WO2014042217A1 - Solar cell protective sheet and flexible solar cell module - Google Patents

Solar cell protective sheet and flexible solar cell module Download PDF

Info

Publication number
WO2014042217A1
WO2014042217A1 PCT/JP2013/074717 JP2013074717W WO2014042217A1 WO 2014042217 A1 WO2014042217 A1 WO 2014042217A1 JP 2013074717 W JP2013074717 W JP 2013074717W WO 2014042217 A1 WO2014042217 A1 WO 2014042217A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
adhesive sealing
sealing layer
protective sheet
Prior art date
Application number
PCT/JP2013/074717
Other languages
French (fr)
Japanese (ja)
Inventor
嘉謨 郭
平池 宏至
飛鳥 政宏
清巳 上ノ町
一成 八木
石居 正裕
良隆 国広
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2014535590A priority Critical patent/JPWO2014042217A1/en
Publication of WO2014042217A1 publication Critical patent/WO2014042217A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a highly durable solar cell protective sheet having high adhesion between a protective layer and an adhesive sealing layer, and a flexible solar cell module in which a solar cell element is protected by the solar cell protective sheet.
  • a rigid solar cell module based on glass and a flexible solar cell module based on a polyimide or polyester heat-resistant polymer material or a stainless thin film are known.
  • flexible solar cell modules have been attracting attention because of their ease of transportation and construction due to reduction in thickness and weight, and resistance to impact.
  • Such a flexible solar cell module is a flexible solar cell element in which a photoelectric conversion layer made of a silicon semiconductor or a compound semiconductor having a function of generating a current when irradiated with light is laminated in a thin film on a flexible substrate.
  • the upper and lower surfaces are sealed with an adhesive sealing layer, and a protective layer is provided as the outermost layer.
  • EVA resin ethylene-vinyl acetate (EVA) resin
  • Patent Document 2 ethylene-vinyl acetate (EVA) resin
  • thermoplastic material has often been used for the protective layer because it has high impact resistance and is light.
  • PVDF poly (vinylidene fluoride)
  • PVDF poly (vinylidene fluoride)
  • the adhesion between the adhesive sealing layer and the protective layer is insufficient, and the protective layer may peel off from the adhesive sealing layer when left in the environment for a long time. There was a problem in terms of durability.
  • an attempt is made to improve the adhesion between layers by providing an adhesive layer made of an acrylic resin or a mixture of an acrylic resin and a fluororesin between the adhesive sealing layer and the protective layer. .
  • an adhesive layer made of an acrylic resin or a mixture of an acrylic resin and a fluororesin between the adhesive sealing layer and the protective layer.
  • the present invention provides a highly durable solar cell protective sheet having high adhesion between a protective layer and an adhesive sealing layer, and a flexible solar cell module in which solar cell elements are protected by the solar cell protective sheet. For the purpose.
  • the present invention is a solar cell protective sheet in which a protective layer made of a fluororesin sheet and an adhesive sealing layer are laminated, wherein the protective layer has a nitrogen atom concentration of 0. 0 on the surface in contact with the adhesive sealing layer. It has a surface layer containing 2 mol% or more, and the adhesive sealing layer is a solar cell protective sheet containing a thermal adhesive resin having an acid group or an acid anhydride group.
  • the present invention is described in detail below.
  • the inventors of the present invention form a surface layer containing 0.2 mol% or more of nitrogen atoms on the surface of the protective layer made of a fluororesin sheet in contact with the adhesive sealing layer, and thermally bond the acid group or the acid anhydride group. It has been found that the adhesive strength between layers can be remarkably increased by combining with an adhesive sealing layer containing an adhesive resin. According to the present invention, the adhesiveness between the protective layer and the adhesive sealing layer can be improved without providing an adhesive layer as in the prior art, so there is no deterioration in weather resistance or heat resistance, and roll-to-roll method or the like. Therefore, even when the solar cell elements are continuously sealed, wrinkles and curls are hardly generated.
  • the solar cell protective sheet of the present invention has a structure in which a protective layer and an adhesive sealing layer are laminated.
  • FIG. 1 the longitudinal cross-section schematic diagram of an example of the solar cell protection sheet B which consists of the protective layer 1 and the adhesion sealing layer 2 is shown.
  • a surface layer 12 containing 0.2 mol% or more of nitrogen atoms is formed on the surface of the protective layer 1 in contact with the adhesive sealing layer 2.
  • the protective layer is the outermost layer in the obtained flexible solar cell module, and prevents external impact or corrosion of the solar cell element. It has a role to prevent.
  • the protective layer is made of a fluorine resin sheet.
  • the fluororesin sheet is not particularly limited as long as it is excellent in transparency, heat resistance, and flame retardancy.
  • Tetrafluoroethylene-ethylene copolymer ETFE
  • ECTFE ethylene chlorotrifluoroethylene resin
  • PCTFE Polychlorotrifluoroethylene resin
  • PVDF polyvinylidene fluoride resin
  • FAP polyvinyl fluoride resin
  • PVDF tetrafluoroethylene-hexafluoropropylene
  • the fluororesin is more preferably a polyvinylidene fluoride resin (PVDF), a tetrafluoroethylene-ethylene copolymer (ETFE), or a polyvinyl fluoride resin (PVF) in that it is superior in heat resistance and transparency.
  • PVDF polyvinylidene fluoride resin
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVF polyvinyl fluoride resin
  • the protective layer has a surface layer containing 0.2 mol% or more of nitrogen atoms on the surface in contact with the adhesive sealing layer.
  • the lower limit of the nitrogen atom content in the surface layer is 0.2 mol%. If it is less than 0.2 mol%, the effect of improving the adhesion between the protective layer and the adhesive sealing layer cannot be obtained.
  • the minimum with preferable content of the nitrogen atom in the surface layer of the said protective layer is 0.5 mol%, and a more preferable minimum is 1.0 mol%.
  • the upper limit of the content of nitrogen atoms in the surface layer of the protective layer is not particularly limited, but technically about 20 mol% is considered to be a substantial upper limit.
  • content of the nitrogen atom in a surface layer means the ratio of content of the nitrogen atom with respect to content of all the atoms contained in the said surface layer.
  • the content of each atom contained in the surface layer can be measured by, for example, X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES).
  • a preferable lower limit of the thickness of the surface layer is 0.05 nm. If the thickness of the surface layer is less than 0.05 nm, the effect of improving the adhesion between the protective layer and the adhesive sealing layer may not be obtained. A more preferable lower limit of the thickness of the surface layer is 0.1 nm.
  • the upper limit of the thickness of the surface layer is not particularly limited, but technically about 10 nm is considered to be a substantial upper limit. Note that the thickness of the surface layer is measured from a cross-sectional plot of the surface layer specific element by etching the surface layer using, for example, X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES). Can do.
  • Examples of the method for forming the surface layer on the surface of the protective layer in contact with the adhesive sealing layer include a method in which the surface of the protective layer is subjected to plasma treatment and a method in which corona discharge treatment is performed in a nitrogen atmosphere.
  • the adhesive strength with the adhesive sealing layer containing an acid group or an acid anhydride group is remarkably increased, and when left in the environment for a long time. It is possible to prevent the protective layer from being peeled off from the adhesive sealing layer.
  • the method of performing plasma treatment is preferable because the generation of wrinkles is reduced and the adhesive strength after high temperature and high humidity conditions can be maintained high.
  • the plasma treatment to the protective layer can be performed by a conventionally known method.
  • Specific examples include nitrogen gas plasma, nitrogen / methane mixed gas plasma, nitrogen / carbon dioxide mixed gas plasma, and nitrogen / argon mixed gas plasma.
  • nitrogen gas plasma under conditions of a processing speed of 25 m / min or less and a processing intensity of 0.8 kW or more. It is preferable to process.
  • the corona discharge treatment to the protective layer can be performed by a conventionally known method.
  • Specific examples include nitrogen gas corona, nitrogen / hydrogen mixed gas corona, nitrogen / amine mixed gas corona, and nitrogen / methane mixed gas corona.
  • nitrogen gas corona discharge treatment under the condition of a treatment amount of 20 W / m 2 or more.
  • the protective layer preferably has an embossed shape on the surface in contact with the adhesive sealing layer.
  • the adhesive force between the protective layer and the adhesive sealing layer can be further increased.
  • the emboss shape on the surface of the protective layer may be a regular uneven shape or a random uneven shape.
  • the protective layer has an embossed shape on the surface opposite to the surface in contact with the adhesive sealing layer, that is, the surface that seals the solar cell element and becomes the outermost layer of the flexible solar cell module. It is preferable.
  • the outermost layer has an embossed shape, it is possible to reduce the reflection loss of sunlight, prevent glare, and improve the appearance.
  • the embossed shape is a method of performing embossing at the same time when the molten resin is cooled by using an embossed roll as a cooling roll when the fluororesin sheet constituting the protective layer is extruded by a melt extrusion method. Or the like.
  • the embossing may be performed after the plasma treatment or the corona discharge treatment first, but the embossed shape is determined by a method using an embossing roll in the melt extrusion method.
  • a method of performing plasma treatment or corona discharge treatment on the embossed surface of the applied fluororesin sheet by the above method is preferable.
  • the preferable lower limit of the thickness of the protective layer is 10 ⁇ m, and the preferable upper limit is 100 ⁇ m. If the thickness of the protective layer is less than 10 ⁇ m, insulation may not be ensured or flame retardancy may be impaired. If the thickness of the protective layer exceeds 100 ⁇ m, the weight of the flexible solar cell module may be increased, which is economically disadvantageous.
  • the minimum with more preferable thickness of the said protective layer is 15 micrometers, and a more preferable upper limit is 80 micrometers.
  • the solar cell protective sheet of the present invention has an adhesive sealing layer.
  • the said adhesive sealing layer has a role which seals a solar cell element.
  • the adhesive sealing layer contains a heat-adhesive resin having an acid group or an acid anhydride group.
  • a high interlayer adhesion can be achieved by combining such an adhesive sealing layer with a protective layer having a surface layer containing 0.2 mol% or more of the nitrogen atoms.
  • Examples of the acid group include a carboxyl group, an unsaturated carboxylic acid group, a hydroxy acid group, an aromatic carboxylic acid group, and a dicarboxylic acid group.
  • Examples of the acid anhydride group include a maleic anhydride group, an acetic anhydride group, a propionic anhydride group, a succinic anhydride group, a phthalic anhydride group, and a benzoic anhydride group.
  • heat-adhesive resin having an acid group or an acid anhydride group examples include an acid-modified polyolefin, an acid-modified ethylene-glycidyl methacrylate copolymer, an ionomer, and an ethylene-acrylic acid ester-anhydride group copolymer. It is done.
  • thermal adhesive resins having an acid group or an acid anhydride group may be used alone or in combination of two or more.
  • the acid-modified polyolefin can prevent the generation of wrinkles and curls when a solar cell element is sealed using the solar cell protective sheet of the present invention to produce a flexible solar cell module, and the adhesion to the solar cell surface is improved.
  • it is preferably a maleic anhydride-modified polyolefin.
  • the maleic anhydride-modified polyolefin is a resin in which an ⁇ -olefin-ethylene copolymer having an ⁇ -olefin content of 1 to 25% by weight is graft-modified with maleic anhydride, and the total content of maleic anhydride The amount is preferably 0.1 to 3% by weight.
  • the ionomer is preferably one obtained by neutralizing part or all of the unsaturated carboxylic acid group of the ethylene-unsaturated carboxylic acid copolymer with a metal ion.
  • the ethylene-unsaturated carboxylic acid copolymer include a copolymer comprising at least a copolymer component of ethylene and an unsaturated carboxylic acid.
  • the ionomer can be produced by a known method.
  • the unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, maleic acid, phthalic acid, citraconic acid, itaconic acid, and the like, among which acrylic acid and methacrylic acid are preferable.
  • acrylic acid and methacrylic acid are preferable.
  • metal ion a sodium ion and a zinc ion are preferable.
  • the minimum with preferable content of the said unsaturated carboxylic acid component is 15 weight%, and a preferable upper limit is 25 weight%.
  • the ethylene-unsaturated carboxylic acid copolymer may further contain a (meth) acrylic acid ester component as a third component.
  • the (meth) acrylic acid ester is at least one selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate from the viewpoint of cost and polymerizability. Is preferred. Among these, from the viewpoint of the melting point, an acrylate ester is preferable, and specifically, n-butyl acrylate, isobutyl acrylate, and ethyl acrylate are more preferable.
  • the content of the (meth) acrylic acid ester component is preferably 25% by weight or less. If the content of the (meth) acrylic acid ester component exceeds 25% by weight, the melting point may be too low.
  • the upper limit with more preferable content of the said (meth) acrylic acid ester component is 20 weight%.
  • the ethylene- (meth) acrylic acid copolymer is preferably an ethylene-acrylic acid ester-maleic anhydride terpolymer.
  • the ethylene-acrylic acid ester-maleic anhydride terpolymer is a copolymer composed of at least three components of ethylene, acrylic acid ester and maleic anhydride.
  • the acrylic ester is preferably at least one selected from the group consisting of methyl acrylate, ethyl acrylate, and butyl acrylate from the viewpoint of cost and polymerizability.
  • the ethylene- (meth) acrylic acid copolymer has an ethylene component content of 71 to 93% by weight, an acrylic ester component content of 5 to 28% by weight, and a maleic anhydride component content. Is preferably 0.1 to 4% by weight.
  • the ethylene- (meth) acrylic acid copolymer is preferably an ethylene-glycidyl methacrylate copolymer.
  • the ethylene-glycidyl methacrylate copolymer is a copolymer composed of at least two components of ethylene and glycidyl methacrylate.
  • the content of the glycidyl methacrylate component in the ethylene-glycidyl methacrylate copolymer is preferably 7% by weight and preferably 9% by weight from the viewpoint of the melting point.
  • the ethylene-glycidyl methacrylate copolymer can be produced using a conventionally known polymerization method.
  • the ethylene-glycidyl methacrylate copolymer may further contain components derived from other monomers in addition to the ethylene component and the glycidyl methacrylate component.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with ethylene and glycidyl methacrylate as long as the physical properties necessary for the present invention are not impaired.
  • (meth) acrylate is preferred from the viewpoint of melting point, polymerizability, and cost.
  • the (meth) acrylate is preferably an acrylate, and methyl acrylate, ethyl acrylate or butyl acrylate is particularly preferable.
  • the preferable upper limit of the content of the (meth) acrylate component is 15% by weight, and the more preferable upper limit is 10% by weight.
  • the lower limit is not particularly limited as long as the copolymer resin can be obtained.
  • the adhesive sealing layer preferably further contains a silane compound having a glycidyl group.
  • a silane compound having a glycidyl group By containing such a silane compound having a glycidyl group, the adhesive force between the protective layer and the adhesive sealing layer can be further improved. Moreover, since almost no foreign substances such as gel are generated when the solar cell protective sheet is manufactured, it can be manufactured continuously. Moreover, when a solar cell element is continuously sealed by a roll-to-roll method or the like, the resin hardly protrudes from the end portion of the protective layer of the obtained flexible solar cell module. Furthermore, the adhesive force between the adhesive sealing layer and the surface of the solar cell element can also be improved.
  • silane compound having a glycidyl group examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyltriethoxy.
  • 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3- Glycidoxypropylmethyldiethoxysilane is preferred.
  • silane compounds having a glycidyl group are Z-6040 (3-glycidoxypropyltrimethoxysilane), Z-6043 (2- (3,4-epoxycyclohexyl) ethyltril) manufactured by Toray Dow Corning. Methoxysilane), KBE-403 (3-glycidoxypropyltriethoxysilane), KBM-402 (3-glycidoxypropylmethyldimethoxysilane), KBE-402 (3-glycidoxypropyl) manufactured by Shin-Etsu Silicone Methyldiethoxysilane) and the like.
  • the content of the silane compound having a glycidyl group in the adhesive sealing layer is 0.05 to 5 parts by weight with respect to 100 parts by weight of the thermoadhesive resin having an acid group or an acid anhydride group. preferable.
  • the adhesive force between the protective layer and the adhesive sealing layer and the adhesive force between the adhesive sealing layer and the solar cell element may be reduced.
  • the content of the silane compound is more preferably 0.07 parts by weight with respect to 100 parts by weight of the thermoadhesive resin having the acid group or acid anhydride group, and the upper limit is 1.5 parts by weight. It is more preferable that
  • the said adhesive sealing layer may further contain the other additive in the range which does not impair the physical property.
  • the other additives include, for example, an ultraviolet stabilizer, an antioxidant, a light resistance stabilizer, a plasticizer, a filler, a colorant, a pigment, an antistatic agent, a surfactant, a toning liquid, and a refractive index matching additive. Agents and dispersion aids.
  • the minimum with the preferable thickness of the said adhesive sealing layer is 80 micrometers, and a preferable upper limit is 700 micrometers. If the thickness of the adhesive sealing layer is less than 80 ⁇ m, the insulating property of the flexible solar cell module may not be maintained. If it exceeds 700 ⁇ m, the flame resistance of the flexible solar cell module may be adversely affected, or the flexible solar cell The module may become heavy.
  • the minimum with more preferable thickness of the said adhesive sealing layer is 150 micrometers, and a more preferable upper limit is 400 micrometers.
  • the method for forming the adhesive sealing layer includes, for example, a predetermined weight ratio of a silane compound having a glycidyl group and an additive added as necessary to the thermal adhesive resin having an acid group or an acid anhydride group. And a method of forming an adhesive sealing layer by feeding into an extruder and melting and kneading, and extruding into a sheet form from the extruder.
  • a single screw extruder or a twin screw extruder may be used as the extruder.
  • the solar cell protective sheet of the present invention is obtained by laminating the protective layer and the adhesive sealing layer.
  • the lamination method for example, a conventionally known method such as a vacuum laminating method, a roll laminating method, or an extrusion laminating method can be used.
  • the solar cell protective sheet of the present invention is for manufacturing a flexible solar cell module by sealing solar cell elements.
  • the flexible solar cell module in which the solar cell protective sheet of the present invention and the solar cell element in which the photoelectric conversion layer is disposed on the flexible base material are laminated and integrated are also one aspect of the present invention.
  • the solar cell element is generally composed of a photoelectric conversion layer in which electrons are generated by receiving light, an electrode layer for taking out the generated electrons, and a flexible substrate.
  • FIG. 3 the longitudinal cross-sectional schematic diagram of an example of the solar cell element C by which the photoelectric converting layer 3 is arrange
  • the flexible substrate is not particularly limited as long as it is flexible and can be used for a flexible solar cell element.
  • heat-resistant resin such as polyimide, polyetheretherketone, polyethersulfone, etc.
  • the base material which consists of can be mentioned.
  • the preferable lower limit of the thickness of the flexible substrate is 10 ⁇ m, and the preferable upper limit is 80 ⁇ m.
  • the photoelectric conversion layer examples include crystal semiconductors such as single crystal silicon, single crystal germanium, polycrystalline silicon, and microcrystalline silicon, amorphous semiconductors such as amorphous silicon, GaAs, InP, AlGaAs, Cds, CdTe, and Cu 2. Examples thereof include compounds formed from compound semiconductors such as S, CuInSe 2 and CuInS 2 , and organic semiconductors such as phthalocyanine and polyacetylene.
  • the photoelectric conversion layer may be a single layer or a multilayer. The minimum with the preferable thickness of the said photoelectric converting layer is 0.5 micrometer, and a preferable upper limit is 10 micrometers.
  • the electrode layer is a layer made of an electrode material.
  • the electrode layer may be on the photoelectric conversion layer, between the photoelectric conversion layer and the flexible base, or on the surface of the flexible base, as necessary.
  • the solar cell element may have a plurality of the electrode layers.
  • the electrode material is preferably a general transparent electrode material such as a metal oxide. Although it does not specifically limit as said transparent electrode material, ITO or ZnO etc. are used suitably.
  • the bus electrode and the finger electrode attached thereto may be patterned with a metal such as silver.
  • the electrode layer on the back side (back side) does not need to be transparent and may be made of a general electrode material, but silver is preferably used as the electrode material.
  • the solar cell element does not specifically limit as a method of manufacturing the said solar cell element, For example, it can manufacture by well-known methods, such as arrange
  • the solar cell element may have a long shape wound in a roll shape or a rectangular sheet shape.
  • the flexible solar cell module of the present invention has an adhesive sealing layer 2 and a protective layer 1 on the side of the photoelectric conversion layer 3 of the solar cell element C.
  • the adhesive sealing layer and the protective layer may also be provided on the side surface of the flexible substrate.
  • FIG. 4 is a schematic longitudinal sectional view of a flexible solar cell module F of the present invention comprising a protective layer 1, an adhesive sealing layer 2, a photoelectric conversion layer 3, a flexible substrate 4, an adhesive sealing layer 2 and a protective layer 1 in this order. Indicates.
  • the solar cell protective sheet comprising the adhesive sealing layer and the protective layer is formed on at least the light receiving surface of the solar cell element by using a pair of heat rolls.
  • a method of constricting and thermocompression bonding can be mentioned.
  • the light receiving surface of the solar cell element is a surface that can receive light and is a surface on which the photoelectric conversion layer of the solar cell element is disposed.
  • the solar cell element and the solar cell element are arranged in a state where the surface on which the photoelectric conversion layer of the solar cell element is disposed and the side surface of the adhesive sealing layer of the solar cell protection sheet are opposed to each other.
  • a method of laminating solar cell protective sheets, constricting them using a pair of heat rolls, and thermocompression bonding is preferable.
  • the preferable lower limit of the temperature of the heat roll when constricting using the pair of heat rolls is 70 ° C., and the preferable upper limit is 160 ° C. If the temperature of the heat roll is less than 70 ° C., adhesion failure may occur. If the temperature of the heat roll exceeds 160 ° C., wrinkles are likely to occur during thermocompression bonding.
  • a more preferable lower limit of the temperature of the heat roll is 80 ° C., and a more preferable upper limit is 110 ° C.
  • a preferable lower limit of the rotation speed of the heat roll is 0.1 m / min, and a preferable upper limit is 10 m / min. If the rotational speed of the heat roll is less than 0.1 m / min, wrinkles may easily occur after thermocompression bonding. When the rotation speed of the heat roll exceeds 10 m / min, there is a possibility that adhesion failure may occur.
  • a more preferable lower limit of the rotation speed of the heat roll is 0.3 m / min, and a more preferable upper limit is 5 m / min.
  • FIG. 5 An example of the method for producing the flexible solar cell module of the present invention will be specifically described with reference to FIG.
  • a long solar cell protective sheet B composed of the protective layer and the adhesive sealing layer and wound in a roll shape, and a solar cell element C are prepared.
  • the roll of the solar cell protection sheet B and the solar cell element C is unwound, and the light receiving surface of the photoelectric conversion layer of the solar cell element C and the adhesive sealing layer surface of the solar cell protection sheet B are arranged to face each other. Both are laminated to obtain a laminated sheet D.
  • the laminated sheet D is supplied between a pair of rolls E and E heated to a predetermined temperature, and the laminated sheet D is heated and thermocompression bonded while pressing in the thickness direction, so that the solar cell element C and the solar cell.
  • the protective sheet B is bonded and integrated. Thereby, a photoelectric converting layer is sealed by the adhesive sealing layer, and the flexible solar cell module A can be obtained.
  • the solar cell protective sheet of the present invention is applied to the side surface of the flexible substrate of the solar cell, and the adhesive sealing layer is a flexible substrate.
  • a method of thermocompression bonding by narrowing them using a pair of heat rolls may be performed on the light receiving surface of the solar cell element described above before the step of thermocompression bonding the solar cell protective sheet, It may be done at the same time or later.
  • the solar cell protective sheet of the present invention for example, an example of a method for producing the flexible solar cell module of the present invention by simultaneously sealing the photoelectric conversion layer side surface and the flexible substrate side surface of the solar cell element, This will be described with reference to FIG. Specifically, while preparing a long solar cell element C wound in a roll shape, two long solar cell protective sheets wound in a roll shape are prepared. And as shown in FIG. 6, while unwinding the elongate solar cell protection sheets B and B, respectively, unwind the elongate solar cell element C, and the adhesive sealing layer of two solar cell protection sheets is In a state of facing each other, the solar cell protective sheets B and B are overlapped with each other through the solar cell element C to obtain a laminated sheet D.
  • the solar cell protective sheets B, B are brought together.
  • the solar cell element C is sealed with the solar cell protective sheets B and B, and the flexible solar cell module F is continuously manufactured.
  • the solar cell protective sheets B and B are overlapped with each other via the solar cell element C to form the laminated sheet D, and at the same time, the laminated sheet D is heated while being pressed in the thickness direction. May be.
  • FIG. 7 an example of the manufacturing point of the flexible solar cell module of this invention at the time of using a rectangular sheet-like thing as the solar cell element C is shown in FIG. Specifically, instead of the long solar cell element C wound in a roll shape, a rectangular sheet-like solar cell element C having a predetermined size is prepared. And as shown in FIG. 7, the solar cell protection sheet which unwinded the elongate solar cell protection sheet B and B currently wound by roll shape, and made each adhesive sealing layer face each other. A solar cell element C is supplied between B and B at predetermined time intervals, and the solar cell protective sheets B and B are overlapped with each other via the solar cell element C to obtain a laminated sheet D.
  • the solar cell protective sheets B, B are brought together.
  • the solar cell element C is sealed with the solar cell protective sheets B and B, and the flexible solar cell module F is continuously manufactured.
  • the laminated sheet D may be heated while being pressed in the thickness direction simultaneously with the formation of the laminated sheet D.
  • the flexible solar cell module of the present invention can be suitably manufactured by applying such a roll-to-roll method.
  • the solar cell protective sheet and the solar cell element of the present invention cut into a desired shape are prepared, and the adhesive sealing layer of the solar cell protective sheet;
  • the solar cell protective sheet and the solar cell element are laminated in a state where the photoelectric conversion layer side surface or both surfaces of the solar cell element are opposed to each other, and the obtained laminate is stationary under reduced pressure.
  • the method may be such that the solar cell element is sealed with the solar cell protective sheet by heating while applying a pressing force in the thickness direction.
  • the step of heating the laminate while applying a pressing force in the thickness direction under reduced pressure can be performed using a conventionally known apparatus such as a vacuum laminator.
  • the flexible solar cell module by which the solar cell element was protected by the solar cell protective sheet excellent in durability with the high adhesiveness of a protective layer and an adhesive sealing layer, and this solar cell protective sheet. can be provided.
  • Example 1 Preparation of PVDF sheet having surface layer Polyvinylidene fluoride (PVDF, manufactured by Arkema Corp., Kyner 720) is used as a fluororesin using a single screw extruder at 250 ° C., 180 rotations / minute, extrusion rate of 12 kg / hour. After melt-kneading under the above conditions, melt extrusion was performed, and an embossing roll was used as a cooling roll, thereby obtaining a PVDF sheet having a thickness of 50 ⁇ m having an embossed shape on one surface.
  • PVDF Polyvinylidene fluoride
  • a plasma processing apparatus (AP / T04-R1540 apparatus and product lineup made by Sekisui Chemical Co., Ltd.) on the surface of the obtained PVDF sheet having an embossed shape, 1 head, sheet processing speed of 5 m / min, processing strength of 1
  • a nitrogen gas plasma treatment was performed under a condition of 3 kW to obtain a PVDF sheet having a surface layer.
  • About the PVDF sheet which has the obtained surface layer when nitrogen atom content of the surface layer was measured by X-ray photoelectron spectroscopy (XPS), it was 2.02 mol%.
  • Modified olefin resin 100 obtained by graft-modifying a butene-ethylene copolymer having an ethylene component content of 75% by weight and a butene component content of 25% by weight with maleic anhydride
  • a composition for an adhesive sealing layer comprising, by weight, 0.5 part by weight of 3-glycidoxypropyltrimethoxysilane (trade name “Z-6040”, manufactured by Dow Corning Toray) as a silane compound having a glycidyl group
  • Z-6040 3-glycidoxypropyltrimethoxysilane
  • the adhesive sealing layer composition is laminated while being extruded on the surface layer of the PVDF sheet having the surface layer obtained above to form an adhesive sealing layer, and contains a modified olefin resin and a silane compound.
  • a solar cell protective sheet having a long and constant width was obtained by laminating and integrating an adhesive sealing layer having a thickness of 300 ⁇ m and a protective layer having a thickness of 50 ⁇ m.
  • the modified olefin resin used had a melt flow rate (MFR) of 3 g / 10 min and a maximum peak temperature (Tm) of an endothermic curve measured by differential scanning calorimetry of 80 ° C.
  • the total content of maleic anhydride in the modified olefin resin was 0.3% by weight.
  • a photoelectric conversion layer made of thin amorphous silicon is formed on a flexible base material made of a flexible polyimide film, and A solar cell element wound in a roll shape and a solar cell protection sheet in which the solar cell protection sheet obtained above was wound in a roll shape were prepared.
  • the solar cell element C and the solar cell protection sheet B are unwound, the solar cell protection sheet B is placed on the photoelectric conversion layer of the solar cell element C, and the adhesive sealing layer is the photoelectric conversion layer.
  • Laminated sheets D were laminated so as to face the layers.
  • the laminated sheet D is supplied between a pair of rolls E and E heated to the temperatures shown in Table 1, and the laminated sheet D is heated while pressing the laminated sheet D in the thickness direction, and the solar cell protective sheet
  • the photoelectric conversion layer was sealed by bonding and integrating B with the solar cell element C, and the flexible solar cell module A was continuously manufactured, and wound around a winding shaft (not shown).
  • (3-2) Manufacture of flexible solar cell module by vacuum laminating method
  • a solar cell element in which a photoelectric conversion layer made of amorphous silicon in the form of a thin film is formed on a flexible base material made of a polyimide film having flexibility.
  • the solar cell protective sheet obtained above was prepared by cutting it into a predetermined shape.
  • the solar cell protective sheet and the solar cell element were laminated in a state where the adhesive sealing layer of the solar cell protective sheet and the photoelectric conversion layer side surface of the solar cell element were opposed to each other.
  • the obtained laminate is heated using a vacuum laminator under a reduced pressure atmosphere of 1000 Pa or less while applying a pressing force in the thickness direction under the conditions shown in Table 1, and the solar cell element is sealed with a solar cell protective sheet. Stopped.
  • Examples 2 to 4, 7 to 9, 13, 15 and Comparative Examples 1 to 4, 6 In the preparation of PVDF sheet, the presence or absence of embossed shape, the plasma treatment conditions were changed as shown in Tables 1 to 4, and the composition of modified olefin resin and the presence or absence of silane compound in the production of solar cell protective sheet A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1 except that the values were changed as shown in Tables 1 to 4.
  • Examples 5 and 14 A vinylidene fluoride-hexafluoropropylene copolymer (trade name “Kyner Flex 2800” manufactured by Arkema Co., Ltd.) as a fluororesin is used at 250 ° C., 180 rotations / minute, and an extrusion rate of 12 kg / hour using a single screw extruder. After melt kneading under the conditions, melt extrusion was performed, and an embossing roll was used as a cooling roll to obtain a 50 ⁇ m thick PVDF-HFP copolymer sheet having an embossed shape on one surface.
  • the surface of the obtained PVDF-HFP copolymer sheet having an embossed shape is subjected to plasma surface treatment using a plasma treatment device (AP / T04-R1540 device and product lineup manufactured by Sekisui Chemical Co., Ltd.)
  • a PVDF sheet was obtained. Except for changing the plasma treatment conditions as shown in Tables 1 and 2 or changing the composition of the modified olefin resin and the presence or absence of the silane compound in the production of the solar cell protective sheet as shown in Tables 1 and 2.
  • a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1.
  • Tetrafluoroethylene-ethylene copolymer (trade name “Neofluon ETFE”, manufactured by Daikin Industries, Ltd.) is used as a fluororesin under the conditions of 310 ° C., 180 rotations / minute, extrusion rate of 12 kg / hour using a single screw extruder. After melt kneading, melt extrusion was performed, and an embossing roll was used as a cooling roll to obtain an ETFE sheet having an embossed shape on one surface and a thickness of 50 ⁇ m.
  • a nitrogen gas plasma treatment was performed under a condition of .3 kW to obtain an ETFE sheet having a surface layer.
  • a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1 except that the ETFE sheet having the obtained surface layer was used.
  • Example 10 Comparative Example 7
  • the plasma treatment conditions were as shown in Tables 2 and 4.
  • a commercial product of ionomer resin (trade name: Himiran 1705, Zn ion type, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used in place of the modified olefin-based resin.
  • a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1.
  • Example 11 Comparative Example 8
  • the plasma treatment conditions were as shown in Tables 2 and 4.
  • an ethylene-acrylic acid ester-maleic anhydride terpolymer containing a predetermined amount of components described in Tables 2 and 4 was used, as described in Tables 2 and 4.
  • a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1.
  • Example 12 Comparative Example 9
  • the plasma treatment conditions were as shown in Tables 2 and 4.
  • a resin obtained by modifying an ethylene-glycidyl methacrylate copolymer containing a predetermined amount of ethylene component and glycidyl methacrylate component described in Tables 2 and 4 with maleic anhydride was used.
  • a solar cell protective sheet and a flexible solar cell module were obtained by the same method as in Example 1.
  • PVDF sheet having surface layer Polyvinylidene fluoride (PVDF, manufactured by Arkema Corp., Kyner 720) is used as a fluororesin using a single screw extruder at 250 ° C., 180 rotations / minute, extrusion rate of 12 kg / hour. After melt-kneading under the above conditions, melt extrusion was performed, and an embossing roll was used as a cooling roll, thereby obtaining a PVDF sheet having a thickness of 50 ⁇ m having an embossed shape on one surface.
  • PVDF Polyvinylidene fluoride
  • the surface having the embossed shape of the obtained PVDF sheet is subjected to a nitrogen gas corona discharge treatment using a corona discharge treatment device (manufactured by Kasuga Denki Co., Ltd., high frequency power supply device and treatment station) under conditions of a treatment amount of 20 W / m 2.
  • a PVDF sheet having a surface layer was obtained.
  • a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1 except that the obtained PVDF sheet having the surface layer was used.
  • Examples 17 and 18, Comparative Example 5 Except for changing the corona discharge treatment conditions as shown in Tables 2 and 3 in the preparation of the PVDF sheet, and changing the presence or absence of the silane compound as shown in Tables 2 and 3 in the production of the solar cell protective sheet.
  • a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 16.
  • the initial delamination strength between the protective layer and the adhesive sealing layer is generally required to be 10 N / cm or more, preferably 20 N / cm or more, and more preferably 30 N / cm or more.
  • the flexible solar cell module by which the solar cell element was protected by the solar cell protective sheet excellent in durability with the high adhesiveness of a protective layer and an adhesive sealing layer, and this solar cell protective sheet. can be provided.

Abstract

The purpose of the present invention is to provide a solar cell protective sheet having high adhesiveness between a protective layer and an adhesive sealing layer and excellent durability, and a flexible solar cell module in which the solar cell elements are protected by said solar cell protective sheet. This solar cell protective sheet is a laminate of a protective layer comprising a fluorine-based resin sheet, and an adhesive sealing layer, wherein the protective layer has a surface layer with 0.2mol% or more nitrogen atoms on the surface contacting the adhesive sealing layer, and the adhesive sealing layer contains a heat-adhesive resin having an acid group or an acid anhydride group.

Description

太陽電池保護シート及びフレキシブル太陽電池モジュールSolar cell protective sheet and flexible solar cell module
本発明は、保護層と接着封止層との接着性の高い、耐久性に優れた太陽電池保護シート、及び、該太陽電池保護シートにより太陽電池素子が保護されたフレキシブル太陽電池モジュールに関する。 The present invention relates to a highly durable solar cell protective sheet having high adhesion between a protective layer and an adhesive sealing layer, and a flexible solar cell module in which a solar cell element is protected by the solar cell protective sheet.
太陽電池として、ガラスを基材とするリジットな太陽電池モジュールと、ポリイミドやポリエステル系の耐熱高分子材料やステンレス薄膜を基材とするフレキシブルな太陽電池モジュールとが知られている。近年、薄型化や軽量化による運搬、施工の容易さや、衝撃に強い点から、フレキシブルな太陽電池モジュールが注目されるようになってきている。 As a solar cell, a rigid solar cell module based on glass and a flexible solar cell module based on a polyimide or polyester heat-resistant polymer material or a stainless thin film are known. In recent years, flexible solar cell modules have been attracting attention because of their ease of transportation and construction due to reduction in thickness and weight, and resistance to impact.
このようなフレキシブルな太陽電池モジュールは、フレキシブル基材上に、光が照射されると電流を生じる機能を有するシリコン半導体や化合物半導体等からなる光電変換層等を薄膜状に積層したフレキシブル太陽電池素子の上下面を、接着封止層で封止し、最外層として保護層を備える。 Such a flexible solar cell module is a flexible solar cell element in which a photoelectric conversion layer made of a silicon semiconductor or a compound semiconductor having a function of generating a current when irradiated with light is laminated in a thin film on a flexible substrate. The upper and lower surfaces are sealed with an adhesive sealing layer, and a protective layer is provided as the outermost layer.
太陽電池素子を封止するための接着封止層には、エチレン-酢酸ビニル(EVA)系樹脂を用いることが主流である(例えば、特許文献1)。また、EVA系樹脂を用いる場合には、架橋工程のために、製造時間が長くなったり、酸を発生したりするといった問題があることから、シラン変性オレフィン樹脂等の非EVA系樹脂も検討されている(例えば、特許文献2)。 As the adhesive sealing layer for sealing the solar cell element, it is a mainstream to use an ethylene-vinyl acetate (EVA) resin (for example, Patent Document 1). In addition, when EVA resin is used, there is a problem that the production time becomes long or an acid is generated due to the cross-linking process. Therefore, non-EVA resin such as silane-modified olefin resin is also studied. (For example, Patent Document 2).
上記保護層には、高い耐衝撃性を有し、かつ、軽いという点で、熱可塑性物質がしばしば用いられてきた。なかでも、耐候性、耐放射線性、耐薬品性に優れ、比較的不活性であり、非常に低い表面エネルギーを有するため汚染物が付着しにくいといった点から、ポリ(フッ化ビニリデン)(PVDF)等のフッ素樹脂が用いられてきた(例えば、特許文献3)。 A thermoplastic material has often been used for the protective layer because it has high impact resistance and is light. Among them, poly (vinylidene fluoride) (PVDF) is superior in that it has excellent weather resistance, radiation resistance, chemical resistance, is relatively inert, and has a very low surface energy, so that it is difficult for contaminants to adhere to it. Have been used (for example, Patent Document 3).
しかし、従来のフレキシブル太陽電池モジュールでは、接着封止層と保護層との接着性が不充分で、長時間環境中に放置したときに保護層が接着封止層から剥離してしまうことがあり、耐久性の点で問題があった。
これに対して、接着封止層と保護層との間に、アクリル樹脂や、アクリル樹脂とフッ素樹脂との混合物からなる接着層を設けることにより、層間の接着性を高めることが試みられている。しかしながら、このような接着層を用いると、耐候性や耐熱性が顕著に低下してしまうという問題があった。また、上記接着層を設けると、製造工程時、とりわけ量産化に優れた方法として近年注目されているロールツーロール法により太陽電池素子を連続的に封止する工程において、しわやカールが発生しやすくなるという問題もあった。
However, in the conventional flexible solar cell module, the adhesion between the adhesive sealing layer and the protective layer is insufficient, and the protective layer may peel off from the adhesive sealing layer when left in the environment for a long time. There was a problem in terms of durability.
On the other hand, an attempt is made to improve the adhesion between layers by providing an adhesive layer made of an acrylic resin or a mixture of an acrylic resin and a fluororesin between the adhesive sealing layer and the protective layer. . However, when such an adhesive layer is used, there is a problem that the weather resistance and heat resistance are remarkably lowered. In addition, when the adhesive layer is provided, wrinkles and curls occur in the process of continuously sealing solar cell elements by the roll-to-roll method, which has recently been attracting attention as a method excellent in mass production, particularly during the manufacturing process. There was also a problem that it became easier.
特開平7-297439号公報JP 7-297439 A 特開2004-214641号公報JP 2004-214641 A 国際公開第2008/019229号パンフレットInternational Publication No. 2008/019229 Pamphlet
本発明は、保護層と接着封止層との接着性の高い、耐久性に優れた太陽電池保護シート、及び、該太陽電池保護シートにより太陽電池素子が保護されたフレキシブル太陽電池モジュールを提供することを目的とする。 The present invention provides a highly durable solar cell protective sheet having high adhesion between a protective layer and an adhesive sealing layer, and a flexible solar cell module in which solar cell elements are protected by the solar cell protective sheet. For the purpose.
本発明は、フッ素系樹脂シートからなる保護層と接着封止層とが積層されている太陽電池保護シートであって、前記保護層は、前記接着封止層と接する面に窒素原子を0.2モル%以上含む表面層を有するものであり、前記接着封止層は、酸基又は酸無水物基を有する熱接着性樹脂を含有する太陽電池保護シートである。
以下に本発明を詳述する。
The present invention is a solar cell protective sheet in which a protective layer made of a fluororesin sheet and an adhesive sealing layer are laminated, wherein the protective layer has a nitrogen atom concentration of 0. 0 on the surface in contact with the adhesive sealing layer. It has a surface layer containing 2 mol% or more, and the adhesive sealing layer is a solar cell protective sheet containing a thermal adhesive resin having an acid group or an acid anhydride group.
The present invention is described in detail below.
本発明者らは、フッ素系樹脂シートからなる保護層の接着封止層と接する面に窒素原子を0.2モル%以上含む表面層を形成し、酸基又は酸無水物基を有する熱接着性樹脂を含有する接着封止層と組み合わせることにより、層間の接着力を著しく増大できることを見出した。本発明によれば、従来技術のように接着層を設けることなく保護層と接着封止層との接着性を向上できることから、耐候性や耐熱性の低下もなく、また、ロールツーロール法等により太陽電池素子を連続的に封止する場合にでも、しわやカールが発生しにくい。 The inventors of the present invention form a surface layer containing 0.2 mol% or more of nitrogen atoms on the surface of the protective layer made of a fluororesin sheet in contact with the adhesive sealing layer, and thermally bond the acid group or the acid anhydride group. It has been found that the adhesive strength between layers can be remarkably increased by combining with an adhesive sealing layer containing an adhesive resin. According to the present invention, the adhesiveness between the protective layer and the adhesive sealing layer can be improved without providing an adhesive layer as in the prior art, so there is no deterioration in weather resistance or heat resistance, and roll-to-roll method or the like. Therefore, even when the solar cell elements are continuously sealed, wrinkles and curls are hardly generated.
本発明の太陽電池保護シートは、保護層と接着封止層とが積層された構造を有する。図1に、保護層1と接着封止層2とからなる太陽電池保護シートBの一例の縦断面模式図を示す。図1において保護層1の接着封止層2と接する面には、窒素原子を0.2モル%以上含む表面層12が形成されている。
上記保護層は、本発明の太陽電池保護シートを用いて太陽電池素子を保護したときに、得られるフレキシブル太陽電池モジュールにおいて最外層となり、外部からの衝撃を防止したり、太陽電池素子の腐食を防止したりする役割を有する。
The solar cell protective sheet of the present invention has a structure in which a protective layer and an adhesive sealing layer are laminated. In FIG. 1, the longitudinal cross-section schematic diagram of an example of the solar cell protection sheet B which consists of the protective layer 1 and the adhesion sealing layer 2 is shown. In FIG. 1, a surface layer 12 containing 0.2 mol% or more of nitrogen atoms is formed on the surface of the protective layer 1 in contact with the adhesive sealing layer 2.
When the solar cell protection sheet of the present invention is used to protect the solar cell element, the protective layer is the outermost layer in the obtained flexible solar cell module, and prevents external impact or corrosion of the solar cell element. It has a role to prevent.
上記保護層は、フッ素系樹脂シートからなる。
上記フッ素系樹脂シートは、透明性、耐熱性及び難燃性に優れるものであれば、特に限定されないが、テトラフルオロエチレン-エチレン共重合体(ETFE)、エチレンクロロトリフルオロエチレン樹脂(ECTFE)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、ポリフッ化ビニリデン樹脂(PVDF)、テトラフロオロエチレン-パーフロオロアルキルビニルエーテル共重合体(FAP)、ポリビニルフルオライド樹脂(PVF)、テトラフロオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、及び、ポリフッ化ビニリデンとポリメタクリル酸メチルとの混合物(PVDF/PMMA)からなる群より選択される少なくとも一種のフッ素系樹脂からなることが好ましい。
なかでも、上記フッ素系樹脂は、耐熱性及び透明性により優れる点で、ポリフッ化ビニリデン樹脂(PVDF)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリビニルフルオライド樹脂(PVF)がより好ましい。
The protective layer is made of a fluorine resin sheet.
The fluororesin sheet is not particularly limited as long as it is excellent in transparency, heat resistance, and flame retardancy. Tetrafluoroethylene-ethylene copolymer (ETFE), ethylene chlorotrifluoroethylene resin (ECTFE), Polychlorotrifluoroethylene resin (PCTFE), polyvinylidene fluoride resin (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (FAP), polyvinyl fluoride resin (PVF), tetrafluoroethylene-hexafluoropropylene At least one selected from the group consisting of a copolymer (FEP), a vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), and a mixture of polyvinylidene fluoride and polymethyl methacrylate (PVDF / PMMA) of It is preferably made of Tsu Motokei resin.
Of these, the fluororesin is more preferably a polyvinylidene fluoride resin (PVDF), a tetrafluoroethylene-ethylene copolymer (ETFE), or a polyvinyl fluoride resin (PVF) in that it is superior in heat resistance and transparency.
上記保護層は、上記接着封止層と接する面に窒素原子を0.2モル%以上含む表面層を有する。このような表面層を有することにより、酸基又は酸無水物基を有する熱接着性樹脂を含有する接着封止層との接着力が著しく増大し、長時間環境中に放置したときに保護層が接着封止層から剥離してしまうことを防止することができる。
これは、表面層に含まれる窒素原子を含む官能基(例えば、アミノ基等)と、熱接着性樹脂の酸基又は酸無水物基とが反応して化学結合したり、静電結合したりするためであると考えられる。
The protective layer has a surface layer containing 0.2 mol% or more of nitrogen atoms on the surface in contact with the adhesive sealing layer. By having such a surface layer, the adhesive force with the adhesive sealing layer containing the heat-adhesive resin having an acid group or an acid anhydride group is remarkably increased, and the protective layer when left in the environment for a long time. Can be prevented from peeling off from the adhesive sealing layer.
This is because a functional group containing a nitrogen atom contained in the surface layer (for example, an amino group) reacts with an acid group or an acid anhydride group of the heat-adhesive resin to chemically bond or electrostatically bond. It is thought that it is to do.
上記表面層中の窒素原子の含有量の下限は0.2モル%である。0.2モル%未満であると、上記保護層と接着封止層との接着性を向上させる効果が得られない。上記保護層の表面層中の窒素原子の含有量の好ましい下限は0.5モル%、より好ましい下限は1.0モル%である。上記保護層の表面層中の窒素原子の含有量の上限は特に限定されないが、技術的には20モル%程度が実質的な上限であると考えられる。
なお、本明細書において表面層中の窒素原子の含有量とは、上記表面層中に含まれる全ての原子の含有量に対する窒素原子の含有量の割合を意味する。ここで表面層中に含まれる各原子の含有量は、例えば、X線光電子分光法(XPS)や、オージェ電子分光法(AES)により測定することができる。
The lower limit of the nitrogen atom content in the surface layer is 0.2 mol%. If it is less than 0.2 mol%, the effect of improving the adhesion between the protective layer and the adhesive sealing layer cannot be obtained. The minimum with preferable content of the nitrogen atom in the surface layer of the said protective layer is 0.5 mol%, and a more preferable minimum is 1.0 mol%. The upper limit of the content of nitrogen atoms in the surface layer of the protective layer is not particularly limited, but technically about 20 mol% is considered to be a substantial upper limit.
In addition, in this specification, content of the nitrogen atom in a surface layer means the ratio of content of the nitrogen atom with respect to content of all the atoms contained in the said surface layer. Here, the content of each atom contained in the surface layer can be measured by, for example, X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES).
上記表面層の厚さの好ましい下限は0.05nmである。上記表面層の厚さが0.05nm未満であると、上記保護層と接着封止層との接着性を向上させる効果が得られないことがある。上記表面層の厚さのより好ましい下限は0.1nmである。上記表面層の厚さの上限は特に限定されないが、技術的には10nm程度が実質的な上限であると考えられる。
なお、上記表面層の厚さは、例えば、X線光電子分光法(XPS)や、オージェ電子分光法(AES)を用いて、表面層のエッチングにより、表面層特定元素の断面プロットから測定することができる。
A preferable lower limit of the thickness of the surface layer is 0.05 nm. If the thickness of the surface layer is less than 0.05 nm, the effect of improving the adhesion between the protective layer and the adhesive sealing layer may not be obtained. A more preferable lower limit of the thickness of the surface layer is 0.1 nm. The upper limit of the thickness of the surface layer is not particularly limited, but technically about 10 nm is considered to be a substantial upper limit.
Note that the thickness of the surface layer is measured from a cross-sectional plot of the surface layer specific element by etching the surface layer using, for example, X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES). Can do.
上記保護層の接着封止層と接する面に表面層を形成させる方法としては、例えば、保護層の表面にプラズマ処理を施す方法、窒素雰囲気下においてコロナ放電処理を施す方法等が挙げられる。上記保護層にこれらの表面処理を施して表面層を形成することにより、酸基又は酸無水物基を含有する接着封止層との接着力が著しく増大し、長時間環境中に放置したときに保護層が接着封止層から剥離してしまうことを防止することができる。なかでも、しわの発生を低減し、高温高湿条件下を経たのちの接着力を高く維持できることから、プラズマ処理を施す方法が好適である。 Examples of the method for forming the surface layer on the surface of the protective layer in contact with the adhesive sealing layer include a method in which the surface of the protective layer is subjected to plasma treatment and a method in which corona discharge treatment is performed in a nitrogen atmosphere. When the protective layer is subjected to these surface treatments to form a surface layer, the adhesive strength with the adhesive sealing layer containing an acid group or an acid anhydride group is remarkably increased, and when left in the environment for a long time. It is possible to prevent the protective layer from being peeled off from the adhesive sealing layer. Among them, the method of performing plasma treatment is preferable because the generation of wrinkles is reduced and the adhesive strength after high temperature and high humidity conditions can be maintained high.
上記保護層へのプラズマ処理は、従来公知の方法により行うことができる。具体的には、例えば、窒素ガスプラズマ、窒素・メタン混合ガスプラズマ、窒素・二酸化炭素混合ガスプラズマ、窒素・アルゴン混合ガスプラズマ等の方法が挙げられる。
上記保護層に形成される上記表面層の窒素原子の含有量を0.2モル%以上とするためには、例えば、処理速度25m/分以下、処理強度0.8kW以上の条件で窒素ガスプラズマ処理することが好ましい。
The plasma treatment to the protective layer can be performed by a conventionally known method. Specific examples include nitrogen gas plasma, nitrogen / methane mixed gas plasma, nitrogen / carbon dioxide mixed gas plasma, and nitrogen / argon mixed gas plasma.
In order to set the content of nitrogen atoms in the surface layer formed in the protective layer to 0.2 mol% or more, for example, nitrogen gas plasma under conditions of a processing speed of 25 m / min or less and a processing intensity of 0.8 kW or more. It is preferable to process.
上記保護層へのコロナ放電処理は、従来公知の方法により行うことができる。具体的には、例えば、窒素ガスコロナ、窒素・水素混合ガスコロナ、窒素・アミン混合ガスコロナ、窒素・メタン混合ガスコロナ等の方法が挙げられる。
上記保護層に形成される上記表面層の窒素原子の含有量を0.2モル%以上とするためには、例えば、処理量20W分/m以上の条件で窒素ガスコロナ放電処理することが好ましい。
The corona discharge treatment to the protective layer can be performed by a conventionally known method. Specific examples include nitrogen gas corona, nitrogen / hydrogen mixed gas corona, nitrogen / amine mixed gas corona, and nitrogen / methane mixed gas corona.
In order to set the content of nitrogen atoms in the surface layer formed in the protective layer to 0.2 mol% or more, for example, it is preferable to perform nitrogen gas corona discharge treatment under the condition of a treatment amount of 20 W / m 2 or more. .
上記保護層は、上記接着封止層と接する面にエンボス形状を有することが好ましい。保護層がエンボス形状を有することにより、保護層と接着封止層との接着力を更に増大させることができる。
上記保護層の表面のエンボス形状は、規則的な凹凸形状であっても、ランダムな凹凸形状であってもよい。
The protective layer preferably has an embossed shape on the surface in contact with the adhesive sealing layer. When the protective layer has an embossed shape, the adhesive force between the protective layer and the adhesive sealing layer can be further increased.
The emboss shape on the surface of the protective layer may be a regular uneven shape or a random uneven shape.
なお、上記保護層は、上記接着封止層と接する面とは反対側の面、即ち、太陽電池素子を封止してフレキシブル太陽電池モジュールの最外層となる面もエンボス形状を有していることが好ましい。最外層がエンボス形状を有することにより、太陽光の反射ロスを低減したり、ギラツキを防止したり、外観を向上させたりすることができる。 The protective layer has an embossed shape on the surface opposite to the surface in contact with the adhesive sealing layer, that is, the surface that seals the solar cell element and becomes the outermost layer of the flexible solar cell module. It is preferable. When the outermost layer has an embossed shape, it is possible to reduce the reflection loss of sunlight, prevent glare, and improve the appearance.
上記エンボス形状は、例えば、上記保護層を構成するフッ素系樹脂シートを溶融押出法により押出成形する際の冷却ロールにエンボスロールを用いて、溶融樹脂を冷却する際に同時にエンボス賦型を行う方法等により付与することができる。
なお、保護層が表面にエンボス形状を有する場合には、先にプラズマ処理やコロナ放電処理を行ってからエンボス加工を施してもよいが、上記溶融押出法においてエンボスロールを用いる方法によりエンボス形状が付与されたフッ素系樹脂シートのエンボス面に、上記の方法によりプラズマ処理やコロナ放電処理を行う方法が好ましい。
The embossed shape is a method of performing embossing at the same time when the molten resin is cooled by using an embossed roll as a cooling roll when the fluororesin sheet constituting the protective layer is extruded by a melt extrusion method. Or the like.
When the protective layer has an embossed shape on the surface, the embossing may be performed after the plasma treatment or the corona discharge treatment first, but the embossed shape is determined by a method using an embossing roll in the melt extrusion method. A method of performing plasma treatment or corona discharge treatment on the embossed surface of the applied fluororesin sheet by the above method is preferable.
上記保護層の厚みの好ましい下限は10μm、好ましい上限は100μmである。上記保護層の厚みが10μm未満であると、絶縁性が確保できなかったり、難燃性が損なわれたりするおそれがある。上記保護層の厚みが100μmを超えると、フレキシブル太陽電池モジュールの重量が重くなるおそれがあり、経済的に不利である。上記保護層の厚みのより好ましい下限は15μm、より好ましい上限は80μmである。 The preferable lower limit of the thickness of the protective layer is 10 μm, and the preferable upper limit is 100 μm. If the thickness of the protective layer is less than 10 μm, insulation may not be ensured or flame retardancy may be impaired. If the thickness of the protective layer exceeds 100 μm, the weight of the flexible solar cell module may be increased, which is economically disadvantageous. The minimum with more preferable thickness of the said protective layer is 15 micrometers, and a more preferable upper limit is 80 micrometers.
本発明の太陽電池保護シートは、接着封止層を有する。上記接着封止層は、太陽電池素子を封止する役割を有する。
上記接着封止層は、酸基又は酸無水物基を有する熱接着性樹脂を含有する。このような接着封止層を、上記窒素原子を0.2モル%以上含む表面層を有する保護層と組み合わせることにより、高い層間接着力を達成することができる。
The solar cell protective sheet of the present invention has an adhesive sealing layer. The said adhesive sealing layer has a role which seals a solar cell element.
The adhesive sealing layer contains a heat-adhesive resin having an acid group or an acid anhydride group. A high interlayer adhesion can be achieved by combining such an adhesive sealing layer with a protective layer having a surface layer containing 0.2 mol% or more of the nitrogen atoms.
上記酸基は、例えば、カルボキシル基、不飽和カルボン酸基、ヒドロキシ酸基、芳香族カルボン酸基、ジカルボン酸基等が挙げられる。
上記酸無水物基は、例えば、無水マレイン酸基、無水酢酸基、無水プロピオン酸基、無水コハク酸基、無水フタル酸基、無水安息香酸基等が挙げられる。
Examples of the acid group include a carboxyl group, an unsaturated carboxylic acid group, a hydroxy acid group, an aromatic carboxylic acid group, and a dicarboxylic acid group.
Examples of the acid anhydride group include a maleic anhydride group, an acetic anhydride group, a propionic anhydride group, a succinic anhydride group, a phthalic anhydride group, and a benzoic anhydride group.
上記酸基又は酸無水物基を有する熱接着性樹脂は、例えば、酸変性ポリオレフィン、酸変性エチレン-グリシジルメタクリレート共重合体、アイオノマー、エチレン-アクリル酸エステル-酸無水物基共重合体等が挙げられる。これらの酸基又は酸無水物基を有する熱接着性樹脂は単独で用いてもよく、2種以上を併用してもよい。 Examples of the heat-adhesive resin having an acid group or an acid anhydride group include an acid-modified polyolefin, an acid-modified ethylene-glycidyl methacrylate copolymer, an ionomer, and an ethylene-acrylic acid ester-anhydride group copolymer. It is done. These thermal adhesive resins having an acid group or an acid anhydride group may be used alone or in combination of two or more.
上記酸変性ポリオレフィンは、本発明の太陽電池保護シートを用いて太陽電池素子を封止してフレキシブル太陽電池モジュールを製造する際にシワやカールの発生を防止でき、太陽電池表面との接着性にも優れる点で、無水マレイン酸変性ポリオレフィンであることが好ましい。
上記無水マレイン酸変性ポリオレフィンは、α-オレフィン含有量が1~25重量%であるα-オレフィン-エチレン共重合体が無水マレイン酸でグラフト変性された樹脂であり、かつ、無水マレイン酸の総含有量が0.1~3重量%であることが好ましい。
The acid-modified polyolefin can prevent the generation of wrinkles and curls when a solar cell element is sealed using the solar cell protective sheet of the present invention to produce a flexible solar cell module, and the adhesion to the solar cell surface is improved. From the viewpoint of superiority, it is preferably a maleic anhydride-modified polyolefin.
The maleic anhydride-modified polyolefin is a resin in which an α-olefin-ethylene copolymer having an α-olefin content of 1 to 25% by weight is graft-modified with maleic anhydride, and the total content of maleic anhydride The amount is preferably 0.1 to 3% by weight.
上記アイオノマーとしては、エチレン-不飽和カルボン酸共重合体の不飽和カルボン酸基の一部又は全部を金属イオンで中和したものであることが好ましい。
上記エチレン-不飽和カルボン酸共重合としては、少なくともエチレン及び不飽和カルボン酸の共重合成分からなる共重合体が挙げられる。
上記アイオノマーは、公知の方法で製造することができる。
The ionomer is preferably one obtained by neutralizing part or all of the unsaturated carboxylic acid group of the ethylene-unsaturated carboxylic acid copolymer with a metal ion.
Examples of the ethylene-unsaturated carboxylic acid copolymer include a copolymer comprising at least a copolymer component of ethylene and an unsaturated carboxylic acid.
The ionomer can be produced by a known method.
上記不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フタル酸、シトラコン酸、イタコン酸等が挙げられ、なかでも、アクリル酸、メタクリル酸が好ましい。
上記金属イオンとしては、ナトリウムイオン、亜鉛イオンが好ましい。
上記不飽和カルボン酸成分の含有量の好ましい下限は15重量%、好ましい上限は25重量%である。
Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, phthalic acid, citraconic acid, itaconic acid, and the like, among which acrylic acid and methacrylic acid are preferable.
As said metal ion, a sodium ion and a zinc ion are preferable.
The minimum with preferable content of the said unsaturated carboxylic acid component is 15 weight%, and a preferable upper limit is 25 weight%.
上記エチレン-不飽和カルボン酸共重合体は、更に、第三成分として(メタ)アクリル酸エステル成分を含んでもよい。
上記(メタ)アクリル酸エステルとしては、コスト、重合性の観点から、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル及び(メタ)アクリル酸ブチルからなる群より選択される少なくとも一種であることが好ましい。なかでも、融点の観点から、アクリル酸エステルが好ましく、具体的にはアクリル酸nブチル、アクリル酸イソブチル、アクリル酸エチルがより好ましい。
上記エチレン-不飽和カルボン酸共重合が上記(メタ)アクリル酸エステル成分を含有する場合、上記(メタ)アクリル酸エステル成分の含有量は、25重量%以下であることが好ましい。上記(メタ)アクリル酸エステル成分の含有量が25重量%を超えると、融点が低く成りすぎる恐れがある。上記(メタ)アクリル酸エステル成分の含有量のより好ましい上限は20重量%である。
The ethylene-unsaturated carboxylic acid copolymer may further contain a (meth) acrylic acid ester component as a third component.
The (meth) acrylic acid ester is at least one selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate from the viewpoint of cost and polymerizability. Is preferred. Among these, from the viewpoint of the melting point, an acrylate ester is preferable, and specifically, n-butyl acrylate, isobutyl acrylate, and ethyl acrylate are more preferable.
When the ethylene-unsaturated carboxylic acid copolymer contains the (meth) acrylic acid ester component, the content of the (meth) acrylic acid ester component is preferably 25% by weight or less. If the content of the (meth) acrylic acid ester component exceeds 25% by weight, the melting point may be too low. The upper limit with more preferable content of the said (meth) acrylic acid ester component is 20 weight%.
上記エチレン-(メタ)アクリル酸共重合体としては、エチレン-アクリル酸エステル-無水マレイン酸三元共重合体が好ましい。
上記エチレン-アクリル酸エステル-無水マレイン酸三元共重合体は、少なくともエチレン、アクリル酸エステル及び無水マレイン酸の三成分からなる共重合体である。
上記アクリル酸エステルは、コスト、重合性の観点から、アクリル酸メチル、アクリル酸エチル、及び、アクリル酸ブチルからなる群より選択される少なくとも一種であることが好ましい。
上記エチレン-(メタ)アクリル酸共重合体は、エチレン成分の含有量が71~93重量%であり、アクリル酸エステル成分の含有量が5~28重量%であり、無水マレイン酸成分の含有量が0.1~4重量%であることが好ましい。
The ethylene- (meth) acrylic acid copolymer is preferably an ethylene-acrylic acid ester-maleic anhydride terpolymer.
The ethylene-acrylic acid ester-maleic anhydride terpolymer is a copolymer composed of at least three components of ethylene, acrylic acid ester and maleic anhydride.
The acrylic ester is preferably at least one selected from the group consisting of methyl acrylate, ethyl acrylate, and butyl acrylate from the viewpoint of cost and polymerizability.
The ethylene- (meth) acrylic acid copolymer has an ethylene component content of 71 to 93% by weight, an acrylic ester component content of 5 to 28% by weight, and a maleic anhydride component content. Is preferably 0.1 to 4% by weight.
上記エチレン-(メタ)アクリル酸共重合体としては、エチレン-グリシジルメタクリレート共重合体が好ましい。
上記エチレン-グリシジルメタクリレート共重合体は、少なくともエチレン、グリシジルメタクリレートの二成分からなる共重合体である。
上記エチレン-グリシジルメタクリレート共重合体におけるグリシジルメタクリレート成分の含有量は、融点の観点から、好ましい下限が7重量%、好ましい上限が9重量%である。
上記エチレン-グリシジルメタクリレート共重合体は、従来公知の重合法を用いて製造することができる。
The ethylene- (meth) acrylic acid copolymer is preferably an ethylene-glycidyl methacrylate copolymer.
The ethylene-glycidyl methacrylate copolymer is a copolymer composed of at least two components of ethylene and glycidyl methacrylate.
The content of the glycidyl methacrylate component in the ethylene-glycidyl methacrylate copolymer is preferably 7% by weight and preferably 9% by weight from the viewpoint of the melting point.
The ethylene-glycidyl methacrylate copolymer can be produced using a conventionally known polymerization method.
上記エチレン-グリシジルメタクリレート共重合体は、エチレン成分及びグリシジルメタクリレート成分以外に、更に他のモノマーに由来する成分を含有してもよい。
上記他のモノマーは、本発明に必要な物性を損なわない限り、エチレン及びグリシジルメタクリレートと共重合可能なモノマーであれば特に限定はされない。なかでも、融点や重合性やコストの観点から、(メタ)アクリレートが好適である。
上記(メタ)アクリレートは、アクリレートが好ましく、なかでも、メチルアクリレート、エチルアクリレート又はブチルアクリレートが好適である。
上記エチレン-グリシジルメタクリレート共重合体が上記(メタ)アクリレート成分を含有する場合、(メタ)アクリレート成分の含有量の好ましい上限は15重量%であり、より好ましい上限は10重量%である。下限については共重合体樹脂が得られる範囲であれば特に限定されない。
The ethylene-glycidyl methacrylate copolymer may further contain components derived from other monomers in addition to the ethylene component and the glycidyl methacrylate component.
The other monomer is not particularly limited as long as it is a monomer copolymerizable with ethylene and glycidyl methacrylate as long as the physical properties necessary for the present invention are not impaired. Of these, (meth) acrylate is preferred from the viewpoint of melting point, polymerizability, and cost.
The (meth) acrylate is preferably an acrylate, and methyl acrylate, ethyl acrylate or butyl acrylate is particularly preferable.
When the ethylene-glycidyl methacrylate copolymer contains the (meth) acrylate component, the preferable upper limit of the content of the (meth) acrylate component is 15% by weight, and the more preferable upper limit is 10% by weight. The lower limit is not particularly limited as long as the copolymer resin can be obtained.
上記接着封止層は、更に、グリシジル基を有するシラン化合物を含有することが好ましい。このようなグリシジル基を有するシラン化合物を含有することにより、上記保護層と接着封止層との接着力を更に向上させることができる。また、太陽電池保護シートを製造したときに、ゲル等の異物がほとんど発生しないことから、連続的に製造することができる。また、ロールツーロール法等により太陽電池素子を連続的に封止した場合に、得られたフレキシブル太陽電池モジュールの保護層の端部から樹脂がはみ出したりすることがほとんどない。更に、接着封止層と太陽電池素子の表面との接着力をも向上させることができる。 The adhesive sealing layer preferably further contains a silane compound having a glycidyl group. By containing such a silane compound having a glycidyl group, the adhesive force between the protective layer and the adhesive sealing layer can be further improved. Moreover, since almost no foreign substances such as gel are generated when the solar cell protective sheet is manufactured, it can be manufactured continuously. Moreover, when a solar cell element is continuously sealed by a roll-to-roll method or the like, the resin hardly protrudes from the end portion of the protective layer of the obtained flexible solar cell module. Furthermore, the adhesive force between the adhesive sealing layer and the surface of the solar cell element can also be improved.
上記グリシジル基を有するシラン化合物は、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン等が挙げられる。なかでも、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシランが好適である。 Examples of the silane compound having a glycidyl group include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyltriethoxy. Silane, 3-glycidoxypropyltripropoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxy (Cyclohexyl) ethyltripropoxysilane and the like. Among them, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3- Glycidoxypropylmethyldiethoxysilane is preferred.
上記グリシジル基を有するシラン化合物の市販品は、東レ・ダウコーニング社製のZ-6040(3-グリシドキシプロピルトリメトキシシラン)、Z-6043(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン)や、信越シリコーン社製のKBE-403(3-グリシドキシプロピルトリエトキシシラン)、KBM-402(3-グリシドキシプロピルメチルジメトキシシラン)、KBE-402(3-グリシドキシプロピルメチルジエトキシシラン)等が挙げられる。 Commercially available silane compounds having a glycidyl group are Z-6040 (3-glycidoxypropyltrimethoxysilane), Z-6043 (2- (3,4-epoxycyclohexyl) ethyltril) manufactured by Toray Dow Corning. Methoxysilane), KBE-403 (3-glycidoxypropyltriethoxysilane), KBM-402 (3-glycidoxypropylmethyldimethoxysilane), KBE-402 (3-glycidoxypropyl) manufactured by Shin-Etsu Silicone Methyldiethoxysilane) and the like.
上記接着封止層中の上記グリシジル基を有するシラン化合物の含有量は、上記酸基又は酸無水物基を有する熱接着性樹脂100重量部に対して0.05~5重量部であることが好ましい。上記シラン化合物の含有量が上述の範囲外であると、上記保護層と接着封止層との接着力や、接着封止層と太陽電池素子との接着力が低下するおそれがある。上記シラン化合物の含有量は、上記酸基又は酸無水物基を有する熱接着性樹脂100重量部に対して、下限は0.07重量部であることがより好ましく、上限は1.5重量部であることがより好ましい。 The content of the silane compound having a glycidyl group in the adhesive sealing layer is 0.05 to 5 parts by weight with respect to 100 parts by weight of the thermoadhesive resin having an acid group or an acid anhydride group. preferable. When the content of the silane compound is out of the above range, the adhesive force between the protective layer and the adhesive sealing layer and the adhesive force between the adhesive sealing layer and the solar cell element may be reduced. The content of the silane compound is more preferably 0.07 parts by weight with respect to 100 parts by weight of the thermoadhesive resin having the acid group or acid anhydride group, and the upper limit is 1.5 parts by weight. It is more preferable that
上記接着封止層は、その物性を損なわない範囲内において、他の添加剤を更に含有していてもよい。上記他の添加剤としては、例えば、紫外線安定剤、酸化防止剤、耐光安定剤、可塑剤、充填剤、着色剤、顔料、帯電防止剤、界面活性剤、調色液、屈折率マッチング用添加剤及び分散助剤等が挙げられる。 The said adhesive sealing layer may further contain the other additive in the range which does not impair the physical property. Examples of the other additives include, for example, an ultraviolet stabilizer, an antioxidant, a light resistance stabilizer, a plasticizer, a filler, a colorant, a pigment, an antistatic agent, a surfactant, a toning liquid, and a refractive index matching additive. Agents and dispersion aids.
上記接着封止層の厚みの好ましい下限は80μm、好ましい上限は700μmである。上記接着封止層の厚みが80μm未満であると、フレキシブル太陽電池モジュールの絶縁性を保持できないおそれがあり、700μmを超えると、フレキシブル太陽電池モジュールの難燃性に悪影響を及ぼしたり、フレキシブル太陽電池モジュールの重量が重くなったりするおそれがある。上記接着封止層の厚みのより好ましい下限は150μm、より好ましい上限は400μmである。 The minimum with the preferable thickness of the said adhesive sealing layer is 80 micrometers, and a preferable upper limit is 700 micrometers. If the thickness of the adhesive sealing layer is less than 80 μm, the insulating property of the flexible solar cell module may not be maintained. If it exceeds 700 μm, the flame resistance of the flexible solar cell module may be adversely affected, or the flexible solar cell The module may become heavy. The minimum with more preferable thickness of the said adhesive sealing layer is 150 micrometers, and a more preferable upper limit is 400 micrometers.
上記接着封止層を形成する方法は、例えば、上記酸基又は酸無水物基を有する熱接着性樹脂に、グリシジル基を有するシラン化合物や必要に応じて添加される添加剤を所定の重量割合にて押出機に供給して溶融、混練し、押出機からシート状に押出して接着封止層を形成する方法等が挙げられる。
上記押出機としては、一軸スクリュー押出機を用いてもよく、二軸スクリュー押出機を用いてもよい。
The method for forming the adhesive sealing layer includes, for example, a predetermined weight ratio of a silane compound having a glycidyl group and an additive added as necessary to the thermal adhesive resin having an acid group or an acid anhydride group. And a method of forming an adhesive sealing layer by feeding into an extruder and melting and kneading, and extruding into a sheet form from the extruder.
As the extruder, a single screw extruder or a twin screw extruder may be used.
本発明の太陽電池保護シートは、上記保護層と接着封止層とが積層されたものである。
上記積層の方法は、例えば、真空ラミネート法、ロールラミネート法、押出ラミネート法等の従来公知の方法を用いることができる。
The solar cell protective sheet of the present invention is obtained by laminating the protective layer and the adhesive sealing layer.
As the lamination method, for example, a conventionally known method such as a vacuum laminating method, a roll laminating method, or an extrusion laminating method can be used.
本発明の太陽電池保護シートは、太陽電池素子を封止して、フレキシブル太陽電池モジュールを製造するものである。
本発明の太陽電池保護シートと、フレキシブル基材上に光電変換層が配置された太陽電池素子とが、積層一体化しているフレキシブル太陽電池モジュールもまた、本発明の1つである。
The solar cell protective sheet of the present invention is for manufacturing a flexible solar cell module by sealing solar cell elements.
The flexible solar cell module in which the solar cell protective sheet of the present invention and the solar cell element in which the photoelectric conversion layer is disposed on the flexible base material are laminated and integrated are also one aspect of the present invention.
上記太陽電池素子は、一般に、受光することで電子が発生する光電変換層、発生した電子を取り出す電極層、及び、フレキシブル基材から構成される。
図3に、フレキシブル基材4上に光電変換層3が配置された太陽電池素子Cの一例の縦断面模式図を示す。なお、電極層は、種々の配置が可能なためここでは省略する。
The solar cell element is generally composed of a photoelectric conversion layer in which electrons are generated by receiving light, an electrode layer for taking out the generated electrons, and a flexible substrate.
In FIG. 3, the longitudinal cross-sectional schematic diagram of an example of the solar cell element C by which the photoelectric converting layer 3 is arrange | positioned on the flexible base material 4 is shown. Note that the electrode layer is omitted here because various arrangements are possible.
上記フレキシブル基材としては、可撓性があり、フレキシブル太陽電池素子に使用することができるものであれば、特に限定されず、例えば、ポリイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン等の耐熱性樹脂からなる基材を挙げることができる。
上記フレキシブル基材の厚みの好ましい下限は10μm、好ましい上限は80μmである。
The flexible substrate is not particularly limited as long as it is flexible and can be used for a flexible solar cell element. For example, heat-resistant resin such as polyimide, polyetheretherketone, polyethersulfone, etc. The base material which consists of can be mentioned.
The preferable lower limit of the thickness of the flexible substrate is 10 μm, and the preferable upper limit is 80 μm.
上記光電変換層としては、例えば、単結晶シリコン、単結晶ゲルマニウム、多結晶シリコン、微結晶シリコン等の結晶系半導体、アモルファスシリコン等のアモルファス系半導体、GaAs、InP、AlGaAs、Cds、CdTe、CuS、CuInSe、CuInS等の化合物半導体、フタロシアニン、ポリアセチレン等の有機半導体等から形成されたものを挙げることができる。
上記光電変換層は、単層又は複層であってもよい。
上記光電変換層の厚みの好ましい下限は0.5μm、好ましい上限は10μmである。
Examples of the photoelectric conversion layer include crystal semiconductors such as single crystal silicon, single crystal germanium, polycrystalline silicon, and microcrystalline silicon, amorphous semiconductors such as amorphous silicon, GaAs, InP, AlGaAs, Cds, CdTe, and Cu 2. Examples thereof include compounds formed from compound semiconductors such as S, CuInSe 2 and CuInS 2 , and organic semiconductors such as phthalocyanine and polyacetylene.
The photoelectric conversion layer may be a single layer or a multilayer.
The minimum with the preferable thickness of the said photoelectric converting layer is 0.5 micrometer, and a preferable upper limit is 10 micrometers.
上記電極層は、電極材料からなる層である。
上記電極層は、必要に応じて、上記光電変換層上にあってもよいし、上記光電変換層とフレキシブル基材との間にあってもよいし、上記フレキシブル基材面上にあってもよい。
また、上記太陽電池素子は、上記電極層を複数有していてもよい。
受光面側(表面)の電極層は、透明である必要があるため、上記電極材料としては、金属酸化物等の一般的な透明電極材料であることが好ましい。上記透明電極材料としては、特に限定されないが、ITO又はZnO等が好適に使用される。
透明電極を使用しない場合は、バス電極やそれに付属するフィンガー電極を銀などの金属でパターニングされたものでもよい。
背面側(裏面)の電極層は、透明である必要はないため、一般的な電極材料によって構成されて構わないが、上記電極材料としては、銀が好適に用いられる。
The electrode layer is a layer made of an electrode material.
The electrode layer may be on the photoelectric conversion layer, between the photoelectric conversion layer and the flexible base, or on the surface of the flexible base, as necessary.
Further, the solar cell element may have a plurality of the electrode layers.
Since the electrode layer on the light receiving surface side (surface) needs to be transparent, the electrode material is preferably a general transparent electrode material such as a metal oxide. Although it does not specifically limit as said transparent electrode material, ITO or ZnO etc. are used suitably.
When the transparent electrode is not used, the bus electrode and the finger electrode attached thereto may be patterned with a metal such as silver.
The electrode layer on the back side (back side) does not need to be transparent and may be made of a general electrode material, but silver is preferably used as the electrode material.
上記太陽電池素子を製造する方法としては特に限定されず、例えば、上記フレキシブル基材上に上記光電変換層や電極層を配置する等の公知の方法により製造することができる。
上記太陽電池素子は、ロール状に巻回された長尺状であってもよいし、矩形状のシート状であってもよい。
It does not specifically limit as a method of manufacturing the said solar cell element, For example, it can manufacture by well-known methods, such as arrange | positioning the said photoelectric converting layer and an electrode layer on the said flexible base material.
The solar cell element may have a long shape wound in a roll shape or a rectangular sheet shape.
本発明のフレキシブル太陽電池モジュールは、図2に示すように、太陽電池素子Cの光電変換層3側面に、接着封止層2及び保護層1を有するものであるが、更に、上記太陽電池素子のフレキシブル基材側面にも、上記接着封止層及び上記保護層を有していてもよい。上記太陽電池素子のフレキシブル基材側面に、上記接着封止層及び上記保護層を有することにより、太陽電池素子がより良好に封止され、長期間にわたって安定的に発電し得る太陽電池モジュールとすることができる。 As shown in FIG. 2, the flexible solar cell module of the present invention has an adhesive sealing layer 2 and a protective layer 1 on the side of the photoelectric conversion layer 3 of the solar cell element C. The adhesive sealing layer and the protective layer may also be provided on the side surface of the flexible substrate. By having the adhesive sealing layer and the protective layer on the side surface of the flexible base material of the solar cell element, the solar cell module is better sealed and can be stably generated over a long period of time. be able to.
上記太陽電池素子の光電変換層側面及びフレキシブル基材側面に、上記接着封止層及び上記保護層を有する場合の、本発明のフレキシブル太陽電池モジュールの一例の縦断面模式図を図4に示す。
図4は、順に、保護層1、接着封止層2、光電変換層3、フレキシブル基材4、接着封止層2及び保護層1からなる本発明のフレキシブル太陽電池モジュールFの縦断面模式図を示す。
The longitudinal cross-sectional schematic diagram of an example of the flexible solar cell module of this invention in the case of having the said adhesion sealing layer and the said protective layer in the photoelectric conversion layer side surface and flexible base material side surface of the said solar cell element is shown in FIG.
FIG. 4 is a schematic longitudinal sectional view of a flexible solar cell module F of the present invention comprising a protective layer 1, an adhesive sealing layer 2, a photoelectric conversion layer 3, a flexible substrate 4, an adhesive sealing layer 2 and a protective layer 1 in this order. Indicates.
本発明のフレキシブル太陽電池モジュールを製造する方法としては、上記太陽電池素子の少なくとも受光面上に、上記接着封止層と保護層とからなる上記太陽電池保護シートを、一対の熱ロールを用いて狭窄し、熱圧着する方法が挙げられる。
上記太陽電池素子の受光面とは、光を受けることができる面であって、上記太陽電池素子の光電変換層が配置された面をいう。
上記フレキシブル太陽電池モジュールを製造する方法では、上記太陽電池素子の光電変換層が配置された面と、上記太陽電池保護シートの接着封止層側面とが対向した状態で、上記太陽電池素子と上記太陽電池保護シートを積層し、これらを一対の熱ロールを用いて狭窄し、熱圧着する方法が好ましい。
As a method for producing the flexible solar cell module of the present invention, the solar cell protective sheet comprising the adhesive sealing layer and the protective layer is formed on at least the light receiving surface of the solar cell element by using a pair of heat rolls. A method of constricting and thermocompression bonding can be mentioned.
The light receiving surface of the solar cell element is a surface that can receive light and is a surface on which the photoelectric conversion layer of the solar cell element is disposed.
In the method for manufacturing the flexible solar cell module, the solar cell element and the solar cell element are arranged in a state where the surface on which the photoelectric conversion layer of the solar cell element is disposed and the side surface of the adhesive sealing layer of the solar cell protection sheet are opposed to each other. A method of laminating solar cell protective sheets, constricting them using a pair of heat rolls, and thermocompression bonding is preferable.
上記一対の熱ロールを用いて狭窄する際の、上記熱ロールの温度の好ましい下限は70℃、好ましい上限は160℃である。上記熱ロールの温度が70℃未満であると、接着不良を起こすおそれがある。上記熱ロールの温度が160℃を超えると、熱圧着時にしわを発生しやすくなる。上記熱ロールの温度のより好ましい下限は80℃、より好ましい上限は110℃である。 The preferable lower limit of the temperature of the heat roll when constricting using the pair of heat rolls is 70 ° C., and the preferable upper limit is 160 ° C. If the temperature of the heat roll is less than 70 ° C., adhesion failure may occur. If the temperature of the heat roll exceeds 160 ° C., wrinkles are likely to occur during thermocompression bonding. A more preferable lower limit of the temperature of the heat roll is 80 ° C., and a more preferable upper limit is 110 ° C.
上記熱ロールの回転速度の好ましい下限は0.1m/分、好ましい上限は10m/分である。上記熱ロールの回転速度が0.1m/分未満であると、熱圧着後しわが発生しやすくなるおそれがある。上記熱ロールの回転速度が10m/分を超えると、接着不良が起こるおそれがある。上記熱ロールの回転速度のより好ましい下限は0.3m/分、より好ましい上限は5m/分である。 A preferable lower limit of the rotation speed of the heat roll is 0.1 m / min, and a preferable upper limit is 10 m / min. If the rotational speed of the heat roll is less than 0.1 m / min, wrinkles may easily occur after thermocompression bonding. When the rotation speed of the heat roll exceeds 10 m / min, there is a possibility that adhesion failure may occur. A more preferable lower limit of the rotation speed of the heat roll is 0.3 m / min, and a more preferable upper limit is 5 m / min.
本発明のフレキシブル太陽電池モジュールを製造する方法の一例について、図5を用いて、具体的に説明する。
図5に示すように、まず、上記保護層と上記接着封止層からなり、ロール状に巻回された長尺状の太陽電池保護シートBと、太陽電池素子Cとを用意する。そして、太陽電池保護シートB及び太陽電池素子Cのロールを巻き出し、太陽電池素子Cの光電変換層の受光面と、太陽電池保護シートBの接着封止層面とを対向させた状態に配置し、両者を積層させて積層シートDとする。
次いで、積層シートDを、所定の温度に加熱された一対のロールE、E間に供給し、積層シートDをその厚み方向に押圧しながら加熱して熱圧着し、太陽電池素子C及び太陽電池保護シートBを接着一体化する。これにより、光電変換層が接着封止層によって封止され、フレキシブル太陽電池モジュールAを得ることができる。
An example of the method for producing the flexible solar cell module of the present invention will be specifically described with reference to FIG.
As shown in FIG. 5, first, a long solar cell protective sheet B composed of the protective layer and the adhesive sealing layer and wound in a roll shape, and a solar cell element C are prepared. And the roll of the solar cell protection sheet B and the solar cell element C is unwound, and the light receiving surface of the photoelectric conversion layer of the solar cell element C and the adhesive sealing layer surface of the solar cell protection sheet B are arranged to face each other. Both are laminated to obtain a laminated sheet D.
Next, the laminated sheet D is supplied between a pair of rolls E and E heated to a predetermined temperature, and the laminated sheet D is heated and thermocompression bonded while pressing in the thickness direction, so that the solar cell element C and the solar cell. The protective sheet B is bonded and integrated. Thereby, a photoelectric converting layer is sealed by the adhesive sealing layer, and the flexible solar cell module A can be obtained.
また、上記フレキシブル基材側面を封止する方法としては、例えば、上述と同様にして、上記太陽電池のフレキシブル基材側面に、本発明の太陽電池保護シートを、接着封止層がフレキシブル基材と対向するように配置し、これらを一対の熱ロールを用いて狭窄することにより熱圧着する方法が挙げられる。
上記太陽電池のフレキシブル基材側面に太陽電池保護シートを熱圧着する工程は、上述した太陽電池素子の受光面上に、上記太陽電池保護シートを熱圧着する工程の前に行ってもよいし、同時に行ってもよく、又は、後に行ってもよい。
Moreover, as a method of sealing the side surface of the flexible substrate, for example, in the same manner as described above, the solar cell protective sheet of the present invention is applied to the side surface of the flexible substrate of the solar cell, and the adhesive sealing layer is a flexible substrate. And a method of thermocompression bonding by narrowing them using a pair of heat rolls.
The step of thermocompression bonding the solar cell protective sheet to the flexible substrate side surface of the solar cell may be performed on the light receiving surface of the solar cell element described above before the step of thermocompression bonding the solar cell protective sheet, It may be done at the same time or later.
本発明の太陽電池保護シートを使用して、例えば、太陽電池素子の光電変換層側面とフレキシブル基材側面とを同時に封止して、本発明のフレキシブル太陽電池モジュールを製造する方法の一例について、図6を用いて説明する。
具体的には、ロール状に巻回されている長尺状の太陽電池素子Cを用意する一方、ロール状に巻回されている長尺状の太陽電池保護シートを二つ用意する。そして、図6に示すように、長尺状の太陽電池保護シートB、Bをそれぞれ巻き出すと共に、長尺状の太陽電池素子Cを巻き出し、二つの太陽電池保護シートの接着封止層が互いに対向した状態にして、太陽電池保護シートB、B同士を太陽電池素子Cを介して重ね合わせ、積層シートDとする。そして、積層シートDを所定の温度に加熱された一対のロールE、E間に供給して、積層シートDをその厚み方向に押圧しながら加熱することによって、太陽電池保護シートB、B同士を接着一体化させて、太陽電池保護シートB、Bによって太陽電池素子Cを封止してフレキシブル太陽電池モジュールFを連続的に製造する。
上記フレキシブル太陽電池モジュールの製造において、上記太陽電池保護シートB、B同士を太陽電池素子Cを介して重ね合わせて積層シートDを形成すると同時に、積層シートDをその厚み方向に押圧しながら加熱してもよい。
Using the solar cell protective sheet of the present invention, for example, an example of a method for producing the flexible solar cell module of the present invention by simultaneously sealing the photoelectric conversion layer side surface and the flexible substrate side surface of the solar cell element, This will be described with reference to FIG.
Specifically, while preparing a long solar cell element C wound in a roll shape, two long solar cell protective sheets wound in a roll shape are prepared. And as shown in FIG. 6, while unwinding the elongate solar cell protection sheets B and B, respectively, unwind the elongate solar cell element C, and the adhesive sealing layer of two solar cell protection sheets is In a state of facing each other, the solar cell protective sheets B and B are overlapped with each other through the solar cell element C to obtain a laminated sheet D. And by supplying the laminated sheet D between a pair of rolls E, E heated to a predetermined temperature, and heating the laminated sheet D while pressing the laminated sheet D in the thickness direction, the solar cell protective sheets B, B are brought together. The solar cell element C is sealed with the solar cell protective sheets B and B, and the flexible solar cell module F is continuously manufactured.
In the production of the flexible solar cell module, the solar cell protective sheets B and B are overlapped with each other via the solar cell element C to form the laminated sheet D, and at the same time, the laminated sheet D is heated while being pressed in the thickness direction. May be.
また、太陽電池素子Cとして矩形状のシート状のものを用いた場合の、本発明のフレキシブル太陽電池モジュールの製造要領の一例を図7に示す。
具体的には、ロール状に巻回されている長尺状の太陽電池素子Cの代わりに、所定の大きさの矩形状のシート状の太陽電池素子Cを用意する。そして、図7に示すように、ロール状に巻回されている長尺状の太陽電池保護シートB、Bをそれぞれ巻き出し、それぞれの接着封止層を対向させた状態にした太陽電池保護シートB、B間に、太陽電池素子Cを所定時間間隔毎に供給し、太陽電池保護シートB、B同士を太陽電池素子Cを介して重ね合わせ、積層シートDとする。そして、積層シートDを所定の温度に加熱された一対のロールE、E間に供給して、積層シートDをその厚み方向に押圧しながら加熱することによって、太陽電池保護シートB、B同士を接着一体化させて、太陽電池保護シートB、Bによって太陽電池素子Cを封止してフレキシブル太陽電池モジュールFを連続的に製造する。
上記フレキシブル太陽電池モジュールの製造において、積層シートDの形成と同時に、積層シートDをその厚み方向に押圧しながら加熱してもよい。
本発明のフレキシブル太陽電池モジュールは、このようなロールツーロール法を適用して好適に製造することができる。
Moreover, an example of the manufacturing point of the flexible solar cell module of this invention at the time of using a rectangular sheet-like thing as the solar cell element C is shown in FIG.
Specifically, instead of the long solar cell element C wound in a roll shape, a rectangular sheet-like solar cell element C having a predetermined size is prepared. And as shown in FIG. 7, the solar cell protection sheet which unwinded the elongate solar cell protection sheet B and B currently wound by roll shape, and made each adhesive sealing layer face each other. A solar cell element C is supplied between B and B at predetermined time intervals, and the solar cell protective sheets B and B are overlapped with each other via the solar cell element C to obtain a laminated sheet D. And by supplying the laminated sheet D between a pair of rolls E, E heated to a predetermined temperature, and heating the laminated sheet D while pressing the laminated sheet D in the thickness direction, the solar cell protective sheets B, B are brought together. The solar cell element C is sealed with the solar cell protective sheets B and B, and the flexible solar cell module F is continuously manufactured.
In the production of the flexible solar cell module, the laminated sheet D may be heated while being pressed in the thickness direction simultaneously with the formation of the laminated sheet D.
The flexible solar cell module of the present invention can be suitably manufactured by applying such a roll-to-roll method.
本発明のフレキシブル太陽電池モジュールを製造する方法としてはまた、例えば、所望形状に切断した本発明の太陽電池保護シートと太陽電池素子とを用意し、該太陽電池保護シートの接着封止層と、該太陽電池素子の光電変換層側面、若しくは、両面とを対向させた状態で、上記太陽電池保護シートと上記太陽電池素子とを積層し、得られた積層体を、静止状態で、減圧下で、その厚み方向に押圧力を加えながら加熱して、上記太陽電池素子を上記太陽電池保護シートで封止する方法であってもよい。
上記積層体を、減圧下で、その厚み方向に押圧力を加えながら加熱する工程は、真空ラミネーター等の従来公知の装置を用いて行うことができる。
As a method for producing the flexible solar cell module of the present invention, for example, the solar cell protective sheet and the solar cell element of the present invention cut into a desired shape are prepared, and the adhesive sealing layer of the solar cell protective sheet; The solar cell protective sheet and the solar cell element are laminated in a state where the photoelectric conversion layer side surface or both surfaces of the solar cell element are opposed to each other, and the obtained laminate is stationary under reduced pressure. The method may be such that the solar cell element is sealed with the solar cell protective sheet by heating while applying a pressing force in the thickness direction.
The step of heating the laminate while applying a pressing force in the thickness direction under reduced pressure can be performed using a conventionally known apparatus such as a vacuum laminator.
本発明によれば、保護層と接着封止層との接着性の高い、耐久性に優れた太陽電池保護シート、及び、該太陽電池保護シートにより太陽電池素子が保護されたフレキシブル太陽電池モジュールを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the flexible solar cell module by which the solar cell element was protected by the solar cell protective sheet excellent in durability with the high adhesiveness of a protective layer and an adhesive sealing layer, and this solar cell protective sheet. Can be provided.
太陽電池保護シートの一例を示した縦断面模式図である。It is the longitudinal cross-sectional schematic diagram which showed an example of the solar cell protection sheet. 本発明のフレキシブル太陽電池モジュールの一例を示した縦断面模式図である。It is the longitudinal cross-sectional schematic diagram which showed an example of the flexible solar cell module of this invention. 太陽電池素子の一例を示した縦断面模式図である。It is the longitudinal cross-sectional schematic diagram which showed an example of the solar cell element. 本発明のフレキシブル太陽電池モジュールの一例を示した縦断面模式図である。It is the longitudinal cross-sectional schematic diagram which showed an example of the flexible solar cell module of this invention. 本発明のフレキシブル太陽電池モジュールの製造要領の一例を示した模式図である。It is the schematic diagram which showed an example of the manufacturing point of the flexible solar cell module of this invention. 本発明のフレキシブル太陽電池モジュールの製造要領の一例を示した模式図である。It is the schematic diagram which showed an example of the manufacturing point of the flexible solar cell module of this invention. 本発明のフレキシブル太陽電池モジュールの製造要領の一例を示した模式図である。It is the schematic diagram which showed an example of the manufacturing point of the flexible solar cell module of this invention.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(1)表面層を有するPVDFシートの調製
フッ素樹脂としてポリフッ化ビニリデン(PVDF、アルケマ社製、カイナー720)を、一軸スクリュー押出機を用いて、250℃、180回転/分、押出量12kg/時の条件で溶融混練後に溶融押出し、冷却ロールとしてエンボスロールを用いることにより、一方の表面にエンボス形状を有する厚さ50μmのPVDFシートを得た。
得られたPVDFシートのエンボス形状を有する面に、プラズマ処理装置(積水化学工業社製、AP/T04-R1540装置及び製品ラインナップ)を用い、1ヘッド、シートの処理速度5m/分、処理強度1.3kWの条件で窒素ガスプラズマ処理を施して、表面層を有するPVDFシートを得た。
得られた表面層を有するPVDFシートについて、X線光電子分光法(XPS)により表面層の窒素原子含有量を測定したところ、2.02モル%であった。
(Example 1)
(1) Preparation of PVDF sheet having surface layer Polyvinylidene fluoride (PVDF, manufactured by Arkema Corp., Kyner 720) is used as a fluororesin using a single screw extruder at 250 ° C., 180 rotations / minute, extrusion rate of 12 kg / hour. After melt-kneading under the above conditions, melt extrusion was performed, and an embossing roll was used as a cooling roll, thereby obtaining a PVDF sheet having a thickness of 50 μm having an embossed shape on one surface.
Using a plasma processing apparatus (AP / T04-R1540 apparatus and product lineup made by Sekisui Chemical Co., Ltd.) on the surface of the obtained PVDF sheet having an embossed shape, 1 head, sheet processing speed of 5 m / min, processing strength of 1 A nitrogen gas plasma treatment was performed under a condition of 3 kW to obtain a PVDF sheet having a surface layer.
About the PVDF sheet which has the obtained surface layer, when nitrogen atom content of the surface layer was measured by X-ray photoelectron spectroscopy (XPS), it was 2.02 mol%.
(2)太陽電池保護シートの製造
エチレン成分含有量が75重量%、ブテン成分含有量が25重量%であるブテン-エチレン共重合体を無水マレイン酸にてグラフト変性してなる変性オレフィン系樹脂100重量部と、グリシジル基を有するシラン化合物として3-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング社製、商品名「Z-6040」)0.5重量部とからなる接着封止層用組成物を押出機に供給して250℃にて溶融混練した。そして、上記で得られた表面層を有するPVDFシートの表面層上に接着封止層用組成物を押出ながらラミネートして接着封止層を形成し、変性オレフィン系樹脂とシラン化合物とを含有する厚みが300μmの接着封止層と、厚みが50μmの保護層とを積層一体化した、長尺状の一定幅を有する太陽電池保護シートを得た。
なお、使用した変性オレフィン系樹脂のメルトフローレイト(MFR)は3g/10分、示差走査熱量分析により測定した吸熱曲線の最大ピーク温度(Tm)は80℃であった。また、変性オレフィン系樹脂中における無水マレイン酸の総含有量は0.3重量%であった。
(2) Production of solar cell protective sheet Modified olefin resin 100 obtained by graft-modifying a butene-ethylene copolymer having an ethylene component content of 75% by weight and a butene component content of 25% by weight with maleic anhydride A composition for an adhesive sealing layer comprising, by weight, 0.5 part by weight of 3-glycidoxypropyltrimethoxysilane (trade name “Z-6040”, manufactured by Dow Corning Toray) as a silane compound having a glycidyl group The product was supplied to an extruder and melt kneaded at 250 ° C. Then, the adhesive sealing layer composition is laminated while being extruded on the surface layer of the PVDF sheet having the surface layer obtained above to form an adhesive sealing layer, and contains a modified olefin resin and a silane compound. A solar cell protective sheet having a long and constant width was obtained by laminating and integrating an adhesive sealing layer having a thickness of 300 μm and a protective layer having a thickness of 50 μm.
The modified olefin resin used had a melt flow rate (MFR) of 3 g / 10 min and a maximum peak temperature (Tm) of an endothermic curve measured by differential scanning calorimetry of 80 ° C. The total content of maleic anhydride in the modified olefin resin was 0.3% by weight.
(3)フレキシブル太陽電池モジュールの製造
得られた太陽電池保護シートを用いて、以下の要領でフレキシブル太陽電池モジュールを作製した。
(3) Manufacture of flexible solar cell module Using the obtained solar cell protective sheet, a flexible solar cell module was produced in the following manner.
(3-1)ロールツーロール法によるフレキシブル太陽電池モジュールの製造
先ず、可撓性を有するポリイミドフィルムからなるフレキシブル基材上に、薄膜状のアモルファスシリコンからなる光電変換層が形成されてなり、且つ、ロール状に巻回されてなる太陽電池素子と、上記で得られた太陽電池保護シートがロール状に巻回された太陽電池保護シートとを用意した。
次に、図6に示すように、太陽電池素子C及び太陽電池保護シートBを巻き出し、太陽電池素子Cの光電変換層上に太陽電池保護シートBを、その接着封止層が上記光電変換層に対向した状態となるように積層させて積層シートDとした。そして、積層シートDを表1に記載の温度に加熱された一対のロールE、E間に供給して、積層シートDをその厚み方向に押圧しながら積層シートDを加熱し、太陽電池保護シートBを太陽電池素子Cに接着一体化させることにより光電変換層を封止してフレキシブル太陽電池モジュールAを連続的に製造し、図示しない巻取り軸に巻き取った。
(3-1) Production of flexible solar cell module by roll-to-roll method First, a photoelectric conversion layer made of thin amorphous silicon is formed on a flexible base material made of a flexible polyimide film, and A solar cell element wound in a roll shape and a solar cell protection sheet in which the solar cell protection sheet obtained above was wound in a roll shape were prepared.
Next, as shown in FIG. 6, the solar cell element C and the solar cell protection sheet B are unwound, the solar cell protection sheet B is placed on the photoelectric conversion layer of the solar cell element C, and the adhesive sealing layer is the photoelectric conversion layer. Laminated sheets D were laminated so as to face the layers. Then, the laminated sheet D is supplied between a pair of rolls E and E heated to the temperatures shown in Table 1, and the laminated sheet D is heated while pressing the laminated sheet D in the thickness direction, and the solar cell protective sheet The photoelectric conversion layer was sealed by bonding and integrating B with the solar cell element C, and the flexible solar cell module A was continuously manufactured, and wound around a winding shaft (not shown).
(3-2)真空ラミネート法によるフレキシブル太陽電池モジュールの製造
先ず、可撓性を有するポリイミドフィルムからなるフレキシブル基材上に、薄膜状のアモルファスシリコンからなる光電変換層が形成された太陽電池素子と、上記で得られた太陽電池保護シートとを、所定の形状に切断したものを用意した。
次に、太陽電池保護シートの接着封止層と、太陽電池素子の光電変換層側面とを対向させた状態で、太陽電池保護シートと太陽電池素子とを積層した。得られた積層体を、真空ラミネーターを用いて、1000Pa以下の減圧雰囲気下、表1に記載の条件にて厚み方向に押圧力を加えながら加熱して、太陽電池素子を太陽電池保護シートで封止した。
(3-2) Manufacture of flexible solar cell module by vacuum laminating method First, a solar cell element in which a photoelectric conversion layer made of amorphous silicon in the form of a thin film is formed on a flexible base material made of a polyimide film having flexibility. The solar cell protective sheet obtained above was prepared by cutting it into a predetermined shape.
Next, the solar cell protective sheet and the solar cell element were laminated in a state where the adhesive sealing layer of the solar cell protective sheet and the photoelectric conversion layer side surface of the solar cell element were opposed to each other. The obtained laminate is heated using a vacuum laminator under a reduced pressure atmosphere of 1000 Pa or less while applying a pressing force in the thickness direction under the conditions shown in Table 1, and the solar cell element is sealed with a solar cell protective sheet. Stopped.
(実施例2~4、7~9、13、15、比較例1~4、6)
PVDFシートの調製において、エンボス形状の付与の有無や、プラズマ処理条件を表1~4のように変更したり、太陽電池保護シートの製造において、変性オレフィン系樹脂の組成やシラン化合物の配合の有無を表1~4のように変更したりした以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Examples 2 to 4, 7 to 9, 13, 15 and Comparative Examples 1 to 4, 6)
In the preparation of PVDF sheet, the presence or absence of embossed shape, the plasma treatment conditions were changed as shown in Tables 1 to 4, and the composition of modified olefin resin and the presence or absence of silane compound in the production of solar cell protective sheet A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1 except that the values were changed as shown in Tables 1 to 4.
(実施例5、14)
フッ素樹脂としてフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ社製、商品名「カイナーフレックス2800」)を、一軸スクリュー押出機を用いて、250℃、180回転/分、押出量12kg/時の条件で溶融混練後に溶融押出し、冷却ロールとしてエンボスロールを用いることにより、一方の表面にエンボス形状を有する厚さ50μmのPVDF-HFP共重合体シートを得た。
得られたPVDF-HFP共重合体シートのエンボス形状を有する面に、プラズマ処理装置(積水化学工業社製、AP/T04-R1540装置及び製品ラインナップ)を用い、プラズマ表面処理を施して、表面層を有するPVDFシートを得た。プラズマ処理条件を表1、2のように変更したり、太陽電池保護シートの製造において、変性オレフィン系樹脂の組成やシラン化合物の配合の有無を表1、2のように変更したりした以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Examples 5 and 14)
A vinylidene fluoride-hexafluoropropylene copolymer (trade name “Kyner Flex 2800” manufactured by Arkema Co., Ltd.) as a fluororesin is used at 250 ° C., 180 rotations / minute, and an extrusion rate of 12 kg / hour using a single screw extruder. After melt kneading under the conditions, melt extrusion was performed, and an embossing roll was used as a cooling roll to obtain a 50 μm thick PVDF-HFP copolymer sheet having an embossed shape on one surface.
The surface of the obtained PVDF-HFP copolymer sheet having an embossed shape is subjected to plasma surface treatment using a plasma treatment device (AP / T04-R1540 device and product lineup manufactured by Sekisui Chemical Co., Ltd.) A PVDF sheet was obtained. Except for changing the plasma treatment conditions as shown in Tables 1 and 2 or changing the composition of the modified olefin resin and the presence or absence of the silane compound in the production of the solar cell protective sheet as shown in Tables 1 and 2. A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1.
(実施例6)
フッ素樹脂としてテトラフルオロエチレン-エチレン共重合体(ダイキン工業社製、商品名「ネオフロンETFE」)を、一軸スクリュー押出機を用いて、310℃、180回転/分、押出量12kg/時の条件で溶融混練後に溶融押出し、冷却ロールとしてエンボスロールを用いることにより、一方の表面にエンボス形状を有する厚さ50μmのETFEシートを得た。得られたETFEシートのエンボス形状を有する面に、プラズマ処理装置(積水化学工業社製、AP/T04-R1540装置及び製品ラインナップ)を用い、1ヘッド、シートの処理速度10m/分、処理強度1.3kWの条件で窒素ガスプラズマ処理を施して、表面層を有するETFEシートを得た。
得られた表面層を有するETFEシートを用いた以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Example 6)
Tetrafluoroethylene-ethylene copolymer (trade name “Neofluon ETFE”, manufactured by Daikin Industries, Ltd.) is used as a fluororesin under the conditions of 310 ° C., 180 rotations / minute, extrusion rate of 12 kg / hour using a single screw extruder. After melt kneading, melt extrusion was performed, and an embossing roll was used as a cooling roll to obtain an ETFE sheet having an embossed shape on one surface and a thickness of 50 μm. Using a plasma processing apparatus (AP / T04-R1540 apparatus and product lineup, manufactured by Sekisui Chemical Co., Ltd.) on the surface having an embossed shape of the obtained ETFE sheet, 1 head, sheet processing speed 10 m / min, processing strength 1 A nitrogen gas plasma treatment was performed under a condition of .3 kW to obtain an ETFE sheet having a surface layer.
A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1 except that the ETFE sheet having the obtained surface layer was used.
(実施例10、比較例7)
PVDFシートの調製において、プラズマ処理条件を表2、4のようにした。
変性オレフィン系樹脂の代わりに、アイオノマー樹脂の市販品(商品名:ハイミラン 1705、Znイオンタイプ、三井・デュポンポリケミカル社製)を使用し、表2、4に記載したようにした以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Example 10, Comparative Example 7)
In the preparation of the PVDF sheet, the plasma treatment conditions were as shown in Tables 2 and 4.
A commercial product of ionomer resin (trade name: Himiran 1705, Zn ion type, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used in place of the modified olefin-based resin. A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1.
(実施例11、比較例8)
PVDFシートの調製において、プラズマ処理条件を表2、4のようにした。
変性オレフィン系樹脂の代わりに、表2、4に記載した所定量の成分を含有するエチレン-アクリル酸エステル-無水マレイン酸三元共重合体を使用し、表2、4に記載したようにした以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Example 11, Comparative Example 8)
In the preparation of the PVDF sheet, the plasma treatment conditions were as shown in Tables 2 and 4.
Instead of the modified olefin-based resin, an ethylene-acrylic acid ester-maleic anhydride terpolymer containing a predetermined amount of components described in Tables 2 and 4 was used, as described in Tables 2 and 4. Except for the above, a solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1.
(実施例12、比較例9)
PVDFシートの調製において、プラズマ処理条件を表2、4のようにした。
変性オレフィン系樹脂の代わりに、表2、4に記載した所定量のエチレン成分及びグリシジルメタクリレート成分を含有するエチレン-グリシジルメタクリレート共重合体を無水マレイン酸変性した樹脂を使用し、表2、4に記載したようにした以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Example 12, Comparative Example 9)
In the preparation of the PVDF sheet, the plasma treatment conditions were as shown in Tables 2 and 4.
Instead of the modified olefin resin, a resin obtained by modifying an ethylene-glycidyl methacrylate copolymer containing a predetermined amount of ethylene component and glycidyl methacrylate component described in Tables 2 and 4 with maleic anhydride was used. Except as described, a solar cell protective sheet and a flexible solar cell module were obtained by the same method as in Example 1.
(実施例16)
(1)表面層を有するPVDFシートの調製
フッ素樹脂としてポリフッ化ビニリデン(PVDF、アルケマ社製、カイナー720)を、一軸スクリュー押出機を用いて、250℃、180回転/分、押出量12kg/時の条件で溶融混練後に溶融押出し、冷却ロールとしてエンボスロールを用いることにより、一方の表面にエンボス形状を有する厚さ50μmのPVDFシートを得た。
得られたPVDFシートのエンボス形状を有する面に、コロナ放電処理装置(春日電機社製、高周波電源装置及び処理ステーション)を用い、処理量20W分/mの条件で窒素ガスコロナ放電処理を施して、表面層を有するPVDFシートを得た。
得られた表面層を有するPVDFシートを用いた以外は、実施例1と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Example 16)
(1) Preparation of PVDF sheet having surface layer Polyvinylidene fluoride (PVDF, manufactured by Arkema Corp., Kyner 720) is used as a fluororesin using a single screw extruder at 250 ° C., 180 rotations / minute, extrusion rate of 12 kg / hour. After melt-kneading under the above conditions, melt extrusion was performed, and an embossing roll was used as a cooling roll, thereby obtaining a PVDF sheet having a thickness of 50 μm having an embossed shape on one surface.
The surface having the embossed shape of the obtained PVDF sheet is subjected to a nitrogen gas corona discharge treatment using a corona discharge treatment device (manufactured by Kasuga Denki Co., Ltd., high frequency power supply device and treatment station) under conditions of a treatment amount of 20 W / m 2. A PVDF sheet having a surface layer was obtained.
A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 1 except that the obtained PVDF sheet having the surface layer was used.
(実施例17、18、比較例5)
PVDFシートの調製において、コロナ放電処理条件を表2、3のように変更したり、太陽電池保護シートの製造において、シラン化合物の配合の有無を表2、3のように変更したりした以外は、実施例16と同様の方法により太陽電池保護シート、フレキシブル太陽電池モジュールを得た。
(Examples 17 and 18, Comparative Example 5)
Except for changing the corona discharge treatment conditions as shown in Tables 2 and 3 in the preparation of the PVDF sheet, and changing the presence or absence of the silane compound as shown in Tables 2 and 3 in the production of the solar cell protective sheet. A solar cell protective sheet and a flexible solar cell module were obtained in the same manner as in Example 16.
(評価)
得られた太陽電池保護シートについて、保護層と接着封止層との層間剥離強度を下記の要領で測定し、その結果を表1~4に示した。
(Evaluation)
About the obtained solar cell protective sheet, the delamination strength between the protective layer and the adhesive sealing layer was measured in the following manner, and the results are shown in Tables 1 to 4.
(1)初期層間剥離強度の評価
得られたフレキシブル太陽電池モジュールにおいて、保護層と接着封止層とを剥離した際の剥離強度をJIS K6854に準拠して測定した。
なお、60N/cm以上の力で剥離できない場合には、材料自体が破壊されてしまった。
なお、保護層と接着封止層との初期層間剥離強度としては、一般に、10N/cm以上が求められ、20N/cm以上が好ましく、30N/cm以上がより好ましいとされている。
(1) Evaluation of initial delamination strength In the obtained flexible solar cell module, the peel strength when the protective layer and the adhesive sealing layer were peeled was measured according to JIS K6854.
In addition, when it was not able to peel with the force of 60 N / cm or more, material itself was destroyed.
The initial delamination strength between the protective layer and the adhesive sealing layer is generally required to be 10 N / cm or more, preferably 20 N / cm or more, and more preferably 30 N / cm or more.
(2)高温高湿耐久後層間剥離強度の評価
得られたフレキシブル太陽電池モジュールを、JIC C8991に記載された85℃、相対湿度85%の環境下にて3000時間放置し、保護層と接着封止層とを剥離した際の剥離強度をJIS K6854に準拠して測定した。
なお、60N/cm以上の力で剥離できない場合には、材料自体が破壊されてしまった。
なお、保護層と接着封止層との高温高湿耐久後の層間剥離強度としては、一般に、10N/cm以上が求められ、20N/cm以上が好ましく、30N/cm以上がより好ましいとされている。
(2) Evaluation of delamination strength after endurance at high temperature and high humidity The obtained flexible solar cell module is allowed to stand for 3000 hours in an environment of 85 ° C. and 85% relative humidity described in JIS C8991, and the protective layer and adhesive seal The peel strength when peeled from the stop layer was measured according to JIS K6854.
In addition, when it was not able to peel with the force of 60 N / cm or more, material itself was destroyed.
The delamination strength after high temperature and high humidity durability between the protective layer and the adhesive sealing layer is generally required to be 10 N / cm or more, preferably 20 N / cm or more, and more preferably 30 N / cm or more. Yes.
(3)高温高湿耐久性(発電特性)
得られたフレキシブル太陽電池モジュールを、JIC C8990に記載された85℃、相対湿度85%の環境下にて放置し、最大出力Pmaxの変化量を、ニッシントーア社製1116Nを用いて測定した。なお、1000時間未満で剥離が確認されたものについては実施しなかった。また、表1~4に記載の評価結果は、下記を意味する。
>3000H:3000時間経過後に出力95%維持。
 1500H:2000時間経過まで出力95%維持。
 1000H:1000時間経過まで出力95%維持(JIS-C8991規格)。
  500H:500時間経過まで出力95%維持。
(3) High temperature and high humidity durability (power generation characteristics)
The obtained flexible solar cell module was left in an environment of 85 ° C. and a relative humidity of 85% described in JIC C8990, and the amount of change in the maximum output Pmax was measured using 1116N manufactured by Nissin Tor. In addition, about what peeling was confirmed in less than 1000 hours, it did not implement. The evaluation results shown in Tables 1 to 4 mean the following.
> 3000H: Maintaining 95% output after 3000 hours.
1500H: Maintains 95% output until 2000 hours.
1000H: 95% output maintained until 1000 hours (JIS-C8991 standard).
500H: 95% output maintained until 500 hours have passed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
本発明によれば、保護層と接着封止層との接着性の高い、耐久性に優れた太陽電池保護シート、及び、該太陽電池保護シートにより太陽電池素子が保護されたフレキシブル太陽電池モジュールを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the flexible solar cell module by which the solar cell element was protected by the solar cell protective sheet excellent in durability with the high adhesiveness of a protective layer and an adhesive sealing layer, and this solar cell protective sheet. Can be provided.
A、F フレキシブル太陽電池モジュール
B 太陽電池保護シート
C 太陽電池素子
D 積層シート
E ロール
1 保護層
12 表面層
2 接着封止層
3 光電変換層
4 フレキシブル基材
 
 
A, F Flexible solar cell module B Solar cell protective sheet C Solar cell element D Laminated sheet E Roll 1 Protective layer 12 Surface layer 2 Adhesive sealing layer 3 Photoelectric conversion layer 4 Flexible base material

Claims (7)

  1. フッ素系樹脂シートからなる保護層と接着封止層とが積層されている太陽電池保護シートであって、
    前記保護層は、前記接着封止層と接する面に窒素原子を0.2モル%以上含む表面層を有するものであり、
    前記接着封止層は、酸基又は酸無水物基を有する熱接着性樹脂を含有する
    ことを特徴とする太陽電池保護シート。
    A solar cell protective sheet in which a protective layer made of a fluorine resin sheet and an adhesive sealing layer are laminated,
    The protective layer has a surface layer containing 0.2 mol% or more of nitrogen atoms on the surface in contact with the adhesive sealing layer,
    The said adhesive sealing layer contains the heat adhesive resin which has an acid group or an acid anhydride group, The solar cell protective sheet characterized by the above-mentioned.
  2. 保護層は、接着封止層と接する面にプラズマ処理が施されたものであることを特徴とする請求項1記載の太陽電池保護シート。 The solar cell protective sheet according to claim 1, wherein the protective layer has been subjected to plasma treatment on a surface in contact with the adhesive sealing layer.
  3. 酸基又は酸無水物基を有する熱接着性樹脂は、酸変性ポリオレフィン、酸変性エチレン-グリシジルメタクリレート共重合体、アイオノマー、及び、エチレン-アクリル酸エステル-酸無水物基共重合体からなる群より選択される少なくとも一種であることを特徴とする請求項1又は2記載の太陽電池保護シート。 The heat-adhesive resin having an acid group or an acid anhydride group is composed of an acid-modified polyolefin, an acid-modified ethylene-glycidyl methacrylate copolymer, an ionomer, and an ethylene-acrylic acid ester-anhydride group copolymer. The solar cell protective sheet according to claim 1, wherein the solar cell protective sheet is at least one selected.
  4. 接着封止層は、グリシジル基を有するシラン化合物を含有することを特徴とする請求項1、2又は3記載の太陽電池保護シート。 The solar cell protective sheet according to claim 1, wherein the adhesive sealing layer contains a silane compound having a glycidyl group.
  5. 保護層を構成するフッ素系樹脂シートは、テトラフルオロエチレン-エチレン共重合体、エチレンクロロトリフルオロエチレン樹脂、ポリクロロトリフルオロエチレン樹脂、ポリフッ化ビニリデン樹脂、テトラフロオロエチレン-パーフロオロアルキルビニルエーテル共重合体、ポリビニルフルオライド樹脂、テトラフロオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、及び、ポリフッ化ビニリデンとポリメタクリル酸メチルとの混合物からなる群より選択される少なくとも一種のフッ素系樹脂からなることを特徴とする請求項1、2、3又は4記載の太陽電池保護シート。 The fluororesin sheet constituting the protective layer is composed of tetrafluoroethylene-ethylene copolymer, ethylene chlorotrifluoroethylene resin, polychlorotrifluoroethylene resin, polyvinylidene fluoride resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Selected from the group consisting of a polymer, a polyvinyl fluoride resin, a tetrafluoroethylene-hexafluoropropylene copolymer, a vinylidene fluoride-hexafluoropropylene copolymer, and a mixture of polyvinylidene fluoride and polymethyl methacrylate The solar cell protective sheet according to claim 1, 2, 3, or 4, comprising at least one fluorine-based resin.
  6. 保護層は、前記接着封止層と接する面にエンボス形状を有することを特徴とする請求項1、2、3、4又は5記載の太陽電池保護シート。 The solar cell protective sheet according to claim 1, 2, 3, 4 or 5, wherein the protective layer has an embossed shape on a surface in contact with the adhesive sealing layer.
  7. 請求項1、2、3、4、5又は6記載の太陽電池保護シートと、フレキシブル基材上に光電変換層が配置された太陽電池素子とが積層一体化していることを特徴とするフレキシブル太陽電池モジュール。
     
    The solar cell protective sheet according to claim 1, 2, 3, 4, 5 or 6, and a solar cell element in which a photoelectric conversion layer is arranged on a flexible base material is laminated and integrated. Battery module.
PCT/JP2013/074717 2012-09-13 2013-09-12 Solar cell protective sheet and flexible solar cell module WO2014042217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535590A JPWO2014042217A1 (en) 2012-09-13 2013-09-12 Solar cell protective sheet and flexible solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201695 2012-09-13
JP2012201695 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014042217A1 true WO2014042217A1 (en) 2014-03-20

Family

ID=50278326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074717 WO2014042217A1 (en) 2012-09-13 2013-09-12 Solar cell protective sheet and flexible solar cell module

Country Status (2)

Country Link
JP (1) JPWO2014042217A1 (en)
WO (1) WO2014042217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053832A (en) * 2017-09-12 2019-04-04 トヨタ自動車株式会社 Method for manufacturing electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211844B (en) * 2021-11-26 2023-05-16 常州斯威克光伏新材料有限公司 Transparent backboard for photovoltaic and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031445A (en) * 2002-06-21 2004-01-29 Du Pont Mitsui Polychem Co Ltd Surface structure of solar cell module
JP2004055970A (en) * 2002-07-23 2004-02-19 Fuji Electric Holdings Co Ltd Solar battery and its manufacturing method
JP2012074419A (en) * 2010-09-27 2012-04-12 Dainippon Printing Co Ltd Solar cell module back surface protective sheet, solar cell module back surface integration sheet, and solar cell module
WO2012056941A1 (en) * 2010-10-28 2012-05-03 富士フイルム株式会社 Solar-cell module and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725865A (en) * 2010-01-26 2012-10-10 积水化学工业株式会社 Sealing material for solar cell, protective sheet for solar cell, process for production of solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031445A (en) * 2002-06-21 2004-01-29 Du Pont Mitsui Polychem Co Ltd Surface structure of solar cell module
JP2004055970A (en) * 2002-07-23 2004-02-19 Fuji Electric Holdings Co Ltd Solar battery and its manufacturing method
JP2012074419A (en) * 2010-09-27 2012-04-12 Dainippon Printing Co Ltd Solar cell module back surface protective sheet, solar cell module back surface integration sheet, and solar cell module
WO2012056941A1 (en) * 2010-10-28 2012-05-03 富士フイルム株式会社 Solar-cell module and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053832A (en) * 2017-09-12 2019-04-04 トヨタ自動車株式会社 Method for manufacturing electrode

Also Published As

Publication number Publication date
JPWO2014042217A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
TWI479006B (en) Solar battery seal and flexible solar module
WO2012066848A1 (en) Method for manufacturing flexible solar cell module
JP5714959B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP2012216805A (en) Solar cell module filler sheet
WO2012043304A1 (en) Manufacturing method for flexible solar cell modules
JP4889828B2 (en) Solar cell sealing material, solar cell protective sheet, and method for manufacturing solar cell module
WO2012039389A1 (en) Method for manufacturing flexible solar battery module
JPWO2012053475A1 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP2012099803A (en) Solar cell sealing sheet, production method therefor, and method of manufacturing flexible solar cell module
WO2014042217A1 (en) Solar cell protective sheet and flexible solar cell module
WO2013121838A1 (en) Protective sheet for solar cell, method for manufacturing same, and solar cell module
JP2015073048A (en) Solar cell protective sheet, and solar cell module
WO2014049778A1 (en) Filler sheet for solar cell modules, solar cell sealing sheet, and method for manufacturing solar cell module
JP2013199030A (en) Solar cell protection sheet and flexible solar cell module
JP2014027018A (en) Manufacturing method of flexible solar cell module
JP2011176273A (en) Solar-cell sealing material, solar-cell protective sheet, and method of manufacturing solar-cell module
JP2012079884A (en) Manufacturing method of flexible solar cell module
WO2012046565A1 (en) Method for producing flexible solar cell module
JP2013065619A (en) Solar cell sealing sheet and flexible solar cell module
JP2013214544A (en) Method of manufacturing flexible solar cell module
JP2014027017A (en) Manufacturing method of flexible solar cell module and solar cell sealing sheet
JP2015065340A (en) Solar battery protective sheet and flexible solar battery module
JP2012227280A (en) Solar battery sealing sheet and flexible solar cell module
JP2013235874A (en) Method for manufacturing flexible solar cell module
JP2012222147A (en) Flexible solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837420

Country of ref document: EP

Kind code of ref document: A1