201216319 六、發明說明: 【發明所屬之技術領域】 一種金屬電漿離子佈植之設備及其方法,特別是一種 利用高功率脈衝磁控濺射技術將高離化率脈衝金屬離子注 入基材内,達到離子佈植之目的。 【先前技術·】 離子佈植(Ion Implantation)係以適當之離子能量與劑 ® 量佈植進入固體材料内,以便對固體材料先天不足之電 性、機械、物理及化學等特性進行改質,廣泛應用於半導 體產業,為現今生產電子元件不可或缺之重要技術。但其 受到單方向離子佈植限制,對形狀複雜之工業機械元件如 >飞車引擎及生醫用人工關節等,費時之離子束掃描及昂貴 之靶台基座设計,阻礙其在其他非半導體產業之應用發展。 1987年J.R. Conrad提出一種三維離子佈植技術,稱為 電衆浸沒離手佈植技術(P1asma Immersion Ion Implantation, Pill),克服傳統離子佈植單方向佈植的限制,該技術所使 用之設備非常簡單’僅將傳統離子佈植機的離子源換成一 大腔體的電漿源,工件浸泡於電漿内,外加一負脈衝電壓 於工件上,使得環繞工件附近之正電荷藉由工件之負電壓 吸引,使之垂直佈植至工件上,此外該技術特別適合體積 大且形狀複雜之工件如工具、模具、引擎,人工骨骼等, 可大量降低離子佈植處理時間。 早期PIII技術所使用之電漿源主要以氮氣、氫氣、氧 201216319 氣、甲烷及乙炔等氣體電漿源為主,此乃因氣體電聚源很 容易產生於大體積低氣壓腔體内,不但電漿均勻度好,成 本也非常低,廣泛應用於鋼材之氮化、氧化及碳化等傳統 錶面改質領域,藉由室溫之高能量離子佈植或高溫之低能 量離子佈植等製程技術’能夠高效率使鋼材表面強化,達 到抗钱财磨之目的。 隨著應用領域增廣’尤其在糈密模具及生醫元件如人 工關節等财磨延壽要求越來越向,鋼材渗入氣體離子之表 面強化改質效率已無法完全滿足,植入大顆粒之金屬離子 之強化機制,大大提升鋼村強化效果,使得金屬電聚浸沒 離子佈植(Metal Plasma Immersion Ion Implantation201216319 VI. Description of the invention: [Technical field of invention] A metal plasma ion implantation apparatus and method thereof, in particular, a high-power pulsed magnetron sputtering technique for injecting high ionization rate pulsed metal ions into a substrate To achieve the purpose of ion implantation. [Previous Technology] Ion Implantation is implanted into solid materials with appropriate ion energy and agent® to modify the inherent electrical, mechanical, physical and chemical properties of solid materials. Applied to the semiconductor industry, it is an indispensable technology for the production of electronic components today. However, it is limited by unidirectional ion implantation, and it takes time-consuming ion beam scanning and expensive target base design for industrial mechanical components with complex shapes such as > flying engine and biomedical artificial joints, hindering it in other Application development in non-semiconductor industries. In 1987, JR Conrad proposed a three-dimensional ion implantation technique called P1asma Immersion Ion Implantation (Pill), which overcomes the limitation of traditional ion implantation in a single direction. The equipment used in this technology is very Simple 'only replace the ion source of the traditional ion implanter with a large cavity plasma source, the workpiece is immersed in the plasma, plus a negative pulse voltage on the workpiece, so that the positive charge around the workpiece is controlled by the workpiece. The negative voltage is attracted to the workpiece and placed vertically on the workpiece. In addition, the technology is especially suitable for large and complex workpieces such as tools, molds, engines, artificial bones, etc., which can greatly reduce the ion implantation processing time. The plasma source used in the early PIII technology mainly consists of nitrogen, hydrogen, oxygen 201216319 gas, methane and acetylene gas plasma sources. This is because the gas electricity source is easily generated in large volume and low pressure chambers. The plasma has good uniformity and low cost. It is widely used in the field of traditional surface modification such as nitriding, oxidation and carbonization of steel. It is processed by high-energy ion implantation at room temperature or low-energy ion implantation at high temperature. 'It is able to enhance the surface of the steel with high efficiency and achieve the purpose of resisting money and grinding. With the widening of the application field, especially in the case of meticulous molds and biomedical components such as artificial joints, the requirements for the life extension of the grain and the life of the gas ions have not been fully satisfied, and the metal of the large particles is implanted. The strengthening mechanism of ions greatly enhances the strengthening effect of the steel village, making metal ion immersion ion implantation (Metal Plasma Immersion Ion Implantation)
Me-PI11)技術迅速發展’該技術可使注入之元素不受限於 氣體原子,而可將離子浸沒注入技術應用於金屬原子上。 傳統金屬離子源係利用過渡式陰極電弧電裝源 (filtered cathodic arc plasma)技術產生連續之金屬電 漿離子流,並特別經過一 90度螺旋管線圈,於管内產生磁 場將金屬電漿離子導引沉積於乾材表面’並以該螺旋管磁 場結構可有效讓大顆粒金屬團微粒無法偏轉至基材表面, 有效解決金屬鑛膜表面大顆粒所造成粗糖問題,而傳統之 Me-PI 11技術係將過濾式陰極電弧電漿源以脈衝式電漿源 取代,以提供持續間斷性脈衝之金屬電漿離子流,並配合 基材上同步高壓加速而佈植基材内。 然而Me-PI II技術無法提供大面積金屬離子佈植(最 大射束截面直徑<5cm)’且離子於螺旋管中傳送過程大量 失,導致處理耗時且費用太高。 、 201216319 【發明内容】 在一實施例中,本發明提出一種金屬電漿離子佈植之 設備,係包含有: 一真空腔體; 一 ΗIPI MS脈衝金屬離子源,係包含有一高功率脈衝磁 控濺鍍(HIPIMS)電源供應器及一金屬離子源,其中該金屬 離子源係置於該真空腔體内並連接到該真空腔體外之該 HIPIMS脈衝電源供應器; 一工件基座,係建置於該真空腔體内,上置欲加工處 理之工件;以及 一脈衝電壓產生器,係連接到該工件基座,以施加一 負偏壓之高脈衝電壓於工件上。。 在另一實施例中,本發明提出一種金屬電漿離子佈植 之方法,係包含下列步驟: 提供一金屬電漿離子佈植之設備; 將工件置於該工件基座上; 該脈衝電壓產生器先產生一脈衝信號至該HIPIMS脈 衝電源供應器; 該HIPIMS脈衝電源供應器接受此脈衝信號激發後,即 施加一高脈衝電壓至金屬離子源’打出金屬離子後關閉; 該脈衝電壓產生器產生一負偏壓之脈衝高電壓施加於 工件基座上;以及 重複以上步驟直到工件上之金屬離子濃度達到要求為 201216319 重複以上步驟直到工件上之金屬離子濃度達到要求為 止。 【實施方式】 以下將參照隨附之圖式來描述本發明為達成目的所使 用的技術手段與功效,而以下圖式所列舉之實施例僅為輔 助說明,以利貴審查委員瞭解,但本案之技術手段並不限 於所列舉圖式。 再請參閱圖一所示,一種金屬電漿離子佈植之設備1 係包含有:一真空腔體10、一 HIPIMS脈衝金屬離子源11、 工件基座12以及一脈衝電壓產生器13。 一真空腔體10,其真空度達2xl(T6torr以下,其更可 包含一抽氣通道100,並藉由機械幫浦101及渦輪分子幫 浦102等抽氣系統,於該真空腔體10中可導入惰性氣體例 如:氬(Ar),以維持電漿環境。 一 HIPIMS脈衝金屬離子源11,係包含有一 HIPIMS脈 衝電源供應器110及一金屬離子源111,其中該金屬離子 源111係置於該真空腔體10内,並連接到該真空腔體10 外之該HIPIMS脈衝電源供應器110,其工作脈衝電壓峰值 可達數十個kV以上及高脈衝功率密度1〜3kW/cni2,濺射出 之靶材金屬原子之游離率可高達90%以上,電漿密度也可 高達1013〜1014ions/cm3,其中該HIPIMS脈衝金屬離子源11 之金屬可以為鈦(Ti)或鉻(Cr)或銅(Cu)或鎳(Ni)。 一工件基座12,係建置於該真空腔體10内,將欲接 受離子佈植之工件置於其上。 201216319 一脈衝電壓產生器13,係連接到該工件基座12及經 由一脈衝同步裝置14連接到該HIPIMS脈衝金屬離子源 11,其可產生高電壓經該脈衝同步裝置14傳入該HIPIMS 脈衝金屬離子源11,使該HIPIMS脈衝金屬離子源11打出 金屬離子,並藉由該脈衝同步裝置14之控制於該HIPIMS 脈衝金屬離子源11打出金屬離子後,傳送一負脈衝之高電 壓至該工件基座12,使該工件基座12上之工件可將帶正 電之金屬離子吸引撞入工件表面,其中該脈衝同步裝置14 φ 係為一時序同步調控電路。 再請參閱圖二所示,一種金屬電漿離子佈植之方法流 程圖,係包含下列步驟: 首先進行步驟20,提供一金屬電漿離子佈植之設備1。 步驟20之後進行步驟21,將工件置於該工件基座12 上。 步驟21之後進行步驟22,該脈衝電壓產生器13產生 一高壓脈衝經由該脈衝同步裝置14至該HIPIMS脈衝金屬 • 離子源11。 步驟22之後進行步驟23,該HIPIMS脈衝金屬離子源 11受高壓脈衝激發打出金屬離子後關閉。 步驟23之後進行步驟24,該脈衝同步裝置14產生一 訊號控制該脈衝電壓產生器13產生一高壓負脈衝至工件 基座12,其中該訊號延遲係為5 0 ps或由該ΗIPI MS脈衝金 屬離子源11所產生之電漿分布狀況所決定。 步驟23之後進行步驟24,重複以上步驟直到靶材上 201216319 之金屬離子濃度達到要求為止。 再請參閱圖三所示,係為本發明利用直徑10cm之圓 形鈦材之HIPIMS金屬離子源,配合外加脈衝寬度25ps 及離子佈植電壓10kV於工件基座,佈植於304不鏽鋼之 鈦離子縱深分布波形。 惟以上所述者,僅為本發明之實施例而已,當不能以 之限定本發明所實施之範圍。即大凡依本發明權利要求所 作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍 内,謹請貴審查委員明鑑,並祈惠准,是所至禱。 201216319 【圖式簡單說明】 圖一係為一種金屬電漿離子佈植之設備示意圖 圖二係為一種金屬電漿離子佈植之方法流程圖 圖三係為佈植於304不鏽鋼之鈦離子縱深分布波形圖 【主要元件符號說明】 1-金屬電漿離子佈植之設備 10- 真空腔體 ® 100_抽氣通道 101- 機械幫浦 102- 渦輪分子幫浦 11- HIPIMS脈衝金屬離子源 110- HIPIMS脈衝電源供應器 111- 金屬離子源 12- 工件基座 φ 13-脈衝電壓產生器 14-脈衝同步裝置Me-PI11) technology is rapidly evolving. This technology allows the elements to be implanted to be free from gas atoms, while ion immersion implantation techniques can be applied to metal atoms. The traditional metal ion source utilizes a filtered cathodic arc plasma technique to generate a continuous flow of metal plasma ions, and in particular through a 90 degree spiral tube coil, generating a magnetic field in the tube to guide the metal plasma ions. Deposited on the surface of the dry material' and the magnetic field structure of the spiral tube can effectively prevent the large particle metal particles from being deflected to the surface of the substrate, effectively solving the problem of raw sugar caused by large particles on the surface of the metal ore film, while the conventional Me-PI 11 technology system The filtered cathodic arc plasma source is replaced by a pulsed plasma source to provide a continuous intermittent pulsed metal plasma ion stream and implanted into the substrate in conjunction with simultaneous high pressure acceleration on the substrate. However, Me-PI II technology cannot provide large-area metal ion implantation (maximum beam cross-section diameter < 5 cm) and the ion transport in the spiral tube is largely lost, resulting in time-consuming and costly processing. In an embodiment, the present invention provides a metal plasma ion implantation apparatus, comprising: a vacuum chamber; a ΗIPI MS pulse metal ion source, comprising a high power pulse magnetron a HIPIMS power supply and a metal ion source, wherein the metal ion source is disposed in the vacuum chamber and connected to the HIPIMS pulse power supply outside the vacuum chamber; A workpiece to be processed is disposed in the vacuum chamber; and a pulse voltage generator is coupled to the workpiece base to apply a negative bias voltage to the workpiece. . In another embodiment, the present invention provides a metal plasma ion implantation method comprising the steps of: providing a metal plasma ion implantation apparatus; placing a workpiece on the workpiece base; the pulse voltage generation First generating a pulse signal to the HIPIMS pulse power supply; after receiving the pulse signal, the HIPIMS pulse power supply applies a high pulse voltage to the metal ion source to turn off the metal ion; the pulse voltage generator generates A pulsed high voltage of a negative bias is applied to the workpiece base; and the above steps are repeated until the metal ion concentration on the workpiece reaches the requirement of 201216319. The above steps are repeated until the metal ion concentration on the workpiece reaches the desired level. [Embodiment] Hereinafter, the technical means and effects of the present invention for achieving the object will be described with reference to the accompanying drawings, and the embodiments listed in the following drawings are only for the purpose of explanation, so that the reviewer understands, but the case Technical means are not limited to the illustrated figures. Referring to FIG. 1, a metal plasma ion implantation apparatus 1 includes a vacuum chamber 10, a HIPIMS pulse metal ion source 11, a workpiece base 12, and a pulse voltage generator 13. a vacuum chamber 10 having a vacuum of 2xl (below T6torr), which further includes an exhaust passage 100, and is pumped by a mechanical pump 101 and a turbo molecular pump 102, etc., in the vacuum chamber 10 An inert gas such as argon (Ar) may be introduced to maintain the plasma environment. A HIPIMS pulsed metal ion source 11 includes a HIPIMS pulse power supply 110 and a metal ion source 111, wherein the metal ion source 111 is placed The HIPIMS pulse power supply 110 in the vacuum chamber 10 and connected to the vacuum chamber 10 has a working pulse voltage peak of several tens of kV or more and a high pulse power density of 1 to 3 kW/cni2, and is sputtered. The metal atom of the target can have a free rate of more than 90%, and the plasma density can also be as high as 1013~1014 ions/cm3, wherein the metal of the HIPIMS pulsed metal ion source 11 can be titanium (Ti) or chromium (Cr) or copper ( Cu) or nickel (Ni). A workpiece base 12 is built into the vacuum chamber 10, and a workpiece to be ion implanted is placed thereon. 201216319 A pulse voltage generator 13 is connected thereto. Workpiece base 12 and via a pulse synchronization device 14 Connected to the HIPIMS pulsed metal ion source 11, which can generate a high voltage to be transmitted to the HIPIMS pulsed metal ion source 11 via the pulse synchronizing device 14, causing the HIPIMS pulsed metal ion source 11 to emit metal ions, and the pulse synchronizing device Controlling the HIPIMS pulsed metal ion source 11 to emit metal ions, and transmitting a high voltage of a negative pulse to the workpiece base 12, so that the workpiece on the workpiece base 12 can attract the positively charged metal ions into the workpiece. The surface of the workpiece, wherein the pulse synchronizing device 14 φ is a timing synchronization control circuit. Referring to FIG. 2, a flow chart of a metal plasma ion implantation method comprises the following steps: First, step 20 is provided to provide a Metal plasma ion implantation apparatus 1. After step 20, step 21 is performed to place the workpiece on the workpiece base 12. After step 21, step 22 is performed, and the pulse voltage generator 13 generates a high voltage pulse via the pulse synchronization device. 14 to the HIPIMS pulse metal • ion source 11. After step 22, step 23 is performed, and the HIPIMS pulsed metal ion source 11 is excited by a high voltage pulse to strike the metal. After step 23, step 24 is performed, and the pulse synchronizing device 14 generates a signal to control the pulse voltage generator 13 to generate a high voltage negative pulse to the workpiece base 12, wherein the signal delay is 50 ps or by the ΗIPI The plasma distribution of the plasma generated by the MS pulsed metal ion source 11 is determined. After step 23, step 24 is performed, and the above steps are repeated until the metal ion concentration of 201216319 on the target reaches the required level. The invention utilizes a HIPIMS metal ion source of a circular titanium material with a diameter of 10 cm, and an external pulse width of 25 ps and an ion implantation voltage of 10 kV on the workpiece base to be implanted in a 304 stainless steel. However, the above description is only for the embodiments of the present invention, and the scope of the invention is not limited thereto. That is, the equivalent changes and modifications made in accordance with the claims of the present invention should still fall within the scope of the patent of the present invention. Please ask the reviewing committee for a clear explanation and pray for the best. 201216319 [Simple diagram of the diagram] Figure 1 is a schematic diagram of a metal plasma ion implantation device. Figure 2 is a flow chart of a metal plasma ion implantation method. The third system is the depth distribution of titanium ions implanted in 304 stainless steel. Waveform diagram [Key component symbol description] 1-Metal plasma ion implantation equipment 10- Vacuum chamber® 100_Pumping channel 101- Mechanical pump 102- Turbo molecular pump 11- HIPIMS pulsed metal ion source 110- HIPIMS Pulse Power Supply 111 - Metal Ion Source 12 - Workpiece Base φ 13 - Pulse Voltage Generator 14 - Pulse Synchronization