TW201209365A - Loop heat pipe - Google Patents

Loop heat pipe Download PDF

Info

Publication number
TW201209365A
TW201209365A TW99128462A TW99128462A TW201209365A TW 201209365 A TW201209365 A TW 201209365A TW 99128462 A TW99128462 A TW 99128462A TW 99128462 A TW99128462 A TW 99128462A TW 201209365 A TW201209365 A TW 201209365A
Authority
TW
Taiwan
Prior art keywords
diameter
liquid
heat pipe
liquid line
working medium
Prior art date
Application number
TW99128462A
Other languages
Chinese (zh)
Inventor
Chao Xu
Jiang-Jun Hu
De-Yu Wang
Chuen-Shu Hou
Original Assignee
Foxconn Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxconn Tech Co Ltd filed Critical Foxconn Tech Co Ltd
Priority to TW99128462A priority Critical patent/TW201209365A/en
Publication of TW201209365A publication Critical patent/TW201209365A/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A loop heat pipe includes an evaporator, a condenser, a liquid line and a vapor line. The liquid line and the vapor line each connect the evaporator with the condenser to form a closed loop. A predetermined quantity of bi-phase working medium is filled in the closed loop. A separator connects with the liquid line. A capacitance of the separator is larger than that of a portion of the liquid line which has a sameness length with the separator. The separator can separate the liquid state working medium from the vapor state working medium when the working medium flows therethrough.

Description

201209365 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及-種熱傳元件,尤係一種迴路熱管。 【先前技術3 [0002] 隨著中央處理器等電子元件功率的不斷提高,散熱問題 越來越受到人們的重視。迴路熱管(1〇〇ρ⑹士 ^的, LHP)㈣其高㈣熱傳導性能而被作為—種有效的傳熱 元件應用於散熱領域中。 Λ [0003] Ο ❹ 通常,迴路熱管包括一蒸發部(evap〇rat〇r)、一冷凝 部(condenser)、以及設於蒸發部與冷凝部之間一蒸 氣管線(vapor line)及—液體管線;(nquid Hne) 。所述蒸氣管線及液體管線將所,述.蒸發部與冷凝部連接 成一迴路,該迴路内填充有工作介質。該蒸發部與一發 熱電子元件熱連接。當該迴路熱管的蒸發部受熱時,其 内的工作介質吸收熱量蒸發膨脹成氣態,經由該蒸氣管 線流向該迴路熱管的冷凝部’並於該冷凝部放熱冷凝收 縮成液態,冷凝後的工作介質經由該液體管線返回至蒸 發部,而完成一循環。如此工作介質反復蒸發、冷凝, 不斷地吸熱、放熱,從而達到熱交換的目的。 [0004] 然而,該迴路熱管中工作介質在循環的過程中,工作介 質在冷凝部中放熱冷凝後會混合少量#凝結氣體,冷# 後的工作介質被非凝結氣體隔離成不連續的水珠狀,從 而形成氣液混合物或者氣栓。因此,當液體通過液發管 線回流到蒸發部時由於氣栓的存在造成向蒸發部的間& 式供液,導致迴路熱管内溫度的波動,嚴重時會弓丨起篆 099128462 表單編號A0101 第3頁/共14頁 °"2〇5〇〇〇v〇 201209365 發器乾涸燒毁。習知技術中有通過於液體管線内加入毛 細結構來防止氣栓形成,但是這種方法容易造成管路堵 塞,且當液體管線長度較大時會增加製造的成本及難度 ,並且效果並不理想。 【發明内容】 [0005] 有鑒於此,有必要提供一種能有效防止氣栓形成的迴路 熱管。 [0006] —種迴路熱管,包括蒸發部、冷凝部、蒸氣管線及液體 管線,該蒸氣管線與液體管線設於蒸發部與冷凝部之間 且將該蒸發部與冷凝部連接成一迴路,該迴路内填充有 工作介質,該液體管線上連接設有分離單元,該分離單 元的容積大於相同長度的液體管線的容積,該分離單元 將經由液體管線傳送的混合的氣態工作介質及液態工作 介質進行分離。 [0007] 與習知技術相比,該迴路熱管通過於液體管線上設置一 分離單元,該分離單元用於將從冷凝部流出並經由液體 管線傳送的混合的氣態工作介質及液態工作介質進行分 離,從而防止工作介質冷凝後經由液體管線回流至蒸發 部的過程中形成氣栓,使得液態的工作介質可以連續、 均勻地回流至蒸發部,從而保證該迴路熱管工作的穩定 性。 【實施方式】 [0008] 請參照圖1及圖2,本發明的第一實施例中的迴路熱管10 包括一蒸發部Π、一冷凝部12、一蒸氣管線13、一液體 管線14及一分離單元15。 099128462 表單編號A0101 第4頁/共14頁 0992050007-0 201209365 [0009] 該蒸發部11呈矩形,其包括一與液體管線14一端連接的 一蒸發部入口 110及一與蒸氣管線13的一端連接的一蒸發 部出口 112。該蒸發部11與一發熱電子元件,如CPU (圖 未示)熱連接。該冷凝部12呈圓管狀,其與蒸發部11相 互平行。該冷凝部12包括一與蒸氣管線13的另一端連接 的冷凝部入口 121及一與液體管線14的另一端連接的冷凝 部出口 123。該冷凝部12的外表面可結合一散熱元件,如 穿設在冷凝部上的散熱鰭片(圖未示)以增加該冷凝部 12的散熱效率。 [0010] 所述蒸氣管線13和液體管線14分別呈圓管狀,本實施例 中,所述蒸氣管線13及液體管線14的直徑分別與冷凝部 12的直徑相等。該蒸氣管線13連接於蒸發部出口 112及冷 凝部入口 121之間,該液體管線14連接於冷凝部出口 123 與蒸發部入口 110之間,從而將所述蒸發部11與冷凝部12 連接成一迴路,該迴路内填充有工作介質。該工作介質 可以為水、酒精等,通常是在迴路内抽成適當真空後注 ^ 入迴路中。具體實施時,所述蒸氣管線13及液體管線14 ❹ 的直徑可以不同,但以保證液體管線14與蒸發部入口 110 連接處的直徑不大於液體管線14與冷凝部出口 123連接處 的直徑為佳。 [0011] 該分離單元15位於液體管線14上,其包括一中空圓柱狀 的本體150、位於該本體150的一端的一錐形的分離口 151及位於該本體150的另一端的一倒錐形的流出口 153 。該分離單元15將該液體管線14分隔成連接於冷凝部出 口 123與分離口 151之間的第一部分141及連接於流出口 099128462 表單編號A0101 第5頁/共14頁 0992050007-0 201209365 153與蒸發部入口 110之間的第二部分142。該分離單元 15的本體150的直徑遠大於該液體管線μ的直徑,從而使 得該分離單元15的容積遠大於相同長度的液體管線14的 容積,因此,經由液體管線丨4輸送的氣、液混合狀態的 工作介質從容積空間較小的液體管線14流入該分離單元 15時可以被分離。本實施例中,該本體15〇的直徑是該液 體管線14的直徑的兩倍。該分離口 151的直徑從靠近冷凝 部出口123的一端向本體150逐漸增加,當氣、液混合狀 態的工作介質從分離口 151流入該分離單元15時,液態的 工作介質主要從分離口 151轉申央哀接向下滴落,而氣態 的工作介質則從該分離口 1 5 4周圍向下擴散並逐漸充溢於 本體150的頂端部分。該流出口 153的直徑從本體150向 靠近蒸發部入口 110的一端逐漸減小,因此,該流出口 153可以限制液態的工作介質從分離單元15内流出的速度 ’過多的液態的工作介質可以暫時儲存在該分離單元i 5 内’然後通過該流出口 153均勻地流出。 [0012]工作時,蒸發部11内的工作介質從發熱電子元件處吸熱 蒸發膨脹成氣態’並從蒸發部出口 112進入蒸氣管線13内 ’經由蒸氣管線13向冷凝部12流動,從冷凝部入口 121進 入冷凝部12内,在冷凝部12放熱後冷凝收縮成液態,再 從冷凝部出口 123進入液體管線14内經由液體管線丨4向蒸 發部11流動,最後冷凝後的工作介質從蒸發部入口 11〇及 時回流至蒸發部丨丨内。在上述過程中,在冷凝部12放熱 冷凝的工作介質由於被非凝結氣體隔離會形成不連續的 水珠狀,從而形成氣、液態工作介質混合的狀態。由於 099128462 表單編號A0101 第6頁/共14頁 0992050007-0 201209365 Ο 該分離單元15的設置,所述氣、液混合狀態的工作介質 經由液體管線14向蒸發部11流動的過程中,流經分離單 元15時在該分離單元15内進行分離。其中,由於該分離 口 151的直徑從靠近冷凝部出口 123的一端向本體150逐 漸增加,從液體管線14的第一部分141進入分離口 151的 液態的工作介質主要從分離口 151的中央直接向下滴落至 流出口 153,從流出口 153經由液體管線14的第二部分 142流向蒸發部11 ;而氣態的工作介質從該分離口 151的 周圍向下擴散並逐漸充溢於本體150的頂端部分,所述氣 態的工作介質接觸分離單元15的表面後進一步冷凝收縮 成液態,順沿分離單元15的内壁流向流出口 153,從流出 口 153經由液體管線14的第二部分142流向蒸發部11。 [0013] 〇 與習知技術中的迴路熱管相比,上述迴路熱管10工作過 程中,該分離單元15使得在冷凝部12放熱冷凝混有未凝 結氣體的工作介質在回流至蒸發部11前分離,同時分離 單元15可以將過多液態的工作介質進行暫存,使得液態 的工作介質可以連續、均勻地流向蒸發部11,從而保證 該迴路熱管10工作的穩定性。通過工作介質從蒸發部11 吸收熱量到冷凝部12釋放熱量,工作介質反復蒸發、冷 凝,不斷吸熱、放熱,從而達到良好的熱交換的目的。 [0014] 圖3所示為本發明第二實施例所提供的迴路熱管20,其與 第一實施例的區別在於:該迴路熱管20中的分離單元25 大致呈錐形。該分離單元25包括與液體管線14的第一部 分141連接的一錐形的分離口 251及與液體管線14的第二 部分142連接的一倒錐形的流出口 252。該錐形的分離單 099128462 表單編號Α0101 第7頁/共14頁 0992050007-0 201209365 IS的最大直役大致為該液體管線14的直徑的三倍,從 線14偶分離單元25的容積遠遠大於相同長度的液體管 、4的谷積。因此,該 程中,冷凝後的工作c中工作介質在循環過 11時,該分離單元=體管線14回流到蒸發部 工作介質進行㈣,並/ 岐^作介f及液態 % 、可u將過多液態的工作介質進彳_ 暫存’使得液態的工作介質可以連續 :仃 部11 ’保證該迴路熱㈣工作的穩m 叫 [0015] [0016] [0017] [0018] [0019] [0020] [0021] [0022] [0023] [0024] 099128462 綜上所述’本發明符合發明專利要件 申請。惟,以上所述者僅為本發明★依扑出專利 ^ 為本柄之赌實施例,舉Λ =本案技藝之人士,在爰依本發明精神所作之 飾或變化,皆應涵蓋於以下之申請專利範圍内。仏 【圖式簡單說明】 圖1是本發明第-實施例中迴路熱管的立體圖。 圖2是圖1中迴路熱管的俯視圖。 圖3是本發明第二實施例中迴路熱—圖。 【主要元件符號說明】 迴路熱管:10 蒸發部:11 蒸發部入口 : 110 蒸發部出口 : 11 2 冷凝部:12 冷凝部入口 : 121 第8頁/共14胃 表單編號Α0101 201209365 [0025] 冷凝部出口 : 123 [0026] 蒸氣管線:13 [0027] 液體管線:14 [0028] 第一部分:141 [0029] 第二部分:142 [0030] 分離單元:15、25 [0031] 本體:150 [0032] 分離口 · 151、251 [0033] 流出口 : 15 3、2 5 3201209365 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a heat transfer element, and more particularly to a loop heat pipe. [Prior Art 3 [0002] With the continuous improvement of the power of electronic components such as central processing units, heat dissipation has received more and more attention. The loop heat pipe (1〇〇ρ(6)士, LHP) (iv) its high (four) heat transfer performance is used as an effective heat transfer element in the field of heat dissipation. Λ [0003] Generally, the loop heat pipe includes an evaporation portion (evap〇rat〇r), a condenser, and a vapor line and a liquid line disposed between the evaporation portion and the condensation portion. (nquid Hne). The vapor line and the liquid line connect the evaporation portion and the condensation portion into a circuit, and the circuit is filled with a working medium. The evaporation portion is thermally coupled to a heat generating electronic component. When the evaporation portion of the loop heat pipe is heated, the working medium therein absorbs heat and evaporates and expands into a gaseous state, flows through the vapor line to the condensation portion of the loop heat pipe and condenses and shrinks into a liquid state in the condensation portion, and the condensed working medium Returning to the evaporation section via the liquid line, a cycle is completed. In this way, the working medium repeatedly evaporates and condenses, and continuously absorbs heat and releases heat, thereby achieving the purpose of heat exchange. [0004] However, during the circulation of the working medium in the loop heat pipe, the working medium is mixed with a small amount of condensed gas after being condensed in the condensation portion, and the working medium after the cold # is separated into non-continuous water beads by the non-condensing gas. Formed to form a gas-liquid mixture or a gas plug. Therefore, when the liquid is returned to the evaporation portion through the liquid delivery line, the liquid supply to the evaporation portion due to the presence of the gas plug causes the temperature fluctuation in the heat pipe of the circuit, and when it is severe, it will smash 篆099128462 Form No. A0101 3 pages/total 14 pages °"2〇5〇〇〇v〇201209365 The hair dryer is burned. In the prior art, the capillary structure is prevented by adding a capillary structure to the liquid pipeline, but this method is liable to cause blockage of the pipeline, and when the length of the liquid pipeline is large, the manufacturing cost and difficulty are increased, and the effect is not satisfactory. . SUMMARY OF THE INVENTION [0005] In view of the above, it is necessary to provide a loop heat pipe that can effectively prevent the formation of a gas plug. [0006] A loop heat pipe includes an evaporation portion, a condensation portion, a vapor line, and a liquid line, the vapor line and the liquid line being disposed between the evaporation portion and the condensation portion and connecting the evaporation portion and the condensation portion into a circuit, the circuit The working medium is filled with a separation unit having a volume larger than the volume of the liquid pipeline of the same length, and the separation unit separates the mixed gaseous working medium and the liquid working medium conveyed through the liquid pipeline. . Compared with the prior art, the loop heat pipe is provided with a separating unit for separating the mixed gaseous working medium and the liquid working medium which are discharged from the condensing portion and transported through the liquid pipeline, through the liquid pipeline. In order to prevent the working medium from condensing and then returning to the evaporation portion via the liquid line, a gas plug is formed, so that the liquid working medium can be continuously and uniformly returned to the evaporation portion, thereby ensuring the stability of the operation of the heat pipe of the circuit. [0008] Referring to FIG. 1 and FIG. 2, a loop heat pipe 10 in a first embodiment of the present invention includes an evaporation portion, a condensation portion 12, a vapor line 13, a liquid line 14, and a separation. Unit 15. 099128462 Form No. A0101 Page 4 of 14 0992050007-0 201209365 [0009] The evaporation portion 11 is rectangular and includes an evaporation portion inlet 110 connected to one end of the liquid line 14 and an end connected to the vapor line 13. An evaporation portion outlet 112. The evaporation portion 11 is thermally connected to a heat generating electronic component such as a CPU (not shown). The condensing portion 12 has a circular tubular shape which is parallel to the evaporation portion 11. The condensing portion 12 includes a condensing portion inlet 121 connected to the other end of the vapor line 13 and a condensing portion outlet 123 connected to the other end of the liquid line 14. The outer surface of the condensing portion 12 may incorporate a heat dissipating member such as a heat dissipating fin (not shown) penetrating the condensing portion to increase the heat dissipating efficiency of the condensing portion 12. [0010] The vapor line 13 and the liquid line 14 are respectively in a circular tubular shape. In the present embodiment, the diameters of the vapor line 13 and the liquid line 14 are equal to the diameter of the condensation portion 12, respectively. The vapor line 13 is connected between the evaporation portion outlet 112 and the condensation portion inlet 121. The liquid line 14 is connected between the condensation portion outlet 123 and the evaporation portion inlet 110, thereby connecting the evaporation portion 11 and the condensation portion 12 into a circuit. The circuit is filled with working medium. The working medium may be water, alcohol, etc., and is usually injected into the circuit after being evacuated into a suitable vacuum in the circuit. In a specific implementation, the diameters of the vapor line 13 and the liquid line 14 可以 may be different, but it is preferable to ensure that the diameter of the connection between the liquid line 14 and the evaporation portion inlet 110 is not larger than the diameter of the connection between the liquid line 14 and the condensation portion outlet 123. . [0011] The separation unit 15 is located on the liquid line 14, and includes a hollow cylindrical body 150, a tapered separation opening 151 at one end of the body 150, and a reverse cone at the other end of the body 150. Outflow 153. The separation unit 15 divides the liquid line 14 into a first portion 141 connected between the condensation portion outlet 123 and the separation port 151 and is connected to the outlet port 099128462. Form No. A0101 Page 5 / 14 pages 0992050007-0 201209365 153 and evaporation A second portion 142 between the inlets 110. The diameter of the body 150 of the separation unit 15 is much larger than the diameter of the liquid line μ, so that the volume of the separation unit 15 is much larger than the volume of the liquid line 14 of the same length, and therefore, the gas and liquid mixture conveyed via the liquid line 丨4 The working medium in the state can be separated when flowing into the separation unit 15 from the liquid line 14 having a small volume. In the present embodiment, the diameter of the body 15 is twice the diameter of the liquid line 14. The diameter of the separation port 151 gradually increases from the end near the outlet portion 123 of the condensation portion to the body 150. When the working medium in the gas-liquid mixed state flows from the separation port 151 into the separation unit 15, the liquid working medium is mainly transferred from the separation port 151. The central sorrow drops downward, and the gaseous working medium diffuses downward from the separation port 154 and gradually overflows the top portion of the body 150. The diameter of the outflow port 153 gradually decreases from the body 150 toward the end of the evaporating portion inlet 110. Therefore, the outflow port 153 can restrict the speed at which the liquid working medium flows out of the separating unit 15. 'Excessive liquid working medium can be temporarily It is stored in the separation unit i 5 and then flows out uniformly through the outlet 153. [0012] During operation, the working medium in the evaporation portion 11 absorbs heat from the heat-generating electronic component to evaporate and expand into a gaseous state 'and enters the vapor line 13 from the evaporation portion outlet 112' to flow through the vapor line 13 to the condensation portion 12, from the condensation portion inlet. 121 enters the condensation portion 12, condenses and shrinks into a liquid state after the condensation portion 12 releases heat, and then flows from the condensation portion outlet 123 into the liquid line 14 to flow through the liquid line 丨4 to the evaporation portion 11, and finally the condensed working medium is introduced from the evaporation portion. 11〇 Return to the evaporation section in time. In the above process, the working medium which is exothermicly condensed in the condensing portion 12 is formed into a discontinuous water droplet shape by being separated by the non-condensing gas, thereby forming a state in which the gas and the liquid working medium are mixed. Since 099128462 Form No. A0101 Page 6 / Total 14 Page 0992050007-0 201209365 Ο The separation unit 15 is disposed, and the working medium in the gas-liquid mixed state flows through the liquid line 14 to the evaporation portion 11 and flows through the separation. The unit 15 is separated in the separation unit 15. Wherein, since the diameter of the separation port 151 gradually increases from the end near the condensation portion outlet 123 toward the body 150, the liquid working medium entering the separation port 151 from the first portion 141 of the liquid line 14 is mainly directly downward from the center of the separation port 151. Drips to the outflow port 153, from the outflow port 153 to the evaporation portion 11 via the second portion 142 of the liquid line 14; and the gaseous working medium diffuses downward from the periphery of the separation port 151 and gradually overflows the top end portion of the body 150, The gaseous working medium contacts the surface of the separation unit 15 and is further condensed and contracted into a liquid state, flowing along the inner wall of the separation unit 15 to the outflow port 153, and from the outlet port 153 to the evaporation portion 11 via the second portion 142 of the liquid line 14. [0013] Compared with the loop heat pipe in the prior art, the separation unit 15 causes the working medium which is condensed and condensed with the uncondensed gas to be condensed in the condensing portion 12 to be separated before being returned to the evaporation portion 11 during operation of the above-described loop heat pipe 10. At the same time, the separation unit 15 can temporarily store the excess liquid working medium, so that the liquid working medium can continuously and uniformly flow to the evaporation portion 11, thereby ensuring the stability of the operation of the loop heat pipe 10. The heat is absorbed from the evaporation portion 11 through the working medium to release heat from the condensation portion 12. The working medium is repeatedly evaporated and condensed, and the heat is absorbed and exothermicly, thereby achieving good heat exchange. 3 is a circuit heat pipe 20 according to a second embodiment of the present invention, which differs from the first embodiment in that the separation unit 25 in the circuit heat pipe 20 is substantially tapered. The separation unit 25 includes a tapered separation port 251 coupled to the first portion 141 of the liquid line 14 and a reverse tapered outlet port 252 coupled to the second portion 142 of the liquid line 14. The tapered separation unit 099128462 Form No. 1010101 Page 7 / Total 14 Page 0992050007-0 201209365 The maximum direct service of IS is approximately three times the diameter of the liquid line 14, and the volume of the even separation unit 25 from the line 14 is much larger than The same length of liquid pipe, 4 valley product. Therefore, in this process, when the working medium in the condensed work c is circulated through 11, the separation unit = the body line 14 is returned to the working medium of the evaporation portion (4), and / 作 ^ 介 f and liquid %, can be u Excessive liquid working medium enters _ _ temporary storage so that the liquid working medium can be continuous: 仃 11 ' to ensure that the circuit is hot (4) working stable m [0015] [0017] [0018] [0019] [0020 [0024] [0024] [0024] In summary, the invention is in accordance with the invention patent application. However, the above description is only for the present invention. According to the gambling embodiment of the patent, the person skilled in the art, the decoration or variation made in accordance with the spirit of the present invention, should be covered in the following Within the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a loop heat pipe in a first embodiment of the present invention. 2 is a top plan view of the loop heat pipe of FIG. 1. Figure 3 is a circuit heat diagram of a second embodiment of the present invention. [Main component symbol description] Loop heat pipe: 10 Evaporation section: 11 Evaporation section inlet: 110 Evaporation section outlet: 11 2 Condensation section: 12 Condensation section inlet: 121 Page 8 of 14 Stomach form number Α0101 201209365 [0025] Condensation section Exit: 123 [0026] Vapor Line: 13 [0027] Liquid Line: 14 [0028] Part 1: 141 [0029] Part 2: 142 [0030] Separation Unit: 15, 25 [0031] Body: 150 [0032] Separation port · 151, 251 [0033] Outflow: 15 3, 2 5 3

严;' ^ m I :;i t ^ %β 0992050007-0 099128462 表單編號A0101 第9頁/共14頁Strict; ' ^ m I :; i t ^ %β 0992050007-0 099128462 Form No. A0101 Page 9 of 14

Claims (1)

201209365 七、申請專利範圍: 1 . 一種迴路熱管,包括蒸發部、冷凝部、蒸氣管線及液體管 線,該蒸氣管線與液體管線設於蒸發部與冷凝部之間且將 該蒸發部與冷凝部連接成一迴路,該迴路内填充有工作介 質,其改良在於:該液體管線上連接設有分離單元,該分 離單元的容積大於相同長度的液體管線的容積,該分離單 元將經由液體管線傳送的混合的氣態工作介質及液態工作 介質進行分離。 2 .如申請專利範圍第1項所述的迴路熱管,其中該分離單元 包括一中空圓柱狀的本體及分別位於本體兩端的一分離口 及一流出口,該本體的直徑大於該液體管線的直徑。 3 .如申請專利範圍第2項所述的迴路熱管,其中該分離口呈 錐形,分離口的直徑從本體向冷凝部所在方向逐漸減小。 4 .如申請專利範圍第3項所述的迴路熱管,其中該流出口呈 倒錐形,流出口的直徑從本體向蒸發部所在方向逐漸減小 〇 5 .如申請專利範圍第2項所述的迴路熱管,其中該本體的直 徑為該液體管線的直徑的兩倍。 6 .如申請專利範圍第1項所述的迴路熱管,其中該分離單元 包括一錐形的分離口及一倒錐形的流出口,該分離單元的 最大直徑大於該液體管線的直徑。 7.如申請專利範圍第6項所述的迴路熱管,其中該分離單元 的最大直徑為該液體管線的直徑的三倍。 8 .如申請專利範圍第1-7項中任意一項所述的迴路熱管,其 中該液體管線與蒸發部連接處的直徑不大於液體管線與冷 099128462 表單編號A0101 第10頁/共14頁 0992050007-0 201209365 凝部連接處的直徑。 ❹ 099128462 表單編號A0101 第Π頁/共14頁 0992050007-0201209365 VII. Patent application scope: 1. A loop heat pipe comprising an evaporation portion, a condensation portion, a vapor line and a liquid line, the vapor line and the liquid line being disposed between the evaporation portion and the condensation portion and connecting the evaporation portion and the condensation portion In a circuit, the circuit is filled with a working medium, and the improvement is that the liquid line is connected with a separation unit having a volume larger than the volume of the liquid pipeline of the same length, and the separation unit will be mixed via the liquid pipeline. The gaseous working medium and the liquid working medium are separated. 2. The loop heat pipe of claim 1, wherein the separation unit comprises a hollow cylindrical body and a separation port at each end of the body and a first-class outlet having a diameter larger than a diameter of the liquid line. 3. The loop heat pipe of claim 2, wherein the separation port is tapered, and the diameter of the separation port gradually decreases from the body toward the direction of the condensation portion. 4. The loop heat pipe according to claim 3, wherein the outflow port has an inverted taper shape, and a diameter of the outflow port gradually decreases from the body toward the evaporation portion 〇5. As described in claim 2 A loop heat pipe wherein the body has a diameter that is twice the diameter of the liquid line. 6. The loop heat pipe of claim 1, wherein the separation unit comprises a tapered separation port and a reverse tapered flow outlet, the separation unit having a larger diameter than the diameter of the liquid line. 7. The loop heat pipe of claim 6, wherein the separation unit has a maximum diameter that is three times the diameter of the liquid line. 8. The loop heat pipe according to any one of claims 1 to 7, wherein the diameter of the connection between the liquid line and the evaporation portion is not greater than the liquid line and the cold 099128462 Form No. A0101 Page 10 / Total 14 Page 0992050007 -0 201209365 The diameter of the joint of the condensation. ❹ 099128462 Form No. A0101 Page / Total 14 Pages 0992050007-0
TW99128462A 2010-08-25 2010-08-25 Loop heat pipe TW201209365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128462A TW201209365A (en) 2010-08-25 2010-08-25 Loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128462A TW201209365A (en) 2010-08-25 2010-08-25 Loop heat pipe

Publications (1)

Publication Number Publication Date
TW201209365A true TW201209365A (en) 2012-03-01

Family

ID=46763572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128462A TW201209365A (en) 2010-08-25 2010-08-25 Loop heat pipe

Country Status (1)

Country Link
TW (1) TW201209365A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510902B (en) * 2013-11-07 2015-12-01 Acer Inc Heat dissipating assembly and electronic device using the same
TWI604173B (en) * 2016-11-09 2017-11-01 財團法人金屬工業研究發展中心 Heat sink device applied to loop heat pipe and manufacturing method of its shell
CN113661569A (en) * 2019-04-09 2021-11-16 西门子股份公司 Heat transfer apparatus and components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510902B (en) * 2013-11-07 2015-12-01 Acer Inc Heat dissipating assembly and electronic device using the same
US9332675B2 (en) 2013-11-07 2016-05-03 Acer Incorporated Heat dissipating assembly and electronic device using the same
TWI604173B (en) * 2016-11-09 2017-11-01 財團法人金屬工業研究發展中心 Heat sink device applied to loop heat pipe and manufacturing method of its shell
CN113661569A (en) * 2019-04-09 2021-11-16 西门子股份公司 Heat transfer apparatus and components

Similar Documents

Publication Publication Date Title
US9777967B2 (en) Temperature glide thermosyphon and heat pipe
US20070227703A1 (en) Evaporatively cooled thermosiphon
CN100437004C (en) Ring type heat exchanging system
CN1639532A (en) Capillary evaporator
JP2011011202A (en) Evaporation type seawater desalination apparatus using phase-change medium
CN104040280B (en) Cooling device
TW200530552A (en) Heat sink
TWM450187U (en) Circulation type thermosyphon heat dissipation device
US9052126B2 (en) Heat exchange circulatory system
TW201209365A (en) Loop heat pipe
TW201510460A (en) A stereo heat-conducting device of a radiator
FI106066B (en) A cooler based on thermal energy that binds to a working substance in a state of change
TWI276396B (en) Closed-loop latent heat cooling method, and capillary force or non-nozzle module thereof
CN102374803A (en) Loop heat pipe
WO2019204339A1 (en) Phase separator and liquid re-saturator for two-phase cooling
TWI699505B (en) Remote heat dissipation module with micro flow channel
WO2017219521A1 (en) Multi-branch phase change heat transfer system
TWI339331B (en)
KR20120042403A (en) Heat pipe and cooling apparatus having the same
TWI243885B (en) Heat pipe structure with an external liquid detouring path
TWI314208B (en) Micro droplet cooling apparatus
TWM282236U (en) Improved structure of a heat dissipating device using a circulated heat pipe
TW584799B (en) Flat-board loop type micro heat pipe
CN106024736A (en) Integrated micro heat pipe radiator based on MEMS technology
TWI325485B (en)