酸でグラフト変性され、かつ、無水マレイン酸の総含有量が0.1~3重量%である無水マレイン酸変性オレフィン系樹脂100重量部と、低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂100~400重量部と、下記一般式(I)で表されるエポキシ基を有するシラン化合物0.1~3.0重量部とを含有する太陽電池モジュール用充填材シートである。 In the present invention, an α-olefin-ethylene copolymer having an α-olefin content of 1 to 25% by weight is graft-modified with maleic anhydride, and the total content of maleic anhydride is 0.1 to 3% by weight. 100 parts by weight of a certain maleic anhydride-modified olefin resin, 100 to 400 parts by weight of a low density polyethylene resin or linear low density polyethylene resin, and a silane compound having an epoxy group represented by the following general formula (I): A solar cell module filler sheet containing 1 to 3.0 parts by weight.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(I)中、Rは、3-グリシドキシプロピル基又は2-(3,4-エポキシシクロヘキシル)エチル基を示し、Rは、炭素数が1~3であるアルキル基を示し、Rは、炭素数が1~3であるアルキル基を示し、かつ、nは0又は1である。
以下に本発明を詳述する。
In the formula (I), R 1 represents a 3-glycidoxypropyl group or a 2- (3,4-epoxycyclohexyl) ethyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms, R 3 represents an alkyl group having 1 to 3 carbon atoms, and n is 0 or 1.
The present invention is described in detail below.
図1に一般的なリジッドな太陽電池モジュールの断面を表す模式図を示す。図1に示したリジッドな太陽電池モジュールでは、ガラス基材からなる透明保護材5、充填材シート8、太陽電池素子B、充填材シート8、裏面保護材6の順に積層した積層体を、真空ラミネート法により熱圧着している。ここで、リジッドな太陽電池モジュールにおいては、太陽電池素子Bの厚さは、基材を用いない結晶シリコン太陽電池等では200μm程度であるものの、薄膜シリコン太陽電池や化合物系太陽電池では約2mm程度と、比較的厚い。従来の非EVA系の樹脂からなる充填材シート8を用いて真空ラミネート法によりリジッドな太陽電池モジュールを製造した場合、熱圧着時における充填材シートの流動性が不足して充分に太陽電池素子に追従できないことから空隙7が発生したものと考えられた(図1)。 FIG. 1 is a schematic diagram showing a cross section of a general rigid solar cell module. In the rigid solar cell module shown in FIG. 1, a laminated body in which a transparent protective material 5 made of a glass substrate, a filler sheet 8, a solar cell element B, a filler sheet 8, and a back surface protective material 6 are laminated in this order is vacuum-treated. It is thermocompression bonded by the laminating method. Here, in the rigid solar cell module, the thickness of the solar cell element B is about 200 μm for a crystalline silicon solar cell or the like that does not use a base material, but about 2 mm for a thin film silicon solar cell or a compound solar cell. And relatively thick. When a rigid solar cell module is manufactured by a vacuum laminating method using a conventional filler sheet 8 made of a non-EVA resin, the fluidity of the filler sheet at the time of thermocompression bonding is insufficient, so that the solar cell element can be sufficiently used. It was considered that the void 7 was generated because it could not follow (FIG. 1).
本発明者らは、太陽電池モジュール用充填材シート(以下、単に「充填材シート」ともいう。)を構成する樹脂として無水マレイン酸変性オレフィン系樹脂を用いることを試みた。無水マレイン酸変性オレフィン系樹脂は、加熱することにより溶融して太陽電池素子に密着し得ることから、EVAのように架橋工程を要することなく効率的に太陽電池モジュールを製造することができる。また、EVAを用いた場合のように、含有される酢酸によって太陽電池素子の発光層や透明電極層が汚染されることもない。しかしながら、無水マレイン酸変性オレフィン系樹脂を用いても、上記空隙の発生の問題は解決することができず、また、ガラスからなる透明保護材やガラス基材に対する接着性の問題もあった。
これに対して本発明者らは、特定の無水マレイン酸変性オレフィン系樹脂に、低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂と、特定のエポキシ基を有するシラン化合物とを併用することにより、太陽電池モジュール製造時の空隙の発生を防止するとともに、ガラスからなる透明保護材やガラス基材に対する接着性を向上させることができることを見出し、本発明を完成した。
The present inventors tried to use a maleic anhydride-modified olefin resin as a resin constituting a solar cell module filler sheet (hereinafter also simply referred to as “filler sheet”). The maleic anhydride-modified olefin-based resin can be melted by heating to be in close contact with the solar cell element, so that a solar cell module can be efficiently produced without requiring a crosslinking step as in EVA. Further, unlike the case where EVA is used, the light emitting layer and the transparent electrode layer of the solar cell element are not contaminated by the acetic acid contained therein. However, the use of maleic anhydride-modified olefin resin cannot solve the above-mentioned problem of voids, and there is also a problem of adhesion to a transparent protective material made of glass or a glass substrate.
On the other hand, the present inventors combined a specific maleic anhydride-modified olefin resin with a low-density polyethylene resin or a linear low-density polyethylene resin and a silane compound having a specific epoxy group, The inventors have found that it is possible to prevent the generation of voids during the production of a solar cell module and to improve the adhesion to a transparent protective material made of glass or a glass substrate, and the present invention has been completed.
本発明の充填材シートは、無水マレイン酸変性オレフィン系樹脂を含有する。上記無水マレイン酸変性オレフィン系樹脂は、α-オレフィン-エチレン共重合体が無水マレイン酸でグラフト変性された樹脂である。本発明の充填材シートは、無水マレイン酸変性オレフィン系樹脂を含有することにより、加熱により溶融して太陽電池素子に密着し、これを封止することができる。 The filler sheet of the present invention contains a maleic anhydride-modified olefin resin. The maleic anhydride-modified olefin resin is a resin obtained by graft-modifying an α-olefin-ethylene copolymer with maleic anhydride. By containing the maleic anhydride-modified olefin-based resin, the filler sheet of the present invention can be melted by heating to be in close contact with the solar cell element and sealed.
上記α-オレフィンは、樹脂の非晶性向上による低融点化、柔軟化のため、炭素数が3~10であることが好ましく、炭素数が4~8であることがより好ましい。
上記α-オレフィンは、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。なかでも、1-ブテン、1-ヘキセン、1-オクテンが好ましい。
上記α-オレフィン-エチレン共重合体は、ブテン-エチレン共重合体、ヘキセン-エチレン共重合体、オクテン-エチレン共重合体が好ましい。
The α-olefin preferably has 3 to 10 carbon atoms, and more preferably 4 to 8 carbon atoms, in order to lower the melting point and improve flexibility by improving the amorphous nature of the resin.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene. Of these, 1-butene, 1-hexene and 1-octene are preferable.
The α-olefin-ethylene copolymer is preferably a butene-ethylene copolymer, a hexene-ethylene copolymer, or an octene-ethylene copolymer.
上記α-オレフィン-エチレン共重合体は、α-オレフィン含有量が1~25重量%である。上記α-オレフィン含有量が1重量%未満であると、充填材シートの柔軟性が低下するとともに、その融点が高くなるため、太陽電池素子の封止に高温加熱が必要となる。上記α-オレフィン含有量が25重量%を超えると、充填材シートの結晶性又は流動性が不均一となって歪みが生じたり、充填材シート自体の融点が低くなりすぎるため、太陽電池素子を高温に保持した場合形状を保持することが難しくなり、その結果、充填材シートの太陽電池素子に対する接着性が低下したり、変形したりする。上記α-オレフィン含有量の好ましい下限は10重量%、好ましい上限は20重量%である。 The α-olefin-ethylene copolymer has an α-olefin content of 1 to 25% by weight. When the α-olefin content is less than 1% by weight, the flexibility of the filler sheet is lowered and the melting point thereof is increased, so that high-temperature heating is required for sealing the solar cell element. When the α-olefin content exceeds 25% by weight, the crystallinity or fluidity of the filler sheet is not uniform and distortion occurs, or the melting point of the filler sheet itself is too low. When held at a high temperature, it becomes difficult to maintain the shape, and as a result, the adhesion of the filler sheet to the solar cell element is reduced or deformed. The preferable lower limit of the α-olefin content is 10% by weight, and the preferable upper limit is 20% by weight.
上記α-オレフィン-エチレン共重合体における上記α-オレフィンの含有量については、13C-NMRのスペクトル積分値により求めることができる。具体的には、例えば1-ブテンを用いた場合、重クロロホルム中で10.9ppm付近や26.1ppm付近、39.1ppm付近に得られる1-ブテン構造由来のスペクトル積分値と、26.9ppm付近、29.7ppm付近、30.2ppm付近、33.4ppm付近に得られるエチレン構造由来のスペクトル積分値を用いて算出する。スペクトルの帰属については高分子分析ハンドブック(日本分析化学会編、朝倉書店発行、2008年)等の既知データーを利用するとよい。 The content of the α-olefin in the α-olefin-ethylene copolymer can be determined from the spectrum integrated value of 13 C-NMR. Specifically, for example, when 1-butene is used, a spectral integral value derived from the 1-butene structure obtained in deuterated chloroform at around 10.9 ppm, 26.1 ppm, or 39.1 ppm, and around 26.9 ppm. , 29.7 ppm vicinity, 30.2 ppm vicinity, 33.4 ppm vicinity, it calculates using the spectrum integral value derived from the ethylene structure. For spectral attribution, known data such as a polymer analysis handbook (edited by the Analytical Society of Japan, published by Asakura Shoten, 2008) may be used.
上記α-オレフィン-エチレン共重合体を無水マレイン酸でグラフト変性する方法は、公知の方法が用いられ、例えば、上記α-オレフィン-エチレン共重合体と無水マレイン酸とラジカル重合開始剤とを含有した組成物を、押出機に供給して溶融混練して、上記共重合体に無水マレイン酸をグラフト重合させる溶融変性法や、上記α-オレフィン-エチレン共重合体を溶媒に溶解させて溶解液を作製し、この溶解液に無水マレイン酸及びラジカル重合開始剤を添加して上記共重合体に無水マレイン酸をグラフト重合させる溶液変性法等が挙げられる。なかでも、押出機で混合でき生産性に優れることから、上記溶融変性法が好ましい。 A known method is used as a method of graft-modifying the α-olefin-ethylene copolymer with maleic anhydride, and includes, for example, the α-olefin-ethylene copolymer, maleic anhydride, and a radical polymerization initiator. The obtained composition is supplied to an extruder and melt-kneaded to melt-modify the graft copolymer with maleic anhydride, or the α-olefin-ethylene copolymer is dissolved in a solvent to obtain a solution. And a solution modification method in which maleic anhydride and a radical polymerization initiator are added to the solution to graft polymerize maleic anhydride to the copolymer. Among these, the melt modification method is preferable because it can be mixed with an extruder and has excellent productivity.
上記グラフト変性する方法において使用するラジカル重合開始剤は、従来からラジカル重合に用いられているものであれば特に限定されない。具体的には例えば、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシジカーボネート、クミルパーオキシネオデカノエート、クミルパーオキシオクトエート、アゾビスイソブチロニトリル等が挙げられる。 The radical polymerization initiator used in the graft modification method is not particularly limited as long as it is conventionally used for radical polymerization. Specific examples include benzoyl peroxide, cumene hydroperoxide, diisopropyl peroxydicarbonate, cumyl peroxyneodecanoate, cumyl peroxy octoate, azobisisobutyronitrile, and the like.
上記無水マレイン酸変性オレフィン系樹脂は、無水マレイン酸の総含有量が0.1~3重量%である。上記無水マレイン酸の総含有量が0.1重量%未満であると、充填材シートの太陽電池素子に対する接着性が低下する。上記無水マレイン酸の総含有量が3重量%を超えると、無水マレイン酸変性オレフィン系樹脂が架橋して、充填材シートの製造時にゲルが発生して製造ができなくなったり、充填材シートの押出成形性が低下したりする。上記無水マレイン酸の総含有量の好ましい下限は0.2重量%、好ましい上限は1.5重量%であり、1.0重量%未満であることがより好ましい。 The maleic anhydride-modified olefin resin has a total maleic anhydride content of 0.1 to 3% by weight. When the total content of maleic anhydride is less than 0.1% by weight, the adhesiveness of the filler sheet to the solar cell element is lowered. When the total content of maleic anhydride exceeds 3% by weight, the maleic anhydride-modified olefin resin is cross-linked, and a gel is generated during the production of the filler sheet. Formability may be reduced. The minimum with preferable total content of the said maleic anhydride is 0.2 weight%, and a preferable upper limit is 1.5 weight%, and it is more preferable that it is less than 1.0 weight%.
なお、上記無水マレイン酸の総含有量は、上記無水マレイン酸変性オレフィン系樹脂を用いて試験フィルムを作製し、上記試験フィルムの赤外吸収スペクトルを測定して、1790cm-1付近の吸収強度から算出することができる。具体的には、上記無水マレイン酸変性オレフィン系樹脂中における無水マレイン酸の総含有量は、例えば、FT-IR(フーリエ変換赤外分光装置 Nicolet 6700 FT-IR)を用いて高分子分析ハンドブック(日本分析化学会編、朝倉書店発行、2008年)等に記載された既知の測定方法で測定することができる。 The total maleic anhydride content was determined from the absorption intensity around 1790 cm −1 by preparing a test film using the maleic anhydride-modified olefin resin and measuring the infrared absorption spectrum of the test film. Can be calculated. Specifically, the total content of maleic anhydride in the maleic anhydride-modified olefin resin is, for example, FT-IR (Fourier Transform Infrared Spectrometer Nicolet 6700 FT-IR) Polymer Analysis Handbook ( It can be measured by a known measurement method described in the Japan Analytical Chemical Society, published by Asakura Shoten, 2008).
上記無水マレイン酸変性オレフィン系樹脂は、示差走査熱量分析により測定した吸熱曲線の最大ピーク温度(Tm)が80~125℃であることが好ましい。上記吸熱曲線の最大ピーク温度(Tm)が80℃より低いと、充填材シートの耐熱性が低下するおそれがある。上記吸熱曲線の最大ピーク温度(Tm)が125℃より高いと、封止工程における充填材シートの加熱時間が長くなって生産性が低下したり、又は、太陽電池素子の封止が不充分となったりするおそれがある。上記吸熱曲線の最大ピーク温度(Tm)は、83~110℃であることがより好ましい。
なお、上記示差走査熱量分析により測定した吸熱曲線の最大ピーク温度(Tm)は、JIS K7121に規定されている測定方法に準拠して測定することができる。
The maleic anhydride-modified olefin resin preferably has a maximum peak temperature (Tm) of an endothermic curve measured by differential scanning calorimetry of 80 to 125 ° C. When the maximum peak temperature (Tm) of the endothermic curve is lower than 80 ° C, the heat resistance of the filler sheet may be lowered. When the maximum peak temperature (Tm) of the endothermic curve is higher than 125 ° C., the heating time of the filler sheet in the sealing process becomes long and the productivity is lowered, or the sealing of the solar cell element is insufficient. There is a risk of becoming. The maximum peak temperature (Tm) of the endothermic curve is more preferably 83 to 110 ° C.
In addition, the maximum peak temperature (Tm) of the endothermic curve measured by the differential scanning calorimetry can be measured according to the measurement method defined in JIS K7121.
上記無水マレイン酸変性オレフィン系樹脂は、メルトマスフローレート(MFR)が0.5g/10分~29g/10分であることが好ましい。上記MFRが0.5g/10分未満であると、充填材シートの製造時にシートに歪が残り、カールするおそれがある。29g/10分を超えると、充填材シート製造時にドローダウンしやすくなり均一な厚みのシートを製造することが難しいことがある。上記MFRは、2g/10分~10g/10分であることがより好ましい。
なお、上記無水マレイン酸変性オレフィン系樹脂のMFRは、ASTM D1238やJIS K7210等に準拠して、荷重2.16kg、温度190℃の条件で測定した値を意味する。
The maleic anhydride-modified olefin resin preferably has a melt mass flow rate (MFR) of 0.5 g / 10 min to 29 g / 10 min. If the MFR is less than 0.5 g / 10 min, the sheet may remain distorted during curling of the filler sheet and curl. If it exceeds 29 g / 10 minutes, it tends to be drawn down during the production of the filler sheet, and it may be difficult to produce a sheet having a uniform thickness. The MFR is more preferably 2 g / 10 min to 10 g / 10 min.
The MFR of the maleic anhydride-modified olefin resin means a value measured under conditions of a load of 2.16 kg and a temperature of 190 ° C. in accordance with ASTM D1238, JIS K7210 and the like.
上記無水マレイン酸変性オレフィン系樹脂は、30℃での粘弾性貯蔵弾性率が2×10Pa以下であることが好ましい。上記30℃での粘弾性貯蔵弾性率が2×10Paを超えると、充填材シートの柔軟性が低下して取扱性が低下したり、太陽電池素子を充填材シートによって封止して太陽電池モジュールを製造する際に、充填材シートを急激に加熱する必要が生じたりするおそれがある。上記30℃での粘弾性貯蔵弾性率は、低すぎると、上記充填材シートが室温にて接着性を発現して充填材シートの取扱性が低下することがあるため、下限は1×10Paであることが好ましい。また、上限は1.5×10Paがより好ましい。 The maleic anhydride-modified olefin resin preferably has a viscoelastic storage elastic modulus at 30 ° C. of 2 × 10 8 Pa or less. When the viscoelastic storage elastic modulus at 30 ° C. exceeds 2 × 10 8 Pa, the flexibility of the filler sheet is lowered and the handleability is lowered, or the solar cell element is sealed with the filler sheet and When manufacturing a battery module, it may be necessary to heat the filler sheet rapidly. If the viscoelastic storage elastic modulus at 30 ° C. is too low, the filler sheet may exhibit adhesiveness at room temperature and the handleability of the filler sheet may be lowered, so the lower limit is 1 × 10 7. Pa is preferred. The upper limit is more preferably 1.5 × 10 8 Pa.
上記無水マレイン酸変性オレフィン系樹脂は、100℃での粘弾性貯蔵弾性率が5×10Pa以下であることが好ましい。上記100℃での粘弾性貯蔵弾性率が5×10Paを超えると、充填材シートの太陽電池素子に対する接着性が低下するおそれがある。上記100℃での粘弾性貯蔵弾性率は、低すぎると、充填材シートによって太陽電池素子を封止して太陽電池モジュールを製造する際に、充填材シートが押圧力によって大きく流動して厚みの不均一化が大きくなるおそれがあるため、下限は1×10Paであることが好ましい。また、上限は4×10Paがより好ましい。
なお、上記無水マレイン酸変性オレフィン系樹脂の粘弾性貯蔵弾性率は、JIS K6394に準拠した動的性質試験方法によって測定された値をいう。
The maleic anhydride-modified olefin resin preferably has a viscoelastic storage elastic modulus at 100 ° C. of 5 × 10 6 Pa or less. When the viscoelastic storage elastic modulus at 100 ° C. exceeds 5 × 10 6 Pa, the adhesiveness of the filler sheet to the solar cell element may be reduced. When the viscoelastic storage elastic modulus at 100 ° C. is too low, when the solar cell element is produced by sealing the solar cell element with the filler sheet, the thickness of the filler sheet greatly flows due to the pressing force. The lower limit is preferably 1 × 10 4 Pa because there is a risk that non-uniformization will increase. The upper limit is more preferably 4 × 10 6 Pa.
The viscoelastic storage elastic modulus of the maleic anhydride-modified olefin resin refers to a value measured by a dynamic property test method based on JIS K6394.
本発明の充填材シートは、低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂を含有する。上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、本発明の充填材シートに、加熱圧着時における流動性を付与し、空隙の発生を防止する役割を有する。また、上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、上記無水マレイン酸変性オレフィン系樹脂との親和性に優れることから、両者を混合して用いても充填材シートの透明性が維持され、太陽電池素子への太陽光の透過を妨げにくい。
本明細書において低密度ポリエチレン樹脂とは、繰り返し単位のエチレンがランダムに分岐を持って結合した結晶性の熱可塑性樹脂を意味する。上記低密度ポリエチレン樹脂は、その分岐構造から結晶化があまり進まず、比較的融点が低く柔らかい性質を有する。
本明細書において直鎖状低密度ポリエチレン樹脂とは、繰り返し単位のエチレンと若干量のα‐オレフィン(例えば、プロピレン、1-ブテン、1-ヘキセン、4-メチルペンテン、1-オクテン等)を共重合させた熱可塑性樹脂を意味する。
なお、低密度ポリエチレン樹脂と直鎖状低密度ポリエチレン樹脂とは、単独で用いてもよく、両者を併用してもよい。
The filler sheet of the present invention contains a low density polyethylene resin or a linear low density polyethylene resin. The low-density polyethylene resin or linear low-density polyethylene resin has a role of imparting fluidity to the filler sheet of the present invention at the time of thermocompression bonding and preventing the generation of voids. The low-density polyethylene resin or linear low-density polyethylene resin is excellent in affinity with the maleic anhydride-modified olefin resin, so that the transparency of the filler sheet is maintained even if both are used in combination. Thus, it is difficult to prevent sunlight from being transmitted to the solar cell element.
In the present specification, the low density polyethylene resin means a crystalline thermoplastic resin in which ethylene as a repeating unit is randomly branched and bonded. The low density polyethylene resin has a soft property that the crystallization does not proceed so much due to its branched structure, and the melting point is relatively low.
In this specification, the linear low-density polyethylene resin means that a repeating unit of ethylene and a small amount of α-olefin (for example, propylene, 1-butene, 1-hexene, 4-methylpentene, 1-octene, etc.) are used together. It means a polymerized thermoplastic resin.
In addition, a low density polyethylene resin and a linear low density polyethylene resin may be used independently, and may use both together.
上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、メルトマスフローレート(MFR)の好ましい下限が20g/10分、好ましい上限が200g/10分である。MFRがこの範囲内であると、太陽電池素子モジュールの製造工程における熱圧着時において充填材シートが高い流動性を発揮して空隙の発生を防止できるとともに、高い柔軟性を発揮することができる。上記MFRが20g/10分未満であると、熱圧着時における充填材シートの流動性が不充分となりモジュール化した後に空隙が発生して耐久性が低下するおそれがある。上記MFRが200g/10分を超えると、充填材シートの柔軟性が低下し、脆くて伸びにくくなり、取扱い性に劣るおそれがある。また、熱圧着時に樹脂が流出してカバーガラスやバックシートを汚染したり、耐熱性が低下したり、厚みが不均一になったりするおそれがある。上記MFRのより好ましい下限は30g/10分、より好ましい上限は150g/10分である。
なお、上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂のMFRは、ASTM D1238やJIS K7210等に準拠して、荷重2.16kg、温度190℃の条件で測定した値を意味する。
As for the said low density polyethylene resin or a linear low density polyethylene resin, the minimum with a preferable melt mass flow rate (MFR) is 20 g / 10min, and a preferable upper limit is 200 g / 10min. When the MFR is within this range, the filler sheet can exhibit high fluidity during the thermocompression bonding in the manufacturing process of the solar cell element module to prevent the generation of voids and can exhibit high flexibility. If the MFR is less than 20 g / 10 min, the fluidity of the filler sheet at the time of thermocompression bonding becomes insufficient, and there is a possibility that voids are generated after modularization and durability is lowered. When the MFR exceeds 200 g / 10 minutes, the flexibility of the filler sheet is lowered, the brittle sheet is brittle and hardly stretched, and the handleability may be inferior. Further, the resin may flow out during thermocompression bonding, contaminating the cover glass or the back sheet, reducing the heat resistance, or causing the thickness to be uneven. The more preferable lower limit of the MFR is 30 g / 10 minutes, and the more preferable upper limit is 150 g / 10 minutes.
In addition, MFR of the said low density polyethylene resin or a linear low density polyethylene resin means the value measured on conditions of load 2.16kg and temperature 190 degreeC based on ASTMD1238, JISK7210, etc. FIG.
上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、密度の好ましい下限が0.870g/cm、好ましい上限が0.920g/cmである。上記密度が0.870g/cm未満であると、充填材シートが脆くて伸びにくくなり、その他の物性も低下するおそれがある。上記密度が0.920g/cmを超えると、充填材シートの透明性が低下するおそれがある。上記密度のより好ましい下限は0.880g/cm、より好ましい上限は0.915g/cmである。
なお上記密度は、JIS K7112(プラスチックの密度と比重の測定方法)に規定されている測定方法により得られる値である。
The low density polyethylene resin or a linear low-density polyethylene resins, preferable lower limit is 0.870 g / cm 3 of density, and the desirable upper limit is 0.920 g / cm 3. When the density is less than 0.870 g / cm 3 , the filler sheet is brittle and difficult to stretch, and other physical properties may be lowered. When the density exceeds 0.920 g / cm 3 , the transparency of the filler sheet may be reduced. A more preferred lower limit of the density is 0.880 g / cm 3, and a more preferred upper limit is 0.915 g / cm 3.
In addition, the said density is a value obtained by the measuring method prescribed | regulated to JISK7112 (The measuring method of the density and specific gravity of a plastic).
上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、融点の好ましい下限が55℃、好ましい上限が110℃である。上記融点が55℃未満であると、熱圧着後に冷却したときに、液滴が凝集、大結晶が形成されて透明性が低下するおそれがある。上記融点が110℃を超えると、熱圧着後に冷却したときに、先に大結晶が形成されて透明性が低下するおそれがある。
なお上記融点は、JIS K7121に規定されている測定方法により得られる値である。
The low density polyethylene resin or the linear low density polyethylene resin has a preferable lower limit of the melting point of 55 ° C. and a preferable upper limit of 110 ° C. When the melting point is lower than 55 ° C., when cooled after thermocompression bonding, the droplets aggregate and large crystals are formed, which may reduce transparency. When the melting point exceeds 110 ° C., when cooled after thermocompression bonding, large crystals may be formed first and transparency may be lowered.
In addition, the said melting | fusing point is a value obtained by the measuring method prescribed | regulated to JISK7121.
上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、樹脂単体で厚さ700μmのシート状に成形したときの、該シートのヘイズ値が50%以下であることが好ましい。上記ヘイズ値が50%を超えると、得られる充填材シートの透明性が劣ることがある。上記ヘイズ値は、30%以下であることがより好ましい。
なお上記ヘイズ値は、JIS K7136に規定されている測定方法により得られる値である。
The low-density polyethylene resin or linear low-density polyethylene resin preferably has a haze value of 50% or less when the resin is molded into a sheet having a thickness of 700 μm. If the haze value exceeds 50%, the resulting filler sheet may be inferior in transparency. The haze value is more preferably 30% or less.
In addition, the said haze value is a value obtained by the measuring method prescribed | regulated to JISK7136.
上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂は、樹脂単体で厚さ700μmのシート状に成形したときの、該シートの引張破断伸びが400%以上であることが好ましい。上記引張破断伸びが400%未満であると、得られる充填材シートの引張破断伸びが低下するおそれがある。上記引張破断伸びは、600%以上であることがより好ましい。
なお上記引張破断伸びは、JIS K7162に規定されている測定方法により得られる値である。
The low-density polyethylene resin or linear low-density polyethylene resin preferably has a tensile elongation at break of 400% or more when the resin is molded into a sheet having a thickness of 700 μm. If the tensile elongation at break is less than 400%, the tensile elongation at break of the resulting filler sheet may be reduced. The tensile elongation at break is more preferably 600% or more.
The tensile elongation at break is a value obtained by a measurement method defined in JIS K7162.
本発明の充填材シートにおいて、上記無水マレイン酸変性オレフィン系樹脂100重量部に対する上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂の含有量の下限は100重量部、上限は400重量部である。上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂の含有量が100重量部未満であると、太陽電池素子モジュールの製造工程における熱圧着時において充填材シートに充分な流動性を付与することができず、空隙の発生を防止することができない。上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂の含有量が400重量部を超えると、充填材シートの太陽電池素子に対する接着性が低下し、耐久性が劣る。上記低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂の含有量の好ましい下限は120重量部、好ましい上限は300重量部であり、より好ましい下限は150重量部、より好ましい上限は200重量部である。 In the filler sheet of the present invention, the lower limit of the content of the low-density polyethylene resin or linear low-density polyethylene resin is 100 parts by weight and the upper limit is 400 parts by weight with respect to 100 parts by weight of the maleic anhydride-modified olefin resin. . When the content of the low-density polyethylene resin or linear low-density polyethylene resin is less than 100 parts by weight, sufficient fluidity can be imparted to the filler sheet during thermocompression bonding in the manufacturing process of the solar cell element module. It is not possible to prevent the generation of voids. When content of the said low density polyethylene resin or linear low density polyethylene resin exceeds 400 weight part, the adhesiveness with respect to the solar cell element of a filler sheet will fall, and durability will be inferior. The preferable lower limit of the content of the low density polyethylene resin or the linear low density polyethylene resin is 120 parts by weight, the preferable upper limit is 300 parts by weight, the more preferable lower limit is 150 parts by weight, and the more preferable upper limit is 200 parts by weight. .
本発明の充填材シートは、上記一般式(I)で表されるエポキシ基を有するシラン化合物を含有する。上記シラン化合物は、ガラスからなる透明保護材やガラス基材に対する接着性を向上させるだけでなく、上記無水マレイン酸変性オレフィン系樹脂に対する架橋剤としての役割も果たす。即ち、上記無水マレイン酸変性オレフィン系樹脂に上記一般式(I)で表されるエポキシ基を有するシラン化合物を配合すると、上記無水マレイン酸変性オレフィン系樹脂中の無水マレイン酸基と、エポキシ基を有するシラン化合物のエポキシ基とが反応してシラン化合物が樹脂の側鎖に取り込まれる。更に、該側鎖のシラン化合物同士が加水分解縮合によりシロキサン結合を形成して、樹脂間に架橋構造が形成される。樹脂間に架橋構造が形成されることにより、本発明の充填材シートの高温での弾性率が向上して、高い高温高湿耐久性を実現することができる。 The filler sheet of the present invention contains a silane compound having an epoxy group represented by the general formula (I). The silane compound not only improves the adhesion to a transparent protective material made of glass or a glass substrate, but also serves as a crosslinking agent for the maleic anhydride-modified olefin resin. That is, when the silane compound having an epoxy group represented by the general formula (I) is blended with the maleic anhydride-modified olefin resin, the maleic anhydride group and the epoxy group in the maleic anhydride-modified olefin resin are combined. The epoxy group of the silane compound has a reaction and the silane compound is taken into the side chain of the resin. Further, the silane compounds in the side chains form siloxane bonds by hydrolysis condensation, and a crosslinked structure is formed between the resins. By forming a crosslinked structure between the resins, the elastic modulus at high temperature of the filler sheet of the present invention is improved, and high high temperature and high humidity durability can be realized.
上記式(I)中、Rは、3-グリシドキシプロピル基又は2-(3,4-エポキシシクロヘキシル)エチル基を示す。なかでも、より高い高温高湿耐久性を実現できることから、2-(3,4-エポキシシクロヘキシル)エチル基が好適である。 In the above formula (I), R 1 represents a 3-glycidoxypropyl group or a 2- (3,4-epoxycyclohexyl) ethyl group. Of these, a 2- (3,4-epoxycyclohexyl) ethyl group is preferable because higher durability at high temperature and high humidity can be realized.
上記式(I)中、Rとしては、炭素数が1~3であるアルキル基であれば、特に限定されず、例えば、メチル基、エチル基、プロピル基が挙げられ、メチル基及びエチル基が好ましく、メチル基がより好ましい。
上記式(I)中、Rとしては、炭素数が1~3であるアルキル基であれば、特に限定されず、例えば、メチル基、エチル基、プロピル基が挙げられ、メチル基が好ましい。
In the above formula (I), R 2 is not particularly limited as long as it is an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. And a methyl group is more preferable.
In the above formula (I), R 3 is not particularly limited as long as it is an alkyl group having 1 to 3 carbon atoms. Examples thereof include a methyl group, an ethyl group, and a propyl group, and a methyl group is preferable.
上記一般式(I)で示されるエポキシ基を有するシラン化合物としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン等が挙げられる。 Examples of the silane compound having an epoxy group represented by the general formula (I) include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltrimethoxysilane. 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane and the like.
本発明の充填材シートにおいて、上記無水マレイン酸変性オレフィン系樹脂100重量部に対する上記一般式(I)で表されるエポキシ基を有するシラン化合物の含有量の下限は0.1重量部、上限は3.0重量部である。上記一般式(I)で表されるエポキシ基を有するシラン化合物の含有量がこの範囲外であると、本発明の充填材シートの接着性が低下するおそれがある。上記一般式(I)で表されるエポキシ基を有するシラン化合物の含有量の好ましい下限は0.2重量部、好ましい上限は1.0重量部であり、より好ましい下限は0.3重量部、より好ましい上限は0.8重量部である。 In the filler sheet of the present invention, the lower limit of the content of the silane compound having an epoxy group represented by the general formula (I) is 0.1 parts by weight and the upper limit is 100 parts by weight of the maleic anhydride-modified olefin resin. 3.0 parts by weight. There exists a possibility that the adhesiveness of the filler sheet of this invention may fall that content of the silane compound which has an epoxy group represented by the said general formula (I) is outside this range. The minimum with preferable content of the silane compound which has an epoxy group represented by the said general formula (I) is 0.2 weight part, a preferable upper limit is 1.0 weight part, A more preferable minimum is 0.3 weight part, A more preferred upper limit is 0.8 parts by weight.
本発明の充填材シートは、その物性を損わない範囲内において、他の添加剤を更に含有していてもよい。上記他の添加剤としては、例えば、UV安定剤、可塑剤、充填剤、着色剤、顔料、抗酸化剤、帯電防止剤、界面活性剤、調色液、屈折率マッチング用添加剤及び分散助剤等が挙げられる。 The filler sheet of the present invention may further contain other additives as long as the physical properties thereof are not impaired. Examples of the other additives include UV stabilizers, plasticizers, fillers, colorants, pigments, antioxidants, antistatic agents, surfactants, toning liquids, refractive index matching additives, and dispersion aids. Agents and the like.
本発明の充填材シートは、厚みの好ましい下限が200μm、好ましい上限が1000μmである。上記厚みが200μm未満であると、太陽電池素子モジュールの製造工程における熱圧着時において、図1の7に示す空隙が発生しやすく、圧着圧力による太陽電池素子への負荷も大きくなることから、接着性及び耐久性不足や発電性能低下のおそれがある。1000μmを超えると、太陽電池素子モジュールの製造工程における熱圧着時において、樹脂のはみ出しが発生するおそれがある。上記厚みのより好ましい下限は300μm、より好ましい上限は700μmである。 The filler sheet of the present invention has a preferable lower limit of thickness of 200 μm and a preferable upper limit of 1000 μm. When the thickness is less than 200 μm, the gap shown in 7 of FIG. 1 is likely to occur during thermocompression bonding in the manufacturing process of the solar cell element module, and the load on the solar cell element due to the pressure is increased. There is a risk of insufficiency and durability and power generation performance degradation. When the thickness exceeds 1000 μm, the resin may protrude during thermocompression bonding in the manufacturing process of the solar cell element module. A more preferable lower limit of the thickness is 300 μm, and a more preferable upper limit is 700 μm.
本発明の充填材シートは、引張破断伸びが700%以上であることが好ましい。上記引張破断伸びが700%未満であると、凝集破壊によって接着強度が低下することがある。上記引張破断伸びは、1000%以上であることがより好ましい。
本明細書において引張破断伸びは、JIS K7162に規定されている測定方法により得られる値である。
The filler sheet of the present invention preferably has a tensile elongation at break of 700% or more. If the tensile elongation at break is less than 700%, the adhesive strength may decrease due to cohesive failure. The tensile elongation at break is more preferably 1000% or more.
In this specification, the tensile elongation at break is a value obtained by a measurement method defined in JIS K7162.
本発明の充填材シートは、引張引弾性率の好ましい下限が50MPa、好ましい上限が150MPaである。上記引張引弾性率が50MPa未満であると、剥離しようとする応力が、充填材シートと太陽電池素子の界面、又は、充填材シートと透明保護材との界面に集中して、凝集破壊による剥離が生じやすくなる。上記引張引弾性率が150MPaを超えると、脆くなって、剥離しようとする応力に対して割れ破壊による剥離が生じやすくなる。上記引張引弾性率のより好ましい下限は60MPa、より好ましい上限は130MPaである。
本明細書において引張破断弾性率は、JIS K7162に規定されている測定方法により得られる値である。
The filler sheet of the present invention has a preferred lower limit of tensile tensile modulus of 50 MPa and a preferred upper limit of 150 MPa. When the tensile tensile modulus is less than 50 MPa, the stress to be peeled concentrates on the interface between the filler sheet and the solar cell element, or the interface between the filler sheet and the transparent protective material, and peels due to cohesive failure. Is likely to occur. When the tensile tensile modulus exceeds 150 MPa, it becomes brittle and peeling due to cracking breakage easily occurs with respect to the stress to be peeled off. A more preferable lower limit of the tensile tensile modulus is 60 MPa, and a more preferable upper limit is 130 MPa.
In this specification, the tensile rupture modulus is a value obtained by a measurement method defined in JIS K7162.
本発明の充填材シートは、太陽電池素子を封止する際の条件で真空ラミネートを行った前後での熱寸法変化率が、シート成形方向及びシート幅方向ともに-10%以上、10%以下であることが好ましい。上記熱寸法変化率をこの範囲内とすることにより、封止後の太陽電池に過大な内部応力が発生することなく、太陽電池の耐久性をより向上させることができる。
なお、太陽電池素子の封止は、例えば、透明保護材、太陽電池モジュール用充填材シート、太陽電池素子、太陽電池モジュール用充填材シート、及び、裏面保護材をこの順に積層して得られた積層体を減圧下で、その厚み方向に押圧力を加えながら加熱する方法により行う(真空ラミネート)。上記太陽電池素子を封止する際の真空ラミネートの条件は、80℃、150秒加温及び脱気した後、120℃、300秒で真空プレスを行うことが一般的である。
The filler sheet of the present invention has a thermal dimensional change rate before and after vacuum laminating under the conditions for sealing solar cell elements in the sheet forming direction and the sheet width direction of -10% or more and 10% or less. Preferably there is. By setting the thermal dimensional change rate within this range, the durability of the solar cell can be further improved without generating excessive internal stress in the solar cell after sealing.
The sealing of the solar cell element was obtained by, for example, laminating a transparent protective material, a solar cell module filler sheet, a solar cell element, a solar cell module filler sheet, and a back surface protective material in this order. The laminate is heated by applying a pressing force in the thickness direction under reduced pressure (vacuum lamination). The vacuum lamination conditions for sealing the solar cell element are generally that vacuum pressing is performed at 120 ° C. for 300 seconds after heating and degassing at 80 ° C. for 150 seconds.
本発明の充填材シートを製造する方法としては、上記無水マレイン酸変性オレフィン系樹脂、低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂、上記一般式(I)で表されるエポキシ基を有するシラン化合物、及び、必要に応じて配合する添加剤を所定の重量割合にて押出機に供給して溶融、混練し、押出機からシート状に押出して形成する方法等が挙げられる。
とりわけ、上記押出機における押出し条件を、充填材シートの粘弾性貯蔵弾性率が1×10Pa以下となる樹脂温度で行い、押出し後に例えば20℃以下に冷却した冷却ロールにより冷却しながら巻き取ることにより、充填材シートの粘弾性貯蔵弾性率が5×10Pa以上となるような方法により充填材シートを製造した場合には、得られた充填剤シートの太陽電池素子を封止する際の条件で真空ラミネートを行った前後での熱寸法変化率をシート成形方向及びシート幅方向ともに-10%以上、10%以下にすることができる。
なお、上記充填材シートの粘弾性貯蔵弾性率は、JIS K6394に準拠した動的性質試験方法によって測定された値をいう。
The method for producing the filler sheet of the present invention includes the maleic anhydride-modified olefin resin, the low density polyethylene resin or the linear low density polyethylene resin, and the silane having an epoxy group represented by the general formula (I). Examples include a method in which a compound and an additive to be blended as necessary are supplied to an extruder at a predetermined weight ratio, melted and kneaded, and extruded into a sheet from the extruder.
In particular, the extrusion conditions in the extruder are performed at a resin temperature at which the viscoelastic storage elastic modulus of the filler sheet is 1 × 10 5 Pa or less, and the extrusion sheet is wound while being cooled by a cooling roll cooled to, for example, 20 ° C. or less. Thus, when the filler sheet is produced by a method such that the viscoelastic storage elastic modulus of the filler sheet is 5 × 10 6 Pa or more, the solar cell element of the obtained filler sheet is sealed. The rate of thermal dimensional change before and after vacuum lamination under the above conditions can be set to −10% or more and 10% or less in both the sheet forming direction and the sheet width direction.
In addition, the viscoelastic storage elastic modulus of the said filler sheet means the value measured by the dynamic property test method based on JISK6394.
本発明の充填材シートを用い、太陽電池素子を封止して、太陽電池モジュールを製造することができる。
上記太陽電池素子は、一般に、受光することで電子が発生する光電変換層、発生した電子を取り出す電極層、及び、耐熱性基板から構成される。
Using the filler sheet of the present invention, a solar cell element can be sealed to produce a solar cell module.
The solar cell element is generally composed of a photoelectric conversion layer in which electrons are generated by receiving light, an electrode layer for taking out the generated electrons, and a heat resistant substrate.
上記光電変換層としては、例えば、単結晶シリコン、単結晶ゲルマニウム、多結晶シリコン、微結晶シリコン等の結晶系半導体、アモルファスシリコン等のアモルファス系半導体、GaAs、InP、AlGaAs、Cds、CdTe、CuS、CuInSe、CuInS等の化合物半導体、フタロシアニン、ポリアセチレン等の有機半導体等から形成されたものを挙げることができる。
上記光電変換層は、単層又は複層であってもよい。
上記光電変換層の厚みは、0.1~200μmであることが好ましい。
Examples of the photoelectric conversion layer include crystal semiconductors such as single crystal silicon, single crystal germanium, polycrystalline silicon, and microcrystalline silicon, amorphous semiconductors such as amorphous silicon, GaAs, InP, AlGaAs, Cds, CdTe, and Cu 2. Examples thereof include compounds formed from compound semiconductors such as S, CuInSe 2 and CuInS 2 , and organic semiconductors such as phthalocyanine and polyacetylene.
The photoelectric conversion layer may be a single layer or a multilayer.
The thickness of the photoelectric conversion layer is preferably 0.1 to 200 μm.
上記耐熱性基板としては、光電変換層や電極材が積層されるプロセスに耐え得る耐熱性基板であって、太陽電池として用いたときに上記光電変換層を汚染するような物質を含まないガラス基板であれば特に限定されず、例えば、ソーダーライムガラス等からなるガラス基板や、ポリイミドフィルム等からなる樹脂基板や、ステンレス箔等からなる金属基板等が挙げられる。
上記ガラス基板の厚みは、0.1~3mmであることが好ましい。
The heat-resistant substrate is a glass substrate that can withstand the process of laminating photoelectric conversion layers and electrode materials, and does not contain a substance that contaminates the photoelectric conversion layer when used as a solar cell. If it is, it will not specifically limit, For example, the glass substrate which consists of soda-lime glass etc., the resin substrate which consists of a polyimide film etc., the metal substrate which consists of stainless steel foil etc. are mentioned.
The thickness of the glass substrate is preferably 0.1 to 3 mm.
上記電極層は、電極材料からなる層である。
上記電極層は、必要に応じて、上記光電変換層上にあってもよいし、上記光電変換層とガラス基板との間にあってもよいし、上記ガラス基板面上にあってもよい。
また、上記太陽電池素子は、上記電極層を複数有していてもよい。
受光面側(表面)の電極層は、透明である必要があるため、上記電極材料としては、金属酸化物等の一般的な透明電極材料であることが好ましい。上記透明電極材料としては、特に限定されないが、ITO又はZnO等が好適に使用される。
透明電極を使用しない場合は、バス電極やそれに付属するフィンガー電極を銀等の金属でパターニングしたものであってもよい。
背面側(裏面)の電極層は、透明である必要はないため、一般的な電極材料によって構成されて構わないが、上記電極材料としては、銀が好適に用いられる。
The electrode layer is a layer made of an electrode material.
The electrode layer may be on the photoelectric conversion layer, between the photoelectric conversion layer and the glass substrate, or on the glass substrate surface as necessary.
Further, the solar cell element may have a plurality of the electrode layers.
Since the electrode layer on the light receiving surface side (surface) needs to be transparent, the electrode material is preferably a general transparent electrode material such as a metal oxide. Although it does not specifically limit as said transparent electrode material, ITO or ZnO etc. are used suitably.
When the transparent electrode is not used, the bus electrode or the finger electrode attached thereto may be patterned with a metal such as silver.
The electrode layer on the back side (back side) does not need to be transparent and may be made of a general electrode material, but silver is preferably used as the electrode material.
上記太陽電池素子を製造する方法としては、公知の方法であれば、特に限定されず、例えば、シリコンウェハにpn接合面を作成して電極を印刷後焼成する方法や、上記ガラス基板上に上記光電変換層や電極層を配置する方法等の公知の方法により形成することができる。 The method for producing the solar cell element is not particularly limited as long as it is a publicly known method. For example, a method of forming a pn junction surface on a silicon wafer and printing the electrode after baking, or the method described above on the glass substrate It can be formed by a known method such as a method of arranging a photoelectric conversion layer or an electrode layer.
本発明の充填材シートを用いて、太陽電池素子を封止する方法としては、例えば、透明保護材、本発明の太陽電池モジュール用充填材シート、太陽電池素子、本発明の太陽電池モジュール用充填材シート、及び、裏面保護材をこの順に積層して得られた積層体を、静止状態で、減圧下で、その厚み方向に押圧力を加えながら加熱して、太陽電池素子に太陽電池モジュール用充填材シートを圧着させる方法(真空ラミネート法)が挙げられる。なお、光電変換層の受光面側に透明保護材を積層する一方、裏面側には裏面保護材を積層しない態様も挙げられる。
上記積層体を、減圧下で、その厚み方向に押圧力を加えながら加熱する工程は、真空ラミネータ等の従来公知の装置を用いて行うことができる。
上記太陽電池素子、及び、上記太陽電池モジュール用充填材シートは、予め、所望の大きさに調整された矩形状のものを用いるとよい。
透明保護材、本発明の太陽電池モジュール用充填材シート、太陽電池素子、本発明の太陽電池モジュール用充填材シート、及び、裏面保護材をこの順に積層して積層体を得る工程と、得られた積層体を減圧下で、その厚み方向に押圧力を加えながら加熱して、上記太陽電池素子に上記太陽電池モジュール用充填材シートを圧着させる工程とを有する太陽電池モジュールの製造方法もまた、本発明の1つである。
Examples of the method for sealing the solar cell element using the filler sheet of the present invention include a transparent protective material, the solar cell module filler sheet of the present invention, the solar cell element, and the solar cell module filling of the present invention. The laminated body obtained by laminating the material sheet and the back surface protective material in this order is heated in a stationary state under reduced pressure while applying a pressing force in the thickness direction to the solar cell element for the solar cell module. The method (vacuum laminating method) of crimping | bonding a filler material sheet is mentioned. In addition, while a transparent protective material is laminated | stacked on the light-receiving surface side of a photoelectric converting layer, the aspect which does not laminate | stack a back surface protective material on the back surface side is also mentioned.
The step of heating the laminate while applying a pressing force in the thickness direction under reduced pressure can be performed using a conventionally known apparatus such as a vacuum laminator.
The said solar cell element and the said solar cell module filler sheet | seat are good to use the rectangular thing adjusted to the desired magnitude | size previously.
The transparent protective material, the solar cell module filler sheet of the present invention, the solar cell element, the solar cell module filler sheet of the present invention, and the back surface protective material are laminated in this order to obtain a laminate, and obtained. A method for producing a solar cell module, comprising: heating the laminated body under reduced pressure while applying a pressing force in a thickness direction thereof, and crimping the solar cell module filler sheet to the solar cell element. It is one of the present inventions.
上記積層体を、減圧下で、その厚み方向に押圧力を加えながら加熱する工程は、1000Pa以下の減圧雰囲気下で行うのが好ましく、80~1000Paの減圧雰囲気下で行うのがより好ましい。
上記加熱する工程は、上記積層体を好ましくは100~170℃、より好ましくは130~160℃に加熱する。また、その加熱時間は、1~15分が好ましく、2~5分がより好ましい。
The step of heating the laminate while applying a pressing force in the thickness direction under reduced pressure is preferably performed in a reduced pressure atmosphere of 1000 Pa or less, and more preferably in a reduced pressure atmosphere of 80 to 1000 Pa.
In the heating step, the laminate is preferably heated to 100 to 170 ° C., more preferably 130 to 160 ° C. The heating time is preferably 1 to 15 minutes, and more preferably 2 to 5 minutes.
上記透明保護材は、太陽電池モジュールの光電変換層の受光面側の最外層となり得る層である。
上記透明保護材は、透明性、耐熱性及び難燃性に優れる点で、ガラスからなることが好ましい。
上記透明保護材がガラスからなる場合、上記透明保護材の厚みは0.1~5mmであることが好ましく、1.0~3.5mmであることがより好ましい。
The said transparent protective material is a layer which can become the outermost layer by the side of the light-receiving surface of the photoelectric converting layer of a solar cell module.
It is preferable that the said transparent protective material consists of glass at the point which is excellent in transparency, heat resistance, and a flame retardance.
When the transparent protective material is made of glass, the thickness of the transparent protective material is preferably 0.1 to 5 mm, and more preferably 1.0 to 3.5 mm.
上記裏面保護材は、太陽電池モジュールの裏面側(即ち、光電変換層の受光面とは反対側)の最外層となり得る層である。
上記裏面保護材は、水蒸気バリア性や耐候性に優れる点で、ガラスや、ステンレスや、ポリフッ化ビニル/ポリエステル/ポリフッ化ビニル積層シート、ポリエステル/アルミ/ポリエステル積層シート等の樹脂シートからなることが好ましい。なお、上記裏面保護材は、特に透明である必要はない。
The back surface protective material is a layer that can be the outermost layer on the back surface side of the solar cell module (that is, the side opposite to the light receiving surface of the photoelectric conversion layer).
The said back surface protection material may consist of resin sheets, such as glass, stainless steel, a polyvinyl fluoride / polyester / polyvinyl fluoride laminated sheet, a polyester / aluminum / polyester laminated sheet, in the point which is excellent in water vapor | steam barrier property and a weather resistance. preferable. In addition, the said back surface protection material does not need to be especially transparent.
上記裏面保護材がガラスやステンレスからなる場合、上記裏面保護材の厚みは0.1~5mmであることが好ましく、1.0~3.5mmであることがより好ましい。
上記裏面保護材が積層シートからなる場合、上記裏面保護材の厚みは10~500μmであることが好ましく、100~300μmであることがより好ましい。
When the back surface protective material is made of glass or stainless steel, the thickness of the back surface protective material is preferably 0.1 to 5 mm, and more preferably 1.0 to 3.5 mm.
When the back surface protective material is a laminated sheet, the thickness of the back surface protective material is preferably 10 to 500 μm, and more preferably 100 to 300 μm.
上記透明保護材は、最外層となる表面にエンボス形状を有することが好ましい。上記エンボス形状を有することにより、太陽光の反射ロスを低減したり、ギラツキを防止したり、外観を向上させたりすることができる。
上記エンボス形状は、規則的な凹凸形状であっても、ランダムな凹凸形状であってもよい。
上記エンボス形状は、上記透明保護材を太陽電池素子に貼り合せる前にエンボス賦型しても、太陽電池素子に貼り合せた後でエンボス賦型しても、又は、太陽電池素子と貼り合せる工程で同時に賦型してもよい。
The transparent protective material preferably has an embossed shape on the outermost surface. By having the said emboss shape, the reflection loss of sunlight can be reduced, glare can be prevented, and an external appearance can be improved.
The embossed shape may be a regular uneven shape or a random uneven shape.
The embossed shape is a step of embossing before the transparent protective material is bonded to the solar cell element, embossing after bonding to the solar cell element, or bonding with the solar cell element. You may mold at the same time.
上記透明保護材又は裏面保護材は、一方の面に接着層を有してもよい。上記光電変換層の上下に本発明の太陽電池モジュール用充填材シートが積層された積層体に対して、上記透明保護材又は裏面保護材を、その接着層が積層体に接するようにして積層することにより、より封止を確実なものとすることができる。 The transparent protective material or the back protective material may have an adhesive layer on one surface. The transparent protective material or the back surface protective material is laminated so that the adhesive layer is in contact with the laminated body on the laminated body in which the solar cell module filler sheet of the present invention is laminated above and below the photoelectric conversion layer. Thereby, sealing can be made more reliable.
上記接着層は、太陽電池素子の封止材として公知の成分からなるものであれば特に限定されないが、本発明の充填材シートとの接着性をより高める点で、上述した充填材シートの接着剤層と同じ成分からなることが好ましい。
上記接着層の厚みは、10~200μmであることが好ましく、10~50μmであることがより好ましい。
The adhesive layer is not particularly limited as long as it is made of a known component as a sealing material for a solar cell element, but the adhesion of the above-described filler sheet is further enhanced in terms of further improving the adhesiveness with the filler sheet of the present invention. It is preferable that it consists of the same component as an agent layer.
The thickness of the adhesive layer is preferably 10 to 200 μm, and more preferably 10 to 50 μm.
本発明によれば、透明保護材や太陽電池素子との接着性、耐久性及び耐熱性に優れ、真空ラミネート法によりリジッドやフレキシブルな太陽電池モジュールを製造した場合にでも、太陽電池素子と充填材シートとの間に空隙が発生するのを防止することができ、太陽電池の劣化を低減できる太陽電池モジュール用充填材シート、及び、該太陽電池モジュール用充填材シートを用いる太陽電池モジュールの製造方法を提供することができる。 According to the present invention, even when a rigid or flexible solar cell module is manufactured by a vacuum laminating method, the solar cell element and the filler are excellent in adhesiveness, durability, and heat resistance with the transparent protective material and the solar cell element. Formation of a solar cell module filler material sheet capable of preventing generation of voids between the sheet and reducing deterioration of the solar cell, and a solar cell module manufacturing method using the solar cell module filler material sheet Can be provided.
一般的なリジッドな太陽電池モジュールの断面を表す模式図である。It is a schematic diagram showing the cross section of a general rigid solar cell module.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
ブテン含有量が16重量%であるブテン-エチレン共重合体が無水マレイン酸でグラフト変性され、かつ、無水マレイン酸の総含有量が0.9重量%である無水マレイン酸変性オレフィン系樹脂100重量部と、下記表1に記載された直鎖状低密度ポリエチレン樹脂A100重量部と、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(東レ・ダウコーニング社製、商品名「Z6043」)0.6重量部とを押出機に供給して250℃にて溶融混練し、押出成形して厚さ500μmの充填材シートを得た。
(Example 1)
100% by weight of a maleic anhydride-modified olefin resin in which a butene-ethylene copolymer having a butene content of 16% by weight is graft-modified with maleic anhydride and the total maleic anhydride content is 0.9% by weight Parts, linear low-density polyethylene resin A 100 parts by weight listed in Table 1 below, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (trade name “Z6043” manufactured by Toray Dow Corning) 0.6 part by weight was supplied to an extruder, melt-kneaded at 250 ° C., and extruded to obtain a filler sheet having a thickness of 500 μm.
得られた充填材シートを用いて、以下の方法により太陽電池モジュールを製造した。
先ず、ガラス基材(旭硝子社製、青板フロートガラス)上に、薄膜状のCIGSからなる光電変換層が形成された太陽電池素子と、実施例、比較例で得られた充填材シートとを、所定の形状に切断したものを用意した。
次に、ガラスからなる透明保護材、充填材シート、太陽電池素子、充填材シート、及び、裏面保護材をこの順に積層し、これを、80℃、150秒加温及び脱気した後、120℃、300秒でプレスする条件で真空ラミネートを行い、太陽電池モジュールを作製した。
A solar cell module was manufactured by the following method using the obtained filler sheet.
First, a solar cell element in which a photoelectric conversion layer made of thin-film CIGS is formed on a glass substrate (manufactured by Asahi Glass Co., Ltd., blue plate float glass), and a filler sheet obtained in Examples and Comparative Examples. A material cut into a predetermined shape was prepared.
Next, a transparent protective material made of glass, a filler sheet, a solar cell element, a filler sheet, and a back surface protective material are laminated in this order, and after heating and degassing at 80 ° C. for 150 seconds, 120 Vacuum lamination was performed under the conditions of pressing at 300 ° C. for 300 seconds to produce a solar cell module.
(実施例2~25、比較例1~8)
表2~6に示した組成を用いた以外は実施例1と同様にして充填材シート及び太陽電池モジュールを製造した。
表2~6に示した低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂の密度、MFR、融点、破断伸び及びヘイズの値を表1に示した。
(Examples 2 to 25, Comparative Examples 1 to 8)
A filler sheet and a solar cell module were produced in the same manner as in Example 1 except that the compositions shown in Tables 2 to 6 were used.
The values of density, MFR, melting point, elongation at break and haze of the low density polyethylene resin or linear low density polyethylene resin shown in Tables 2 to 6 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
また、直鎖状低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂以外の表2~6に示す材料は、具体的には、以下の通りである。
3-グリシドキシプロピルトリメトキシシラン:東レ・ダウコーニング社製、商品名「Z-6040」)
3-アクリロキシプロピルトリメトキシシラン:東レ・ダウコーニング社製、商品名「SZ-6030」)
3-(2-アミノエチル)アミノプロピルトリメトキシシラン:(信越化学工業社製 商品名「KBM-603」)
The materials shown in Tables 2 to 6 other than the linear low density polyethylene resin or the linear low density polyethylene resin are specifically as follows.
3-Glycidoxypropyltrimethoxysilane: manufactured by Toray Dow Corning, trade name “Z-6040”)
(3-acryloxypropyltrimethoxysilane: Toray Dow Corning, trade name “SZ-6030”)
3- (2-aminoethyl) aminopropyltrimethoxysilane: (trade name “KBM-603” manufactured by Shin-Etsu Chemical Co., Ltd.)
(評価)
実施例及び比較例で得られた充填材シート、太陽電池モジュールについて、以下の評価を行った。結果を表2~6に示した。
(Evaluation)
The following evaluation was performed about the filler sheet | seat and solar cell module which were obtained by the Example and the comparative example. The results are shown in Tables 2-6.
(1)充填材シートの引張破断伸び及び引張弾性率の測定
テンシロン(東洋精機製作所社製)を用い、JIS K7162に準拠して、作製した充填材シートの引張破断伸び及び引張弾性率を測定した。
(1) Measurement of Tensile Breaking Elongation and Tensile Elastic Modulus of Filler Sheet Using Tensilon (manufactured by Toyo Seiki Seisakusho), the tensile breaking elongation and tensile elastic modulus of the prepared filler sheet were measured according to JIS K7162. .
(2)充填材シートの全光線透過率の測定
ヘイズメーター(TC-HIII、東京電色社製)を用いて、JIS-K7105に準拠する方法により、得られた充填材シートの全光線透過率を測定した。
(2) Measurement of total light transmittance of filler sheet Total light transmittance of the filler sheet obtained by a method according to JIS-K7105 using a haze meter (TC-HIII, manufactured by Tokyo Denshoku Co., Ltd.) Was measured.
(3)充填材シートの対ガラス接着強度の測定
厚み3.2mmのフロートガラス板に、封止材シートを置き、さらにその上に、125μmのPETフィルムを重ねて、150℃設定温度の真空ラミネータで、1気圧の保圧時間10分で、ガラス板接着試験体を作製した。
この試験体を、85℃、85%の高温高湿槽に500時間入れたのち、剥離速度300mm/分で、ガラス板から180°剥離試験により、剥離強度を測定した。
(3) Measurement of adhesive strength to glass of filler sheet A sealing sheet is placed on a 3.2 mm thick float glass plate, and a 125 μm PET film is further stacked thereon, and a vacuum laminator at a set temperature of 150 ° C. Thus, a glass plate adhesion test body was produced in a holding time of 1 atm for 10 minutes.
The specimen was placed in a high-temperature and high-humidity tank at 85 ° C. and 85% for 500 hours, and the peel strength was measured by a 180 ° peel test from a glass plate at a peel rate of 300 mm / min.
(4)太陽電池モジュールのセル充填性の評価
得られた太陽電池モジュールをガラス側から目視にて観察して、以下の基準で評価した。
◎:太陽電池モジュール全体にわたって、空隙が認められなかった。
○:太陽電池素子の周辺部に空隙が認められなかった。
△:太陽電池素子の周辺部に空隙が認められたものの、全周の半分以下であった。
×:太陽電池素子の周辺部のほぼ全周に空隙が認められた。
(4) Evaluation of cell filling property of solar cell module The obtained solar cell module was visually observed from the glass side and evaluated according to the following criteria.
(Double-circle): The space | gap was not recognized over the whole solar cell module.
○: No voids were observed in the periphery of the solar cell element.
(Triangle | delta): Although the space | gap was recognized in the peripheral part of the solar cell element, it was below half of the perimeter.
X: The space | gap was recognized by the perimeter of the peripheral part of a solar cell element substantially.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例26)
ブテン含有量が16重量%であるブテン-エチレン共重合体が無水マレイン酸でグラフト変性され、かつ、無水マレイン酸の総含有量が0.9重量%である無水マレイン酸変性オレフィン系樹脂100重量部と、低密度ポリエチレン樹脂N(日本ポリエチレン社製、「カーネルKS340T」)400重量部と、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(東レ・ダウコーニング社製、商品名「Z6043」)0.4重量部とを押出機に供給して220℃にて溶融混練して押出しした後、20℃に冷却した冷却ロールにて冷却しながら巻き取ることにより、厚さ500μmの充填材シートを得た。
得られた充填剤シートを用いて、実施例1と同様の方法により太陽電池モジュールを製造した。
(Example 26)
100% by weight of a maleic anhydride-modified olefin resin in which a butene-ethylene copolymer having a butene content of 16% by weight is graft-modified with maleic anhydride and the total maleic anhydride content is 0.9% by weight Part, 400 parts by weight of low density polyethylene resin N (manufactured by Nippon Polyethylene Co., Ltd., “Kernel KS340T”), 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Dow Corning Toray, trade name “Z6043”) ”) 0.4 parts by weight was supplied to an extruder, melted and kneaded at 220 ° C., extruded, and then wound while being cooled by a cooling roll cooled to 20 ° C., thereby filling the filler with a thickness of 500 μm. A sheet was obtained.
Using the obtained filler sheet, a solar cell module was produced by the same method as in Example 1.
(実施例27)
2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランの配合量を0.2重量部とした以外は、実施例26と同様にして充填剤シート及び太陽電池モジュールを製造した。
(Example 27)
A filler sheet and a solar cell module were produced in the same manner as in Example 26 except that the amount of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was 0.2 parts by weight.
(評価)
実施例26、27で得られた充填材シート、太陽電池モジュールについて、以下の評価を行った。結果を表7に示した。
(Evaluation)
The following evaluation was performed about the filler sheet | seat and solar cell module which were obtained in Example 26,27. The results are shown in Table 7.
(1)充填剤シートの熱寸法変化率の測定
充填剤シートをシート成形方向に250mm、シート幅方向に250mmの長方形状に切断してサンプルとした。
得られたサンプルを、太陽電池素子を封止する際の条件、即ち、80℃、150秒加温及び脱気した後、120℃、300秒でプレスする条件で真空ラミネートを行った。真空ラミネート後の充填剤シートのシート成形方向及びシート幅方向の長さを測定して、真空ラミネートを行った前後での熱寸法変化率を算出した。
(1) Measurement of thermal dimensional change rate of filler sheet The filler sheet was cut into a rectangular shape of 250 mm in the sheet forming direction and 250 mm in the sheet width direction to prepare a sample.
The obtained sample was vacuum laminated under the conditions for sealing the solar cell element, that is, heated and degassed at 80 ° C. for 150 seconds and then pressed at 120 ° C. for 300 seconds. The length in the sheet forming direction and the sheet width direction of the filler sheet after vacuum lamination was measured, and the thermal dimensional change rate before and after vacuum lamination was calculated.
(2)太陽電池モジュールの高温高湿試験後の最大発電量維持率の測定
得られた太陽電池モジュールを、85℃、相対湿度85%の環境下にて3000時間放置した。放置前後での最大出力Pmaxをニッシントーア株式会社製、商品名「1116N」を用いて測定し、高温高湿試験後の最大発電量維持率を算出した。
(2) Measurement of maximum power generation retention rate after high-temperature and high-humidity test of solar cell module The obtained solar cell module was left for 3000 hours in an environment of 85 ° C. and 85% relative humidity. The maximum output Pmax before and after standing was measured using a product name “1116N” manufactured by Nissin Tor Co., Ltd., and the maximum power generation retention rate after the high temperature and high humidity test was calculated.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
本発明によれば、透明保護材や太陽電池素子との接着性、耐久性及び耐熱性に優れ、真空ラミネート法によりリジッドやフレキシブルな太陽電池モジュールを製造した場合にでも、太陽電池素子と充填材シートとの間に空隙が発生するのを防止することができ、太陽電池の劣化を低減できる太陽電池モジュール用充填材シート、及び、該太陽電池モジュール用充填材シートを用いる太陽電池モジュールの製造方法を提供することができる。 According to the present invention, even when a rigid or flexible solar cell module is manufactured by a vacuum laminating method, the solar cell element and the filler are excellent in adhesiveness, durability, and heat resistance with the transparent protective material and the solar cell element. Formation of a solar cell module filler material sheet capable of preventing generation of voids between the sheet and reducing deterioration of the solar cell, and a solar cell module manufacturing method using the solar cell module filler material sheet Can be provided.
B 太陽電池素子
5 透明保護材
6 裏面保護材
7 空隙
8 充填材シート
 
B Solar cell element 5 Transparent protective material 6 Back surface protective material 7 Air gap 8 Filler sheet

Claims (5)

  1. αオレフィン含有量が1~25重量%であるαオレフィン-エチレン共重合体が無水マレイン酸でグラフト変性され、かつ、無水マレイン酸の総含有量が0.1~3重量%である無水マレイン酸変性オレフィン系樹脂100重量部と、低密度ポリエチレン樹脂又は直鎖状低密度ポリエチレン樹脂100~400重量部と、下記一般式(I)で表されるエポキシ基を有するシラン化合物0.1~3.0重量部とを含有することを特徴とする太陽電池モジュール用充填材シート。
    Figure JPOXMLDOC01-appb-C000001
    式(I)中、Rは、3-グリシドキシプロピル基又は2-(3,4-エポキシシクロヘキシル)エチル基を示し、Rは、炭素数が1~3であるアルキル基を示し、Rは、炭素数が1~3であるアルキル基を示し、かつ、nは0又は1である。
    An maleic anhydride in which an alpha olefin-ethylene copolymer having an alpha olefin content of 1 to 25% by weight is graft-modified with maleic anhydride and the total maleic anhydride content is 0.1 to 3% by weight 100 parts by weight of a modified olefin resin, 100 to 400 parts by weight of a low-density polyethylene resin or linear low-density polyethylene resin, and a silane compound having an epoxy group represented by the following general formula (I) 0.1 to 3. A filler sheet for a solar cell module, comprising 0 part by weight.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (I), R 1 represents a 3-glycidoxypropyl group or a 2- (3,4-epoxycyclohexyl) ethyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms, R 3 represents an alkyl group having 1 to 3 carbon atoms, and n is 0 or 1.
  2. が2-(3,4-エポキシシクロヘキシル)エチル基であることを特徴とする請求項1記載の太陽電池モジュール用充填材シート。 The filler sheet for a solar cell module according to claim 1, wherein R 1 is a 2- (3,4-epoxycyclohexyl) ethyl group.
  3. 引張破断歪が700%以上であり、かつ、引張引弾性率が50~150MPaであることを特徴とする請求項1又は2記載の太陽電池モジュール用充填材シート。 The filler sheet for a solar cell module according to claim 1 or 2, wherein the tensile strain at break is 700% or more and the tensile tensile modulus is 50 to 150 MPa.
  4. 太陽電池素子を封止する際の条件で真空ラミネートを行った前後での熱寸法変化率が、シート成形方向及びシート幅方向ともに-10%以上、10%以下であることを特徴とする請求項1、2又は3記載の太陽電池モジュール用充填材シート。 The thermal dimensional change rate before and after performing vacuum lamination under the conditions for sealing the solar cell element is -10% or more and 10% or less in both the sheet forming direction and the sheet width direction. The filler sheet for solar cell modules according to 1, 2 or 3.
  5. 透明保護材、請求項1記載の太陽電池モジュール用充填材シート、太陽電池素子、請求項1記載の太陽電池モジュール用充填材シート、及び、裏面保護材をこの順に積層して積層体を得る工程と、
    得られた積層体を減圧下で、その厚み方向に押圧力を加えながら加熱して、前記太陽電池素子に前記太陽電池モジュール用充填材シートを圧着させる工程とを有する
    ことを特徴とする太陽電池モジュールの製造方法。
    The process of obtaining a laminated body by laminating | stacking a transparent protective material, the filler sheet for solar cell modules of Claim 1, a solar cell element, the filler sheet for solar cell modules of Claim 1, and a back surface protective material in this order. When,
    A step of heating the obtained laminated body under reduced pressure while applying a pressing force in a thickness direction thereof, and crimping the solar cell module filler sheet to the solar cell element. Module manufacturing method.
PCT/JP2013/076537 2012-10-02 2013-09-30 Filler sheet for solar cell modules and method for manufacturing solar cell module WO2014054579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507789A JPWO2014054579A1 (en) 2012-10-02 2013-09-30 Filler sheet for solar cell module and method for producing solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012220574 2012-10-02
JP2012-220574 2012-10-02

Publications (1)

Publication Number Publication Date
WO2014054579A1 true WO2014054579A1 (en) 2014-04-10

Family

ID=50434906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076537 WO2014054579A1 (en) 2012-10-02 2013-09-30 Filler sheet for solar cell modules and method for manufacturing solar cell module

Country Status (3)

Country Link
JP (1) JPWO2014054579A1 (en)
TW (1) TW201420592A (en)
WO (1) WO2014054579A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194644A (en) * 1996-01-23 1997-07-29 Nippon Poriorefuin Kk Linear low-density polyethylene resin composition
JP2002235047A (en) * 2001-02-09 2002-08-23 Mitsubishi Plastics Ind Ltd Adhesive sheet, sheet for filler of solar cell and solar cell using the same
JP2011016983A (en) * 2009-06-09 2011-01-27 Japan Polyethylene Corp Resin composition for sealing material of solar cell
JP4889828B2 (en) * 2010-01-26 2012-03-07 積水化学工業株式会社 Solar cell sealing material, solar cell protective sheet, and method for manufacturing solar cell module
WO2012046564A1 (en) * 2010-10-06 2012-04-12 積水化学工業株式会社 Solar cell sealing sheet and flexible solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194644A (en) * 1996-01-23 1997-07-29 Nippon Poriorefuin Kk Linear low-density polyethylene resin composition
JP2002235047A (en) * 2001-02-09 2002-08-23 Mitsubishi Plastics Ind Ltd Adhesive sheet, sheet for filler of solar cell and solar cell using the same
JP2011016983A (en) * 2009-06-09 2011-01-27 Japan Polyethylene Corp Resin composition for sealing material of solar cell
JP4889828B2 (en) * 2010-01-26 2012-03-07 積水化学工業株式会社 Solar cell sealing material, solar cell protective sheet, and method for manufacturing solar cell module
WO2012046564A1 (en) * 2010-10-06 2012-04-12 積水化学工業株式会社 Solar cell sealing sheet and flexible solar cell module

Also Published As

Publication number Publication date
TW201420592A (en) 2014-06-01
JPWO2014054579A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5075281B2 (en) Flexible solar cell module
JP2012216805A (en) Solar cell module filler sheet
JP4889828B2 (en) Solar cell sealing material, solar cell protective sheet, and method for manufacturing solar cell module
WO2012066848A1 (en) Method for manufacturing flexible solar cell module
JP5820151B2 (en) Manufacturing method of solar cell module
WO2012039389A1 (en) Method for manufacturing flexible solar battery module
WO2015111702A1 (en) Solar cell sealing film and solar cell using same
JP2010226052A (en) Solar cell module
JP6013726B2 (en) A pair of sealing films for solar cells
JP5650775B2 (en) Solar cell module manufacturing method and solar cell module
JP2012099803A (en) Solar cell sealing sheet, production method therefor, and method of manufacturing flexible solar cell module
WO2014049778A1 (en) Filler sheet for solar cell modules, solar cell sealing sheet, and method for manufacturing solar cell module
JP2014187172A (en) Encapsulant sheet for solar battery module, and solar battery module
WO2014054579A1 (en) Filler sheet for solar cell modules and method for manufacturing solar cell module
JP2012079884A (en) Manufacturing method of flexible solar cell module
WO2012046565A1 (en) Method for producing flexible solar cell module
JP7311613B2 (en) Resin composition for solar cell encapsulant, solar cell encapsulant, method for producing solar cell encapsulant, and solar cell module
JP2014183286A (en) Solar battery module
JP2011176273A (en) Solar-cell sealing material, solar-cell protective sheet, and method of manufacturing solar-cell module
JP2010226045A (en) Resin sealing sheet and solar cell module using the same
JP2012227280A (en) Solar battery sealing sheet and flexible solar cell module
JP2014187173A (en) Encapsulant sheet for solar battery module, and solar battery module
JP2013065619A (en) Solar cell sealing sheet and flexible solar cell module
JP2014187069A (en) Manufacturing method for solar cell module
JP5860227B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014507789

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843072

Country of ref document: EP

Kind code of ref document: A1