TW201208798A - Laser annealing apparatus and laser annealing method - Google Patents

Laser annealing apparatus and laser annealing method Download PDF

Info

Publication number
TW201208798A
TW201208798A TW100128952A TW100128952A TW201208798A TW 201208798 A TW201208798 A TW 201208798A TW 100128952 A TW100128952 A TW 100128952A TW 100128952 A TW100128952 A TW 100128952A TW 201208798 A TW201208798 A TW 201208798A
Authority
TW
Taiwan
Prior art keywords
laser light
pulsed laser
semiconductor film
pulse
laser
Prior art date
Application number
TW100128952A
Other languages
Chinese (zh)
Inventor
Ryosuke Sato
Hideaki Kusama
Ryotaro Togashi
Hirotomo Izaki
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Publication of TW201208798A publication Critical patent/TW201208798A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A laser annealing apparatus capable of making a semiconductor film crystallized uniformly by laser annealing is provided. The laser annealing apparatus includes a pulsed laser oscillation unit which outputs a pulsed laser; and a light transmission unit which transmits the pulsed laser outputted from the pulsed laser oscillation unit and irradiates the pulsed laser to the semiconductor film. The pulsed laser is irradiated to the semiconductor film, when the effective power density of an irradiated surface of the semiconductor film counted by the following formula is satisfied with the range of 3*10<SP>12<SP> to l.5*10<SP>12<SP>. Effective power density = pulse energy density/pulse width*absorption coefficiency of the semiconductor film...formula Therefore, the semiconductor film can be crystallized without causing a result of grain growing abnormally, resulted from complete melting, and low-deviation and uniform crystals can be obtained.

Description

201208798 . 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種雷射退火(laser anneal)裝置及 雷射退火方法,該雷射退火裝置及雷射退火方法是將脈衝 雷射(pulse laser)光照射至半導體膜來進行雷射退火。 【先前技術】 近年來’液晶顯示器(display)需要具有如下的性能 的薄膜電晶體(transistor),該性能是指主要為了實現高解 析度、或驅動圖框率(frame rate)的高速化、3D化等所 而的性月b。為了使薄膜電晶體的性能提高,必須藉由雷射 退火來使矽(silicon)半導體膜結晶化。 先前,雷射退火裝置是使非晶矽(am〇rph〇ussilic〇n: (a-Si)結晶化的裝置,且採用了使用準分子雷射(exdme laser)的退火技術。由於準分子雷射的光束(beam)的占 質低,因此,無法將光束縮小為微小的光束。因此,安絮 光學系統,將上述準分子雷射的光束沿著χγ方向整形為 頂平(tGp flat)型的光束來使用一般被使用的準分子雷 射為XeCl (波長為308 nm),因此,a-Si對於xeci準分 子雷射的吸收量高,Xeci準分子雷槪透至非晶㈣的^ 透深度非常淺,該浸透深度約為7nm,且於财方向上 ^溫度梯度。使用準分子雷射的退火技術利用上述溫度梯 度’以不會使整個非晶頻完全㈣的雷射輸出,使έ士曰 f長的核殘留於膜底部而使上述非晶頻祕,以上^亥曰 ‘,、基點來進行結晶成長。圖8中表示上述結晶化的模式^ 4 201208798 亦即,將脈衝雷射光40照射至形成於玻璃(glass) 基板30上的非晶矽膜31,產生熔融矽膜32。該熔融矽膜 3 2在再結晶化而凝固的過程中結晶化,從而形成結晶矽膜 33。 ' 此外,亦已提出有使用吸收層的雷射退火方法(專利 文獻 1)使用紀銘石榴石(Yttrium.Aiuminurn 〇arnet,yag) 兩倍頻波(波長為532 nm)的雷射退火裝置(專利文獻2) 或使用連續振盡雷射的裝置(專利文獻3)。 而且亦存在如下的方法,該方法為了無不均且均一地 結晶化而使用複雜的步驟來進行雷射退火,例如於專利文 獻:中,已提出有使用加熱平台(stage)的方法。此外, 已提出有分為兩次來照㈣射的方法(專利文獻5、專利 文獻6)。又’亦存在欲使用其他波長的雷射來解決上述問 題點的例子’例如已報告有使用Mo膜吸收層與雷射二極 體0隨dlode)的例子(非專利文獻1)。此外,已提出 有使用色半導體雷射的方法(專利文獻7)。 先前技術文獻 專利文獻 專利文獻1 專利文獻2 專利文獻3 專利文獻4 專利文獻5 專利文獻6 曰本專利特開昭62-1323311號公報 曰本專利特開2005-294493號公報 曰本專利特開2010-118409號公報 曰本專利特開2〇〇8_147487號公報 日本專利特開2010-103485號公報 曰本專利特開2001-338873號公報 201208798 jyiuzpif 專利文獻7 :日本專利特開2〇〇9_1112〇6號公報 非專利文獻 非專利文獻1 · E. P. Donovan所著「對藉由粒子植入 所製備之非晶矽及鍺之結晶及弛豫之測熱法研究」,應用物 理學雜誌第 57 卷,第 Π95-1804 頁,1985 年(E.P.D〇novan, Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by i〇n implantation.J.Appl.Phys., V〇1.57, pp.1795-1804, 1985) 先前的XeCl準分子雷射退火裝置使用如上所述的方 法,因此,結晶性良好,但由於是瞬間加熱至熔點為止, 因此’需要以防止脫落(ablation )為目的的脫氫步驟或必 須嚴格地對雷射輸出、及聚焦(focus)進行控制。又,由 於一次性地使上述非晶石夕膜溶融,因此,光束的長軸銜接 部存在特性變差的問題,目前存在如下的問題點,即,由 於受到光束尺寸(beam size)的限制,僅可對應於基板尺 寸G4 (730 mmx920 mm) ’因此,難以進行大面積處理。 於雷射退火過程中,結晶的狀態會根據雷射輸出的大小而 發生變化,因此’鑒於上述問題,於專利文獻1中亦揭示 有使雷射輸出發生變化的方法’但尚無法解決長軸銜接的 問題。 於使用連續振盪雷射的專利文獻3所揭示的裝置中, 需要多個使雷射光彙聚的光學系統,因此,雷射振盈器各 自所具有的能量(energy)的強度會產生偏差或干涉,難 以尚精度地實現均一化。 6 201208798. ,又,對於如專利文獻4般使用加熱平台的方法而言, 伴,加熱冷卻的工作時間(takt time)的損失大不適合 =實際運用。又,對於分為兩次來騎雷射的專利文獻5、 織利文獻6所揭不的方法而言,存在處理量(throughPut) 變差的問題。X ’在使用其他波長的雷射來解決上述問題 .、占的非專利文獻1所揭示的技術中,由於增加了如吸收層 的剝離等的步驟,因此,不適合於實際運用。 、又’對於使用GaN系藍色半導體雷射的專利文獻7的 方去而5,由於本質上與熔融製程(process)並無不同, 且該製程限於GaN线色半導體雷射,因此,輸出極低, 在產業上不適用。 【發明内容】 本發明是為了解決如上所述的先前問題而成的發明, 目的在於提供如下的雷射退火裝置及雷射退火方法,該雷 射退火裝置及雷射敎綠是使職半導體麟收的雷射 ί ’且$本申請案中所示的有效功率(power)密度處於某 乾圍,藉此,可無需複雜的步驟而無不均且地 積的半導體膜結晶化。 亦即’本發明的雷射退火裝置中,第丄發明的特徵在 於包括:脈衝雷射缝裝置,將_雷射舒以輸出;以 及光傳輸單元’對自上述脈衝雷射振錄置輸出的上述脈 衝雷射光進行傳輸,謂上述脈衝f射光照射至半導體 =,以使半導體膜照射面上的由下述式計算出的有效功率 迷度處於3x10幻5x1〇i2的範圍内的方式,將上述脈衝 7 201208798 j^xuzpif 雷射光照射至上述半導體膜。 有效功率密度(J/(秒.cr^))二 旦… /脈寬(秒)X半導體膜的吸收係數(cm/)b里= ( J/Cm ) 發明的Γ退火裝置的特徵在於包括,連續雷射 述連續雷射振蘯裝置輸出的連續雷射光 于 抽出的脈衝雷射光進行傳輸,且將“射先 以及脈衝雷射光產生單元’於上述傳輸過程中, 舒以抽出域擬地設為脈絲而產生脈 以使半導體膜照射面上的由下述式計算出的有效功率 ^處於3xl()4 Ux,的範圍内的方式,將上述脈衝 雷射光照射至上述半導體膜。 有效功率密度(J/(秒.cm3))=脈衝能量密度(J/cm2) /脈寬(秒)X半導體膜的吸收係數…(式) 如上述第1發明或第2發明所述,第3發明的雷射退 火裝置的特徵在於:包括對上述脈衝雷射光的能量密度進 仃,整的能量調整單元,該能量調整單元是以使由上述式 計算出的上述有效功率密度處於3&gt;&lt;1〇12至15χ1〇Ι2的範圍 内的方式,對能量密度進行設定。 如上述第3發明所述,第4發明的雷射退火裝置的特 徵在於:包括衰減器(attenuator)及輸出調整單元作為上 述能量調整單元,上述衰減器以規定的衰減率來使脈衝雷 射光衰減且使該脈衝雷射光透過,上述輸出調整單元對上 8 201208798 振輪出進行調整’上述衰減器及上述輸出 二〇^7 5二2=式計算出的上述有效功率密度處於 輸出進m _圍内的方式,對上述衰減率及上述 如上述第1發明至第4發明令的任一項所述,第5發 =射退Γ置的特徵在於:包括對上述脈衝雷射光: 仃”周1的脈寬調整單元,該脈寬調整單元是以使由 上ί式計算出的上述有效功率密度處於3_12至L5XHP 的範圍内的方式,對上述脈衝雷射光的脈寬進行調整。 如上述第1發明至第5發明中的任一項所述,第6發 明的雷射ιΕ火裝置的特徵在於··上述半導體膜切半導體 膜’上述能量密度為100 mJ/cm2〜5〇〇 mJ/cm2 ’上述脈寬 為50奈秒〜500奈秒。 第7發明的雷射退火方法是將脈衝雷射光照射至半導 體膜,對该半導體膜進行雷射退火,該雷射退火方法的特 啟在於:以使照射面上的由下述式計算出的有效功率密度 處於3X1012至1·5χ1012的範圍内的方式,對上述脈衝雷^ 光的脈衝能量密度及脈寬進行設定,將該經設定的上述脈 衝雷射光照射至上述半導體膜。 有效功率密度(J/(秒.cm3))=脈衝能量密度(j/cm2) /脈寬(秒)X半導體膜的吸收係數(⑽,.(式) 根據本發明,使能量密度、脈寬、以及吸收係數之間 具有適度的關係’將脈衝雷射光照射至半導體膜來急速地 加熱’藉此,將不會使半導體膜完全熔融的程度的熱施加 9 201208798. 至該半導麵,從而可_與先前的完全料/再結晶化法 不同的方法來獲得粒㈣偏差小且均一的結晶。 的溶融結晶化法或利用加熱爐的固相成長法(§視杜二 Crystallization,SPC)會使結晶粒的偏差變大。 接著’糾下_料,對树日㈣規㈣條件 說明。 有效功率密度:3x1012至15樣12的範圍内 將由下述式計算ϋ的有效功率密度 圍,藉此,可對半導體膜進行退火,使該半導體 =均-的結晶半導體膜。若有效功率密度不足:偏 職法充分地對半導體膜進行加熱,結晶化容錢得不均 i為Ϊ均率密度超過上限,則半導體膜會炫融而 有=率密度〇/(秒·3)卜_能量密度( /脈寬(秒)Χ半導體膜的吸收係數...(式) 再者,上述有效功率密度是本發 密度,並不表示-般的物雌f。疋義的有效功率 脈衝雷射光波長帶 if 發明令’照射至半導體膜的脈衝雷射光的波寻帶 行^的波長帶。然而,若根據脈衝雷射光“ ^藉此,,、、、=!?雷射光,則直接對半導體膜進行加 地設置於半導加熱’無需將雷射吸收層間接 於半導的上層,上述脈衝雷射光的波長帶是對 、而舌尤其對於非晶石夕膜而言,吸收性佳的波長 201208798 帶。又,若波長為雖會被半導體膜尤其是非晶矽膜吸收, 亦會透過半導體膜尤其是非晶矽膜的波長,則對於半導體 膜的光的吸收率會因來自下層的多重反射,而大幅度地依 賴於矽下層的厚度的偏差(variation)。考慮到上述方面, 紫外區的308 nm〜358 nm的波長帶較佳。 能量密度 將適度的能量密度的脈衝雷射光照射至半導體膜,藉 此,半導體膜在不完全熔融的狀態下發生變化,從而可製 作微結晶。若能量密度低,則有效功率密度會變小而使結 晶化不充分,或難以結晶化。另一方面,若能量密度高, 則有效功率密度會變得過大而產生熔融結晶,或發生脫 落。對於本發明而言,只要有效功率密度處於恰當的範圍 内’則能量密度並無特別的限定,但可將1〇〇mJ/cm2〜5⑻ mJ/cm2的範圍表示為較佳的範圍。 脈寬 脈寬是一個重要的因素’該脈寬用以使有效功率密度 成為適當的有效功率密度,從而適度地對半導體膜進行加 熱’若脈寬過小’則有效功率密度會增大,半導體膜會被 加熱至完全熔融的溫度為止,從而難以實現均一的結晶 化。又’若脈寬過大,則有效功率密度會減小,有時上述 半導體膜無法被加熱至結晶化的溫度為止。對於本發明而 言’只要有效功率密度處於恰當的範圍内,則脈寬並無特 別的限定,但可將50奈秒〜500奈秒的範圍表示為較佳的 範圍。 11 201208798. 脈衝雷射光的照射面形狀並無特別的限定,例如可設 為點(spot)狀、線(line)狀而照射至半導體膜。 當將上述脈衝雷射光的照射面形狀設為線狀時,較佳 為將上述脈衝雷射光的短軸寬度設為0.5 mm以下。^脈 衝雷射光沿著短軸寬度方向而相對地進行掃描,藉此,能 夠一面部分地對半導體膜進行照射或加熱,一面^大區= 進行,晶化處理。然而,若短軸寬度過大,則為了效率良 好地實現結晶化,必須使掃描速度加快,從而導致襞置^ 本(cost)增大。 ^使上述脈衝雷射光相對於非晶質膜而相對地進行掃 描,藉此,能夠沿著面方向來使上述半導體膜結晶化。可 使脈,雷射侧雜來進行上述掃描,可使非晶質膜側移動 來進m述掃描,亦可使脈㈣侧與非晶_側均移動 來進行掃描β 再者本發明可使用固體雷射光源來將所需的波長帶 的脈衝雷射舒以—,從而可#由賴(mainten_) 性良好的騎統來製作均—的結晶,± ,衝雷射光予以輸出。再者,脈衝雷射光亦可== 光予以抽出且模擬地設為脈衝狀而成的雷射光。可使 機械n地進行馬速旋轉等的擋M (shuttef)或光調變界 荨,來將上述連續雷射光予以抽出。 ^ 社曰為了藉由恰當的上财效功率密度來獲得均—的微細 ’可獅能量難單元來適#地對脈衝#射光的能量 松度進行難之後,將該脈衝雷射光至半導體膜。能 12 201208798 ^ Λ. 量調整單元可對#難衫置㈣㈣行 ==!:利用衰減器來對自雷射振二 b關於脈雜射光的能量紐難, 2調 :射光時,亦可在呈脈衝狀地抽出之前,進行上= 又 m 0為猎*的上述有效功率密度來獲得均-的 =、、、。Βθ ’可脈寬雛單元來騎地對脈衝雷射光的 脈寬進㈣整之後’將該脈衝雷射光照射至半導體膜。 可藉由如下的單元來構祕寬難單元,元 :光=料元,將脈衝雷射光分割為祕光束;延遲 八=Γ77割而成的各光束延遲;以及光束合成單元,對 ^而成的各光束進行合成。對延遲單元的延· 疋,藉此,可使__成為適t的形狀。輯單ς 由對光路長度進行調整來將延遲量予以變更。 曰 例如’將由上述光束分割單元分割的雷射分別引導至 ^路,度不同的光學纽。將、齡糾㈣的光束再次引 =早一的光路上,藉此,可使脈衝時間寬度(duration) 伸長’從而可對脈衝波形進行調整。尤其對分割 比進行輕’且對分狀後的各個統長歧行設定,^ 此,可適當地將脈衝時間波形予以變更。 、/亦:藉由使多個自雷射光源輸出的脈衝雷射光重合來 進行脈寬調整。將多個脈衝雷射光照射至半導體膜,結果, 可獲得所需的脈衝波形。當使乡個脈衝雷射光重合時,對 13 201208798. 脈衝輸出的相位進行調整,或使延遲單元介入,藉此,可 將上述脈衝雷射光的脈寬調整至所需的脈寬,藉由上述構 成來構成脈寬調整單元。 利用掃描裝置來使脈衝雷射光相對於半導體臈而進行 掃描’藉此,可在半導體膜的大區域中,獲得微細且均一 的結晶。對脈衝的頻率、脈衝雷射光的短軸寬度、以及掃 描速度進行設定,以使藉由上述掃描來對半導體膜的同一 區域進行照射的照射(shot)次數達到規定次數,例如達 到1次〜10次。 掃描裝置可使對脈衝雷射光進行引導的光學系統移動 來使脈衝雷射光移動’亦可使配置有半導體膜的基台移動。 發明的效果 如以上的說明所述,根據本發明,由於使下述式所示 的有效功率密度處於3_12至1.5X1G12的範圍内,將脈衝 雷射光照射至半導體膜’因此,可使半導體膜結晶化而不 會使異常晶粒成長,從而可獲得偏差小且均-的結晶。 【實施方式】 以下,對本發明的一個實施形態進行說明。 圖1是表示本發明的雷射退火裝置J的概略的圖。 处雷射退火裝置1包括處理室2,於該處理室2内設置 有能夠沿著X_Y方向移動的掃描裝置3,於該掃描裝置3 ^部設置有基台4。於基台4上設置有基板配置台5作 ^台。於退火處理時,在上述基板配置台5上設置有非 a日質的石夕膜100等作為半導體膜。石夕膜勘是以冗⑽的 201208798, -----pir 厚度而形成於未圖示的臬柘 述石夕膜100,本發明的丰暮鍊稭由例行方法來形成上 定。又,作A甲=⑽+導體膜的形成方法並無特別的限 膜,但對於本二而較佳為非晶f的半導體 你並不限定於非晶質的半導體膜。 地=、對象的半導體膜亦可為結晶質的半導體膜或局部 射退火來對結晶輯改質。W導雜,亦可應用雷 予以藉ί ί圖示的馬達(_。°等來將掃描裝置3 制,從述的控制部8來對該馬達的動作進行控 j 2,對掃描裝置3的掃贿度進行設定。又,於處理 =設置有自外部將脈衝雷射光予以導入的導入窗6。 脈衡=理室2的外部’設置有脈衝雷射振盪裝置。該 電裝置1G包鲜分子雷射缝裝置。供給驅動 電源t 9連接於該脈衝雷射振蘯裝置10,該雷射 的二以:f控制的方式而連接於控制部8。根據控制部8 射電源9將必需的驅動電壓供給至脈衝雷射振 衝雷射光射㈣裝置1G以規定的輸出來將脈 密产Ϊ據^,湘衰減器U來對脈衝雷射光15的能量 Ϊί〇 ^ 麟雷料15技上舰彳輕射振重裝 可被㈣t it振盛而被輸出的脈衝雷射光。衰減器11以 衣減器11被設定為規定的衰減率。亦即,上述雷 電源9、控制部8及衰減器11構成本發明的能量調整單 15 201208798. 元。可藉由該能量調整單元來適當地進行調整,使得矽膜 100的照射面上的能量密度達到1〇〇mJ/cm2〜5〇〇mJ/cm2。 利用包含透鏡(lens)、反射鏡(mirr〇r)、以及均化器 (homogenize!·)等的光傳輸單元12,對透過衰減器u的 脈衝雷射光15進行光束整形或使該脈衝雷射光15偏向, 該脈衝雷射光15經由設置於處理室2的導入窗6而照射至 處理室2内的矽膜100。照射時的照射面形狀並無特別的 限疋’但藉由上述光傳輸單元12來將上述照射面形狀整形 為例如點狀、圓形狀、角形狀、以及長條狀等。 又,光傳輸單元12中亦可包括脈寬調整單元13。基 於圖2來對s玄脈寬調整單元13的概略進行說明。 於脈寬調整單元13中,在光路上配置有包含半鏡面 (half mirror)的分光鏡(beam splitter) 130,該分光鏡 130 以如下的方式來對上述脈衝雷射光15進行分割,即,對一 部分的光束15a進行90度反射,且使剩餘部分的光束15b 透過。亦即,分光鏡130相當於本發明的光束分割單元。 又,於分光鏡130的反射方向上,以入射角達到45度的方 式而配置有全反射鏡131,於該全反射鏡131的反射方向 上’以入射角達到45度的方式而配置有全反射鏡132,於 全反射鏡132的反射方向上,以入射角達到45度的方式而 配置有全反射鏡133,於全反射鏡133的反射方向上,以 入射角達到45度的方式而配置有全反射鏡134。 上述分光鏡130的背面側位於全反射鏡134的反射方 向,光束以45度的入射角照射至上述分光鏡13〇的背面側。 201208798 以90度被分光鏡130反射的光束15a是以9〇度依序 被全反射鏡13卜132、133、134反射,藉此成為延遲的光 束15c且到達分光鏡130的背面侧,該光束15c的一部分 以90度被反射之後,以已延遲的形態而與光束15b重合, 剩餘的光束透過分光鏡130,反覆地進行上述全反射,且 反覆地被分光鏡130分割。於光束i5b側重合的光束重合 有已延遲的光束,藉此,脈衝波形被整形,脈寬被調整, 並將上述光束作為脈衝雷射光15〇而於光路上前進。 再者,可藉由改變各全反射鏡的位置而對光路長度進 行調整,從而改變光束的延遲量,藉此,可任意地將已重 合的脈衝雷射光的脈寬予以變更。又,亦可個別地對被分 割的脈衝雷射光的強度進行調整。 可藉由脈寬調整單元來適當地將脈寬設定至5〇郎〜 500 ns的範圍。再者,本發明亦可不包括脈寬調整單元, 而是以輸出的脈衝雷射光的脈寬照射至矽膜1〇〇。 脈衝雷射光15〇經由導入窗6而導入至處理室2内, 且照射至基板配置台5上的碎膜議。此 藉由掃描裝置3而盥基么4__僦銘叙5 1ΛΛ u 4併移動,脈衝雷射光150於 夕膜上’一面相對地進行掃描,-面進行照射。 2此時的脈衝雷射光15〇獲得適合於結晶化的有效 工率^的料,對_雷祕 11的衰減率、脈嘗、,ν 别农減盗 定,Μ二寬/ 倾射光的照射剖面積進行設 1 5Χ1012的述式計算出的有效功率密度處於3x1012至 .、_内的方式來進行設定1由照射上述脈衝 17 201208798. ^yiuzpif 雷射光150來均一地使石夕膜100結晶化。再者,矽膜100 中的雷射光吸收率是由脈衝雷射光的波長來決定,且可使 用已知的資訊。 被上述脈衝雷射光150照射而結晶化的矽膜1〇〇的結 曰曰性優異,該結晶性是使結晶粒徑一致的性質。 再者,於上述内容中,利用脈寬調整單元13來對脈寬 進行調整,該脈寬觀單元13是_脈衝雷射光的分割與 延遲來對脈寬進行娜,但可將乡個由脈衝雷射振盪裝置 輸出的脈衝雷射光不同步地照射至矽膜1〇〇 ’藉此來對脈 寬進行調整。 、圖3是表示上述裝置構成的圖,以下對該裝置構成進 行說明。再者,對與上述實施形態相同的構成附上相同的 符號來進行說明。 如圖3所示,雷射退火裝置包括處理室2,於該處理 室2内設置有能夠沿著χ_γ方向移動的掃描裝置3,於該 掃描裝置3的上部設置有基台4。於基台4上設置有基板 配置台5。於退火處理時,在該基板配置台5上設置有作 為處理對象的賴励。再者,藉由未圖示的馬達等來將 掃描裝置3予以驅動,利用控制部8來對該掃描裝置3進 行控制。 田、 於處理室2的外部,設置有脈衝雷射振盪裝置1〇。根 據需要,利用衰減器11來對脈衝雷射光15的能量密度進 行調整’該脈衝雷射光15是於脈衝雷射振盡裳b^1〇 ^經 脈衝振盪而被輸出的脈衝雷射光,利用包含透鏡、反射鏡、 18 201208798 以及均化n料光傳輸單元12,對上述脈衝 =整形或使上述脈衝雷射光15偏向,接著二衝J 射光15照射至處理室2内的石夕膜1 〇〇。 又,於處理室2的外部,同樣設置有產生脈衝雷射光 25的脈衝雷射振盪裝置2Q。根據需要,利用衰減⑽= 對脈衝雷縣25的能量密度進行赃,該脈衝雷射 是於脈衝雷射振盪裝置20中經脈衝㈣ 雷射光’利用包含透鏡、反射鏡、以及均化器等 Γ上述脈衝雷射光25進行光束整形或使上述脈 衝雷射光25偏向’接著上述脈衝#射光25 2内的矽膜1〇〇。 处至 於上述裝置中’控制部8來對整個裝置進行^ 制,該控_ 8以可進行㈣的方式,分财接於將上^ 脈衝雷射振盪裝置料㈣_雷射電源9、以及將 脈衝雷射振盪裝置2G予以驅動的雷射電源19,對各個脈 衝雷射振盪裝置1Q、2〇的輸出進行設定。又,控制部8 以可進=控制的方式,連接於衰減器n、以及衰減器21, 對各個衰減率進行t5:定。因此,雷射電源9、雷射電源Μ、 衰減w 11农減盗21及控制部8構成本發明的能量調整 單元。 如圖3所示’上述雷射退火裝置將脈衝雷射光15與脈 衝雷射光25予以輸出,該脈衝雷射光15與脈衝雷射光25 複合地照射至矽膜100上。使此時的脈衝雷射光不同步, 結果,可對照射至矽膜100的脈衝雷射光的脈寬進行調整。 19 201208798. 以使上述有效功率密度處於3xl〇12至丨5χ1〇12的範圍 内的方式’對職經婦的脈衝雷射光進行設定,將該脈 衝雷射光照射至矽膜1〇〇。 又,於上述各實施形態中,說明了使用自脈衝雷射振 盪裝置輸出的脈衝雷射光,但亦可使用如下的雷射光,該 雷射光疋將自雷射光連續振盪裝置輸出的連續雷射光予以 抽出且模擬地設為脈衝狀而成。 實例1 接著,一面對本發明的實例與比較例進行比較,一面 進行說明。 進行如下的實驗,該實驗是使用上述實施形態的雷射 退火裝置(圖1),將脈衝雷射光照射至50nm的非晶矽薄 膜,该50 nm的非晶矽薄膜藉由例行方法而形成於玻璃製 的基板的表面。 於上述實驗中’藉由光傳輸單元來對脈衝雷射光進行 整形,使得該脈衝雷射光於加工面上呈長方形,以使照射 面上的能量密度達到8 mJ/cm2〜400 mJ/cm2,且脈寬處於 20 ns〜600 ns的範圍的方式,對上述脈衝雷射光進行設 定’接著將上述脈衝雷射光照射至基板上的非晶矽。再者, 非晶矽膜的吸收係數是定義為吸收係數=4 nk/波長。 (k .农減係數參照非專利文獻.D.E.Aspnes and J.B.Theeten, J.Electrochem.Soc.127, 1359 ( 1980)) 藉由照射上述脈衝雷射光來對非晶矽進行加熱,使該 非晶石夕變化為結晶石夕。藉由顯微鏡與掃描電子顯微鏡 20 201208798 (Scanning Electron MiCr0scope,SEM)照片來對經上述照 射的薄膜進行評價。SEM照片(圖式代用照片)表示於圖' 4〜圖6中。 再者,以下所說明的有效功率密度均由下述式來計 算。又,將計算結果表示於圖7中。於該圖7中,記載有 先前的雷射退火中的有效功率密度作為參考資料(data)。 圖中,〇標記相當於以下的實例,X標記相當於以下的比較 例。 有效功率密度(J/(秒.cm3))=脈衝能量密度(J/cm2) /脈寬(秒)X半導體膜的吸收係數(Cm-1)(式) (實例1) 於雷射振盪裝置中使用XeCl準分子雷射,將有效功 率密度設定為2_〇xl012來照射脈衝雷射光之後,如照片工 所示’形成了均一且無不均的結晶。 (實例2) 於雷射振盪裝置中使用XeCl準分子雷射,將有效功 率密度設定為2·7χ1012來照射脈衝雷射光之後,如照片2 所示,形成了均一且無不均的結晶。 (實例3) 於雷射振盪裝置中使用YAG三倍頻波固體雷射,將 有效功率密度設定為1.8χ1〇12來照射脈衝雷射光之後,如 照片3所示,形成了均一且無不均的結晶。 (實例4) 於雷射振盪裝置中使用YAG三倍頻波固體雷射,將 21 201208798 ^yxuzpif 有效功率密度g史疋為2·5&gt;&lt;1〇來照射脈衝雷射光之後,如 照片4所示,形成了均一且無不均的結晶。 (實例5) 於雷射振盪裝置中使用YAG兩倍頻波固體雷射,將 有效功率密度設定為1.6&gt;&lt;1012來照射脈衝雷射光之後,如 照片5所示,形成了均一且無不均的結晶。 (實例6) 於雷射振盪裝置中使用YAG兩倍頻波固體雷射,將 有效功率密度設定為2.4xl〇12來照射脈衝雷射光之後,如 照片6所示,形成了均一且無不均的結晶。 (比較例1 ) 於雷射振盪裝置中使用XeCl準分子雷射,將有效功 率密度設定為2·〇χ1 〇13來照射脈衝雷射光之後,如照片7 所示,於長軸重合部形成了存在結晶狀態不同的不均的結 晶。利用X射線繞射儀(X_Ray Diffraction,XRD)來進 行表面分析之後’大致整個區域已熔融。 (比較例2) 於雷射振盪裝置中使用XeC1準分子雷射,將有效功 率密度設定為3.5x1〇12來照射脈衝雷射光之後,如照片8 所示’於長軸重合部形成了存在結晶狀態不同的不均的結 曰曰°利用XRD來進行表面分析之後,表層已溶融3 nm左 右。 (比較例3) 於雷射振盪裝置中使用YAG三倍頻波固體雷射,將 22 201208798 X vijjif 有效功率密度設定為3.lxl〇12來照射脈衝雷射光之後,如 照片9所示,於長軸重合部形成了存在結晶狀態不同的不 均的結晶。利用XRD來進行表面分析之後,表層已熔融§ nm左右。 (比較例4) 於雷射振盪裝置中使用YAG三倍頻波固體雷射,將 有效功率岔度设疋為3.5x1ο1來照射脈衝雷射光之後,如 照片10所示,於長軸重合部形成了存在結晶狀態不同的不 均的結晶。利用XRD來進行表面分析之後,表層已熔融9 nm左右。 (比較例5) 於雷射振盪裝置中使用YAG兩倍頻波固體雷射,將 有效功率密度設定為3.2xl〇12來照射脈衝雷射光之後,如 照片11所示,形成了如下的結晶,該結晶於長軸短軸重合 部存在結晶狀態不同的不均。 (比較例6) 於雷射振盪裝置中使用XeCl準分子雷射,將有效功 率密度設定為1.4&gt;&lt;1〇12來照射脈衝雷射光之後,如照片12 所示,變成在整體上存在不均的結晶。 (比較例7) 於雷射振盪裝置中使用XeC丨準分子雷射,將有效功 率密度設定為1.3χΐ〇12來照射脈衝雷射光之後,如照片 所示,變成在整體上存在不均的結晶。 (比較例8) 23 201208798 ^^ιυζ-pif 於雷射減裝置中制YAG三倍驗射 ^功率密度設定為1.4x,來照射脈衝雷射光之後,= …'片Μ所示,變成在整體上存在不均的結晶。 (比較例9) 於雷射振縣置巾㈣YAG三倍驗_f射 ^功率密度設定為來騎脈衝雷射光之後,= &quot;,、片15所示,變成在整體上存在不均的結晶。 (比較例10) 於雷射振盪裝置中使用YAG兩倍頻波固體雷射 有效功率密度設定^ G6x,來騎脈衝能光之後如 照片16所示,變成在整體上存在不均的結晶。 (比較例11) 於雷射!錄裝置巾❹YAG ^倍頻㈣體雷射 有效功率密度設定為ι·4χΐ〇12來照射脈衝雷射光之後,如 照片17所示,變成在整體上存在不均的結晶。 =以上,已基於上述實施形態及實例來對本發明進行了 說明,但本發明並不限定於上述說明的内容,只要不脫離 本發明的範圍,則可進行適當的變更。 【圖式簡單說明】 圖1疋表示本發明的雷射退火裝置的一個實施形態的 概略圖。 ' 圖2同樣是表示脈寬調整單元的一例的概略圖。 圖3是表示其他實施形態中的雷射退火裝置的概略 24 201208798f 圖4是表示本發明的實例 火之後的結晶的 SEM照片。 圖5同樣是表示實例中的雷射退火之後的結晶的SEM 照片。 圖6同樣疋表示實例中的雷射退火之後的結晶的SEM 照片。 圖7,樣疋表示實例中的有效功率密度的圖。 圖8疋表不先則的雷射退火中的結晶形成狀態的說明 圖。 【主要元件符號說明】 1 :雷射退火裝置 2 :處理室 3:掃描裝置 4 :基台 5:基板配置台 6 :導入窗 8 :控制部 9、 19 :雷射電源 10、 20 :脈衝雷射振盪裝置 11、 21 :衰減器 12、 22 :光傳輸單元 13 :脈寬調整單元 15、25、40、150 :脈衝雷射光 15a、15b、15c :光束 25 201208798f 30 :玻璃基板 31 :非晶矽膜 32 :熔融矽膜 33 :結晶矽膜 100 :矽膜 130 :分光鏡 131、132、133、134 :全反射鏡 26201208798 . VI. Description of the Invention: [Technical Field] The present invention relates to a laser anneal device and a laser annealing method, which is a pulsed laser ( Pulse laser) Light is irradiated onto the semiconductor film for laser annealing. [Prior Art] In recent years, a liquid crystal display requires a thin film transistor having the following performance, which is mainly for realizing high resolution or high speed of driving frame rate, 3D. The sex month b. In order to improve the performance of the thin film transistor, it is necessary to crystallize the silicon semiconductor film by laser annealing. Previously, the laser annealing device was a device for crystallizing amorphous germanium (am〇rph〇ussilic〇n: (a-Si), and an annealing technique using an exdme laser was used. The beam of the beam is low in mass, and therefore, the beam cannot be reduced to a small beam. Therefore, the optical system of the excimer is shaped into a top-level (tGp flat) type along the χγ direction. The beam is used to use the excimer laser that is generally used as XeCl (wavelength is 308 nm). Therefore, a-Si absorbs a high amount of xeci excimer laser, and the Xeci excimer thunder passes through the amorphous (four). The depth is very shallow, the depth of penetration is about 7nm, and the temperature gradient in the direction of the financial direction. The annealing technique using excimer laser uses the above temperature gradient to make the entire amorphous frequency completely (four) of the laser output, so that The core of the gentry f is left at the bottom of the film to make the amorphous frequency secret, and the crystal growth is carried out at the base point. The mode of the above crystallization is shown in Fig. 8 4 201208798, that is, the pulsed laser light 40 is irradiated onto the glass substrate 30 The amorphous tantalum film 31 produces a molten tantalum film 32. The molten tantalum film 32 is crystallized during recrystallization and solidification, thereby forming a crystalline tantalum film 33. ' In addition, a mine using an absorber layer has also been proposed. The radiation annealing method (Patent Document 1) uses a laser annealing device of Yttrium. Aiuminurn 〇arnet (yag) double-frequency wave (wavelength: 532 nm) (Patent Document 2) or uses continuous vibration laser Device (Patent Document 3). There is also a method for performing laser annealing using a complicated procedure for unevenness and uniform crystallization, for example, in the patent literature: a heating platform has been proposed ( In addition, a method of dividing into four (four) shots has been proposed (Patent Document 5, Patent Document 6). Further, there are also examples in which lasers of other wavelengths are used to solve the above problems. An example in which a Mo film absorption layer and a laser diode 0 are used with dlode has been reported (Non-Patent Document 1). Further, a method of using a color semiconductor laser has been proposed (Patent Document 7). PRIOR ART DOCUMENT Patent Document Patent Document 1 Patent Document 2 Patent Document 3 Patent Document 4 Patent Document 5 Patent Document 6 Patent Publication No. 62-1323311 Japanese Patent Laid-Open Publication No. 2005-294493 Japanese Laid-Open Patent Publication No. 2010-103485, Japanese Patent Application Laid-Open No. Publication No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. Non-Patent Document Non-Patent Document 1 · EP Donovan's "Thermal Study of Crystallization and Relaxation of Amorphous Germanium and Germanium Prepared by Particle Implantation", Journal of Applied Physics, Vol. 57, No. Π95-1804, 1985 (EPD〇novan, Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by i〇n implantation. J. Appl. Phys., V〇1.57, pp. 1795-1804, 1985) The XeCl excimer laser annealing apparatus uses the method as described above, and therefore, the crystallinity is good, but since it is instantaneously heated to the melting point, it is required to prevent falling off (ablati). The dehydrogenation step for the purpose of or is necessary to strictly control the laser output and focus. Further, since the amorphous austenite film is melted at one time, the long-axis connecting portion of the light beam has a problem that the characteristics are deteriorated, and there is a problem that the beam size is limited by the beam size. It can only correspond to the substrate size G4 (730 mm x 920 mm) ' Therefore, it is difficult to perform large-area processing. In the laser annealing process, the state of crystallization changes depending on the size of the laser output. Therefore, in view of the above problems, Patent Document 1 also discloses a method of changing the laser output, but the long axis cannot be solved. The problem of convergence. In the apparatus disclosed in Patent Document 3 using continuous oscillation laser, a plurality of optical systems for concentrating laser light are required, and therefore, the intensity of energy of each of the laser vibrators may vary or interfere with each other. It is difficult to achieve uniformity with precision. 6 201208798. Further, in the method of using the heating platform as in Patent Document 4, the loss of the takt time of heating and cooling is not suitable for practical use. Further, in the method disclosed in Patent Document 5 and Weaving Document 6 which are divided into two lasers, there is a problem that the throughput (throughPut) is deteriorated. X ′ uses a laser of another wavelength to solve the above problem. In the technique disclosed in Non-Patent Document 1, since the steps such as peeling of the absorbing layer are increased, it is not suitable for practical use. Further, 'the patent document 7 using the GaN-based blue semiconductor laser is 5, and since it is essentially different from the melting process, and the process is limited to the GaN line color semiconductor laser, the output pole Low, not applicable in the industry. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems as described above, and an object of the present invention is to provide a laser annealing apparatus and a laser annealing method, the laser annealing apparatus and the laser greening The received laser ί 'and the effective power density shown in this application is in a certain dry circumference, whereby the semiconductor film can be crystallized without complicated steps without unevenness. That is, in the laser annealing apparatus of the present invention, the third invention is characterized by comprising: a pulsed laser slitting device that outputs _ lasers; and an optical transmission unit that outputs the output from the above-described pulsed laser The pulsed laser light is transmitted, and the pulsed light is irradiated to the semiconductor = such that the effective power density calculated by the following equation on the semiconductor film irradiation surface is in the range of 3x10 illusion 5x1 〇 i2, Pulse 7 201208798 j^xuzpif Laser light is irradiated onto the above semiconductor film. Effective power density (J/(second.cr^)) twice.../pulse width (seconds) X absorption coefficient of semiconductor film (cm/) b = (J/Cm) The invented tantalum annealing device is characterized by including The continuous laser light emitted by the continuous laser vibration device is continuously transmitted by the extracted laser light, and the "first and pulsed laser light generating unit" is transmitted in the above-mentioned transmission process. The pulsed pulse generates a pulse so that the pulsed laser light is irradiated onto the semiconductor film so that the effective power calculated by the following equation on the semiconductor film irradiation surface is in the range of 3 x 1 () 4 Ux. (J/(second.cm3)) = pulse energy density (J/cm2) / pulse width (second) X absorption coefficient of the semiconductor film (Formula) According to the first invention or the second invention, the third invention The laser annealing apparatus is characterized by comprising: an energy adjustment unit for the energy density of the pulsed laser light, wherein the energy adjustment unit is such that the effective power density calculated by the above formula is 3&gt;&lt;1〇 12 to 15 χ 1 〇Ι 2 in the range of energy According to the third aspect of the invention, the laser annealing apparatus of the fourth aspect of the invention includes an attenuator and an output adjustment unit as the energy adjustment unit, wherein the attenuator is set at a predetermined attenuation rate. The pulsed laser light is attenuated and the pulsed laser light is transmitted, and the output adjusting unit adjusts the upper 8 201208798 vibration wheel out. The above effective power density is outputted by the above-mentioned attenuator and the above output two 〇^7 5 2== In the above-described first aspect to the fourth invention, the fifth aspect of the invention is characterized in that the pulsed laser light is included in the above-described first invention to the fourth invention. In the pulse width adjusting unit of the week 1, the pulse width adjusting unit adjusts the pulse width of the pulsed laser light such that the effective power density calculated by the above formula is in the range of 3_12 to L5XHP. The laser Ε Ε 装置 第 第 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 能量 能量 能量 能量 能量 能量 能量 能量 能量mJ/cm2 'The above pulse width is 50 nanoseconds to 500 nanoseconds. In the laser annealing method according to the seventh aspect of the invention, the pulsed laser light is irradiated onto the semiconductor film, and the semiconductor film is subjected to laser annealing. The laser annealing method is characterized in that the irradiation surface is calculated by the following formula. The pulse energy density and the pulse width of the pulsed light are set so that the effective power density is in the range of 3×10 12 to 1.5·10 12 , and the set pulse laser light is irradiated onto the semiconductor film. Effective power density (J / (second.cm3)) = pulse energy density (j / cm2) / pulse width (seconds) X absorption coefficient of the semiconductor film ((10), (formula) According to the present invention, the energy density, pulse width And a moderate relationship between the absorption coefficients, 'the pulsed laser light is irradiated onto the semiconductor film to be rapidly heated', whereby heat is applied to the extent that the semiconductor film is not completely melted 9 201208798. A method different from the previous complete/recrystallization method can be used to obtain a particle having a small deviation and uniformity of the grain (4). The melt crystallization method or the solid phase growth method using a heating furnace (§ 视视Crystallization, SPC) The deviation of the crystal grains is increased. Then, the conditions of the tree (4) gauge (4) are explained. Effective power density: The range of 3x1012 to 1512 is calculated by the following formula: The semiconductor film can be annealed to make the semiconductor = uniform-crystalline semiconductor film. If the effective power density is insufficient: the partial method fully heats the semiconductor film, and the crystallization yield is uneven. Upper limit The conductor film will swell and have a = density density 〇 / (second · 3) _ energy density ( / pulse width (seconds) 吸收 absorption coefficient of the semiconductor film... (Formula) Furthermore, the above effective power density is the present Density does not mean the general-like female f. The effective power pulse of the laser light wavelength band if the invention makes the wavelength band of the wave-seeking line of the pulsed laser light irradiated to the semiconductor film. However, according to the pulse Ray "Lighting" ^,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, For the tongue, especially for the amorphous stone film, the absorption wavelength is good, the 201208798 band. If the wavelength is absorbed by the semiconductor film, especially the amorphous germanium film, it will also pass through the semiconductor film, especially the amorphous germanium film. At the wavelength, the light absorption rate of the semiconductor film is greatly dependent on the variation of the thickness of the underlying layer due to multiple reflections from the lower layer. Considering the above, the wavelength of the ultraviolet region is 308 nm to 358 nm. Belt is better. Energy The density irradiates a pulsed laser light of a moderate energy density to the semiconductor film, whereby the semiconductor film is changed in a state of not completely melting, whereby microcrystals can be produced. If the energy density is low, the effective power density becomes small. The crystallization is insufficient or difficult to crystallize. On the other hand, if the energy density is high, the effective power density becomes excessively large, and melt crystallization occurs or falls off. For the present invention, as long as the effective power density is in an appropriate range The internal energy density is not particularly limited, but a range of 1 〇〇 mJ/cm 2 to 5 (8) mJ/cm 2 can be expressed as a preferred range. The pulse width pulse width is an important factor 'this pulse width is used to make The effective power density becomes an appropriate effective power density, so that the semiconductor film is appropriately heated. If the pulse width is too small, the effective power density is increased, and the semiconductor film is heated to a temperature of complete melting, thereby making it difficult to achieve uniform crystallization. Chemical. Further, if the pulse width is too large, the effective power density is reduced, and the semiconductor film may not be heated to the temperature of crystallization. In the present invention, the pulse width is not particularly limited as long as the effective power density is in an appropriate range, but a range of 50 nN to 500 nsec can be expressed as a preferable range. 11 201208798. The shape of the irradiation surface of the pulsed laser light is not particularly limited, and for example, it can be applied to a semiconductor film in the form of a spot or a line. When the shape of the irradiation surface of the pulsed laser light is linear, it is preferable to set the short-axis width of the pulsed laser light to 0.5 mm or less. The pulse laser light is scanned relatively in the width direction of the short axis, whereby the semiconductor film can be partially irradiated or heated while being subjected to crystallization treatment. However, if the short axis width is too large, in order to achieve crystallization efficiently, it is necessary to increase the scanning speed, resulting in an increase in the cost. The pulsed laser light is relatively scanned with respect to the amorphous film, whereby the semiconductor film can be crystallized along the plane direction. The scanning can be performed on the pulse side and the laser side, and the amorphous film side can be moved to scan, or the pulse (four) side and the amorphous side can be moved to scan. Further, the present invention can be used. A solid laser source is used to illuminate the pulsed laser beam of the desired wavelength band, so that the crystallization can be produced by the riding system with good mainten_, and the laser beam is output. Further, the pulsed laser light can also be laser light that is extracted by the light and simulated in a pulsed manner. The continuous laser light can be extracted by performing a stop M or a light modulation boundary such as a horse speed rotation. ^ In order to obtain the uniform-thin ray energy-hardness unit by appropriate power-efficiency power density, the community lasers the laser light to the semiconductor film.能12 201208798 ^ Λ. The quantity adjustment unit can be set to #四衣(四)(四)行==!: Using the attenuator to illuminate the energy of the laser beam from the laser beam 2, 2 tone: when shooting light, Before the pulse-like extraction, the above-mentioned effective power density of upper=and m0 is hunting* is obtained to obtain the uniformity of −, , and . The Βθ ' pulse width-width unit is used to ride the ground pulse width of the pulsed laser light (four) and then irradiate the pulsed laser light to the semiconductor film. The difficult unit can be constructed by the following unit: element: light = element, dividing the pulsed laser light into a secret beam; delaying each beam delayed by Γ77; and beam combining unit, The respective beams are combined. By delaying the delay unit, __ can be made into a shape suitable for t. The number of delays is changed by adjusting the length of the optical path.曰 For example, the lasers divided by the beam splitting unit are respectively guided to optical paths of different degrees. The beam of the age correction (4) is again led to the optical path of the earlier one, whereby the pulse duration can be extended to adjust the pulse waveform. In particular, the division ratio is lighter and the division of each of the divisions is set, and the pulse time waveform can be appropriately changed. / /: Pulse width adjustment is performed by superimposing a plurality of pulsed laser light output from the laser light source. A plurality of pulsed laser light is irradiated onto the semiconductor film, and as a result, a desired pulse waveform can be obtained. When the pulsed laser light of the township is coincident, the phase of the pulse output of 13 201208798 is adjusted, or the delay unit is interposed, whereby the pulse width of the pulsed laser light can be adjusted to the required pulse width, by the above The configuration constitutes a pulse width adjusting unit. Scanning means is used to scan the pulsed laser light with respect to the semiconductor germanium. Thereby, fine and uniform crystals can be obtained in a large area of the semiconductor film. The frequency of the pulse, the short-axis width of the pulsed laser light, and the scanning speed are set such that the number of times of irradiation of the same region of the semiconductor film by the scanning reaches a predetermined number of times, for example, 1 to 10 Times. The scanning device can move the optical system that guides the pulsed laser light to move the pulsed laser light. The base plate on which the semiconductor film is disposed can also be moved. Advantageous Effects of Invention As described above, according to the present invention, since the effective power density shown by the following formula is in the range of 3_12 to 1.5X1G12, pulsed laser light is irradiated to the semiconductor film. The growth does not cause abnormal grain growth, so that a small deviation and a uniform crystal can be obtained. [Embodiment] Hereinafter, an embodiment of the present invention will be described. Fig. 1 is a view showing the outline of a laser annealing apparatus J of the present invention. The laser annealing apparatus 1 includes a processing chamber 2 in which a scanning device 3 movable in the X_Y direction is provided, and a base 4 is provided in the scanning device. A substrate table 5 is provided on the base 4 as a table. At the time of the annealing treatment, the substrate substrate 5 is provided with a non-a solar film 100 or the like as a semiconductor film. The smear film is formed by a length (10) of 201208798, ----- pir thickness, which is formed in a non-illustrated 石 膜 film 100, and the 暮 暮 chain straw of the present invention is formed by a routine method. Further, the method for forming the A-A = (10) + conductor film is not particularly limited, but the semiconductor which is preferably amorphous f is not limited to the amorphous semiconductor film. Ground =, the semiconductor film of the object may be a crystalline semiconductor film or a localized annealing to modify the crystal. W is miscellaneous, and the scanning device 3 can be controlled by a motor (_.°, etc.), and the operation of the motor is controlled from the control unit 8 described above, and the scanning device 3 is controlled. The bribe removal degree is set. Further, in the processing = the introduction window 6 for introducing the pulsed laser light from the outside is provided. The pulse balance = the exterior of the treatment room 2 is provided with a pulsed laser oscillation device. The electric device 1G contains fresh molecules The laser slitting device is connected to the pulsed laser vibrating device 10, and the laser is connected to the control unit 8 by f control. The necessary driving is performed by the control unit 8 to the power source 9. The voltage is supplied to the pulsed laser oscillating laser beam (4) device 1G to modulate the pulse with the specified output, and the energy of the pulsed laser light 15 is 湘ί〇^ 麟雷料15技上彳The light shocking re-loading is a pulsed laser light that can be outputted by (iv) t it. The attenuator 11 is set to a predetermined attenuation rate by the clothes reducer 11. That is, the lightning power source 9, the control unit 8, and the attenuator 11 The energy adjustment sheet 15 201208798. constituting the present invention can be adapted by the energy adjustment unit. Local adjustment is made so that the energy density on the illuminated surface of the ruthenium film 100 reaches 1 〇〇 mJ/cm 2 〜 5 〇〇 mJ/cm 2 . The lens including the lens, the mirror, and the homogenizer are used. The optical transmission unit 12 such as homogenize (·) performs beam shaping on the pulsed laser light 15 transmitted through the attenuator u or deflects the pulsed laser light 15 , and the pulsed laser light 15 is irradiated through the introduction window 6 provided in the processing chamber 2 . The enamel film 100 in the processing chamber 2 has no particular limitation on the shape of the irradiation surface during irradiation. However, the shape of the irradiation surface is shaped into, for example, a dot shape, a circular shape, an angular shape, and the like by the light transmission unit 12 described above. Further, the optical transmission unit 12 may include a pulse width adjusting unit 13. The outline of the s-think width adjusting unit 13 will be described based on Fig. 2. In the pulse width adjusting unit 13, the optical path is arranged. There is a beam splitter 130 including a half mirror, which splits the pulsed laser light 15 in such a manner that a part of the light beam 15a is reflected at 90 degrees and the remaining Part of the beam 15b through That is, the beam splitter 130 corresponds to the beam splitting unit of the present invention. Further, in the reflection direction of the beam splitter 130, the total reflection mirror 131 is disposed so that the incident angle is 45 degrees, and the total reflection mirror 131 is disposed on the total reflection mirror 131. The total reflection mirror 132 is disposed in the reflection direction so that the incident angle is 45 degrees, and the total reflection mirror 133 is disposed in the reflection direction of the total reflection mirror 132 so that the incident angle is 45 degrees. In the reflection direction of 133, the total reflection mirror 134 is disposed so that the incident angle is 45 degrees. The back side of the spectroscope 130 is located in the reflection direction of the total reflection mirror 134, and the beam is irradiated to the spectroscope at an incident angle of 45 degrees. 13 〇 on the back side. 201208798 The light beam 15a reflected by the beam splitter 130 at 90 degrees is sequentially reflected by the total reflection mirrors 132, 133, and 134 at 9 degrees, thereby becoming the delayed light beam 15c and reaching the back side of the beam splitter 130. A part of 15c is reflected at 90 degrees, and then overlaps the light beam 15b in a delayed form, and the remaining light beam passes through the beam splitter 130, and the total reflection is repeatedly performed, and is repeatedly divided by the beam splitter 130. The beams superimposed on the side of the beam i5b overlap with the delayed beam, whereby the pulse waveform is shaped, the pulse width is adjusted, and the beam is advanced as a pulsed laser light 15b on the optical path. Further, the optical path length can be adjusted by changing the position of each total reflection mirror to change the retardation amount of the light beam, whereby the pulse width of the superposed pulsed laser light can be arbitrarily changed. Further, the intensity of the pulsed laser light to be split can be individually adjusted. The pulse width can be appropriately set to a range of 5 〇 Lang to 500 ns by the pulse width adjusting unit. Furthermore, the present invention may not include the pulse width adjusting unit, but irradiate the diaphragm 1 以 with the pulse width of the output pulsed laser light. The pulsed laser light 15 is introduced into the processing chamber 2 through the introduction window 6, and is irradiated onto the substrate arrangement table 5 on the substrate. This is performed by the scanning device 3, and the pulsed laser light 150 is scanned on the side of the film, and the surface is irradiated. 2 At this time, the pulsed laser light 15 〇 obtains an effective working rate suitable for crystallization, the attenuation rate of _Rayleigh 11, the pulse taste, the ν 农 农 减 Μ Μ, Μ 宽 width / pour light irradiation The sectional area is set to 1 5 Χ 1012, and the effective power density is set in the range of 3x1012 to ., _ to set 1 by illuminating the pulse 17 201208798. ^yiuzpif laser light 150 to uniformly crystallize the stone film 100 . Further, the laser light absorption rate in the ruthenium film 100 is determined by the wavelength of the pulsed laser light, and known information can be used. The tantalum film 1 which is crystallized by the pulsed laser light 150 is excellent in the filminess, and the crystallinity is a property of matching the crystal grain size. Furthermore, in the above, the pulse width adjustment unit 13 adjusts the pulse width, and the pulse width viewing unit 13 is a division and delay of the _pulse laser light to perform a pulse width on the pulse width, but the pulse width can be made by the pulse. The pulsed laser light output from the laser oscillating device is irradiated to the 矽 film 1〇〇 asynchronously to adjust the pulse width. Fig. 3 is a view showing the configuration of the above-described apparatus, and the configuration of the apparatus will be described below. Incidentally, the same configurations as those of the above-described embodiment are denoted by the same reference numerals. As shown in Fig. 3, the laser annealing apparatus includes a processing chamber 2 in which a scanning device 3 movable in the χ_γ direction is provided, and a base 4 is provided at an upper portion of the scanning device 3. A substrate table 5 is provided on the base 4. At the time of the annealing treatment, the substrate placement table 5 is provided with a treatment target. Further, the scanner device 3 is driven by a motor or the like (not shown), and the scanner unit 3 is controlled by the control unit 8. In the field, outside the processing chamber 2, a pulsed laser oscillating device 1 is provided. The energy density of the pulsed laser light 15 is adjusted by the attenuator 11 as needed. The pulsed laser light 15 is pulsed laser light that is output by pulse oscillation after the pulsed laser is exhausted. Lens, mirror, 18 201208798 and homogenized n-material light transmission unit 12, the above-mentioned pulse=shaping or deflecting the pulsed laser light 15, and then the second-shooting J light 15 is irradiated to the stone film 1 in the processing chamber 2 . Further, on the outside of the processing chamber 2, a pulse laser oscillating device 2Q for generating pulsed laser light 25 is also provided. If necessary, use the attenuation (10) = 赃 for the energy density of the pulse Leixian 25, which is pulsed (four) laser light in the pulsed laser oscillator 20 using a lens, a mirror, a homogenizer, etc. The pulsed laser light 25 performs beam shaping or biases the pulsed laser light 25 toward the enamel film 1 in the pulse #25. As far as the above device is concerned, the control unit 8 controls the entire device, and the control unit 8 can perform the (4) method, and the power is connected to the pulse laser oscillating device material (4) _ laser power source 9 and The laser power source 19 driven by the pulse laser oscillation device 2G sets the output of each of the pulse laser oscillation devices 1Q and 2A. Further, the control unit 8 is connected to the attenuator n and the attenuator 21 so as to be controllable, and performs t5 for each attenuation rate. Therefore, the laser power source 9, the laser power source Μ, the attenuation w11, and the control unit 8 constitute the energy adjustment unit of the present invention. As shown in Fig. 3, the above-described laser annealing device outputs pulsed laser light 15 and pulsed laser light 25, and the pulsed laser light 15 is irradiated onto the ruthenium film 100 in combination with the pulsed laser light 25. The pulsed laser light at this time is not synchronized, and as a result, the pulse width of the pulsed laser light irradiated to the ruthenium film 100 can be adjusted. 19 201208798. The pulsed laser light of the employed woman is set such that the effective power density is in the range of 3xl 〇 12 to 丨 5 χ 1 〇 12, and the pulsed laser light is irradiated to the aponeurosis 1 〇〇. Further, in each of the above embodiments, the pulsed laser light output from the pulse laser oscillation device has been described. However, it is also possible to use laser light which is a continuous laser light output from the laser light continuous oscillation device. It is extracted and the analog ground is formed into a pulse shape. Example 1 Next, an example in which the present invention is compared with a comparative example will be described. The experiment was carried out by irradiating pulsed laser light onto a 50 nm amorphous germanium film by a laser annealing apparatus (FIG. 1) of the above embodiment, and the 50 nm amorphous germanium film was formed by a conventional method. On the surface of a glass substrate. In the above experiment, the pulsed laser light is shaped by the optical transmission unit such that the pulsed laser light is rectangular on the processing surface so that the energy density on the illuminated surface reaches 8 mJ/cm 2 to 400 mJ/cm 2 , and The pulsed laser light is set such that the pulse width is in the range of 20 ns to 600 ns. Then, the pulsed laser light is irradiated onto the amorphous germanium on the substrate. Furthermore, the absorption coefficient of the amorphous ruthenium film is defined as the absorption coefficient = 4 nk / wavelength. (k. Agronomic reduction coefficient refers to non-patent literature. DEAspnes and JB Theeten, J. Electrochem. Soc. 127, 1359 (1980)) The amorphous iridium is heated by irradiating the above-mentioned pulsed laser light to make the amorphous slab Change to crystalline stone eve. The film irradiated as described above was evaluated by a microscope and a scanning electron microscope 20 201208798 (Scanning Electron MiCr0scope, SEM) photograph. The SEM photograph (picture substitute photograph) is shown in Fig. 4 to Fig. 6. Furthermore, the effective power density explained below is calculated by the following formula. Further, the calculation result is shown in Fig. 7. In Fig. 7, the effective power density in the previous laser annealing is described as reference data. In the figure, the 〇 mark corresponds to the following example, and the X mark corresponds to the following comparative example. Effective power density (J/(second.cm3)) = pulse energy density (J/cm2) / pulse width (seconds) X absorption coefficient of semiconductor film (Cm-1) (Formula 1) In laser oscillation device In the XeCl excimer laser, after the effective power density is set to 2_〇xl012 to illuminate the pulsed laser light, as shown in the photograph, a uniform and non-uniform crystal is formed. (Example 2) After X-Cl excimer laser was used in a laser oscillation device, the effective power density was set to 2·7 χ 1012 to illuminate the pulsed laser light, and as shown in Fig. 2, uniform and non-uniform crystals were formed. (Example 3) After using a YAG triple-frequency solid laser in a laser oscillating device and setting the effective power density to 1.8 χ 1 〇 12 to illuminate the pulsed laser light, as shown in the photograph 3, uniformity and unevenness are formed. Crystallization. (Example 4) After using a YAG triple-frequency solid laser in a laser oscillating device, 21 201208798 ^yxuzpif effective power density g is 22·5&gt;&lt;1〇 to illuminate the pulsed laser light, as shown in photo 4 As shown, uniform and non-uniform crystals are formed. (Example 5) After using a YAG double-frequency solid laser in a laser oscillating device and setting the effective power density to 1.6 &lt; 1012 to illuminate the pulsed laser light, as shown in the photograph 5, uniformity and no Uneven crystallization. (Example 6) After using a YAG double-frequency solid laser in a laser oscillating device and setting the effective power density to 2.4 x 12 来 12 to illuminate the pulsed laser light, as shown in the photograph 6, uniformity and unevenness are formed. Crystallization. (Comparative Example 1) After the X-Cl excimer laser was used in the laser oscillation device, the effective power density was set to 2·〇χ1 〇13 to irradiate the pulsed laser light, and as shown in the photograph 7, the long-axis overlapping portion was formed. There are uneven crystals having different crystal states. After surface analysis using an X-ray Diffraction (XRD), approximately the entire area has melted. (Comparative Example 2) After the X-C1 excimer laser was used in the laser oscillation device, the effective power density was set to 3.5 x 1 〇 12 to illuminate the pulsed laser light, and as shown in the photograph 8, the crystal was formed in the long-axis overlap portion. Uneven knots with different states. After surface analysis by XRD, the surface layer has been melted by about 3 nm. (Comparative Example 3) After using a YAG triple-frequency solid laser in a laser oscillation device, the effective power density of 22 201208798 X vijjif was set to 3.lxl 〇 12 to illuminate the pulsed laser light, as shown in the photo 9, The long-axis overlapping portion forms uneven crystals having different crystal states. After surface analysis by XRD, the surface layer has been melted around § nm. (Comparative Example 4) A YAG triple-frequency solid laser was used in a laser oscillation device, and after the effective power intensity was set to 3.5 x 1 ο1 to illuminate the pulsed laser light, as shown in the photograph 10, the long-axis overlap portion was formed. There are uneven crystals having different crystal states. After surface analysis by XRD, the surface layer has been melted by about 9 nm. (Comparative Example 5) After irradiating the pulsed laser light with a YAG double-frequency solid laser in the laser oscillation device and setting the effective power density to 3.2 x 12 , 12, as shown in the photograph 11, the following crystal was formed. This crystal has unevenness in crystal state in the long axis short-axis overlapping portion. (Comparative Example 6) After the X-Cl excimer laser was used in the laser oscillation device, the effective power density was set to 1.4 &lt;1〇12 to illuminate the pulsed laser light, as shown in the photograph 12, it became present as a whole. Uneven crystallization. (Comparative Example 7) After the X-C 丨 excimer laser was used in the laser oscillating device, the effective power density was set to 1.3 χΐ〇 12 to illuminate the pulsed laser light, and as shown in the photograph, the crystal was unevenly distributed as a whole. . (Comparative example 8) 23 201208798 ^^ιυζ-pif YAG triple detection in the laser reduction device ^ Power density is set to 1.4x, after the pulsed laser light is irradiated, the ... ... film is shown in the whole There are uneven crystals on it. (Comparative example 9) After the laser ray is set in the laser ray, the YAG triple test _f shot power density is set to pulse laser light, and = &quot;, and the film 15 shows uneven crystallization as a whole. . (Comparative Example 10) Using the YAG double-frequency solid-state laser effective power density setting ^ G6x in the laser oscillation device, after riding the pulse energy light, as shown in the photograph 16, the crystals having unevenness as a whole were formed. (Comparative Example 11) After the laser beam was irradiated with the YAG ^ multiplier (four) body laser effective power density set to ι·4 χΐ〇 12 to illuminate the pulsed laser light, as shown in the photograph 17, it became uneven as a whole. Crystallization. The present invention has been described above based on the above-described embodiments and examples, but the present invention is not limited to the above description, and may be appropriately modified without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic view showing an embodiment of a laser annealing apparatus according to the present invention. FIG. 2 is a schematic view showing an example of a pulse width adjusting unit. Fig. 3 is a view showing the outline of a laser annealing apparatus according to another embodiment. 24 201208798f Fig. 4 is a SEM photograph showing the crystal after the example fire of the present invention. Figure 5 is also a SEM photograph showing the crystal after laser annealing in the example. Fig. 6 also shows an SEM photograph of the crystal after laser annealing in the example. Figure 7, Figure 疋 shows a plot of effective power density in an example. Fig. 8 is an explanatory view showing the state of crystal formation in the laser annealing in the first place. [Description of main component symbols] 1 : Laser annealing device 2 : Processing chamber 3 : Scanning device 4 : Base 5 : Substrate placement table 6 : Introduction window 8 : Control unit 9 , 19 : Laser power supply 10 , 20 : Pulse radar The oscillating device 11, 21: attenuator 12, 22: optical transmission unit 13: pulse width adjusting unit 15, 25, 40, 150: pulsed laser light 15a, 15b, 15c: light beam 25 201208798f 30: glass substrate 31: amorphous Deuterium film 32: Molten film 33: Crystalline film 100: Film 130: Beam splitters 131, 132, 133, 134: Total reflection mirror 26

Claims (1)

201208798 七、申請專利範圍: 一種雷射退火裝置,其特徵在於包括: 脈衝雷=振盪裝置,將脈衝雷射光料輸出;以及 輸單元’對自上述脈衝雷射振盪裝置輸出的上述 ^〜’光細傳輸,且將上舰衝雷射光騎至半導體 膜, —上述脈衝雷射光是以使半導體膜照射面上的由下述式 計异出的有效功率密度處於3χ1〇12^15χ1〇12的範圍内的 方式,照射至上述半導體臈, 有效功率密度(J/ (秒.cm3))=脈衝能量密度(J/cm2 ) /脈寬(秒)X半導體膜的吸收係數(cm]) ...(式)。 2. —種雷射退火裝置,其特徵在於包括: 連續雷射振縣置,將連續雷射舒以輸出; 光傳輸單70,對自上述連續雷射振盪裝置輸出的連續 雷射光及自該連續雷射光抽出的脈衝雷射光進行傳輸,且 將上述脈衝雷射光照射至半導體膜;以及 脈衝雷射光產生單元,於上述傳輸過程中,將上述連 續雷射光予以抽出且模擬地設為脈衝狀而產生脈衝雷射 光, μ上述脈衝雷射光是以使半導體膜照射面上的由下述式 計算出的有效功率密度處於扒⑺^至丨^丨…2的範圍内的 方式,照射至上述半導體膜, 有效功率密度(J/(秒.cm3))=脈衝能量密度(J/cm2) /脈寬(秒)X半導體膜的吸收係數(cm-y ...(式)。 27 201208798、 λ. j 置,包;1甲晴寻利範圍第1項或第2項所述之雷射退火裝 ^述脈衝雷射光的能量密度進 二=量調整單元是以使由上述式計算出的上i有LI 量密度進行設定。 的乾圍内的方式’對上述能 4」,申請專利範圍第3項所述之雷射退 衰減=上述能量調整單元,= 由上述職㈣鮮元是以使 1.5x10、;出 述有效功率密度處於3xl〇i2至 設定。、乾内的方式’對上述衰減率及上述輸出進行 射退=置申請包專:範圍第㈣ 該二調整的脈寬調整單元, 产處於3x^2 使述式計算出的上述有效功率密 射光的脈寬 2:°12的範圍内的方式, 射退火乾圍第1項至第5項中任一項所述之雷 上It脈寬為5〇奈秒〜500奈秒。 28 100 201208798 厶pif 7· —種雷射退火方法,將脈衝雷射光照射至半導體 膜,並且進行該半導體膜的雷射退火,該雷射退火方法的 特徵在於: 以使照射面上的由下述式計算出的有效功率密度處於 12 、 至1.5Χ1012的範圍内的方式,對上述脈衝雷射光的 3x10 脈衝能量密度及脈寬進行設定,將該經設定的上述脈衝雷 射光照射至上述半導體膜, 有政功率密度(J/(秒.cm3))=脈衝能量密度(j/cm2) /脈寬(秒)x半導體獏的吸收係數(cm·1) ...(式)。 29201208798 VII. Patent application scope: A laser annealing device, characterized in that: a pulsed lightning=oscillation device outputs pulsed laser light material; and a transmission unit 'the above-mentioned light from the pulsed laser oscillation device Fine transmission, and riding the laser light onto the semiconductor film, the pulsed laser light is in the range of 3χ1〇12^15χ1〇12 which is caused by the following formula: Internal mode, irradiated to the above semiconductor germanium, effective power density (J / (second.cm3)) = pulse energy density (J / cm2) / pulse width (seconds) X semiconductor film absorption coefficient (cm) ... (formula). 2. A laser annealing apparatus, comprising: a continuous laser vibration county, the continuous laser is outputted; the optical transmission unit 70, continuous laser light output from the continuous laser oscillation device and The pulsed laser light extracted by the continuous laser light is transmitted, and the pulsed laser light is irradiated to the semiconductor film; and the pulsed laser light generating unit extracts the continuous laser light and simulates the pulse shape in the transmission process. Pulse laser light is generated, and the pulsed laser light is irradiated onto the semiconductor film in such a manner that the effective power density calculated by the following equation on the semiconductor film surface is in the range of 扒(7)^ to 丨2丨2 , Effective power density (J / (second.cm3)) = pulse energy density (J / cm2) / pulse width (seconds) X absorption coefficient of the semiconductor film (cm - y ... (form). 27 201208798, λ. j setting, package; 1 A clearing range of the laser annealing described in item 1 or 2, the energy density of the pulsed laser light into the second = amount adjustment unit is to make the above formula Set with LI density The method in the dry circumference is 'for the above energy 4', the laser retreat attenuation as described in item 3 of the patent application scope = the above energy adjustment unit, = by the above-mentioned position (4) fresh element is to make 1.5x10;; Density is in the range of 3xl〇i2 to set. The method of dryness is to 'reject the above attenuation rate and the above output=Setting application package: Range (4) The pulse width adjustment unit of the second adjustment, the production is at 3x^2 Calculating the pulse width of the above-mentioned effective power dense light in a range of 2:°12, and the annealing pulse width of any one of items 1 to 5 is 5 〇Nsec~ 500 nanoseconds. 28 100 201208798 厶pif 7·-A laser annealing method, irradiating pulsed laser light to a semiconductor film, and performing laser annealing of the semiconductor film, the laser annealing method is characterized in that: The upper 3x10 pulse energy density and pulse width of the pulsed laser light are set in such a manner that the effective power density calculated by the following formula is in the range of 12 to 1.5 Χ 1012, and the set pulse laser light is irradiated. To the above Conductive film, there government power density (J / (sec .cm3)) = pulse energy density (j / cm2) / width (sec) x tapir semiconductor absorption coefficient (cm · 1) ... (formula). 29
TW100128952A 2010-08-31 2011-08-12 Laser annealing apparatus and laser annealing method TW201208798A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194720 2010-08-31
PCT/JP2011/067657 WO2012029488A1 (en) 2010-08-31 2011-08-02 Laser annealing device and laser annealing method

Publications (1)

Publication Number Publication Date
TW201208798A true TW201208798A (en) 2012-03-01

Family

ID=45772596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128952A TW201208798A (en) 2010-08-31 2011-08-12 Laser annealing apparatus and laser annealing method

Country Status (6)

Country Link
JP (1) JP5578584B2 (en)
KR (1) KR20130100996A (en)
CN (1) CN103081065B (en)
SG (1) SG188277A1 (en)
TW (1) TW201208798A (en)
WO (1) WO2012029488A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582833B (en) * 2012-10-01 2017-05-11 日本製鋼所股份有限公司 Producing method and producing device of crystalline semiconductor film
TWI638391B (en) * 2013-01-30 2018-10-11 歐洲雷射系統與方案解決公司 Improved low resistance contacts for semiconductor devices
CN113345806A (en) * 2021-04-23 2021-09-03 北京华卓精科科技股份有限公司 Laser annealing method of SiC-based semiconductor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220331A (en) * 2013-05-07 2014-11-20 株式会社リコー Electromagnetic wave irradiation apparatus
KR20140142856A (en) * 2013-06-05 2014-12-15 삼성디스플레이 주식회사 Laser apparatus and method of crystallizing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477119A (en) * 1987-09-18 1989-03-23 Fujitsu Ltd Manufacture of semiconductor device
JPH04372115A (en) * 1991-06-21 1992-12-25 Fujitsu Ltd Manufacture of semiconductor device
US6555422B1 (en) * 1998-07-07 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method of manufacturing the same
JP2000058835A (en) * 1998-07-31 2000-02-25 Semiconductor Energy Lab Co Ltd Thin film transistor and its manufacture
JP5025057B2 (en) * 2001-05-10 2012-09-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4939699B2 (en) * 2001-05-31 2012-05-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
CN100413016C (en) * 2003-08-07 2008-08-20 友达光电股份有限公司 Multicrystalline silicon film manufacturing method
JP2007115786A (en) * 2005-10-18 2007-05-10 Sharp Corp Semiconductor substrate and its manufacturing method
JP2006203250A (en) * 2006-04-05 2006-08-03 Ftl:Kk Manufacturing method of three dimensional semiconductor device
JP5252877B2 (en) * 2006-11-07 2013-07-31 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5574312B2 (en) * 2008-03-25 2014-08-20 国立大学法人山口大学 Polycrystalline silicon grain boundary modification method and apparatus
CN101800611B (en) * 2009-12-25 2013-01-23 北京化工大学 OTDM (Optical Time Division Multiplex) system for continuous tunable synchronization range based on SBS optical storage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582833B (en) * 2012-10-01 2017-05-11 日本製鋼所股份有限公司 Producing method and producing device of crystalline semiconductor film
TWI638391B (en) * 2013-01-30 2018-10-11 歐洲雷射系統與方案解決公司 Improved low resistance contacts for semiconductor devices
CN113345806A (en) * 2021-04-23 2021-09-03 北京华卓精科科技股份有限公司 Laser annealing method of SiC-based semiconductor
CN113345806B (en) * 2021-04-23 2024-03-05 北京华卓精科科技股份有限公司 Laser annealing method of SiC-based semiconductor

Also Published As

Publication number Publication date
KR20130100996A (en) 2013-09-12
WO2012029488A1 (en) 2012-03-08
CN103081065A (en) 2013-05-01
SG188277A1 (en) 2013-04-30
JP5578584B2 (en) 2014-08-27
JPWO2012029488A1 (en) 2013-10-28
CN103081065B (en) 2016-04-27

Similar Documents

Publication Publication Date Title
EP1063049B1 (en) Apparatus with an optical system for laser heat treatment and method for producing semiconductor devices by using the same
US9245757B2 (en) Laser annealing treatment apparatus and laser annealing treatment method
JP3860444B2 (en) Silicon crystallization method and laser annealing equipment
US7410848B2 (en) Crystallization method, crystallization apparatus, processed substrate, thin film transistor and display apparatus
US4234356A (en) Dual wavelength optical annealing of materials
TW200304857A (en) Slicing method for the treatment object
KR20060126666A (en) Laser thin film poly-silicon annealing optical system
TW201208798A (en) Laser annealing apparatus and laser annealing method
JP5678333B2 (en) Laser annealing method and apparatus
CN106158609A (en) A kind of laser anneal device and method for annealing thereof
TWI605499B (en) Method for manufacturing crystalline semiconductor and apparatus for manufacturing crystalline semiconductor
JP5214662B2 (en) Method for producing polycrystalline silicon thin film
JP2002176008A (en) Method and apparatus for measuring illuminating laser beam
KR101491043B1 (en) Crystallization method and apparatus
JP2006135192A (en) Method and apparatus for manufacturing semiconductor device
JP2007207896A (en) Laser beam projection mask, laser processing method using same, laser processing apparatus
JP2020181923A (en) Manufacturing method for semiconductor film