TW201206856A - Optical glass, preform and optical element - Google Patents

Optical glass, preform and optical element Download PDF

Info

Publication number
TW201206856A
TW201206856A TW100121096A TW100121096A TW201206856A TW 201206856 A TW201206856 A TW 201206856A TW 100121096 A TW100121096 A TW 100121096A TW 100121096 A TW100121096 A TW 100121096A TW 201206856 A TW201206856 A TW 201206856A
Authority
TW
Taiwan
Prior art keywords
component
glass
optical glass
optical
composition
Prior art date
Application number
TW100121096A
Other languages
Chinese (zh)
Inventor
Tetsuya Tsuda
Nana Dobuchi
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011112701A external-priority patent/JP5721534B2/en
Priority claimed from JP2011112692A external-priority patent/JP5706231B2/en
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201206856A publication Critical patent/TW201206856A/en

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

This invention provides an optical glass, a preform using the same and an optical element with a refractivity index (nd) and Abbe number (ν d) within an expected range, a less partial dispersion ratio (θ g, F) and an increased visible light transparency. The optical glass of this invention contains SiO2 content, at least one ingredient selected from the group consisting of Ta2O5, Nb2O5, Na2O, and BaO contents, and the relationship of partial dispersion ratio (θ g, F) and Abbe number (ν d) at ν d ≤ 25 satisfies (-0.00160× ν d+0.63460) ≤ (θ g,F) ≤ (-0.00563×ν d+0.75573), while at ν d ≤ 25 satisfies (-0.00250× ν d+0.65710) ≤ ((θ g,F) ≤ (-0.00340×ν d+0.70000).

Description

201206856 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學玻璃、預成形體及光學元件。 【先前技術】 數位相機或視訊攝影機等之光學系統包含稱為像差之模 糊’但其大小不同。該像差分為單色差與色差,尤其是色 差緊密地依存於光學系統所使用之透鏡之材料特性。 通常,色差係組合低色散之凸透鏡與高色散之凹透鏡而 加以修正,但該組合僅可修正紅色區域與綠色區域之像 差,而殘留有藍色區域之像差。將該無法完全去除之藍色 區域之像差稱為二次光譜。為修正二次光譜,必需進行參 考藍色區域之g線(435.835 nm)之動向的光學設計。此時, 使用部分色散比(0g,F)作為光學設計中所注重之光學特 性之基準。於上述組合低色散之透鏡與高色散之透鏡之光 學系統中,低色散側之透鏡使用部分色散比(0g , F)較大 的光學材料,高色散側之透鏡使用部分色散比(Θ§ , 〇較 小之光學材料,藉此可良好地修正二次光譜。 部分色散比(eg,f)係由下式(1)表示。 6g » F=(ng-nF)/(nF-nc)......⑴ 於光學玻璃中,短波段之表示部分色散性之部分色散比 (0g ’ F)與阿貝數(Vd)之間存在大致直線性關係^表示該關 係之直線係於縱軸採用部分色散比(0g,F)、橫軸採用阿 貝數(vd)之正交座標上,以將標繪奶乙7與沖^2之部分色 散比及阿貝數之2點連結之直線表示,稱為正規線 I56904.doc 201206856 line)(參照圖1)。成為正規線之基準之標準玻璃根據各光學 玻璃製造商而不同,但各公司幾乎均以同等之斜率與截距 定義。(NSL7與PBM2為股份有限公司〇hara公司製造之光 學玻璃,PBM2之阿貝數(vd)為36.3,部分色散比(eg,F)為 0.5 828 ’ NSL7之阿貝數(vd)為60.5,部分色散比(eg,F)為 0.5436) 此處,作為具有高色散之玻璃,例如已知如專利文獻 1〜3所示之光學玻璃。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開2009-179522號公報 [專利文獻2]國際公開第2004/110942號手冊 [專利文獻3]曰本專利特開2004-161598號公報 【發明内容】 [發明所欲解決之問題] 然而’關於專利文獻1〜3所揭示之玻璃,部分色散比不 夠小’於用作上述修正二次光譜之透鏡時’不充分。又, 專利文獻1〜3所揭示之玻璃對可見光之透明性不夠高,尤 其是於用於透射可見光之用途時,不充分。即,需要為高 色散’部分色散比(0g,F)較小,且對可見光之透明性較 两之光學玻璃。 本發明係繁於上述問題而成者,其目的在於獲得折射率 (nd)及阿貝數(Vd)於所期望之範圍内,並且部分色散比 (Gg ’ F)較小且對可見光之透明性提高之光學玻璃 '使用 156904.doc 201206856 其之預成形體及光學元件Q [解決問題之技術手段] 本發明者等人為解決上述問題而反覆潛心地進行試驗研 究,結果發現··藉由併用Si〇2成分,以及選自由丁心…成 分、Nb2〇5成分、Ν&2〇成分及Ba〇成分所組成之群中之】種 以上,並將該等之含量設於特定範圍内,可謀求玻璃之高 折射率及高色散化,並且玻璃之部分色散比(0g , F)與阿 貝數(vd)之間具有所期望之關係且可降低玻璃之著色,從 而達成本發明。具體而言’本發明提供如下者。 (1) 一種光學玻璃,其含有si〇2成分,以及選自由Ta2〇5 成分、Nb2〇5成分、Na2〇成分及BaO成分所組成之群中之i 種以上’且部分色散比(9g ’ F)與阿貝數(Vd)之間於Vd^25 之範圍内滿足(_〇.〇〇16〇〜(1+〇.6346〇)$(0§,〇$(-〇.〇〇563>< vd+0.75573)之關係,於Vd>25之範圍内滿足(_0,0025〇XVd+ O.6571O)$(0g’ F)$(-0.00340xvd+0.70000)之關係。 (2) 如上述(1)之光學玻璃,其相對於氧化物換算組成之 玻璃全物質量’以莫耳%計含有60.0%以下之Si〇2成分及 25.0%以下之Ta205成分。 (3) 如上述(1)或(2)之光學玻璃,其相對於氧化物換算組 成之玻璃全物質量,以莫耳%計含有20.0〜60.0%之Si〇2* 分及2_15〜25.0%之Ta205成分。 (4) 如上述(1)至(3)中任一項之光學玻璃,其相對於氧化 物換算組成之玻璃全物質量,以莫耳%計含有20.0〜60.0% 之Si〇2成分,且選自由Ta2〇5成分、Nb2〇5成分、Na2〇成分 156904.doc 201206856 為20.0%以 及BaO成分所組成之群中之1種以上之含量之和 上50.0%以下。 (5) 如上述(4)之光學玻璃,其相對於氧化物換算組成之 玻璃全物質量,以莫耳。/。計含有: 0〜25.0%之Ta205成分及/或 0〜30.0%之Nb205成分及/或 0〜30.0%之Na20成分及/或 0〜30.0%之BaO成分。 (6) 如上述(1)至(5)中任一項之光學玻璃,其相對於氡化 物換算組成之玻璃全物質量,以莫耳%計進而含有·· 0〜3 0.0°/。之>^205成分及/或 0〜20.0%之Ti02成分及/或 0〜10.0%之Bi203成分及/或 0〜10.0%之W03成分。 (7) 如上述(6)之光學玻璃,其中氧化物換算組成之莫耳 比(Nb205+Ta205)/(Ti02+Bi2〇3+W03)大於 2.50。 (8) 如上述(6)或(7)之光學玻璃,其中氧化物換算組成之 莫耳比(Nb205+Ta205+Na20+Ba0)/(Ti02+Bi203+W03)為 3.50以上50.00以下。 (9) 如上述(1)至(8)中任一項之光學玻璃,其相對於氧化 物換算組成之玻璃全物質量,以莫耳%計進而含有: 0〜3 0.0%之Li20成分及/或 0〜30.0%之Na20成分及/或 0〜20.0%之K20成分及/或 156904.doc -6- 201206856 0~10·0%之 Cs20成分。 (10) 如上述(9)之光學玻璃’其中Rn2〇成分(式中,汉〇為 選自由Li、Na、K及Cs所組成之群中之1種以上)之含量之 和相對於氧化物換算組成之玻璃全物質量為丨〇 〇%以上 50.0%以下》 (11) 如上述(1)至(10)中任一項之光學玻璃,其中氧化物 換算組成之莫耳比Ta205/(Li20+Na20)為0.010以上〇 5〇〇以 下。 (12) 如上述(1)至(11)中任一項之光學玻璃,其相對於氧 化物換算組成之玻璃全物質量,以莫耳%計進而含有: 0〜15.0%之MgO成分及/或 0〜20.0%之CaO成分及/或 0〜20.0%之SrO成分及/或 0〜30.0°/。之8&0成分及/或 0〜30.0%之ZnO成分。 (13) 如上述(12)之光學玻璃,其中RO成分(式中,R為選 自由Mg ' Ca、Sr、Ba ' Zn所組成之群中之1種以上)之含 量之和相對於氧化物換算組成之玻璃全物質量為3 0 ·〇%以 下。 (14) 如上述(1)至(13)之光學玻璃,其相對於氧化物換算 組成之玻璃全物質量,以莫耳°/。計進而含有: 0〜20.0%之P205成分及/或 0〜30.0%之B2〇3成分及/或 0〜20.0%之GeO^成分。 156904.doc 201206856 (15) 如上述(1)至(14)中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃全物質量之和(Si02+P2〇5+B2C>3+ Ge02)為 20.0% 以上 60.0% 以下。 (16) 如上述(1)至(15)中任一項之光學玻璃,其相對於氧 化物換算組成之玻璃全物質量,以莫耳%計進而含有: 0〜30.0%之丫2〇3成分及/或 0~3 0.0°/。之La203成分及/或 0〜30.0%之Gd203成分及/或 0〜20.0%之Yb203成分及/或 0〜10.0%之Lu2〇3成分。 (17) 如上述(16)之光學玻璃,其中Ln203成分(式中,Ln 為選自由Y、La、Gd、Yb及Lu所組成之群中之1種以上)之 含量之和相對於氧化物換算組成'之玻璃全物質量為30.0% 以下。 (18) 如上述(1)至(17)中任一項之光學玻璃,其相對於氧 化物換算組成之玻璃全物質量,以莫耳%計進而含有: 0~30.0%之Te02成分及/或 0~20.0%之Al2〇3成分及/或 0〜20.0%之Ga203成分及/或 0〜20.0%之Ιη203成分及/或 0〜20.0%之Zr02成分及/或 0〜1.0%之Sb203成分及/或 0~1.0%之 Ce02成分。 (19) 如上述(1)至(18)中任一項之光學玻璃’其具有丨.75 156904.doc 201206856 以上2.00以下之折射率(nd),且具有20以上40以下之阿貝 數(Vd) 〇 (20) 如上述(1)至(19)中任一項之光學玻璃,其中分光透 射率顯示為70%之波長(λ7〇)為500 nm以下。 (21) 如上述(1)至(20)中任一項之光學玻璃,其於再熱試 驗(4)之前後不產生失透及乳白, [再熱試驗(< ):對試片15 mm><15 mm><30 mm之試片進 行再熱,花費150分鐘自室溫升溫至較各試樣之轉移溫度 (Tg)高80°C〜150°C之溫度,於上述較光學玻璃之玻璃轉移 溫度(Tg)高80°C〜150°C之溫度下保溫30分鐘,其後自然冷 卻至㊉溫’將试片之對向之2面研磨為1 〇 mm之厚度後,進 行目視觀察]。 (22) —種研磨加工用及/或精密加壓成形用預成形體,其 包含如上述(1)至(21)中任一項之光學玻璃。 (23) —種光學元件,其係磨削及/或研磨如上述(丨)至(2” 中任一項之光學玻璃而成。 (24) —種光學元件,其係對如上述(丨)至(21)中任一項之 光學玻璃進行精密加壓成形而成。 [發明之效果] 根據本發明,藉由併用Si〇2成分’以及選自由刊2〇5成 分、Nb2〇5成分、心2〇成分及Ba〇成分所組成之群中之1種 以上,並將Θ等之含量設於特定範圍内,可謀求玻璃之高 折射率及高色散化,並且玻璃之部分色散比m與阿 貝數(vd)之間具有所期望之關係,且可降低玻璃之著色。 156904.doc 201206856 因此,可獲得折射率(nd)及阿貝數(Vd)於所期望之範圍内, 並且色差較小且對可見光之透明性提高之光學玻璃、使用 其之預成形體及光學元件。 【實施方式】 本發明之光學玻璃含有Si〇2成分,以及選自由Ta205成 分、Nt»2〇5成分、NazO成分及Ba〇成分所組成之群中之1種 以上’且部分色散比(0g ’ F)與阿貝數(Vd)之間於vdS25之 範圍内滿足(-〇.〇〇16〇>^(1+〇.6346〇)$(;0经,?)$(;-〇.〇〇563>< vd+0.75573)之關係’於Vd>25之範圍内滿足(-0.00250xvd+ 0.65710)各(0g,F)$(-〇.〇〇34〇xvd+0.70000)之關係。尤佳 為’相對於氧化物換算組成之玻璃全物質量,以莫耳。/〇計 含有60.0%以下之Si〇2成分及25.0%以下之Ta205成分《藉 由併用Si〇2成分,以及選自由Ta2〇5成分、Nb2〇5成分、 NazO成分及BaO成分所組成之群中之1種以上,並將該等 之含量設於特定範圍内,而使玻璃具有較高之色散,並且 使部分色散比(0g,F)接近正規線,且降低玻璃之著色。 因此’可獲得具有30以下之阿貝數(vd),並且色差較小且 對可見光中之尤其是短波長側之光之透明性提高的光學玻 璃、使用其之預成形體及光學元件。 以下’對本發明之光學玻璃之實施形態進行詳細地說 明,但本發明並不限定於以下實施形態,於本發明之目的 之範圍内,可適當地加以變更而實施。再者,對於說明重 複之處,存在適當地省略說明之情況,但並不限定發明之 要旨0 156904.doc • 10- 201206856 [玻璃成分] 下對構成本發明之光學玻璃之各成分之組成範圍進 說明。於本說明書中,於各成分之含有率無特別說明之情 ‘ ㈣’全部設為以相對於氧化物換算組成之玻璃全物質量 . <莫耳’❶表不者。此處’所謂「氧化物換算組成」,係指 如下組成:於假設用作本發明之玻璃構成成分之原料之氧 化物、複合鹽、金屬氟化物等在熔融時全部分解並向氧化 物轉良之障形時,將該生成氧化物之總質量設為⑽莫耳 %,表記玻璃中所含之各成分的組成。 、 <關於必需成分、任意成分>201206856 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical glass, a preform, and an optical element. [Prior Art] An optical system such as a digital camera or a video camera includes a paste called aberration, but has a different size. The image difference is a monochromatic difference and a chromatic aberration, and in particular, the chromatic aberration closely depends on the material properties of the lens used in the optical system. In general, the chromatic aberration is corrected by combining a low-dispersion convex lens with a high-dispersion concave lens, but this combination can correct only the aberration between the red region and the green region, and the aberration of the blue region remains. The aberration of the blue region which cannot be completely removed is referred to as a secondary spectrum. In order to correct the secondary spectrum, it is necessary to carry out the optical design of the movement of the g-line (435.835 nm) of the reference blue region. At this time, a partial dispersion ratio (0g, F) is used as a reference for the optical characteristics of the optical design. In the above optical system combining a low dispersion lens and a high dispersion lens, the lens on the low dispersion side uses an optical material having a larger partial dispersion ratio (0g, F), and the lens on the high dispersion side uses a partial dispersion ratio (Θ§, 〇 Smaller optical material, whereby the secondary spectrum can be well corrected. The partial dispersion ratio (eg, f) is represented by the following formula (1): 6g » F=(ng-nF)/(nF-nc). .....(1) In optical glass, there is a general linear relationship between the partial dispersion ratio (0g 'F) and the Abbe number (Vd) indicating the partial dispersion of the short-wavelength band. The axis uses a partial dispersion ratio (0g, F), and the horizontal axis uses the orthogonal coordinates of the Abbe number (vd) to link the partial dispersion ratio of the plotted milk B and the punch 2 to the 2 points of the Abbe number. The straight line is called the regular line I56904.doc 201206856 line) (refer to Figure 1). The standard glass that becomes the basis for the regular line varies according to each optical glass manufacturer, but each company is almost always defined by the same slope and intercept. (NSL7 and PBM2 are optical glass manufactured by 〇hara Co., Ltd., the Abbe number (vd) of PBM2 is 36.3, and the partial dispersion ratio (eg, F) is 0.5 828 'The Abbe's number (vd) of NSL7 is 60.5. The partial dispersion ratio (eg, F) is 0.5436. Here, as the glass having high dispersion, for example, optical glasses as disclosed in Patent Documents 1 to 3 are known. [Prior Art Document] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2009-179522 [Patent Document 2] International Publication No. 2004/110942 [Patent Document 3] Japanese Patent Laid-Open No. 2004-161598 [Invention] [Problems to be Solved by the Invention] However, in the glass disclosed in Patent Documents 1 to 3, the partial dispersion ratio is not sufficiently small 'in the case of using the lens for correcting the secondary spectrum'. Further, the glass disclosed in Patent Documents 1 to 3 is not sufficiently transparent to visible light, and is particularly insufficient for use in transmitting visible light. Namely, it is necessary to have a high dispersion 'partial dispersion ratio (0g, F) which is small and has transparency to visible light. The present invention is versatile in the above problems, and its purpose is to obtain a refractive index (nd) and an Abbe number (Vd) within a desired range, and a partial dispersion ratio (Gg 'F) is small and transparent to visible light. In order to solve the above problems, the inventors of the present invention have repeatedly conducted experimental research to solve the above problems, and found that the optical glass of the optical fiber is improved by the use of the 156904.doc 201206856. The Si〇2 component and the group selected from the group consisting of a Dingxin component, a Nb2〇5 component, a Ν&2〇 component, and a Ba〇 component, and the content thereof is set within a specific range. The present invention has been achieved by achieving a high refractive index and high dispersion of glass, and having a desired relationship between the partial dispersion ratio (0g, F) and the Abbe number (vd) of the glass and lowering the color of the glass. Specifically, the present invention provides the following. (1) An optical glass comprising a Si〇2 component and at least one selected from the group consisting of a Ta2〇5 component, a Nb2〇5 component, a Na2〇 component, and a BaO component, and a partial dispersion ratio (9g' F) and Abbe number (Vd) satisfy within the range of Vd^25 (_〇.〇〇16〇~(1+〇.6346〇)$(0§,〇$(-〇.〇〇563&gt ; < vd + 0.75573) The relationship between (_0, 0025 〇 XVd + O.6571O) $ (0g' F) $ (-0.00340xvd + 0.70000) is satisfied within the range of Vd > (1) The optical glass of the above-mentioned (1) is contained in an amount of 60.0% or less of the Si〇2 component and 25.0% or less of the Ta205 component in terms of mol% of the glass composition of the oxide-converted composition. (3) As described above (1) Or the optical glass of (2), which contains 20.0 to 60.0% of Si〇2* minutes and 2-15 to 25.0% of Ta205 components in terms of mol% of the total glass mass of the oxide conversion composition. The optical glass according to any one of the above (1) to (3), which contains 20.0 to 60.0% of the Si〇2 component in mol% with respect to the total mass of the glass in terms of oxide conversion, and is selected from the group consisting of Ta2〇 5 components, Nb2〇5 components, N The a2 〇 component 156904.doc 201206856 is 20.0% or less and the sum of the content of one or more of the group consisting of BaO components is 50.0% or less. (5) The optical glass of the above (4), which is composed with respect to oxide The total mass of the glass is in the range of 0 to 25.0% of the Ta205 component and/or 0 to 30.0% of the Nb205 component and/or 0 to 30.0% of the Na20 component and/or 0 to 30.0%. (6) The optical glass according to any one of the above (1) to (5), which further contains, in terms of % by mole, of the total mass of the glass of the composition of the telluride. <^205 component and/or 0~20.0% of TiO2 component and/or 0~10.0% of Bi203 component and/or 0~10.0% of W03 component. (7) Optical glass as described in (6) above , wherein the oxide ratio conversion composition of the molar ratio (Nb205 + Ta205) / (Ti02 + Bi2 〇 3 + W03) is greater than 2.50. (8) The optical glass of (6) or (7) above, wherein the oxide is composed of an oxide The optical ratio of the optical glass according to any one of the above (1) to (8), which is relative to oxidation, is a molar ratio of Nb 205 + Ta 205 + Na 20 + Ba 0 / (Ti02 + Bi 203 + W03 ). Object conversion group The total mass of the glass, in terms of mole %, further comprises: 0 to 3 0.0% of the Li20 component and/or 0 to 30.0% of the Na20 component and/or 0 to 20.0% of the K20 component and/or 156904.doc - 6- 201206856 0~10·0% of Cs20 ingredients. (10) The optical glass of the above (9), wherein the content of the Rn2〇 component (wherein, the ceramium is one or more selected from the group consisting of Li, Na, K, and Cs) is relative to the oxide (1) The optical glass according to any one of the above (1) to (10), wherein the composition of the oxide is Mo ratio Ta205/(Li20) +Na20) is 0.010 or more and 〇5〇〇 or less. (12) The optical glass according to any one of the above (1) to (11), which further comprises, in mol%, of a total mass of the glass of the oxide-converted composition: 0 to 15.0% of the MgO component and/or Or 0 to 20.0% of the CaO component and/or 0 to 20.0% of the SrO component and/or 0 to 30.0 °/. The 8 & 0 component and / or 0 to 30.0% of the ZnO component. (13) The optical glass according to the above (12), wherein the content of the RO component (wherein R is one or more selected from the group consisting of Mg'Ca, Sr, and Ba'Zn) is relative to the oxide The total mass of the glass of the converted composition is 3 0 ·〇% or less. (14) The optical glass according to the above (1) to (13), which is in the form of a molar mass relative to the total mass of the glass in terms of oxide conversion. Further, it contains: 0 to 20.0% of the P205 component and/or 0 to 30.0% of the B2〇3 component and/or 0 to 20.0% of the GeO^ component. The optical glass of any one of the above (1) to (14), wherein the sum of the total mass of the glass relative to the composition of the oxide (Si02+P2〇5+B2C>3+ Ge02) ) is 20.0% or more and 60.0% or less. (16) The optical glass according to any one of the above (1) to (15), which further comprises, in mol%, of the total mass of the glass in terms of oxide conversion: 0 to 30.0% of 丫2〇3 Composition and / or 0 ~ 3 0.0 ° /. The La203 component and/or the 0 to 30.0% Gd203 component and/or the 0 to 20.0% Yb203 component and/or the 0 to 10.0% Lu2〇3 component. (17) The optical glass according to the above (16), wherein the content of the Ln203 component (wherein Ln is one or more selected from the group consisting of Y, La, Gd, Yb, and Lu) is relative to the oxide The total mass of the glass of the converted composition is 30.0% or less. (18) The optical glass according to any one of the above (1) to (17), which further contains, in mol%, of 0 to 30.0% of the Te02 component and/or Or 0~20.0% of Al2〇3 component and/or 0~20.0% of Ga203 component and/or 0~20.0% of Ιη203 component and/or 0~20.0% of Zr02 component and/or 0~1.0% of Sb203 component And / or 0 ~ 1.0% of Ce02 ingredients. (19) The optical glass of any one of the above (1) to (18) which has a refractive index (nd) of 75.75 156904.doc 201206856 or more and 2.00 or less, and has an Abbe number of 20 or more and 40 or less ( The optical glass according to any one of the above (1) to (19), wherein the spectral transmittance shows a wavelength of 70% (λ7 〇) of 500 nm or less. (21) The optical glass according to any one of (1) to (20) above which does not cause devitrification and opalescence before the reheat test (4), [reheat test (<): test piece 15 Mm><15 mm><30 mm test piece was reheated, and it took 150 minutes to raise the temperature from room temperature to a temperature higher than the transfer temperature (Tg) of each sample by 80 ° C to 150 ° C. The glass transition temperature (Tg) of the glass is kept at a temperature of 80 ° C to 150 ° C for 30 minutes, and then naturally cooled to ten temperatures. After the opposite sides of the test piece are ground to a thickness of 1 〇 mm, the thickness is performed. Visual observation]. (22) A preform for a polishing process and/or a precision press molding, comprising the optical glass according to any one of the above (1) to (21). (23) An optical element which is obtained by grinding and/or grinding an optical glass according to any one of the above (丨) to (2). (24) An optical element which is as described above (丨) The optical glass according to any one of (21) is subjected to precision press molding. [Effects of the Invention] According to the present invention, the Si〇2 component is used in combination with the component selected from the publication 2〇5, and the Nb2〇5 component. One or more of the group consisting of the core 2 〇 component and the Ba 〇 component, and the content of ruthenium or the like is set within a specific range, and the high refractive index and high dispersion of the glass can be achieved, and the partial dispersion ratio of the glass is m. It has a desired relationship with the Abbe number (vd) and can reduce the color of the glass. 156904.doc 201206856 Therefore, the refractive index (nd) and the Abbe number (Vd) can be obtained within a desired range, and An optical glass having a small color difference and improved transparency to visible light, a preform using the same, and an optical element. [Embodiment] The optical glass of the present invention contains a Si 〇 2 component, and is selected from a Ta 205 component, Nt»2 〇 5 One of a group consisting of a component, a NazO component, and a Ba〇 component 'And the partial dispersion ratio (0g 'F) and the Abbe number (Vd) satisfy within the range of vdS25 (-〇.〇〇16〇>^(1+〇.6346〇)$(;0经, ?)$(;-〇.〇〇563>< vd+0.75573) The relationship 'in the range of Vd>25 (-0.00250xvd+ 0.65710) each (0g, F)$(-〇.〇〇34〇 The relationship of xvd+0.70000) is particularly preferably 'the total mass of the glass with respect to the oxide conversion composition, and the content of Si〇2 of 60.0% or less and the Ta205 of 25.0% or less by Mohr/〇" The Si〇2 component and one or more selected from the group consisting of a Ta2〇5 component, a Nb2〇5 component, a NazO component, and a BaO component, and the content is set within a specific range to make the glass more High dispersion, and make the partial dispersion ratio (0g, F) close to the regular line, and reduce the color of the glass. Therefore, 'the Abbe number (vd) with 30 or less can be obtained, and the color difference is small and especially for visible light. Optical glass having improved transparency of light on the short-wavelength side, preforms and optical elements using the same. Hereinafter, the embodiment of the optical glass of the present invention is The present invention is not limited to the following embodiments, and may be appropriately modified and implemented within the scope of the object of the present invention. Further, where the description is repeated, the description will be appropriately omitted. However, the gist of the invention is not limited. 0 156904.doc • 10-201206856 [Glass component] The composition range of each component constituting the optical glass of the present invention is described. In the present specification, the content of each component is not specifically described. The feelings of '(4)' are all set to the total mass of the glass in terms of oxide conversion. <Moer' is not the case. Here, the term "the oxide-converted composition" means a composition in which an oxide, a composite salt, a metal fluoride or the like which is used as a raw material of the glass constituent component of the present invention is decomposed and melted into an oxide. In the case of the barrier, the total mass of the generated oxide is (10) mol%, and the composition of each component contained in the glass is indicated. , <About essential components, arbitrary components>

Si〇2成分為玻_絲化物,為對形成玻璃之骨架有用 之成分。尤其是藉由將叫成分之含量設為60.0%以下, 可較易獲得玻璃之折射率變得難以降低且具有所期望之折 =率之光予玻璃。因此,Si〇2成分之含量相對於氧化物換 算組成之玻璃全物質量較佳為以6〇 〇%為上限更佳為以 55.0%為上限’最佳為以5〇〇%為上限。另一方面,藉由將 Si〇2成分之含量設為20·〇%以上,而使玻璃之網狀結構增 加至獲得穩定之玻璃之程度,故而可提高玻璃之财失透 性。因此,Si02成分之含量相對於氧化物換算組成之玻璃 全物質里較佳為以20.0%為下限,更佳為以25 〇%為下限, 更佳為以30.0%為下限,最佳為以35〇%為下限。成分 可使用例如Si02、K2SiF6、Na2SiF6#作為原料而包含於玻 璃内。 本發明之光學玻璃含有選自由TkO5成分、Nb2〇5成分、 156904.doc •11· 201206856The Si〇2 component is a glassy-filament compound and is a component useful for forming a skeleton of glass. In particular, by setting the content of the component to be 60.0% or less, it is possible to easily obtain a light which is difficult to reduce the refractive index of the glass and has a desired refractive index. Therefore, the content of the Si 〇 2 component is preferably from 6 〇 % to the upper limit, more preferably from 55.0%, and most preferably from 5 〇〇 %, based on the total mass of the glass of the oxide conversion composition. On the other hand, by setting the content of the Si 2 component to 20 % by weight or more, the network structure of the glass is increased to the extent that stable glass is obtained, so that the glass devitrification property can be improved. Therefore, the content of the SiO 2 component is preferably 20.0% as the lower limit, more preferably 25 〇% as the lower limit, more preferably 30.0% as the lower limit, and most preferably 35 5%. 〇% is the lower limit. The component can be contained in the glass using, for example, SiO 2 , K 2 SiF 6 or Na 2 SiF 6 # as a raw material. The optical glass of the present invention contains a component selected from the group consisting of TkO5, Nb2〇5, 156904.doc •11·201206856

Na2〇成分及BaO成分所組成之群中之1種以上。藉此,含 有降低玻璃之部分色散比(eg,F)之成分,故而可較易獲 得所期望之較低之部分色散比。尤其是於該等之含量之和 為20.0%以上時’其效果變得顯著。因此,含量之和 (Nb2〇5+Ta2〇5+Na2〇+BaO)相對於氧化物換算組成之玻璃 全物質量較佳為以20.0%為下限,更佳為以25 〇%為下限, 更佳為以28.0%為下限’更佳為以3〇 〇%為下限,最佳為以 3 3.5%為下限。另一方面,藉由將該等之含量之和設為 60.0%以下,可提高玻璃之穩定性,並提高玻璃之耐失透 性。又,由於可增加玻璃形成成分之含量,故可提高光學 玻璃之黏性而較易進行加壓。因此,含量之和 (Nb2〇5+Ta2〇5+Na2〇+Ba〇)相對於氧化物換算組成之玻璃 全物質量較佳為以50.0%為上限,更佳為以45〇%為上限, 最佳為以43.0%為上限。One or more of the group consisting of a Na2〇 component and a BaO component. Thereby, a component which lowers the partial dispersion ratio (eg, F) of the glass is contained, so that a desired lower partial dispersion ratio can be easily obtained. In particular, when the sum of the contents is 20.0% or more, the effect becomes remarkable. Therefore, the sum of the contents (Nb2〇5+Ta2〇5+Na2〇+BaO) is preferably 20.0% as the lower limit, more preferably 25 〇%, as the lower limit, more preferably Preferably, the lower limit is 28.0%, and the lower limit is preferably 3〇〇%, and the best is 33.5%. On the other hand, by setting the sum of the contents to be 60.0% or less, the stability of the glass can be improved, and the devitrification resistance of the glass can be improved. Further, since the content of the glass forming component can be increased, the viscosity of the optical glass can be improved and the pressurization can be easily performed. Therefore, the sum of the contents (Nb2〇5+Ta2〇5+Na2〇+Ba〇) is preferably an upper limit of 50.0%, more preferably an upper limit of 45〇%, based on the oxide-converted composition. The best is the upper limit of 43.0%.

Ta2〇s成分為提高玻璃之折射率,降低玻璃之失透溫肩 之成分。又,Ta2〇5成分為對玻璃賦予所期望之較低之苟 分色散比(0g,F),且使玻璃難以產生著色之成分。尤其 是藉由將Ta2〇5成分之含量設為25〇%以下,可維持玻璃之 耐失透性。因此’ Ta2〇5成分之含量相對於氧化物換算相 成之玻璃全物質量較佳為以25.G%為上限,更佳為以2〇⑽ 為上限,最佳為以15.〇%為上限。另一方自,亦可不令 成分’但藉由將Ta2〇5成分之含量設^ ι%以上,可 於賦予玻璃之高折射率及高色散之特性之同時對玻璃賦予 所期望之較低之部分色散比(eg,F)。因此,Μ成分之 156904.doc -12- 201206856 含量相對於氧化物換算組成之玻璃全物質量較佳為以〇. 1% 為下限,更佳為以1.0%為下限,更佳為以2.15%為下限, 最佳為以2.7%為下限。Ta205成分可使用例如Ta205等作為 原料而包含於玻璃内。The Ta2〇s component is used to increase the refractive index of the glass and reduce the composition of the glass's devitrified warm shoulder. Further, the Ta2〇5 component imparts a desired lower chromatic dispersion ratio (0g, F) to the glass, and makes it difficult for the glass to produce a colored component. In particular, by setting the content of the Ta2〇5 component to 25 % by weight or less, the devitrification resistance of the glass can be maintained. Therefore, the content of the component of the Ta2〇5 component relative to the oxide-converted glass whole mass is preferably an upper limit of 25. G%, more preferably an upper limit of 2 〇 (10), and most preferably a 〇% of 15. Upper limit. The other party may not make the component 'but by setting the content of the Ta 2 〇 5 component to y% or more, it is possible to impart a desired lower portion to the glass while imparting high refractive index and high dispersion characteristics to the glass. Dispersion ratio (eg, F). Therefore, the 156904.doc -12-201206856 content of the bismuth component is preferably 〇. 1% as the lower limit, more preferably 1.0% as the lower limit, and more preferably 2.15%. For the lower limit, the best is 2.7% as the lower limit. The Ta205 component can be contained in the glass using, for example, Ta205 or the like as a raw material.

Nb2〇5成分為提高玻璃之折射率及色散,並且降低玻璃 之部分色散比(eg ’ f)之成分,為本發明之光學玻璃中之 任意成分。尤其是藉由將Nb2〇5成分之含量設為30.0%以下 而使玻璃之失透降低’故而可較易獲得具有光透射性之光 學玻璃。又,藉由將Nb205成分之含量設為30.〇〇/。以下而使 由Nb2〇5成分導致之著色降低,故而可獲得對可見光之透 明性較高之玻璃。因此’ Nb»2〇5成分之含量相對於氧化物 換算組成之玻璃全物質量較佳為以3〇 〇%為上限,更佳為 以25.0%為上限,最佳為以20 0%為上限。再者,即便不含 ΝΝ〇5成分’亦可獲得具有所期望之特性之玻璃,但藉由 含有1.0%以上之Nt>2〇5成分,可提高折射率及色散,並且 可較易獲得接近正規線(normal line)之部分色散比(0g, F)。因此,Nb2〇5成分之含量相對於氧化物換算組成之玻 璃全物質量較佳為以1 ·〇%為下限,更佳為以5,〇%為下限, 最佳為以8.0%為下限。Nb2〇5成分可使用例wNb2〇5等作為 原料而包含於玻璃内。The Nb2〇5 component is a component which increases the refractive index and dispersion of the glass and lowers the partial dispersion ratio (eg'f) of the glass, and is an arbitrary component in the optical glass of the present invention. In particular, by reducing the devitrification of the glass by setting the content of the Nb2〇5 component to 30.0% or less, optical light having optical transparency can be easily obtained. Further, the content of the Nb205 component was set to 30.〇〇/. In the following, the coloring caused by the Nb2〇5 component is lowered, so that a glass having high transparency to visible light can be obtained. Therefore, the content of the component of the 'Nb»2〇5 component is preferably an upper limit of 3〇〇%, more preferably an upper limit of 25.0%, and most preferably an upper limit of 20%. . Further, even if the bismuth 5 component is not contained, a glass having desired characteristics can be obtained, but by containing 1.0% or more of Nt>2〇5 component, the refractive index and dispersion can be improved, and the film can be easily obtained. Partial dispersion ratio (0g, F) of the normal line. Therefore, the content of the Nb2〇5 component is preferably 1·〇% as the lower limit, more preferably 5,〇% is the lower limit, and most preferably 8.0% as the lower limit. The Nb2〇5 component can be contained in the glass using the example wNb2〇5 or the like as a raw material.

Ti〇2成分為於提尚玻璃之折射率之同時降低阿貝數之成 分’為本發明之光學玻璃中之任意成分。尤其是藉由將 Ti〇2成分之含量設為20.0%以下’可降低向玻璃之著色, 尤其是可使可見光之短波長區域(500 nm以下)之内部透射 156904.doc -13- 201206856 率難以惡化。又,藉由將Ti〇2成分之含量設為20 0。/〇以 下’而使部分色散比(eg,F)變得難以上升,故而可較易 獲得接近正規線之部分色散比(0g,F)。因此,Ti〇2成分之 3量相對於氧化物換算組成之玻璃全物質量較佳為以 20.0%為上限,更佳為以15〇%為上限,最佳為以1〇〇%為 上限。再者,於本發明中,即便不含Ti〇2成分,亦可獲得 具有所期望之光學特性之光學玻璃,但藉由含有Ti02成 刀’而使&南玻璃之折射率及色散之成分之數量增加,故 而可進一步提高玻璃之耐失透性。因此,Ti〇2成分之含量 相對於氧化物換算組成之玻璃全物質量較佳為超過〇%, 更佳為以0.1 %為下限,最佳為以〇 5%為下限。Ti〇2成分可 使用例如Ti〇2等作為原料而包含於玻璃内。The Ti〇2 component is a component which reduces the Abbe number while raising the refractive index of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ti〇2 component to 20.0% or less, the coloring to the glass can be lowered, and in particular, the internal transmittance of the short-wavelength region (under 500 nm) of visible light can be made 156904.doc -13 - 201206856 deterioration. Further, the content of the Ti〇2 component was set to 20 0. The partial dispersion ratio (eg, F) becomes difficult to rise, so that a partial dispersion ratio (0g, F) close to the regular line can be easily obtained. Therefore, the amount of the Ti 2 component is preferably 20.0% as the upper limit, more preferably 15% by weight, and most preferably 1% by weight, based on the total mass of the glass. Further, in the present invention, even if the Ti 2 component is not contained, an optical glass having desired optical characteristics can be obtained, but the composition of the refractive index and dispersion of the & The amount of the glass is increased, so that the resistance to devitrification of the glass can be further improved. Therefore, the content of the Ti〇2 component is preferably more than 〇% based on the total mass of the glass in terms of oxide conversion composition, more preferably 0.1% as the lower limit, and most preferably 〇5% as the lower limit. The Ti 2 component can be contained in the glass using, for example, Ti 2 as a raw material.

Biz〇3成分為提高玻璃之折射率,並且降低玻璃轉移點 (Tg)之成分,為本發明之光學玻璃中之任意成分。尤其是 藉由將Bi2〇3成分之含量設為1〇〇%以下,可降低玻璃之著 色,可提尚玻璃之内部透射率。又,藉由將則2〇3成分之 含量設為1〇.〇%以下,可使玻璃之部分色散比(0g,f)難以 上升。因此,Biz〇3成分之含量相對於氧化物換算組成之 玻璃全物質量較佳為以10.0%為上限,更佳為以8〇%為上 限,最佳為以5.0%為上限。則2〇3成分可使用例如則2〇3等 作為原料而包含於玻璃内。 W03成分為提高玻璃之折射率及色散,降低玻璃之失透 溫度之成分,為本發明之光學玻螭中之任意成分。尤其是 藉由將W〇3成分之含量設為10,0%以下,可使尤其是可見 156904,doc •14· 201206856 光之短波長區域(500 nm以下)之透射率難以惡化。又,藉 由將W〇3成为之含量設為丨〇 以下,可使玻璃之部分色 散比(0g F)難以上升。因此,WO3成分之含量相對於氧化 物換算組成之玻璃全物質量較佳為以1〇 〇%為上限,更佳 為以8·0%為上限,最佳為以5.0%為上限。W〇3成分可使用 例如WO3專作為原料而包含於玻璃内。 本發明之光學玻璃較佳為Nb2〇5成分及Ta2〇5成分之含量 之和相對於Ti〇2成分、則2〇3成分及w〇3成分之含量之和的 比率大於2.00。藉此’於提高玻璃之折射率及色散之成分 中,降低玻璃之部分色散比之成分的含量增加,故而可獲 得所期望之折射率及色散,並且可較易獲得較低之部分色 散匕因此氧化物換算組成之莫耳比(Nb205+Ta205)/ (•〇2812〇3憎〇3)較佳為大於2〇〇,更佳為大於25〇,更 佳為以2.55為下限,最佳為以2 6〇為下限。另一方面,該 莫耳比之上限無特別限定,但由本發明所獲得之玻璃大多 數情況下氧化物換算级成之莫耳比⑽歸―The Biz〇3 component is a component which increases the refractive index of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Bi2〇3 component to 1% by weight or less, the color of the glass can be lowered, and the internal transmittance of the glass can be improved. Further, by setting the content of the 2〇3 component to 1 〇.〇% or less, it is difficult to increase the partial dispersion ratio (0g, f) of the glass. Therefore, the content of the Biz 〇 3 component is preferably 10.0% as the upper limit, more preferably 8 〇% as the upper limit, and most preferably 5.0% as the upper limit. Then, the 2〇3 component can be contained in the glass using, for example, 2〇3 or the like as a raw material. The W03 component is a component which increases the refractive index and dispersion of the glass and lowers the devitrification temperature of the glass, and is an optional component in the optical glass bottle of the present invention. In particular, by setting the content of the W〇3 component to 10,0% or less, it is possible to particularly deteriorate the transmittance of the short wavelength region (below 500 nm) of 156904, doc •14·201206856 light. Further, by setting the content of W 〇 3 to 丨〇 or less, it is difficult to increase the partial dispersion ratio (0g F) of the glass. Therefore, the content of the WO3 component is preferably an upper limit of 1% 相对% with respect to the total mass of the glass in terms of an oxide conversion composition, more preferably an upper limit of 8.0%, and most preferably an upper limit of 5.0%. The W〇3 component can be used, for example, WO3 is used as a raw material and is contained in the glass. The optical glass of the present invention preferably has a ratio of the sum of the content of the Nb2〇5 component and the Ta2〇5 component to the sum of the content of the Ti〇2 component, the 2〇3 component and the w〇3 component of more than 2.00. Therefore, in increasing the refractive index and dispersion of the glass, the content of the component which reduces the partial dispersion ratio of the glass is increased, so that the desired refractive index and dispersion can be obtained, and a lower partial dispersion can be easily obtained. The molar ratio (Nb205+Ta205)/(•〇2812〇3憎〇3) of the oxide conversion composition is preferably more than 2〇〇, more preferably more than 25〇, more preferably 2.55 as the lower limit, and the best is Take 2 6 〇 as the lower limit. On the other hand, the upper limit of the molar ratio is not particularly limited, but in most cases, the glass obtained by the present invention is converted into a molar ratio (10).

Bl203+W〇3)為30.00以下,更詳細為28〇〇以下,更詳細為 2 7. 〇 〇以下。 、本發明之光學玻璃較佳為Nb2〇5成分、了响成》、叫〇 成分及BaO成分之含量之和相對於Ti〇2成分、成分及 成分之含量之和的比率為34()以上5請以下。尤其是 藉由將β亥比率Β又為3.40以上’而使降低玻璃之部分色散比 之成分之含量增加,故而可獲得所期望之折射率及色散, 並且可較易獲得較低之部分色散比。因此,氧化物換算組 156904.doc .15- 201206856 成之莫耳比(Nb205+Ta205+Na20+Ba0)/(Ti02+Bi203 + W03) 較佳為以3.40為下限,更佳為以3 5〇為下限,更佳為以 4.00為下限,更佳為以4 5〇為下限。就獲得部分色散比尤 其較低之玻璃之觀點而言,氧化物換算組成之莫耳比 (Nb205+Ta205+Na20+Ba0)/(Ti02+Bi203+W03)較佳為以 7.00為下限。另一方面,藉由將該比率設為50.00以下,而 使提昇折射率之成分之數量增加,故而可獲得所期望之折 射率,並且可提禹玻璃之耐失透性(例如降低液相溫度)。 因此’氧化物換算組成之莫耳比(Nb2〇5+Ta2〇5+Na2〇+Bl203+W〇3) is 30.00 or less, more detailed is 28〇〇 or less, and more detailed is 2 7. 〇 〇 below. The optical glass of the present invention preferably has a ratio of the sum of the content of the Nb2〇5 component, the ringing component, the barium component, and the BaO component to the sum of the content of the Ti〇2 component, the component, and the component of 34 () or more. 5 please below. In particular, by increasing the content of the component which lowers the partial dispersion ratio of the glass by the ratio of the β 亥 3.4 to 3.40 or more ′, the desired refractive index and dispersion can be obtained, and a lower partial dispersion ratio can be easily obtained. . Therefore, the oxide conversion group 156904.doc .15 - 201206856 molar ratio (Nb205 + Ta205 + Na20 + Ba0) / (Ti02 + Bi203 + W03) is preferably 3.40 as the lower limit, more preferably 3 5 〇. The lower limit is more preferably 4.00 as the lower limit, and more preferably 4 5 〇 as the lower limit. The molar ratio (Nb205 + Ta205 + Na20 + Ba0) / (Ti02 + Bi203 + W03) of the oxide-converted composition is preferably at a lower limit of 7.00 from the viewpoint of obtaining a glass having a lower partial dispersion ratio. On the other hand, by setting the ratio to 50.00 or less, the amount of the component for increasing the refractive index is increased, so that the desired refractive index can be obtained, and the devitrification resistance of the glass can be improved (for example, the liquidus temperature is lowered). ). Therefore, the molar ratio of the oxide ratio (Nb2〇5+Ta2〇5+Na2〇+

BaO)/(Ti02+Bi2〇3+W03)較佳為以50.00為上限,更佳為以 48.00為上限’最佳為以45.〇〇為上限。 此處’尤其是就獲得著色較少之玻璃之方面而言,較佳 為相對於Nt»2〇5成分及丁&2〇5成分之含量之和,提高Ta2〇5 成分之含量之比率。於此情形時,氧化物換算組成之莫耳 比(Ta2〇5)/(Nb2〇5 + Ta2〇5)較佳為以〇·〇ι為下限,更佳為以 〇.〇5為下限’更佳為以0.10為下限,最佳為以〇14為下 限。BaO)/(Ti02+Bi2〇3+W03) is preferably an upper limit of 50.00, more preferably an upper limit of 48.00', and the upper limit is 45. Here, 'in particular, in terms of obtaining a glass having less coloration, it is preferable to increase the ratio of the content of the Ta2〇5 component with respect to the sum of the contents of the Nt»2〇5 component and the Ding&2〇5 component. . In this case, the molar ratio (Ta2〇5)/(Nb2〇5 + Ta2〇5) of the oxide-converted composition is preferably 〇·〇ι as the lower limit, and more preferably 〇.〇5 as the lower limit' More preferably, the lower limit is 0.10, and the lower limit is 〇14.

LizO成分為降低玻璃之部分色散比,F),降低玻璃之 失透溫度’且降低玻璃轉移點(丁§)之成分,為本發明之光 學玻璃中之任意成分。尤其是藉由將Li2〇成分之含量設為 30.0%以下’可降低由含有過剩之Li2〇成分所導致的玻璃 之失透。又,使再加熱時之耐失透性提高,故而可提高玻 璃之加壓成形性。因此’ Li20成分之含量相對於氧化物換 算組成之玻璃全物質量較佳為以3〇.〇%為上限,更佳為以 156904.doc 16 · 201206856 25·0%為上限’最佳為以20.0%為上限。再者,即便不含 LhO成分’亦可製造具有所期望之物性之光學玻璃,但就 於確保較低之玻璃轉移點(Tg)且將玻璃之部分色散比(0g, F)容易地調整至所期望的較低之值之觀點而言,Li2〇成分 之含量相對於氧化物換算組成之玻璃全物質量較佳為以 0.1%為下限,更佳為以1〇%為下限,更佳為以4 〇%為下 限’最佳為以7.0%為下限。LhO成分可使用例如Li2C03、 LiN03、LiF等作為原料而包含於玻璃内。The LizO component is a component which reduces the partial dispersion ratio of the glass, F), lowers the devitrification temperature of the glass, and lowers the glass transition point (D), and is an optional component in the optical glass of the present invention. In particular, by reducing the content of the Li2 bismuth component to 30.0% or less, the devitrification of the glass due to the excessive Li2 bismuth component can be reduced. Further, since the devitrification resistance at the time of reheating is improved, the press formability of the glass can be improved. Therefore, the content of the Li20 component is preferably an upper limit of 3 〇.〇% with respect to the oxide-based composition, and more preferably 156904.doc 16 · 201206856 25·0% is the upper limit. 20.0% is the upper limit. Furthermore, optical glass having desired physical properties can be produced even without the LhO component, but the glass transition point (Tg) is ensured and the partial dispersion ratio (0g, F) of the glass is easily adjusted to From the viewpoint of the desired lower value, the content of the Li 2 〇 component is preferably 0.1% as the lower limit, more preferably 1% by weight, and more preferably the lower limit of the glass composition. Taking 4 〇% as the lower limit 'best is 7.0% as the lower limit. The LhO component can be contained in the glass using, for example, Li2C03, LiN03, LiF or the like as a raw material.

NazO成分為降低玻璃之部分色散比,f),提高玻璃 之化學穩定性、尤其是耐水性之成分,並且為降低玻璃轉 移點(Tg)之成分,為本發明之光學玻璃中的任意成分。尤 其是由於NhO成分與下述之LhO成分相比分子量較大,故 而可增大平均1莫耳之部分色散比之下降量,且與Li2〇成 刀相比難以降低玻璃之折射率或穩定性,因此適合作為降 低。P为色散比(0g,F)之成分》另一方面,藉由將Ν^〇成 分之含量設為30.0%以下,而使玻璃之穩定性提高,故而 可降低由含有過剩之NaaO成分所導致的玻璃之失透。又, 由於再熱時之耐失透性提高,故而可提高玻璃之加壓成形 性。因此,NkO成分之含量相對於氧化物換算組成之玻璃 全物質1較佳為以30.0%為上限,更佳為以25〇()/。為上限, 更佳為以22.0%為上限,最佳為以19 〇%為上限。再者,於 本發明中,即便不含NhO成分,亦可製造具有所期望之物 性之光學玻璃,但就如上述般進一步提高玻璃之部分色散 比(eg,F),且進一步提高玻璃之折射率及耐失透性之觀 156904.doc 17 201206856 點而§,較佳為含有Na2〇成分。於此情形時,ν^ο成分 之含量相對於氧化物換算組成之玻璃全物質量較佳為以 0.1%為下限,更佳為以丨.0%為下限,更佳為以5〇%為下 限’最佳為以8.0%為下限。Naw成分可使用例如 Na2C03、NaN03、NaF、Na2SiF6等作為原料而包含於玻璃 内。 ΚζΟ成分為降低玻璃轉移點(Tg)之成分,為本發明之光 學玻璃中之任意成分。尤其是藉由將K2〇成分之含量設為 20.0%以下,可降低由含有過剩之〖2〇成分所導致的玻璃 之失透。又,由於再熱時之耐失透性提高,故而可提高玻 璃之加壓成形性。因此,Κ2〇成分之含量相對於氧化物換 算組成之玻璃全物質量較佳為以2〇 〇%為上限,更佳為以 10·0/。為上限,更佳為以5.0。/。為上限。成分可使用例 如K2C〇3、ΚΝ〇3、KF、KHF2、K2SiF6等作為原料而包含 於玻璃内βThe NazO component is a component which lowers the partial dispersion ratio of the glass, f), improves the chemical stability of the glass, particularly the water resistance component, and is a component which lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. In particular, since the molecular weight of the NhO component is larger than that of the LhO component described below, the decrease in the partial dispersion ratio of an average of 1 mole can be increased, and it is difficult to lower the refractive index or stability of the glass compared to the Li2〇 forming. Therefore, it is suitable as a reduction. P is a component of the dispersion ratio (0g, F). On the other hand, by setting the content of the component to be 30.0% or less, the stability of the glass is improved, so that the component containing excess NaaO can be reduced. The glass is destructed. Further, since the devitrification resistance is improved at the time of reheating, the press formability of the glass can be improved. Therefore, the content of the NkO component is preferably 30.0% as the upper limit, more preferably 25 Å ()/, based on the oxide-converted composition. The upper limit is more preferably 22.0%, and the best is 19%. Further, in the present invention, even if the NhO component is not contained, an optical glass having a desired physical property can be produced, but the partial dispersion ratio (eg, F) of the glass is further increased as described above, and the refraction of the glass is further improved. Rate and resistance to devitrification. 156904.doc 17 201206856 Point and §, preferably containing Na2〇 component. In this case, the content of the ν^ο component is preferably 0.1% as the lower limit, more preferably 丨.0% as the lower limit, and more preferably 5% by weight, based on the oxide-converted composition. The lower limit 'best is 8.0% as the lower limit. The Naw component can be contained in the glass using, for example, Na2C03, NaN03, NaF, Na2SiF6 or the like as a raw material. The bismuth component is a component which lowers the glass transition point (Tg) and is an optional component in the optical glass of the present invention. In particular, by setting the content of the K2 bismuth component to 20.0% or less, devitrification of the glass due to the excessive ruthenium component can be reduced. Further, since the devitrification resistance at the time of reheating is improved, the press formability of the glass can be improved. Therefore, the content of the Κ2〇 component is preferably an upper limit of 2 〇 〇%, more preferably 10·0 。, based on the total mass of the glass of the oxide conversion composition. For the upper limit, it is better to be 5.0. /. The upper limit. The component can be contained in the glass by using, for example, K2C〇3, ΚΝ〇3, KF, KHF2, K2SiF6 or the like as a raw material.

ChO成分為降低玻璃轉移點(Tg)之成分,為本發明之光 學玻璃中之任意成分。尤其是藉由將Cs2〇成分之含量設為 10.0%以下’可降低由含有過剩之Cs2〇成分所導致的玻璃 之失透。因此,CszO成分之含量相對於氧化物換算組成之 玻璃全物質罝較佳為以1〇 〇%為上限,更佳為以8 〇%為上 限,更佳為以5.0%為上限^ Cs2〇成分可使用例如Cs2C〇3、 CsN〇3寻作為原料而包含於玻璃内。 本發明之光學玻璃較佳為Rn2〇成分(式中,尺11為選自由 Li、Na、K及Cs所組成之群中之1種以上)之含量之和為 156904.doc -18- 201206856 10.0%以上55_0%以下。尤其是藉由將該和設為1〇〇%以 上’可降低玻璃轉移點(Tg)而獲得較易進行加壓成形之玻 璃。因此,RhO成分之合計含量相對於氧化物換算組成之 玻璃全物質量較佳為以1〇.0%為下限,更佳為以15 〇%為下 限,更佳為以20.0%為下限,最佳為以22.5%為下限。另一 方面’藉由將該質量和設為55.0%以下,可抑制玻璃之失 透而使玻璃化變得容易。因此,RhO成分之含量之質量和 相對於氧化物換算組成之玻璃全物質量較佳為以5 5 〇 %為 上限,更佳為以50.0%為上限,更佳為以43 〇%為上限,更 佳為以40.0°/。為上限’最佳為以35 〇%為上限。 又,本發明之光學玻璃較佳為Τ&2〇5成分之含量相對於 LisO成分及Na2〇成分之含量之和的比率為〇 〇1〇以上〇 5〇〇 以下。尤其是藉由將該比率設為0·07以上,可提高玻璃之 耐失透性,且可降低對玻璃進行再熱時之失透及乳白。另 一方面,藉由將該比率設為0 5〇〇以下,可降低因該比率 過咼而產生之失透。因此,氧化物換算組成之莫耳比 Ta^/CLkO+Na2。)較佳為以〇_〇1〇為下限,更佳為以〇〇4〇 為下限,最佳為以0.070為下限。另一方面,該莫耳比 Ta205/(U20+Na20)較佳為以〇.5〇〇為上限,更佳為以〇48〇 為上限,最佳為以0.470為上限。The ChO component is a component which lowers the glass transition point (Tg) and is an optional component in the optical glass of the present invention. In particular, by reducing the content of the Cs2 bismuth component to 10.0% or less, the devitrification of the glass caused by the excessive Cs2 strontium component can be reduced. Therefore, the content of the CszO component is preferably an upper limit of 1% by weight, more preferably an upper limit of 8 %, more preferably an upper limit of 5.0%, and a Cs2 composition. For example, Cs2C〇3, CsN〇3 can be used as a raw material and contained in the glass. The optical glass of the present invention preferably has a Rn2 〇 component (wherein the ruler 11 is one or more selected from the group consisting of Li, Na, K, and Cs) and the sum of the contents is 156904.doc -18 - 201206856 10.0 % or more below 55_0%. In particular, it is possible to obtain a glass which is easier to press-form by lowering the glass transition point (Tg) by setting the sum to 1% or more. Therefore, the total content of the RhO component is preferably 1 〇.0% as the lower limit, more preferably 15 〇% as the lower limit, and more preferably 20.0% as the lower limit. Jia is at the lower limit of 22.5%. On the other hand, by setting the mass sum to 55.0% or less, it is possible to suppress the glass from being devitrified and to facilitate the vitrification. Therefore, the mass of the content of the RhO component and the total mass of the glass relative to the oxide-converted composition are preferably an upper limit of 55% by weight, more preferably an upper limit of 50.0%, and even more preferably an upper limit of 43% by weight. More preferably at 40.0 ° /. The upper limit 'best is the upper limit of 35 〇%. Further, in the optical glass of the present invention, the ratio of the content of the Τ & 2 〇 5 component to the sum of the contents of the LisO component and the Na 2 〇 component is preferably 〇 〇 1 〇 or more 〇 5 〇〇 or less. In particular, by setting the ratio to 0 or more, the devitrification resistance of the glass can be improved, and the devitrification and whitening of the glass when reheating can be reduced. On the other hand, by setting the ratio to 0 5 or less, the devitrification caused by the excessive ratio of the ratio can be reduced. Therefore, the molar ratio of the oxide composition is Ta^/CLkO+Na2. Preferably, 〇_〇1〇 is the lower limit, more preferably 〇〇4〇 is the lower limit, and most preferably 0.070 is the lower limit. On the other hand, the molar ratio Ta205/(U20+Na20) is preferably an upper limit of 〇.5〇〇, more preferably an upper limit of 〇48〇, and most preferably an upper limit of 0.470.

MgO成分為降低玻璃之熔融溫度之成分,為本發明之光 學玻璃中之S意成分。尤其是藉由將Mg〇成分之含量設為 15.0%以下’可於獲得所期望之高折射率之同時提高玻璃 之化學穩定性,且可提高玻璃之耐失透性。因此,Mg〇成 156904.doc 201206856 分之含量相對於氧化物換算組成之玻璃全物質量較佳為以 15.0°/。為上限’更佳為以10.0%為上限,最佳為以5 〇%為上 限。MgO成分可使用例如Mg〇、MgC〇3、Mgr!等作為原料 而包含於玻璃内。The MgO component is a component which lowers the melting temperature of the glass, and is an S component in the optical glass of the present invention. In particular, by setting the content of the Mg bismuth component to 15.0% or less, the chemical stability of the glass can be improved while obtaining a desired high refractive index, and the devitrification resistance of the glass can be improved. Therefore, the content of Mg 156904.doc 201206856 is preferably 15.0 °/ relative to the total mass of the glass in terms of oxide conversion composition. The upper limit is more preferably 10.0%, and most preferably 5 〇%. The MgO component can be contained in the glass using, for example, Mg〇, MgC〇3, Mgr! or the like as a raw material.

CaO成分為降低玻璃之失透溫度之成分,為本發明之光 學玻璃中之任意成分。尤其是藉由將Ca〇成分之含量設為 20.0°/。以下,可於獲得所期望之高折射率之同時提高玻璃 之化學穩定性,且可提高玻璃之耐失透性。因此,Ca〇成 分之含量相對於氧化物換算組成之玻璃全物質量較佳為以 20.0%為上限,更佳為以15.〇%為上限,最佳為以1〇〇%為 上限。CaO成分可使用例如CaC〇3、以匕等作為原料而包 含於玻璃内。The CaO component is a component which lowers the devitrification temperature of the glass and is an optional component in the optical glass of the present invention. In particular, the content of the Ca 〇 component was set to 20.0 ° /. Hereinafter, the chemical stability of the glass can be improved while obtaining a desired high refractive index, and the devitrification resistance of the glass can be improved. Therefore, the content of the Ca 〇 component is preferably 20.0% as the upper limit, more preferably 15. 〇% as the upper limit, and most preferably 1 〇〇% as the upper limit. The CaO component can be contained in the glass by using, for example, CaC〇3, ruthenium or the like as a raw material.

SrO成分為降低玻璃之失透溫度,調整玻璃之折射率之 成分,為本發明之光學玻璃中之任意成分。尤其是藉由將The SrO component is a component which lowers the devitrification temperature of the glass and adjusts the refractive index of the glass, and is an arbitrary component in the optical glass of the present invention. Especially by

SrO成分之含量設為20·0%以下,可於獲得所期望之高折射 率之同時提高玻璃之耐失透性。因此,Sr〇成分之含量相 對於氧化物換算組成之玻璃全物質量較佳為以2〇 〇%為上 限,更佳為以15·0°Λ為上限,最佳為以1〇 〇%為上限^ Sr〇 成分可使用例如Sr(N〇3)2、SrF2等作為原料而包含於玻璃 内。The content of the SrO component is set to 20.0% or less, and the devitrification resistance of the glass can be improved while obtaining a desired high refractive index. Therefore, the content of the Sr〇 component is preferably an upper limit of 2% by weight based on the total mass of the glass in terms of an oxide conversion composition, more preferably an upper limit of 15·0°Λ, and most preferably 1% by weight. The upper limit ^ Sr 〇 component can be contained in the glass using, for example, Sr(N〇3) 2, SrF 2 or the like as a raw material.

BaO成分為降低玻璃之部分色散比(θ§,F),提高玻璃之 耐失透性,且調整玻璃之光學常數之成分,為本發明之光 學玻璃中之任意成分。尤其是藉由將Ba〇成分之含量設為 30.0/。以下,可提尚玻璃之耐失透性。又,藉由將成 156904.doc •20- 201206856 分之含量設為3〇·〇〇/0以下,可提高玻璃之耐失透性。因 此’ BaO成分之含量相對於氧化物換算組成之玻璃全物質 量較佳為以30.0%為上限,更佳為以2〇_〇%為上限,最佳為 以10.0%為上限。Ba〇成分可使用例如Bac〇3、Ba(N03)^ 作為原料而包含於玻璃内β ΖηΟ成分為降低玻璃之失透溫度,降低玻璃轉移點(Tg) 之成分’為本發明之光學玻璃中之任意成分。尤其是藉由 將ZnO成分之含量設為3〇〇%以下,可於獲得所期望之高 折射率之同時提高玻璃之化學穩定性。因此,ZnO成分之 含量相對於氧化物換算組成之玻璃全物質量較佳為以 3〇·〇%為上限,更佳為以20.0%為上限,最佳為以10.0%為 上限。ZnO成分可使用例如Ζη〇、ΖηΙ?2等作為原料而包含 於玻璃内。 於本發明之光學玻璃中,R〇成分(式中,尺為選自由The BaO component is a component which reduces the partial dispersion ratio (θ §, F) of the glass, improves the devitrification resistance of the glass, and adjusts the optical constant of the glass, and is an arbitrary component in the optical glass of the present invention. In particular, the content of the Ba〇 component was set to 30.0/. In the following, the devitrification resistance of the glass can be mentioned. Further, by setting the content of 156904.doc •20-201206856 to 3〇·〇〇/0 or less, the devitrification resistance of the glass can be improved. Therefore, the content of the BaO component is preferably 30.0% as the upper limit, more preferably 2 〇 〇 % as the upper limit, and most preferably 10.0% as the upper limit. The Ba〇 component can be contained in the glass by using, for example, Bac〇3 or Ba(N03)^ as a raw material, and the β ΖηΟ component is a component for lowering the devitrification temperature of the glass and lowering the glass transition point (Tg) as the optical glass of the present invention. Any component. In particular, by setting the content of the ZnO component to 3 % by weight or less, the desired high refractive index can be obtained while improving the chemical stability of the glass. Therefore, the content of the ZnO component is preferably an upper limit of 3 〇·〇% with respect to the total mass of the glass in terms of an oxide conversion composition, more preferably 20.0% as an upper limit, and most preferably 10.0% as an upper limit. The ZnO component can be contained in the glass by using, for example, Ζη〇, ΖηΙ?2 or the like as a raw material. In the optical glass of the present invention, the R〇 component (wherein the ruler is selected from

Zn ' Mg、Ca、Sr、Ba所組成之群中之i種以上)如上述般 為對提高玻璃之耐失透性,調整折射率有用之成分,但若 該等RO成分之合計含量過多,則玻璃之耐失透性反而變 得易心化,玻璃之折射率亦變得易降低。因此,成分 之合計含量相對於氧化物換算組成之玻璃全物質量較佳為 以30.0%為上限’更佳為以2〇 〇%為上限,最佳為以 為上限。 p2〇5成分為提高玻璃之穩定性之成&,為本發明之光學 玻璃中之任思成分。尤其是藉由將P2〇5成分之含量設為 20.0%以了 ’而使由含有過剩之成分所導致的失透傾 156904.doc -21 · 201206856 向降低,故而可提高玻璃之穩定性。因此,?2〇5成分之含 量相對於氧化物換算組成之玻璃全物質量較佳為以20 0% 為上限,更佳為以1〇·0%為上限,最佳為以5 〇%為上限。 ρ2〇5 成分可使用例如 a1(p〇3)3、Ca(p〇3)2、Ba(pc>3)2、 ΒΡ Ο*、H3 PO4專作為原料而包含於玻璃内。 Βζ〇3成分為玻璃形成氧化物,為對形成玻璃之骨架有用 之成分,為本發明之光學玻璃中之任意成分。尤其是藉由 將B2〇3成分之含1 5免為30.0%以下’而使玻璃之折射率變 得難以降低,可見光之短波長區域之内部透射率變得難以 惡化。因此,B2〇3成分之含量相對於氧化物換算組成之玻 璃全物質S較佳為以30.0%為上限,更佳為以20.0%為上 限’更佳為以15,0°/。為上限’最佳為以1〇 〇%為上限。尤其 是就可降低部分色散比之觀點而言,ΙΑ成分之含量相對 於氧化物換具組成之玻璃全物質量較佳為以3 〇 〇%為上 限’更佳為以20.0%為上限’最佳為以14.5%為上限。]g2〇3 成分可使用例如 Η3Β〇3、Na2B407、Na2B407 · ι〇η2〇、 ΒΡ〇4等作為原料而包含於玻璃内。As described above, the above-mentioned group of Zn 'Mg, Ca, Sr, and Ba is a component which is useful for improving the devitrification resistance of the glass and adjusting the refractive index. However, if the total content of the RO components is too large, Then, the resistance to devitrification of the glass becomes easy to change, and the refractive index of the glass also becomes easy to decrease. Therefore, the total content of the components is preferably an upper limit of 30.0% with respect to the total mass of the glass in terms of the oxide-converted composition, and more preferably an upper limit of 2 〇%, and most preferably an upper limit. The p2〇5 component is a composition for improving the stability of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the P2〇5 component to 20.0%, the devitrification tilting 156904.doc-21/201206856 caused by the excessive component is lowered, so that the stability of the glass can be improved. therefore,? The content of the 2〇5 component is preferably an upper limit of 20% by weight based on the oxide-converted composition, more preferably 1%·0%, and most preferably 5%%. For the ρ2〇5 component, for example, a1(p〇3)3, Ca(p〇3)2, Ba(pc>3)2, ΒΡ**, and H3PO4 can be used as a raw material and contained in the glass. The Βζ〇3 component is a glass-forming oxide and is a component useful for forming a skeleton of glass, and is an optional component in the optical glass of the present invention. In particular, it is difficult to reduce the refractive index of the glass by reducing the content of the B2〇3 component to 50.0% or less, and the internal transmittance of the short-wavelength region of visible light is hard to deteriorate. Therefore, the content of the B2〇3 component is preferably 30.0% as the upper limit, more preferably 20.0% as the upper limit, and more preferably 15,0°/%. The upper limit 'best is 1 〇 〇% is the upper limit. In particular, from the viewpoint of lowering the partial dispersion ratio, the content of the cerium component is preferably an upper limit of 3 〇〇% with respect to the total mass of the glass composition of the oxide converter, and more preferably an upper limit of 20.0%. Jia is capped at 14.5%. The component g2〇3 can be contained in the glass using, for example, Η3Β〇3, Na2B407, Na2B407·ι〇η2〇, ΒΡ〇4 or the like as a raw material.

Ge〇2成分為提咼玻璃之折射率,使玻璃穩定化而降低成 形時之失透之成分’為本發明之光學玻璃中之任意成分。 尤其是藉由將Ge〇2成分之含量設為20.0%以下,而使昂貴 之Ge〇2成分之使用量降低,故而可降低玻璃之材料成本。 因此’ Ge〇2成分之含量相對於氧化物換算組成之玻璃全物 質量較佳為以20.0%為上限,更佳為以10.0%為上限,最佳 為以5.0%為上限。Ge〇2成分可使用例如Ge〇2等作為原料 156904.doc -22- 201206856 而包含於玻璃内。 又’本發明之光學玻璃較佳為Si〇2成分' P2〇5成分、 B2〇3成分及Ge〇2成分之含量之和為2〇 〇%以上6〇 〇%以 下°藉由該專之含量之和為20.0%以上,可抑制部分色散 比(0g ’ F)之上升,故而可較易獲得本發明所期望的接逆 正規線之低部分色散比(eg,F)e又,由於玻璃之穩定性 提高,故而可提高玻璃之耐失透性。因此,質量和 (SiC^+P^s+ic^+GeO2)相對於氧化物換算組成之玻璃全 物質量較佳為以20.0%為下限,更佳為以3〇〇%為下限,最 佳為以35.0%為下限。另一方面,藉由該等之含量之和為 60.0〇/。以下,而使折射率及阿貝數變得難以降低故而可 較易獲得所期望之高折射率及高色散。因此,質量和 相對於氧化物換算組成之玻璃全 物質量杈佳為以60.0%為上限,更佳為以55 〇%為上限,最 佳為以50.0%為上限。The Ge 〇 2 component is a refractive index of the glass, and stabilizes the glass to lower the devitrified component when it is formed. ’ is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ge 〇 2 component to 20.0% or less, the amount of the expensive Ge 〇 2 component is lowered, so that the material cost of the glass can be reduced. Therefore, the content of the 'Ge〇2 component is preferably 20.0% as the upper limit, more preferably 10.0% as the upper limit, and most preferably 5.0% as the upper limit. The Ge〇2 component can be contained in the glass using, for example, Ge〇2 or the like as a raw material 156904.doc -22-201206856. Further, the optical glass of the present invention preferably has a combination of the content of the Si 〇 2 component ' P 2 〇 5 component, the B 2 〇 3 component, and the Ge 〇 2 component of 2% by mass or more and 6 % by weight or less. The sum of the contents is 20.0% or more, and the increase of the partial dispersion ratio (0g 'F) can be suppressed, so that the low partial dispersion ratio (eg, F) e of the reverse normal line desired by the present invention can be easily obtained. The stability is improved, so that the devitrification resistance of the glass can be improved. Therefore, the quality of the glass and the mass of (SiC^+P^s+ic^+GeO2) relative to the oxide-converted composition is preferably 20.0% as the lower limit, more preferably 3%% as the lower limit, and most preferably The lower limit is 35.0%. On the other hand, the sum of the contents is 60.0 〇 /. In the following, it is difficult to reduce the refractive index and the Abbe number, so that a desired high refractive index and high dispersion can be easily obtained. Therefore, the mass and the total mass of the glass relative to the oxide-converted composition are preferably 60.0%, more preferably 55 〇%, and most preferably 50.0%.

La2〇3成分及Gd2〇3成分為於提高玻璃之折射率之同時提 尚玻璃之阿貝數之任意成分。又,γ2〇3成分為於提高玻璃 =折射率之同時提高玻璃之财失透性之任意成分。尤其是 猎由將La203成分、Gd2〇3成分及γ2〇3成分之含量分別設為 30.0%以下’可提高玻璃之耐失透性,且可使玻璃之色散 難以降低。因此,La2〇3成分、Gd2〇3成分及γ2〇3成分各自 之含量相對於氧化物換算組成之玻璃全 —限,更佳—為上限,最二 上限。1^2〇3成分、叫〇3成分及丫2〇3成分可使用例如 】56904.doc •23- 201206856The La2〇3 component and the Gd2〇3 component are arbitrary components which increase the refractive index of the glass while improving the Abbe number of the glass. Further, the γ 2 〇 3 component is an optional component for improving the glass devitrification property while improving the glass = refractive index. In particular, the content of the La203 component, the Gd2〇3 component, and the γ2〇3 component is set to be 30.0% or less, respectively, so that the devitrification resistance of the glass can be improved, and the dispersion of the glass can be hardly lowered. Therefore, the content of each of the La2〇3 component, the Gd2〇3 component, and the γ2〇3 component is more preferably the upper limit and the second upper limit with respect to the glass total limit of the oxide conversion composition. 1^2〇3 component, 〇3 component, and 丫2〇3 component can be used, for example, 56904.doc •23- 201206856

La203、La(N03)3 · XH2〇(x為任意整數)、Gd2〇3、GdF3、 Y2〇3、YF3等作為原料eLa203, La(N03)3 · XH2〇 (x is an arbitrary integer), Gd2〇3, GdF3, Y2〇3, YF3, etc. as raw materials e

Yt>2〇3成分為實現高折射率,提高硬度或楊氏模數等特 性之任意成分。尤其是藉由將Yt>2〇3成分之含有率設為 20.0%以下,或將LU2〇3成分之含有率設為1〇〇%以下可 抑制玻璃之色散之降低,提高玻璃形成時之耐失透性。因 此,丫匕〇3成分相對於氧化物換算組成之玻璃全物質量之 含有率較佳為以20.0%為上限,更佳為以1〇〇%為上限最 佳為以5.0%為上限。又,LU2〇3成分相對於氧化物換算組 成之玻璃全物質量之含有率較佳為以1〇 〇%為上限,更佳 為以8.0%為上限,最佳為以5 〇%為上限。Yb2〇3成分及 LhO3成分可使用例如Yb2〇3、lU2〇3等作為原料。 本發明之光學玻璃較佳為LhO3成分(式中,。為選自由 La、Gd、Y、Yb及Lu所組成之群中之丨種以上)之含量之和 為30.0%以下。藉此,可於抑制玻璃之色散之降低之同時 提高玻璃之耐失透性。因此,LhO3成分之含量之和相對 於氧化物換算組成之玻璃全物質量較佳為以3〇 〇%為上 限,更佳為以20.0%為上限,最佳為以1〇 〇%為上限。The Yt>2〇3 component is an arbitrary component that achieves a high refractive index and an improvement in hardness or Young's modulus. In particular, by setting the content of the Yt>2〇3 component to 20.0% or less, or by setting the content of the LU2〇3 component to 1% by weight or less, it is possible to suppress the decrease in the dispersion of the glass and to improve the resistance during the formation of the glass. Devitrification. Therefore, the content of the iridium 3 component relative to the total mass of the glass in terms of the oxide-converted composition is preferably 20.0%, and more preferably 1% by weight, and most preferably 5.0%. Further, the content ratio of the LU2〇3 component to the total mass of the glass in terms of oxide conversion is preferably an upper limit of 1% ,%, more preferably an upper limit of 8.0%, and most preferably an upper limit of 5%. For the Yb2〇3 component and the LhO3 component, for example, Yb2〇3, lU2〇3, or the like can be used as a raw material. The optical glass of the present invention preferably has a content of the LhO3 component (in the formula, which is selected from the group consisting of La, Gd, Y, Yb, and Lu), and the sum of the contents is 30.0% or less. Thereby, the devitrification resistance of the glass can be improved while suppressing the decrease in the dispersion of the glass. Therefore, the sum of the contents of the LhO3 component is preferably an upper limit of 3 〇% with respect to the total mass of the glass of the oxide conversion composition, more preferably 20.0%, and most preferably 1 〇%.

Te〇2成分為提高玻璃之折射率,降低玻璃轉移點(Tg)之 成分,為本發明之光學玻璃中之任意成分。尤其是藉由將 Te〇2成分之含量設為3〇 〇%以下,可降低玻璃之著色,提 高玻璃相對於可見光之透射率。因此,Teh成分之含量相 對於氧化物換算組成之玻璃全物質量較佳為以3〇 〇%為上 限,更佳為以20.0%為上限,最佳為以1〇 〇%為上限^ Te 156904.doc •24· 201206856 成分可使用例如Te〇2等作為原料而包含於玻璃内。 2 3成刀Ga2〇3成分及Ιπ2〇3成分為改善玻璃之化學穩 ,性之成分,為本發明之光學玻璃中之㈣成分。尤其是 猎由將該等成分之含量分別設為20 0%以下,可提高玻璃 之=失透性。因此’ Α12ο3成分、Ga203成分及Ιη203成分之 3 1相對於氧化物換算組成之玻璃全物質量分別較佳為以 20.0%為上限,更佳為以1〇 〇%為上限最佳為以5 為上 限Al2〇3成分、Ga2〇3成分及Ιιΐ2〇3成分可使用例如 Al2〇3 ' Al(〇H)3 ^ A1F3 > Ga2〇3 ' Ga(OH)3 ^ Ιη203 > In(〇H)3專作為原料而包含於玻璃内。The Te〇2 component is a component which increases the refractive index of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Te〇2 component to 3 〇% or less, the color of the glass can be lowered, and the transmittance of the glass with respect to visible light can be improved. Therefore, the content of the Teh component is preferably an upper limit of 3〇〇% with respect to the oxide-converted composition, more preferably an upper limit of 20.0%, and most preferably an upper limit of 1〇〇% ^ Te 156904 .doc •24· 201206856 The component can be contained in the glass using, for example, Te〇2 as a raw material. 2 3 knives Ga 2 〇 3 components and Ι π 2 〇 3 components are components for improving the chemical stability of the glass, and are the (four) component of the optical glass of the present invention. In particular, it is possible to increase the glass devitrification property by setting the content of these components to 20% or less. Therefore, the total mass of the glass of the composition of the Α12ο3 component, the Ga203 component, and the 203η203 component is preferably 20.0% as the upper limit, and more preferably 1%% as the upper limit, and most preferably 5 For the upper limit Al2〇3 component, Ga2〇3 component, and Ιιΐ2〇3 component, for example, Al2〇3 'Al(〇H)3 ^ A1F3 > Ga2〇3 'Ga(OH)3 ^ Ιη203 > In(〇H) can be used. 3 is used as a raw material and is contained in glass.

Zr〇2成分為於提高玻璃之折射率之同時降低玻璃之部分 色散比(eg ’ f)之成分’為本發明之光學玻璃中之任意成 刀尤其是藉由將Zr〇2成分之含量設為20_0。/〇以下,可降 低玻璃之液相溫度並提高耐失透性。因此,汾〇2成分之含 相對於氧化物換算組成之玻璃全物質量較佳為以〇% 為上限,更佳為以15.0¼為上限,最佳為以1〇 〇%為上限。 再者’本發明之光學玻璃亦可不含Zr〇2成分M旦藉由含有 Zr〇2成分,可較易獲得具有較低之部分色散比(0§,〇之 玻璃。因此,Zr02成分之含量相對於氧化物換算組成之玻 璃全物質量亦可較佳為多於0%,更佳為以〇1%為下限, 最佳為以0.2%為丁限。Zr〇2成分可使用例如Zr〇2、ZrF4等 作為原料而包含於玻璃内。The Zr〇2 component is a component for reducing the refractive index of the glass while reducing the partial dispersion ratio (eg 'f) of the glass. The arbitrary forming of the optical glass of the present invention is especially set by the content of the Zr〇2 component. For 20_0. Below / ,, the liquid temperature of the glass can be lowered and the resistance to devitrification can be improved. Therefore, the content of the bismuth 2 component is preferably 〇% as the upper limit, more preferably 15.01 ⁄4 as the upper limit, and most preferably 1 〇 〇% as the upper limit. Furthermore, the optical glass of the present invention may also contain no Zr〇2 component. M. By containing a Zr〇2 component, it is easier to obtain a lower partial dispersion ratio (0 §, 〇 glass). Therefore, the content of Zr02 component The total mass of the glass relative to the oxide-converted composition may preferably be more than 0%, more preferably 〇1% as the lower limit, and most preferably 0.2% as the limit. For the Zr〇2 component, for example, Zr〇 may be used. 2. ZrF4 or the like is contained in the glass as a raw material.

Sb2〇3成分為促進玻璃之消泡,淨化玻璃之成分,為本 發明之光學玻璃中之任意成分。Sb203成分藉由將相對於 156904.doc •25- 201206856 :::物質量之含量設為1〇%以下,可使玻璃熔融時難以 過度之發泡而使Sb2〇』分與熔解設備(尤其心等主 2屬)難以合金化。因此,Sb203成分相對於氧化物換算: 成之玻璃全物質量之含有率較佳為以10%為上限 以㈣為上限’更佳為以㈣為上限。但是,於: 玻璃在環境上之影響之情形時,較佳為不含Sb20秦The Sb2〇3 component is a component which promotes defoaming of glass and purifies the glass, and is an optional component in the optical glass of the present invention. By setting the content of Sb203 to less than 1% by weight relative to the content of 156904.doc •25-201206856::, it is difficult to excessively foam when the glass is melted, and the Sb2〇 is divided into melting equipment (especially It is difficult to alloy the main 2 genus. Therefore, the content of the Sb203 component in terms of oxide is preferably 10% as the upper limit, and (4) is the upper limit, and more preferably (4) is the upper limit. However, when: the influence of glass on the environment, it is better not to contain Sb20 Qin.

Sb2°3' Sb2°5' Na2H2Sb2°7 · 5H2° 寻1下马原科而包含於玻璃内。 ⑽成分為淨化玻璃之成分,並且為調整玻璃之光學常 數之成分’為本發明之光學玻璃中之任意成分。尤其是藉 〇2成刀之含量没為丨〇%以下,可降低由成分 之著色因此,Ce〇2成分之含量相對於氧化物換算 組成之玻璃全物質量較佳為m G%為上限,更佳為以05% 為^限,最佳為以〇.3%為上限。但是,若含有Ce〇2成分, 、J谷易對可見光區域之特定波長產生吸收,因此於獲得可 見光之透射率尤其較高之玻璃之情形時,較佳為實質上不 3 Ce〇2成分。Ce〇2成分可使用例如Ce02等作為原料而包 含於玻璃内。 再者’淨化玻璃並消泡之成分並不限定於上述Sb2〇3成 分及Ce〇2成分’可使用玻璃製造領域中公知之淨化劑或消 泡劑、或該等之組合。 <關於不應該含有之成分> 其次’對本發明之光學玻璃不應該含有之成分、及若含 有則欠佳之成分進行說明。 156904.doc -26 - 201206856 於本發明之光學祐链+ _ , 予坡璃令,於無損玻璃之特性之範圍内, 可視需要添加其他成分。 但是,除 Ti、々、Nb 以外,V、Cr、Mn、Co、Ni、 C Ag及M。等各過渡金屬成分即便於分別單獨或複合含 有^量之if形時,亦存在玻璃產生著色對可見光區域之 特定波長產生吸收之性質,因此尤其是使用可見光區域之 波長的光學玻璃較佳為實質上不含上述成分。 進而,近年來存在將Pb〇等錯化合物及As2〇3等神化合 物、以及Th、Cd、T卜0s、Be' Se之各成分作為有害: 學物質而控制其使用之傾向,故而不僅玻璃之製造步驟而 且直至加工步驟及製成產品後之處理均需要環境對策上的 措m ’於重視環境上之影響之情形時,較佳為除不 可避免之混入以外,實質上不含該等。藉此,於光學玻璃 中實質上不含污染環境之物質。因此’即便不採取特別之 環境對策上之措施,亦可製造、加工及廢棄該光學玻璃。 關於較佳地用作本發明之光學玻璃之玻璃,其組成以相 對於氧化物換算組成之玻璃全物質量之莫耳%表示,故而 並不直接示於質量%之記載中’於滿足本發明所要求之各 特性之玻璃組成物中存在之各成分之以質量%表示的組成 係藉由氧化物換算組成而採用大致以下之值: 10.0〜40.0質量%之^〇2成分:及 0〜50.0質量%之丁32〇5成分及/或 0〜55.0質量%之]^205成分及/或 0〜18.0質量%之丁丨〇2成分及/或 I56904.doc -27- 201206856 0〜40.0質量%之Bi203成分及/或 0〜25.0質量°/〇之W03成分及/或 0〜12.0質量%之Li20成分及/或 0〜20.0質量%之Na20成分及/或 0〜20.0質量%之K20成分及/或 0〜20.0質量%iCs20成分及/或 0〜5.0質量。/〇之MgO成分及/或 0-10.0質量%之CaO成分及/或 0〜20.0質量%之SrO成分及/或 0〜45.0質量%之BaO成分及/或 0〜25.0質量%之ZnO成分及/或 0〜30.0質量%之P205成分及/或 0〜25.0質量%之B2〇3成分及/或 0〜20.0質量°/。之Ge02成分及/或 0〜40.0質量%之Y203成分及/或 0〜40.0質量%之La203成分及/或 0〜40.0質量%之Gd203成分及/或 0〜3 0.0質量%之Yb203成分及/或 0〜20.0質量%之Lu203成分及/或 0〜45.0質量%之Te02成分及/或 0〜20.0質量°/。之Al2〇3成分及/或 0-25.0質量%2Ga203成分及/或 0〜30.0質量%之Ιη203成分及/或 0〜25.0質量%之Zr02成分及/或 156904.doc -28 · 201206856 〇〜3.0質量%iSb2〇3成分及/或 〇〜3.0質量%iCe〇2成分。 [製造方法] 本發明之光學玻璃例如係以如下方式製作。即,以各成 分於特定含有率之範圍内之方式均勾地混合上述原料,將 製作之混合物投入翻掛瑪、石英掛網或氧化_令並使 其部分熔融後,添加於金坩堝、鉑坩堝、 ㈣中並於―,之溫度範圍内進行二= 融,授拌使其均質化並進行消泡等後,降至刪〜議。c 之溫度後進行精加工攪拌而去除條紋,澆注於模具上使其 緩冷卻,藉此製作本發明之光學玻璃。 <物性> 本發明之光學玻璃較佳為具有特定之折射率及色散(阿 貝數)。Μ體而f,本發明之光學玻璃之折射率(nd)較佳 為以1.77為下限,更佳為以i 79為下❿,最佳為以^以為 下限。另一方面,本發明之光學玻璃之折射率(nd)之上限 無特別限^ ’但大多數情況下大致為2.2G以下,更具體為 2·1〇以下’更具體為2 〇〇以下。&,本發明之光學玻璃之 阿貝數(vd)較佳為以3〇為上限,更佳為以29為上限,最佳 為以27為上限。另—方面,本發明之光學玻璃之阿貝數Sb2°3' Sb2°5' Na2H2Sb2°7 · 5H2° It is included in the glass. (10) The component is a component of the purified glass, and is a component which adjusts the optical constant of the glass ’ is an arbitrary component in the optical glass of the present invention. In particular, it is preferable that the content of the Ce 〇 2 component is preferably m G % with respect to the oxide-converted composition, and the content of the Ce 〇 2 component is less than 丨〇% or less. More preferably, it is limited to 05%, and the best is 〇.3%. However, when the Ce 〇 2 component is contained, J Valley is likely to absorb at a specific wavelength in the visible light region. Therefore, in the case of obtaining a glass having a particularly high transmittance of visible light, it is preferably substantially not a Ce 〇 2 component. The Ce〇2 component can be contained in the glass using, for example, Ce02 or the like as a raw material. Further, the component for purifying the glass and defoaming is not limited to the above Sb2〇3 component and the Ce〇2 component. A cleaning agent or a defoaming agent known in the field of glass production, or a combination thereof may be used. <Components that should not be contained> Next, the components which should not be contained in the optical glass of the present invention and the components which are not preferable if they are contained are described. 156904.doc -26 - 201206856 In the present invention, the optical chain + _, the slate, within the scope of the characteristics of the non-destructive glass, other components may be added as needed. However, in addition to Ti, niobium, and Nb, V, Cr, Mn, Co, Ni, C Ag, and M. When the transition metal components are individually or in combination, the shape of the glass is colored to absorb the specific wavelength of the visible light region, and therefore, the optical glass having a wavelength of the visible light region is preferably substantially Does not contain the above ingredients. Further, in recent years, various components such as Pb〇 and other compounds, and As2〇3, and various components of Th, Cd, Tb, and Be'Se have been used as harmful substances to control their use. Therefore, not only glass but also In the manufacturing step and the processing after the processing step and the production of the product, it is necessary to take measures in the environmental countermeasures. When it is important to pay attention to the influence of the environment, it is preferable that the treatment is not contained except for the inevitable mixing. Thereby, the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed and discarded without taking special measures for environmental measures. With respect to the glass which is preferably used as the optical glass of the present invention, the composition thereof is expressed by mol% of the total mass of the glass in terms of oxide composition, and therefore is not directly shown in the description of the mass %. The composition expressed by mass% of each component present in the glass composition of each of the required characteristics is approximately the following value by the oxide conversion composition: 10.0 to 40.0% by mass of the component 2: and 0 to 50.0 %% by mass of 32〇5 component and/or 0~55.0% by mass of ^205 component and/or 0~18.0% by mass of butyl quinone 2 component and/or I56904.doc -27- 201206856 0~40.0% by mass a Bi203 component and/or a W03 component of 0 to 25.0 mass%/〇 and/or a Li20 component of 0 to 12.0% by mass and/or a Na20 component of 0 to 20.0% by mass and/or a K20 component of 0 to 20.0% by mass and/or / or 0 ~ 20.0% by mass of iCs20 components and / or 0 ~ 5.0 mass. MgO component and/or 0-10.0% by mass of CaO component and/or 0 to 20.0% by mass of SrO component and/or 0 to 45.0% by mass of BaO component and/or 0 to 25.0% by mass of ZnO component and/or / or 0 to 30.0% by mass of the P205 component and / or 0 to 25.0% by mass of the B2 〇 3 component and / or 0 to 20.0 mass ° /. a Ge02 component and/or a Y203 component of 0 to 40.0% by mass and/or a La203 component of 0 to 40.0% by mass and/or a Gd203 component of 0 to 40.0% by mass and/or a Yb203 component of 0 to 30.0% by mass and/or Or 0 to 20.0% by mass of the Lu203 component and/or 0 to 45.0% by mass of the Te02 component and/or 0 to 20.0% by mass. Al2〇3 component and/or 0-25.0% by mass 2Ga203 component and/or 0~30.0% by mass of Ιη203 component and/or 0~25.0% by mass of Zr02 component and/or 156904.doc -28 · 201206856 〇~3.0 The mass %iSb2〇3 component and/or 〇~3.0% by mass iCe〇2 component. [Manufacturing Method] The optical glass of the present invention is produced, for example, in the following manner. That is, the raw materials are mixed in such a manner that the respective components are within a specific content range, and the produced mixture is placed in a tumbling, quartz-hanging net, or a oxidized metal, and partially melted, and then added to the metal ruthenium and platinum.坩埚, (4) In the temperature range of ―, the second = melting, mixing to homogenize and defoaming, etc., to the deletion. After the temperature of c, finishing and stirring were carried out to remove streaks, and casting was carried out on a mold to be slowly cooled, whereby the optical glass of the present invention was produced. <Physical Properties> The optical glass of the present invention preferably has a specific refractive index and dispersion (Abbe number). The refractive index (nd) of the optical glass of the present invention is preferably 1.77 as a lower limit, more preferably i 79 as a lower ridge, and most preferably a lower limit. On the other hand, the upper limit of the refractive index (nd) of the optical glass of the present invention is not particularly limited, but in most cases it is approximately 2.2 G or less, more specifically 2·1 Å or less, and more specifically 2 Å or less. & The Abbe's number (vd) of the optical glass of the present invention is preferably an upper limit of 3 Torr, more preferably an upper limit of 29, and most preferably an upper limit of 27. In another aspect, the Abbe number of the optical glass of the present invention

Od)之下限無特別限定,但大多數情況下大致為1〇以上, 更具體為mx上’更具體為15以上。籍此,光學設計之自 由度擴大’進而即便謀求元件之薄型化,亦可獲得較大之 光之折射量。 156904.doc -29- 201206856 又,本發明之光學玻璃具有較低之部分色散比⑶这, F)。更具體而言,本發明之光學玻螭之部分色散比(eg 與阿貝數(vd)之間於Vd$25之範圍内滿足(_〇 vd+0.63460)$(eg,F)$(_0.00563xVd + 〇 75573)之關係,X 於 vd>25 之範圍内滿足(_0.0025〇XVd+〇 6571〇)各(^, (-0.0034〇xvd+0.70000)之關係。藉此,獲得部八 ^ 色比 (eg ’ f)接近正規線且具有低部分色散比(0g,F)之光學 璃,因此可將由該光學玻璃形成之光學元件用於 予破 、匕是之降 低。此處,vdg25時之光學玻璃之部分色散比(eg,〇之 限較佳為(-0,00160xVd+0.63460),更佳為卜〇 〇〇16^ 下 0.63660),最佳為(-0 00160xVd+0 6386〇)。另—方 Vd+ vdS 25時之光學玻璃之部分色散比(q ρ)之上 k較佳為 (-0.00563乂乂£1 + 〇.75573),更佳為(-0.〇〇563><々+〇75473),: 佳為(-0.00563><%+0.75373)。又,;;(1>25時之光學破螭 ^ 分色散比(eg,f)之下限較佳為(_0.0025〇XVd+〇 657i〇) 〇p 佳為(-0.0025〇xVd+0.65910),最佳為(、〇 〇〇25〇xVd+〇 %㈣)更 另一方面,vd>25時之光學玻璃之部分色散比(θ§,f)之上 限較佳為(-0.00340xVd+0.70000),更佳為(_〇 〇〇34〇xVd+ 0.69900),最佳為(·0.〇〇34〇χν£ΐ+〇 698〇〇)。再者尤其是 於阿貝數(vd)較小之區域,⑨常之坡璃之部分色散比㈣, F)為南於正規線之值’通常之玻璃之部分色散比(θ§,F)與 阿貝數(vd)之關係係、以曲線表示。然@,因近似該曲線較 為困難,故於本發明中,以Vd=25為界使用具有不同斜率 之直線表示部分色散比(eg,F)低於通常之玻璃之情況。 156904.doc -30- 201206856 又’本發明之光學玻璃較佳為著色較少。尤其是關於本 發明之光學玻璃’方以玻璃之透射率表示,則於厚度10 mm之樣品中表示70%之分光透射率之波長(人7())為46() nm以 下,更佳為440 nm以下,最佳為420 nm以下》又,關於本 發明之光學玻璃,若以玻璃之透射率表示,則於厚度為1〇 mm之樣品中表示80。/。之分光透射率之波長(18())為56() 以 下,更佳為540 nm以下,最佳為520 nm以下。又,關於本 發明之光學玻璃’於厚度為10 mm之樣品中表示5 %之分光 透射率之波長(λ;)為420 nm以下,更佳為4〇〇 nm以下,最 佳為380 nm以下。藉此,使玻璃之吸收端位於紫外線區域 之附近’可見光區域中之玻璃之透明性提高,故而可將該 光學玻璃較佳地用作透鏡等光學元件之材料。 又’本發明之光學玻璃較佳為加壓成形性良好。即,本 發明之光學玻璃較佳為即便於再熱試驗(^ )前後亦不產生 失透及乳白。藉此,即便藉由假定有再熱加壓加工之再熱 試驗’亦變得難以引起失透及著色,藉此變得難以損失玻 璃之光線透射率’故而可較易地對玻璃進行以再熱加壓加 工為代表之再熱處理。即,由於可利用加壓成形製作複雜 形狀之光學元件’故可實現製造成本較低且生產性較佳之 光學元件製造。 此處’再熱試驗(4 )可以如下方法進行:將15 mmxl5 mmx30 mm之試片搭載於凹型耐火物上並放入電爐内進行 再熱,花費150分鐘自常溫升溫至較各試樣之轉移溫度 (Tg)咼80C〜150C之溫度(落於耐火物上之溫度),於該溫 156904.doc •31 · 201206856 度下保溫30分鐘後,冷卻至常溫並取出至爐外,將以可於 内部觀察之方式對向之2面研磨為厚度⑺瓜爪後,目視觀察 研磨之玻璃試樣。 再者,再熱試驗(4 )前後之失透及乳白之有無例如可以 目視確認,「不產生失透及乳白」之情況例如係指再熱試 驗)後之試片之波長為587.56 nm之光線(d線)的透射率 除以再熱試驗前之試片之d線的透射率所得之值大致為 0·80以上。' [預成形體及光學元件] 使用所製作之光學玻璃,利用例如再熱加壓成形或精密 加壓成形#模加壓成形之方法’可製作玻璃成形體。即, 使用光學玻璃製作模加壓成形用預成形體,對該預成形體 進行再熱加壓成形後進行研磨加工而製作玻璃成形體,或 者對進行例如研磨加工而製作之預成形體進行精密加壓成 形而製作玻璃成形體。再者,製作玻璃成形體之方法並不 限定於該等方法。 以此種方式製作之玻璃成形體對各種光學元件有用,其 中尤佳為用於透鏡或稜鏡等光學元件之用途。藉此,設置 有光學元件之光學系統之透射光之色差所導致的色之模糊 降低。因此,將該光學元件用於相機之情形時,可更精確 地表現拍攝對象物,於將該光學元件用於投影儀之情形 時’可以更高分辨率地投影所期望之影像。 [實施例] 將本發明之實施例(Ν〇1〜Ν〇 119)及比較例(Νο.卜ν〇·2) 156904.doc -32- 201206856 之組成,及折射率(nd)、阿貝數(Vd)、部分色散比(0g, F)、再熱试驗之結果’以及表示分光透射率為5%、及 80 /0之波長(Μ、λ7〇、λ^ο)示於表1〜表16。再者,以下實施 例僅以例示為目的,並不僅限定於該等實施例。 本發明之實施例(No. 1〜No. 119)及比較例(No. 1〜Νο.2)之 玻璃係以如下方法製作:均選擇與各自適合之氧化物、氫 氧化物、碳酸鹽、硝酸鹽、氟化物、氫氧化物、偏構酸化 合物等通常之光學玻璃所使用之高純度原料作為各成分之 原料’並以成為表1〜表1 6所示之各實施例及比較例之組成 之比例之方式稱量並均勻地混合後,投入鉑坩堝中,根據 玻璃組成之熔融難易度於電爐中於UOO^MOO^之溫度範 圍内熔解3〜5小時,攪拌均質化並進行消泡等後,使溫度 降至1000〜1300°C並攪拌均質化後,澆注於模具上使其緩 冷卻。 此處,實施例(1^〇_1~1^〇.119)及比較例(]^〇.1〜^〇.2)之玻 璃之折射率(nd)、阿貝數(Vd)及部分色散比(eg,F)係根據 日本光學硝子工業會規格JOGIS01-2003進行測定。並且, 根據求得之阿貝數(心)及部分色散比(0g,F)之值,求出關 係式(eg,F)=-axvd+b 中的斜率 a 為 0.00160、0.00250、 〇·〇〇340及0.00563時之截距b。再者,本測定所使用之玻璃 係使用將緩冷降溫速度設為-25°C/hr而利用緩冷爐進行處 理者。 又,實施例(No.l〜>^〇.119)及比較例(>1〇.1~>1〇.2)之玻璃 之透射率係依據日本光學硝子工業會規格JOGIS02進行測 156904.doc •33- 201206856 定+再者於本發a月中,藉纟測定玻璃之透射率求出玻璃 著色之有無與程度。具體而t,依據JISZ8722對厚度為 10±0.1 之相對面平行之研磨品測定2〇〇〜8〇〇 nm之分光 透射率,求出λ5(透射率為5%時之波長)、^(透射率為7〇% 時之波長)及hG(透射率8〇%時之波長)。 又,對實施例(NolNo.uy及比較例(N〇1〜N〇.2)之玻 璃以目視確認再熱試驗前後之失透及乳白之有無。此處, 再熱試驗前後之失透及乳白之確認係以如下方式進行:將 15 mmxl5 mmx30 mm之試片搭載於凹型耐火物上並放入 電爐内進行再熱直至再熱溫度,於該溫度下保溫3〇分鐘後 冷卻至常溫並取出至爐外,將以可於内部觀察之方式對向 之2面研磨為厚度1〇爪爪後,以目視觀察研磨之玻璃試樣之 失透及乳白之有無。此時,於將再熱溫度設為(Tg+8〇<)c〜 150C)時不產生失透及乳白,且於將再熱溫度設為高於 (Tg+8〇C〜150C)之溫度時亦不產生失透及乳白之玻璃係將 「再熱試驗之結果」設為「〇」。又’於將再熱溫度設為 (Tg+80°C〜150°C)之範圍内之特定溫度時不產生失透及乳 白,但於再熱溫度設為於(Tg+80°C〜150。〇之範圍内更高溫 度時產生失透或乳白之玻璃係將「再熱試驗之結果」設為 「Δ」〇 156904.doc -34- 201206856 [表i] 實施例 1 2 3 4 5 6 7 8 Si02 40.796 37.796 40.796 40.796 40.796 40.796 40.796 37.796 Ta2〇5 3.000 3.000 3.000 3.000 6.000 6.000 6.000 3.000 Nb2〇5 16.341 16.341 16.341 16.341 16.341 13.341 16.341 16.341 Ti02 6.962 6.962 3.962 6.962 3.962 6.962 6.962 6.962 W03 Li20 12.129 12.129 12.129 12.129 12.129 12.129 9.129 12.129 Na20 13.659 16.659 16.659 13.659 13.659 13.659 13.659 13.659 K20 MgO CaO SrO BaO ZnO 1.726 1.726 1.726 1.726 1.726 1.726 1.726 4.726 P2O5 B2〇3 Ge〇2 AI2O3 Zr02 5.381 5.381 5.381 5.381 5.381 5.381 5.381 卜5.381 Sb2〇3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 P).006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na20+BaO 33.000 36.000 36.000 33.000 36.000 33.000 36.000 33.000 (Nb2〇5+Ta2〇5)/ (TiO?+Bi2O^WO^ 2.778 2.778 4.881 2.778 5.638 2.778 3.209 2.778 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 4.740 5.171 9.086 4.740 9.086 4.740 5.171 4.740 Ta2〇5/(Nb2〇5+Ta2〇5) 0.155 0.155 0.155 0.155 0.269 0.310 0.269 0.155 Li2〇+Na2〇+K2〇+Cs2〇 25.788 28.788 28.788 25.788 25.788 25.788 22.788 25.788 Ta205/(Li20+Na20) 0.116 0.104 0.104 0.116 0.233 0.233 0.263 0.116 MgO+CaO+SrO+BaO+ZnO 1.726 1.726 1.726 1.726 1.726 1.726 1.726 4.726 Si〇2+P2〇5+B2〇3+Ge〇2 40.796 37.796 40.796 40.796 40.796 40.796 40.796 37.796 丫2〇3+[32〇3+(5廿2〇3 +Yb2〇3+Lll2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.8740 1.8718 1.8510 1.8741 1.8824 1.8710 1.8997 1.8843 Vd 24.5 24.7 25.7 24.5 24.7 25.0 23.7 24.5 eg,f 0.61208 0.60992 0*60585 0.61191 0.60930 0.60868 0.61453 0.61163 截距b a=0.00160 0.65128 0.64944 0.64697 0.65111 0.64882 0.64868 0.65245 0.65083 a=0.00250 0.67333 0.67167 0.67010 0.67316 0.67105 0.67118 0.67378 0.67288 a=0.00340 0.69538 0.69390 0.69323 0.69521 0.69328 0.69368 0.69511 0.69493 a=0.00563 0.75001 0.74898 0.75054 0.74984 0.74837 0.74943 0.74796 0.74957 入80 473.5 476.5 447.5 465 461 472 511 491 ^70 407 410 396.5 405.5 400 403.5 412.5 417 358.5 356.5 351.5 358.5 355 356.5 361.5 358.5 35· 156904.doc 201206856 [表2] 實施例 9 10 11 12 13 14 15 16 Si02 40.796 40.796 40.796 40.796 40.796 40.796 40.796 37.796 Τ&2〇5 3.000 3.000 6.000 6.000 6.000 4.726 3.000 3.000 Nb2〇5 16.341 16.341 16.341 13.341 16.341 16.341 16.341 16.341 Ti02 6.962 3.962 0.962 3.962 3.962 3.962 0.962 3.962 W03 Li20 9.129 12.129 12.129 12.129 9.129 12.129 12.129 12.129 Na20 16.659 16.659 16.659 16.659 16.659 16.659 16.659 16.659 K20 MgO CaO SrO BaO ZnO 1.726 1.726 1.726 1.726 1.726 4.726 4.726 p2〇5 B2O3 Ge〇2 AI2O3 Zr02 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 Sb2〇3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 36.000 36.000 39.000 36.000 39.000 37.726 36.000 36.000 (Nb205+Ta205)/ (Ti02+Bi203+W03) 2.778 4.881 23.218 4.881 5.638 5.317 20.100 4.881 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 5.171 9.086 40.532 9.086 9.843 9.521 37.414 9.086 Ta2〇5/(Nb2〇5+Ta2〇5) 0.155 0.155 0.269 0.310 0.269 0.224 0.155 0.155 Li2〇+Na2〇+K2〇+Cs2〇 25.788 28.788 28.788 28.788 25.788 28.788 28.788 28.788 Ta2〇5/(Li20+Na20) 0.116 0.104 0.208 0.208 0.233 0.164 0.104 0.104 MgO+CaO+SrO+BaO+ZnO 1.726 1.726 1.726 1.726 1.726 0.000 4.726 4.726 Si〇2+P2〇5+B2〇3+Ge〇2 40.796 40.796 40.796 40.796 40.796 40.796 40.796 37.796 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lll2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8675 1.8508 1.8615 1.8472 1.8774 1.8641 1.8390 1.8597 Vd 24.5 25.7 25.8 26.3 24.7 25.2 26.6 25.6 eg - f 0.61160 0.60628 0.60496 0.60403 0.60967 0.60845 0.60178 0.60704 截距b a=0.00160 0.65080 0.64740 0.64624 0.64611 0.64919 0.64877 0.64434 0.64800 a=0.00250 0.67285 0.67053 0.66946 0.66978 0.67142 0.67145 0.66828 0.67104 a=0.00340 0.69490 0.69366 0.69268 0.69345 0.69365 0.69413 0.69222 0.69408 a=0.00563 0.74953 0.75097 0.75022 0.75210 0.74873 0.75033 0.75154 0.75116 λβ〇 466 464 448 477.5 467 450.5 438 464.5 人70 406.5 402.5 390 393.5 401 395 390.5 402.5 λ5 358 352 346 350 355 352.5 344 351 36- 156904.doc 201206856 [表3] 實施例 17 18 19 20 21 22 23 24 Si02 40.796 43.796 40.796 40.796 40.796 40.796 37.796 40.796 Ta^Os 3.000 3.000 6.000 9.000 9.000 9.000 9.000 7.726 Nb2〇5 16.341 16.341 16.341 16.341 13.341 16.341 16.341 16.341 Ti02 3.962 3.962 3.962 0.962 3.962 3.962 3.962 3.962 W03 Li20 9.129 9.129 12.129 12.129 12.129 9.129 12.129 12.129 Na20 16.659 16.659 13.659 13.659 13.659 13.659 13.659 13.659 K20 MfiO CaO SrO BaO ZnO 4.726 1.726 1.726 1.726 1.726 1.726 1.726 P2〇5 B203 Ge〇2 AI2O3 Zr02 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 Sb203 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 36.000 36.000 36.000 39.000 36.000 39.000 39.000 37.726 (Nb2〇5+Ta205)/ (Ti02+Bi203+W0^ 4.881 4.881 5.638 26.336 5.638 6.396 6.396 6.074 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi2〇3+W03) 9.086 9.086 9.086 40.532 9.086 9.843 9.843 9.521 Ta2〇5/(Nb2〇5+Ta2〇5) 0.155 0.155 0.269 0.355 0.403 0.355 0.355 0.321 Li2〇+Na2〇+K2〇+Cs2〇 25.788 25.788 25.788 25.788 25.788 22.788 25.788 25.788 Ta205/(Li20+Na20) 0.116 0.116 0.233 0.349 0.349 0.395 0.349 0.300 MgO+CaO+SrO+BaO+ZnO 4.726 1.726 1.726 1.726 1.726 1.726 1.726 0.000 Si〇2+P2〇5+B2〇3+Ge〇2 40.796 43.796 40.796 40.796 40.796 40.796 37.796 40.796 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 na 1.8563 1.8466 1.8845 1.8939 1.8818 1.9083 1.9145 1.8964 Vd 25.4 25.5 24.7 24.8 25.2 23.9 24.0 24.3 eg ’ f 0.60892 0.60898 0.60987 0.60783 0.60623 0.61130 0.61043 0.60964 截距b a=0.00160 0.64956 0.64978 0.64939 0.64751 0.64655 0.64954 0.64883 0.64852 a=0.00250 0.67242 0.67273 0.67162 0.66983 0.66923 0.67105 0.67043 0.67039 a=0.00340 0.69528 0.69568 0.69385 0.69215 0.69191 0.69256 0.69203 0.69226 a=0.00563 0.75192 0.75255 0.74893 0.74745 0.74810 0.74586 0.74555 0.74645 λβ〇 454.5 447.5 489 481.5 508.5 481 503 480 入70 399 396.5 410 399.5 413 401 415.5 405.5 λ5 353 353.5 355.5 350 358.5 353.5 356.5 356 37- I56904.doc 201206856 [表4] 實施例 25 26 27 28 29 30 31 Si02 40.796 37.796 40.796 43.796 40.796 40.796 40.796 Χ&2〇5 6.000 6.000 6.000 6.000 9.000 11.000 11.000 Nb2〇s 16.341 16.341 16.341 16.341 13.341 13.341 13.341 Ti02 0.962 3.962 3.962 3.962 3.962 1.962 3.962 W03 Li20 12.129 12.129 9.129 9.129 12.129 12.129 10.129 Na20 13.659 13.659 13.659 13.659 13.659 13.659 13.659 K20 MgO CaO SrO BaO ZnO 4.726 4.726 4.726 1.726 1.726 1.726 1.726 p2〇5 B2O3 Ge〇2 A】2〇3 Zr02 5.381 5.381 5.381 5.381 5.381 5.381 5.381 Sb203 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 36.000 36.000 36.000 36.000 36.000 38.000 38獅 (Nb〗 〇5+Τ&2 O5)/ (Ti02+Bi203+W03) 23.218 5.638 5.638 5.638 5.638 12.405 6.143 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 37.414 9.086 9.086 9.086 9.086 19.366 9.591 Ta2〇5/(Nb2〇5+Ta2〇5) 0.269 0.269 0.269 0.269 0.403 0.452 0.452 Li2〇+Na2〇+K2〇+Cs2〇 25.788 25.788 22.788 22.788 25.788 25.788 23.788 Ta2〇5/(Li20+Na20) 0.233 0.233 0.263 0.263 0.349 0.427 0.462 MgO+CaO+SrO+BaO+ZnO 4.726 4.726 4.726 1.726 1.726 1.726 1.726 Si〇2+F*2〇5+B2〇3+Ge〇2 40.796 37.796 40.796 43.796 40.796 40.796 40.796 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8742 1.8951 1.8912 1.8796 1.8819 1.8870 1.8967 vd 25.5 24.6 24.4 24.5 25.2 25.3 24.7 0g,F 0.60689 0.60957 0.61135 0.61110 0.60610 0.60536 0.60792 截距b a=0.00160 0.64769 0.64893 0.65039 0.65030 0.64642 0.64584 0.64744 a=0.00250 0.67064 0.67107 0.67235 0.67235 0.66910 0.66861 0.66967 a=0.00340 0.69359 0.69321 0.69431 0.69440 0.69178 0.69138 0.69190 a=0.00563 0.75046 0.74807 0.74873 0.74903 0.74798 0.74780 0.74698 464 486.5 486 482.5 461.5 465 474.5 ^70 399 408 406.5 405 397.5 394.5 401 λ5 348 354.5 356.5 357.5 353 349 355 38- 156904.doc 201206856 [表5] 實施例 32 33 34 35 36 37 38 39 SiO, 38.796 40.796 40.796 43.796 40.796 42.522 40.796 42.796 Ta,2〇5 11.000 10.726 6.000 6.000 6.000 6.000 11.000 11.000 Nb2〇5 13.341 13.341 16.341 16.341 16.341 16.341 13.341 13.341 Ti02 3.962 3.962 0.962 0.962 0.962 0.962 1.962 1.962 W03 Li20 12.129 12.129 12.129 9.129 9.129 12.129 12.129 10.129 Na20 13.659 13.659 16.659 16.659 16.659 16.659 13.659 13.659 K20 MgO CaO SrO BaO ZnO 1.726 1.726 1.726 4.726 1.726 1.726 P2〇S B2〇3 Ge02 Al2〇3 ZrO, 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 Sb203 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 38.000 37.726 39.000 39.000 ^ 39.000 39.000 38.000 38.000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 6.143 6.074 23.218 23.218 23.218 23.218 12.405 12.405 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi20,+W03) 9.591 9.521 40.532 40.532 40.532 40.532 19.366 19.366 Ta2〇5,(Nb2〇5+Ta2〇5) 0.452 0.446 0.269 0.269 0.269 0.269 0.452 0.452 Li2〇+Na2〇+K2〇+Cs2〇 25.788 25.788 28.788 25.788 25.788 28.788 25.788 23.788 Ta2〇5/(Li20+Na20) 0.427 0.416 0.208 0.233 0.233 0.208 0.427 0.462 MgO+CaO+SrO+BaO+ZnO 1.726 0.000 1.726 1.726 4.726 0.000 1.726 1.726 Si〇2+P2〇5+B2〇3+Ge〇2 38.796 40.796 40.796 43.796 40.796 42.522 40.796 42.796 V2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lll2〇3 0.000 0.000 0.000 0.000 0‘000 0.000 0.000 0.000 nd 1.9014 1.8912 1.8630 1.8583 1.8673 1.8572 1.8876 1.8827 Vd 24.7 24.8 25.7 25.6 25.5 25.8 25.3 25.3 0g ’ F 0.60821 0.60825 0.61050 0.60649 0.60588 0.60697 0.60535 0.60515 裁距b a=0.00160 0.64773 0.64793 0.65162 0.64745 0.64668 0.64825 0.64583 0.64563 a=0.00250 0.66996 0.67025 0.67475 0.67049 0.66963 0.67147 0.66860 0.66840 a=0.00340 0.69219 0.69257 0.69788 0.69353 0.69258 0.69469 0.69137 0.69117 a=0.00563 0.74727 0.74787 0.75519 0.75062 0.74945 0.75223 0.74779 0.74759 ^80 485 475 453 449.5 463 453.5 475 468.5 ^70 403 401 394.5 393.5 397.5 398 398 396 354 354 346 348 347.5 347 349.5 350.5 39- 156904.doc 201206856 [表6] 實施例 40 41 42 43 44 45 46 SiO, 42.796 42.522 42.796 42.796 40.796 43.796 40.796 T&2〇5 11.000 11.000 11.000 11.000 6.000 6.000 6.000 Nb2〇5 13.341 13.341 13.341 11.341 16.341 16.341 16.341 Ti02 1.962 1.962 1.962 1.962 0.962 0.962 0.962 WO, Li20 12.129 12.129 12.129 12.129 12.129 9.129 13.855 Na20 11.659 13.659 13.659 13.659 16.659 16.659 16.659 k2o ΜβΟ CaO SrO BaO ZnO 1.726 1.726 1.726 1.726 1.726 p2〇5 B2O3 Ge〇2 AI2O3 Zr02 5.381 5.381 3.381 5.381 5.381 5.381 5.381 Sb2〇3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 36.000 38.000 38.000 36.000 39.000 39.000 39.000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi20,+W03) 12.405 12.405 12.405 11.385 23.218 23.218 23.218 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 18.347 19.366 19.366 18.347 40.532 40.532 40.532 Ta2〇s/(Nb2〇5+Ta2〇5) 0.452 0.452 0.452 0.492 0.269 0.269 0.269 Li2〇+Na2〇+K2〇+Cs2〇 23.788 25.788 25.788 25.788 28.788 25.788 30.514 Ta205/(Li20+Na20) 0.462 0.427 0.427 0.427 0.208 0.233 0.197 MgO+CaO+SrO+BaO+ZnO 1.726 0.000 1.726 1.726 1.726 1.726 0.000 Si〇2+P2〇5+B2〇3+Ge〇2 42.796 42.522 42.796 42.796 40.796 43.796 40.796 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8879 1.8798 1.8787 1.8647 1.8627 1.8574 1.8597 vd 25.2 25.4 25.3 26.3 25.7 25.6 25.8 0g ’ F 0.60614 0.60456 0.60651 0.60383 0.60609 0.60561 0.60337 截距b a=0.00160 0.64646 0.64520 0.64699 0.64591 0.64721 0.64657 0.64465 a=0.00250 0.66914 0.66806 0.66976 0.66958 0.67034 0.66961 0.66787 a=0.00340 0.69182 0.69092 0.69253 0.69325 0.69347 0.69265 0.69109 a=0.00563 0.74801 0.74756 0.74894 0.75189 0.75078 0.74974 0.74862 ^80 474 462 462.5 454 450 448.5 468.5 ^7〇 397 393.5 395.5 389.5 396.5 393.5 408 入5 351 349.5 349.5 347 346.5 348 346.5 40- 156904.doc 201206856 [表7] 實施例 47 48 49 50 51 52 53 54 Si02 42.522 37.796 40.796 40.796 40.796 42.522 44.522 42.522 T&2〇5 6.000 6.000 11.000 11.000 11.000 11.000 11.000 11.000 Nb2〇5 16.341 16.341 13.341 10.341 10.341 13.341 13.341 13.341 Ti02 0.962 0.962 1.962 4.962 1.962 1.962 1.962 1.962 W03 3.000 Li20 12.129 15.129 12.129 12.129 12.129 12.129 12.129 14.129 Na20 16.659 16.659 13.659 13.659 13.659 13.659 11.659 11.659 K20 MgO CaO SrO BaO ZnO 1.726 1.726 1.726 1.726 p205 B203 Ge〇2 ai2o3 Zr02 5.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 Sb2〇3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100•⑻ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na20+BaO 39.000 39.000 38.000 35.000 35.000 38.000 36.000 36.000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W0,) 23.218 23.218 12.405 4.301 4.301 12.405 12.405 12.405 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi2〇3+WO,) 40.532 40.532 19.366 7.053 7.053 19.366 18.347 18.347 Ta2〇5/(Nb2〇5+Ta2〇5) 0.269 0.269 0.452 0.515 0.515 0.452 0.452 0.452 Li2〇+Na2〇+K2〇+Cs2〇 28.788 31.788 25.788 25.788 25.788 25.788 23.788 25.788 Ta205/(Li20+Na20) 0.208 0.189 0.427 0.427 0.427 0.427 0.462 0.427 MgO+CaO+SrO+BaO+ZnO 0.000 1.726 1.726 1.726 1.726 0.000 0.000 0.000 Si〇2+P2〇5+B2〇3+Ge〇2 42.522 37.796 40.796 40.796 40.796 42.522 44.522 42.522 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+LU2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8570 1.8670 1.8863 1.8748 1.8838 1.8795 1.8815 1.8868 vd 25.8 26.1 25.3 25.7 25.4 25.4 25.3 25.3 0g ’ F 0.60602 0.60970 0.60543 0.60517 0.60426 0.60595 0.60637 0.60559 載距b a=0.00160 0.64730 0.65146 0.64591 0.64629 0.64490 0.64659 0.64685 0.64607 a=0.00250 0.67052 0.67495 0.66868 0,66942 0.66776 0.66945 0.66962 0.66884 a=0.00340 0.69374 0.69844 0.69145 0.69255 0.69062 0.69231 0.69239 0.69161 a=0.00563 0.75127 0.75665 0.74787 0.74986 0.74726 0.74895 0.74881 0.74803 443 492 474 461.5 459.5 458.5 457.5 450.5 入70 392 409.5 396 395 394 395.5 396.5 396 入5 346.5 345.5 349.5 352 353.5 349.5 351 350 -41 - 156904.doc 201206856 [表8] 實施例 55 56 57 58 59 60 61 62 Si02 42.522 42.522 42.522 42.522 40.522 42.522 42.522 44.522 TS2〇5 11.000 11.000 6.000 6.000 6.000 6.000 11.000 11.000 Nb205 13.341 13.341 16.341 16.341 16.341 16.341 13.341 13.341 Ti02 1.962 1.962 0.962 0.962 0.962 0.962 1.962 1.962 W03 2.000 Li20 12.129 12.129 12.129 10.129 12.129 12.129 12.129 12.129 Na20 11.659 11.659 16,659 16.659 16.659 14.659 13.659 11.659 K20 MgO CaO SrO BaO 2.000 2.000 2.000 ZnO p205 B2〇3 Ge〇2 A】2〇3 Zr02 7.381 5.381 5.381 5.381 5.381 5.381 5.381 5.381 Sb203 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na20+BaO 36.000 36.000 39.000 41.000 4K000 39.000 38.000 36.000 (Nb205+Ta205)/ (Ti02+Bi203+W03) 12.405 6.143 23.218 23.218 23.218 23.218 12.405 12.405 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi20,+W0,) 18.347 9.086 40.532 42.610 42.610 40.532 19.366 18.347 Ta;j〇5/(Nb2〇5+Ta2〇5) 0.452 0.452 0.269 0.269 0.269 0.269 0.452 0.452 Li2〇+Na2〇+K2〇+Cs2〇 23.788 23.788 28.788 26.788 28.788 26.788 25.788 23.788 Ta205/(Li20+Na20) 0.462 0.462 0.208 0.224 0.208 0.224 0.427 0.462 MgO+CaO+SrO+BaO+ZnO 0.000 0.000 0.000 2.000 2.000 2.000 0.000 0.000 Si〇2+p2〇5+B2〇3+Ge〇2 42.522 42.522 42.522 42.522 40.522 42.522 42.522 44.522 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8906 1.8904 1.8567 1.8592 1.8626 1.8643 1.8808 1.8809 vd 25.3 24.9 25.8 25.8 25.9 25.8 25.3 25.3 0g ’ F 0.60545 0.60587 0.60499 0.60613 0.60558 0.60525 0.60547 0.60563 裁距b a=0.00160 0.64593 0.64571 0.64627 0.64741 0.64702 0.64653 0.64595 0.64611 a=0.00250 0.66870 0.66812 0.66949 0.67063 0.67033 0.66975 0.66872 0.66888 a=0.00340 0.69147 0.69053 0.69271 0.69385 0.69364 0.69297 0.69149 0.69165 a=0.00563 0.74789 0.74605 0.75025 0.75139 0.75140 0.75050 0.74791 0.74807 455.5 477 519.5 472 463.5 461 467.5 469 λ?〇 395.5 407.5 416.5 404.5 401 398.5 394 394 λ5 351 357 348 347.5 346 347 349.5 351 42- 156904.doc 201206856 [表9] 實施例 63 64 65 66 67 68 69 70 Si02 42.522 42.522 42,522 42.522 42.522 42.522 42.522 44.522 Ta2〇5 11.000 11.000 11.000 6.000 6.000 6.000 6.000 6.000 Nb205 13.341 13.341 13.341 16.341 16.341 16.341 18.341 16.341 Ti02 1.962 1.962 1.962 0.962 0.962 0.962 0.962 0.962 W03 2.000 Li2〇 14.129 12.129 12.129 12.129 12.129 12.129 10.129 10.129 Na20 11.659 11.659 11.659 14.659 12.659 12.659 14.659 14.659 K20 MgO CaO SrO BaO 2.000 2.000 4.000 2.000 2.000 2.000 ZnO p2〇5 B2〇3 Ge〇2 AI20.·, Zr02 5.381 5.381 5.381 5.381 5.381 7.381 5.381 5.381 St>2〇3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb205+Ta2〇5+Na20+BaO 36.000 36.000 38.000 39.000 39.000 37.000 41.000 39.000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 12.405 6.143 12.405 23.218 23.218 23.218 25.297 23.218 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 18.347 9.086 19.366 40.532 40.532 38.453 42.610 40.532 Ta2〇5/(^Nb2〇5+Ta2〇5) 0.452 0.452 0.452 0.269 0.269 0.269 0.247 0.269 Li2〇+Na2〇+K2〇+Cs2〇 25.788 23.788 23.788 26.788 24.788 24.788 24.788 24.788 Ta2〇5/(Li20+Na20) 0.427 0.462 0.462 0.224 0.242 0.242 0.242 0.242 MgO+CaO+SrO+BaO+ZnO 0.000 0.000 2.000 2.000 4.000 2.000 2.000 2.000 Si〇2+P2〇5+B2〇3+GeQ2 42.522 42.522 42.522 42.522 42.522 42.522 42.522 44.522 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8854 1.8919 1.8861 1.8636 1.8697 1.8740 1.8823 1.8598 vd 25.3 24.9 25.4 25.8 25.8 25.7 24.8 25.7 0g ’ F 0.60498 0.60965 0.60660 0.60610 0.60427 0.60582 0.60961 0.60521 截距b a=0.00160 0.64546 0.64949 0.64724 0.64738 0.64555 0.64694 0.64929 0.64633 a=0.00250 0.66823 0.67190 0.67010 0.67060 0.66877 0.67007 0.67161 0.66946 a=0.00340 0.69100 0.69431 0.69296 0.69382 0.69199 0.69320 0.69393 0.69259 a=0.00563 0.74742 0.74984 0.74960 0.75135 0.74952 0.75051 0.74924 0.74990 ^80 472.5 503 477 447 471 454 466 448 入7〇 393.5 406 399.5 396 408 397 403 397 入5 350 357.5 350.5 346 348 348 350 348 43- 156904.doc 201206856 [表 ίο] 實施例 71 72 73 74 75 76 77 78 Si02 43.796 43.796 43.796 45.522 43.796 42.522 42.522 42.522 Ta2〇5 6.000 6.000 6.000 6.000 6.000 11.000 11.000 11.000 Nb205 16.341 16.341 16.341 16.341 16.341 13.341 13.341 13.341 Ti02 0.962 0.962 0.962 0.962 0.962 1.962 1.962 1.962 W03 Li20 9.129 10.856 9.229 9.129 9.129 14.129 16.129 14.129 Na20 16.659 16.659 18.386 16.659 16.659 11.659 9.659 9.659 k2o MgO CaO SrO BaO ZnO 1.726 P2〇5 B2〇3 Ge〇2 ai2o3 Zr02 5.381 5.381 5.381 5.381 7.107 5.381 5.381 7.381 Sbj〇3 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 39.000 39.000 40.726 39.000 39.000 36.000 34.000 34.000 (Nb2〇5+Ta205)/ (Ti02+Bi203+W03) 23.218 23.218 23.218 23.218 23.218 12.405 12.405 12.405 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 40.532 40.532 42.326 40.532 40.532 18.347 17.327 17.327 Ta2〇5/(Nb205+Ta205) 0.269 0.269 0.269 0.269 0.269 0.452 0.452 0.452 Li2〇+Na2〇+K2〇+Cs2〇 25.788 27.515 27.515 25.788 25.788 25.788 25.788 23.788 Ta205/(Li20+Na20) 0.233 0.218 0.218 0.233 0.233 0.427 0.427 0.462 MgO+CaO+SrO+BaO+ZnO 1.726 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Si〇2+p2〇5+B2〇3+Ge〇2 43.796 43.796 43.796 45.522 43.796 42.522 42.522 42.522 "V2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lll2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8578 1.8549 1.8511 1.8517 1.8583 1.8836 1.8892 1.8925 vd 25.6 25.7 25.7 25.6 25.7 25.4 25.4 25.4 0g ’ F 0.60758 0.60553 0.60580 0.60596 0.60658 0.60581 0.60616 0.60643 截距b a=0.00160 0.64854 0.64665 0.64692 0.64692 0.64770 0.64645 0.64680 0.64707 a=0.00250 0.67158 0.66978 0.67005 0.66996 0.67083 0.66931 0.66966 0.66993 a=0.00340 0.69462 0.69291 0.69318 0.69300 0.69396 0.69217 0.69252 0.69279 a=0.00563 0.75171 0.75022 0.75049 0.75009 0.75127 0.74881 0.749ΪΤ1 0.74943 λ«ο 445.5 456 450.5 445 446.5 464 468 475 λ70 393.5 399.5 394.5 394 394 397 401 401 入5 348 348 347 348.5 348.5 349 350 351 44 · 156904.doc 201206856 [表 ll] 實施例 比較例 79 80 1 2 SiO? 42.522 40.522 40,000 40.000 Ta2〇5 11.000 11.000 0.690 Nb2〇5 13.341 13.341 14.480 14.470 Ti02 1.962 1.962 12.410 12.410 WO, 2.760 2.760 Li20 14.129 16.129 1.380 6.210 Na20 9.659 11.659 7.590 7.590 K20 13.100 7.590 MgO CaO 1.380 1.380 SrO BaO 2.000 1.380 1.380 ZnO p205 B203 1.380 1.380 Ge02 ai2〇3 Zr02 5.381 5.381 4.140 4.140 Sb203 0.006 0.006 合計 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na20+BaO 36.000 36.000 23.450 24.130 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 12.405 12.405 0.955 0.999 (Nb2〇5+Ta2〇5+Na20+BaO) /(Ti02+Bi203+W03) 18.347 18.347 1.546 1.591 T&2〇5/(Nb2〇5+丁a〗〇5) 0.452 0.452 0.000 0.046 Li2〇+Na2〇+K2〇+Cs2〇 23.788 27.788 22.070 21.390 Ta205/(Li20+Na20) 0.462 0.396 0.000 0.050 MgO+CaO+SrO+BaO+ZnO 2.000 0.000 2.760 2.760 Si〇2+p2〇5+B2〇3+Ge〇2 42.522 40.522 41.380 41.380 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 1.000 2.000 nd 1.8917 1.8895 1.8132 1.8491 vd 25.4 25.4 25.1 24.0 0g,F 0.60690 0.60645 0.61500 0.62100 截距b a=0.00160 0.64754 0.64709 0.65516 0.65940 a=0.00250 0.67040 0.66995 0.67775 0.68100 a=0.00340 0.69326 0.69281 0.70034 0.70260 a=0.00563 0.74990 0.74945 0.75631 0.75612 ^80 468 461 ^70 399 397 λ5 350 348 45- 156904.doc 201206856 [表 12] 實施例 81 82 83 84 85 86 87 88 Si02 42.500 42,500 41.629 40.000 40.004 40.000 43.922 39.608 Ta2〇5 5.205 5.205 7.143 8.821 8.821 8.821 8.821 8.735 Nb205 13.898 12.856 13.613 13.080 12.101 11.897 12.100 12.952 Ti02 4.128 4.128 4.043 3.885 3.886 3.885 3.885 3.847 W03 Li20 12.641 13.682 12.377 11.897 11.898 11.897 12.877 11.776 Na20 12.147 14.230 13.938 13.394 13.394 13.393 13.393 13.261 k2o MgO 0.980 CaO SrO BaO 2.083 0.980 0.980 ZnO 1.795 1.795 1.761 1.689 1.689 1.689 1.689 4.588 p2〇5 B2O3 1.961 Ge〇2 1.961 1.961 ai2o3 Zr02 5.602 5.602 5.491 5.273 5.273 5.273 2.331 5.224 Sb2〇3 0.006 合計 100 100 100 100 100 100 100 100 Nb2〇5+Ta2〇5+Na20+BaO 33.334 32.292 34.694 35.295 35.298 35.091 34.314 34.949 (Nb205+Ta2〇5)/ (Ti02+Bi203+W03) 4.628 4.375 5.134 5.637 5.385 5.332 5.385 5.638 (Nb205+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 8.075 7.822 8.582 9.084 9.084 9.032 8.832 9.086 Ta2〇5/(Nb2〇5+Ta2〇5) 0.272 0.288 0.344 0.403 0.422 0.426 0.422 0.403 Li2〇+Na20+K2〇+Cs2〇 24.788 27.913 26.314 25.291 25.293 25.290 26.271 25.037 Ta205/(Li20+Na20) 0.210 0.186 0.271 0.349 0.349 0.349 0.336 0.349 Si〇2+P2〇5+B2〇3+Ge〇2 42.500 42.500 41.629 41.961 41.965 41.961 43.922 39.608 MgO+CaO+SrO+BaO+ZnO 3.878 1.795 1.761 1.689 2.670 2.670 2.670 4.588 Y 2〇3+La2〇3+G d2〇3 +Yb2〇3+Lu203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8575 1.8401 1.8668 1.8749 1.8689 1.8673 1.8537 1.8815 vd 26.1 26.6 26.5 25.3 25.8 25.8 25.9 25.4 0g ’ F 0.60614 0.60298 0.60602 0.60740 0.60534 0.60471 0.60419 0.60580 截距b a=0.00160 0.64790 0.64554 0.64842 0.64788 0.64662 0.64599 0.64563 0.64644 a=0.00250 0.67139 0.66948 0.67227 0.67065 0.66984 0.66921 0.66894 0.66930 a=0.00340 0.69488 0.69342 0.69612 0.69342 0.69306 0.69243 0.69225 0.69216 a=0.00563 0.75309 0.75274 0.75521 0.74984 0.75060 0.74996 0.75001 0.74880 449.5 429.5 449.5 450.5 439.5 444 429 461 入70 398 387.5 392.5 397 387 386 383.5 400.5 久5 351.5 348.5 351.5 352 350 345 349.5 352 定型試驗 Δ Δ Δ Δ Δ Δ 0 Δ • 46- 156904.doc 201206856 [表 13] 實施例 89 90 91 92 93 94 95 96 Si02 43.922 43.922 43.922 44.522 44.522 38.911 42.522 42.016 Ta2〇5 8.821 8.821 8.821 11.000 11.000 11.111 7.500 8.398 Nb2〇5 11.120 12.100 12.100 9.341 11.341 10.445 13.341 12.955 Ti02 4.866 2.905 3.885 3.962 3.962 4.002 3.362 2.695 W03 0.980 Li20 12.877 12.877 12.877 14.129 17.129 14.272 16.129 15.938 Na20 13.393 13.393 13.393 11.659 11.659 11.777 11.659 11.516 K20 MgO CaO SrO BaO ZnO 1.689 1.689 1.689 P2〇5 B2〇3 Ge02 4.040 Al2〇3 Zr02 3.312 3.312 3.312 5.381 0.381 5.435 5.381 6.803 Sb203 0.008 合計 100 100 100 100 100 100 100 100 Nb2〇5+Ta2〇5+Na20+BaO 33.333 34.314 34.314 32.000 34.000 33.333 32.500 32.869 (Nb2〇5+Ta2〇5)/ (Ti02+Bi20,+W03) 4.098 5.385 5.385 5.134 5.639 5.386 6,199 7.923 (Nb2〇5-*-Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 6.851 8.832 8.832 8.077 8.582 8.329 9.667 12.196 Ta2〇5,(Nb2〇5+Ta2〇5) 0.442 0.422 0.422 0.541 0.492 0.515 0.360 0.393 Li2〇+Na2〇+K2〇+Cs2〇 26.271 26.271 26.271 25.788 28.788 26.048 27.788 27.455 Ta205/(Li20+Na20) 0.336 0.336 0.336 0.427 0.382 0.427 0.270 0.306 Si〇2+p2〇5+B2〇3+Ge〇2 43.922 43.922 43.922 44.522 44.522 42.952 42.522 42.016 MgO+CaO+SrO+BaO+ZnO 1.689 1.689 1.689 0.000 0.000 0.000 0.000 0.000 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+L\l2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8511 1.8586 1.8552 1.8609 1.8587 1.8749 1.8620 1.8708 vd 26.1 25.9 25.9 26.3 25.9 25.9 26 26 eg ’ f 0.60582 0.60960 0.60303 0.60324 0.60542 0.60432 0.60561 0.60364 截距b a=0.00160 0.64758 0.65104 0.64447 0.64532 0.64686 0.64576 0.64721 0.64524 a=0.00250 0.67107 0.67435 0.66778 0.66899 0.67017 0.66907 0.67061 0.66864 a=0.00340 0.69456 0.69766 0.69109 0.69266 0.69348 0.69238 0.69401 0.69204 a=0.00563 0.75276 0.75542 0.74885 0.75131 0.75124 0.75014 0.75199 0.75002 入80 434.5 436.5 434.5 428 467 470.5 457.5 465 入70 385 385.5 385.5 384.5 403 397 398.5 400 λ5 351 350.5 349.5 351 351 351 350.5 350.5 定型試驗 Δ Δ 0 0 0 Δ 0 ο • 47· 156904.doc 201206856 [表 14] 實施例 97 98 99 100 101 102 103 104 105 Si02 42.522 44.522 43.387 41.688 42.822 43.935 42.425 40.345 40.669 Ta2〇5 11.000 11.000 10.717 8.333 8.560 8.399 8.480 9.966 9.242 Nb2〇5 11.341 13.341 11.575 13.079 13.435 13.171 13.292 9.438 9.514 Ti02 1.962 1.962 4,047 1.924 2.278 2.234 2.704 8.160 8.141 WO3 0.686 Li20 14.129 14.129 14.677 15.813 16.243 15.920 16.091 17.564 17.705 Na20 11.659 9.659 12.154 11.430 11.741 11.510 11.625 9.415 9.491 K20 MgO 1.000 CaO SrO BaO ZnO p2〇5 b2〇3 Ge〇2 1.000 Al2〇3 Zr02 5.381 5.381 3.442 6.746 4.915 4.819 5.372 5.100 5.141 Sb2〇3 0.006 0.006 0.008 0.008 0.008 0.008 0.008 0.008 0.008 合計 100 100 100 100 100 100 100 100 100 Nb2〇5+Ta2〇5+Na2〇+BaO 34.000 34.000 34.446 32.843 33.736 33.080 33.397 28.819 28.247 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 11.387 12.406 5.508 8.205 9.656 9.655 8.052 2.378 2.304 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 17.329 17.329 8.511 12.585 14.810 14.808 12.351 3.532 3.470 Ta2〇5,(Nb2〇5+Ta2〇5) 0.492 0.452 0.481 0.389 0.389 0.389 0.389 0.514 0.493 Li2〇+Na20+K2〇+Cs2〇 25.788 23.788 26.831 27.243 27.984 27.430 27.716 26.979 27.196 Ta2〇5/(Li2〇+Na20) 0.427 0.462 0.399 0.306 0.306 0.306 0.306 0.369 0.340 Si〇2~Hp2〇5+B2〇3+Ge〇2 43.522 44.522 43.387 41.688 42.822 43.935 42.425 40.345 40.669 MgO+CaO+SrO+BaO+ZnO 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Y2〇3+La2〇3+Gd2〇3 +Yb203+Lu203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8664 1.8881 1.8703 1.8628 1.8704 1.8614 1.8673 1.8810 1.8758 vd 26.3 25.3 25.6 26.1 25.9 26.1 25.9 25.4 25.6 0g,F 0.60200 0.60751 0.60488 0.60557 0.60369 0.60461 0.60377 0.60519 0.60672 截距b a=0.00160 0.64408 0.64799 0.64584 0.64733 0.64513 0.64637 0.64521 0.64583 0.64768 a=0.00250 0.66775 0.67076 0.66888 0.67082 0.66844 0.66986 0.66852 0.66869 0.67072 a=0.00340 0.69142 0.69353 0.69192 0.69431 0.69175 0.69335 0.69183 0.69155 0.69376 a=0.00563 0,75007 0.74995 0.74901 0.75252 0.74951 0.75155 0.74958 0.74820 0.75084 入80 444 478.5 457 460 459.5 440.5 449.5 470 460 ^70 387.5 404.5 394.5 398 401 390 394 402.5 399.5 λ5 346.5 352 351 349.5 348.5 348 349 356.5 356.5 定型試驗 Δ Δ Δ Δ 0 0 0 0 0 ·48· 156904.doc 201206856 [表 15] 實施例 106 107 108 109 110 111 112 113 Si02 38.984 42.819 40.454 40.111 41.974 42.205 40.609 40.924 Τ&2〇5 7.792 8.362 8.086 8.015 9.258 8.758 12.110 11.857 Nb2〇5 12.121 13.106 12.578 12.513 10.625 10.683 9.716 10.237 Ti02 4.659 2.666 4.835 3.875 5.818 5.851 4.428 4.550 W03 Li20 21.793 16.653 15.333 18.683 16.236 16.325 20.117 17.988 Na20 7.257 11.086 11.042 9.295 10.771 10.831 7.882 9.262 K20 MgO CaO SrO BaO ZnO P2〇5 B2〇3 Ge02 AI2O3 Zr02 7.382 5.297 7.660 7.496 5.306 5.335 5.126 5.170 Sb2〇3 0.011 0.012 0.012 0.012 0.012 0.012 0.008 0.008 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na2〇+BaO 27.170 32.554 31.706 29.823 30.654 30.272 29.708 31.356 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 4.274 8.053 4.274 5.298 3.417 3.323 4.929 4.856 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 5.832 12.211 6.558 7.696 5.269 5.174 6.709 6.891 Ta2〇5/CNl)2〇5+Ta2〇5) 0.391 0.390 0.391 0.390 0.466 0.450 0.555 0.537 Li2〇+Na2〇+K2〇+Cs2〇 29.050 27.739 26.375 27.978 27.007 27.156 27.999 27.250 Ta205/(Li20+Na20) 0.268 0.301 0.307 0.286 0.343 0.323 0.433 0.435 MgO+CaO+SrO+BaO+ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Si〇2+P2〇5+B2〇3+Ge〇2 38.984 42.819 40.454 40.111 41.974 42.205 40.609 40.924 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88235 1.86498 1.88038 1.87758 1.86735 1.86329 1.88339 1.88416 vd 26.1 26.1 25.6 26.0 25.9 26.0 26.1 25.8 0g,F 0.60319 0.60400 0.60570 0.60451 0.60448 0.60506 0.60506 0.60260 截距b a=0.00160 0.64487 0.64568 0.64660 0.64613 0.64590 0.64671 0.64674 0.64386 a=0.00250 0.66832 0.66913 0.66960 0.66955 0.66921 0.67013 0.67019 0.66708 a=0.00340 0.69176 0.69257 0.69260 0.69297 0.69251 0.69355 0.69363 0.69029 a=0_00563 0.74986 0.75066 0.74960 0.75099 0.75024 0.75159 0.75173 0.74780 乂80 476.5 460 501.5 496 474.5 476 466 468 ^70 405 399.5 408.5 411.5 408 407.5 398.5 395.5 λ5 353.5 349.5 354 353.5 355.5 355 351.5 352.5 定型試驗 0 -49- 156904.doc 201206856 [表 16] 實施例 114 115 116 117 118 119 Si02 40.796 40.796 40.796 37.796 37.796 37.796 Ti32〇5 Nb2〇5 16.341 16.341 16.341 16.341 16.341 16.341 Na20 16.659 19.659 18.385 19.659 16.659 16.659 BaO Ti02 6.962 6.962 6.962 6.962 6.962 6.962 Bi203 W03 Li20 12.129 9.129 12.129 12.129 15.129 12.129 K20 p2〇5 B2O3 Ge〇2 MgO CaO SrO ZnO 1.726 1.726 1.726 1.726 4.726 Te02 ai2o3 Zr02 5.381 5.381 5.381 5.381 5.381 5.381 Sb〗〇3 0.006 0.006 0.006 0.006 0.006 0.006 合計 100.00 100.00 100.00 100.00 100.00 100.00 Nb2〇5+Ta2〇5+Na20+BaO 33.000 36.000 34.726 36.000 33.000 33.000 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 4.740 5.171 4.988 5.171 4.740 4.740 Li20+Na20 +K2O+CS2O 28.788 28.788 30.514 31.788 31.788 28.788 Ta205/(Li20+Na20) 0.000 0.000 0.000 0.000 0.000 0.000 Si〇2+P2〇5+B2〇3+Ge〇2 40.796 40.796 40.796 37.796 37.796 37.796 MgO+CaO+SrO +BaO+ZnO 1.726 1.726 0.000 1.726 1.726 4.726 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.8381 1.8311 1.8309 1.8348 1.8484 1.8473 vd 25.7 25.7 25.9 25.9 25.7 25.6 0g ’ F 0.60759 0.60661 0.60741 0.60658 0.60763 0.60852 截距b a=0.00160 0.64871 0.64773 0.64885 0.64802 0.64875 0.64948 a=0.00250 0.67184 0.67086 0.67216 0.67133 0.67188 0.67252 a=0.00340 0.69497 0.69399 0.69547 0.69464 0.69501 0.69556 a=0.00563 0.75228 0.75130 0.75323 0.75239 0.75232 0.75265 入80 λ70 408 403.5 402 411.5 411.5 409 λ5 355.5 355 354 353.5 353.5 355 -50- 156904.doc 201206856 如表1〜表16所示,本發明之實施例之光學玻璃係Vd$25 者之部分色散比(0g ’ F)為(-〇.〇〇563xvd+0.75573)以下,更 詳細為(-〇.〇〇563xvd+0.75001)以下。又,Vd>25者之部分色 散比(eg,F)為(-0.00340xVd+0.70000)以下,更詳細為 (-0.00340xvd+0.69844)以下。另一方面,本發明之實施例 之光學玻璃係vd$25者之部分色散比(eg,F)為(_0 〇〇16〇χ vd+0.63460)以上,更詳細為(_〇.0〇16〇XVd+〇 64571)以上。 又 ’ vd>25 者之部分色散比(0g,F)為(_〇 〇〇25〇XVd+〇 6471〇) 以上’更詳細為(-0.00250xvd+0.66708)以上。因此,可知 該等部分色散比(eg,F)於所期望之範圍内。另—方面, 本發明之比較例(No.i)之玻璃雖然Vd>25 ,但部分色散比 (9g,F)超過(_0.0034〇XVd+0 70000)。又,本發明之比較例 (^〇.2)之玻璃雖然^$25,但部分色散比(0各,〇超過 (-0.0〇563xVd+〇.75573)e因&,可知本發明之實施例之光 學玻璃與比較例之玻璃相比,於阿貝數⑹之關係式中部 分色散比(0g,F)較小。 又’本發明之實施例<光學玻璃之折射率⑹均為! η 以上’更詳細為h83以上,並且該折射率(nd)為2.20以下, 更詳細為1.92以下,於所期望之範圍内。 又、本發明之實施例之光學玻璃之阿貝數⑹均為㈣ 上更°羊細為23以上,並且該阿貝數(vd)為30以下’更祥 細為27以下,於所期望之範圍内。 ° 之光學玻璃係折射率(nd)及 並且對可見光之透射率較 因此,可知本發明之實施例 阿貝數(vd)於所期望之範圍内, 156904.doc •51- 201206856 高’且對色差之降低有效。 又’本發明之實施例之光學玻璃於進行再熱試驗(^)前 後不產生失透及乳白兩者。因此,可知本發明之實施例之 光學玻璃難以產生由再熱所導致之失透或乳白,故而推測 具有較高之加壓成形性。 以上’以例示為目的詳細地說明了本發明,但希望理 解’本實施例僅以例示為目的,於不脫離本發明之思想及 範圍之情況下,業者可進行多種變更。 【圖式簡單說明】 圖1係表示部分色散比(0g,F)由縱軸之正交座標所示且 阿貝數(vd)由橫軸之正交座標所示之正規線的圖。 圖2係表示本申請案之實施例之玻璃之部分色散比(0g, F)與阿貝數(Vd)之關係的圖。 156904.doc -52·The lower limit of Od) is not particularly limited, but in most cases, it is approximately 1 Torr or more, and more specifically, mx is more specifically 15 or more. As a result, the degree of freedom in optical design is increased, and even if the thickness of the element is reduced, a large amount of light can be obtained. 156904.doc -29- 201206856 Further, the optical glass of the present invention has a lower partial dispersion ratio (3), F). More specifically, the partial dispersion ratio (eg and the Abbe number (vd) of the optical glass of the present invention satisfies (_〇vd+0.63460)$(eg,F)$(_0. 00563xVd + 〇75573), X satisfies (_0.0025〇XVd+〇6571〇) each in the range of vd>25 (^, (-0.0034〇xvd+0.70000). An optical glass having a ratio (eg'f) close to a regular line and having a low partial dispersion ratio (0g, F), so that the optical element formed of the optical glass can be used for pre-breaking, which is reduced. Here, vdg25 The partial dispersion ratio of the optical glass (eg, the limit of 〇 is preferably (-0, 00160xVd + 0.63460), more preferably 0.63660 under the 〇〇〇 16^), and the best is (-0 00160xVd + 0 6386 〇). In addition, the partial dispersion ratio (q ρ) of the optical glass at the time of Vd+ vdS 25 is preferably (-0.00563乂乂£1 + 〇.75573), more preferably (-0.〇〇563><々+〇75473),: Jia Wei (-0.00563><%+0.75373). Moreover, the lower limit of the optical rupture ratio (eg, f) of (1>25 is preferably (_0.0025〇XVd+〇657i〇) 〇p is preferably (-0.0025〇xVd+0.65910), The optimum is (, 〇〇〇25〇xVd+〇%(4)). On the other hand, the upper limit of the partial dispersion ratio (θ§, f) of the optical glass at vd>25 is preferably (-0.00340xVd+0.70000). More preferably (_〇〇〇34〇xVd+ 0.69900), the best is (·0.〇〇34〇χν£ΐ+〇698〇〇). In addition, especially in areas with small Abbe number (vd) Partial dispersion ratio of (9), F) is the value of the normal line. The relationship between the partial dispersion ratio (θ§, F) and the Abbe number (vd) of the usual glass is shown by a curve. However, since it is more difficult to approximate the curve, in the present invention, a line having a different slope is used as a boundary with Vd=25 to indicate that the partial dispersion ratio (eg, F) is lower than that of the usual glass. 156904.doc -30- 201206856 Further, the optical glass of the present invention is preferably less colored. In particular, the optical glass of the present invention is expressed by the transmittance of glass, and in the sample having a thickness of 10 mm, the wavelength of the light transmittance of 70% (human 7 ()) is 46 () nm or less, more preferably 440 nm or less, preferably 420 nm or less. Further, the optical glass of the present invention, when expressed by the transmittance of glass, represents 80 in a sample having a thickness of 1 mm. /. The wavelength of the light transmittance (18()) is 56 () or less, more preferably 540 nm or less, and most preferably 520 nm or less. Further, the optical glass of the present invention has a wavelength (λ;) indicating a 5% light transmittance in a sample having a thickness of 10 mm of 420 nm or less, more preferably 4 Å or less, and most preferably 380 nm or less. . Thereby, the transparency of the glass in the visible light region is improved by the absorption end of the glass in the vicinity of the ultraviolet region. Therefore, the optical glass can be preferably used as a material of an optical element such as a lens. Further, the optical glass of the present invention preferably has good press formability. That is, it is preferred that the optical glass of the present invention does not cause devitrification and opalescence even before and after the reheat test (^). Therefore, even if it is assumed that the reheating test of the reheating press process is difficult to cause devitrification and coloring, it becomes difficult to lose the light transmittance of the glass, so that the glass can be easily re-applied. Hot press processing is representative of reheat treatment. Namely, since an optical element having a complicated shape can be produced by press molding, it is possible to manufacture an optical element which is low in manufacturing cost and excellent in productivity. Here, the 'reheat test (4) can be carried out by loading a test piece of 15 mm x 15 mm x 30 mm on a concave refractory and placing it in an electric furnace for reheating. It takes 150 minutes to warm from normal temperature to transfer to each sample. Temperature (Tg) 咼 80C~150C (the temperature falling on the refractory), after holding at the temperature 156904.doc •31 · 201206856 for 30 minutes, cool to room temperature and take it out of the furnace, it will be After the internal observation, the two faces were ground to a thickness (7), and the ground glass sample was visually observed. Furthermore, the presence or absence of devitrification and opalescence before and after the reheat test (4) can be visually confirmed, for example, "no devitrification and opalescence" means, for example, a light having a wavelength of 587.56 nm after the reheat test) The transmittance of (d line) divided by the transmittance of the d line of the test piece before the reheat test is approximately 0·80 or more. [Preform and optical element] A glass molded body can be produced by using, for example, reheat press molding or precision press forming #molding molding using the produced optical glass. In other words, a preform for press molding is formed by using an optical glass, and the preform is subjected to reheat molding, followed by polishing to prepare a glass molded body, or precision-prepared a preform produced by, for example, polishing. The glass molded body was produced by press molding. Further, the method of producing the glass molded body is not limited to these methods. The glass molded body produced in this manner is useful for various optical elements, and particularly preferably used for optical elements such as lenses or iridium. Thereby, the blurring of the color caused by the chromatic aberration of the transmitted light of the optical system provided with the optical element is lowered. Therefore, when the optical element is used in the case of a camera, the object can be more accurately expressed, and the desired image can be projected at a higher resolution when the optical element is used in a projector. [Examples] The composition of the present invention (Ν〇1 to Ν〇119) and the comparative example (Νο. Bu 〇2) 156904.doc -32-201206856, and the refractive index (nd), Abbe The number (Vd), the partial dispersion ratio (0g, F), the result of the reheat test', and the wavelength indicating the spectral transmittance of 5% and 80 / 0 (Μ, λ7〇, λ^ο) are shown in Table 1. ~ Table 16. Further, the following examples are for illustrative purposes only and are not limited to the examples. The glass of the examples (No. 1 to No. 119) and the comparative examples (No. 1 to Νο. 2) of the present invention were produced by the following methods: each selected oxide, hydroxide, carbonate, and the like High-purity raw materials used in ordinary optical glass such as nitrates, fluorides, hydroxides, and partial acid compounds are used as raw materials of the respective components', and are shown in Tables 1 to 16 as Examples and Comparative Examples. The proportion of the composition is weighed and uniformly mixed, and then put into a platinum crucible, melted in the temperature range of UOO^MOO^ in an electric furnace according to the melting difficulty of the glass composition for 3 to 5 hours, stirred and homogenized and defoamed. After that, the temperature was lowered to 1000 to 1300 ° C and stirred and homogenized, and then poured onto a mold to be slowly cooled. Here, the refractive index (nd), Abbe number (Vd) and part of the glass of the examples (1^〇_1~1^〇.119) and the comparative example (]^〇.1~^〇.2) The dispersion ratio (eg, F) was measured in accordance with the Japanese Optical Glass Industry Association specification JOGIS01-2003. Then, based on the obtained Abbe number (heart) and partial dispersion ratio (0g, F), the slope a in the relational expression (eg, F) = -axvd + b is determined to be 0.00160, 0.00250, 〇·〇 Intercept b at 〇340 and 0.00563. Further, the glass used in the measurement was treated by a slow cooling furnace using a slow cooling rate of -25 ° C / hr. Further, the transmittance of the glass of the examples (No. 1 to > 〇. 119) and the comparative example (>1 〇.1~>1 〇.2) was measured in accordance with the Japanese Optical Glass Industry Association specification JOGIS02. 156904.doc •33- 201206856 In addition, in the month of this issue, the transmittance of glass is determined by measuring the transmittance of glass. Specifically, according to JIS Z8722, the optical transmittance of 2 〇〇 to 8 〇〇 nm is measured for the oppositely parallel polished product having a thickness of 10 ± 0.1, and λ 5 (wavelength at a transmittance of 5%) is obtained, and (transmission is obtained). The ratio is the wavelength at 7〇%) and hG (the wavelength at which the transmittance is 8〇%). Further, the glass of the examples (Nol No. uy and the comparative examples (N〇1 to N〇.2) was visually confirmed for the devitrification and the whiteness before and after the reheat test. Here, the devitrification before and after the reheat test and The confirmation of the milky white was carried out by placing a test piece of 15 mm×l5 mm×30 mm on a concave refractory and placing it in an electric furnace for reheating until the reheating temperature, holding at this temperature for 3 minutes, cooling to normal temperature and taking out Outside the furnace, the surface of the polished glass can be visually observed for the devitrification and the presence or absence of milkiness by grinding the two surfaces of the surface to a thickness of 1 〇 claw in a manner of internal observation. At this time, the reheating temperature will be Set to (Tg+8〇 <)c~ 150C) does not produce devitrification and opalescence, and when the reheating temperature is set to a temperature higher than (Tg+8〇C~150C), no devitrification and opalescence of the glass system will occur. The result of the thermal test is set to "〇". Further, when the reheating temperature is set to a specific temperature within the range of (Tg + 80 ° C to 150 ° C), devitrification and opalescence are not generated, but the reheating temperature is set at (Tg + 80 ° C - 150 ° The glass that is devitrified or opalescent at a higher temperature within the range of 〇 is set to "Δ" 〇 156904. Doc -34- 201206856 [Table i] Example 1 2 3 4 5 6 7 8 Si02 40. 796 37. 796 40. 796 40. 796 40. 796 40. 796 40. 796 37. 796 Ta2〇5 3. 000 3. 000 3. 000 3. 000 6. 000 6. 000 6. 000 3. 000 Nb2〇5 16. 341 16. 341 16. 341 16. 341 16. 341 13. 341 16. 341 16. 341 Ti02 6. 962 6. 962 3. 962 6. 962 3. 962 6. 962 6. 962 6. 962 W03 Li20 12. 129 12. 129 12. 129 12. 129 12. 129 12. 129 9. 129 12. 129 Na20 13. 659 16. 659 16. 659 13. 659 13. 659 13. 659 13. 659 13. 659 K20 MgO CaO SrO BaO ZnO 1. 726 1. 726 1. 726 1. 726 1. 726 1. 726 1. 726 4. 726 P2O5 B2〇3 Ge〇2 AI2O3 Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 卜 5. 381 Sb2〇3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 P). 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na20+BaO 33. 000 36. 000 36. 000 33. 000 36. 000 33. 000 36. 000 33. 000 (Nb2〇5+Ta2〇5)/ (TiO?+Bi2O^WO^ 2. 778 2. 778 4. 881 2. 778 5. 638 2. 778 3. 209 2. 778 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 4. 740 5. 171 9. 086 4. 740 9. 086 4. 740 5. 171 4. 740 Ta2〇5/(Nb2〇5+Ta2〇5) 0. 155 0. 155 0. 155 0. 155 0. 269 0. 310 0. 269 0. 155 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 28. 788 28. 788 25. 788 25. 788 25. 788 22. 788 25. 788 Ta205/(Li20+Na20) 0. 116 0. 104 0. 104 0. 116 0. 233 0. 233 0. 263 0. 116 MgO+CaO+SrO+BaO+ZnO 1. 726 1. 726 1. 726 1. 726 1. 726 1. 726 1. 726 4. 726 Si〇2+P2〇5+B2〇3+Ge〇2 40. 796 37. 796 40. 796 40. 796 40. 796 40. 796 40. 796 37. 796 丫2〇3+[32〇3+(5廿2〇3 +Yb2〇3+Lll2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 1. 8740 1. 8718 1. 8510 1. 8741 1. 8824 1. 8710 1. 8997 1. 8843 Vd 24. 5 24. 7 25. 7 24. 5 24. 7 25. 0 23. 7 24. 5 eg,f 0. 61208 0. 60992 0*60585 0. 61191 0. 60930 0. 60868 0. 61453 0. 61163 Intercept b a=0. 00160 0. 65128 0. 64944 0. 64697 0. 65111 0. 64882 0. 64868 0. 65245 0. 65083 a=0. 00250 0. 67333 0. 67167 0. 67010 0. 67316 0. 67105 0. 67118 0. 67378 0. 67288 a=0. 00340 0. 69538 0. 69390 0. 69323 0. 69521 0. 69328 0. 69368 0. 69511 0. 69493 a=0. 00563 0. 75001 0. 74898 0. 75054 0. 74984 0. 74837 0. 74943 0. 74796 0. 74957 into 80 473. 5 476. 5 447. 5 465 461 472 511 491 ^70 407 410 396. 5 405. 5 400 403. 5 412. 5 417 358. 5 356. 5 351. 5 358. 5 355 356. 5 361. 5 358. 5 35· 156904. Doc 201206856 [Table 2] Example 9 10 11 12 13 14 15 16 Si02 40. 796 40. 796 40. 796 40. 796 40. 796 40. 796 40. 796 37. 796 Τ&2〇5 3. 000 3. 000 6. 000 6. 000 6. 000 4. 726 3. 000 3. 000 Nb2〇5 16. 341 16. 341 16. 341 13. 341 16. 341 16. 341 16. 341 16. 341 Ti02 6. 962 3. 962 0. 962 3. 962 3. 962 3. 962 0. 962 3. 962 W03 Li20 9. 129 12. 129 12. 129 12. 129 9. 129 12. 129 12. 129 12. 129 Na20 16. 659 16. 659 16. 659 16. 659 16. 659 16. 659 16. 659 16. 659 K20 MgO CaO SrO BaO ZnO 1. 726 1. 726 1. 726 1. 726 1. 726 4. 726 4. 726 p2〇5 B2O3 Ge〇2 AI2O3 Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb2〇3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 36. 000 36. 000 39. 000 36. 000 39. 000 37. 726 36. 000 36. 000 (Nb205+Ta205)/ (Ti02+Bi203+W03) 2. 778 4. 881 23. 218 4. 881 5. 638 5. 317 20. 100 4. 881 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 5. 171 9. 086 40. 532 9. 086 9. 843 9. 521 37. 414 9. 086 Ta2〇5/(Nb2〇5+Ta2〇5) 0. 155 0. 155 0. 269 0. 310 0. 269 0. 224 0. 155 0. 155 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 28. 788 28. 788 28. 788 25. 788 28. 788 28. 788 28. 788 Ta2〇5/(Li20+Na20) 0. 116 0. 104 0. 208 0. 208 0. 233 0. 164 0. 104 0. 104 MgO+CaO+SrO+BaO+ZnO 1. 726 1. 726 1. 726 1. 726 1. 726 0. 000 4. 726 4. 726 Si〇2+P2〇5+B2〇3+Ge〇2 40. 796 40. 796 40. 796 40. 796 40. 796 40. 796 40. 796 37. 796 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lll2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8675 1. 8508 1. 8615 1. 8472 1. 8774 1. 8641 1. 8390 1. 8597 Vd 24. 5 25. 7 25. 8 26. 3 24. 7 25. 2 26. 6 25. 6 eg - f 0. 61160 0. 60628 0. 60496 0. 60403 0. 60967 0. 60845 0. 60178 0. 60704 intercept b a=0. 00160 0. 65080 0. 64740 0. 64624 0. 64611 0. 64919 0. 64877 0. 64434 0. 64800 a=0. 00250 0. 67285 0. 67053 0. 66946 0. 66978 0. 67142 0. 67145 0. 66828 0. 67104 a=0. 00340 0. 69490 0. 69366 0. 69268 0. 69345 0. 69365 0. 69413 0. 69222 0. 69408 a=0. 00563 0. 74953 0. 75097 0. 75022 0. 75210 0. 74873 0. 75033 0. 75154 0. 75116 λβ〇 466 464 448 477. 5 467 450. 5 438 464. 5 people 70 406. 5 402. 5 390 393. 5 401 395 390. 5 402. 5 λ5 358 352 346 350 355 352. 5 344 351 36- 156904. Doc 201206856 [Table 3] Example 17 18 19 20 21 22 23 24 Si02 40. 796 43. 796 40. 796 40. 796 40. 796 40. 796 37. 796 40. 796 Ta^Os 3. 000 3. 000 6. 000 9. 000 9. 000 9. 000 9. 000 7. 726 Nb2〇5 16. 341 16. 341 16. 341 16. 341 13. 341 16. 341 16. 341 16. 341 Ti02 3. 962 3. 962 3. 962 0. 962 3. 962 3. 962 3. 962 3. 962 W03 Li20 9. 129 9. 129 12. 129 12. 129 12. 129 9. 129 12. 129 12. 129 Na20 16. 659 16. 659 13. 659 13. 659 13. 659 13. 659 13. 659 13. 659 K20 MfiO CaO SrO BaO ZnO 4. 726 1. 726 1. 726 1. 726 1. 726 1. 726 1. 726 P2〇5 B203 Ge〇2 AI2O3 Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb203 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 36. 000 36. 000 36. 000 39. 000 36. 000 39. 000 39. 000 37. 726 (Nb2〇5+Ta205)/ (Ti02+Bi203+W0^ 4. 881 4. 881 5. 638 26. 336 5. 638 6. 396 6. 396 6. 074 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi2〇3+W03) 9. 086 9. 086 9. 086 40. 532 9. 086 9. 843 9. 843 9. 521 Ta2〇5/(Nb2〇5+Ta2〇5) 0. 155 0. 155 0. 269 0. 355 0. 403 0. 355 0. 355 0. 321 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 25. 788 25. 788 25. 788 25. 788 22. 788 25. 788 25. 788 Ta205/(Li20+Na20) 0. 116 0. 116 0. 233 0. 349 0. 349 0. 395 0. 349 0. 300 MgO+CaO+SrO+BaO+ZnO 4. 726 1. 726 1. 726 1. 726 1. 726 1. 726 1. 726 0. 000 Si〇2+P2〇5+B2〇3+Ge〇2 40. 796 43. 796 40. 796 40. 796 40. 796 40. 796 37. 796 40. 796 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 na 1. 8563 1. 8466 1. 8845 1. 8939 1. 8818 1. 9083 1. 9145 1. 8964 Vd 25. 4 25. 5 24. 7 24. 8 25. 2 23. 9 24. 0 24. 3 eg ’ f 0. 60892 0. 60898 0. 60987 0. 60783 0. 60623 0. 61130 0. 61043 0. 60964 intercept b a=0. 00160 0. 64956 0. 64978 0. 64939 0. 64751 0. 64655 0. 64954 0. 64883 0. 64852 a=0. 00250 0. 67242 0. 67273 0. 67162 0. 66983 0. 66923 0. 67105 0. 67043 0. 67039 a=0. 00340 0. 69528 0. 69568 0. 69385 0. 69215 0. 69191 0. 69256 0. 69203 0. 69226 a=0. 00563 0. 75192 0. 75255 0. 74893 0. 74745 0. 74810 0. 74586 0. 74555 0. 74645 λβ〇 454. 5 447. 5 489 481. 5 508. 5 481 503 480 into 70 399 396. 5 410 399. 5 413 401 415. 5 405. 5 λ5 353 353. 5 355. 5 350 358. 5 353. 5 356. 5 356 37- I56904. Doc 201206856 [Table 4] Example 25 26 27 28 29 30 31 Si02 40. 796 37. 796 40. 796 43. 796 40. 796 40. 796 40. 796 Χ&2〇5 6. 000 6. 000 6. 000 6. 000 9. 000 11. 000 11. 000 Nb2〇s 16. 341 16. 341 16. 341 16. 341 13. 341 13. 341 13. 341 Ti02 0. 962 3. 962 3. 962 3. 962 3. 962 1. 962 3. 962 W03 Li20 12. 129 12. 129 9. 129 9. 129 12. 129 12. 129 10. 129 Na20 13. 659 13. 659 13. 659 13. 659 13. 659 13. 659 13. 659 K20 MgO CaO SrO BaO ZnO 4. 726 4. 726 4. 726 1. 726 1. 726 1. 726 1. 726 p2〇5 B2O3 Ge〇2 A】2〇3 Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb203 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 36. 000 36. 000 36. 000 36. 000 36. 000 38. 000 38 Lion (Nb〗 〇5+Τ&2 O5)/ (Ti02+Bi203+W03) 23. 218 5. 638 5. 638 5. 638 5. 638 12. 405 6. 143 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 37. 414 9. 086 9. 086 9. 086 9. 086 19. 366 9. 591 Ta2〇5/(Nb2〇5+Ta2〇5) 0. 269 0. 269 0. 269 0. 269 0. 403 0. 452 0. 452 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 25. 788 22. 788 22. 788 25. 788 25. 788 23. 788 Ta2〇5/(Li20+Na20) 0. 233 0. 233 0. 263 0. 263 0. 349 0. 427 0. 462 MgO+CaO+SrO+BaO+ZnO 4. 726 4. 726 4. 726 1. 726 1. 726 1. 726 1. 726 Si〇2+F*2〇5+B2〇3+Ge〇2 40. 796 37. 796 40. 796 43. 796 40. 796 40. 796 40. 796 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8742 1. 8951 1. 8912 1. 8796 1. 8819 1. 8870 1. 8967 vd 25. 5 24. 6 24. 4 24. 5 25. 2 25. 3 24. 7 0g, F 0. 60689 0. 60957 0. 61135 0. 61110 0. 60610 0. 60536 0. 60792 intercept b a=0. 00160 0. 64769 0. 64893 0. 65039 0. 65030 0. 64642 0. 64584 0. 64744 a=0. 00250 0. 67064 0. 67107 0. 67235 0. 67235 0. 66910 0. 66861 0. 66967 a=0. 00340 0. 69359 0. 69321 0. 69431 0. 69440 0. 69178 0. 69138 0. 69190 a=0. 00563 0. 75046 0. 74807 0. 74873 0. 74903 0. 74798 0. 74780 0. 74698 464 486. 5 486 482. 5 461. 5 465 474. 5 ^70 399 408 406. 5 405 397. 5 394. 5 401 λ5 348 354. 5 356. 5 357. 5 353 349 355 38- 156904. Doc 201206856 [Table 5] Example 32 33 34 35 36 37 38 39 SiO, 38. 796 40. 796 40. 796 43. 796 40. 796 42. 522 40. 796 42. 796 Ta, 2〇5 11. 000 10. 726 6. 000 6. 000 6. 000 6. 000 11. 000 11. 000 Nb2〇5 13. 341 13. 341 16. 341 16. 341 16. 341 16. 341 13. 341 13. 341 Ti02 3. 962 3. 962 0. 962 0. 962 0. 962 0. 962 1. 962 1. 962 W03 Li20 12. 129 12. 129 12. 129 9. 129 9. 129 12. 129 12. 129 10. 129 Na20 13. 659 13. 659 16. 659 16. 659 16. 659 16. 659 13. 659 13. 659 K20 MgO CaO SrO BaO ZnO 1. 726 1. 726 1. 726 4. 726 1. 726 1. 726 P2〇S B2〇3 Ge02 Al2〇3 ZrO, 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb203 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 38. 000 37. 726 39. 000 39. 000 ^ 39. 000 39. 000 38. 000 38. 000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 6. 143 6. 074 23. 218 23. 218 23. 218 23. 218 12. 405 12. 405 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi20,+W03) 9. 591 9. 521 40. 532 40. 532 40. 532 40. 532 19. 366 19. 366 Ta2〇5, (Nb2〇5+Ta2〇5) 0. 452 0. 446 0. 269 0. 269 0. 269 0. 269 0. 452 0. 452 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 25. 788 28. 788 25. 788 25. 788 28. 788 25. 788 23. 788 Ta2〇5/(Li20+Na20) 0. 427 0. 416 0. 208 0. 233 0. 233 0. 208 0. 427 0. 462 MgO+CaO+SrO+BaO+ZnO 1. 726 0. 000 1. 726 1. 726 4. 726 0. 000 1. 726 1. 726 Si〇2+P2〇5+B2〇3+Ge〇2 38. 796 40. 796 40. 796 43. 796 40. 796 42. 522 40. 796 42. 796 V2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lll2〇3 0. 000 0. 000 0. 000 0. 000 0'000 0. 000 0. 000 0. 000 nd 1. 9014 1. 8912 1. 8630 1. 8583 1. 8673 1. 8572 1. 8876 1. 8827 Vd 24. 7 24. 8 25. 7 25. 6 25. 5 25. 8 25. 3 25. 3 0g ’ F 0. 60821 0. 60825 0. 61050 0. 60649 0. 60588 0. 60697 0. 60535 0. 60515 cutting distance b a=0. 00160 0. 64773 0. 64793 0. 65162 0. 64745 0. 64668 0. 64825 0. 64583 0. 64563 a=0. 00250 0. 66996 0. 67025 0. 67475 0. 67049 0. 66963 0. 67147 0. 66860 0. 66840 a=0. 00340 0. 69219 0. 69257 0. 69788 0. 69353 0. 69258 0. 69469 0. 69137 0. 69117 a=0. 00563 0. 74727 0. 74787 0. 75519 0. 75062 0. 74945 0. 75223 0. 74779 0. 74759 ^80 485 475 453 449. 5 463 453. 5 475 468. 5 ^70 403 401 394. 5 393. 5 397. 5 398 398 396 354 354 346 348 347. 5 347 349. 5 350. 5 39- 156904. Doc 201206856 [Table 6] Example 40 41 42 43 44 45 46 SiO, 42. 796 42. 522 42. 796 42. 796 40. 796 43. 796 40. 796 T&2〇5 11. 000 11. 000 11. 000 11. 000 6. 000 6. 000 6. 000 Nb2〇5 13. 341 13. 341 13. 341 11. 341 16. 341 16. 341 16. 341 Ti02 1. 962 1. 962 1. 962 1. 962 0. 962 0. 962 0. 962 WO, Li20 12. 129 12. 129 12. 129 12. 129 12. 129 9. 129 13. 855 Na20 11. 659 13. 659 13. 659 13. 659 16. 659 16. 659 16. 659 k2o ΜβΟ CaO SrO BaO ZnO 1. 726 1. 726 1. 726 1. 726 1. 726 p2〇5 B2O3 Ge〇2 AI2O3 Zr02 5. 381 5. 381 3. 381 5. 381 5. 381 5. 381 5. 381 Sb2〇3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 36. 000 38. 000 38. 000 36. 000 39. 000 39. 000 39. 000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi20,+W03) 12. 405 12. 405 12. 405 11. 385 23. 218 23. 218 23. 218 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 18. 347 19. 366 19. 366 18. 347 40. 532 40. 532 40. 532 Ta2〇s/(Nb2〇5+Ta2〇5) 0. 452 0. 452 0. 452 0. 492 0. 269 0. 269 0. 269 Li2〇+Na2〇+K2〇+Cs2〇 23. 788 25. 788 25. 788 25. 788 28. 788 25. 788 30. 514 Ta205/(Li20+Na20) 0. 462 0. 427 0. 427 0. 427 0. 208 0. 233 0. 197 MgO+CaO+SrO+BaO+ZnO 1. 726 0. 000 1. 726 1. 726 1. 726 1. 726 0. 000 Si〇2+P2〇5+B2〇3+Ge〇2 42. 796 42. 522 42. 796 42. 796 40. 796 43. 796 40. 796 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8879 1. 8798 1. 8787 1. 8647 1. 8627 1. 8574 1. 8597 vd 25. 2 25. 4 25. 3 26. 3 25. 7 25. 6 25. 8 0g ’ F 0. 60614 0. 60456 0. 60651 0. 60383 0. 60609 0. 60561 0. 60337 intercept b a=0. 00160 0. 64646 0. 64520 0. 64699 0. 64591 0. 64721 0. 64657 0. 64465 a=0. 00250 0. 66914 0. 66806 0. 66976 0. 66958 0. 67034 0. 66961 0. 66787 a=0. 00340 0. 69182 0. 69092 0. 69253 0. 69325 0. 69347 0. 69265 0. 69109 a=0. 00563 0. 74801 0. 74756 0. 74894 0. 75189 0. 75078 0. 74974 0. 74862 ^80 474 462 462. 5 454 450 448. 5 468. 5 ^7〇 397 393. 5 395. 5 389. 5 396. 5 393. 5 408 into 5 351 349. 5 349. 5 347 346. 5 348 346. 5 40- 156904. Doc 201206856 [Table 7] Example 47 48 49 50 51 52 53 54 Si02 42. 522 37. 796 40. 796 40. 796 40. 796 42. 522 44. 522 42. 522 T&2〇5 6. 000 6. 000 11. 000 11. 000 11. 000 11. 000 11. 000 11. 000 Nb2〇5 16. 341 16. 341 13. 341 10. 341 10. 341 13. 341 13. 341 13. 341 Ti02 0. 962 0. 962 1. 962 4. 962 1. 962 1. 962 1. 962 1. 962 W03 3. 000 Li20 12. 129 15. 129 12. 129 12. 129 12. 129 12. 129 12. 129 14. 129 Na20 16. 659 16. 659 13. 659 13. 659 13. 659 13. 659 11. 659 11. 659 K20 MgO CaO SrO BaO ZnO 1. 726 1. 726 1. 726 1. 726 p205 B203 Ge〇2 ai2o3 Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb2〇3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100•(8) 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na20+BaO 39. 000 39. 000 38. 000 35. 000 35. 000 38. 000 36. 000 36. 000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W0,) 23. 218 23. 218 12. 405 4. 301 4. 301 12. 405 12. 405 12. 405 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi2〇3+WO,) 40. 532 40. 532 19. 366 7. 053 7. 053 19. 366 18. 347 18. 347 Ta2〇5/(Nb2〇5+Ta2〇5) 0. 269 0. 269 0. 452 0. 515 0. 515 0. 452 0. 452 0. 452 Li2〇+Na2〇+K2〇+Cs2〇 28. 788 31. 788 25. 788 25. 788 25. 788 25. 788 23. 788 25. 788 Ta205/(Li20+Na20) 0. 208 0. 189 0. 427 0. 427 0. 427 0. 427 0. 462 0. 427 MgO+CaO+SrO+BaO+ZnO 0. 000 1. 726 1. 726 1. 726 1. 726 0. 000 0. 000 0. 000 Si〇2+P2〇5+B2〇3+Ge〇2 42. 522 37. 796 40. 796 40. 796 40. 796 42. 522 44. 522 42. 522 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+LU2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8570 1. 8670 1. 8863 1. 8748 1. 8838 1. 8795 1. 8815 1. 8868 vd 25. 8 26. 1 25. 3 25. 7 25. 4 25. 4 25. 3 25. 3 0g ’ F 0. 60602 0. 60970 0. 60543 0. 60517 0. 60426 0. 60595 0. 60637 0. 60559 load distance b a=0. 00160 0. 64730 0. 65146 0. 64591 0. 64629 0. 64490 0. 64659 0. 64685 0. 64607 a=0. 00250 0. 67052 0. 67495 0. 66868 0,66942 0. 66776 0. 66945 0. 66962 0. 66884 a=0. 00340 0. 69374 0. 69844 0. 69145 0. 69255 0. 69062 0. 69231 0. 69239 0. 69161 a=0. 00563 0. 75127 0. 75665 0. 74787 0. 74986 0. 74726 0. 74895 0. 74881 0. 74803 443 492 474 461. 5 459. 5 458. 5 457. 5 450. 5 into 70 392 409. 5 396 395 394 395. 5 396. 5 396 into 5 346. 5 345. 5 349. 5 352 353. 5 349. 5 351 350 -41 - 156904. Doc 201206856 [Table 8] Example 55 56 57 58 59 60 61 62 Si02 42. 522 42. 522 42. 522 42. 522 40. 522 42. 522 42. 522 44. 522 TS2〇5 11. 000 11. 000 6. 000 6. 000 6. 000 6. 000 11. 000 11. 000 Nb205 13. 341 13. 341 16. 341 16. 341 16. 341 16. 341 13. 341 13. 341 Ti02 1. 962 1. 962 0. 962 0. 962 0. 962 0. 962 1. 962 1. 962 W03 2. 000 Li20 12. 129 12. 129 12. 129 10. 129 12. 129 12. 129 12. 129 12. 129 Na20 11. 659 11. 659 16,659 16. 659 16. 659 14. 659 13. 659 11. 659 K20 MgO CaO SrO BaO 2. 000 2. 000 2. 000 ZnO p205 B2〇3 Ge〇2 A]2〇3 Zr02 7. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb203 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na20+BaO 36. 000 36. 000 39. 000 41. 000 4K000 39. 000 38. 000 36. 000 (Nb205+Ta205)/ (Ti02+Bi203+W03) 12. 405 6. 143 23. 218 23. 218 23. 218 23. 218 12. 405 12. 405 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi20,+W0,) 18. 347 9. 086 40. 532 42. 610 42. 610 40. 532 19. 366 18. 347 Ta;j〇5/(Nb2〇5+Ta2〇5) 0. 452 0. 452 0. 269 0. 269 0. 269 0. 269 0. 452 0. 452 Li2〇+Na2〇+K2〇+Cs2〇 23. 788 23. 788 28. 788 26. 788 28. 788 26. 788 25. 788 23. 788 Ta205/(Li20+Na20) 0. 462 0. 462 0. 208 0. 224 0. 208 0. 224 0. 427 0. 462 MgO+CaO+SrO+BaO+ZnO 0. 000 0. 000 0. 000 2. 000 2. 000 2. 000 0. 000 0. 000 Si〇2+p2〇5+B2〇3+Ge〇2 42. 522 42. 522 42. 522 42. 522 40. 522 42. 522 42. 522 44. 522 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8906 1. 8904 1. 8567 1. 8592 1. 8626 1. 8643 1. 8808 1. 8809 vd 25. 3 24. 9 25. 8 25. 8 25. 9 25. 8 25. 3 25. 3 0g ’ F 0. 60545 0. 60587 0. 60499 0. 60613 0. 60558 0. 60525 0. 60547 0. 60563 cutting distance b a=0. 00160 0. 64593 0. 64571 0. 64627 0. 64741 0. 64702 0. 64653 0. 64595 0. 64611 a=0. 00250 0. 66870 0. 66812 0. 66949 0. 67063 0. 67033 0. 66975 0. 66872 0. 66888 a=0. 00340 0. 69147 0. 69053 0. 69271 0. 69385 0. 69364 0. 69297 0. 69149 0. 69165 a=0. 00563 0. 74789 0. 74605 0. 75025 0. 75139 0. 75140 0. 75050 0. 74791 0. 74807 455. 5 477 519. 5 472 463. 5 461 467. 5 469 λ?〇 395. 5 407. 5 416. 5 404. 5 401 398. 5 394 394 λ5 351 357 348 347. 5 346 347 349. 5 351 42- 156904. Doc 201206856 [Table 9] Example 63 64 65 66 67 68 69 70 Si02 42. 522 42. 522 42,522 42. 522 42. 522 42. 522 42. 522 44. 522 Ta2〇5 11. 000 11. 000 11. 000 6. 000 6. 000 6. 000 6. 000 6. 000 Nb205 13. 341 13. 341 13. 341 16. 341 16. 341 16. 341 18. 341 16. 341 Ti02 1. 962 1. 962 1. 962 0. 962 0. 962 0. 962 0. 962 0. 962 W03 2. 000 Li2〇 14. 129 12. 129 12. 129 12. 129 12. 129 12. 129 10. 129 10. 129 Na20 11. 659 11. 659 11. 659 14. 659 12. 659 12. 659 14. 659 14. 659 K20 MgO CaO SrO BaO 2. 000 2. 000 4. 000 2. 000 2. 000 2. 000 ZnO p2〇5 B2〇3 Ge〇2 AI20. ·, Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 7. 381 5. 381 5. 381 St>2〇3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb205+Ta2〇5+Na20+BaO 36. 000 36. 000 38. 000 39. 000 39. 000 37. 000 41. 000 39. 000 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 12. 405 6. 143 12. 405 23. 218 23. 218 23. 218 25. 297 23. 218 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 18. 347 9. 086 19. 366 40. 532 40. 532 38. 453 42. 610 40. 532 Ta2〇5/(^Nb2〇5+Ta2〇5) 0. 452 0. 452 0. 452 0. 269 0. 269 0. 269 0. 247 0. 269 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 23. 788 23. 788 26. 788 24. 788 24. 788 24. 788 24. 788 Ta2〇5/(Li20+Na20) 0. 427 0. 462 0. 462 0. 224 0. 242 0. 242 0. 242 0. 242 MgO+CaO+SrO+BaO+ZnO 0. 000 0. 000 2. 000 2. 000 4. 000 2. 000 2. 000 2. 000 Si〇2+P2〇5+B2〇3+GeQ2 42. 522 42. 522 42. 522 42. 522 42. 522 42. 522 42. 522 44. 522 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8854 1. 8919 1. 8861 1. 8636 1. 8697 1. 8740 1. 8823 1. 8598 vd 25. 3 24. 9 25. 4 25. 8 25. 8 25. 7 24. 8 25. 7 0g ’ F 0. 60498 0. 60965 0. 60660 0. 60610 0. 60427 0. 60582 0. 60961 0. 60521 intercept b a=0. 00160 0. 64546 0. 64949 0. 64724 0. 64738 0. 64555 0. 64694 0. 64929 0. 64633 a=0. 00250 0. 66823 0. 67190 0. 67010 0. 67060 0. 66877 0. 67007 0. 67161 0. 66946 a=0. 00340 0. 69100 0. 69431 0. 69296 0. 69382 0. 69199 0. 69320 0. 69393 0. 69259 a=0. 00563 0. 74742 0. 74984 0. 74960 0. 75135 0. 74952 0. 75051 0. 74924 0. 74990 ^80 472. 5 503 477 447 471 454 466 448 into 7〇 393. 5 406 399. 5 396 408 397 403 397 into 5 350 357. 5 350. 5 346 348 348 350 348 43- 156904. Doc 201206856 [Table ίο] Example 71 72 73 74 75 76 77 78 Si02 43. 796 43. 796 43. 796 45. 522 43. 796 42. 522 42. 522 42. 522 Ta2〇5 6. 000 6. 000 6. 000 6. 000 6. 000 11. 000 11. 000 11. 000 Nb205 16. 341 16. 341 16. 341 16. 341 16. 341 13. 341 13. 341 13. 341 Ti02 0. 962 0. 962 0. 962 0. 962 0. 962 1. 962 1. 962 1. 962 W03 Li20 9. 129 10. 856 9. 229 9. 129 9. 129 14. 129 16. 129 14. 129 Na20 16. 659 16. 659 18. 386 16. 659 16. 659 11. 659 9. 659 9. 659 k2o MgO CaO SrO BaO ZnO 1. 726 P2〇5 B2〇3 Ge〇2 ai2o3 Zr02 5. 381 5. 381 5. 381 5. 381 7. 107 5. 381 5. 381 7. 381 Sbj〇3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 39. 000 39. 000 40. 726 39. 000 39. 000 36. 000 34. 000 34. 000 (Nb2〇5+Ta205)/ (Ti02+Bi203+W03) 23. 218 23. 218 23. 218 23. 218 23. 218 12. 405 12. 405 12. 405 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 40. 532 40. 532 42. 326 40. 532 40. 532 18. 347 17. 327 17. 327 Ta2〇5/(Nb205+Ta205) 0. 269 0. 269 0. 269 0. 269 0. 269 0. 452 0. 452 0. 452 Li2〇+Na2〇+K2〇+Cs2〇 25. 788 27. 515 27. 515 25. 788 25. 788 25. 788 25. 788 23. 788 Ta205/(Li20+Na20) 0. 233 0. 218 0. 218 0. 233 0. 233 0. 427 0. 427 0. 462 MgO+CaO+SrO+BaO+ZnO 1. 726 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 Si〇2+p2〇5+B2〇3+Ge〇2 43. 796 43. 796 43. 796 45. 522 43. 796 42. 522 42. 522 42. 522 "V2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lll2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8578 1. 8549 1. 8511 1. 8517 1. 8583 1. 8836 1. 8892 1. 8925 vd 25. 6 25. 7 25. 7 25. 6 25. 7 25. 4 25. 4 25. 4 0g ’ F 0. 60758 0. 60553 0. 60580 0. 60596 0. 60658 0. 60581 0. 60616 0. 60643 intercept b a=0. 00160 0. 64854 0. 64665 0. 64692 0. 64692 0. 64770 0. 64645 0. 64680 0. 64707 a=0. 00250 0. 67158 0. 66978 0. 67005 0. 66996 0. 67083 0. 66931 0. 66966 0. 66993 a=0. 00340 0. 69462 0. 69291 0. 69318 0. 69300 0. 69396 0. 69217 0. 69252 0. 69279 a=0. 00563 0. 75171 0. 75022 0. 75049 0. 75009 0. 75127 0. 74881 0. 749ΪΤ1 0. 74943 λ«ο 445. 5 456 450. 5 445 446. 5 464 468 475 λ70 393. 5 399. 5 394. 5 394 394 397 401 401 into 5 348 348 347 348. 5 348. 5 349 350 351 44 · 156904. Doc 201206856 [Table 11] Examples Comparative Example 79 80 1 2 SiO? 42. 522 40. 522 40,000 40. 000 Ta2〇5 11. 000 11. 000 0. 690 Nb2〇5 13. 341 13. 341 14. 480 14. 470 Ti02 1. 962 1. 962 12. 410 12. 410 WO, 2. 760 2. 760 Li20 14. 129 16. 129 1. 380 6. 210 Na20 9. 659 11. 659 7. 590 7. 590 K20 13. 100 7. 590 MgO CaO 1. 380 1. 380 SrO BaO 2. 000 1. 380 1. 380 ZnO p205 B203 1. 380 1. 380 Ge02 ai2〇3 Zr02 5. 381 5. 381 4. 140 4. 140 Sb203 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na20+BaO 36. 000 36. 000 23. 450 24. 130 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 12. 405 12. 405 0. 955 0. 999 (Nb2〇5+Ta2〇5+Na20+BaO) /(Ti02+Bi203+W03) 18. 347 18. 347 1. 546 1. 591 T&2〇5/(Nb2〇5+丁a〗〇5) 0. 452 0. 452 0. 000 0. 046 Li2〇+Na2〇+K2〇+Cs2〇 23. 788 27. 788 22. 070 21. 390 Ta205/(Li20+Na20) 0. 462 0. 396 0. 000 0. 050 MgO+CaO+SrO+BaO+ZnO 2. 000 0. 000 2. 760 2. 760 Si〇2+p2〇5+B2〇3+Ge〇2 42. 522 40. 522 41. 380 41. 380 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 1. 000 2. 000 nd 1. 8917 1. 8895 1. 8132 1. 8491 vd 25. 4 25. 4 25. 1 24. 0 0g, F 0. 60690 0. 60645 0. 61500 0. 62100 intercept b a=0. 00160 0. 64754 0. 64709 0. 65516 0. 65940 a=0. 00250 0. 67040 0. 66995 0. 67775 0. 68100 a=0. 00340 0. 69326 0. 69281 0. 70034 0. 70260 a=0. 00563 0. 74990 0. 74945 0. 75631 0. 75612 ^80 468 461 ^70 399 397 λ5 350 348 45- 156904. Doc 201206856 [Table 12] Example 81 82 83 84 85 86 87 88 Si02 42. 500 42,500 41. 629 40. 000 40. 004 40. 000 43. 922 39. 608 Ta2〇5 5. 205 5. 205 7. 143 8. 821 8. 821 8. 821 8. 821 8. 735 Nb205 13. 898 12. 856 13. 613 13. 080 12. 101 11. 897 12. 100 12. 952 Ti02 4. 128 4. 128 4. 043 3. 885 3. 886 3. 885 3. 885 3. 847 W03 Li20 12. 641 13. 682 12. 377 11. 897 11. 898 11. 897 12. 877 11. 776 Na20 12. 147 14. 230 13. 938 13. 394 13. 394 13. 393 13. 393 13. 261 k2o MgO 0. 980 CaO SrO BaO 2. 083 0. 980 0. 980 ZnO 1. 795 1. 795 1. 761 1. 689 1. 689 1. 689 1. 689 4. 588 p2〇5 B2O3 1. 961 Ge〇2 1. 961 1. 961 ai2o3 Zr02 5. 602 5. 602 5. 491 5. 273 5. 273 5. 273 2. 331 5. 224 Sb2〇3 0. 006 Total 100 100 100 100 100 100 100 100 Nb2〇5+Ta2〇5+Na20+BaO 33. 334 32. 292 34. 694 35. 295 35. 298 35. 091 34. 314 34. 949 (Nb205+Ta2〇5)/ (Ti02+Bi203+W03) 4. 628 4. 375 5. 134 5. 637 5. 385 5. 332 5. 385 5. 638 (Nb205+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 8. 075 7. 822 8. 582 9. 084 9. 084 9. 032 8. 832 9. 086 Ta2〇5/(Nb2〇5+Ta2〇5) 0. 272 0. 288 0. 344 0. 403 0. 422 0. 426 0. 422 0. 403 Li2〇+Na20+K2〇+Cs2〇 24. 788 27. 913 26. 314 25. 291 25. 293 25. 290 26. 271 25. 037 Ta205/(Li20+Na20) 0. 210 0. 186 0. 271 0. 349 0. 349 0. 349 0. 336 0. 349 Si〇2+P2〇5+B2〇3+Ge〇2 42. 500 42. 500 41. 629 41. 961 41. 965 41. 961 43. 922 39. 608 MgO+CaO+SrO+BaO+ZnO 3. 878 1. 795 1. 761 1. 689 2. 670 2. 670 2. 670 4. 588 Y 2〇3+La2〇3+G d2〇3 +Yb2〇3+Lu203 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8575 1. 8401 1. 8668 1. 8749 1. 8689 1. 8673 1. 8537 1. 8815 vd 26. 1 26. 6 26. 5 25. 3 25. 8 25. 8 25. 9 25. 4 0g ’ F 0. 60614 0. 60298 0. 60602 0. 60740 0. 60534 0. 60471 0. 60419 0. 60580 intercept b a=0. 00160 0. 64790 0. 64554 0. 64842 0. 64788 0. 64662 0. 64599 0. 64563 0. 64644 a=0. 00250 0. 67139 0. 66948 0. 67227 0. 67065 0. 66984 0. 66921 0. 66894 0. 66930 a=0. 00340 0. 69488 0. 69342 0. 69612 0. 69342 0. 69306 0. 69243 0. 69225 0. 69216 a=0. 00563 0. 75309 0. 75274 0. 75521 0. 74984 0. 75060 0. 74996 0. 75001 0. 74880 449. 5 429. 5 449. 5 450. 5 439. 5 444 429 461 into 70 398 387. 5 392. 5 397 387 386 383. 5 400. 5 long 5 351. 5 348. 5 351. 5 352 350 345 349. 5 352 Styling test Δ Δ Δ Δ Δ Δ 0 Δ • 46- 156904. Doc 201206856 [Table 13] Example 89 90 91 92 93 94 95 96 Si02 43. 922 43. 922 43. 922 44. 522 44. 522 38. 911 42. 522 42. 016 Ta2〇5 8. 821 8. 821 8. 821 11. 000 11. 000 11. 111 7. 500 8. 398 Nb2〇5 11. 120 12. 100 12. 100 9. 341 11. 341 10. 445 13. 341 12. 955 Ti02 4. 866 2. 905 3. 885 3. 962 3. 962 4. 002 3. 362 2. 695 W03 0. 980 Li20 12. 877 12. 877 12. 877 14. 129 17. 129 14. 272 16. 129 15. 938 Na20 13. 393 13. 393 13. 393 11. 659 11. 659 11. 777 11. 659 11. 516 K20 MgO CaO SrO BaO ZnO 1. 689 1. 689 1. 689 P2〇5 B2〇3 Ge02 4. 040 Al2〇3 Zr02 3. 312 3. 312 3. 312 5. 381 0. 381 5. 435 5. 381 6. 803 Sb203 0. 008 Total 100 100 100 100 100 100 100 100 Nb2〇5+Ta2〇5+Na20+BaO 33. 333 34. 314 34. 314 32. 000 34. 000 33. 333 32. 500 32. 869 (Nb2〇5+Ta2〇5)/ (Ti02+Bi20,+W03) 4. 098 5. 385 5. 385 5. 134 5. 639 5. 386 6,199 7. 923 (Nb2〇5-*-Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 6. 851 8. 832 8. 832 8. 077 8. 582 8. 329 9. 667 12. 196 Ta2〇5, (Nb2〇5+Ta2〇5) 0. 442 0. 422 0. 422 0. 541 0. 492 0. 515 0. 360 0. 393 Li2〇+Na2〇+K2〇+Cs2〇 26. 271 26. 271 26. 271 25. 788 28. 788 26. 048 27. 788 27. 455 Ta205/(Li20+Na20) 0. 336 0. 336 0. 336 0. 427 0. 382 0. 427 0. 270 0. 306 Si〇2+p2〇5+B2〇3+Ge〇2 43. 922 43. 922 43. 922 44. 522 44. 522 42. 952 42. 522 42. 016 MgO+CaO+SrO+BaO+ZnO 1. 689 1. 689 1. 689 0. 000 0. 000 0. 000 0. 000 0. 000 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+L\l2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8511 1. 8586 1. 8552 1. 8609 1. 8587 1. 8749 1. 8620 1. 8708 vd 26. 1 25. 9 25. 9 26. 3 25. 9 25. 9 26 26 eg ’ f 0. 60582 0. 60960 0. 60303 0. 60324 0. 60542 0. 60432 0. 60561 0. 60364 intercept b a=0. 00160 0. 64758 0. 65104 0. 64447 0. 64532 0. 64686 0. 64576 0. 64721 0. 64524 a=0. 00250 0. 67107 0. 67435 0. 66778 0. 66899 0. 67017 0. 66907 0. 67061 0. 66864 a=0. 00340 0. 69456 0. 69766 0. 69109 0. 69266 0. 69348 0. 69238 0. 69401 0. 69204 a=0. 00563 0. 75276 0. 75542 0. 74885 0. 75131 0. 75124 0. 75014 0. 75199 0. 75002 into 80 434. 5 436. 5 434. 5 428 467 470. 5 457. 5 465 into 70 385 385. 5 385. 5 384. 5 403 397 398. 5 400 λ5 351 350. 5 349. 5 351 351 351 350. 5 350. 5 Styling test Δ Δ 0 0 0 Δ 0 ο • 47· 156904. Doc 201206856 [Table 14] Example 97 98 99 100 101 102 103 104 105 Si02 42. 522 44. 522 43. 387 41. 688 42. 822 43. 935 42. 425 40. 345 40. 669 Ta2〇5 11. 000 11. 000 10. 717 8. 333 8. 560 8. 399 8. 480 9. 966 9. 242 Nb2〇5 11. 341 13. 341 11. 575 13. 079 13. 435 13. 171 13. 292 9. 438 9. 514 Ti02 1. 962 1. 962 4,047 1. 924 2. 278 2. 234 2. 704 8. 160 8. 141 WO3 0. 686 Li20 14. 129 14. 129 14. 677 15. 813 16. 243 15. 920 16. 091 17. 564 17. 705 Na20 11. 659 9. 659 12. 154 11. 430 11. 741 11. 510 11. 625 9. 415 9. 491 K20 MgO 1. 000 CaO SrO BaO ZnO p2〇5 b2〇3 Ge〇2 1. 000 Al2〇3 Zr02 5. 381 5. 381 3. 442 6. 746 4. 915 4. 819 5. 372 5. 100 5. 141 Sb2〇3 0. 006 0. 006 0. 008 0. 008 0. 008 0. 008 0. 008 0. 008 0. 008 Total 100 100 100 100 100 100 100 100 100 Nb2〇5+Ta2〇5+Na2〇+BaO 34. 000 34. 000 34. 446 32. 843 33. 736 33. 080 33. 397 28. 819 28. 247 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 11. 387 12. 406 5. 508 8. 205 9. 656 9. 655 8. 052 2. 378 2. 304 (Nb2〇5+Ta2〇5+Na2〇+BaO)/ (Ti02+Bi203+W03) 17. 329 17. 329 8. 511 12. 585 14. 810 14. 808 12. 351 3. 532 3. 470 Ta2〇5, (Nb2〇5+Ta2〇5) 0. 492 0. 452 0. 481 0. 389 0. 389 0. 389 0. 389 0. 514 0. 493 Li2〇+Na20+K2〇+Cs2〇 25. 788 23. 788 26. 831 27. 243 27. 984 27. 430 27. 716 26. 979 27. 196 Ta2〇5/(Li2〇+Na20) 0. 427 0. 462 0. 399 0. 306 0. 306 0. 306 0. 306 0. 369 0. 340 Si〇2~Hp2〇5+B2〇3+Ge〇2 43. 522 44. 522 43. 387 41. 688 42. 822 43. 935 42. 425 40. 345 40. 669 MgO+CaO+SrO+BaO+ZnO 1. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 Y2〇3+La2〇3+Gd2〇3 +Yb203+Lu203 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8664 1. 8881 1. 8703 1. 8628 1. 8704 1. 8614 1. 8673 1. 8810 1. 8758 vd 26. 3 25. 3 25. 6 26. 1 25. 9 26. 1 25. 9 25. 4 25. 6 0g, F 0. 60200 0. 60751 0. 60488 0. 60557 0. 60369 0. 60461 0. 60377 0. 60519 0. 60672 intercept b a=0. 00160 0. 64408 0. 64799 0. 64584 0. 64733 0. 64513 0. 64637 0. 64521 0. 64583 0. 64768 a=0. 00250 0. 66775 0. 67076 0. 66888 0. 67082 0. 66844 0. 66986 0. 66852 0. 66869 0. 67072 a=0. 00340 0. 69142 0. 69353 0. 69192 0. 69431 0. 69175 0. 69335 0. 69183 0. 69155 0. 69376 a=0. 00563 0,75007 0. 74995 0. 74901 0. 75252 0. 74951 0. 75155 0. 74958 0. 74820 0. 75084 into 80 444 478. 5 457 460 459. 5 440. 5 449. 5 470 460 ^70 387. 5 404. 5 394. 5 398 401 390 394 402. 5 399. 5 λ5 346. 5 352 351 349. 5 348. 5 348 349 356. 5 356. 5 stereotype test Δ Δ Δ Δ 0 0 0 0 0 · 48 · 156904. Doc 201206856 [Table 15] Example 106 107 108 109 110 111 112 113 Si02 38. 984 42. 819 40. 454 40. 111 41. 974 42. 205 40. 609 40. 924 Τ&2〇5 7. 792 8. 362 8. 086 8. 015 9. 258 8. 758 12. 110 11. 857 Nb2〇5 12. 121 13. 106 12. 578 12. 513 10. 625 10. 683 9. 716 10. 237 Ti02 4. 659 2. 666 4. 835 3. 875 5. 818 5. 851 4. 428 4. 550 W03 Li20 21. 793 16. 653 15. 333 18. 683 16. 236 16. 325 20. 117 17. 988 Na20 7. 257 11. 086 11. 042 9. 295 10. 771 10. 831 7. 882 9. 262 K20 MgO CaO SrO BaO ZnO P2〇5 B2〇3 Ge02 AI2O3 Zr02 7. 382 5. 297 7. 660 7. 496 5. 306 5. 335 5. 126 5. 170 Sb2〇3 0. 011 0. 012 0. 012 0. 012 0. 012 0. 012 0. 008 0. 008 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na2〇+BaO 27. 170 32. 554 31. 706 29. 823 30. 654 30. 272 29. 708 31. 356 (Nb2〇5+Ta2〇5)/ (Ti02+Bi203+W03) 4. 274 8. 053 4. 274 5. 298 3. 417 3. 323 4. 929 4. 856 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 5. 832 12. 211 6. 558 7. 696 5. 269 5. 174 6. 709 6. 891 Ta2〇5/CNl)2〇5+Ta2〇5) 0. 391 0. 390 0. 391 0. 390 0. 466 0. 450 0. 555 0. 537 Li2〇+Na2〇+K2〇+Cs2〇 29. 050 27. 739 26. 375 27. 978 27. 007 27. 156 27. 999 27. 250 Ta205/(Li20+Na20) 0. 268 0. 301 0. 307 0. 286 0. 343 0. 323 0. 433 0. 435 MgO+CaO+SrO+BaO+ZnO 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 Si〇2+P2〇5+B2〇3+Ge〇2 38. 984 42. 819 40. 454 40. 111 41. 974 42. 205 40. 609 40. 924 Y 2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 88235 1. 86498 1. 88038 1. 87758 1. 86735 1. 86329 1. 88339 1. 88416 vd 26. 1 26. 1 25. 6 26. 0 25. 9 26. 0 26. 1 25. 8 0g, F 0. 60319 0. 60400 0. 60570 0. 60451 0. 60448 0. 60506 0. 60506 0. 60260 intercept b a=0. 00160 0. 64487 0. 64568 0. 64660 0. 64613 0. 64590 0. 64671 0. 64674 0. 64386 a=0. 00250 0. 66832 0. 66913 0. 66960 0. 66955 0. 66921 0. 67013 0. 67019 0. 66708 a=0. 00340 0. 69176 0. 69257 0. 69260 0. 69297 0. 69251 0. 69355 0. 69363 0. 69029 a=0_00563 0. 74986 0. 75066 0. 74960 0. 75099 0. 75024 0. 75159 0. 75173 0. 74780 乂80 476. 5 460 501. 5 496 474. 5 476 466 468 ^70 405 399. 5 408. 5 411. 5 408 407. 5 398. 5 395. 5 λ5 353. 5 349. 5 354 353. 5 355. 5 355 351. 5 352. 5 stereotype test 0 -49- 156904. Doc 201206856 [Table 16] Example 114 115 116 117 118 119 Si02 40. 796 40. 796 40. 796 37. 796 37. 796 37. 796 Ti32〇5 Nb2〇5 16. 341 16. 341 16. 341 16. 341 16. 341 16. 341 Na20 16. 659 19. 659 18. 385 19. 659 16. 659 16. 659 BaO Ti02 6. 962 6. 962 6. 962 6. 962 6. 962 6. 962 Bi203 W03 Li20 12. 129 9. 129 12. 129 12. 129 15. 129 12. 129 K20 p2〇5 B2O3 Ge〇2 MgO CaO SrO ZnO 1. 726 1. 726 1. 726 1. 726 4. 726 Te02 ai2o3 Zr02 5. 381 5. 381 5. 381 5. 381 5. 381 5. 381 Sb〗 〇 3 0. 006 0. 006 0. 006 0. 006 0. 006 0. 006 Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 Nb2〇5+Ta2〇5+Na20+BaO 33. 000 36. 000 34. 726 36. 000 33. 000 33. 000 (Nb2〇5+Ta2〇5+Na20+BaO)/ (Ti02+Bi203+W03) 4. 740 5. 171 4. 988 5. 171 4. 740 4. 740 Li20+Na20 +K2O+CS2O 28. 788 28. 788 30. 514 31. 788 31. 788 28. 788 Ta205/(Li20+Na20) 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 Si〇2+P2〇5+B2〇3+Ge〇2 40. 796 40. 796 40. 796 37. 796 37. 796 37. 796 MgO+CaO+SrO +BaO+ZnO 1. 726 1. 726 0. 000 1. 726 1. 726 4. 726 Y2〇3+La2〇3+Gd2〇3 +Yb2〇3+Lu2〇3 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 nd 1. 8381 1. 8311 1. 8309 1. 8348 1. 8484 1. 8473 vd 25. 7 25. 7 25. 9 25. 9 25. 7 25. 6 0g ’ F 0. 60759 0. 60661 0. 60741 0. 60658 0. 60763 0. 60852 intercept b a=0. 00160 0. 64871 0. 64773 0. 64885 0. 64802 0. 64875 0. 64948 a=0. 00250 0. 67184 0. 67086 0. 67216 0. 67133 0. 67188 0. 67252 a=0. 00340 0. 69497 0. 69399 0. 69547 0. 69464 0. 69501 0. 69556 a=0. 00563 0. 75228 0. 75130 0. 75323 0. 75239 0. 75232 0. 75265 into 80 λ70 408 403. 5 402 411. 5 411. 5 409 λ5 355. 5 355 354 353. 5 353. 5 355 -50- 156904. Doc 201206856 As shown in Table 1 to Table 16, the partial dispersion ratio (0g 'F) of the optical glass system Vd$25 of the embodiment of the present invention is (-〇. 〇〇563xvd+0. 75573) Below, more detailed (-〇. 〇〇563xvd+0. 75001) below. Also, the partial dispersion ratio (eg, F) of Vd > 25 is (-0. 00340xVd+0. 70000) below, more detailed (-0. 00340xvd+0. 69844) Below. On the other hand, the partial dispersion ratio (eg, F) of the optical glass system vd$25 of the embodiment of the present invention is (_0 〇〇 16 〇χ vd + 0. 63460) Above, more detailed is (_〇. 0〇16〇XVd+〇 64571) above. Also, the partial dispersion ratio (0g, F) of 'vd> 25 is (_〇 〇〇25〇XVd+〇 6471〇) or more' in more detail (-0. 00250xvd+0. 66708) Above. Therefore, it can be seen that the partial dispersion ratios (eg, F) are within the desired range. On the other hand, the comparative example of the present invention (No. i) The glass, although Vd>25, has a partial dispersion ratio (9g, F) exceeding (_0. 0034〇XVd+0 70000). Further, a comparative example of the present invention (^〇. 2) Although the glass is ^$25, the partial dispersion ratio (0 each, 〇 exceeds (-0. 0〇563xVd+〇. According to &, it is understood that the optical glass of the embodiment of the present invention has a smaller central dispersion ratio (0g, F) in the relationship of the Abbe number (6) than the glass of the comparative example. Further, an embodiment of the present invention <The refractive index of optical glass (6) is! η or more' is more specifically h83 or more, and the refractive index (nd) is 2.20 or less, and more specifically 1.92 or less, which is within a desired range. Further, the Abbe's number (6) of the optical glass according to the embodiment of the present invention is (4) more than the thickness of 23, and the Abbe number (vd) is 30 or less, and more preferably 27 or less, as expected. Within the scope. The optical glass has a refractive index (nd) and a transmittance to visible light. Therefore, it is understood that the Abbe number (vd) of the embodiment of the present invention is within a desired range, 156904.doc • 51-201206856 high' and The reduction in color difference is effective. Further, the optical glass of the embodiment of the present invention does not cause both devitrification and opalescence before and after the reheat test (^). Therefore, it is understood that the optical glass of the embodiment of the present invention is less likely to cause devitrification or opalescence caused by reheating, and therefore it is presumed to have high press formability. The present invention has been described in detail with reference to the embodiments of the present invention, and it is understood that the present invention is intended to be illustrative only, and various modifications may be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a partial dispersion ratio (0g, F) represented by orthogonal coordinates of the vertical axis and an Abbe number (vd) represented by a normal line indicated by orthogonal coordinates of the horizontal axis. Fig. 2 is a graph showing the relationship between the partial dispersion ratio (0g, F) and the Abbe number (Vd) of the glass of the embodiment of the present application. 156904.doc -52·

Claims (1)

201206856 七、申請專利範圍: 1. 一種光學玻璃,其含有Si〇2成分,以及選自由Ta205成 分、Nb>2〇5成分、Na2〇成分及BaO成分所組成之群中之1 種以上,且部分色散比(0g ’ F)與阿貝數(Vd)之間於 vdS25 之範圍内滿足(-〇.〇〇16〇xvd+〇.6346〇)$(0g, (-0.005 63xvd+0.75 573)之關係,於vd>25之範圍内滿足 (-〇.〇〇25〇xvd+〇.6571〇)g(0g ’ F)$(-〇.〇〇34〇xvd+0.7〇〇〇〇) 之關係。 2 _如請求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計含有60.0%以下之si〇2成分及 25.0%以下之Ta2〇5成分。 3. 如請求項1之光學玻璃,其相對於氡化物換算組成之玻 璃全物質量,以莫耳%計含有20,0〜60.0%之Si〇2成分及 2.15〜25.0%之丁&2〇5成分。 4. 如請求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計含有2〇〇〜6〇〇%之si〇2成分, 且選自由Ta205成分、Nb205成分' Na2〇成分及Ba〇成分 所組成之群中之1種以上之含量之和為2〇 〇%以 上 50.0% 以下。 5. 如請求項4之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計含有: 0〜25.〇%iTa2〇5成分及/或 0〜3〇.0%iNb2〇5成分及/或 〇〜3〇.〇%2Na2〇成分及/或 156904.doc 201206856 〇〜30.0%之BaO成分:。 6_如請求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%進而含有: 〇〜30.0%之Nb205成分及/或 〇〜20.0%之Ti〇2成分及/或 〇〜10.0%之Bi203成分及/或 〇〜10.0%之W03成分。 7·如請求項6之光學玻璃,其中氧化物換算組成之莫耳比 (Nb2〇5+Ta2〇5)/(Ti〇2+Bi2〇3 + w〇3);^^2.50。 8.如請求項6之光學玻璃,其中氧化物換算組成之莫耳比 (Nb2〇5+Ta2〇5+Na2〇+Ba〇)/(Ti〇2+Bi2〇3+w〇3)為 3 % 以上 5 0.0 〇以下。 9 ·如叫求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計進而含有: 〇〜30.0%之Li20成分及/或 〇〜3〇_〇%之Na20成分及/或 〇〜20.0%之K20成分及/或 〇〜10.0°/。之 Cs20成分。 1〇·如請求項9之光學玻璃,其中RhO成分(式中,Rn為選自 由Li、Na、K及Cs所組成之群中之丨種以上)之含量之和 相對於氧化物換算組成之玻璃全物質量為1〇 〇%以上 50.0%以下。 11.如請求項1之光學玻璃,其中氧化物換算組成之莫耳比 Ta205/(Li2〇+Na20)為 0.010 以上 〇 5〇〇以下。 156904.doc 201206856 12. 13. 14. 15. 16. 如請求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計進而含有: 0〜15.0%之MgO成分及/或 0〜20.0%之CaO成分及/或 0〜20.0%之SrO成分及/或 0〜30.0%之BaO成分及/或 0〜30.0%之ZnO成分。 如請求項12之光學玻璃,其中R0成分(式中,汉為選自由 Mg、Ca、Sr、Ba、Zn所組成之群中之!種以上)之含量之 和相對於氧化物換算組成之玻璃全物質量為3〇 〇%以 下。 如請求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計進而含有: 0〜20.0%之!>2〇5成分及/或 〇〜3〇.〇%之32〇3成分及/或 0〜20.0%之Ge02成分。 士凊求項1之光學玻璃,其令相對於氧化物換算組成之 玻璃全物質量之和(以〇2+1>2〇5+32〇3+(^〇2)為2〇 〇%以上 60·0%以下。 如吻求項1之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計進而含有: 0〜3〇.〇°/❶之Υ2〇3成分及/或 0〜30.0%之La2〇3成分及/或 〇〜30.0%之Gd2〇3成分及/或 156904.doc 201206856 0〜20.0%之Yb203成分及/或 0〜10.0%之Lu203成分》 17. 士凊求項16之光學玻璃,其中[“Ο3成分(式中,&為選 自由Y、La、Gd、Yb及Lu所組成之群中種以上)之含 量之和相對於氧化物換算組成之破璃全物質量為3〇 〇% 以下》 18. 如請求項丨之光學玻璃,其相對於氧化物換算組成之玻 璃全物質量,以莫耳%計進而含有: 0〜30.0%之Te02成分及/或 0〜20.0%之ai2o3成分及/或 〇〜20.0%之Ga203成分及/或 〇〜20.0%之in2〇3成分及/或 〇〜20.0%之Zr02成分及/或 〇〜1.0%之Sb203成分及/或 〇〜1.0%之Ce02成分。 19. 如請求項!之光學玻璃’其具有175以上2 〇〇以下之折射 率(nd) ’且具有2〇以上4〇以下之阿貝數(v〇。 20. 如請求項1之光學玻璃’其中表示7〇%之分光透射率之波 長(^>7。)為500 nm以下。 21. 如請求項1之光學玻璃’其於再加熱試驗(^ )前後不產生 失透及乳白, [再加熱試驗(4 ):對15 mm><15 mmx30 rnm之試片進 行再加熱’花費150分鐘自室溫升溫至較各試樣之轉移 溫度(Tg)高80。(:〜150。(:之溫度,於上述較光學玻璃之玻 156904.doc 201206856 璃轉移溫度(Tg)高8〇t〜15(TC之溫度下保溫30分鐘其 後自然冷卻至常溫,將試片之相對向之2面研磨為厚产 10 mm後,進行目視觀察]。 . 22. —種研磨加工用及/或精密加壓成形用預成形體,其包含 如請求項1至21中任一項之光學玻璃。 23. —種光學元件,其係磨削及/或研磨如請求項1至21中任 一項之光學玻璃而成。 24. —種光學元件’其係對如請求項1至21中任一項之光學 玻璃精密進行加壓成形而成。 156904.doc201206856 VII. Patent application scope: 1. An optical glass containing a Si〇2 component and one or more selected from the group consisting of Ta205 component, Nb>2〇5 component, Na2〇 component, and BaO component, and The partial dispersion ratio (0g 'F) and the Abbe number (Vd) satisfy (-〇.〇〇16〇xvd+〇.6346〇)$(0g, (-0.005 63xvd+0.75 573) in the range of vdS25. The relationship satisfies the relationship of (-〇.〇〇25〇xvd+〇.6571〇)g(0g 'F)$(-〇.〇〇34〇xvd+0.7〇〇〇〇) within the range of vd>25. (2) The optical glass of claim 1, which contains 60.0% or less of the Si〇2 component and 25.0% or less of the Ta2〇5 component in terms of mol% of the total glass mass of the oxide conversion composition. The optical glass of claim 1 which contains 20,0 to 60.0% of the Si〇2 component and 2.15 to 25.0% of the D&2〇5 component in terms of mol% of the total glass composition of the composition of the telluride. 4. The optical glass of claim 1, which contains 2 〇〇 to 6 〇〇% of the Si 〇 2 component in terms of mol% of the glass composition of the oxide conversion composition, and is selected The sum of the content of one or more of the group consisting of the free Ta205 component and the Nb205 component 'Na2〇 component and the Ba〇 component is 2% by mass or more and 50.0% or less. 5. The optical glass of claim 4 is relative to The total mass of the glass in terms of oxide conversion, in terms of mole %, contains: 0~25.〇%iTa2〇5 component and/or 0~3〇.0%iNb2〇5 component and/or 〇~3〇.〇 %2Na2〇 component and/or 156904.doc 201206856 〇~30.0% of BaO component: 6_ The optical glass of claim 1 which contains the molar mass of the glass in terms of oxide composition, and further contains: 〇30.0% of the Nb205 component and/or 〇20.0% of the Ti〇2 component and/or 〇10.0% of the Bi203 component and/or the 〇10.0% of the W03 component. 7. The optical glass of claim 6 The molar ratio (Nb2〇5+Ta2〇5)/(Ti〇2+Bi2〇3 + w〇3); ^^2.50. 8. The optical glass of claim 6, wherein the oxide The molar ratio (Nb2〇5+Ta2〇5+Na2〇+Ba〇)/(Ti〇2+Bi2〇3+w〇3) of the converted composition is 3% or more and 5 0.0 〇 or less. Optical glass of 1 The total mass of the glass in the oxide-converted composition further includes: 5% to 30.0% of the Li20 component and/or 〇3 to 〇% of the Na20 component and/or 〇20.0% of the K20 component. / or 〇 ~10.0 ° /. The Cs20 ingredient. The optical glass of claim 9, wherein the sum of the contents of the RhO component (wherein Rn is selected from the group consisting of Li, Na, K, and Cs) is equivalent to the oxide conversion composition. The total mass of the glass is 1% or more and 50.0% or less. 11. The optical glass of claim 1, wherein the molar ratio of the molar composition Ta205/(Li2〇+Na20) is 0.010 or more and 〇5〇〇 or less. 156904.doc 201206856 12. 13. 14. 15. 16. The optical glass of claim 1 which, in relation to the oxide-converted composition of the total mass of the glass, further comprises: 0 to 15.0% of the MgO component. And/or 0 to 20.0% of the CaO component and/or 0 to 20.0% of the SrO component and/or 0 to 30.0% of the BaO component and/or 0 to 30.0% of the ZnO component. The optical glass of claim 12, wherein the sum of the contents of the R0 component (wherein Han is selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is relative to the oxide-converted glass. The whole product quality is below 3〇〇%. The optical glass of claim 1 which further comprises, in mol%, of the total mass of the glass in terms of oxide conversion: 0 to 20.0%! > 2〇5 component and/or 〇~3〇.〇 % of 32 〇 3 components and / or 0 to 20.0% of Ge02 components. The optical glass of the item 1 is obtained by the sum of the total mass of the glass (for 〇2+1>2〇5+32〇3+(^〇2) with respect to the composition of the oxide (2〇% or more) 60% or less. For example, the optical glass of Kiss 1 has a glass mass of the composition of the oxide, and further contains, in terms of mole %, 0:3 〇.〇°/❶之Υ2〇3 component And/or 0 to 30.0% of La2〇3 component and/or 〇30.0% of Gd2〇3 component and/or 156904.doc 201206856 0~20.0% of Yb203 component and/or 0~10.0% of Lu203 component” 17 The optical glass of the item 16, wherein [the composition of the Ο3 component (where & is selected from the group consisting of Y, La, Gd, Yb, and Lu) is relative to the oxide. The quality of the whole glass of the composition is 3% or less. 18. The optical glass of the claim ,, which is based on the total mass of the glass in terms of oxide conversion, further contains: 0 to 30.0% Te02 component and/or 0~20.0% ai2o3 component and/or 〇20.0% Ga203 component and/or 〇20.0% in2〇3 component and/or 〇20.0% Zr02 component and/or 〇 1.0% of the Sb203 component and/or 1.01.0% of the Ce02 component. 19. The optical glass of the claim item has a refractive index (nd) of 175 or more and 2 Å or less and has 2 or more and 4 or less. Abbe number (v〇. 20. The optical glass of claim 1 wherein the wavelength of the spectral transmittance of 7〇% (^>7.) is 500 nm or less. 21. The optical glass of claim 1 It did not produce devitrification and opalescence before and after the reheating test (^), [reheating test (4): reheating the test piece of 15 mm><15 mm x 30 rnm' took 150 minutes to warm up from room temperature to each test The transfer temperature (Tg) is as high as 80. (: ~150. (: The temperature, in the above-mentioned optical glass 156904.doc 201206856 glass transfer temperature (Tg) high 8〇t~15 (temperature at TC 30 After that, it was naturally cooled to normal temperature, and the opposite sides of the test piece were polished to a thickness of 10 mm, and then visually observed. 22. 22. A preform for polishing processing and/or precision press molding, It comprises the optical glass of any one of claims 1 to 21. 23. An optical component that is ground and/or An optical glass as polished request from any one of 1 to 24. 21 - such an optical element 'which is based on the requested item as a pressure to the optical glass for precision molding according to any one of 21 made. 156904.doc
TW100121096A 2010-06-23 2011-06-16 Optical glass, preform and optical element TW201206856A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010143083 2010-06-23
JP2010143084 2010-06-23
JP2011053500 2011-03-10
JP2011112701A JP5721534B2 (en) 2010-06-23 2011-05-19 Optical glass, preform and optical element
JP2011112692A JP5706231B2 (en) 2010-06-23 2011-05-19 Optical glass, preform and optical element

Publications (1)

Publication Number Publication Date
TW201206856A true TW201206856A (en) 2012-02-16

Family

ID=46762055

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121096A TW201206856A (en) 2010-06-23 2011-06-16 Optical glass, preform and optical element

Country Status (1)

Country Link
TW (1) TW201206856A (en)

Similar Documents

Publication Publication Date Title
JP6014301B2 (en) Optical glass, preform and optical element
TW201236993A (en) Optical glass, preform, and optical element
JP5721534B2 (en) Optical glass, preform and optical element
TW201223907A (en) Optical glass, preform material, and optical element
TWI789340B (en) Optical glass, preforms and optical components
TW201219333A (en) having a refractivity (nd) greater than 1.80 and an Abbe number (vd) ranging from 35 to 50
TWI612019B (en) Optical glass, preforms and optical components
TW201702203A (en) Optical glass, optical element and the preform
TW201245078A (en) Optical glass, preform, and optical element
WO2016067921A1 (en) Optical glass, preform and optical element
JP7126379B2 (en) Optical glass, preforms and optical elements
JP2011093731A (en) Optical glass, preform, and optical element
TW201139319A (en) Optical glass, preform and optical element
JP7226927B2 (en) Glasses, optical glasses and optical elements
JP2015193516A (en) optical glass, preform and optical element
JP2011195369A (en) Optical glass, optical element, and preform
JP2023017903A (en) Optical glass and optical element
WO2010119557A1 (en) Optical glass
JP5706231B2 (en) Optical glass, preform and optical element
TW202246193A (en) Optical glass, preform, and optical element
JP2011195370A (en) Optical glass, optical element, and preform
JP2016074566A (en) Optical glass, lens preform and optical element
JP2015164885A (en) optical glass, lens preform and optical element
JP2017088484A (en) Optical glass, preform and optical element
JP2017088485A (en) Optical glass, preform and optical element