JP2004001086A - Surface treatment method for metal mold by electronic beam irradiation and treated metal mold - Google Patents

Surface treatment method for metal mold by electronic beam irradiation and treated metal mold Download PDF

Info

Publication number
JP2004001086A
JP2004001086A JP2003097641A JP2003097641A JP2004001086A JP 2004001086 A JP2004001086 A JP 2004001086A JP 2003097641 A JP2003097641 A JP 2003097641A JP 2003097641 A JP2003097641 A JP 2003097641A JP 2004001086 A JP2004001086 A JP 2004001086A
Authority
JP
Japan
Prior art keywords
mold
electron beam
metal mold
surface treatment
electronic beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097641A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Uno
宇野 義幸
Akira Okada
岡田 晃
Kensuke Uemura
植村 賢介
Raharjo Purwadi
プルワディ ラハルジョ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagata Seiki Co Ltd
Original Assignee
Nagata Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagata Seiki Co Ltd filed Critical Nagata Seiki Co Ltd
Priority to JP2003097641A priority Critical patent/JP2004001086A/en
Publication of JP2004001086A publication Critical patent/JP2004001086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To finish a metal mold with low surface roughness in a short time by overcoming a fault in hand polishing the mold which is applied to electrical discharge machining. <P>SOLUTION: In a surface treatment method for a metal mold, a mold material made of carbon steel is smoothed, improved in corrosion resistance, polished, and improved in surface hardness by using a low energy pulse electronic beam apparatus capable of forming a large area without causing electronic beam scattering due to the existence of anode plasma. The electronic beam irradiation method is performed under a condition that energy density ≥1 J/cm<SP>2</SP>, the number of pulse irradiations ≥5 times, and a pulse width ≥1 μs. The metal mold is applied with surface treatment by the method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金型部材およびその製造方法で、特に金型製造工程において、金型の表面処理方法に関する。
【0002】
【従来の技術】
成形金型業界では、金型材質には金型等の製品として使用可能な強度および耐摩耗性を確保できる高い硬さで、かつ被削性に優れるという相反する特性が求められる。金型材料として、プリハードン鋼の適用が知られている。プリハードン鋼とは、通常の鋼に適用される焼なまし−機械加工−焼入れによる強度(硬さ)の向上という工程をとらず、所定の硬さに調整した鋼材を機械加工して、焼入れ処理を行わないで金型等として使用される。Ni,Al,Cu等を添加し析出効果を利用して硬さを高めるとともに、被削性の高いベイナイト組織に調整したプリハードン鋼材は高い硬さと、比較的良好な被削性を実現するとして、有効な鋼材である。加工後の焼き入れ処理が不要であり、金型メーカーにとっては極めて使いやすいものとなっている。
【0003】
しかし、加工し易い材料ができても、例えば、複雑形状の金型を加工するには、レーザ加工のほかに放電加工が不可欠になっている。特に、半導体部品製造用に使用される特殊な超精密金型は、放電加工が利用されているようになっている。
【0004】
また、放電加工では、材料の加工性に関わらず、WC−Co、SK3、SKD61のような加工性の困難な超硬合金から作られた金型を成形することも可能になる。
【0005】
【発明が解決しようとする課題】
ところが、放電加工は高硬度難削材の加工に有効であることから精密金型の加工に広く用いられているが,実際には放電加工面をそのまま使用することはまれであり,表面粗さの低減,マイクロクラック等の表面層欠陥の除去,形状精度の改善のために最終的には手磨きによる研磨仕上げが行われる.しかしながら,この工程は熟練者の技能に頼るところが多く,また,長時間を要することから,高能率化が従来からの課題となっている。
【0006】
本発明では、放電加工した金型の手磨きの欠点を克服し、短時間に低い表面粗さの仕上げを目的とする。
【0007】
【課題を解決するための手段】
本発明では、電子ビーム照射を利用して、放電加工した金型の手磨きの欠点を克服し、短時間に低い表面粗さに仕上げることができる。
本発明に使用した装置は、例えば金型、義歯床など、様々な金属の表面耐食性、光沢化、疲労特性改善、硬度の調整などにも応用される。アノードプラズマの存在によって、真空中によく現れる電子ビーム散乱がなくて、レーザによる表面加工に比べて、大面積金属表面改質が提供できるので、金型の表面改質に適切である。
【0008】
本発明の金型の表面処理方法は、容器内にアノードプラズマを生成するステップと、前記アノードプラズマの存在によって大面積の表面改質ができる低エネルギーパルス電子ビームを前記容器内に形成するステップと、前記金型を前記電子ビームの軌道上に配置することにより、前記電子ビームが金型材料の表面を平滑化、耐食性向上化、光沢化、及び、表面硬さを向上させるステップとを含む。
前記アノードプラズマが形成されて電子ビームの散乱が防止される。
【0009】
電子ビームの作用のパラメータは、次のような範囲内で変動することが好ましい。
エネルギー密度は、約 1J/cm2 以上、好ましくは、約 2J/cm2 以上10 J/cm以下の範囲である。更に好ましくは、約 4J/cm2 以上8 J/cm2 以下の範囲である。約 5J/cm2 以上7 J/cm2 以下の範囲が最も好ましい。
パルス幅は、1μs以上である。
照射回数は、1回の照射でもかなりの効果が得られるが、最小回数は少なくとも約5回以上が好ましい。そして、最大回数は、製作費用等を考慮して適宜決める。好ましくは、約30回前後を中心にして約20〜40回の範囲である。
【0010】
本発明による表面硬化金型は、前記本発明の表面処理方法よって表面処理された金型である。
前記金型材料としては炭素鋼が挙げられる。例えば、大同特殊鋼によりNAK80と称されるもの、SK3と称される鋼、SKD61と称される鋼、およびWC−Coと称される超硬合金等のプリハードン鋼でもよい。
【0011】
【発明の実施の形態】
図1を参照し、本発明に利用した低エネルギー高電流密度電子ビーム装置を次のように説明する(参考特許:米国特許US2003/0019850A1、公開日2003年 1月30日、Kensuke Uemura等)。
【0012】
真空容器1に金型12を設置し、容器を大気圧から 3×10−2Pa以下までスクロールポンプ2とターボ分子ポンプ3で排気した。不活性ガスをフローコントロールバルブ4から導入する。容器内の圧力が0.5〜3×10−1 Pa間のある一定の圧力に安定したら、電子銃の外側に備えてあるソレノイド5に電流を瞬間的に流し、電子銃の中に強力なパルス磁場を発生させる。磁場の発生と同時に、リング状の陽極6に正のパルス電圧(およそ5kV)を印加して、チャンバー内の自然電子を加速する。
【0013】
その電子が電場と磁場の中に存在しているので、ペニング効果が行われる。電子はローレンツ力を受けて、らせん運動するから、電子の行程を長くすることができる。その電子は最終的に陽極に捕集されるが、その前に気体分子と何回も衝突して気体の分子を電離させ、陽極リング付近の空間にアノードプラズマ7を生成する。このように、ガスの電離が励起されるので、高密度のプラズマを得ることができる。
【0014】
アノードプラズマを生成し、アノードプラズマの量が最大になった時点で(陽極に電圧を印加してからおよそ20〜30μs後)、電子銃の陰極に負のパルス加速電圧(20kV〜40kV、パルス幅  2〜4μs)をかける。スパーク・トリガー・スイッチによって印加するパルス電圧の立ち上がり時間5〜10nsとする。さらにアノードプラズマが仮想陽極の役割となり、プラズマのない場合に比べて見掛け上の陽極と陰極の間距離が短くなるため、尖っている針状の陰極表面8の先端に非常に強い電場が集中し、陰極の表面に高い電界ができて、それによって、電子が陰極から爆発的に放出され、陰極の高密度のカソードプラズマ9を生成する。
【0015】
陰極の付近にカソードプラズマおよび、陽極の周りにアノードプラズマが生成されたので、両プラズマの間に二重層10が成形される。プラズマの特性として、高い電導性を持っており、両プラズマはそれぞれマイナス電極とプラス電極のような働きをする。両仮想電極の間が狭い二重層であるから、その間に高い電界が集中され、カソードプラズマから飛び出した電子はその層の高い電界によって加速される。このように高密度の電子ビーム11が形成される。この高密電子ビームは金型12を照射した。
【0016】
【実施例】
実施例1
プリハードン鋼(大同特殊鋼NAK80)を、銅電極(φ10mm)を用いて、放電電流:3 A、パルス幅:2μs,デューティファクター:10%の条件(加工液:灯油系)で放電加工した面に対して、電子ビーム(電子密度7.3 J/cm,パルス幅:2〜3μs,パルス周波数:0.2 Hz,パルス回数:30回、ビーム直径:約80mm)を照射した。鋼材は圧延方向に炭化物が伸張し性質が方向によって異なってくるため、2方向を用意した。
図2のに示すように、照射前は直径数十μmの放電痕の集積した面を形成していたが、照射後の面は放電痕は確認できず粗さもかなり改善されている。
【0017】
実施例2
次に電子ビームのエネルギー密度を変化させて放電加工面に照射した。図3にエネルギー密度に対する、表面粗さおよび光沢度の変化を示す。エネルギー密度を0よりも大きく約15 J/cm以下の範囲で変化させた。
表面粗さはエネルギー密度 1〜4 J/cm2 で急激に減少し、6〜7 J/cm2 において最小となるが、それ以上高くなると若干増加する。光沢度(Glossiness、JISZ8741準拠)は表面粗さとよく対応した変化を示し、表面粗さが最小となる場合に最大の光沢度が得られた。この結果から、エネルギー密度は、ある程度まで増加に従って平滑化の効果は高い。
【0018】
図3から、エネルギー密度が、約 1J/cm2 以上の範囲で効果が現れることがわかる。好ましくは、約 2J/cm2 以上10 J/cm以下の範囲である。更に好ましくは、約 4J/cm2 以上8 J/cm2 以下の範囲である。約 5J/cm2 以上7 J/cm2 以下の範囲は最も好ましい。
【0019】
実施例3
次にエネルギー密度7.3 J/cm2 において電子ビームの照射回数を変化させたときの表面粗さの変化を示す(図4)。この場合、照射を 1回から50回の範囲で行った。表面粗さは数回の照射で急激に減少し、5回以降はあまり変化しない。このことから、1回の照射でもかなりの効果が得られるが、最小回数は少なくとも約5回以上が好ましいことがわかる。そして、最大回数は、製作費用等を考慮して適宜決めるとよい。好ましくは、約30回前後を中心にして約20〜40回の範囲である。
エネルギー密度4.2 J/cm2 においてもほぼ同様の傾向を示した。
【0020】
実施例4
炭素鋼においてはマルテンサイト変態を起こし、表面硬化に応用することも可能となる。SK3鋼(1〜1.1%C)の金型を20回パルス電子ビーム(6 J/cm)にかけると、表面硬さが高くなった。図5は微小硬さ試験機を使って、電子ビーム処理後と処理前の表面硬さを示す。ビッカース硬さ試験では、ダイヤモンド圧子に荷重をかけ、試料表面のくぼみから硬さを計算するので、荷重が低いところでは、基板の硬さの影響が小さく、実際の表面の硬さを近似する。測定では、なるべく低い荷重の方が望ましい。図6に示すように、荷重が低いところでは、処理後のビッカース硬さが高くなり、この場合、表面が1.5倍ぐらい硬くなったことがわかる。
【0021】
同様に、SKD 61(0.32〜0.42%C)の金型を電子ビームを照射にかけると、表面硬さが高くなった。図6はSKD61の表面硬さを示している。
【0022】
実施例5
超合金WC−Co(G5)金型を、銅電極(φ10mm)を用いて、放電電流:3 A、パルス幅:2μs,デューティファクター:10%の条件(加工液:灯油系)で放電加工した面に対して、電子ビームを照射した。照射ビームによる平滑化の効果を調べるために、ビームのパルスエネルギー密度を7.3 J/cm2 に設定し、パルス幅:2〜3μs,パルス周波数:0.2 Hz,パルス回数:30回、ビーム直径:約80mmで金型の照射を行った。
【0023】
図7に示すように、ビームパルスのエネルギー密度が2〜8 J/cm2 において、平滑化および光沢化の効果を得られることができる。
図7から、エネルギー密度が、約 1J/cm2 以上の範囲で効果が現れることがわかる。好ましくは、約 2J/cm2 以上10 J/cm以下の範囲である。更に好ましくは、約 4J/cm2 以上8 J/cm2 以下の範囲である。約 5J/cm2 以上7 J/cm2 以下の範囲は最も好ましい。
【図面の簡単な説明】
【図1】
本発明の実施形態で使用した、大面積の放射できる低エネルギーパルス電子ビ
ーム装置の概略を示す。
【図2】
本発明において、電子ビーム照射されたプリハードン鋼金型の表面粗さの変化
を示す。
【図3】
本発明において、電子ビームエネルギー密度に対する、照射されたプリハード
ン鋼金型の表面粗さおよび光沢度の変化を示す。
【図4】本発明において、電子ビームのパルス回数に対する、照射されたプリハードン鋼金型の表面粗さの変化を示す。
【図5】本発明において、電子ビーム照射されたSK3鋼金型の表面硬さの変化を示す。
【図6】本発明において、電子ビーム照射されたSKD61鋼金型の表面硬さの変化を示す。
【図7】本発明において、電子ビーム照射されたWC−Co超合金金型の表面硬さと光沢度の変化を示す。
【符号の説明】
1 真空容器
2 スクロールポンプ
3 ターボ分子ポンプ
4 フローコントロールバルブ
5 ソレノイド
6 アノード
7 アノードプラズマ
8 カソード
9 カソードプラズマ
10 電気二重層
11 電子ビーム
12 処理された金型
13 サンプルホルダー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mold member and a method of manufacturing the same, and particularly to a method of surface treatment of a mold in a mold manufacturing process.
[0002]
[Prior art]
In the molding die industry, it is required that the die materials have high hardness that can be used as a product such as a die, high hardness that can secure abrasion resistance, and excellent machinability. As a mold material, application of pre-hardened steel is known. Pre-hardened steel is a quenching process in which a steel material that has been adjusted to a predetermined hardness is machined without taking the steps of increasing the strength (hardness) by annealing, machining, and quenching applied to ordinary steel. Used as a mold without performing Ni, Al, Cu etc. are added to increase the hardness by utilizing the precipitation effect, and the pre-hardened steel material adjusted to the high machinability bainite structure realizes high hardness and relatively good machinability. It is an effective steel material. No quenching after processing is required, making it extremely easy for mold makers to use.
[0003]
However, even if a material that can be easily processed is formed, for example, in order to process a mold having a complicated shape, electric discharge machining in addition to laser processing is indispensable. In particular, a special ultra-precision mold used for manufacturing semiconductor parts has been using electric discharge machining.
[0004]
Further, in the electric discharge machining, it is possible to mold a mold made of a cemented carbide having difficulty in workability, such as WC-Co, SK3, and SKD61, regardless of the workability of the material.
[0005]
[Problems to be solved by the invention]
However, electrical discharge machining is widely used for machining precision dies because it is effective for processing hard-to-hard materials, but in practice, it is rare to use the electrical discharge machined surface as it is. In order to reduce surface layer defects such as micro cracks and improve shape accuracy, polishing by hand polishing is finally performed. However, this process often depends on the skill of a skilled person and requires a long time, so that high efficiency has been a conventional problem.
[0006]
An object of the present invention is to overcome the drawbacks of hand polishing of a metal mold subjected to electric discharge machining and to finish the surface with a low surface roughness in a short time.
[0007]
[Means for Solving the Problems]
According to the present invention, it is possible to overcome the drawbacks of hand polishing of the electric discharge machined mold by using electron beam irradiation, and to finish the surface with low surface roughness in a short time.
The device used in the present invention is also applied to surface corrosion resistance, gloss, improvement of fatigue characteristics, adjustment of hardness, etc. of various metals such as molds and denture bases. The presence of the anode plasma eliminates electron beam scattering that often occurs in a vacuum, and can provide a large-area metal surface modification as compared with surface processing by a laser.
[0008]
The surface treatment method for a mold according to the present invention includes the steps of: generating an anode plasma in a container; and forming a low energy pulsed electron beam capable of surface modification in a large area by the presence of the anode plasma in the container. Disposing the mold on the trajectory of the electron beam so that the electron beam smoothes the surface of the mold material, improves corrosion resistance, enhances gloss, and improves surface hardness.
The anode plasma is formed to prevent electron beam scattering.
[0009]
The parameters of the action of the electron beam preferably vary within the following ranges:
The energy density is about 1 J / cm 2 or more, preferably, about 2 J / cm 2 or more and 10 J / cm 2 or less. More preferably, it is in the range of about 4 J / cm 2 or more and 8 J / cm 2 or less. Most preferably, the range is about 5 J / cm 2 to 7 J / cm 2 .
The pulse width is 1 μs or more.
As for the number of irradiations, a considerable effect can be obtained even with one irradiation, but the minimum number is preferably at least about 5 or more. The maximum number is appropriately determined in consideration of production costs and the like. Preferably, the range is about 20 to 40 times around about 30 times.
[0010]
The surface hardening mold according to the present invention is a mold that has been surface-treated by the surface treatment method of the present invention.
Examples of the mold material include carbon steel. For example, a pre-hardened steel such as a steel called NAK80, a steel called SK3, a steel called SKD61, and a cemented carbide called WC-Co by Daido Special Steel may be used.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The low-energy, high-current-density electron beam apparatus used in the present invention will be described below with reference to FIG. 1 (reference patent: US 2003/0019850 A1, published on January 30, 2003, Kensuke Uemura, etc.).
[0012]
The mold 12 was placed in the vacuum vessel 1, and the vessel was evacuated from atmospheric pressure to 3 × 10 −2 Pa or less by the scroll pump 2 and the turbo molecular pump 3. Inert gas is introduced from the flow control valve 4. When the pressure in the container is stabilized to a certain constant value of 0.5 to 3 × 10 −1 Pa, a current is instantaneously passed to the solenoid 5 provided outside the electron gun, and a strong Generate a pulsed magnetic field. At the same time as the generation of the magnetic field, a positive pulse voltage (about 5 kV) is applied to the ring-shaped anode 6 to accelerate natural electrons in the chamber.
[0013]
The Penning effect occurs because the electrons are present in the electric and magnetic fields. The electrons undergo a spiral motion under Lorentz force, so that the electron travel can be lengthened. The electrons are finally collected by the anode, but before that they collide with gas molecules many times to ionize the gas molecules and generate anode plasma 7 in the space near the anode ring. Since the ionization of the gas is excited as described above, high-density plasma can be obtained.
[0014]
When the anode plasma is generated and the amount of the anode plasma becomes maximum (about 20 to 30 μs after the voltage is applied to the anode), a negative pulse acceleration voltage (20 kV to 40 kV, pulse width) is applied to the cathode of the electron gun. 2-4 μs). The rising time of the pulse voltage applied by the spark trigger switch is 5 to 10 ns. Further, since the anode plasma plays the role of a virtual anode and the apparent distance between the anode and the cathode is shorter than in the case without plasma, an extremely strong electric field is concentrated on the tip of the sharp needle-like cathode surface 8. A high electric field is created on the surface of the cathode, whereby electrons are explosively emitted from the cathode, producing a high density cathode plasma 9 of the cathode.
[0015]
Since a cathodic plasma has been generated near the cathode and an anodic plasma around the anode, a double layer 10 is formed between the two plasmas. As a characteristic of the plasma, it has high conductivity, and both plasmas act like a negative electrode and a positive electrode, respectively. Since the space between the two virtual electrodes is a narrow double layer, a high electric field is concentrated between them, and the electrons jumping out of the cathode plasma are accelerated by the high electric field of the layer. Thus, a high-density electron beam 11 is formed. The high-density electron beam irradiated the mold 12.
[0016]
【Example】
Example 1
Pre-hardened steel (Daido Special Steel NAK80) was subjected to electric discharge machining using a copper electrode (φ10 mm) under the conditions (discharge current: 3 A, pulse width: 2 μs, duty factor: 10%) (machining liquid: kerosene). The sample was irradiated with an electron beam (electron density: 7.3 J / cm 2 , pulse width: 2 to 3 μs, pulse frequency: 0.2 Hz, pulse number: 30 times, beam diameter: about 80 mm). In the steel material, two directions were prepared because the carbide was elongated in the rolling direction and the properties were different depending on the direction.
As shown in FIG. 2, before irradiation, a surface on which discharge traces having a diameter of several tens of μm were accumulated was formed. However, on the surface after irradiation, no discharge trace was observed and the roughness was considerably improved.
[0017]
Example 2
Next, the electron beam was irradiated onto the electric discharge machining surface while changing the energy density. FIG. 3 shows changes in surface roughness and glossiness with respect to energy density. The energy density was changed in a range of more than 0 and about 15 J / cm 2 or less.
The surface roughness sharply decreases at an energy density of 1 to 4 J / cm 2 , and becomes a minimum at an energy density of 6 to 7 J / cm 2 , but increases slightly at higher values. Glossiness (Glossiness, JISZ8741 compliant) showed a change corresponding to the surface roughness, and the maximum glossiness was obtained when the surface roughness was minimum. From this result, the effect of smoothing is higher as the energy density increases to some extent.
[0018]
FIG. 3 shows that the effect appears when the energy density is in the range of about 1 J / cm 2 or more. Preferably, it is in the range of about 2 J / cm 2 or more and 10 J / cm 2 or less. More preferably, it is in the range of about 4 J / cm 2 or more and 8 J / cm 2 or less. A range of about 5 J / cm 2 to 7 J / cm 2 is most preferred.
[0019]
Example 3
Next, changes in surface roughness when the number of times of electron beam irradiation is changed at an energy density of 7.3 J / cm 2 are shown (FIG. 4). In this case, irradiation was performed in a range of 1 to 50 times. The surface roughness sharply decreases after several irradiations, and does not change much after the fifth irradiation. From this fact, it can be understood that a considerable effect can be obtained by one irradiation, but it is preferable that the minimum number of times is at least about 5 times or more. Then, the maximum number of times may be appropriately determined in consideration of production costs and the like. Preferably, the range is about 20 to 40 times around about 30 times.
Almost the same tendency was shown at an energy density of 4.2 J / cm 2 .
[0020]
Example 4
Carbon steel undergoes martensitic transformation and can be applied to surface hardening. When a mold of SK3 steel (1 to 1.1% C) was subjected to a pulse electron beam (6 J / cm 2 ) 20 times, the surface hardness was increased. FIG. 5 shows the surface hardness after and before electron beam processing using a microhardness tester. In the Vickers hardness test, a load is applied to the diamond indenter, and the hardness is calculated from the depression on the surface of the sample. Therefore, where the load is low, the influence of the hardness of the substrate is small and the actual surface hardness is approximated. In measurement, a load as low as possible is desirable. As shown in FIG. 6, it can be seen that the Vickers hardness after the treatment increases when the load is low, and in this case, the surface is about 1.5 times as hard.
[0021]
Similarly, when a mold of SKD 61 (0.32 to 0.42% C) was irradiated with an electron beam, the surface hardness was increased. FIG. 6 shows the surface hardness of SKD61.
[0022]
Example 5
A superalloy WC-Co (G5) mold was subjected to electric discharge machining using a copper electrode (φ10 mm) under the conditions of a discharge current of 3 A, a pulse width of 2 μs, and a duty factor of 10% (working fluid: kerosene). The surface was irradiated with an electron beam. In order to examine the effect of smoothing by the irradiation beam, the pulse energy density of the beam was set to 7.3 J / cm 2 , the pulse width: 2 to 3 μs, the pulse frequency: 0.2 Hz, the number of pulses: 30, The mold was irradiated with a beam diameter of about 80 mm.
[0023]
As shown in FIG. 7, when the energy density of the beam pulse is 2 to 8 J / cm 2 , the effects of smoothing and glossing can be obtained.
FIG. 7 shows that the effect appears when the energy density is in the range of about 1 J / cm 2 or more. Preferably, it is in the range of about 2 J / cm 2 or more and 10 J / cm 2 or less. More preferably, it is in the range of about 4 J / cm 2 or more and 8 J / cm 2 or less. A range of about 5 J / cm 2 to 7 J / cm 2 is most preferred.
[Brief description of the drawings]
FIG.
1 schematically shows a low-energy pulsed electron beam device capable of emitting a large area used in an embodiment of the present invention.
FIG. 2
In the present invention, a change in surface roughness of a pre-hardened steel mold irradiated with an electron beam is shown.
FIG. 3
In the present invention, changes in surface roughness and gloss of an irradiated prehardened steel mold with respect to electron beam energy density are shown.
FIG. 4 shows a change in surface roughness of an irradiated prehardened steel mold with respect to the number of electron beam pulses in the present invention.
FIG. 5 shows a change in surface hardness of an SK3 steel mold irradiated with an electron beam in the present invention.
FIG. 6 shows a change in surface hardness of an SKD61 steel mold irradiated with an electron beam in the present invention.
FIG. 7 shows changes in surface hardness and gloss of a WC-Co superalloy mold irradiated with an electron beam in the present invention.
[Explanation of symbols]
Reference Signs List 1 vacuum vessel 2 scroll pump 3 turbo molecular pump 4 flow control valve 5 solenoid 6 anode 7 anode plasma 8 cathode 9 cathode plasma 10 electric double layer 11 electron beam 12 processed mold 13 sample holder

Claims (8)

容器内にアノードプラズマを生成するステップと、
前記アノードプラズマの存在によって大面積の表面改質ができる低エネルギーパルス電子ビームを前記容器内に形成するステップと、
前記金型を前記電子ビームの軌道上に配置することにより、前記電子ビームが金型材料の表面を平滑化、耐食性向上化、光沢化、及び、表面硬さを向上させるステップとを含む金型の表面処理方法。
Generating an anode plasma in the vessel;
Forming a low-energy pulsed electron beam capable of surface modification of a large area by the presence of the anode plasma in the container;
Disposing the mold on the trajectory of the electron beam so that the electron beam smoothes the surface of the mold material, improves corrosion resistance, enhances gloss, and improves surface hardness. Surface treatment method.
前記アノードプラズマが形成されて電子ビームの散乱を防止することを特徴とする請求項1に記載の金型の表面処理方法。The method of claim 1, wherein the anode plasma is formed to prevent scattering of the electron beam. 前記金型材料が炭素鋼であることを特徴とする請求項1乃至2に記載のいずれかの金型の表面処理方法。The method according to claim 1, wherein the mold material is carbon steel. 前記の電子ビーム照射において、エネルギ密度が 1J/cm2 以上である請求項1乃至3に記載のいずれかの金型の表面処理方法。4. The method according to claim 1, wherein the electron beam irradiation has an energy density of 1 J / cm 2 or more. 前記の電子ビーム照射において、照射回数が5回以上である請求項1乃至4に記載のいずれかの金型の表面処理方法。The method according to any one of claims 1 to 4, wherein the number of times of the electron beam irradiation is 5 or more. 前記の電子ビーム照射において、パルス幅1μs以上である請求項1乃至5に記載のいずれかの金型の表面処理方法。6. The method according to claim 1, wherein the pulse width of the electron beam irradiation is 1 μs or more. 前記の電子ビーム照射において、エネルギ密度が 1J/cm2 以上、照射回数5回以上、パルス幅1μs以上である請求項1乃至3に記載のいずれかの金型の表面処理方法。4. The method according to claim 1, wherein the electron beam irradiation has an energy density of 1 J / cm 2 or more, an irradiation frequency of 5 times or more, and a pulse width of 1 μs or more. 請求項1乃至7のいずれかの表面処理方法よって表面処理された金型。A mold surface-treated by the surface treatment method according to any one of claims 1 to 7.
JP2003097641A 2002-04-01 2003-04-01 Surface treatment method for metal mold by electronic beam irradiation and treated metal mold Pending JP2004001086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097641A JP2004001086A (en) 2002-04-01 2003-04-01 Surface treatment method for metal mold by electronic beam irradiation and treated metal mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002099030 2002-04-01
JP2003097641A JP2004001086A (en) 2002-04-01 2003-04-01 Surface treatment method for metal mold by electronic beam irradiation and treated metal mold

Publications (1)

Publication Number Publication Date
JP2004001086A true JP2004001086A (en) 2004-01-08

Family

ID=30446522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097641A Pending JP2004001086A (en) 2002-04-01 2003-04-01 Surface treatment method for metal mold by electronic beam irradiation and treated metal mold

Country Status (1)

Country Link
JP (1) JP2004001086A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026660A (en) * 2004-07-13 2006-02-02 Elionix Kk Surface smoothing device using electron beam, and method for treating surface of metal mold
JP2006187799A (en) * 2005-01-07 2006-07-20 Sodick Co Ltd Electronic-beam irradiation device for reforming surface
JP2009191733A (en) * 2008-02-14 2009-08-27 Toshiba Corp Steam turbine blade and method for modifying its surface
JP2013086401A (en) * 2011-10-20 2013-05-13 Sodick Co Ltd Molding machine, screw for molding machine and plunger for molding machine whose surfaces are modified by electron beam irradiation
US8445366B2 (en) 2008-12-15 2013-05-21 Samsung Electronics Co., Ltd. Electron beam annealing apparatus and annealing methods using the same
JP2014065939A (en) * 2012-09-25 2014-04-17 Okayama Prefecture Molded article and method for manufacturing the same
EP4049791A1 (en) 2021-02-26 2022-08-31 Sintokogio, Ltd. Surface treatment method and surface treatment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026660A (en) * 2004-07-13 2006-02-02 Elionix Kk Surface smoothing device using electron beam, and method for treating surface of metal mold
JP2006187799A (en) * 2005-01-07 2006-07-20 Sodick Co Ltd Electronic-beam irradiation device for reforming surface
JP2009191733A (en) * 2008-02-14 2009-08-27 Toshiba Corp Steam turbine blade and method for modifying its surface
US8445366B2 (en) 2008-12-15 2013-05-21 Samsung Electronics Co., Ltd. Electron beam annealing apparatus and annealing methods using the same
JP2013086401A (en) * 2011-10-20 2013-05-13 Sodick Co Ltd Molding machine, screw for molding machine and plunger for molding machine whose surfaces are modified by electron beam irradiation
JP2014065939A (en) * 2012-09-25 2014-04-17 Okayama Prefecture Molded article and method for manufacturing the same
EP4049791A1 (en) 2021-02-26 2022-08-31 Sintokogio, Ltd. Surface treatment method and surface treatment system

Similar Documents

Publication Publication Date Title
Ozur et al. Production and application of low-energy, high-current electron beams
JP2771205B2 (en) Method and apparatus for processing solid surfaces by particle bombardment
Wei et al. Surface modification of 5CrMnMo steel with continuous scanning electron beam process
Murray et al. Repair of EDM induced surface cracks by pulsed electron beam irradiation
Uno et al. A new polishing method of metal mold with large-area electron beam irradiation
JPS6199672A (en) Method and apparatus for surface treatment of article to be processed
JP2003111778A (en) Electronic beam device for reforming metal denture surface, method for reforming metal denture surface by using the electronic beam device and denture with reformed surface by using the device
JP2004001086A (en) Surface treatment method for metal mold by electronic beam irradiation and treated metal mold
Ueda et al. Surface improvements of industrial components treated by plasma immersion ion implantation (PIII): Results and prospects
Korotaev et al. Formation of wear resistant nanostructural topocomposite coatings on metal materials by ionic-plasma processing
Ageeva et al. X-ray spectral analysis of sintered products made of electroerosive materials obtained from X17 alloy waste in lighting kerosene
Yu et al. Surface finishing of die and tool steels via plasma-based electron beam irradiation
JP5606707B2 (en) Nitriding processing apparatus and nitriding processing method
RU2413033C2 (en) Procedure for plasma nitriding item out of steel or non-ferrous alloy
US7049539B2 (en) Method for surface treating a die by electron beam irradiation and a die treated thereby
RU2403316C2 (en) Ion-plasma coating application method
Qayyum et al. Spectroscopic evaluation of nitrogen glow discharge for the surface nitriding of Ti-6Al-4V alloy
Okada et al. Fundamental study on releasability of molded rubber from mold tool surface
Cao et al. Effects of Pseudo-spark Discharge Pulsed Electron Beam Irradiation on the Microstructure and Properties of 6061 Aluminum Alloy
WO2012144580A1 (en) Amorphous carbon film and method for forming same
JP4502116B2 (en) High density plasma surface coating method and apparatus
RU2478141C2 (en) Modification method of material surface by plasma treatment
RU2709548C1 (en) Method for electro-erosion treatment of molybdenum surface
Ladianov et al. Effects of low pressure radio frequency discharge on the physical and mechanical characteristics and chemical composition of diffusion coating on a surface of complex configuration details
CN104674159A (en) High-energy superposition based alloy steel surface treatment method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Effective date: 20070110

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220