TW201211276A - NiCu alloy target for Cu electrode protection membrane and lamination membrane - Google Patents

NiCu alloy target for Cu electrode protection membrane and lamination membrane Download PDF

Info

Publication number
TW201211276A
TW201211276A TW100128318A TW100128318A TW201211276A TW 201211276 A TW201211276 A TW 201211276A TW 100128318 A TW100128318 A TW 100128318A TW 100128318 A TW100128318 A TW 100128318A TW 201211276 A TW201211276 A TW 201211276A
Authority
TW
Taiwan
Prior art keywords
mass
electrode
alloy
content
film
Prior art date
Application number
TW100128318A
Other languages
Chinese (zh)
Other versions
TWI506142B (en
Inventor
Hiroshi Omori
Kazuya Sakaguchi
Masataka Katsumi
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011134616A external-priority patent/JP5895370B2/en
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Publication of TW201211276A publication Critical patent/TW201211276A/en
Application granted granted Critical
Publication of TWI506142B publication Critical patent/TWI506142B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention provides a protection membrane, which is suitable for use as a Cu electrode protection membrane, capable of inhibiting the electrolytic corrosion or degradation of electrical property caused by atomic diffusion of the Cu electrode, allowing high precision patterning through wet etching and having desirable adhesion with transparent electrodes, a NiCu alloy target for the Cu electrode protection membrane allowing high performance sputtering, and a lamination membrane made thereby. The present invention relates to a NiCu alloy target for the Cu electrode protection membrane, containing 15.0 ≤ Cu ≤ 55.0 mass%, 0.5 ≤ (Cr, Ti) ≤ 10.0 mass%, and the remaining part having Ni and unavoidable impurities, and a lamination membrane made thereby.

Description

201211276 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種Cu電極保護膜用NiCu合金靶材及積 層膜’進而詳細而言,本發明係關於/種用以形成用作觸控 面板或液晶面板之電極的Cu電極之保護膜之Cu電極保幾 膜用NiCu合金靶材,及使用其而製造之積層膜。 【先前技術】 觸控面板、薄型大晝面電視等中所使用之液晶面板具備柃 2片透明基板之間封入液晶構造。於透明基板之内側(液晶 側之面)形成有成為液晶之工作電極之透明電極。一般而 & ’透明電極中使用氧化銦錫(JTO,jndium Tin Oxide)。又, 於形成有透明電極之基板表面之一部分形成有成為外部輪 出端子之金屬電極或金屬配線(以下,將該等單獨總稱為「金 屬電極」)。金屬電極係於基板表面内形成無需使光透過之 部分(例如基板之外周部)。 於在透明電極之表面上直接形成金屬電極之情形時,於遷 明電極與金屬電極之間的標準電位之差(電位差)較大時,會 引起金屬電極之電解顧。又,存在於形成於基板表面之底 層與金屬電極之間產生原子之相互擴散,金屬電極之電氣特 I"生劣化之it形。因此,—般於金屬電極之兩面形成有用以保 護金屬電極之料膜(轉層)…般於先叙液晶面板中, 吏 Nd系&金作為金屬電極’使用Mo-Nb系合金作為 100128318 201211276 保護膜。 對此類液晶面板中所使用之金屬電極、保護膜、及用以形 成該等之材料,先前提出各種方案。 例如,於專利文獻1中揭示有一種包含合計2〜50原子% 之自V與Nb中選擇之1種以上,剩餘部分包含Mo及不可 避免之雜質,且相對密度為95%以上之薄膜形成用濺鍍靶 材。 於相同文獻中記載有若使用含有Nb或V之Mo合金靶 材,則獲得不含有害之Cr,且低電阻、具有較高之耐蝕性 之金屬薄膜。 又,於專利文獻2中揭示有一種以Mo為主體,含有0.5 〜50原子%之自(Ti、Zr、V、Nb、Cr)中選擇之金屬元素Μ, 且具有特定之組織的滅鑛把材。 於相同文獻中記載有將原料粉末之混合物進行壓縮成形 而製成成形體,將成形體粉碎再次製成粉末,並對該粉末進 行加壓燒結,藉此抑制成分之偏析,燒結體之塑性加工性亦 提昇。 又,雖然專利文獻3中並未揭示金屬電極之保護膜用之靶 材,但揭示有一種含有Ni : 70〜85重量%、Cu : 2〜10重 量%、以及Mo : 1〜6重量%及/或Cr : 0.5〜3重量%,剩餘 部分實質上包含Fe,且經濺鍍之面之結晶粒度小於JIS奥氏 體結晶粒度編號No.3之靶材構件。 100128318 4 201211276 於相同文獻中§己載有若使用此種乾材,則獲得低保磁力且 均勻之Fe-Ni合金薄膜。 又,雖然於專利文獻4中並未揭示金屬電極之保護膜用之 靶材,但揭示有一種含有Ni : 35〜85重量%,自、&、201211276 VI. Description of the Invention: [Technical Field] The present invention relates to a NiCu alloy target for Cu electrode protection film and a laminated film. In detail, the present invention relates to the use of a touch panel. Or a Cu electrode for a protective film of a Cu electrode of an electrode of a liquid crystal panel, a NiCu alloy target for a film, and a laminated film produced using the same. [Prior Art] A liquid crystal panel used in a touch panel, a thin-sized large-faced television, or the like is provided with a liquid crystal structure enclosed between two transparent substrates. A transparent electrode serving as a working electrode of the liquid crystal is formed on the inner side (the surface on the liquid crystal side) of the transparent substrate. In general, indium tin oxide (JTO, jndium tin Oxide) is used in the & Further, a metal electrode or a metal wiring serving as an external turn-out terminal is formed in a portion of the surface of the substrate on which the transparent electrode is formed (hereinafter, these are collectively referred to as "metal electrodes" collectively). The metal electrode forms a portion (e.g., a peripheral portion of the substrate) in which the light is not required to pass through the surface of the substrate. In the case where a metal electrode is directly formed on the surface of the transparent electrode, when the difference (potential difference) between the standard potentials between the moving electrode and the metal electrode is large, the electrolysis of the metal electrode is caused. Further, there is an interdiffusion of atoms between the underlayer formed on the surface of the substrate and the metal electrode, and the electric shape of the metal electrode is I-like. Therefore, a film (transfer layer) useful for protecting the metal electrode is formed on both sides of the metal electrode. In the liquid crystal panel, 吏Nd series & gold is used as the metal electrode. The Mo-Nb alloy is used as the 100128318 201211276. Protective film. Various proposals have been made for metal electrodes, protective films, and materials for forming such liquid crystal panels. For example, Patent Document 1 discloses a film formation method comprising a total of 2 to 50 atom% selected from V and Nb, and the balance containing Mo and unavoidable impurities and having a relative density of 95% or more. Sputter target. It is described in the same document that when a Mo alloy target containing Nb or V is used, a metal thin film containing no harmful Cr and having low electrical resistance and high corrosion resistance can be obtained. Further, Patent Document 2 discloses a metal element lanthanum selected from the group consisting of (Ti, Zr, V, Nb, Cr) of 0.5 to 50 atom%, and having a specific structure. material. In the same document, a mixture of raw material powders is compression-molded to obtain a molded body, and the molded body is pulverized and powdered, and the powder is subjected to pressure sintering to suppress segregation of components and plastic processing of the sintered body. Sex also improved. Further, although Patent Document 3 does not disclose a target for a protective film for a metal electrode, it is disclosed that Ni contains 70:85 to 85% by weight, Cu: 2 to 10% by weight, and Mo: 1 to 6% by weight and / or Cr: 0.5 to 3% by weight, the remainder containing Fe substantially, and the crystal grain size of the sputtered face is smaller than the target member of JIS austenite crystal grain size No. 3. 100128318 4 201211276 In the same literature, § has been used to obtain a Fe-Ni alloy thin film with low magnetic constant force and uniformity when such a dry material is used. Further, although Patent Document 4 does not disclose a target for a protective film for a metal electrode, it is disclosed that Ni contains 35:85 wt%, self, &

Cu及Nb中選擇之1種以上:3〜15重量%,A1 : i重量% 以下,Ca及/或Mg : 3〇〇 ppm以下,〇 : 3〇 ppm以下,N : 30 PPm以下,且剩餘部分實質上為以之蒸鍍用基合 金。 於相同文獻中記載有 且高特性之磁性薄膜 又’於非專利文獻i中揭示有一種使用Αγ+〇2混合氣體 對包含Cu-2 wt%Zr合金、wt%M〇合金或Cu 〇7 wt%Mg合金之乾材進行濺鑛之方法。 於相同文獻中記载有藉由使用此種方法,而於包含Cu系 材料之層(金屬電極)與底層之界面形成與底層之密著性良 好的阻障層(氧化層)。 乂 又,雖然專利文獻5中並未揭示金屬電極之保護膜用之乾 材’但揭示有一種包含Ni_7.5質量%TM〜40質量%Cu合 金’且用以形成晶片電阻器用之電極的賤餘材。〇 於相同文獻中記載有若於财1合金令添加d由於 飽和磁化減小,故而獲得長壽命之靶材。 ; 進而’雖祕專利請6巾絲 下金屬電極之保護膜用 100128318 201211276 之靶材,但揭示有一種包含 (a) Ni-25 at%Cu-2 at%Cr ^ α ,Λγ. 〇 金(Νι<6·6 maSS%CU-l.7 mass%Cr合金)、或 (b) Ni-25 at%Cu-12 at%Ti 人人/χτ· 3 金(Ν卜27」mass%Cu mass%Ti 合金) · 之阻障層形成用鎳合金濺錢材。 於相同讀巾記麟錢肖具仏 阻障層,則抑制%之擴散。 成之革巴材來形成 隨著液晶面板之大型化,尋求電阻低私A 料。又,由於A1系配線之保幾膜中所使用,…之材 價格高’而阻礙液晶面板之低成本化。相=:系合金 系材料與A1系材料相比 ; 於cu 車低’而期待作為代替A1 糸材料之低電阻配線材料。 ' S A1 作為使用以系材料之金屬電極及e 方法,如非專利文獻i中所揭示,已 成 产料/ 於Ar + 〇2氣體環 έ Cl^合金之树進行濺狀方法。於相同文獻 中所6己载之方法具有可#由丨錢鍍而同_紅 保護膜之優點。 * 然而,Ar+〇2氣體環境下之反應性濺鍍使Cu電極犋本身 之電氣電阻增加,導致特性劣化。又,02由於容易捕捉至 品品 真空裝置室t,故而氧錢之控龍為困難,而成為製 質不均勻之原因。 100128318 6 201211276 又’金屬電減保_係—賴一形縣糾電極之基 板表面整個面形成保護膜及電極層,並圖案化成特定之形狀 而形成。為將液晶面板低成本化,較佳為圖案㈣藉㈣式 刻而進行。進而’為利用濕式細進行高精度之圖案化, 較佳為保護膜及電極層之蝕刻速率幾乎相等。 然而’藉由非專利文獻1中所揭示之方法而獲得之金肩電 極則呆護膜由於兩者之_速率之差較大,故•在無法進 行高精度之圖案化之問題。 進而,於液晶面板之情形時’ Cu電極保護膜係形成於包 :ITO之透明電^極之上。因此,對於Cu電極保護膜要求較 π之與ΠΌ之讀性。又,為高效地進行⑽,要求 之磁導率較低。然而,先前未提^全兼具料條件 電極保護膜用#材及使用此絲材而製造之積層膜之2 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2〇〇2_327264號公報 [專利文獻2]日本專利特開2〇〇5·29〇4〇9號公報 [專利文獻3]日本專利特開昭號公報 [專利文獻4]日本專利特開昭63_1〇〇148號公報 [專利文獻5]曰本專利特開之⑻孓丨7^4〗號公報 [專利文獻6]國際公開第w〇2〇〇5/〇4129〇號 [非專利文獻] 100128318 7 201211276 利文獻 1]咼澤悟等人,Ulvac Technical Journal, No. 69, P7,2009 【發明内容】 (發明所欲解決之問題) ^發明所欲解紅課題在於提供—種 七° ~ CU電極之保護膜’可抑制Cu電極之電解腐蚀 子擴散弓丨起之電氣特性之劣化,且可形成可藉由濕式 姓刻而進行高精度之_化之保護膜, =成與透賺之密著性良好之保護膜,並且 ()可向效地進行濺鍍 :。電極保護膜…合金把材,及使用其而製造之 (解決問題之手段) 用以解決上述課題之本發明之笛 _ 之弟1發明係一種Cu電極保 護膜用NiCu合金靶材,其包含: 15,0$ CuS 55.0 mass%、及 0·5零r、Tl)^1〇.〇mass%(其十,C^O'TbO),且 剩餘部分包含Ni及不可避免之雜質 本發明之第2發明係-種Cu電極;護膜用合錄 材,其包含 15.0$CuS55.0 mass%、及 0.5$ CrS 10·0 mass%,且 100128318 201211276 剩餘部分包含Ni及不可避免之雜質。 本發明之第3種發明係一種Cu電極保護膜用NiCu合金 靶材,其包含 15.0$ Cu$ 55.0 mass%、及 0.5STi$ 10.0 mass%,且 剩餘部分包含Ni及不可避免之雜質。 m 進而,本發明之積層膜係具備 Cu電極、及 形成於上述Cu電極之單面或兩面上之保護膜者,且 上述保護膜包含使用本發明之Cu電極保護膜用NiCu合 金把材而成膜之薄膜。 (發明之效果) 若相對於Ni-15〜55Cu合金添加特定量之Cr及/或Ti,則 與Cu電極之蝕刻速率之差減小,同時與Cu電極或ITO等 周邊構件之間之電位差減小。因此,若利用其作為液晶面板 所使用之Cu電極之保護膜,則可抑制Cu電極之電解腐蝕 = 或因原子擴散而引起之電氣特性之劣化,亦能夠藉由濕式蝕 . 刻進行高精度之圖案化。 又,若相對於Ni-15〜55Cu合金添加特定量之Cr及/或 Ti,則與透明電極之密著性提昇。進而,Ni-15〜55Cu合金 由於最大磁導率較小,故而若將其用於乾材,則可高效地進 行濺鐘。 100128318 9 201211276 【實施方式] 、下十本發明之一實施形態進行詳細說明。 [1CU電極保護犋用NiCu合金靶材(1) : NiCuCr合金] [1.1.成分] 本毛明之第1實施形態之Cu電極保護膜用NiCu合金靶 材匕έ以下所述之元素’且剩餘部分包含Ni及不可避免之 雜質。添加元素之種類及添加量之限定理由如下所述。 (1)15.0$ Cug 55.0 mass%。One or more selected from the group consisting of Cu and Nb: 3 to 15% by weight, A1: i% by weight or less, Ca and/or Mg: 3〇〇ppm or less, 〇: 3〇ppm or less, N: 30 PPm or less, and remaining Part of it is essentially a base alloy for vapor deposition. A magnetic film which is described in the same document and has high characteristics is also disclosed in Non-Patent Document i using a mixture of Αγ+〇2 gas containing Cu-2 wt% Zr alloy, wt% M〇 alloy or Cu 〇7 wt. The method of splashing the dry material of %Mg alloy. In the same document, a barrier layer (oxidation layer) having a good adhesion to the underlayer is formed at the interface between the layer (metal electrode) containing the Cu-based material and the underlayer by using such a method. Further, although Patent Document 5 does not disclose a dry material for a protective film for a metal electrode, it discloses a crucible containing Ni_7.5 mass% TM to 40 mass% Cu alloy' and used to form an electrode for a wafer resistor. Remaining materials.于 In the same literature, it is described that if the addition of d in the alloy 1 is reduced, the saturation magnetization is reduced, so that a long-life target is obtained. Further, although the patent for the secret patent, the protective film for the 6-wire metal electrode is used for the target of 100128318 201211276, but it is revealed that one contains (a) Ni-25 at%Cu-2 at%Cr ^ α , Λ γ. Νι<6·6 maSS%CU-l.7 mass%Cr alloy), or (b) Ni-25 at%Cu-12 at%Ti Renren/χτ· 3 gold (Ν卜27)mass%Cu mass% Ti alloy) · The nickel alloy splash material is formed by the barrier layer. In the same reading towel, Lin Qianxi has a barrier layer, which inhibits the spread of %. The formation of the leather material is formed. With the enlargement of the liquid crystal panel, a low-resistance A material is sought. Further, since it is used in the film of the A1 wiring, the price of the material is high, and the cost of the liquid crystal panel is hindered. The phase =: alloy-based material is compared with the A1-based material; it is expected to be a low-resistance wiring material instead of the A1 bismuth material when the cu is low. 'S A1 is used as a metal electrode and a method using a metal material, and as disclosed in Non-Patent Document i, a tree having a material/argon Ar2 gas ring έ Cl^ alloy is sputtered. The method of 6 in the same literature has the advantage of being able to be plated with money and the same as the red protective film. * However, reactive sputtering in an Ar + 〇 2 gas atmosphere increases the electrical resistance of the Cu electrode itself, resulting in deterioration of characteristics. Moreover, since it is easy to capture the vacuum chamber t of the product, the control of the oxygen is difficult, and it is a cause of unevenness in the quality of the product. 100128318 6 201211276 The metal-electricity reduction _ system—the protective film and the electrode layer are formed on the entire surface of the substrate surface of the remedy electrode of Laiyi County, and patterned into a specific shape. In order to reduce the cost of the liquid crystal panel, it is preferable to carry out the pattern (4) by means of (4). Further, in order to perform high-precision patterning using wet fineness, it is preferable that the etching rates of the protective film and the electrode layer are almost equal. However, the gold shoulder electrode obtained by the method disclosed in Non-Patent Document 1 has a large difference in the rate between the two, so that it is impossible to perform high-precision patterning. Further, in the case of a liquid crystal panel, the 'Cu electrode protective film is formed on the transparent electrode of the package: ITO. Therefore, it is required for the Cu electrode protective film to have a readability of π and ΠΌ. Further, in order to perform (10) efficiently, the required magnetic permeability is low. However, the material for the electrode protective film and the laminated film produced using the wire material have not been previously provided. [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2 [Patent Document 2] Japanese Patent Laid-Open Publication No. JP-A No. Hei. No. Hei. [Patent Document 5] Japanese Patent Laid-Open No. (8) 孓丨 7^4 公报 [Publication Document 6] International Publication No. WO 〇 2〇〇 5/〇 4129 [ [Non-Patent Document] 100128318 7 201211276 Literature 1] Yan Zewu et al., Ulvac Technical Journal, No. 69, P7, 2009 [Summary of the Invention] (The problem to be solved by the invention) ^ The object of the invention is to provide a protection of the seven-degree to CU electrode. The film 'suppresses the deterioration of the electrical characteristics of the electrolytic corrosion of the Cu electrode, and forms a protective film that can be highly precise by the wet type, and the adhesion is made. A good protective film, and () can be effectively sputtered: Electrode protective film, alloy material, and the like (the means for solving the problem) The flute of the present invention for solving the above problems is a NiCu alloy target for a Cu electrode protective film, which comprises: 15,0$ CuS 55.0 mass%, and 0·5 zero r, Tl)^1〇.〇mass% (its ten, C^O'TbO), and the remainder contains Ni and unavoidable impurities. 2 Inventive-type Cu electrode; composite film for coating, comprising 15.0$CuS55.0 mass%, and 0.5$CrS 10·0 mass%, and 100128318 201211276 The remainder contains Ni and unavoidable impurities. According to a third aspect of the present invention, there is provided a NiCu alloy target for a Cu electrode protective film comprising 15.0% Cu$55.0 mass% and 0.5STi$10.0 mass%, and the remainder comprising Ni and unavoidable impurities. Further, the laminated film of the present invention includes a Cu electrode and a protective film formed on one surface or both surfaces of the Cu electrode, and the protective film includes a NiCu alloy material for using the Cu electrode protective film of the present invention. Film of film. (Effect of the Invention) When a specific amount of Cr and/or Ti is added to the Ni-15 to 55Cu alloy, the difference in etching rate from the Cu electrode is reduced, and the potential difference from the peripheral member such as the Cu electrode or ITO is reduced. small. Therefore, if it is used as a protective film for a Cu electrode used for a liquid crystal panel, it is possible to suppress electrolytic corrosion of the Cu electrode = deterioration of electrical characteristics due to atomic diffusion, and high precision by wet etching. Patterning. Further, when a specific amount of Cr and/or Ti is added to the Ni-15 to 55Cu alloy, the adhesion to the transparent electrode is improved. Further, since the Ni-15 to 55Cu alloy has a small maximum magnetic permeability, it can be efficiently splattered if it is used for a dry material. 100128318 9 201211276 [Embodiment] An embodiment of the following ten inventions will be described in detail. [1. NiCu alloy target for the protection of the galvanic electrode (1): NiCuCr alloy] [1.1. Component] The NiCu alloy target for the Cu electrode protection film of the first embodiment of the present invention is the element described below and the remainder Contains Ni and unavoidable impurities. The reasons for limiting the type and amount of added elements are as follows. (1) 15.0$ Cug 55.0 mass%.

NiCu合金中之Cu含量對與Cu電極或IT〇之間之標準電 位的差(電位差)、或與Cu電極之間之蝕刻速率差造成影 響。又’ Cu含量對NiCu合金之磁導率造成影響。 一般而言,Cu含量變得越少,與周邊構件之間之電位差 變得越大,耐電解腐蝕性越下降。又,與Cu電極相比,蝕 刻速率變慢’電極之可靠性下降。若保護膜之蝕刻速率過 慢’則濕式蝕刻後之保護膜/電極/保護膜之截面變成凹狀。 進而,Cu含量變得越少’則保護膜之電氣電阻越增大,電 極之可靠性越下降。又,Cu含量變得越少,則最大磁導率 //越增大。 因此,必需使Cu含量為15.0 mass%以上。Cu含量更佳 為25.0 mass%以上,進而較佳為30.0 mass%以上。 另一方面,若Cu含量過剩,則與周邊構件之電位差反而 變大。又,與Cu電極相比,姓刻速率變得過快,電極之可 100128318 10 201211276 靠性下降。若保護膜之蝕刻速率過快,則濕式蝕刻後之保護 膜/電極/保護膜之截面變成凸狀。進而,若Cu含量過剩, 則由於金屬間化合物之析出而導致加工性下降。 因此,必需使Cu含量為55.0 mass%以下。Cu含量更佳 為45.0 mass%以下,進而較佳為40.0 mass%以下,進而更 佳為35.0 mass%以下。 (2)0.5SCrS 10.0 mass%。 相對地含有大量Cu之NiCu合金與周邊構件(尤其是Cu 電極)之間之電位差較大,且與Cu電極相比,蝕刻速率較 快。Cr具有減小此種NiCu合金與周邊構件之間之電位差, 且減慢NiCu合金之蝕刻速率(接近Cu電極)之作用。進而, Cr具有提高與透明電極(ITO)之密著性之作用。 一般而言,Cr之含量變得越少,則與周邊構件之間之電 位差變得越大,耐電解腐蝕性越下降。又,若與Cu電極相 比,银刻速率變得過快,則電極之可靠性下降。進而,Cr 含量變得越少,則與透明電極之密著性越下降。 因此,必需使Cr之含量為0.5 mass%以上。Cr之含量更 佳為1.0 mass%以上,進而較佳為3.0 mass%以上。 另一方面,若Cr之含量變得過剩,則與周邊構件之電位 差反而變大。又,若與Cu電極相比,蝕刻速率變得過慢, 則電極之可靠性下降。 因此,Cr之含量必須為10·0 mass%以下。Cr之含量更佳 100128318 11 201211276 為7,〇 mass%以下,進而輕社达 為 5.〇 mass°/〇以下。 Π .2.用途] 本發明之第1實施形態之勤 之保護膜喊用。 材料料㈣㈣〇電極 電氣比電阻(具體而言約2 歧’所謂「Cu電極」係指包含純cu或具有與其同等之 # Qcm)之Cu合金之電極 又,本實施形態之靶材亦可用 J用於Cu電極保護膜以外之用 途。作為其他用途,具體而令,古+& °有電極膜、反射膜等。The Cu content in the NiCu alloy affects the difference (potential difference) between the standard potential between the Cu electrode and the IT electrode or the etching rate difference between the Cu electrode and the Cu electrode. Further, the Cu content affects the magnetic permeability of the NiCu alloy. In general, the smaller the Cu content becomes, the larger the potential difference from the peripheral member becomes, and the lower the electrolytic corrosion resistance. Further, the etching rate is slower than that of the Cu electrode, and the reliability of the electrode is lowered. If the etching rate of the protective film is too slow, the cross section of the protective film/electrode/protective film after the wet etching becomes concave. Further, as the Cu content becomes smaller, the electrical resistance of the protective film increases, and the reliability of the electrode decreases. Further, as the Cu content becomes smaller, the maximum magnetic permeability // increases. Therefore, it is necessary to make the Cu content 15.0 mass% or more. The Cu content is more preferably 25.0 mass% or more, further preferably 30.0 mass% or more. On the other hand, if the Cu content is excessive, the potential difference from the peripheral member becomes large. Moreover, compared with the Cu electrode, the surname rate becomes too fast, and the electrode can be reduced by 100128318 10 201211276. If the etching rate of the protective film is too fast, the cross section of the protective film/electrode/protective film after the wet etching becomes convex. Further, when the Cu content is excessive, the workability is deteriorated due to the precipitation of the intermetallic compound. Therefore, it is necessary to make the Cu content 55.0 mass% or less. The Cu content is more preferably 45.0 mass% or less, further preferably 40.0 mass% or less, and still more preferably 35.0 mass% or less. (2) 0.5 SCrS 10.0 mass%. The potential difference between the NiCu alloy containing a relatively large amount of Cu and the peripheral member (especially the Cu electrode) is large, and the etching rate is faster than that of the Cu electrode. Cr has the effect of reducing the potential difference between the NiCu alloy and the peripheral member, and slowing down the etching rate of the NiCu alloy (near the Cu electrode). Further, Cr has an effect of improving adhesion to a transparent electrode (ITO). In general, the smaller the content of Cr becomes, the larger the potential difference from the peripheral member becomes, and the lower the electrolytic corrosion resistance. Further, if the silver engraving rate becomes too fast as compared with the Cu electrode, the reliability of the electrode is lowered. Further, as the Cr content becomes smaller, the adhesion to the transparent electrode decreases. Therefore, it is necessary to make the content of Cr 0.5 mass% or more. The content of Cr is more preferably 1.0 mass% or more, further preferably 3.0 mass% or more. On the other hand, if the content of Cr becomes excessive, the potential difference from the peripheral member becomes large. Further, if the etching rate becomes too slow as compared with the Cu electrode, the reliability of the electrode is lowered. Therefore, the content of Cr must be 10·0 mass% or less. The content of Cr is better. 100128318 11 201211276 is 7, 〇 mass% or less, and then the light society is 5. 〇 mass ° / 〇 below. Π2. Use] The protective film of the first embodiment of the present invention is used. Material material (4) (4) 〇 electrode electrical specific resistance (specifically, about 2 ' 'so-called "Cu electrode" refers to an electrode containing pure cu or a Cu alloy having the same # Qcm), and the target of the present embodiment may also be J Used for applications other than Cu electrode protection film. As another use, the organic + & ° has an electrode film, a reflective film, and the like.

Cu電極保護膜一般形成於 u電極之兩面。例如,於液晶 面板之情_,於形成有透明電極之基板表面,使用具有特 定之組成之糾’依序形成Cu電極保護膜、^電極、及 C u電極保護膜。繼而’藉由濕式钮刻而將c u冑極保護膜/ c u 電極/CU電極保護膜圖案化為特定之形狀。 *另方面’根據用途亦存在於Cu電極之單面形成有保護 、 例如,於 TFT(Thin Film Transistor,薄膜電晶體) 月v夸於形成有透明電極之基板表面,使用具有特定之 組成之乾奸 依序形成Cu電極保護膜及Cu電極膜。繼而, 藉由渴式古f …$到而將CU電極保護膜/Cu電極圖案化為特定之 形狀。 [2.CU電極保護膜用NiCu合金靶材(2) : NiCuTi合金] [2· 1 ·成分] 本發明夕结 〈第2實施形態之Cu電極保護膜用NiCu合金靶 100128318 12 201211276 材包含如頂狀元素,且繼料Μ% 雜質。添加元素之種類及添加量之 (l)15^Cu^55.〇mass〇/〇o ⑸下所述。A Cu electrode protective film is generally formed on both sides of the u electrode. For example, in the case of a liquid crystal panel, a Cu electrode protective film, an electrode, and a Cu electrode protective film are sequentially formed on the surface of the substrate on which the transparent electrode is formed by using a specific composition. Then, the c u-polar protective film / c u electrode / CU electrode protective film is patterned into a specific shape by wet button carving. *In other respects, there is also protection on one side of the Cu electrode depending on the application. For example, a TFT (Thin Film Transistor) is used to exaggerate the surface of a substrate on which a transparent electrode is formed, and a specific composition is used. The Cu electrode protective film and the Cu electrode film are formed in sequence. Then, the CU electrode protective film/Cu electrode is patterned into a specific shape by the thirst. [2. NiCu alloy target for CU electrode protective film (2) : NiCuTi alloy] [2·1 · Component] The present invention is a NiCu alloy target for a Cu electrode protective film of the second embodiment 100128318 12 201211276 The top element, and the feed Μ% impurity. Add the type of element and the amount of addition (l) 15^Cu^55.〇mass〇/〇o (5).

NiCu合金中之Cu含量 位的差(電位差…”:=::: 響。又,Cu含量對NlCu合金之磁導率造成影塑差这成衫 -般而言,Cu含量變得越少 曰 差變得越大,耐電解腐触越下降。又、,若^構件之間之電位 姓刻速率變慢,則電極之可靠性下降。若㈣Cu電極相比’ 過慢’則溪絲刻後之保護膜/電極之㈣速率 狀。進而心含量變物,縣護狀=戴面變成凹 ^ , 乂电虱電阻越增大, =性越下降。又,cu含量變得越少,則二 因此,Cu含置必須為15 〇 _%以上。α含量更佳 25.0mass%以上,進而較佳為3〇 〇mass%以上。 ’、、 變=面二cr量過剩,則與周邊構件之電位差反而 : /、Cu電極相比,蝕刻速率變得過快,電極之可 *!生下降。右保護膜之钱刻速率過快,則濕式餘刻後之保 膜/電極/保護膜之戴面變成凸狀m 含量過剩°, 則由於金屬間化合物之析出而導致加工性下降。 因此,CU含量必須為55.0 mass%以下。CU含量更佳為 45.0 mass/〇以下,進而較佳為後〇細3%以下,進而更佳為 100128318 13 201211276 35.0 mass%以 ητ。 (2)0.5ι〇 〇 mass%。 相對地含有大量Cu之NiCu合金係與周邊構件(尤 電極)之_電位差較大,且與^_比,_速率較 快。Τι具有減小此種NiCll合全鱼 〇I興周邊構件之間之電位差, 且減慢NiCu合金之蝕刻 - 近CU電極)之作用。進而, 1八有挺冋’、透明電極(ITO)之密著性之作用。 :般Γ’Τ1之含量變得越少,則與周邊構件之間之電 位“付越大,耐電解腐蝕性越下 比,蝕刻速率變得娜HU n Uu電極相 %陕,則电極之可靠性下降。 含量變得越少,則I 11 、〜透明電極之猎著性越下降。 因此,Ti之合甚、,, 里义、須為0.5 mass%以上。ή之含量更佳為 ^画以以上,•料Dmass%w。 — 另—>5"面 ’ *τ· 1之含量過剩,則與周邊構件之電位差反 而變大。又,若坐r> 1 /、Lu電極相比,姓刻速率變得過慢,則電 極之可靠性下降。 因此’ Tl之含量必須為10.0 mass%以下。Ti之含量更佳 為7.〇11^%以下’進而較佳為5〇娜3%以下。 [2.2.用途] 關於本發明之第2實施形態之靶材之用途,與第1實施形 態相同,故而省略詳細之說明。 [3.Cu電極保護犋用NiCu合金歡材(3) ·· NiCuCrTi合金] 100128318 201211276 [3.1.成分] 本^月之第3實施形態之Cu電極保護膜用NiCu合金靶 ^下所述之元素,且剩餘部分包含Ni及不可避免之 " 、元素之種類及添加量之限定理由如下所述。 (l)15.0gCu^55.〇 mass〇/〇0 位金中之〜含量對與Cu電極或ITO之間之梯準電 、、JS差)、或與Cu電極之間之雜刻速率差造成影 曰 U &星對NlCu合金之磁導率造成影響。 一般:而言,θ 、, 3置變得越少’則與周邊構件之間之電位 差變得越大,耐電解腐録越下降。 蝕刻速率變悍,日丨,+ 屯仪邪t匕 ^ 可錄下降。若㈣狀触刻速率 保護膜/電極/保護膜之截面變成凹 電極之可靠性=:=少::_氣電阻越增大, “越增大。 含夏變得越少,則最大磁導 因此,必需使Cu含量為15.0 mass%以上。 W赠〇以上,進而較佳為3〇 〇細%以上。土 變=面:u含量過剩’則與周邊構件之電位差反而 之可靠性下^、^極料’_速率變得過快,則電極 伴保護膜之㈣速率過快,_式_後之 保賴/電極/保_之截面變成 更之 剩,則由於金^ ^ 進而,右Cu含量過 、“屬間化合物之析出而使加工性下降。 100128318 201211276 因此’ Cu含里必須為55.0 mass%以下。Cu含量更佳為 45.0 mass%以下’進而較佳為40.0 mass%以下,進而更佳為 35.0 mass%以下。 (2)0.5S(Cr、Ti)S 10.0 mass〇/〇。其中,Cr>〇,Ti>〇。 如上所述,Cr及Ti均具有 (a) 減小NiCu合金與周邊構件之間之電位差之作用、 (b) 減慢NiCu合金之蝕刻速率之(接近Cu電極)作用、及 (c) 提高與透明電極(ITO)之密著性之作用。 若將此種Cr及Ti同時添加至NiCu合金中,則具有同等 地維持蝕刻速率及密著性,且進而減小與周邊構件之電位差 之作用。 一般而言,Cr及/或Τι之含量變得越少,則與周邊構件之 間之電位差變得越大,耐電解腐蝕性越下降。又,若與CU 電極相比,蚀刻速率變得過快,則電極之可靠性下降。因此, Cr及Ti之含量必須以總量計為〇.5 mass%以上。Cr及Ti之 總含量更佳為l.Omass%以上’進而較佳為3.0mass%以上。 另一方面’若Cr及/或Ti之含量過剩,則與周邊構件之 電位差反而變大。又’若與Cu電極相比,触刻速率變得過 慢,則電極之可靠性下降。因此,Cr及Ti之含量必須以總 量計為10.0 mass%以下。Cr及Ti之總含量更佳為7.0 mass% 以下,進而較佳為5.0 mass%以下。 [3.2.用途] 100128318 16 201211276 關於本發明之第3實施形態之靶材之用途,與第1實施形 態相同,故而省略詳細之說明。 [4.積層膜] 本發明之積層膜係包含 Cu電極、及 形成於上述Cu電極之單面或兩面之保護膜者,且 上述保護膜包含使用本發明之Cu電極保護膜用NiCu合 金靶材而成膜之薄膜。 [4.1.Cu 電極]The difference in the Cu content in the NiCu alloy (potential difference...": =::: ring. In addition, the Cu content causes a difference in the magnetic permeability of the NlCu alloy. In general, the Cu content becomes less. The difference becomes larger, and the resistance to electrolytic corrosion is decreased. Also, if the potential between the components becomes slower, the reliability of the electrode decreases. If the (four) Cu electrode is 'too slow', then the wire is inscribed The protective film/electrode (4) rate-like. In addition, the heart content is changed, the county protection shape = the surface becomes concave ^, the electric resistance is increased, and the sex is decreased. In addition, the cu content becomes less, then the second Therefore, the Cu content must be 15 〇% or more. The α content is more preferably 25.0 mass% or more, and further preferably 3 〇〇 mass% or more. ',, change = surface 2, the amount of cr is excessive, and the potential difference from the peripheral member Instead: /, compared with the Cu electrode, the etching rate becomes too fast, and the electrode can be reduced. The right protective film is too fast, and the film is protected after the wet film/electrode/protective film. When the surface becomes convex, the content of m is excessive, and the workability is deteriorated due to the precipitation of the intermetallic compound. Therefore, the CU content must be 55.0 mas. s% or less. The CU content is more preferably 45.0 mass/〇 or less, further preferably 3% or less, and more preferably 100128318 13 201211276 35.0 mass% by ητ. (2) 0.5ι〇〇mass%. The NiCu alloy system containing a large amount of Cu has a large _ potential difference with the peripheral member (especially the electrode), and has a faster _ rate than ^. The Τι has a reduced ratio between the NiCll and the surrounding members. The difference in potential, and slowing down the etching of the NiCu alloy - near the CU electrode. Further, the effect of the adhesion of the transparent electrode (ITO) is less than that of the ITO. Then, the potential between the peripheral member and the peripheral member is increased, and the electrolytic corrosion resistance is lowered, and the etching rate becomes Na, and the reliability of the electrode is lowered. The less the content becomes, the lower the hunting performance of the I 11 and the transparent electrodes. Therefore, the combination of Ti and, the meaning of, must be 0.5 mass% or more. The content of bismuth is better than that of painting, and Dmass%w. — The other part of the <5" face ‘ *τ· 1 is excessive, and the potential difference from the peripheral member is increased. Further, if the address rate is too slow compared to the Lu electrode and the Lu electrode, the reliability of the electrode is lowered. Therefore, the content of 'Tl must be 10.0 mass% or less. The content of Ti is more preferably 7. 〇 11% or less, and further preferably 5 〇 or less. [2.2. Use] The use of the target according to the second embodiment of the present invention is the same as that of the first embodiment, and thus detailed description thereof will be omitted. [3. Cu-electrode protection, NiCu alloy, material (3) · NiCuCrTi alloy] 100128318 201211276 [3.1. Component] The element described in the NiCu alloy target for the Cu electrode protection film of the third embodiment of this month The reasons for limiting the type of Ni and the inevitable ", the type of the element, and the amount of addition are as follows. (l) 15.0g Cu^55. 〇mass〇/〇0 in the amount of gold in the gold electrode or ITO between the ladder, JS difference), or the difference between the etching rate between the Cu electrode The effect of U & star on the magnetic permeability of NlCu alloy. In general, the smaller the θ and 3 are, the larger the potential difference from the peripheral member becomes, and the lower the resistance to electrolytic corrosion is. The etch rate is reduced, the sundial, + 屯仪邪t匕 ^ can be recorded down. If the cross section of the (four)-like etch rate protective film/electrode/protective film becomes a concave electrode, the reliability =: = less: : _ the gas resistance increases, the more "the more the summer becomes less, the maximum permeance Therefore, it is necessary to make the Cu content 15.0 mass% or more. W is more than 〇, and more preferably 3 〇〇% or more. Soil change = surface: excessive u content is the difference between the potential difference of the peripheral member and the reliability. ^Ultra material '_ rate becomes too fast, then the electrode with the protective film (four) rate is too fast, the cross section of the _ type _ after the retention / electrode / Bao _ becomes more remaining, then because of the gold ^ ^ and then, right Cu The content is too high, and the precipitation of the intergeneric compound causes the processability to decrease. 100128318 201211276 Therefore, the 'Cu content must be 55.0 mass% or less. The Cu content is more preferably 45.0 mass% or less and further preferably 40.0 mass% or less, and more preferably 35.0 mass% or less. (2) 0.5S (Cr, Ti) S 10.0 mass〇/〇. Among them, Cr>〇, Ti> As described above, both Cr and Ti have (a) a function of reducing the potential difference between the NiCu alloy and the peripheral member, (b) a function of slowing down the etching rate of the NiCu alloy (near the Cu electrode), and (c) an increase and The role of the adhesion of the transparent electrode (ITO). When such Cr and Ti are simultaneously added to the NiCu alloy, the etching rate and the adhesion are maintained at the same level, and the potential difference from the peripheral member is further reduced. In general, the smaller the content of Cr and/or Τι, the larger the potential difference from the peripheral member, and the lower the electrolytic corrosion resistance. Further, if the etching rate becomes too fast as compared with the CU electrode, the reliability of the electrode is lowered. Therefore, the content of Cr and Ti must be 〇.5 mass% or more in total. The total content of Cr and Ti is more preferably 1.0% or more and further preferably 3.0 mass% or more. On the other hand, if the content of Cr and/or Ti is excessive, the potential difference from the peripheral member becomes large. Further, if the etch rate becomes too slow as compared with the Cu electrode, the reliability of the electrode is lowered. Therefore, the contents of Cr and Ti must be 10.0 mass% or less in total. The total content of Cr and Ti is more preferably 7.0 mass% or less, further preferably 5.0 mass% or less. [3.2. Uses] 100128318 16 201211276 The use of the target according to the third embodiment of the present invention is the same as that of the first embodiment, and therefore detailed description thereof will be omitted. [4. Laminated film] The laminated film of the present invention includes a Cu electrode and a protective film formed on one surface or both surfaces of the Cu electrode, and the protective film includes a NiCu alloy target for using the Cu electrode protective film of the present invention. Film formed film. [4.1.Cu electrode]

Cu電極之厚度較佳為根據目的選擇最合適之厚度。一般 而s,Cu電極變得越厚,則工作越穩定化。然而,若Cu 電極’麦得過厚’則不僅蝕刻性或密著性下降,並且引起膜裂 紋。因此,Cu電極之厚度較佳為50〜500 nm。Cu電極之 厚度更佳為1〇〇〜4〇〇 nm,進而較佳為15〇〜25〇 nm。 就關於Cu電極之其他方面而言,如上所述,故而省略說 明。 [4.2.保護膜] 保A膜之厚度較佳為根據目的選擇最合適之厚度。一般而 :保4膜變得越厚,則财久性越得以提昇。然而,若保護 膜夂知過厚’舰刻性或密著性下降。因此,保護膜之厚度 車乂佳為5〜l〇〇nm。保護膜之厚度更佳為5〜7〇邮,進而較 佳為5〜50 nm。 100128318 17 201211276 於在Cu電極之兩面形成有保護膜之情形時,各面之保護 膜之組成可互相相同,亦可不同。即,於在Cu電極之兩面 形成有保護膜之情形時,可使用相同組成之靶材而形成各面 之保護膜。或亦可使用第1靶材而成膜一個保護膜,並使用 具有與第1靶材不同之組成之第2靶材而成膜另一個保護 膜。 對於保護膜之成膜方法並無特別限定,可根據目的使用各 種方法。作為使用靶材之保護膜之成膜方法,具體而言,有 濺鍍法,其他有使用奈米粒子之奈米壓印法或濕式電鍍法 等。 就關於保護膜及Cu電極保護膜用NiCu合金靶材之其他 方面而言,如上所述,故而省略說明。 [5.Cu電極保護膜用NiCu合金靶材及積層膜之作用]The thickness of the Cu electrode is preferably selected to be the most suitable thickness depending on the purpose. In general, s, the thicker the Cu electrode becomes, the more stable the operation. However, if the Cu electrode is too thick, the etching property or the adhesion is lowered, and film cracking is caused. Therefore, the thickness of the Cu electrode is preferably 50 to 500 nm. The thickness of the Cu electrode is more preferably 1 〇〇 to 4 〇〇 nm, and further preferably 15 〇 to 25 〇 nm. Other aspects regarding the Cu electrode are as described above, and thus the description is omitted. [4.2. Protective film] It is preferred to ensure the thickness of the A film to be the most suitable thickness depending on the purpose. In general, the thicker the film is, the more profitable it will be. However, if the protective film is too thick, the ship's engraving or adhesion is degraded. Therefore, the thickness of the protective film is preferably 5 to 1 〇〇 nm. The thickness of the protective film is preferably 5 to 7 Å, and more preferably 5 to 50 nm. 100128318 17 201211276 When a protective film is formed on both surfaces of the Cu electrode, the composition of the protective film on each side may be the same or different. That is, in the case where a protective film is formed on both surfaces of the Cu electrode, a protective film of each surface can be formed using a target of the same composition. Alternatively, a protective film may be formed by using the first target material, and another protective film may be formed by using the second target having a composition different from that of the first target. The film formation method of the protective film is not particularly limited, and various methods can be used depending on the purpose. Specific examples of the film forming method using the protective film of the target include a sputtering method, and other methods such as a nanoimprint method using a nanoparticle or a wet plating method. The other aspects of the protective film and the NiCu alloy target for the Cu electrode protective film are as described above, and thus the description thereof is omitted. [5. Effect of NiCu alloy target and laminated film for Cu electrode protection film]

Ni-15〜55Cu合金係與周邊構件(尤其是Cu電極)之間之 電位差較大,且與Cu電極相比,蝕刻速率較快。 相對於此,若相對於Ni-15〜55Cu合金添加特定量之Cr 及/或Ti ’則姓刻速率變慢(接近Cu電極之姓刻速率),同時 與Cu電極或ITO等周邊構件之間之電位差減小。因此,若 利用其作為液晶面板中所使用之Cu電極之保護膜,則可抑 制Cu電極之電解腐蝕或因原子擴散而引起之電氣特性之劣 化,亦可藉由濕式蝕刻進行高精度之圖案化。 又,若相對於Ni-15〜55Cu合金添加特定量之Cr及/或 100128318 18 201211276 進而,Ni-15〜55Cu合金 則與透明電極之密著性提昇。 由於最大殘導率較小,故而若將其用於乾材中,則可高效地 進行濺鍍。 [實施例] (實施例1) [1.試料文製作] 使用炼解、鑄造法製作具有特定之組成之Ni-Cu-Cr合金 乾材° Cu含量設為10〜60 mass%。Cr含量設為0〜11 maSS%。又,使用炫解、鑄造法製作Ni-35 mass%Cu-1.5The potential difference between the Ni-15~55Cu alloy system and the peripheral members (especially the Cu electrode) is large, and the etching rate is faster than that of the Cu electrode. On the other hand, if a specific amount of Cr and/or Ti' is added to the Ni-15 to 55Cu alloy, the surname rate becomes slower (close to the etching rate of the Cu electrode), and at the same time, with a peripheral member such as a Cu electrode or ITO. The potential difference is reduced. Therefore, if it is used as a protective film of a Cu electrode used in a liquid crystal panel, electrolytic corrosion of the Cu electrode or deterioration of electrical characteristics due to atomic diffusion can be suppressed, and high-precision pattern can be performed by wet etching. Chemical. Further, when a specific amount of Cr and/or 100128318 18 201211276 is added to the Ni-15 to 55Cu alloy, the adhesion of the Ni-15 to 55Cu alloy to the transparent electrode is improved. Since the maximum residual conductivity is small, if it is used in a dry material, sputtering can be performed efficiently. [Examples] (Example 1) [1. Preparation of sample material] A Ni-Cu-Cr alloy having a specific composition was produced by a refining and casting method. The Cu content was set to 10 to 60 mass%. The Cr content was set to 0 to 11 maSS%. In addition, Ni-35 mass% Cu-1.5 was produced by dazzle and casting.

maSS%CM.5 mass%Ti合金乾材。進而,使用純Cu及ITO 作為比較。 [2·試驗方法] [2.1.電位差]maSS%CM.5 mass%Ti alloy dry material. Further, pure Cu and ITO were used as comparisons. [2. Test method] [2.1. Potential difference]

掛Ni C _ U、Cr合金、Ni-Cu-Cr-Ti合金、Cu、及ΠΌ分別測 才票電Hanging Ni C _ U, Cr alloy, Ni-Cu-Cr-Ti alloy, Cu, and bismuth

使用所得之各材 。標準電位係使用碳電極作為相對電極,使用甘 ’於保持在40°C之200 g/L硫酸銨水溶Use the resulting materials. The standard potential system uses a carbon electrode as a counter electrode, and is dissolved in 200 g/L ammonium sulfate maintained at 40 ° C.

再者,電 谷材料之標準電位,而計算出Ni-Cu-Cr合金 間的電位差△ V(V)、及Ni-Cu-CrFurthermore, the potential difference between the Ni-Cu-Cr alloys and the Ni-Cu-Cr is calculated from the standard potential of the electric grid material.

Cr_Ti合金與no之間的電位差。 實用上之問題。 电位差更佳為小於先前者,但同等或稍大部分並無 題。具體而言,只要與ITO之電位差為0.35 v 100128318 19 201211276 以下’與Cu之電位差為l.〇v以下即可。 [2.2.蝕刻速率差] 將調整形狀之各材料之試片於贼之硫酸錢2〇〇g/L水溶 液中浸潰特定日浸潰後’根據厚度之減少量計算出餘刻 速率。進而’使用所得之钮刻速率計算出與&之間之钱刻 速率差(nm/sec)。 再者,姓刻速率差更佳為小於先前者,但同等或稱大之部 分並無實用上之問題。具體而言,只要链刻速率差為I〕 nm/sec 即可。 [2.3.剝離率] nm 或 150 nm)。繼而, 膜或Ni-Cu-Cr-Ti合金 於玻璃基板上形成ITO膜(厚度:2〇 於ITO膜之上進而形成Ni-Cu-Cr合金 膜(厚度:50 nm 或 200 nm)。 使用所得之膜進行刮痕試驗。試驗條件依據JIS K56〇〇。 即’於膜表面添加1 mm間距之交叉切割,而形成ι〇〇個栅 格。於膜表面上貼附膠帶’將膠帶剝離後,測量制離之栅格 之個數n(=剝離率(%))。 再者,剝離率最佳為0%,較佳為未滿1〇%(1位數)。 [2.4.最大磁導率] 使用調整形狀之試片,使用試料振動型磁力計(VSM, vibrating-samle-magnetometer)測定最大磁導率#。測定時之 磁場Hm設為20[MOe]。 100128318 20 201211276 再者,最大磁導率只要為100以下,則無實用上之問題。 [3.結果] [3.1.電位差AV] 圖1表示Ni-Cu-Cr合金與ITO之間之電位差/\V。圖1 中虛線表示先前作為Α1系配線材料之保護膜所使用之 Μο-lONb與ΙΤΟ之間的電位差△V(0.16 V)。 圖2表示Ni-Cu-Cr合金與Cu之間的電位差AV。圖2中 虛線表示Μο-lONb與先前作為A1系配線材料所使用之 Al-3Nd之間的電位差△ V(0.62 V)。 再者,Ni-Cu-Cr-Ti合金之結果亦一併示於圖1及圖2中。 根據圖1可知以下情況。 (1) 若使用Ni-Cu-Cr合金/Cu/ITO之組合作為保護膜/電極/ 透明電極之組合,則與先前之組合(Mo-10Nb/Al-3Nd/ITO) 相比,相對於ITO之電位差AV減小。 (2) 為將相對於ITO之電位差AV設為無實用上之問題之 值(0·35 V)以下,較佳為將Cu含量之下限設為15 mass%或 20 mass%。又,較佳為將Cu含量之上限設為55 mass%或 50 mass%。 (3) 為使相對於ITO之電位差AV為與先前之組合同等以 下,較佳為將Cu含量之下限設為23.5 mass%、24 mass%或 25 mass%。又,較佳為將Cu含量之上限設為44 mass%、40 mass%或 38 mass%。 100128318 21 201211276 (4) 為將相對於ITO之電位差設為無實用上之問題之值 (0.35 V)以下,較佳為將Cr含量之上限設為10 mass%、8 mass% 或 7 mass%。 (5) 為將相對於ITO之電位差AV為與先前之組合同等以 下,較佳為將Cr含量之下限設為0.2 mass%、0.5 mass%或 1 mass%。又,較佳為將Cr含量之上限設為6.5 mass%、6 mass% 或 5 mass%。 (6) Ni-35Cu-1.5Cr-1.5Ti合金之相對於ITO之電位差AV 與Ni-35Cu-3Cr合金電位差AV相比減小。 根據圖2可知以下情況。 (1) 若使用Ni-Cu-Cr合金/Cu/ITO之組合作為保護膜/電極/ 透明電極之組合,則與先前之組合(Mo-10Nb/Al-3Nd/ITO) 相比,相對於Cu之電位差△ V減小。 (2) 為將相對於Cu之電位差AV設為無實用上問題之值 (1.0 V)以下,較佳為將Cu含量之下限設為15 mass%或20 mass% 〇 (3) 為使相對於Cu之電位差AV為與先前之組合同等以 下,較佳為將Cu含量之下限設為23 mass%、24 mass%或 25 mass%。又,較佳為將Cu含量之上限設為45 mass%、42 mass% 或 40 mass%。 (4) 為使相對於Cu之電位差AV為與先前之組合同等以 下,較佳為將Cr含量之下限設為0.2 mass%、0.5 mass%或 100128318 22 201211276 1 mass%。又,較佳為將Cr含量之上限設為5.5 mass%、5 mass% 或 4 mass%。 (5)Ni-35Cu-1.5Cr-1.5Ti合金之相對於Cu之電位差Αν與The potential difference between the Cr_Ti alloy and no. Practical problems. The potential difference is better than the previous one, but the same or a little more is not a problem. Specifically, the potential difference from ITO is 0.35 v 100128318 19 201211276 or less, and the potential difference between Cu and Cu is 1. 〇v or less. [2.2. Etch rate difference] The test piece of each material of the adjusted shape was immersed in a sulphuric acid sulphuric acid 2 〇〇g/L aqueous solution for a specific day of immersion, and the residual rate was calculated from the decrease in thickness. Further, the difference in the rate of money (nm/sec) between & is calculated using the resulting button rate. Furthermore, the difference in the rate of surnames is better than that of the former, but there is no practical problem in the equivalent or large part. Specifically, as long as the difference in the chain rate is I] nm/sec. [2.3. Stripping rate] nm or 150 nm). Then, a film or a Ni-Cu-Cr-Ti alloy is formed on the glass substrate to form an ITO film (thickness: 2 Å on the ITO film to form a Ni-Cu-Cr alloy film (thickness: 50 nm or 200 nm). The film was subjected to a scratch test. The test conditions were in accordance with JIS K56. That is, 'a cross-cut of 1 mm pitch was added to the surface of the film to form a grid of ι. A tape was attached to the surface of the film to peel off the tape. The number n of the grids to be separated is measured (= peeling rate (%)). Further, the peeling rate is preferably 0%, preferably less than 1% (1 digit). [2.4. Maximum Permeance Rate] Using the test piece of the adjusted shape, the maximum magnetic permeability # was measured using a vibrating-samle-magnetometer (VSM, vibrating-samle-magnetometer). The magnetic field Hm at the time of measurement was set to 20 [MOe]. 100128318 20 201211276 When the magnetic permeability is 100 or less, there is no practical problem. [3. Results] [3.1. Potential difference AV] Fig. 1 shows the potential difference / \V between the Ni-Cu-Cr alloy and ITO. The potential difference ΔV (0.16 V) between Μο-lONb and ΙΤΟ used as a protective film for the Α1 wiring material. Fig. 2 shows a Ni-Cu-Cr alloy. The potential difference AV between Cu. The dotted line in Fig. 2 indicates the potential difference ΔV (0.62 V) between Μο-lONb and Al-3Nd previously used as the wiring material of the A1 system. Further, Ni-Cu-Cr-Ti alloy The results are also shown in Fig. 1 and Fig. 2. The following can be seen from Fig. 1. (1) If a combination of Ni-Cu-Cr alloy/Cu/ITO is used as a combination of a protective film/electrode/transparent electrode, Compared with the previous combination (Mo-10Nb/Al-3Nd/ITO), the potential difference AV with respect to ITO is decreased. (2) In order to set the potential difference AV with respect to ITO to a value that has no practical problem (0· 35 V) Hereinafter, it is preferable to set the lower limit of the Cu content to 15 mass% or 20 mass%. Further, it is preferable to set the upper limit of the Cu content to 55 mass% or 50 mass%. The potential difference AV of ITO is equal to or lower than the previous combination, and the lower limit of the Cu content is preferably set to 23.5 mass%, 24 mass% or 25 mass%. Further, it is preferable to set the upper limit of the Cu content to 44 mass%. 40 mass% or 38 mass%. 100128318 21 201211276 (4) In order to set the potential difference with respect to ITO to a value below the practical problem (0.35 V), it is preferable to set the upper limit of the Cr content to 10 ma. Ss%, 8 mass% or 7 mass%. (5) In order to make the potential difference AV with respect to ITO equal to or lower than the previous combination, it is preferable to set the lower limit of the Cr content to 0.2 mass%, 0.5 mass% or 1 mass%. Further, it is preferable to set the upper limit of the Cr content to 6.5 mass%, 6 mass% or 5 mass%. (6) The potential difference AV of the Ni-35Cu-1.5Cr-1.5Ti alloy with respect to ITO is reduced as compared with the potential difference AV of the Ni-35Cu-3Cr alloy. The following can be seen from Fig. 2 . (1) If a combination of Ni-Cu-Cr alloy/Cu/ITO is used as a combination of a protective film/electrode/transparent electrode, it is compared with Cu in comparison with the previous combination (Mo-10Nb/Al-3Nd/ITO). The potential difference ΔV decreases. (2) In order to set the potential difference AV with respect to Cu to a value (1.0 V) or less which is not a practical problem, it is preferable to set the lower limit of the Cu content to 15 mass% or 20 mass% 〇(3) in order to The potential difference AV of Cu is equal to or lower than the previous combination, and it is preferable to set the lower limit of the Cu content to 23 mass%, 24 mass% or 25 mass%. Further, it is preferable to set the upper limit of the Cu content to 45 mass%, 42 mass% or 40 mass%. (4) In order to make the potential difference AV with respect to Cu equal to or lower than the previous combination, it is preferable to set the lower limit of the Cr content to 0.2 mass%, 0.5 mass% or 100128318 22 201211276 1 mass%. Further, it is preferable to set the upper limit of the Cr content to 5.5 mass%, 5 mass% or 4 mass%. (5) The potential difference Αν of Ni-35Cu-1.5Cr-1.5Ti alloy with respect to Cu

Ni-35Cu-3Cr合金大致同等。 [3.2.蝕刻速率差] 圖3表示Ni-Cu-Cr合金與Cu之間之触刻速率差。圖3 中虛線表示Cu之钮刻速率之1/2的值(〇·6 nm/sec)。各材料 之姓刻速率心與Cu之#刻速率R2之差(二心―反2)的絕對 值越小越良好,實用上蝕刻速率差並非必須為零。於各材料 之钱刻速率R!與Cu之蝕刻速率&之差的絕對值為Cu之 蝕刻速率&的1/2以下之情形(即|R】一之情形) 時’可藉由濕式蝕刻獲得凹凸相對較少之良好之截面。 再者,Ni-Cu-Cr-Ti合金之結果亦一併示於圖3中。 根據圖3可知以下情況。 ⑴若使用Ni-Cu-Cr合金/Cu/ITO之组合作為保護膜/電極/ 透明電極之組合,則其蝕刻速率差變得小於先前之組合 (Mo-l〇Nb/Al-3Nd/ITO)之值(1.2 nm/sec)。 (2) 為將蝕刻速率差設為無實用上之問題之值(丨2 nm/sec) 以下’較佳為將Cu含量之下限設為15mass%或2〇mass%。 又’較佳為將Cu含量之上限設為55 mass%、50 mass%或 47 mass%。 (3) 為使蝕刻速率差為與cu/2同等以下’較佳為將Cu含 100128318 23 201211276 畺之下限設為24 mass%、24.5 mass%或25 mass%。又,較 佳為將Cu含量之上限設為42 mass%、40 mass%或38 mass% 〇 (4) 為將飯刻速率差設為無實用上之問題之值(1.2 nm/sec) 以下’較佳為將Cr含量之上限設為1〇 mass%、9 mass%或 8 mass%。 (5) 為使蝕刻速率差為與Cu/2同等以下,較佳為將Cr含 量之下限設為〇 5 mass%、1 mass%或2 mass%。又,較佳為 將Cr含量之上限設為6 $ mass%、6 mass%或5 mass%。 (6) Ni-Cu-Cr-Ti合金之蝕刻速率差較Ni-Cu-Cr合金稍高, 但與Ni-Cii合金相比明顯較小。 [3.3.剝離率] 圖4〜圖7表示於厚度2〇 nm或150 nm之ITO膜之上所 升/成之厚度50 nm或200 nm的Ni-Cu-Cr合金膜之剝離率。 ’ Ni_Cu-Cr-Ti合金之結果亦一併示於圖4〜7中。 根據圖4〜_ 7可知以下情況。 (1)Nl'Cu_Cr合金膜之剝離率與Ni-Cu合金膜相比明顯較 J 又’ Nl-Cu_Cr合金膜之剝離率不過於依賴於膜厚。 C2)Nl_Cu-Cr合金膜之剝離率不取決於Cu含量而顯示出 良好之值。尤其是於Cu含量為15〜40 mass°/。之範圍内可獲 知良好之結果。Cu含量進而較佳為23〜25 maSS〇/o。 (3)藉由添加Ci*而使耐剝離性大幅度改善。即便添加1 100128318 24 201211276 mass%亦可確認充分之效果,若添加3 mass%以上則幾乎不 會發生剝離。尤其是於3〜7 mass%之範圍内可獲得良好之 結果。 (4)若於Ni-Cu-Cr合金中添加Ti,則剝離率與Ni-Cu-Cr 合金相比猶微增大,但與Ni-Cu合金相比明顯減少。 [3.4.最大磁導率] 圖8表示Ni-Cu-Cr合金之最大磁導率。再者,Ni-Cu-Cr-Ti 合金之結果亦一併示於圖8中。 根據圖8可知以下情況。 (1) 為將最大磁導率//設為100以下,只要將Cu含量之下 限設為15 mass%即可。較佳為進而將Cu含量之下限設為 20 mass%。又,較佳為將Cu含量之上限設為50 mass%。 (2) 為將最大磁導率μ設為20以下,較佳為將Cu含量之 下限設為24 mass%或25 mass%。又,較佳為將Cu含量之 下限設為47 mass%或45 mass%。 (3) 即便將Cr含量變為0〜11 mass%,最大磁導率//亦幾 , 乎不發生變化。 . (實施例2) [1.試料之製作] 使用熔解、鑄造法製作具有特定之組成之Ni-Cu-Ti合金 把材。Cu含量設為10〜60 mass%。Ti含量設為0〜7 mass%。又,使用純Cu及ITO作為比較。 100128318 25 201211276 [2.試驗方法] 按照與實施例1相同之順序,測定出Ni-Cu-Ti合金與Cu 之間之電位差△V,Ni-Cu-Ti合金與ITO之間之電位差△ V,Ni-Cu-Ti合金與Cu之間之蝕刻速率差、剝離率、及最 大磁導率//。 [3.結果] [3.1.電位差AV] 圖9表示Ni-Cu-Ti合金與ITO之間之電位差Λν。圖9中 虛線表示先前用作Α1系配線材料之保護膜之Μο-lONb與 ITO之間的電位差△ V(0.16 V)。 圖10表示Ni-Cu-Ti合金與Cu之間的電位差AV。圖10 中虛線表示Μο-lONb與先前用作A1系配線材料之Al-3Nd 之間的電位差Δν(0.62 V)。 再者,Ni-Cu-Cr-Ti合金之結果亦一併示於圖9及圖10中。 根據圖9可知以下情況。 (1) 若使用Ni-Cu-Ti合金/Cu/ITO之組合作為保護膜/電極/ 透明電極之組合,則與先前之組合(Mo-10Nb/Al-3Nd/ITO) 相比,相對於ITO之電位差AV減小。 (2) 為將相對於ΙΤΟ之電位差AV設為無實用上問題之值 (0.35 V)以下,只要Cu含量之下限為15 mass%即可。較佳 為將Cu含量之下限進而設為20 mass%或23 mass%。 (3) 為使相對於ITO之電位差AV為與先前之組合同等以 100128318 26 201211276 下,較佳為將Cu含量之下限設為23.5 mass%、24 mass%或 25 mass%。又,較佳為將Cu含量之上限設為50 mass%、45 mass% 或 42 mass%。 (4) Ti係不論其含量如何,相對於ITO之電位差AV均顯 示出良好之值。 (5) 為使相對於ITO之電位差AV為與先前之組合同等以 下,較佳為將Ti含量之下限設為0.2 mass%、0.3 mass%或 0.5 mass%。又,較佳為將Ti含量之上限設為5.5 mass%、5 mass%或 4.5 mass%。 (6) Ni-35Cu-1.5Cr-1.5Ti合金之相對於ITO之電位差AV 與Ni-35Cu-3Ti合金相比減小。 根據圖10可知以下情況。 (1) 若使用Ni-Cu-Ti合金/Cu/ITO之組合作為保護膜/電極/ 透明電極之組合,則與先前之組合(Mo-10Nb/Al-3Nd/ITO) 相比,相對於Cu之電位差AV減小。 (2) 為將相對於Cu之電位差AV設為無實用上問題之值 (1.0 V)以下,只要Cu含量之下限為15 mass%即可。較佳為 將Cu含量之下限進而設為20 mass%。 (3) 為使相對於Cu之電位差之AV為與先前之組合同等以 下,較佳為將Cu含量之下限設為23.5 mass%或24 mass%。 又,較佳為將Cu含量之上限設為46 mass%、45 mass%或 40 mass%。 100128318 27 201211276 (4) Ti係不論其含量如何,相對於Cu之電位差ZXV均顯示 出良好之值。 (5) 為使相對於CU <電位差Δν為與先前之組合同等以 下’較佳為將ΤΆ量之下限設為〇 2魏%、〇 5邮岭。或 1 mass%。又’較佳為將Τι含量之上限設為5 5、’$ mass%或 4.5 mass%。 (6) Ni-35Cu-1.5Cr-1.5Ti合金之相對於Cu之電位差與The Ni-35Cu-3Cr alloy is roughly equivalent. [3.2. Etching Rate Difference] FIG. 3 shows the difference in the etch rate between the Ni-Cu-Cr alloy and Cu. The dotted line in Fig. 3 indicates the value of 1/2 of the buttoning rate of Cu (〇·6 nm/sec). The smaller the absolute value of the difference between the rate of the surname of each material and the rate R of Cu (two hearts - anti-2), the better the practical etch rate difference does not have to be zero. When the absolute value of the difference between the etching rate of each material and the etching rate of Cu and the etching rate of Cu is less than 1/2 of the etching rate of ampere (ie, the case of |R), The etching obtains a good cross section with relatively few irregularities. Further, the results of the Ni-Cu-Cr-Ti alloy are also shown in Fig. 3. The following can be seen from Fig. 3. (1) If a combination of Ni-Cu-Cr alloy/Cu/ITO is used as a combination of the protective film/electrode/transparent electrode, the difference in etching rate becomes smaller than the previous combination (Mo-l〇Nb/Al-3Nd/ITO) Value (1.2 nm/sec). (2) In order to set the etching rate difference to a value that does not have a practical problem (丨2 nm/sec) or less, it is preferable to set the lower limit of the Cu content to 15 mass% or 2 〇 mass%. Further, it is preferable to set the upper limit of the Cu content to 55 mass%, 50 mass% or 47 mass%. (3) In order to make the etching rate difference equal to or lower than cu/2, it is preferable to set the lower limit of Cu to 100128318 23 201211276 24 to 24 mass%, 24.5 mass% or 25 mass%. Further, it is preferable to set the upper limit of the Cu content to 42 mass%, 40 mass%, or 38 mass% 〇(4) to set the difference in the rice cooking rate to a value that is not practical (1.2 nm/sec) or less. It is preferred to set the upper limit of the Cr content to 1 〇 mass%, 9 mass% or 8 mass%. (5) In order to make the etching rate difference equal to or lower than Cu/2, it is preferable to set the lower limit of the Cr content to 〇 5 mass%, 1 mass% or 2 mass%. Further, it is preferable to set the upper limit of the Cr content to 6 $ mass%, 6 mass% or 5 mass%. (6) The etching rate difference of Ni-Cu-Cr-Ti alloy is slightly higher than that of Ni-Cu-Cr alloy, but it is significantly smaller than that of Ni-Cii alloy. [3.3. Peeling Rate] Figs. 4 to 7 show the peeling ratio of the Ni-Cu-Cr alloy film having a thickness of 50 nm or 200 nm which was raised/formed on the ITO film having a thickness of 2 〇 nm or 150 nm. The results of the 'Ni_Cu-Cr-Ti alloy are also shown in Figures 4 to 7. The following can be seen from Figures 4 to 7. (1) The peeling rate of the Nl'Cu_Cr alloy film is significantly lower than that of the Ni-Cu alloy film, and the peeling rate of the N'-Cu-Cr alloy film is not excessively dependent on the film thickness. The peeling rate of the C2) Nl_Cu-Cr alloy film does not show a good value depending on the Cu content. Especially in the case of Cu content of 15~40 mass ° /. Good results are obtained within the scope. The Cu content is further preferably 23 to 25 maSS〇/o. (3) The peeling resistance is greatly improved by the addition of Ci*. Even if 1 100128318 24 201211276 mass% is added, sufficient effect can be confirmed, and if 3 mass% or more is added, peeling hardly occurs. Especially in the range of 3 to 7 mass%, good results are obtained. (4) When Ti is added to the Ni-Cu-Cr alloy, the peeling rate is slightly increased as compared with the Ni-Cu-Cr alloy, but is significantly reduced as compared with the Ni-Cu alloy. [3.4. Maximum Magnetic Permeability] Fig. 8 shows the maximum magnetic permeability of the Ni-Cu-Cr alloy. Further, the results of the Ni-Cu-Cr-Ti alloy are also shown in Fig. 8. The following can be seen from Fig. 8. (1) In order to set the maximum magnetic permeability / / to 100 or less, the lower limit of the Cu content is set to 15 mass %. It is preferable to further set the lower limit of the Cu content to 20 mass%. Further, it is preferable to set the upper limit of the Cu content to 50 mass%. (2) In order to set the maximum magnetic permeability μ to 20 or less, it is preferable to set the lower limit of the Cu content to 24 mass% or 25 mass%. Further, it is preferable to set the lower limit of the Cu content to 47 mass% or 45 mass%. (3) Even if the Cr content is changed to 0 to 11 mass%, the maximum magnetic permeability // is also slightly changed. (Example 2) [1. Preparation of sample] A Ni-Cu-Ti alloy material having a specific composition was produced by a melting or casting method. The Cu content is set to 10 to 60 mass%. The Ti content was set to 0 to 7 mass%. Also, pure Cu and ITO were used as comparisons. 100128318 25 201211276 [2. Test method] The potential difference ΔV between the Ni-Cu-Ti alloy and Cu and the potential difference ΔV between the Ni-Cu-Ti alloy and ITO were measured in the same order as in Example 1. The etching rate difference, the peeling rate, and the maximum magnetic permeability between the Ni-Cu-Ti alloy and Cu//. [3. Results] [3.1. Potential Difference AV] Fig. 9 shows a potential difference Λν between the Ni-Cu-Ti alloy and ITO. The dotted line in Fig. 9 indicates the potential difference ΔV (0.16 V) between Μο-lONb and ITO which was previously used as a protective film for the Α1 wiring material. Fig. 10 shows a potential difference AV between the Ni-Cu-Ti alloy and Cu. The dotted line in Fig. 10 indicates the potential difference Δν (0.62 V) between Μο-lONb and Al-3Nd which was previously used as the wiring material of the A1 system. Further, the results of the Ni-Cu-Cr-Ti alloy are also shown together in FIGS. 9 and 10. The following can be seen from Fig. 9. (1) If a combination of Ni-Cu-Ti alloy/Cu/ITO is used as a combination of the protective film/electrode/transparent electrode, compared with the previous combination (Mo-10Nb/Al-3Nd/ITO), relative to ITO The potential difference AV is reduced. (2) In order to set the potential difference AV with respect to ΙΤΟ to a value (0.35 V) or less which is not a practical problem, the lower limit of the Cu content may be 15 mass%. It is preferable to further set the lower limit of the Cu content to 20 mass% or 23 mass%. (3) In order to make the potential difference AV with respect to ITO equal to the previous combination, 100128318 26 201211276, it is preferable to set the lower limit of the Cu content to 23.5 mass%, 24 mass% or 25 mass%. Further, it is preferable to set the upper limit of the Cu content to 50 mass%, 45 mass% or 42 mass%. (4) Regardless of the content of the Ti system, the potential difference AV with respect to ITO showed a good value. (5) In order to make the potential difference AV with respect to ITO equal to or lower than the previous combination, it is preferable to set the lower limit of the Ti content to 0.2 mass%, 0.3 mass% or 0.5 mass%. Further, it is preferable to set the upper limit of the Ti content to 5.5 mass%, 5 mass% or 4.5 mass%. (6) The potential difference AV of the Ni-35Cu-1.5Cr-1.5Ti alloy with respect to ITO is reduced as compared with the Ni-35Cu-3Ti alloy. The following can be seen from Fig. 10. (1) If a combination of Ni-Cu-Ti alloy/Cu/ITO is used as a combination of the protective film/electrode/transparent electrode, compared with the previous combination (Mo-10Nb/Al-3Nd/ITO), relative to Cu The potential difference AV is reduced. (2) In order to set the potential difference AV with respect to Cu to a value (1.0 V) or less which is not a practical problem, the lower limit of the Cu content may be 15 mass%. Preferably, the lower limit of the Cu content is further set to 20 mass%. (3) In order to make the AV with respect to the potential difference of Cu equal to or lower than the previous combination, it is preferable to set the lower limit of the Cu content to 23.5 mass% or 24 mass%. Further, it is preferable to set the upper limit of the Cu content to 46 mass%, 45 mass% or 40 mass%. 100128318 27 201211276 (4) Regardless of the content of the Ti system, the potential difference ZXV with respect to Cu shows a good value. (5) In order to make the potential difference Δν with respect to the CU <the same as the previous combination, it is preferable to set the lower limit of the amount of enthalpy to 〇 2 魏%, 〇5邮岭. Or 1 mass%. Further, it is preferable to set the upper limit of the content of Τι to 5 5, '$ mass% or 4.5 mass%. (6) The potential difference of Ni-35Cu-1.5Cr-1.5Ti alloy with respect to Cu

Ni-35Cu-3Ti合金幾乎同等。 ” [3.2.蝕刻速率差] 圖11表示Ni-Cu-Ti合金與Cu之間之蝕刻速率差。圖η 中虛線表示Cu之蝕刻速率之1/2的值(〇 6nm/sec)。再者, Ni-Cu-Cr-Ti合金之結果亦一併示於圖u中。 根據圖11可知以下情況。 (1) 若使用Ni-CU-Ti合金/Cu/ITO之組合作為保護膜/電極/ 透明電極之組合,則其蝕刻速率差變得小於先前之組合 (Mo-l〇Nb/Al-3Nd/ITO)的值(1.2 nm/sec)。 (2) 為將蝕刻速率差設為無實用上之問題之值(1 2 nm/sec) 以下’只要Cu含量之下限為15 mass%即可。較佳為進而將 Cu含量之下限設為20 mass%。又,只要Cu含量之上限設 為55 mass%即可。較佳為進而將Cu含量之上限設為50 mass% 或 45 mass%。 (3) 為使蝕刻速率差為與Cu/2同等以下,較佳為將cu含 100128318 00 201211276 量之下限設為24 mass%或25 mass%以上。又,較佳為將Cu 含量之上限設為40 mass%或38 mass%。 (4) Τι係不論其含量如何,均顯示出良好之姓刻速率差。 (5) 為使蝕刻速率差為與Cu/2同等以下,較佳為將Ti含量 ·' 下限°又為I.5 mass%或2 mass%。又,較佳為將Ti含量之 ’ 上限設為 5 mass%或 4.5 mass%。 (6) NiCu-Cr-Ti合金之姓刻速率差變得小於Ni Cu-Ti合 金。 [3.3.剝離率] 圖15表示於厚度2〇 nm或15〇 nm之IT〇膜之上 所形成之厚度5〇 nm或細nm之Ni Cu Ti合金膜的剝離 率。再者,N"CU心·Ti合金之結果亦—併示於圖12〜15中。 根據圖12〜圖15可知以下情況。The Ni-35Cu-3Ti alloy is almost equivalent. [3.2. Etch rate difference] Fig. 11 shows the difference in etching rate between the Ni-Cu-Ti alloy and Cu. The broken line in Fig. η indicates the value of 1/2 of the etching rate of Cu (〇6 nm/sec). The results of the Ni-Cu-Cr-Ti alloy are also shown in Fig. 9. The following can be seen from Fig. 11. (1) If a combination of Ni-CU-Ti alloy/Cu/ITO is used as the protective film/electrode/ In the combination of the transparent electrodes, the difference in etching rate becomes smaller than the value of the previous combination (Mo-l〇Nb/Al-3Nd/ITO) (1.2 nm/sec). (2) In order to set the etching rate difference to be practical The value of the above problem (1 2 nm/sec) is less as long as the lower limit of the Cu content is 15 mass%. It is preferable to further set the lower limit of the Cu content to 20 mass%. Further, as long as the upper limit of the Cu content is set to 55 mass% may be sufficient. Further, the upper limit of the Cu content is preferably 50 mass% or 45 mass%. (3) In order to make the etching rate difference equal to or less than Cu/2, it is preferable to have cu 100128318 00 201211276 The lower limit of the amount is set to 24 mass% or more. Further, it is preferable to set the upper limit of the Cu content to 40 mass% or 38 mass%. (4) The Τι system shows a good surname regardless of its content. Rate difference (5) In order to make the etching rate difference equal to or lower than Cu/2, it is preferable that the Ti content · 'lower limit ° is again I.5 mass% or 2 mass%. Further, it is preferable to set the upper limit of the Ti content. Set to 5 mass% or 4.5 mass%. (6) The difference in the rate of the NiCu-Cr-Ti alloy becomes smaller than that of the Ni Cu-Ti alloy. [3.3. Peeling rate] Fig. 15 shows the thickness at 2 〇 nm or 15 〇. The peeling rate of the Ni Cu Ti alloy film having a thickness of 5 〇 nm or fine nm formed on the IT 〇 film of nm. Furthermore, the results of the N"CU core·Ti alloy are also shown in Figs. 12 to 15 . The following will be understood from Figs. 12 to 15 .

Tl合金膜之剝離率依賴於膜厚,瓜⑽合金 膜之膜厚轉越厚,關轉越增大。 (2)於Ni-CU-Ti合金膜之膜 離率為游。以下,只要Cu含旦=〇1-之情形時,為使剝 佳為將CU含量之下限進 下限為15 即可。較 或 25 mass%。又,^ 人0曰maSS%、23 mass。/。、24 mass%、45邮娜或4〇 / ®之上限較佳為設為47 ⑶於Ni-Cu-Ti合金膜之膜厚 離率為_以下,較佳為將Τι =0咖之情形時,為使剝 έ里之下限設為1〇 mass%、 100128318 29 201211276 1.5 mass%、2 mass%或 3 mass%。 (4)若於Ni-Cu-Ti合金中添加Cr,則剝離率變成與 Ni-Cu-Ti合金同等以下。 [3.4.最大磁導率] 圖16表示Ni-Cu-Ti合金之最大磁導率。再者,Ni-Cu-Cr-Ti 合金之結果亦一併示於圖16中。 根據圖16可知以下情況。 (1) 為將最大磁導率#設為100以下,較佳為將Cu含量之 下限設為24 mass%。 (2) 為將最大磁導率//設為20以下,較佳為將Cu含量之 下限設為24.5 mass%或25 mass%。又,較佳為將Cu含量 之下限設為 47 mass%、45 mass。/)或 40 mass%。 (3) 即便將Ti含量變為0〜11 mass%,最大磁導率//亦幾 乎不發生變化。 (實施例3) [1.試料之製作] 使用實施例1或2中製作之靶材而製作觸控面板用之積層 膜。 即,使用濺鍍法於基板表面依序形成阻障層、電極層、及 上覆層(自下而上之順序)。基板使用ITO/底層膜 /PET(Polyethylene Terephthalate 5 聚對苯二曱酸乙二酉旨)基 板、或ITO/底層膜/玻璃基板(均為市售品)。阻障層及上覆 100128318 30 201211276 層分別使用包含特定量之Cu或Ti之NiCu合金,電極層使 用 Cu(5 N)。 作為比較’亦製作於阻障層及上覆層中分別使用M〇_1〇Nb 合金、於電極層中使用Al-3Nd之積層膜。 觸控面板用積層膜之成膜條件示於表1中。 [表1] 材質 一輸出 氣體 濺鍍率 成膜厚度 NiCu合金 DC300 W Ar 0.3 Pa 55 nm/min 20 nm Cu(5 N) RF500 W Ar 0.3 Pa 48 nm/min 200 nm MoNb DC300 W Ar 0.3 Pa 31 nm/min 20 nm AINd DC300 W Ar 0.3 Pa 60 nm/min 200 nm [2.試驗方法] [2.1.密著性] 於與實施例1相同之條件下進行到痕試驗(依據jis K5600) ’測定剝離率。 [2.2.耐候性] 將附有積層膜之基板於65°C、濕度95%之條件下保持 1000小時。試驗結束後,藉由目視而判定有無變色。 [2.3.姓刻性] 將附有積層膜之基板浸潰於4 0 °C之過硫酸銨2 0 〇 g / L水溶 液中’並使積層膜溶解。測定至基板變透明為止(至積層膜 整體溶解為止)所需要之時間。 [2.4.電極部薄片電阻] 藉由4端子法測定電極部薄片電阻。 100128318 31 201211276 [3.結果] 結果示於表2及表3中。根據表2及表3可知以下情況。 (1) 電極部薄片電阻不論阻障層/電極層/上覆層之組成如 何,均較低。 (2) 於NiCuCr合金之Cu量固定之情形時,Cr含量變得越 多,則密著性及耐候性越提昇,但蝕刻性越下降。又,於 NiCuCr合金之Cr量固定之情形時,若Cu含量過剩,則而才 候性下降。即,若將Ni-25〜40Cu-3〜5Cr合金用於阻障層 及上覆層,則獲得密著性、耐候性、及蝕刻性優異之觸控面 板用積層膜。 (3) 於NiCuTi合金之Cu量固定之情形時,Ti含量變得越 多,則密著性及耐候性越提昇,但蝕刻性越下降。又,於 NiCuTi合金之Ti量固定之情形時,若Cu含量過剩,則耐 候性下降。即,若將Ni-25〜40Cu-3〜5Ti合金用於阻障層 及上覆層,則獲得密著性、耐候性、及蝕刻性優異之觸控面 板用積層膜。 100128318 32 201211276 [表2]The peeling rate of the Tl alloy film depends on the film thickness, and the film thickness of the melon (10) alloy film turns thicker, and the turn turns more and more. (2) The film separation rate of the Ni-CU-Ti alloy film is abundance. In the following, as long as Cu contains denier = 〇1, the lower limit of the CU content may be 15 or less. More than 25 mass%. Also, ^ people 0曰maSS%, 23 mass. /. The upper limit of 24 mass%, 45 mail or 4 〇 / ® is preferably set to 47 (3) The film thickness of the Ni-Cu-Ti alloy film is _ or less, preferably when Τι =0 coffee In order to set the lower limit of the stripping to 1 〇 mass%, 100128318 29 201211276 1.5 mass%, 2 mass% or 3 mass%. (4) When Cr is added to the Ni-Cu-Ti alloy, the peeling rate becomes equal to or less than that of the Ni-Cu-Ti alloy. [3.4. Maximum Magnetic Permeability] Fig. 16 shows the maximum magnetic permeability of the Ni-Cu-Ti alloy. Further, the results of the Ni-Cu-Cr-Ti alloy are also shown in Fig. 16. The following can be seen from Fig. 16. (1) In order to set the maximum magnetic permeability # to 100 or less, it is preferable to set the lower limit of the Cu content to 24 mass%. (2) In order to set the maximum magnetic permeability / / to 20 or less, it is preferable to set the lower limit of the Cu content to 24.5 mass% or 25 mass%. Further, it is preferable to set the lower limit of the Cu content to 47 mass% and 45 mass. /) or 40 mass%. (3) Even if the Ti content is changed to 0 to 11 mass%, the maximum magnetic permeability // is hardly changed. (Example 3) [1. Preparation of sample] A laminate film for a touch panel was produced by using the target material produced in Example 1 or 2. Namely, a barrier layer, an electrode layer, and an overcoat layer (in order from bottom to top) are sequentially formed on the surface of the substrate by sputtering. As the substrate, an ITO/base film/PET (Polyethylene Terephthalate 5 polyethylene terephthalate) substrate or an ITO/base film/glass substrate (all commercially available) was used. Barrier layer and overlying layer 100128318 30 201211276 The layer uses a NiCu alloy containing a specific amount of Cu or Ti, and the electrode layer uses Cu(5 N). As a comparison, an M〇_1〇Nb alloy was used for each of the barrier layer and the overcoat layer, and a laminated film of Al-3Nd was used for the electrode layer. The film formation conditions of the laminated film for a touch panel are shown in Table 1. [Table 1] Material-Output gas sputtering rate Film thickness NiCu alloy DC300 W Ar 0.3 Pa 55 nm/min 20 nm Cu(5 N) RF500 W Ar 0.3 Pa 48 nm/min 200 nm MoNb DC300 W Ar 0.3 Pa 31 Nm/min 20 nm AINd DC300 W Ar 0.3 Pa 60 nm/min 200 nm [2. Test method] [2.1. Adhesion] Under the same conditions as in Example 1, a trace test (according to jis K5600) was performed. Stripping rate. [2.2. Weather resistance] The substrate with the laminated film was kept at 65 ° C and a humidity of 95% for 1000 hours. After the end of the test, it was judged by visual observation whether or not there was discoloration. [2.3. Surname] The substrate with the laminated film was immersed in an ammonium persulfate 2 0 〇 g / L aqueous solution at 40 ° C and the laminated film was dissolved. The time required until the substrate became transparent (to the time when the entire laminated film was dissolved) was measured. [2.4. Electrode portion sheet resistance] The electrode portion sheet resistance was measured by a 4-terminal method. 100128318 31 201211276 [3. Results] The results are shown in Table 2 and Table 3. The following can be seen from Table 2 and Table 3. (1) The sheet resistance of the electrode portion is low regardless of the composition of the barrier layer/electrode layer/overcoat layer. (2) When the amount of Cu in the NiCuCr alloy is fixed, the more the Cr content is, the more the adhesion and the weather resistance are improved, but the etching property is lowered. Further, when the amount of Cr in the NiCuCr alloy is fixed, if the Cu content is excessive, the selectivity is lowered. In other words, when a Ni-25~40Cu-3~5Cr alloy is used for the barrier layer and the overcoat layer, a laminated film for a touch panel excellent in adhesion, weather resistance, and etching property is obtained. (3) When the amount of Cu in the NiCuTi alloy is fixed, the Ti content increases, and the adhesion and weather resistance increase, but the etching property decreases. Further, when the amount of Ti in the NiCuTi alloy is fixed, if the Cu content is excessive, the weather resistance is lowered. In other words, when a Ni-25~40Cu-3~5Ti alloy is used for the barrier layer and the overcoat layer, a laminated film for a touch panel excellent in adhesion, weather resistance, and etching property is obtained. 100128318 32 201211276 [Table 2]

No. 基板 阻障層 電極層 上覆層 密著性 财候性 #刻性 電極部薄 片電阻 1 Ni-10Cu Ni-lOCu X X 〇 2 Ni-10Cu-lCr Ni-lOCu-lCr X X 〇 3 Ni-10Cu-10Cr Ni-lOCu-lOCr 〇 〇 X 4 Ni-25Cu Ni-25Cu X X 〇 5 Ni-25Cu-lCr Ni-25Cu-lCr Δ X 〇 6 Ni-25Cu-3Cr Ni-25Cu-3Cr 〇 〇 〇 7 Ni-25Cu-5Cr Ni-25Cu-5Cr 〇 〇 〇 8 Ni-25Cu-7Cr Ni-25Cu-7Cr 〇 〇 X 9 Ni-35Cu Ni-35Cu X X 〇 10 Ni-35Cu-lCr Ni-35Cu-lCr Δ X 〇 11 Ni-35Cu-3Cr Ni-35Cu-3Cr 〇 〇 〇 12 Ni-35Cu-5Cr Ni-35Cu-5Cr 〇 〇 〇 13 Ni-35Cu-7Cr Ni-35Cu-7Cr 〇 〇 X 14 Ni-40Cu Ni-40Cu X X 〇 15 Ni-40Cu-lCr Ni-40Cu-lCr Δ X 〇 16 Ni-40Cu-3Cr Ni-40Cu-3Cr 〇 〇 〇 17 Ni-40Cu-5Cr Ni-40Cu-5Cr 〇 〇 〇 18 Ni-40Cu-7Cr Ni-40Cu-7Cr 〇 〇 X 19 Ni-60Cu Ni-60Cu X X 〇 20 ITO/ Ni-60Cu-lCr Cu Ni-60Cu-lCr Δ X 〇 21 底層 Ni-60Cu-5Cr Ni-60Cu-5Cr 〇 X 〇 <0.5 Ω/口 22 /PET Ni-60Cu-10Cr Ni-60Cu-10Cr 〇 〇 X 23 Ni-lOCu-lTi Ni-lOCu-lTi X X 〇 24 Ni-10Cu-3Ti Ni-10Cu-3Ti 〇 〇 X 25 Ni-10Cu-7Ti Ni-10Cu-7Ti 〇 〇 X 26 Ni-25Cu-lTi Ni-25Cu-lTi Δ X 〇 27 Ni-25Cu-3Ti Ni-25Cu-3Ti 〇 〇 〇 28 Ni-25Cu-5Ti Ni-25Cu-5Ti 〇 〇 〇 29 Ni-25Cu-7Ti Ni-25Cu-7Ti 〇 〇 X 30 Ni-35Cu-lTi Ni-35Cu-lTi Δ X 〇 31 Ni-35Cu-3Ti Ni-35Cu-3Ti 〇 〇 〇 32 Ni-35Cu-5Ti Ni-35Cu-5Ti 〇 〇 〇 33 Ni-35Cu-7Ti Ni-35Cu-7Ti 〇 〇 X 34 Ni-40Cu-lTi Ni-40Cu-lTi Δ X 〇 35 Ni-40Cu-3Ti Ni-40Cu-3Ti 〇 〇 〇 36 Ni-40Cu-5Ti Ni-40Cu-5Ti 〇 〇 〇 37 Ni-40Cu-7Ti Ni-40Cu-7Ti 〇 〇 X 38 Ni-60Cu-lTi Ni-60Cu-lTi X X 〇 39 Ni-60Cu-3Ti Ni-60Cu-3Ti 〇 X 〇 40 Ni-60Cu-7Ti Ni-60Cu-7Ti 〇 〇 X 41 Mo-lONb Al-3Nd Mo-lONb 〇 X X 密著性(剝離率):〇=未滿3%,Δ = 3%以上且未滿10%,χ=10%以上 而于候性:〇=無變色,x=有變色 蝕刻性(至基板變透明為止所需要之時間):〇=未滿1分鐘,分鐘以上 33 100128318 201211276 [表3]No. Substrate barrier layer electrode layer overlying layer adhesion property #刻性部分部片电阻1 Ni-10Cu Ni-lOCu XX 〇2 Ni-10Cu-lCr Ni-lOCu-lCr XX 〇3 Ni-10Cu -10Cr Ni-lOCu-lOCr 〇〇X 4 Ni-25Cu Ni-25Cu XX 〇5 Ni-25Cu-lCr Ni-25Cu-lCr Δ X 〇6 Ni-25Cu-3Cr Ni-25Cu-3Cr 〇〇〇7 Ni- 25Cu-5Cr Ni-25Cu-5Cr 〇〇〇8 Ni-25Cu-7Cr Ni-25Cu-7Cr 〇〇X 9 Ni-35Cu Ni-35Cu XX 〇10 Ni-35Cu-lCr Ni-35Cu-lCr Δ X 〇11 Ni -35Cu-3Cr Ni-35Cu-3Cr 〇〇〇12 Ni-35Cu-5Cr Ni-35Cu-5Cr 〇〇〇13 Ni-35Cu-7Cr Ni-35Cu-7Cr 〇〇X 14 Ni-40Cu Ni-40Cu XX 〇15 Ni-40Cu-lCr Ni-40Cu-lCr Δ X 〇16 Ni-40Cu-3Cr Ni-40Cu-3Cr 〇〇〇17 Ni-40Cu-5Cr Ni-40Cu-5Cr 〇〇〇18 Ni-40Cu-7Cr Ni-40Cu -7Cr 〇〇X 19 Ni-60Cu Ni-60Cu XX 〇20 ITO/ Ni-60Cu-lCr Cu Ni-60Cu-lCr Δ X 〇21 bottom layer Ni-60Cu-5Cr Ni-60Cu-5Cr 〇X 〇<0.5 Ω /口22 /PET Ni-60Cu-10Cr Ni-60Cu-10Cr 〇〇X 23 Ni-lOCu-lTi Ni-lOCu- lTi XX 〇24 Ni-10Cu-3Ti Ni-10Cu-3Ti 〇〇X 25 Ni-10Cu-7Ti Ni-10Cu-7Ti 〇〇X 26 Ni-25Cu-lTi Ni-25Cu-lTi Δ X 〇27 Ni-25Cu- 3Ti Ni-25Cu-3Ti 〇〇〇28 Ni-25Cu-5Ti Ni-25Cu-5Ti 〇〇〇29 Ni-25Cu-7Ti Ni-25Cu-7Ti 〇〇X 30 Ni-35Cu-lTi Ni-35Cu-lTi Δ X 〇31 Ni-35Cu-3Ti Ni-35Cu-3Ti 〇〇〇32 Ni-35Cu-5Ti Ni-35Cu-5Ti 〇〇〇33 Ni-35Cu-7Ti Ni-35Cu-7Ti 〇〇X 34 Ni-40Cu-lTi Ni -40Cu-lTi Δ X 〇35 Ni-40Cu-3Ti Ni-40Cu-3Ti 〇〇〇36 Ni-40Cu-5Ti Ni-40Cu-5Ti 〇〇〇37 Ni-40Cu-7Ti Ni-40Cu-7Ti 〇〇X 38 Ni-60Cu-lTi Ni-60Cu-lTi XX 〇39 Ni-60Cu-3Ti Ni-60Cu-3Ti 〇X 〇40 Ni-60Cu-7Ti Ni-60Cu-7Ti 〇〇X 41 Mo-lONb Al-3Nd Mo-lONb 〇 XX Adhesion (peeling rate): 〇 = less than 3%, Δ = 3% or more and less than 10%, χ = 10% or more in the presence of: 〇 = no discoloration, x = color etchability ( The time required until the substrate becomes transparent): 〇 = less than 1 minute, more than 30 33128318 201211276 [Table 3]

No. 基板 阻障層 電極層 上覆層 密著性 耐候性 敍刻性 電極部薄 片電阻 1 Ni-10Cu Ni-lOCu X X 〇 2 Ni-10Cu-lCr Ni-lOCu-lCr X X 〇 3 Ni-10Cu-10Cr Ni-lOCu-lOCr 〇 〇 X 4 Ni-25Cu Ni-25Cu X X 〇 5 Ni-25Cu-lCr Ni-25Cu-lCr Δ X 〇 6 Ni-25Cu-3Cr Ni-25Cu-3Cr 〇 〇 〇 7 Ni-25Cu-5Cr Ni-25Cu-5Cr 〇 〇 〇 8 Ni-25Cu-7Cr Ni-25Cu-7Cr 〇 〇 X 9 Ni-35Cu Ni-35Cu X X 〇 10 Ni-35Cu-lCr Ni-35Cu-lCr Δ X 〇 11 Ni-35Cu-3Cr Ni-35Cu-3Cr 〇 〇 〇 12 Ni-35Cu-5Cr Ni-35Cu-5Cr 〇 〇 〇 13 Ni-35Cu-7Cr Ni-35Cu-7Cr 〇 〇 X 14 Ni-40Cu Ni-40Cu X X 〇 15 Ni-40Cu-lCr Ni-40Cu-lCr Δ X 〇 16 Ni-40Cu-3Cr Ni-40Cu-3Cr 〇 〇 〇 17 Ni-40Cu-5Cr Ni-40Cu-5Cr 〇 〇 〇 18 Ni-40Cu-7Cr Ni-40Cu-7Cr 〇 〇 X 19 Ni-60Cu Ni-60Cu X X 〇 20 ITO/ Ni-60Cu-lCr Cu Ni-60Cu-lCr Δ X 〇 21 底層/ Ni-60Cu-5Cr Ni-60Cu-5Cr 〇 X 〇 <0.5 Ω〇 22 玻璃 Ni-60Cu-10Cr Ni-60Cu-10Cr 〇 〇 X 23 Ni-lOCu-lTi Ni-lOCu-lTi X X 〇 24 Ni-10Cu-3Ti Ni-10Cu-3Ti 〇 〇 X 25 Ni-10Cu-7Ti Ni-10Cu-7Ti 〇 〇 X 26 Ni-25Cu-lTi Ni-25Cu-lTi Δ X 〇 27 Ni-25Cu-3Ti Ni-25Cu-3Ti 〇 〇 〇 28 Ni-25Cu-5Ti Ni-25Cu-5Ti 〇 〇 〇 29 Ni-25Cu-7Ti Ni-25Cu-7Ti 〇 〇 X 30 Ni-35Cu-lTi Ni-35Cu-lTi Δ X 〇 31 Ni-35Cu-3Ti Ni-35Cu-3Ti 〇 〇 〇 32 Ni-35Cu-5Ti Ni-35Cu-5Ti 〇 〇 〇 33 Ni-35Cu-7Ti Ni-35Cu-7Ti 〇 〇 X 34 Ni-40Cu-lTi Ni-40Cu-lTi Δ X 〇 35 Ni-40Cu-3Ti Ni-40Cu-3Ti 〇 〇 〇 36 Ni-40Cu-5Ti Ni-40Cu-5Ti 〇 〇 〇 37 Ni-40Cu-7Ti Ni-40Cu-7Ti 〇 〇 X 38 Ni-60Cu-lTi Ni-60Cu-lTi X X 〇 39 Ni-60Cu-3Ti Ni-60Cu-3Ti 〇 X 〇 40 Ni-60Cu-7Ti Ni-60Cu-7Ti 〇 〇 X 41 Mo-10Nb Al-3Nd Mo-lONb 〇 X X 密著性(剝離率):〇=未滿3%,^=3%以上且未滿10%,x=10%以上 而才候性:〇=無變色,X=有變色 蝕刻性(至基板變透明為止所需要之時間):〇=未滿1分鐘,x=l分鐘以上 34 100128318 201211276 (實施例4) [1.試料之製作] 使用實施例1或2中製作之靶材而製作TFT用之積層膜。 即,使用濺鍍法而於基板表面上依序形成阻障層及電極層 (自下而上之順序)。於基板中使用ITO/底層膜/玻璃基板(市 售品)。於阻障層中使用包含特定量之Cu或Ti之NiCu合 金,於電極層中使用Cu(5 N)。 作為比較,亦製作於阻障層中使用Mo-50Ti合金、於電 極層中使用Cu之積層膜。 TFT用積層膜之成膜條件示於表4中。 [表4] 材質 輸出 氣體 濺鍍率 成膜厚度 NiCu合金 DC300 W Ar 0.3 Pa 55 nm/min 20 nm Cu(5 N) RF500 W Ar 0.3 Pa 48 nm/min 200 nm MoTi DC300 W Ar 0.3 Pa 28 nm/min 20 nm [2.試驗方法] [2.1.密著性、蝕刻性、及電極部薄片電阻] 於與實施例3相同之條件下測定密著性、蝕刻性、及電極 部薄片電阻。 [2.2•阻障性] 對附有積層膜之基板進行250°C><30 min之真空熱處理。 熱處理後,利用歐傑分析調查界面附近之Cu、Si之擴散。 阻障性之良否係藉由利用歐傑分析之深度方向上之Cu、Si 檢測量之傾斜而判定。關於阻障性之評價,「〇」表示熱處 100128318 35 201211276 理前後之深度方向之Cu、Si檢測量之傾斜的差為3%以下之 情形,「X」表示大於3%之情形。 [3.結果] 結果示於表5中。根據表5可知以下情況。 (1) 電極部薄片電阻係不論阻障層/電極層之組成如何,均 較低。 (2) 於NiCuCr合金之Cu量固定之情形時,Cr含量變得越 多,則密著性及阻障性越提昇,但蝕刻性越下降。又,於 NiCuCr合金之Cr量固定之情形時,若Cu含量過剩,則阻 障性下降。即,若將Ni-25〜40Cu-3〜5Cr合金用於阻障層, 則獲得密著性、阻障性、及蝕刻性優異之TFT用積層膜。 (3) 於NiCuTi合金之Cu量固定之情形時,Ti含量變得越 多,則密著性及阻障性越提昇,但蝕刻性越下降。又,於 NiCuTi合金之Ti量固定之情形時,若Cu含量過剩,則阻 障性下降。即,若將Ni-25〜40Cu-3〜5Ti合金用於阻障層, 則獲得密著性、阻障性、及蝕刻性優異之TFT用積層膜。 100128318 36 201211276 [表5]No. Substrate barrier layer Electrode layer overcoating adhesion Weatherability Scratch electrode sheet resistance 1 Ni-10Cu Ni-lOCu XX 〇2 Ni-10Cu-lCr Ni-lOCu-lCr XX 〇3 Ni-10Cu- 10Cr Ni-lOCu-lOCr 〇〇X 4 Ni-25Cu Ni-25Cu XX 〇5 Ni-25Cu-lCr Ni-25Cu-lCr Δ X 〇6 Ni-25Cu-3Cr Ni-25Cu-3Cr 〇〇〇7 Ni-25Cu -5Cr Ni-25Cu-5Cr 〇〇〇8 Ni-25Cu-7Cr Ni-25Cu-7Cr 〇〇X 9 Ni-35Cu Ni-35Cu XX 〇10 Ni-35Cu-lCr Ni-35Cu-lCr Δ X 〇11 Ni- 35Cu-3Cr Ni-35Cu-3Cr 〇〇〇12 Ni-35Cu-5Cr Ni-35Cu-5Cr 〇〇〇13 Ni-35Cu-7Cr Ni-35Cu-7Cr 〇〇X 14 Ni-40Cu Ni-40Cu XX 〇15 Ni -40Cu-lCr Ni-40Cu-lCr Δ X 〇16 Ni-40Cu-3Cr Ni-40Cu-3Cr 〇〇〇17 Ni-40Cu-5Cr Ni-40Cu-5Cr 〇〇〇18 Ni-40Cu-7Cr Ni-40Cu- 7Cr 〇〇X 19 Ni-60Cu Ni-60Cu XX 〇20 ITO/ Ni-60Cu-lCr Cu Ni-60Cu-lCr Δ X 〇21 bottom layer / Ni-60Cu-5Cr Ni-60Cu-5Cr 〇X 〇<0.5 Ω 〇22 Glass Ni-60Cu-10Cr Ni-60Cu-10Cr 〇〇X 23 Ni-lOCu-lTi Ni-l OCu-lTi XX 〇24 Ni-10Cu-3Ti Ni-10Cu-3Ti 〇〇X 25 Ni-10Cu-7Ti Ni-10Cu-7Ti 〇〇X 26 Ni-25Cu-lTi Ni-25Cu-lTi Δ X 〇27 Ni- 25Cu-3Ti Ni-25Cu-3Ti 〇〇〇28 Ni-25Cu-5Ti Ni-25Cu-5Ti 〇〇〇29 Ni-25Cu-7Ti Ni-25Cu-7Ti 〇〇X 30 Ni-35Cu-lTi Ni-35Cu-lTi Δ X 〇31 Ni-35Cu-3Ti Ni-35Cu-3Ti 〇〇〇32 Ni-35Cu-5Ti Ni-35Cu-5Ti 〇〇〇33 Ni-35Cu-7Ti Ni-35Cu-7Ti 〇〇X 34 Ni-40Cu- lTi Ni-40Cu-lTi Δ X 〇35 Ni-40Cu-3Ti Ni-40Cu-3Ti 〇〇〇36 Ni-40Cu-5Ti Ni-40Cu-5Ti 〇〇〇37 Ni-40Cu-7Ti Ni-40Cu-7Ti 〇〇 X 38 Ni-60Cu-lTi Ni-60Cu-lTi XX 〇39 Ni-60Cu-3Ti Ni-60Cu-3Ti 〇X 〇40 Ni-60Cu-7Ti Ni-60Cu-7Ti 〇〇X 41 Mo-10Nb Al-3Nd Mo -lONb 〇 XX Adhesiveness (peeling rate): 〇 = less than 3%, ^=3% or more and less than 10%, x=10% or more and only wait: 〇 = no discoloration, X = color change etching Sex (the time required until the substrate becomes transparent): 〇 = less than 1 minute, x = 1 minute or more 34 100128318 201211276 (real Example 4) [Production of Sample 1] using the target prepared in Example 1 or 2 to prepare a laminated membrane embodiments of the TFT. That is, the barrier layer and the electrode layer are sequentially formed on the surface of the substrate by sputtering (the order from bottom to top). An ITO/base film/glass substrate (commercial product) was used for the substrate. A NiCu alloy containing a specific amount of Cu or Ti is used in the barrier layer, and Cu(5 N) is used in the electrode layer. For comparison, a film of a film of Mo-50 was used for the barrier layer and Cu was used for the electrode layer. The film formation conditions of the laminated film for TFT are shown in Table 4. [Table 4] Material Output Gas Sputtering Rate Film Thickness NiCu Alloy DC300 W Ar 0.3 Pa 55 nm/min 20 nm Cu(5 N) RF500 W Ar 0.3 Pa 48 nm/min 200 nm MoTi DC300 W Ar 0.3 Pa 28 nm /min 20 nm [2. Test method] [2.1. Adhesiveness, etching property, and electrode sheet resistance] The adhesion, the etching property, and the sheet portion sheet resistance were measured under the same conditions as in Example 3. [2.2 • Barrier property] The substrate with the laminated film was subjected to vacuum heat treatment at 250 ° C > 30 min. After the heat treatment, the diffusion of Cu and Si near the interface was investigated by Oujie analysis. Whether the barrier property is good or not is determined by using the inclination of the Cu and Si detection amounts in the depth direction of the Oujie analysis. Regarding the evaluation of the barrier property, "〇" indicates that the difference between the inclination of the Cu and Si detection amounts in the depth direction before and after the treatment is 3% or less, and "X" indicates that it is more than 3%. [3. Results] The results are shown in Table 5. The following can be seen from Table 5. (1) The electrode portion sheet resistance is low regardless of the composition of the barrier layer/electrode layer. (2) When the amount of Cu in the NiCuCr alloy is fixed, the more the Cr content is, the more the adhesion and the barrier property are improved, but the etching property is lowered. Further, when the amount of Cr in the NiCuCr alloy is fixed, if the Cu content is excessive, the barrier property is lowered. In other words, when a Ni-25~40Cu-3~5Cr alloy is used for the barrier layer, a laminate film for a TFT excellent in adhesion, barrier properties, and etching property is obtained. (3) When the amount of Cu in the NiCuTi alloy is fixed, the Ti content increases, and the adhesion and barrier properties increase, but the etching property decreases. Further, when the amount of Ti in the NiCuTi alloy is fixed, if the Cu content is excessive, the barrier property is lowered. In other words, when a Ni-25~40Cu-3~5Ti alloy is used for the barrier layer, a laminate film for a TFT excellent in adhesion, barrier properties, and etching property is obtained. 100128318 36 201211276 [Table 5]

No. 基板 阻障層 電極層 密著性 财候性 蝕刻性 電極部薄片 電阻 101 ITO/ 底層/ 玻璃 Ni-10Cu Cu X X 〇 <0.5 Ω〇 102 Ni-10Cu-lCr X X 〇 103 Ni-10Cu-10Cr 〇 〇 X 104 Ni-25Cu X X 〇 105 Ni-25Cu-lCr Δ X 〇 106 Ni-25Cu-3Cr 〇 〇 〇 107 Ni-25Cu-5Cr 〇 〇 〇 108 Ni-25Cu-7Cr 〇 〇 X 109 Ni-35Cu X X 〇 110 Ni-35Cu-lCr Δ X 〇 111 Ni-35Cu-3Cr 〇 〇 〇 112 Ni-35Cu-5Cr 〇 〇 〇 113 Ni-35Cu-7Cr 〇 〇 X 114 Ni-40Cu X X 〇 115 Ni-40Cu-lCr Δ X 〇 116 Ni-40Cu-3Cr 〇 〇 〇 117 Ni-40Cu-5Cr 〇 〇 〇 118 Ni-40Cu-7Cr 〇 〇 X 119 Ni-60Cu X X 〇 120 Ni-60Cu-lCr Δ X 〇 121 Ni-60Cu-5Cr 〇 X 〇 122 Ni-60Cu-10Cr 〇 〇 X 123 Ni-lOCu-lTi X X 〇 124 Ni-10Cu-3Ti 〇 〇 X 125 Ni-10Cu-7Ti 〇 〇 X 126 Ni-25Cu-lTi Δ X 〇 127 Ni-25Cu-3Ti 〇 〇 〇 128 Ni-25Cu-5Ti 〇 〇 〇 129 Ni-25Cu-7Ti 〇 〇 X 130 Ni-35Cu-lTi Δ X 〇 131 Ni-35Cu-3Ti 〇 〇 〇 132 Ni-35Cu-5Ti 〇 〇 〇 133 Ni-35Cu-7Ti 〇 〇 X 134 Ni-40Cu-lTi Δ X 〇 135 Ni-40Cu-3Ti 〇 〇 〇 136 Ni-40Cu-5Ti 〇 〇 〇 137 Ni-40Cu-7Ti 〇 〇 X 138 Ni-60Cu-lTi X X 〇 139 Ni-60Cu-3Ti 〇 X 〇 140 Ni-60Cu-7Ti 〇 〇 X 141 Ni-50Ti Cu 〇 X X 密著性(剝離率):〇=未滿3%,^=3%以上且未滿10%,χ = 10%以上 阻障性(熱處理前後之深度方向之Cu、Si檢測量之傾斜的差):〇=3%以下,χ =超過3% 蝕刻性(至基板變透明為止所需要之時間)··〇=未滿1分鐘,χ = 1分鐘以上 37 100128318 201211276 以上對本發明之實施形態進行詳細說明,但本發明並不受 到上述實施形態之任何限定,於不脫離本發明之主旨的範圍 内可進行各種改變。 (產業上之可利用性) 本發明之Cu電極保護膜用NiCu合金靶材可作為用以於 觸控面板電極部、液晶面板TFT部、有機EL(Electr〇 Luminescence,電致發光)面板電極部、電漿顯示面板電極 部、太陽電池面板電極部、半導體電極部等中所使用之CU 電極之兩面形成保護膜的濺鍍用靶材。 【圖式簡單說明】 圖 1(A)係表示 Ni-χ mass%Cu-3 mass°/〇Cr(x= 10〜60)合金 之Cu含量與相對於IT0之電位差的關係之圖。圖1(B) 係表示 Ni-35 mass°/〇Cu-x mass%Cr(x = 〇〜11)合金之 Cr 含量 與相對於ITO之電位差的關係之圖。 圖 2(A)係表示 Ni-χ mass%Cu-3 mass%Cr(x= 10〜60)合金 之Cu含量與相對於Cu之電位差的關係之圖。圖2(B) 係表示 Ni-35 mass%Cu-x mass%Cr(x=〇〜11)合金之 Cr 含量 與相對於Cu之電位差的關係之圖。 圖 3(A)係表示 Ni-χ mass%Cu-3 mass%Cr(x= 10〜60)合金 之Cii含量與蝕刻速率差之關係的圖。圖3.(B)係表示Ni_35 mass%Cu-x mass%Cr(x = 0〜11)合金之Cr含量與蝕刻速率 差之關係的圖。 100128318 38 201211276 圖 4(A)係表示 Ni-χ mass%Cu-3 mass%Cr(x= 10〜60)合金 之Cu含量與剝離率(no : 20 nm、NiCuCr : 50 nm)之關係 的圖。圖 4(B)係表示 Ni-35 mass%Cu-x mass%Cr(x=0〜11) 合金之Cr含量與剝離率(ιτ〇=20 nm、NiCuCr : 50 nm)之關 係的圖。 圖 5(A)係表示 Ni-xmass%Cu-3mass%Cr(x=10〜60)合金 之Cu含量與剝離率(IT〇 = 20 nm、NiCuCr : 200 nm)之關係 的圖。圖 5(B)係表示 Ni-35mass%Cu-xmass%Cr(x = 0〜11) 合金之Cr含量與剝離率(ΓΓΟ : 20 nm、NiCuCr : 200 nm)之 關係的圖。 圖 6(A)係表示 Ni-χ mass%Cu-3 mass%Cr(x= 10〜60)合金 之Cu含量與剝離率(ITO : 150 nm、NiCuCr : 50 nm)之關係 的圖。圖 6(B)係表示 Ni-35 mass%Cu-x mass%Cr(x=0〜11) 合金之Cr含量與剝離率(ΙΤ〇= 150 nm、NiCuCr : 50 nm)之 關係的圖。 圖 7(A)係表示 Ni-xmass%Cu-3 mass%Cr(x=10〜60)合金 之Cu含量與制離率(ΙΤ〇 : 15〇麵、NiCuCr : 2〇〇 nm)之關 係的圖圖 7(B)係表示 Ni-35 mass%Cu-x mass%Cr(x = 0〜 11)合金之 Cr 含量與剝離率(IT〇: 15〇mn、NiCuCr: 200 nm) 之關係的圖。 圖 8(A)係表示 Ni-xmass%Cu-3 mass%Cr(x=10〜60)合金 之Cu含量與最大磁導率β之關係的圖。圖8(B)係表示Ni_35 100128318 39 201211276 mass%Cu-x mass%Cr(x = 0〜11)合金之Cr含量與最大磁導 率//之關係的圖。 圖 9(A)係表示 Ni-x mass%Cu-3 mass%Ti(X= 10〜60)合金 之Cu含量與相對於ITO之電位差AV的關係之圖。圖9(B) 係表示 Ni-35 mass%Cu-x mass%Ti(x==0〜7)合金之 Ti 含量 與相對於ITO之電位差Δν的關係之圖。 圖 10(A)係表示 Ni-x mass%Cu-3 mass%Ti(x=10〜60)合 金之Cu含量與相對於Cu之電位差AV的關係之圖。圖10(B) 係表示 Ni-35 mass%Cu-x mass%Ti(x=0〜7)合金之 Ti 含量 與相對於Cu之電位差Λν的關係之圖。 圖 11(A)係表示 Ni-x mass%Cu-3 mass%Ti(x=10〜60)合 金之Cu含量與蝕刻速率差之關係的圖。圖ιι(Β)係表示 Ni-35 mass%Cu-x mass%Ti(x=0〜7)合金之 Ti 含量與蝕刻 速率差之關係的圖。 圖 12(A)係表示 Ni-x mass%Cu-3 mass%Ti(x=10〜60)合 金之Cu含量與剝離率(ΙΊΌ : 20 nm、NiCuTi : 50 nm)之關係 的圖。圖 12(B)係表示 Ni-35 mass%Cu-x mass%Ti(x=〇〜7) 合金之Ti含量與剝離率(ΙΊΌ : 20 nm、NiCuTi : 50 nm)之關 係的圖。 圖 13(A)係表示 Ni-χ mass%Cu-3 mass%Ti(x=10〜60)合 金之Cu含量與剝離率(IT〇 : 20 nm、NiCuTi : 200 nm)之關 係的圖。圖 13(B)係表示 Ni-35mass%Cu-xmass%Ti(x = 0〜 100128318 40 201211276 7)合金之Τι含量與剝離率(IT〇 : 2〇 _、NiCuTi : 200 nm) 之關係的圖。 圖 14(A)係表示 massXCu-S mass%Ti(x=10〜60)合 金之Cu含量與剝離率(ITO : 150 nm、NiCuTi=50 nm)之關 係的圖圖 14(B)係表示 Ni-35 mass%Cu-x mass%Ti(x= 0〜 7)合金之Τι含量與剝離率(IT〇 : 15〇胆、NiCuTi : 50 nm) 之關係的圖。 圖 15(A)係表示 Ni-χ mass%Cu-3 mass%Ti(x=10〜60)合 金之Cu含量與剝離率(IT〇: i5〇nm、NiCuTi: 200 nm)之關 係的圖。圖 15(B)係表示 Ni-35mass%Cu-xmass%Ti(x=0〜 7)合金之Ti含量與剝離率(no : 150 nm、NiCuTi : 200 nm) 之關係的圖。 圖 16(A)係表示 Ni-x mass%Cu-3 mass%Ti(x=10〜60)合 金之Cu含量與最大磁導率//之關係的圖。圖16(B)係表示 Ni-35 mass%Cu-x mass%Ti(x=0〜7)合金之 Ti 含量與最大 磁導率#之關係的圖。 100128318 41No. Substrate barrier layer Electrode layer Adhesive etchable electrode portion Sheet resistance 101 ITO / underlayer / glass Ni-10Cu Cu XX 〇 <0.5 Ω〇102 Ni-10Cu-lCr XX 〇103 Ni-10Cu- 10Cr 〇〇X 104 Ni-25Cu XX 〇105 Ni-25Cu-lCr Δ X 〇106 Ni-25Cu-3Cr 〇〇〇107 Ni-25Cu-5Cr 〇〇〇108 Ni-25Cu-7Cr 〇〇X 109 Ni-35Cu XX 〇110 Ni-35Cu-lCr Δ X 〇111 Ni-35Cu-3Cr 〇〇〇112 Ni-35Cu-5Cr 〇〇〇113 Ni-35Cu-7Cr 〇〇X 114 Ni-40Cu XX 〇115 Ni-40Cu-lCr Δ X 〇116 Ni-40Cu-3Cr 〇〇〇117 Ni-40Cu-5Cr 〇〇〇118 Ni-40Cu-7Cr 〇〇X 119 Ni-60Cu XX 〇120 Ni-60Cu-lCr Δ X 〇121 Ni-60Cu- 5Cr 〇X 〇122 Ni-60Cu-10Cr 〇〇X 123 Ni-lOCu-lTi XX 〇124 Ni-10Cu-3Ti 〇〇X 125 Ni-10Cu-7Ti 〇〇X 126 Ni-25Cu-lTi Δ X 〇127 Ni -25Cu-3Ti 〇〇〇128 Ni-25Cu-5Ti 〇〇〇129 Ni-25Cu-7Ti 〇〇X 130 Ni-35Cu-lTi Δ X 〇131 Ni-35Cu-3Ti 〇〇〇132 Ni-35Cu-5Ti 〇 〇〇133 Ni-35Cu-7Ti 〇〇X 134 N i-40Cu-lTi Δ X 〇135 Ni-40Cu-3Ti 〇〇〇136 Ni-40Cu-5Ti 〇〇〇137 Ni-40Cu-7Ti 〇〇X 138 Ni-60Cu-lTi XX 〇139 Ni-60Cu-3Ti 〇 X 〇140 Ni-60Cu-7Ti 〇〇X 141 Ni-50Ti Cu 〇XX Adhesion (peeling rate): 〇 = less than 3%, ^=3% or more and less than 10%, χ = 10% or more Barrier (difference in the inclination of Cu and Si in the depth direction before and after heat treatment): 〇 = 3% or less, χ = more than 3% Etching (time required until the substrate becomes transparent) · 〇 = underfill The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit and scope of the invention. (Industrial Applicability) The NiCu alloy target for a Cu electrode protective film of the present invention can be used as a touch panel electrode portion, a liquid crystal panel TFT portion, and an organic EL (Electr® Luminescence) panel electrode portion. A sputtering target for forming a protective film on both surfaces of the CU electrode used in the electrode portion of the plasma display panel, the electrode portion of the solar cell panel, and the semiconductor electrode portion. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1(A) is a graph showing the relationship between the Cu content of the Ni-χ mass% Cu-3 mass ° / 〇Cr (x = 10 to 60) alloy and the potential difference with respect to IT0. Fig. 1(B) is a graph showing the relationship between the Cr content of the Ni-35 mass ° / 〇 Cu - x mass % Cr (x = 〇 〜 11) alloy and the potential difference with respect to ITO. Fig. 2(A) is a graph showing the relationship between the Cu content of the Ni-χ mass% Cu-3 mass% Cr (x = 10 to 60) alloy and the potential difference with respect to Cu. Fig. 2(B) is a graph showing the relationship between the Cr content of the Ni-35 mass% Cu-x mass% Cr (x = 〇 11 11) alloy and the potential difference with respect to Cu. Fig. 3(A) is a graph showing the relationship between the Cii content of the Ni-χ mass% Cu-3 mass% Cr (x = 10 to 60) alloy and the etching rate difference. Fig. 3. (B) is a graph showing the relationship between the Cr content of the Ni_35 mass% Cu-x mass% Cr (x = 0 to 11) alloy and the etching rate difference. 100128318 38 201211276 Fig. 4(A) is a graph showing the relationship between the Cu content and the peeling rate (no: 20 nm, NiCuCr: 50 nm) of Ni-χ mass% Cu-3 mass% Cr (x = 10 to 60) alloy. . Fig. 4(B) is a view showing the relationship between the Cr content of the Ni-35 mass% Cu-x mass% Cr (x = 0 to 11) alloy and the peeling rate (ιτ〇 = 20 nm, NiCuCr: 50 nm). Fig. 5(A) is a graph showing the relationship between the Cu content and the peeling ratio (IT〇 = 20 nm, NiCuCr: 200 nm) of the Ni-xmass%Cu-3mass%Cr (x = 10 to 60) alloy. Fig. 5(B) is a graph showing the relationship between the Cr content and the peeling ratio (ΓΓΟ: 20 nm, NiCuCr: 200 nm) of the Ni-35 mass% Cu-xmass% Cr (x = 0 to 11) alloy. Fig. 6(A) is a graph showing the relationship between the Cu content of the Ni-χ mass% Cu-3 mass% Cr (x = 10 to 60) alloy and the peeling rate (ITO: 150 nm, NiCuCr: 50 nm). Fig. 6(B) is a graph showing the relationship between the Cr content of the Ni-35 mass% Cu-x mass% Cr (x = 0 to 11) alloy and the peeling rate (ΙΤ〇 = 150 nm, NiCuCr: 50 nm). Fig. 7(A) shows the relationship between the Cu content of the Ni-xmass%Cu-3 mass%Cr (x=10~60) alloy and the separation ratio (ΙΤ〇: 15〇面, NiCuCr: 2〇〇nm) Figure 7(B) is a graph showing the relationship between the Cr content and the peeling rate (IT〇: 15〇mn, NiCuCr: 200 nm) of Ni-35 mass%Cu-x mass%Cr(x = 0~11) alloy. . Fig. 8(A) is a graph showing the relationship between the Cu content of the Ni-xmass%Cu-3 mass%Cr (x = 10 to 60) alloy and the maximum magnetic permeability β. Fig. 8(B) is a graph showing the relationship between the Cr content of the alloy of Ni_35 100128318 39 201211276 mass% Cu-x mass% Cr (x = 0 to 11) and the maximum magnetic permeability. Fig. 9(A) is a graph showing the relationship between the Cu content of the Ni-x mass% Cu-3 mass% Ti (X = 10 to 60) alloy and the potential difference AV with respect to ITO. Fig. 9(B) is a graph showing the relationship between the Ti content of the Ni-35 mass% Cu-x mass% Ti (x = 0 to 7) alloy and the potential difference Δν with respect to ITO. Fig. 10(A) is a graph showing the relationship between the Cu content of the Ni-x mass% Cu-3 mass% Ti (x = 10 to 60) alloy and the potential difference AV with respect to Cu. Fig. 10(B) is a graph showing the relationship between the Ti content of the Ni-35 mass% Cu-x mass% Ti (x = 0 to 7) alloy and the potential difference Λν with respect to Cu. Fig. 11(A) is a graph showing the relationship between the Cu content of the Ni-x mass% Cu-3 mass% Ti (x = 10 to 60) alloy and the etching rate difference. Figure ιι (Β) is a graph showing the relationship between the Ti content of the Ni-35 mass% Cu-x mass% Ti (x = 0 to 7) alloy and the etching rate difference. Fig. 12(A) is a graph showing the relationship between the Cu content of the Ni-x mass% Cu-3 mass% Ti (x = 10 to 60) alloy and the peeling rate (ΙΊΌ: 20 nm, NiCuTi: 50 nm). Fig. 12(B) is a view showing the relationship between the Ti content of the Ni-35 mass% Cu-x mass% Ti (x = 〇 〜 7) alloy and the peeling rate (ΙΊΌ: 20 nm, NiCuTi: 50 nm). Fig. 13(A) is a graph showing the relationship between the Cu content of Ni-χ mass% Cu-3 mass% Ti (x = 10 to 60) alloy and the peeling rate (IT〇: 20 nm, NiCuTi: 200 nm). Fig. 13(B) is a view showing the relationship between the content of the Ni-35 mass% Cu-xmass% Ti (x = 0 to 100128318 40 201211276 7) alloy and the peeling rate (IT〇: 2〇_, NiCuTi: 200 nm). . Fig. 14(A) is a view showing the relationship between the Cu content of the massXCu-S mass% Ti (x = 10 to 60) alloy and the peeling rate (ITO: 150 nm, NiCuTi = 50 nm). Fig. 14(B) shows Ni -35 mass% Cu-x mass% Ti (x = 0 to 7) A graph of the relationship between the content of the alloy and the peeling rate (IT〇: 15〇, NiCuTi: 50 nm). Fig. 15(A) is a graph showing the relationship between the Cu content of Ni-χ mass% Cu-3 mass% Ti (x = 10 to 60) alloy and the peeling rate (IT〇: i5〇nm, NiCuTi: 200 nm). Fig. 15(B) is a graph showing the relationship between the Ti content and the peeling ratio (no: 150 nm, NiCuTi: 200 nm) of the Ni-35 mass% Cu-xmass% Ti (x = 0 to 7) alloy. Fig. 16(A) is a graph showing the relationship between the Cu content of the Ni-x mass% Cu-3 mass% Ti (x = 10 to 60) alloy and the maximum magnetic permeability. Fig. 16(B) is a graph showing the relationship between the Ti content of the Ni-35 mass% Cu-x mass% Ti (x = 0 to 7) alloy and the maximum magnetic permeability #. 100128318 41

Claims (1)

201211276 七、申請專利範圍: 1. 一種Cu電極保護膜用NiCu合金靶材,其包含: 15.0$Cu$55.0 mass%、及 0.5S(Cr、Ti)S 10.0 mass%(其中,Cr>0、Ti>0),且 剩餘部分包含Ni及不可避免之雜質。 2. 如申請專利範圍第1項之Cu電極保護膜用NiCu合金 輕材,其中, 25.040.0 mass%、及 1.0S(Cr、Ti)S5.0 mass%(其中,Cr>0、Ti>0)。 3. —種Cu電極保護膜用NiCu合金靶材,其包含: 15.0SCu$55.0 mass%、及 0.5$Cr$ 10.0 mass%,且 剩餘部分包含Ni及不可避免之雜質。 4. 如申請專利範圍第3項之Cu電極保護膜用NiCu合金 革巴材,其中, 25.040.0 mass%、及 1.0$ CrS 5.0 mass%。 5. —種Cu電極保護膜用NiCu合金靶材,其包含: 15.0$ Cu S 55.0 mass%、及 〇.5$Ti$ 10.0 mass%,且 剩餘部分包含Ni及不可避免之雜質。 6. 如申請專利範圍第5項之Cu電極保護膜用NiCu合金 100128318 42 201211276 乾材,其中, 25.0 40.0 mass%、及 1.0STi$5.0 mass%。 7.—種積層膜,其係具備: Cu電極、及 形成於上述Cu電極之單面或兩面上之保護膜者,且 上述保護膜包含使用申請專利範圍第1至6項中任一項之 Cu電極保護膜用NiCu合金靶材而成膜之薄膜。 100128318 43201211276 VII. Patent application scope: 1. A NiCu alloy target for Cu electrode protection film, which comprises: 15.0$Cu$55.0 mass%, and 0.5S(Cr, Ti)S 10.0 mass% (wherein, Cr>0, Ti&gt ; 0), and the remainder contains Ni and unavoidable impurities. 2. For the NiCu alloy light material for the Cu electrode protection film according to the first application of the patent scope, wherein, 25.040.0 mass%, and 1.0S (Cr, Ti) S5.0 mass% (wherein Cr>0, Ti> 0). 3. A NiCu alloy target for a Cu electrode protective film comprising: 15.0SCu$55.0 mass%, and 0.5$Cr$10.0 mass%, and the remainder comprising Ni and unavoidable impurities. 4. For NiCu alloy leather for Cu electrode protection film according to item 3 of the patent application, 25.040.0 mass%, and 1.0$ CrS 5.0 mass%. 5. A NiCu alloy target for a Cu electrode protective film comprising: 15.0$ Cu S 55.0 mass%, and 〇.5$Ti$ 10.0 mass%, and the remainder comprising Ni and unavoidable impurities. 6. For the Cu electrode protective film of claim 5, the NiCu alloy 100128318 42 201211276 dry material, wherein, 25.0 40.0 mass%, and 1.0 STi$5.0 mass%. 7. A laminated film comprising: a Cu electrode; and a protective film formed on one surface or both surfaces of the Cu electrode, wherein the protective film comprises any one of claims 1 to 6 of the patent application scope. A film formed by forming a Cu-electrode protective film with a NiCu alloy target. 100128318 43
TW100128318A 2010-08-30 2011-08-09 NiCu alloy target and laminated film for Cu electrode protective film TWI506142B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010192370 2010-08-30
JP2011041885 2011-02-28
JP2011134616A JP5895370B2 (en) 2010-08-30 2011-06-16 NiCu alloy target material for Cu electrode protective film for panel and laminated film

Publications (2)

Publication Number Publication Date
TW201211276A true TW201211276A (en) 2012-03-16
TWI506142B TWI506142B (en) 2015-11-01

Family

ID=45449662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128318A TWI506142B (en) 2010-08-30 2011-08-09 NiCu alloy target and laminated film for Cu electrode protective film

Country Status (3)

Country Link
KR (1) KR101828085B1 (en)
CN (1) CN102321832B (en)
TW (1) TWI506142B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686292B (en) * 2015-06-26 2020-03-01 日商住友金屬礦山股份有限公司 Laminate substrate, conductive substrate, method for manufacturing laminate substrate, method for manufacturing conductive substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369750B2 (en) * 2013-09-10 2018-08-08 日立金属株式会社 LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
JP6531596B2 (en) * 2015-09-28 2019-06-19 住友金属鉱山株式会社 Laminate substrate, conductive substrate, method of producing laminate substrate, method of producing conductive substrate
WO2019104707A1 (en) * 2017-12-01 2019-06-06 桑胜伟 Method for preparing thermistor copper electrode composite layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041290A1 (en) * 2003-10-24 2005-05-06 Nikko Materials Co., Ltd. Nickel alloy sputtering target and nickel alloy thin film
JP2005171341A (en) 2003-12-12 2005-06-30 Sumitomo Metal Mining Co Ltd Ni alloy target and thin ni alloy film
JP4730662B2 (en) 2005-03-02 2011-07-20 日立金属株式会社 Thin film wiring layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686292B (en) * 2015-06-26 2020-03-01 日商住友金屬礦山股份有限公司 Laminate substrate, conductive substrate, method for manufacturing laminate substrate, method for manufacturing conductive substrate

Also Published As

Publication number Publication date
TWI506142B (en) 2015-11-01
KR101828085B1 (en) 2018-02-09
KR20120071412A (en) 2012-07-02
CN102321832A (en) 2012-01-18
CN102321832B (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5895370B2 (en) NiCu alloy target material for Cu electrode protective film for panel and laminated film
TWI537400B (en) Cu alloy interconnection film for touch-panel sensor and method of manufacturing the interconnection film, touch-panel sensor, and sputtering target
TW201743178A (en) Multilayer film, display device and input device
KR100638977B1 (en) Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY
TW201125108A (en) Wiring structure and display apparatus having wiring structure
JP2005528736A5 (en)
TW533514B (en) Physical vapor deposition target/backing plate assemblies; and methods of forming physical vapor deposition target/backing plate assemblies
JP2011052304A (en) NiCu ALLOY TARGET MATERIAL FOR Cu ELECTRODE PROTECTIVE FILM
TW201035351A (en) Manufacture process of oxygen-containing Cu alloy film
TW577091B (en) Resistor
TW201211276A (en) NiCu alloy target for Cu electrode protection membrane and lamination membrane
JP2013060655A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
WO2013115002A1 (en) Ag ALLOY FILM TO BE USED AS REFLECTING FILM AND/OR TRANSMITTING FILM OR AS ELECTRICAL WIRING AND/OR ELECTRODE, Ag ALLOY SPUTTERING TARGET, AND Ag ALLOY FILLER
CN207909096U (en) Electrode structure, Trackpad and touch device
Sohn et al. Anomalous oxidation resistance of “core-only” copper nanoparticles electrochemically grown on gold nanoislands prefunctionalized by 1, 4-phenylene diisocyanide
CN104668806B (en) Scolding tin grafting material and its manufacture method
CN104684247B (en) Printing distributing board and its manufacturing method
JP2004506814A5 (en)
TWI576443B (en) Copper alloy film, copper laminated film, wiring electrode, input device and touch panel sensor
JP6394064B2 (en) Cu alloy target material, Cu alloy target, Cu alloy film, and touch panel
JP4812980B2 (en) Ag alloy thin film electrode, organic EL device, and sputtering target
TWI653349B (en) Cu alloy target material, Cu alloy target, Cu alloy film and touch panel
TWI310408B (en) Cadmium tin oxide multi-layer laminate and its producing method
JP6028540B2 (en) Cu wiring protective film and Cu alloy sputtering target
JP2014129596A (en) Cu WIRING PROTECTIVE FILM AND Cu ALLOY SPUTTERING TARGET