TW201200544A - Process for the production of a superabsorbent polymer - Google Patents

Process for the production of a superabsorbent polymer Download PDF

Info

Publication number
TW201200544A
TW201200544A TW99121202A TW99121202A TW201200544A TW 201200544 A TW201200544 A TW 201200544A TW 99121202 A TW99121202 A TW 99121202A TW 99121202 A TW99121202 A TW 99121202A TW 201200544 A TW201200544 A TW 201200544A
Authority
TW
Taiwan
Prior art keywords
water
resin
superabsorbent resin
absorption
aul
Prior art date
Application number
TW99121202A
Other languages
Chinese (zh)
Other versions
TWI473844B (en
Inventor
Kai-Yao Shih
Cheng-Chang Wu
Zhong-Yi Chen
Hong-Tsung Chung
Chih-Shian Yu
Cheng-Lin Lee
Original Assignee
Formosa Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Plastics Corp filed Critical Formosa Plastics Corp
Priority to TW99121202A priority Critical patent/TWI473844B/en
Publication of TW201200544A publication Critical patent/TW201200544A/en
Application granted granted Critical
Publication of TWI473844B publication Critical patent/TWI473844B/en

Links

Abstract

A method is described herein to produce superabsorbent polymer with good absorption properties and delay free absorption. The characteristic of this novel method involved coating of some water soluble material on surface of superabsorbent polymer to improve delay water absorption of the superabsorbent polymer.

Description

201200544 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種對水溶液吸收良好的吸水物,稱為高吸水 性樹脂,此高吸水性樹脂具有強大的保水力,可吸收百倍甚至於 千倍於本身重量的水,吸水後膨潤具有保持不流動的狀態;即使 施加壓力也不會滲漏,且被吸收的水在大氣中可緩緩地釋出。目 前此高吸水性樹脂廣泛地被運用於農業或園藝方面的水保持劑、 鲁建築材料中的抗露珠凝結劑、移除石油中之水份的材料或電纜線 中的外層防水包覆劑以及衛生用品如,尿布、婦女衛生用品、拋 棄式的擦巾等。 上述向吸水性樹脂,由於會直接與人體接觸,所以其安全性 婕付十分重要。一般而言,高吸水性樹脂須具備的物理性質包括 吸收速率、吸收力、壓力下吸收倍率、低單體殘留量以及吸收後 _的凝膠力。優㈣高吸水性觸不僅要有滿足上述的物理性質, 具備良好的安全性,更重要的是必須低汙染以及省能。 【先前技術】 目則已知製造高吸水性樹脂的成分材料有遇水分解型的澱 粕丙歸腈(hydrolyzed starchacrylonitrile)接枝聚合物(日 2利公開公報昭49⑽仏43, 395),中和之麟-丙稀酸接枝 $合物(日本專利公開公報昭51 〇976)_125,468),4化乙稀醋 酉夂丙烯酉曰共聚物(日本專利公開公報日召即哪),水 解丙稀腈共聚物或丙烯酿胺共聚物(日本專利公報昭53 201200544 (1978)-15, 959) ’及部份中和聚丙埽酸(日本專利公開公告昭 b5(198G)-84,3G4)等。其中澱粉-丙烯腈接枝聚合物的製造原料 中,因為含有;殿粉而容易引起分解,無法長時間的保存,再者其 製造方法亦十分複雜,所以現今高吸水性樹脂之一般製備方式多 以使用含酸基單體之丙烯酸及/或丙烯酸鹽與Na〇H中和進行交聯 聚合反應製造高吸水性樹脂佔最大部份,其主因為丙烯酸鹽共聚 物的原料-丙烯酸可迅速由工業化大量生產,且製得的高吸水性 樹脂具有很高的吸水能力’及具有製造成本低廉且最具經濟效益 以及較不會引起腐爛性的分解,故成為本項技術領域中最為普遍 化的高吸水性樹脂。 【發明擬解決的課題】 但上述向吸水性樹脂尚存在著一個嚴重的問題,當高吸水性 樹脂吸收流體時,會因吸收速度過快而使流體無法·傳遞至其 他尚未吸收流體之高吸水性樹脂,而無法完整呈現高吸水性樹脂 之優越吸收能力。 為解決此一問題已有國際專利w〇91/〇4361公開一解決方 案’係將乙基纖維素混合有機溶劑,並於加熱狀態下添加於高吸 水性樹脂進行聚合反應’生成一可於吸收時使流體傳遞較流暢, 具有吸收遲緩之高吸水性雛,但細究其製造流程及結果,發現 此外、加方案疋藉有機溶劑喷灑並進行熱處理,對大型工業化之 生產恐有引發火災之危機’颇添加之麟素對S吸水性樹脂之 長期保存恐有易分解之疑慮;此外亦有中國專利CN咖加从 201200544 但因為利用水溶 :_水溶液添加於高吸水性樹脂後再進行 、、— 〃有吸魏之高财性樹脂, 液噴麗至高财性樹脂麵 丨 岛工藝及研磨篩選,方可得 之能源耗損及經濟效益較 預』成οσ,此法對高吸水性樹脂生產, 為不利。 【解決課題之技術手段】201200544 VI. Description of the Invention: [Technical Field] The present invention relates to a water absorbing material which is well absorbed in an aqueous solution, and is called a super absorbent resin. The superabsorbent resin has a strong water retention capacity and can absorb 100 times or even thousands. Water that is twice its own weight, swells after water absorption and maintains a state of no flow; even if pressure is applied, it does not leak, and the absorbed water can be slowly released in the atmosphere. At present, this superabsorbent resin is widely used in water retaining agents for agriculture or horticulture, anti-dew beading agents in building materials, materials for removing moisture from petroleum or outer layer waterproofing agents in cable. Hygiene products such as diapers, feminine hygiene products, disposable wipes, and the like. Since the above-mentioned water-absorbent resin is directly in contact with the human body, its safety is very important. In general, the physical properties of the superabsorbent resin include absorption rate, absorption, absorption under pressure, low monomer residual, and gel strength after absorption. Excellent (4) Highly water-absorptive touch must not only meet the above physical properties, but also have good safety and, more importantly, must have low pollution and energy saving. [Prior Art] It is known that a component material for producing a super absorbent resin is a hydrolyzed starch acrylonitrile graft polymer which is hydrolyzable (Japanese Patent Publication No. Sho 49(10) 仏 43, 395), Hezhilin-acrylic acid grafting compound (Japanese Patent Laid-Open Publication No. Sho 51 〇 976) _125, 468), 4-ethylene acetonitrile hydrazine propylene hydride copolymer (Japanese Patent Gazette) Hydrolyzed acrylonitrile copolymer or acrylamide copolymer (Japanese Patent Publication No. Sho 53 201200544 (1978)-15, 959) 'and partially neutralized polyacrylic acid (Japanese Patent Publication No. b5(198G)-84, 3G4 )Wait. Among them, the raw material for the production of the starch-acrylonitrile graft polymer is easy to cause decomposition due to the inclusion of the powder, and cannot be stored for a long time, and the manufacturing method thereof is also very complicated, so that the general preparation method of the super absorbent resin is nowadays. The use of acrylic acid and/or acrylate containing acid group-containing monomers to neutralize Na〇H for cross-linking polymerization to produce superabsorbent resin accounts for the largest part, mainly because of the raw material of acrylate copolymer - acrylic acid can be quickly industrialized It is the most common high in the technical field, and it is produced in large quantities, and the obtained super absorbent resin has high water absorption capacity' and has low production cost and most economical efficiency and less decomposition. Water-absorbent resin. [Problems to be Solved by the Invention] However, there is still a serious problem in the above-mentioned water-absorbent resin. When the superabsorbent resin absorbs a fluid, the fluid can not be transferred to other highly absorbed waters due to the excessively fast absorption speed. The resin does not fully exhibit the superior absorption capacity of the superabsorbent resin. In order to solve this problem, the international patent WO 〇 91 / 〇 4361 discloses a solution of "ethyl cellulose mixed with an organic solvent and added to a superabsorbent resin under heating to carry out a polymerization reaction" to form an absorbable At the same time, the fluid transfer is smoother, and the water-absorbent chicks with slow absorption are absorbed. However, the manufacturing process and results are carefully studied. It is found that the addition of the solution and the organic solvent spraying and heat treatment may cause a fire crisis for the production of large-scale industrialization. 'The addition of lysin may have doubts about the long-term preservation of S water-absorbent resin; there are also Chinese patents CN Caga from 201200544 but because of the use of water-soluble: _ aqueous solution added to superabsorbent resin, then - 〃 吸 魏 之 之 之 之 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏unfavorable. [Technical means to solve the problem]

為,軸,經由本發狗繩職複雜試驗 =將以具水溶性之熱塑性樹脂塗覆於高吸水性樹脂後q 有糊㈣㈣邮_旨,键嶽水性樹 月曰減緩吸收速度之預期功效。 本發明的目 脂及其製造方法。 的係提供-種具有優良吸收能力之高吸水性樹 本發明再-個目的係提供一種將水溶性熱可塑性樹脂塗覆 於高吸水性樹脂表層以延續自由吸收速度之製造方法。 依照本發明,前述水溶性熱可塑性樹脂塗覆處理可於高吸 水_脂之絲交觀職程段直接啸織料方式進行,並不 需再額外增添儀器設備或能源即可完成。其使用之塗覆材料係選 自聚乙二醇或聚乙_,·財,聚乙二醇之分子量在 之間’最佳好量為〗_〜_,时子量小於麵之聚乙 為腊狀半_或液體,若·梅加時,其分·較差·分子量 moo以上者其水溶性較低,會使塗覆後之高吸水性樹脂於單位^ 間内之吸收表現較差,故不利於增進經濟償值,因此聚乙二醇最 201200544 佳分子量為1000〜8000。聚乙烯醇則可選自分子量為3〇〇〜2〇〇〇, 最佳分子量為300〜1〇〇〇,因分子量小於3〇〇之聚乙烯醇亦為半固 體或液體’若以固相添加,其分散性較差;分子量2〇〇〇以上之聚 乙烯醇因其水溶性較低,使塗覆後之高吸水性樹脂於單位時間内 之吸收表現較差,故不利於增進經濟價值。本發明之自由吸水性 之計時(在短時間内,即約一分鐘或比一分鐘更長時間的自由吸水 性)是指延遲減小或變慢的吸收性,與一般高吸水性樹脂吸水直至 不能吸收不同,後者通常為3〜5分鐘。 用之於本發明之聚乙烯醇醇解度為6〇m〇1%〜9〇% m〇1%,醇解 度80 mol%~89 mol%為最佳,因醇解度是代表其相對應之聚乙烯醇 水溶性,若醇解度大於9〇 m〇1%或小於6〇 m〇1%時,對水之溶解性 在單位時_之表赌低且慢,導雌覆後之高吸水性樹脂於單 位時間内之吸收表現較差而影響其經濟價值,前述醇解度係指在 生產聚乙烯醇之過程中,起始原料乙烯醋酸酯經聚合反應製得之 聚乙烯醋酸酯,再經水解後製得之聚乙烯醇,其水解程度即稱為 醇解度。 【發明内容】 代表丙稀酸聚合物的親水性_,在魏水蝴脂聚合物鍵 上多具有親水性官能基團如酸基、醯胺基、氨絲雜基等,而 本發明之親水性樹脂是包含:聚丙烯酸或其經中和後含链、納、鉀 等驗金屬陽離子鹽類或銨鹽以及前述兩者之聚合物之魏,而前 述中和後之丙稀酸之中和率(即丙烯酸料中和成為丙稀酸鹽)為 201200544 30〜70mol%範圍,此外亦可由前述兩者與水溶性或是水不溶性之 單體共聚喊’此水雜或:^雜單體可為甲基㊉騎、馬來酸、 虽馬酸、巴㈣、衣康酸、乙烯基雜、2_(f)丙烯酿胺氨基_2_ 甲基丙烧顧、(甲基)丙觸氧基舰烴續酸、以及關的驗金屬 陽離子鹽類或敍鹽等’此外尚冑N_乙烯基乙醯胺、(甲基)丙稀醯 胺、Ν,Ν-二甲基丙烯醯胺等單體。 當本發明使用前述丙稀酸以外之單體時,其用量為丙稀酸總 量之50%或更少量’較佳為3〇%以下,而最佳之制劑量為不超 過丙烯酸單體之1〇〇/0。 本电顚之於製造尚吸水性翻旨之不飽和單體,主要為丙稀 酸或其鹽類之-種或兩種以上之混合,但基於機能及物理性質上 之考量,其丙烯酸之中和率範圍較佳為50〜95 mol%,最佳為60〜80 之間;而中和生成丙烯酸鹽類之鹽為鹼金屬鹽或銨鹽,較佳 為鋰或納鹽。 -般公知製造财性職都在進行自由絲合反應前先添 加自由基聚合反應交聯劑於未反應單體溶液中進行自由基反應, 此自由基聚合反應交聯劑可顧具有兩個或兩個以上不飽和雙鍵 的化合物,如:N,N,·雙(2_丙縣)胺、N,N,-次曱基雙丙_胺、 -人甲基雙曱基丙稀醯胺、丙烯酸丙稀酿、乙二醇二丙稀酸 酯、聚乙二醇二丙埽酸醋、乙二醇二甲基丙烯酸酿、聚乙二醇二 曱基丙稀咖、甘油三丙烯酸、甘油三曱基丙稀義、甘油附 长氧乙烷之二丙烯酸酯或三曱基丙烯酸酯、三曱醇丙烷附加環 201200544 氧乙烷之二丙烯酸酯或三甲基丙烯酸酯、三曱醇丙烷三曱基丙烯 酸酯、二曱醇丙烷三丙烯酸酯、N,N,N-三(2-丙烯基)胺、二丙烯酸 乙二醇酯、三丙烯酸聚氧乙烯甘油酯、三丙烯酸二乙基聚氧乙烯 甘油酯、二丙烯三甘醇酯等;亦可選自具有兩個或兩個以上環氧 基的化合物,如:山梨醇聚縮水甘油醚、聚丙三醇聚縮水甘油醚、 乙二醇二縮水甘油醚、二乙二醇二縮水甘油醚、聚乙二醇二縮水 甘油醚、雙丙三醇聚縮水甘油醚等。 此自由基聚合反應交聯劑在進行自由基反應後就可使高吸 水性樹脂具有適當交聯度,及適當的加工性。 自由基聚合反應交聯劑可單獨使用或兩種以上混合使用。其 適當的添加劑量在重量百分比_^%至5wt%之間(以反應物總 固形份為基準),更適當的重量百分比為讀感至3wt%之間。添 加劑量在重量百分比O.GGlwt%町,聚合後之水合體太軟且有黏 性不利機械加工,添加劑量在重量百分比5wt%以上時吸水性太 低’降低高吸水性樹脂之性能。 聚合反應,由自由基聚合反應起始劑的分解產生自由基開 始。自由基起始劑可選用熱分解型起始劑,適合的熱分解型起始 劑有過氧化物,如:過氧化氫、二_第三丁基過氧化物、過氧化酿 胺或過硫酸鹽(敍鹽、驗金屬鹽)等;及偶氮化合物如:2·2,-偶氮 基雙(2-脒基丙烧)二鹽酸鹽、22,_偶氮基雙π,Ν—二伸曱基異丁脒) 二鹽酸鹽;亦可使㈣原軸為氧化還原型的起始劑,如:酸性 亞硫酸鹽、硫代硫酸鹽、抗壞血酸或亞鐵鹽;或將氧化還原型起 201200544 始劑和熱分解型起始劑合併混合使用。魏,先以氧化還原起始 劑進行反應產生自由基,使自由基轉移至單體上引發聚合反應的 進行由於t合反應進行時會釋放出大量的熱量而使溫度升高, 俟其溫度到達熱分解型起始劑的分解溫度時,又會再引發第二階 段熱分解型起始劑的分解,使整個聚合反應更臻於完全。 一般自由基聚合反應起始劑之適當用量的重量百分比為 O.OOlwt%至i〇wt〇/0(以中和丙烯酸鹽重量為基準),更適當用量則在 • O.lwt%至5wt〇/。之間,使用重量百分比〇.〇〇lwt%以下時,反應太 慢不利經濟效益,使用重量百分比10wt%以上時,反應太快反應 熱不易控制。 聚合反應可於傳統批次反應容器中,或於輸送帶式反應器上 進仃,反應所得之高吸水性樹脂,先利用絞碎機切成直徑2 〇〇mm 以下小凝膠體,再進行篩選。篩選固定粒徑之凝膠體直徑以2 〇〇 軸以下為宜’以0.05 mm至1.5〇 mm間較佳,粒徑大於2 〇〇麵 之喊膠體則重新送回絞碎機進行再次切碎。 粒徑0.05mm以下之凝膠體進行烘乾、粉碎處理,易提高產 生成品細粉量,粒徑2.00mm以上之凝膠體進行烘乾時,容易因為 熱傳導效果不佳’導致成品殘存單體偏高’物性表現不佳之缺點。 丙烯酸鹽凝膠體的顆粒大小分佈越集中,不僅可使凝膠體在 烘乾後之物性表現達到最錄態,且有觀控制烘乾的時間及溫 度。 凝膠體烘乾溫度以攝氏1〇〇。(:至18(rc進行烘乾為宜,若烘 201200544 乾溫度於100°C以下,烘乾時間太久不具經濟效益,若以18〇艽以 上烘乾’減交聯敏早進行交聯反應使得後續的絲過程,因 交聯度過高而無法有效的去除殘存單體達到降低殘存單體之效 果0 乾燥後進行粉碎、筛選固定粒徑,筛選固定粒徑以006_ 至1.00mm間為宜’以0.10mm至〇 85〇rnm間較佳,粒徑〇 〇6軸 以下細粉使^粉塵提高’粒徑丨G()mm以上粒子彳植品吸水速率 變慢,篩選固定粒徑後,再進行表面交聯劑塗覆處理。 高吸水性樹脂為不溶解之親水性聚合體,樹脂内部具有均勻 f生的术橋、構’ ^為了改善品質如:提高吸收速率、提高膠體強 度、提高抗結塊性、液體渗透性_會在麟的表面再作進一步 架橋’此種表面交聯處理即利用具有能與酸基反應之多官能基交 聯劑的’在此之前已有許多專利被揭露公開,如:分散高吸水性 樹脂與交聯劑於有機溶劑中進行表面交聯處理(曰本專利 JP-A-56-131608、JP-A-57-44627、JP-A-58-42602、JP-A58-117222 ), 使用無機粉直接將交聯劑與交聯航液混人高吸水性樹脂處理 (曰本專利jp_A6〇_163956、A ^ 丨4),添加交聯劑後以蒸 氣處理(日本專利jp_A_M134〇6),使用有機溶劑、水及多元醇 進行表面處理(日本專利、美國專利6346569號) 及使用有機溶液、水、醚(ether)化合物(日本專利Jp_A_2_1539〇3 ) 等,這些表面處理方法雖能提高吸收速率、提高壓力下吸水倍率, 但尚有造成簡力下降過多,及降低實際朗之性能的不良後果。 201200544 根據本發明’可於表面處理時能同時進行反應的交聯劑為多 一醇如.丙二醇、乙二醇、二乙二醇、三乙二醇、聚乙二醇、丙 -醇、1,4 丁二醇、三脛基甲基丙烷、山梨醇等;或多元胺如:乙 胺一乙一胺、二乙二胺、聚乙二胺丨或具有兩個或兩個以上 勺衣氧基化合物如:山梨醇聚縮水甘細、聚丙三醇聚縮水甘油 峻乙一醇一縮水甘油崎、二乙二醇二縮水甘油醚 、聚乙二醇二 縮K甘’綱、雙丙二醇聚縮水甘)蝴等;亦可使用碳酸亞烴醋如: 乙-醇私義、4·曱基_ι,3_二氧雜環姐_2_酮、4,5•二曱基],3_二 氧雜環狀·2,、4,4_二甲基·1,3_二氧雜環戊炫-2-酮、4-乙基-1,3_ -氡雜%戊烧·2-_、1,3_二氧雜環己烧_2_酮、4,6_二曱基_丨,3-二氧 雜環己院-2-鲷或1,3_二氧雜環庚垸·2_嗣等。 父聯劑的用法可單獨使用或兩種以上混合制。其適當添加 刮里在重里百分比G.GGlwt%j_ 1Qwt%之間(以反應物總固形份為 基準)’更適當的用量在〇 〇〇5wt%至5wt%之間。交聯齊丨添加劑量 在重量百分比_lwt%以下時無法顯出效果;交聯劑添加劑量在 重1百分比胸似场,吸水性太鱗鱗脂性能。於此添加 又聯劑階段,亦可同時添加聚乙燦醇,如Bp〇3、Bp〇4、腦5、 BP08(長春化ji產品)、聚乙稀醇_1788(上海美夢佳化工產品卜 PVA-l〇(無錫市金絲達貿易公司產品)、聚乙歸醇-⑽8(深圳市宏蠢 源化工產品)等或聚乙二醇如PEG1000、PEG1500、PEG2000、 PEG4000(東聯化工產品)等以進行表面塗覆處理其中之聚乙二醇 或聚乙稀狀適當添加㈣是在重量百分比α丨感至〗Qwt%之間 11 201200544 (以反應物總固形份為基準),更為適當的用量在〇swt%至lw· 間’添加劑量在重量百分比〇.lwt%JX下時無法顯出效果,添加劑 量在重量百分比1_%以上時,導致塗財理後之高吸水性樹脂 於單位時_之吸收魏較差不好,不紐濟效益。 高吸水性樹脂進行表面交聯劑塗覆之後,再以赃至2赃 $1圍内之孤度進行熱處理’使表面交聯劑及内部交聯劑能均句而 且快速的财父聯反應,而達到本發明之麵效果。熱處理溫度 90C以U反應時間太久不具轉效益,減理溫度2贼以 上樹脂易劣化影響品質。本發縣於欲獲得更好絲面處理效 果’可做熱處理溫度織’熱處理溫度高黯纽_短,熱處 理溫度低時’則熱處理溫度時間長,其熱處理時間以3〇分鐘至15〇 分鐘為宜。經歧理後即可獲得具有魏魏敎之高吸水性樹 脂。 士適用於本發明的熱處理裝置,包括:隨道式混合乾燥器、轉 鼓式乾燥n、臺式乾燥ϋ、流化床賴器、氣流式㈣器以及紅 外線乾燥器等。 本發明之保持力係使財國專利CN 1()1433733八所公開之 測量方法職’聽室溫下的環魏行麟,並㈣m兩次的平 均值為據’首先將大約0.2+/_0 005g的粒徑分布為3〇〇〜_卿之 Ϊ吸水性樹朗在—3x5英奴長方型茶袋中,餅食鹽水液面 门4 A刀之〇.9〇/0食鹽水中3〇分鐘隨後以離心直經為如公分, 轉速之離心機離心3分鐘,另外使用2個茶袋做為空白 201200544 後,接著以下式計算保持力: CRC = (W3-W2-W1)/W1 其中: CRC =浸泡30分鐘後的高吸水性樹脂保持力 Wl=高吸水性樹脂的起始重量 W2=離心後兩個空白平均重量(精秤至小數點後兩位數) W3=離心後測試茶袋之重量(精秤至小數點後兩位數)。For the shaft, the complex test of the dog rope is carried out. After the water-soluble thermoplastic resin is applied to the superabsorbent resin, the paste has a paste (4) (4), and the key effect of the absorption rate is slowed down. The resin of the present invention and a method for producing the same. A high water absorption tree having excellent absorption ability is provided. Another object of the present invention is to provide a production method in which a water-soluble thermoplastic resin is applied to a surface layer of a super absorbent resin to continue the free absorption speed. According to the present invention, the above-mentioned water-soluble thermoplastic resin coating treatment can be carried out by directly squeezing the woven fabric in the high-water-absorbent-filament-crossing stage, without additional equipment or energy. The coating material used is selected from the group consisting of polyethylene glycol or polyethylene glycol, and the molecular weight of the polyethylene glycol is between 'the best amount is 〗 _ _ _, the amount of time is less than the surface of the polyethylene Wax-like semi- or liquid, if it is a meggar, its fraction is poor. If the molecular weight is more than moo, its water solubility is lower, which makes the absorption of the superabsorbent resin after coating in the unit be poor, so it is disadvantageous. In order to improve economic compensation, the best molecular weight of polyethylene glycol is 201200544 is 1000~8000. The polyvinyl alcohol may be selected from a molecular weight of 3 〇〇 2 〇〇〇, and the optimum molecular weight is 300 〜 1 〇〇〇, and the polyvinyl alcohol having a molecular weight of less than 3 亦 is also semi-solid or liquid. The addition has a poor dispersibility; the polyvinyl alcohol having a molecular weight of 2 〇〇〇 or more has a low water solubility, so that the superabsorbent resin after coating has poor absorption performance per unit time, which is disadvantageous for enhancing economic value. The timing of the free water absorption of the present invention (free water absorption in a short time, that is, about one minute or longer than one minute) means absorption with a reduced or slower retardation, and absorbs water with a general superabsorbent resin until Can not absorb different, the latter usually 3 to 5 minutes. The degree of alcoholysis of the polyvinyl alcohol used in the present invention is 6〇m〇1%~9〇% m〇1%, and the degree of alcoholysis is 80 mol% to 89 mol%, because the degree of alcoholysis is representative of its phase. Corresponding polyvinyl alcohol is water-soluble. If the degree of alcoholysis is greater than 9〇m〇1% or less than 6〇m〇1%, the solubility in water is low and slow in the unit. The absorption performance of the water-absorbent resin per unit time is poor and affects its economic value. The aforementioned degree of alcoholysis refers to the polyvinyl acetate obtained by the polymerization of the starting material ethylene acetate in the process of producing polyvinyl alcohol. The degree of hydrolysis of the polyvinyl alcohol obtained by hydrolysis is called the degree of alcoholysis. SUMMARY OF THE INVENTION Represents the hydrophilicity of an acrylic acid polymer, and has a hydrophilic functional group such as an acid group, a mercaptoamine group, an amoxicilt group, etc. on the Weishuili polymer bond, and the hydrophilic resin of the present invention Is a polyacrylic acid or a neutralized metal chain salt or ammonium salt thereof, and a polymer of the foregoing two, and the neutralized ratio of the aforementioned neutralized acrylic acid ( That is, the acrylic acid material is neutralized to be acrylic acid salt) in the range of 30,000 to 70 mol% of 201200544, and it is also possible to copolymerize the above two with water-soluble or water-insoluble monomers. Base ten ride, maleic acid, although equine acid, bar (four), itaconic acid, vinyl miscellaneous, 2_(f) acrylamide amine amino 2_ methyl propyl sulphate, (methyl) propylene oxide hydrocarbons continued Acids, and related metal cation salts or salts, etc., in addition to N_vinylacetamide, (meth) acrylamide, hydrazine, hydrazine-dimethyl decylamine and other monomers. When the present invention uses a monomer other than the aforementioned acrylic acid, the amount thereof is 50% or less of the total amount of acrylic acid, preferably 3% or less, and the optimum amount of the preparation is not more than the acrylic monomer. 1〇〇/0. The present invention is directed to the production of an unsaturated monomer which is still water-absorbing, mainly a mixture of acrylic acid or a salt thereof or a mixture of two or more thereof, but based on mechanical and physical properties, among the acrylic acid The sum ratio is preferably from 50 to 95 mol%, most preferably from 60 to 80; and the salt to be neutralized to form an acrylate is an alkali metal salt or an ammonium salt, preferably lithium or a sodium salt. Generally, it is known that the manufacturing of the financial property is carried out by adding a radical polymerization crosslinking agent to the free radical reaction in the unreacted monomer solution before the free silk reaction, and the radical polymerization crosslinking agent can have two or a compound having two or more unsaturated double bonds, such as: N, N, · bis (2 - propyl) amine, N, N, - decyl bis propylamine, - human methyl bis fluorenyl amide Acrylic acrylic, ethylene glycol diacrylate, polyethylene glycol dipropylene glycol vinegar, ethylene glycol dimethacrylate brewing, polyethylene glycol dimercapto propylene coffee, glycerin triacrylate, glycerin Tridecyl propylene, glycerol with dioxyethane diacrylate or tridecyl acrylate, triterpene propane additional ring 201200544 oxyethylene diacrylate or trimethacrylate, triterpene propane three Mercapto acrylate, diterpene propane triacrylate, N,N,N-tris(2-propenyl)amine, ethylene glycol diacrylate, polyoxyethylene glyceryl triacrylate, diethyl polyoxylate Ethylene glyceride, dipropylene triethylene glycol ester, etc.; may also be selected from compounds having two or more epoxy groups Such as: sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, diglycerin polyglycidyl Ether, etc. The radical polymerization crosslinking agent can impart a proper degree of crosslinking and appropriate processability to the highly water-absorbent resin after the radical reaction. The radical polymerization crosslinking agent may be used singly or in combination of two or more. A suitable amount of the additive is between _% and 5% by weight based on the total solids of the reactants, and a more appropriate weight percentage is between 3% and 3% by weight. The dosage is added in the weight percentage of O.GGlwt%. The hydrated body after polymerization is too soft and viscous to be unfavorably mechanically processed, and the amount of the additive is too low at a weight percentage of 5% by weight or more to lower the performance of the superabsorbent resin. The polymerization starts from the decomposition of the radical polymerization initiator to generate a radical. The free radical initiator can be selected from a thermal decomposition type initiator, and the suitable thermal decomposition initiator is a peroxide such as hydrogen peroxide, di-tert-butyl peroxide, peroxylated amine or persulfate. Salt (salt salt, metal salt), etc.; and azo compounds such as: 2·2,-azobis(2-mercaptopropenyl) dihydrochloride, 22,_azobis π, Ν- Dihydrochloride; dihydrochloride; or (4) the original axis is a redox type of initiator, such as: acidic sulfite, thiosulfate, ascorbic acid or ferrous salt; or redox The type starts from 201200544 and the thermal decomposition type initiator is used in combination. Wei, first reacts with a redox initiator to generate free radicals, and transfers the radicals to the monomer to initiate the polymerization. As the t-reaction proceeds, a large amount of heat is released to raise the temperature, and the temperature reaches When the decomposition temperature of the thermal decomposition type initiator starts, the decomposition of the second stage thermal decomposition type initiator is again caused, so that the entire polymerization reaction is more complete. The appropriate amount of the free radical polymerization initiator is from 0.001% by weight to i〇wt 〇 /0 (based on the weight of the neutralized acrylate), and more suitably in the range of O.lwt% to 5wt. /. When the weight percentage is less than or equal to 〇〇lwt%, the reaction is too slow to be economically advantageous. When the weight percentage is 10% by weight or more, the reaction is too fast and the heat of reaction is not easily controlled. The polymerization reaction can be carried out in a conventional batch reaction vessel or on a conveyor belt reactor, and the superabsorbent resin obtained by the reaction is first cut into a small gel having a diameter of 2 mm or less by a mincer, and then carried out. filter. It is better to select the diameter of the gel with a fixed particle size below 2 〇〇 axis. It is better to use between 0.05 mm and 1.5 〇mm. The shim gel with a particle size larger than 2 〇〇 is returned to the mincer for re-shredding. . The gel having a particle diameter of 0.05 mm or less is dried and pulverized, and it is easy to increase the amount of fine powder produced. When the gel having a particle diameter of 2.00 mm or more is dried, it is easy to cause residual monomers due to poor heat conduction. Higher 'the disadvantage of poor physical performance. The more concentrated the particle size distribution of the acrylate gel, the more the physical properties of the gel after drying can reach the most recorded state, and the drying time and temperature can be controlled. The gel drying temperature is 1 Torr. (: to 18 (rc is suitable for drying, if the drying temperature of 201200544 is below 100 °C, the drying time is too long and it is not economical. If it is dried above 18〇艽, the cross-linking reaction will be carried out early. The subsequent silk process can not effectively remove residual monomers due to the high degree of cross-linking to reduce the residual monomer. 0 After drying, pulverize, screen the fixed particle size, and screen the fixed particle size between 006_ and 1.00mm. It is better to use between 0.10mm and 〇85〇rnm, fine powder with particle size below 〇〇6 axis to improve the dust of 'particle size 丨G()mm or more, the water absorption rate of the plant is slower, and the fixed particle size is selected. After that, the surface cross-linking agent coating treatment is performed. The superabsorbent resin is an insoluble hydrophilic polymer, and the inside of the resin has a uniform bridge, and the structure is improved in order to improve the quality, such as: increasing the absorption rate and increasing the colloid strength. Improve anti-caking property and liquid permeability _ will further bridge over the surface of Lin'. This surface cross-linking treatment uses a multi-functional cross-linking agent capable of reacting with acid groups. Patents are disclosed, such as: dispersion of high water absorption The resin and the crosslinking agent are subjected to surface crosslinking treatment in an organic solvent (Japanese Patent No. JP-A-56-131608, JP-A-57-44627, JP-A-58-42602, JP-A 58-117222), The inorganic powder is directly mixed with the cross-linking liquid liquid and superabsorbent resin (refer to the patent jp_A6〇_163956, A ^ 丨4), and the cross-linking agent is added and treated with steam (Japanese patent jp_A_M134〇6) Surface treatment using an organic solvent, water, and a polyol (Japanese Patent No. 6,346,569) and use of an organic solution, water, ether compound (Japanese Patent Jp_A_2_1539〇3), etc., these surface treatment methods can enhance absorption Rate, increase the water absorption rate under pressure, but there are still some adverse consequences that cause the reduction of the simple force and reduce the performance of the actual Lang. 201200544 According to the invention, the cross-linking agent which can simultaneously react in the surface treatment is a polyalcohol. Propylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propanol, 1,4 butanediol, trimethylolpropane, sorbitol, etc.; or polyamines such as: Amine-ethylamine, diethylenediamine, polyethylenediamine or have Two or more scooping oxy compounds such as: sorbitol polycondensate, polyglycerol polyglycidyl sulphate, glycidol, diethylene glycol diglycidyl ether, polyethylene glycol condensate K Gan'an, dipropylene glycol polycondensation, etc.; can also use alkylene carbonate such as: B-alcoholic, 4·曱基_ι,3_dioxetene-2-one, 4,5 • Dimercapto], 3_dioxacyclic, 2,4,4-dimethyl, 1,3-dioxapentan-2-one, 4-ethyl-1,3_-氡杂% 乙烧·2-_, 1,3_dioxanone-2-one, 4,6-dimercapto-indole, 3-dioxan-2-an or 1,3 _ Dioxepane, 2_嗣, etc. The parental agent can be used singly or in combination of two or more. It is suitably added between the weight percentage G.GGlwt%j_1Qwt% (based on the total solids of the reactants), and a more appropriate amount is between 5 wt% and 5 wt%. The cross-linking amount of the additive does not show an effect at a weight percentage of _lwt% or less; the amount of the cross-linking agent is in the weight of 1%, and the water absorption is too scaly. At this stage of addition and addition, it is also possible to add polyglycol at the same time, such as Bp〇3, Bp〇4, brain 5, BP08 (Changchun ji product), Polyethyl alcohol_1788 (Shanghai Meimenjia Chemical Product Bu) PVA-l〇 (product of Wuxi Jinsida Trading Co., Ltd.), Polyethylenicol-(10)8 (Shenzhen Hongfoyuan Chemical Products), etc. or polyethylene glycol such as PEG1000, PEG1500, PEG2000, PEG4000 (Donglian Chemical Products) The surface coating treatment is carried out in which the polyethylene glycol or polyethylene is appropriately added (4) between the weight percentage α丨 feeling and the Qwt% 11 201200544 (based on the total solids of the reactants), more appropriate The amount of the additive is not effective when the amount of the additive is 重量.lwt%JX, and the amount of the additive is more than 1% by weight, resulting in the superabsorbent resin after the coating. When the absorption of Wei is poor, it is not good for New Zealand. After the superabsorbent resin is coated with the surface crosslinking agent, it is heat treated with a degree of enthalpy within 2赃$1. The combination agent can be evenly sentenced and the fast financial father reaction, and reach the aspect of the invention If the heat treatment temperature is 90C, the reaction time of U is too long, and there is no benefit. The temperature of the thief is more than 2, and the resin is easily deteriorated to affect the quality. The county is expected to obtain better silk surface treatment effect. If the heat treatment temperature is low, the heat treatment temperature is long, and the heat treatment time is preferably from 3 to 15 minutes. After the classification, the super absorbent resin having Wei Wei can be obtained. The heat treatment device comprises: a channel mixing dryer, a drum drying n, a table drying sputum, a fluidized bed slinger, a gas flow type (four) device, an infrared ray dryer, etc. The retention force of the present invention is a fiscal country patent CN 1 () 1437333 eight disclosed measurement method job 'listen to the ring Wei Xulin at room temperature, and (four) m twice the average according to 'first will be about 0.2 + / _0 005g particle size distribution is 3 〇〇 ~ _ Qingzhi ΪWater-absorbing tree lang in the -3x5 Yingnu rectangular tea bag, cake salt water level door 4 A knife 〇.9 〇 / 0 salt water in 3 〇 minutes followed by centrifugation straight as centimeters, speed centrifuge Centrifuge for 3 minutes, use 2 more After the bag is blank 201200544, the retention force is calculated by the following formula: CRC = (W3-W2-W1)/W1 where: CRC = superabsorbent resin retention after immersion for 30 minutes Wl = initial weight of superabsorbent resin W2 = two blank average weights after centrifugation (two scales after the decimal point) W3 = the weight of the tea bag after centrifugation (two scales after the decimal point).

• 本發明之負荷下吸收性(AUL)係使用中國專利CN 101433733A所公開之測量方法,其AUL測定體系係由如下述組 件所組成: 1. 斜邊緣帶尺寸之有機玻璃圓桶,内徑為25mm,高度為33mm, 在底部裝配有400目(36μπι)尺寸之金屬網; 2. 塑料隔板(直徑=24+/-lmm,重量為 5.20+/-0.015g); 3. 不銹鋼法碼(直徑=24+/-lmm ’對於ojpsi壓力的AUL量測,重 籲 量為98.35+/-〇.〇5g ;對於〇.9psi壓力的AUL量測,重量為 315.3+/-〇.〇9g); 4. 多孔性圓盤(來自Knotes Glass,型號為9520001223); 5. 圓型濾紙(Whatman 3); 6. 陪替式培養皿(直徑=i5〇mm,高度=2〇mm); 7. 分析天平(需精確至〇.〇〇ig)。 AUL分析流程: 首先將多孔性圓盤置於陪替式培養皿中,放置前須先將多孔 13 201200544 圓盤置於α9%食鹽水—小時以上,再將食鹽水以培養皿中,使 其液面略低於纽_ ’接著誠置於纽_域食鹽水 將其浸潤,再將a_a_g之高吸糊_勻投料於有機玻 璃圓桶之金屬網,並記錄高吸水性樹脂重f(SA),小心地將塑料 板及法碼置人有機玻_财,並記錄完錄置之重量(A),再 將整組裝置放置赠紙上並使其吸收食鹽水—小時。上述整個過 程須保持其食鹽錢面略低於纽_即可,並於—小時後再次 秤量整組裝置重量(B)。 計异方式:〇 3psi 或 0 9Psi 之 AUL(g/g)=(B_AySA 【實施方式】 以下以參考實例詳細說明本發明;但本發明申料利範圍則 不受這些實例所限制。 本發明之15秒自由吸水性⑽15秒)測試,係使用⑶ 10143 3 73 3A所揭露公開之測量方法: 測試高吸水性樹脂(簡稱SAp)之自由吸水性,須先組裝一真 空裝置’為更具體地通過聚乙烯管,將真空汞陳到真空燒瓶上、, 在其頂部放置錢漏斗的底m科與燒㈣料孔橡膠夷 合密封,在該裝置纽置磁力_器,並連接真空歧其在整個 FWA15#中保持真空。 使用25〇ml的量筒取23.0+/-0· 5T的自來水 150ml+/ G. lml加人裝有—英时搜拌棒之2观燒杯中並將裝 201200544 有水的燒杯放置於攪拌盤上,使水產生一離液面2~3公分之渦漭。 秤量乾燥的8G網目(·μη〇篩網並將其置於漏斗的頂部,隨後將 真空汞啟動使篩網被壓,直到該篩網被緊密固定於漏斗上;在鋁 盤上秤量約3. 00+/-〇. 05g的SAP ’並將其摻入授拌水的渦流中, 然後啟動碼表持續攪拌15秒,隨後在恆壓5英吋Hg真空條件下 過濾前述濕聚合物,並注意濕聚合物轉移之時間不超過3秒鐘即 帶有高吸水性樹脂之筛網保持真空抽吸30秒,然後將筛網及真空 #漏斗取出,再以紙巾儘可能擦栻篩網下部殘餘之水分,接著將帶 有濕高吸水性樹脂之篩網秤重,再將該篩網總重減去乾篩網重, 以確定吸濕後高吸水性樹脂之重量,以下式計算Fwa1s秒之數值。 FWA!5 <g/g)=(吸濕後高吸水性樹脂重量-吸濕前高吸水性 樹脂重量)/吸濕前高吸水性樹脂重量 參考例(先前技術): 鲁1) lOOc.c圓錐瓶中加入30g丙烯酸(台塑公司林園AE厫生產)及 32. 4g的水;另外在100c. c圓錐瓶中稱取48%氫氧化鈉水溶液 24. 3g ’於冰冷下將氫氧化納水溶液緩緩加入丙烯酸水溶液中進 行中和;此時得單體濃度42wt%水溶液,丙烯酸部份中和為丙 烯酸鈉的中和率為70mol%(莫耳比)。 2)再加入〇· 〇46g的丙三醇聚乙二醇三縮水甘油醚(η=7)於部分中 和的丙烯酸溶液,並維持溫度於2〇°c左右。 15 201200544 3) 加入0. 016g L-抗壞血酸,〇. 2g過硫酸鈉及〇. 2g之2. 2-偶氮 基雙(2-脒基丙烷)二鹽酸鹽以起始反應。 4) 反應後將此高吸水性樹脂利用切式粉碎機切成2 〇〇_直徑以 下的凝膠體。 5) 以130°C溫度乾燥2小時;經研磨後利用篩網篩選 0.1mm〜0. 85mm固定粒徑,得粉狀高吸水性樹脂。 實施例一: 1) 枰取尚吸水性樹脂(a) l〇g,加入乙二醇碳酸酯/水=1/1(重量 比)溶液0· 4g,以混合機進行固液混合,再以215t溫度加熱處 理30分鐘; 2) 冷卻後,即得保持力 32.5g/g 且 AUL(〇. 3psi)=33. 3g/g, AUL(0. 9psi)=22. 9g/g 之高吸水性樹脂(b); 3) 直接取高吸水性樹脂(b)進行吸收速度評估,其結果如表一所 示0 實施例二: 1) 科取咼吸水性樹脂(a) 10g ’加入乙二醇碳酸醋/水=1/1(重量 比)浴液0· 4g,及聚乙二醇PEG1000 0· 〇5g (平均分子量1〇〇〇, 東聯化工產品)以混合機進行固液混合,再以215^溫度加熱處 理30分鐘; 2) 冷卻後,即得保持力 32.5g/g 且 AUL(〇.3pSi>33.1g/g, 16 201200544 AUL(0. 9psi)=22· 8g/g 之高吸水性樹脂(c); 3)直接取高吸水性樹脂(c)進行吸收速度評估,其結果如表一所 示。 實施例三: 1) 秤取高吸水性樹脂(a) 10g,加入乙二醇碳酸酯/水= ι/ι(重量 比)溶液0. 4g’及聚乙二醇PEG1000 O.lg (平均分子量1〇〇〇, 東聯化工產品)以混合機進行固液混合,再以215°C溫度加熱處 理30分鐘; 2) 冷卻後’即得保持力 32. 3g/g 且 AUL(〇. 3psi)=33. 2g/g, AUL(0. 9psi)=22. 9g/g 之高吸水性樹脂(d); 3) 直接取高吸水性樹脂(d)進行吸收速度評估,其結果如表一所 示。 實施例四: 1) 秤取高吸水性樹脂(a) 10g ’加入乙二醇碳酸酯/水= ι/ι(重量 比)溶液0. 4g,及聚乙二醇PEG8000 0.05g (平均分子量8000, 東聯化工產品)以混合機進行固液混合,再以215。(:溫度加熱處 理30分鐘; 2) 冷卻後’即得保持力 32. lg/g 且 AUL(0. 3psi)=33. Og/g, AUL(〇. 3psi)=22. 7g/g 之高吸水性樹脂(e); 17 201200544 其結果如表一所 3)直接取高吸水性樹脂(e)進行吸收速度評估, 示。 實施例五: 0 秤取尚吸水性樹脂(a) 10 g力入乙一醇碳酸酯/水=1/1(重量 比)溶液Mg’及聚乙二醇PEG8_ Q七(平均分子量腦〇, 東聯化工產品)以混合機進行·混合,再以2抓溫度加熱處 理30分鐘; 2) 冷卻後’即得保持力32.3g/g且AUL(〇 3ps⑽_, AUL(0. 9psi)=22. 9g/g 之高吸水性樹脂(f); 3) 直接取高吸水性樹脂(f)進行吸收速度評估,其結果如表一所 示0 實施例六: 1) 秤取高吸水性樹脂(a) 10g,加入乙二醇碳酸酯/水= ι/ι(重量 比)溶液0.4g,及聚乙烯醇BP03 0. 05g (平均分子量300,醇 解度86 mol%〜89mol%,長春化工產品)以混合機進行固液混合’ 再以215°C溫度加熱處理30分鐘; 2) 冷卻後,即得保持力 32.1g/g 且 AUL(0. 3psi)=33. 4g/g, AUL(0. 9psi)=23. Og/g 之高吸水性樹脂(S); 3) 直接取高吸水性樹脂(g)進行吸收速度評估,其結果如表一所 201200544 實施例七: 1) 秤取高吸水性樹脂(a) 10g,加入乙二醇碳酸醋/水=1/1(重量 比)溶液0.4g,及聚乙烯醇BP03 O.lg (平均分子量3〇〇,醇解 度86 mol%〜89inol/6 ’長春化工產品)以混合機進行固液混合, 再以215°C溫度加熱處理30分鐘; 2) 冷卻後,即得保持力 32. Og/g 且 AUL(〇. 3psi)=33. 3g/g, AUL(0. 9psi)=22· 9g/g 之高吸水性樹脂(h); 3) 直接取高吸水性樹脂(h)進行吸收速度評估,其結果如表一所 示。 實施例八: 1) 秤取向吸水性樹脂(a) l〇g,加入乙二醇碳酸酯/水=丨/1(重量 比)溶液0· 4g,及聚乙烯醇BP08 0. 05g (平均分子量8〇〇,醇 解度86 mol%〜89mol%,長春化工產品)以混合機進行固液混合, ® 再以215°C溫度加熱處理30分鐘; 2) 冷卻後,即得保持力32 〇g/g且AUL(〇 3psi)=33 , AUL(0. 9psi)=22· 8g/g 之高吸水性樹脂(i); 3) 直接取高吸水性樹脂(丨)進行吸收速度評估,其結果如表一所 示。 實施例九: 201200544 1) 秤取尚吸水性樹脂(a) l〇g,加入乙二醇碳酸酯/水二丨/丨(重量 比)溶液0.4g,及聚乙烯醇BP〇8 〇 lg (平均分子量8〇〇,醇解 度86 mol%〜89mol%,長春化工產品)以混合機進行固液混合, 再以215Ϊ溫度加熱處理3〇分鐘; 2) 冷卻後,即得保持力 32 3g/g 且 AUL(〇.3psi)=33 〇g/g, AUL(0. 9psi)=22. 9g/g 之高吸水性樹脂(j); 3) 直接取高吸水性樹脂(j)進行吸收速度評估,其結果如表一所 示。 _ 比較例一: 1) 秤取高吸水性樹脂(a) l〇g,加入乙二醇碳酸酯/水=1/1(重量 比)溶液0.4g,及聚乙二醇pegi〇〇〇 l.〇g (平均分子量1〇〇〇, 東聯化工產品)以混合機進行固液混合,再以215¾溫度加熱處 理30分鐘; 2) 冷卻後,即得保持力 28.3g/g 且 AUL(〇 3psi)=27 2g/g, AUL(0. 9psi)=14· 5g/g 之高吸水性樹脂〇〇 ; _ 3) 直接取高吸水性樹脂(k)進行吸收速度評估,其結果如表一所 不。 比較例二: 1)秤取高吸水性樹脂(a) l〇g ’加入乙二醇碳酸酯/水=1/1(重量 比)溶液0.4g,及聚乙烯醇BP03 l.Og (平均分子量3〇〇,醇解 度86 mol%〜89mol°/G,長春化工產品)以混合機進行固液混合, 20 201200544 再以215 C溫度加熱處理30分鐘; 2) 冷卻後,即得保持力 29.1g/g 且 AUL(0.3PSi>28 4g/g, AUL(0. 9psi>15. lg/g 之高吸水性樹脂(i); 3) 直接取高吸水性樹脂(1)進行吸收速度評估,其結果如表一所 示0 比較例三: 1) 依據中國專利CN 101433733A之作法,取具有保持力犯5g/g 且 AUL(0· 3Psi)=33. 3g/g,AUL(0. 9psi)=22. 9g/g 之高吸水= 脂(b) ’並對此高吸水性樹脂喷灑2g的水溶液,再 將此樹脂放置於對流烘箱以100〇c乾燥一小時; 2) 將烘紐之高吸水性樹脂進行研磨並以2(M⑽網目之筛網筛 渡後’得高吸水性樹脂(m),並對此高吸水性樹脂進行吸收速^ 及相關物性評估,其結果如表一所示。 比較例四: 1) 依據中國專利QUO聰33A之作法,取具有保持力犯响 且肌(〇· 3PS1)=33.3g/g,胤(0.9psi)=22麵之高吸水性樹 脂(b) ’並對此高吸水性樹脂噴濃2g的5〇%之_12水溶液,再 將此樹脂放置於對流烘箱以1〇〇τ乾燥一小時; 2) 將烘乾後之高吸水性樹脂進行研磨並以2〇,網目之師網筛 紐’得高吸水性樹脂(η),並對此高吸水性樹脂進行吸收速度 及相關物性評估,其結果如表一所示。 21 201200544 比較例五: 1) 秤取尚吸水性樹脂(a) l〇g,加入乙二醇碳酸g旨/水^丨/丨彳重量 比)溶液0.4g,及聚乙二醇PEG10000 0.05g (平均分子量 10000,東聯化工產品)以混合機進行固液混合,再以215^a 度加熱處理30分鐘; 2) 冷卻後,即得保持力 27.2g/g 且 AUL(〇 3psi)=26 3g/g, AUL(0. 9psi)=14. Og/g 之高吸水性樹脂(〇); 3) 直接取高吸水性樹脂(〇)進行吸收速度評估,其結果如表一所 示。 比較例六: 1) 祥取南吸水性樹脂(a) l〇g,加入乙二醇碳酸酿/水二丨/丨(重量 比)溶液0.4g’及聚乙烯醇BP28 0.05g (平均分子量28〇〇,醇 解度86 mol%〜89mol%,長春化工產品)以混合機進行固液混合, 再以215°C溫度加熱處理30分鐘; 2) 冷卻後,即得保持力 27.3g/g 且 AUL(0.3psi)=26.0g/g, AUL(0. 9psi)=14. 2g/g 之高吸水性樹脂(p); 3) 直接取高吸水性樹脂(p)進行吸收速度評估,其結果如表一所 示。 22 201200544 表一. 檢測物性 FWA.st. (g/g) FWA減少% CRC (g/g) AUL〇 3psi (g/g) AUL〇 9pSi (g/g) 實施例一 9.6 — 32.5 33.3 22.9 實施例二 2.7 71.9 32.5 33.1 22.8 實施例三 1.9 80.2 32.3 33.2 22.9 實施例四 2.9 69.8 32.1 33.0 22.7 實施例五 2.1 78.1 32.3 33.1 22.9 實施例六 3.2 66.7 32.1 33.4 23.0 實施例七 2.2 77.1 32.0 33.3 22.9 實施例八 2.4 75.0 32.0 33.2 22.8 實施例九 1.8 81.2 32.3 33.0 22.9 比較例一 0.8 91.6 28.3 27.2 14.5 比較例二 0.7 92.7 29.1 28.4 15.1 比較例三 2.8 70.8 27.1 26.5 14.1 比較例四 3.4 64.6 27.5 — 25.9 14.6 比較例五 0.8 91.6 27.2 26.3 14.0 比較例六 0.9 90.6 273 26.0 14.2 由實施例-〜九可以發現,當以本發明之方式於表面改質之 階段對高吸水性樹脂進行鐘處理時,皆可得到具有延遲吸收性 相關吸收物性佳之高吸水性樹脂’且其整體塗覆於高吸水性樹脂 23 201200544 之物質添加量$彳_脂重量之Q5wt%, 力;但以翻CN編33m k升遲緩吸收之能 ,且以二== 门吸水⑽㈣所需騎、耗她多且製程繁;貞,相信本發明所提 方案可望增進高吸水性樹脂生產工蓺。 【圖式簡單說明】 【主要元件符號說明】• The under load under load (AUL) of the present invention uses the measurement method disclosed in Chinese Patent No. CN 101433733A, and the AUL measurement system is composed of the following components: 1. An plexiglass drum having a slanted edge with a size, an inner diameter of 25mm, height 33mm, equipped with a 400 mesh (36μπι) size metal mesh at the bottom; 2. Plastic baffle (diameter = 24 +/- lmm, weight 5.20 +/- 0.015g); 3. Stainless steel code ( Diameter = 24 +/- lmm 'For AUL measurements of ojpsi pressure, the re-appreciation is 98.35 +/- 〇. 〇 5g; for the AUL measurement of 〇.9 psi pressure, the weight is 315.3 +/- 〇. 〇 9g) 4. Porous disc (from Knotes Glass, model number 9520001223); 5. Round filter paper (Whatman 3); 6. Petri dish (diameter = i5〇mm, height = 2〇mm); Analyze the balance (need to be accurate to 〇.〇〇ig). AUL analysis procedure: Firstly, the porous disc is placed in a petri dish. Before placing, the porous 13 201200544 disc should be placed in α9% saline for more than one hour, and then the saline solution is used in the culture dish to make the liquid. The surface is slightly lower than the New_' and then placed in the New Zealand water brine to infiltrate it, and then the a_a_g is highly absorbing _ evenly poured into the metal mesh of the plexiglass drum, and the superabsorbent resin weight f(SA) is recorded. Carefully place the plastic plate and the code on the organic glass, and record the weight (A) of the record, then place the whole set on the gift paper and absorb the salt water for - hour. The above process must keep its salt surface slightly lower than New Zealand, and weigh the entire unit weight (B) again after -hour. Method of calculation: AUL (g/g) of 〇3 psi or 0 9 Psi = (B_AySA [Embodiment] The present invention will be described in detail below with reference to examples; however, the scope of the invention is not limited by the examples. 15 seconds free water absorption (10) 15 seconds) test, using the measurement method disclosed in (3) 10143 3 73 3A: Testing the free water absorption of superabsorbent resin (abbreviated as SAp), a vacuum device must be assembled first to pass more specifically Polyethylene pipe, vacuum mercury is poured onto the vacuum flask, and the bottom of the money funnel is placed on the top of the m funnel and the burnt (four) hole rubber is sealed and sealed, and the magnetic device is placed on the device, and the vacuum is connected to the whole Keep vacuum in FWA15#. Use a 25 〇 ml measuring cylinder to take 23.0 +/- 0 · 5T tap water 150ml + / G. lml plus a two-view beaker filled with a British-made stir bar and place a 201200544 water-filled beaker on the stir plate. Make the water produce a vortex that is 2~3 cm away from the liquid surface. Weigh the dried 8G mesh (·μη〇 screen and place it on top of the funnel, then start the vacuum mercury to make the screen pressed until the screen is tightly fixed on the funnel; weigh about 3. 00+/-〇. 05g of SAP' and incorporate it into the vortex of the mixing water, then start the stirring for 15 seconds, then filter the wet polymer under a constant pressure of 5 inches Hg vacuum, and pay attention to The wet polymer transfer time is less than 3 seconds, that is, the screen with super absorbent resin is kept vacuum suction for 30 seconds, then the screen and the vacuum #funnel are taken out, and the remaining part of the lower part of the screen is wiped as much as possible with a paper towel. Moisture, then weigh the screen with the wet superabsorbent resin, and then subtract the dry weight of the screen from the total weight of the screen to determine the weight of the superabsorbent resin after moisture absorption. The value of Fwa1s seconds is calculated by the following formula. FWA!5 <g/g)=(weight of superabsorbent resin after moisture absorption - weight of superabsorbent resin before moisture absorption) / weight of superabsorbent resin before moisture absorption Reference example (prior art): Lu 1) lOOc The water of the .c bottle is added with 30 g of acrylic acid (produced by Formosa Plastics AE厫) and 32. 4 g of water; 4% 'aqueous sodium hydroxide aqueous solution was slowly added to the aqueous acrylic acid solution for neutralization under ice cooling; at this time, a monomer concentration of 42% by weight aqueous solution, acrylic acid portion was obtained. The neutralization ratio of the sodium neutralized sodium salt was 70 mol% (mole ratio). 2) Further, 46 g of glycerol polyethylene glycol triglycidyl ether (? = 7) was added to the partially neutralized acrylic acid solution, and the temperature was maintained at about 2 °C. 15 201200544 3) Add 0. 016g of L-ascorbic acid, 〇. 2g of sodium persulfate and hydrazine. 2g of 2. 2-azobis(2-amidinopropane) dihydrochloride to initiate the reaction. 4) After the reaction, the superabsorbent resin was cut into a gel having a diameter of 2 〇〇 or less by a cutter. 5) Drying at a temperature of 130 ° C for 2 hours; after grinding, using a sieve to screen a 0.1 mm to 0. 85 mm fixed particle size to obtain a powdery superabsorbent resin. Example 1: 1) Draw a water-absorbent resin (a) l〇g, add a solution of ethylene carbonate/water = 1/1 (weight ratio) 0. 4g, mix and solidify with a mixer, and then 215t temperature heat treatment for 30 minutes; 2) After cooling, the retention of 32.5g / g and AUL (〇. 3psi) = 33.3g / g, AUL (0. 9psi) = 22. 9g / g of high water absorption Resin (b); 3) Directly take the superabsorbent resin (b) to evaluate the absorption rate. The results are shown in Table 1. Example 2: 1) The hydrazine resin (a) 10 g 'Addition of ethylene glycol Carbonic acid vinegar / water = 1 / 1 (weight ratio) bath 0 · 4g, and polyethylene glycol PEG1000 0 · 〇 5g (average molecular weight 1 〇〇〇, Donglian chemical products) mixed with a solid-liquid mixture, and then Heat treatment at 215 ° for 30 minutes; 2) After cooling, the retention force is 32.5 g / g and AUL (〇.3pSi) 33.1g / g, 16 201200544 AUL (0. 9psi) = 22 · 8g / g Water-absorbent resin (c); 3) The superabsorbent resin (c) was directly taken for evaluation of the absorption rate, and the results are shown in Table 1. Example 3: 1) Weighing 10 g of superabsorbent resin (a), adding ethylene carbonate/water = ι/ι (weight ratio) solution 0. 4g' and polyethylene glycol PEG1000 O.lg (average molecular weight 1〇〇〇, Donglian Chemical Products) is mixed with a mixer for solid-liquid mixing, and then heat treated at 215 ° C for 30 minutes; 2) After cooling, the holding force is 32. 3g / g and AUL (〇. 3psi) = 33. 2g / g, AUL (0. 9psi) = 22. 9g / g of super absorbent resin (d); 3) Directly take the superabsorbent resin (d) to evaluate the absorption rate, the results are shown in Table 1. Show. Example 4: 1) Weighing a super absorbent resin (a) 10 g 'Adding ethylene carbonate/water = ι/ι (weight ratio) solution 0.4 g, and polyethylene glycol PEG 8000 0.05 g (average molecular weight 8000 , Donglian Chemical Products) solid-liquid mixing with a mixer, and then 215. (: Temperature heat treatment for 30 minutes; 2) After cooling, the retention force is 32. lg / g and AUL (0.3 psi) = 33. Og / g, AUL (〇. 3psi) = 22. 7g / g high Water-absorbent resin (e); 17 201200544 The results are shown in Table 1 (3). The superabsorbent resin (e) was directly taken for evaluation of the absorption rate. Example 5: 0 Weighing water-absorbent resin (a) 10 g force into ethylene glycol carbonate / water = 1 / 1 (weight ratio) solution Mg' and polyethylene glycol PEG8_ Q seven (average molecular weight cerebral palsy, east The joint chemical product) is mixed and mixed with a mixer, and then heat treated at 2 times for 30 minutes; 2) After cooling, the holding force is 32.3 g/g and AUL (〇3ps(10)_, AUL(0. 9psi)=22.9g /g of super absorbent resin (f); 3) Directly take superabsorbent resin (f) for absorption rate evaluation, and the results are shown in Table 1. Example 6: 1) Weighing superabsorbent resin (a) 10g, adding ethylene glycol carbonate / water = ι / 1 (weight ratio) solution 0.4g, and polyvinyl alcohol BP03 0. 05g (average molecular weight 300, alcoholysis degree 86 mol% ~ 89mol%, Changchun chemical products) The mixer is subjected to solid-liquid mixing and then heat treated at 215 ° C for 30 minutes; 2) After cooling, the holding force is 32.1 g / g and AUL (0.3 psi) = 33.4 g / g, AUL (0. 9 psi) =23. Og/g of superabsorbent resin (S); 3) Directly taking superabsorbent resin (g) for absorption rate evaluation, the results are shown in Table 1 201200544 Example 7: 1) High water absorption Resin (a) 10g, Add ethylene glycol carbonate / water = 1 / 1 (by weight) solution 0.4g, and polyvinyl alcohol BP03 O.lg (average molecular weight 3 〇〇, alcoholysis degree 86 mol% ~ 89inol / 6 'Changchun chemical products) Og/克和 AUL(〇. 3psi)=33. 3g/g, AUL(0) After the solid-liquid mixing is carried out in a mixer, and then heat-treated at 215 ° C for 30 minutes; 2) After cooling, the holding force is 32. Og / g and AUL (〇. 3psi) = 33. 3g / g, AUL (0 9 psi) = 22 · 9 g / g of super absorbent resin (h); 3) The superabsorbent resin (h) was directly taken for evaluation of the absorption rate, and the results are shown in Table 1. Example 8: 1) Scale oriented water-absorbent resin (a) l〇g, adding ethylene carbonate/water = 丨 / 1 (weight ratio) solution 0 · 4g, and polyvinyl alcohol BP08 0. 05g (average molecular weight 8〇〇, the degree of alcoholysis is 86 mol%~89mol%, Changchun Chemical Products) is mixed with liquid and liquid in a mixer, and then heated at 215 °C for 30 minutes; 2) After cooling, the holding force is 32 〇g /g and AUL (〇3psi)=33, AUL (0.9 psi)=22·8g/g of superabsorbent resin (i); 3) Directly take superabsorbent resin (丨) for absorption rate evaluation, the result As shown in Table 1. Example 9: 201200544 1) Weighing the water-absorbent resin (a) l〇g, adding 0.4 g of ethylene carbonate/water diterpene/ruthenium (weight ratio) solution, and polyvinyl alcohol BP〇8 〇lg ( The average molecular weight is 8〇〇, the degree of alcoholysis is 86 mol%~89mol%, and the Changchun chemical product is mixed with solid-liquid by a mixer, and then heat treated at 215Ϊ for 3 minutes; 2) After cooling, the holding force is 32 3g/ g and AUL (〇.3psi)=33 〇g/g, AUL(0. 9psi)=22. 9g/g of superabsorbent resin (j); 3) Directly taking superabsorbent resin (j) for absorption rate The results of the assessment are shown in Table 1. _ Comparative Example 1: 1) Weighing the super absorbent resin (a) l〇g, adding 0.4 g of ethylene carbonate/water = 1/1 (weight ratio) solution, and polyethylene glycol pegi〇〇〇l 〇g (average molecular weight 1〇〇〇, Donglian Chemical) is mixed with solid-liquid mixture in a mixer, and then heat treated at 2153⁄4 for 30 minutes; 2) After cooling, it has a holding force of 28.3g/g and AUL (〇 3psi)=27 2g/g, AUL (0.9 psi)=14·5g/g of superabsorbent resin 〇〇; _ 3) Directly take superabsorbent resin (k) for absorption rate evaluation, the results are shown in Table 1. No. Comparative Example 2: 1) Weighing a super absorbent resin (a) l〇g 'Adding a solution of ethylene carbonate/water = 1/1 (weight ratio) 0.4 g, and polyvinyl alcohol BP03 l.Og (average molecular weight 3〇〇, the degree of alcoholysis is 86 mol%~89mol°/G, Changchun Chemical Products) is mixed with solid-liquid by a mixer, 20 201200544 and then heat treated at 215 C for 30 minutes; 2) After cooling, it has a holding force of 29.1 g/g and AUL (0.3PSi>28 4g/g, AUL (0. 9psi>15. lg/g of superabsorbent resin (i); 3) directly take the superabsorbent resin (1) for absorption rate evaluation, The results are shown in Table 1. 0 Comparative Example 3: 1) According to the Chinese patent CN 101433733A, take a retention force of 5g / g and AUL (0 · 3Psi) = 33.3g / g, AUL (0. 9psi) =22. 9g/g high water absorption = fat (b) 'and spray 2g of this superabsorbent resin on the superabsorbent resin, then place the resin in a convection oven and dry at 100 ° C for one hour; 2) bake the oven The superabsorbent resin is ground and sieved with 2 (M(10) mesh screen to obtain a highly water-absorbent resin (m), and the superabsorbent resin is subjected to absorption speed and related physical property evaluation. The results are shown in Table 1. Show Comparative Example 4: 1) According to the Chinese patent QUO Cong 33A, take a super absorbent resin with retention force and muscle (〇·3PS1)=33.3g/g, 胤(0.9psi)=22 faces. 'And a 2 g of a 〇12 aqueous solution of 2 g of this superabsorbent resin was sprayed, and the resin was placed in a convection oven and dried at 1 Torr for one hour; 2) the superabsorbent resin after drying was subjected to The high water-absorbent resin (η) was obtained by grinding and rubbing with 2 Å, and the super absorbent resin was evaluated for the absorption speed and related physical properties of the superabsorbent resin. The results are shown in Table 1. 21 201200544 Comparative Example 5: 1) Weighing water-absorbent resin (a) l〇g, adding ethylene glycol carbonate / water / 丨 / 丨彳 weight ratio) solution 0.4g, and polyethylene glycol PEG10000 0.05g (Average molecular weight 10000, Donglian Chemical) was mixed with a mixer for heat and liquid treatment, and then heat treated at 215 °a for 30 minutes. 2) After cooling, the holding force was 27.2 g/g and AUL (〇3 psi) = 26 3 g / g, AUL (0. 9 psi) = 14. Og / g of super absorbent resin (〇); 3) Directly take the superabsorbent resin (〇) to evaluate the absorption rate, the results are shown in Table 1. Comparative Example 6: 1) Take the south water-absorbent resin (a) l〇g, add ethylene glycol carbonate/water diterpene/丨 (weight ratio) solution 0.4g' and polyvinyl alcohol BP28 0.05g (average molecular weight 28 〇〇, the degree of alcoholysis is 86 mol% to 89 mol%, and the product of Changchun Chemical Co., Ltd. is solid-liquid mixed with a mixer, and then heat treated at 215 ° C for 30 minutes; 2) after cooling, the holding force is 27.3 g / g and AUL (0.3 psi) = 26.0 g / g, AUL (0.9 psi) = 14. 2 g / g of super absorbent resin (p); 3) Directly take the superabsorbent resin (p) for absorption rate evaluation, the results As shown in Table 1. 22 201200544 Table 1. Detection of physical properties FWA.st. (g/g) FWA reduction % CRC (g/g) AUL〇3psi (g/g) AUL〇9pSi (g/g) Example I 9.6 — 32.5 33.3 22.9 Implementation Example 2 2.7 71.9 32.5 33.1 22.8 Example 3 1.9 80.2 32.3 33.2 22.9 Example 4 2.9 69.8 32.1 33.0 22.7 Example 5 2.1 78.1 32.3 33.1 22.9 Example 6 3.2 66.7 32.1 33.4 23.0 Example 7 2.2 77.1 32.0 33.3 22.9 Example 8 2.4 75.0 32.0 33.2 22.8 Example 9 1.8 81.2 32.3 33.0 22.9 Comparative Example 1 0.8 91.6 28.3 27.2 14.5 Comparative Example 2 0.7 92.7 29.1 28.4 15.1 Comparative Example 3 2.8 70.8 27.1 26.5 14.1 Comparative Example 4 3.4 64.6 27.5 — 25.9 14.6 Comparative Example V 0.8 91.6 27.2 26.3 14.0 Comparative Example 6 0.9 90.6 273 26.0 14.2 It can be found from Examples - ~9 that delayed absorption can be obtained when the superabsorbent resin is subjected to a bell treatment at the stage of surface modification in the manner of the present invention. The superabsorbent resin with good absorption property is the same as that applied to the superabsorbent resin 23 201200544. The amount of the substance added is 彳_the weight of the fat Q5wt%, force; 33m k l slow the absorption of energy, and with two doors == absorbent ⑽㈣ desired ride, and consume her more complex process; Chen, the present invention is believed that the proposed scheme is expected to enhance the handiness of superabsorbent polymer engineering. [Simple diagram description] [Main component symbol description]

24twenty four

Claims (1)

201200544 七、申清專利範圍: 1. 一種高吸水性樹脂的製造方法,該方法: (a) 於由酸基單體水溶液的自由基聚合反應而成,具有内部交聯 結構的高吸水性樹脂顆粒中; (b) 添加佔樹脂總量〇. 〇〇lwt%〜5wt%之表面交聯劑及佔樹脂總量 〇· 5wt%〜lwt%之表面塗覆劑進行表面交聯反應為其特徵之製 造方法。 鲁2·根據申請專利範圍第1項所述之高吸水性樹脂的製造方法,其 表面塗覆劑係選自聚乙二醇或聚乙烯醇者。 3. 根據申凊專利範圍第1或2項所述之高吸水性樹脂的製造方 法’其中’聚乙二醇分子量介於1000至1〇〇〇〇之間。 4. 根據申請專利範圍第i或2項所述之高吸水性樹脂的製造方 法’其中’聚乙烯醇分子量介於3〇〇至2〇〇〇之間。 5. 根據巾請專利範圍第丨項所述之高吸水性樹脂的製造方法,由 • 《方法生產之高吸水性樹脂的請食鹽水吸收後之保持力不 低於 27g/g ’ AUL(0. 9psi)不低於 i4g/g。 25201200544 VII. Shenqing Patent Range: 1. A method for producing a super absorbent resin, which comprises: (a) a superabsorbent resin having an internal crosslinked structure formed by radical polymerization of an aqueous acid monomer solution; (b) Adding to the total amount of the resin 〇〇. 〇〇1wt%~5wt% of the surface crosslinking agent and the total surface area of the resin 〇·5wt%~lwt% of the surface coating agent for surface crosslinking reaction is characterized Manufacturing method. The method for producing a super absorbent resin according to claim 1, wherein the surface coating agent is selected from the group consisting of polyethylene glycol or polyvinyl alcohol. 3. The method for producing a super absorbent resin according to claim 1 or 2 wherein the polyethylene glycol has a molecular weight of from 1,000 to 1 Torr. 4. The method for producing a super absorbent resin according to the invention of claim i or 2 wherein the polyvinyl alcohol has a molecular weight of between 3 Torr and 2 Torr. 5. According to the method for producing a super absorbent resin according to the scope of the patent application, the retention power of the superabsorbent resin produced by the method is not less than 27 g/g after absorption. AUL (0 9 psi) not less than i4g/g. 25
TW99121202A 2010-06-29 2010-06-29 Process for the production of a superabsorbent polymer TWI473844B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121202A TWI473844B (en) 2010-06-29 2010-06-29 Process for the production of a superabsorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121202A TWI473844B (en) 2010-06-29 2010-06-29 Process for the production of a superabsorbent polymer

Publications (2)

Publication Number Publication Date
TW201200544A true TW201200544A (en) 2012-01-01
TWI473844B TWI473844B (en) 2015-02-21

Family

ID=46755447

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121202A TWI473844B (en) 2010-06-29 2010-06-29 Process for the production of a superabsorbent polymer

Country Status (1)

Country Link
TW (1) TWI473844B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072817B (en) * 2004-12-10 2012-05-02 株式会社日本触媒 Method for surface-treatment of water absorbent resin
TWI386440B (en) * 2007-06-20 2013-02-21 Formosa Plastics Corp The processes of high efficient of disperse the wet gel

Also Published As

Publication number Publication date
TWI473844B (en) 2015-02-21

Similar Documents

Publication Publication Date Title
KR101433681B1 (en) Flexible superabsorbent binder polymer composition
WO2015093594A1 (en) Polyacrylic acid (salt) water absorbent, and method for producing same
CN104231144A (en) Polyacrylic water-absorbent resin powder and method for producing the same
US7838610B2 (en) Ion-sensitive super-absorbent polymer
GB1589975A (en) Water absorbent polymers
GB1597613A (en) Interpolymers of unsaturated carboxylic acids
TW200526277A (en) Particulate water-absorbent resin composition and its production process
EP2192978A1 (en) Water absorbing agent and production method thereof
JPH01113406A (en) Manufacture of highly water-absorptive polymer
JP4550256B2 (en) Manufacturing method of water absorbent resin
JPH11315148A (en) Production of water absorbing agent
JP2000038407A (en) Production of water-absorbing resin
TWI634130B (en) Superabsorbent polymer and the method of fabricating the same
TW201200544A (en) Process for the production of a superabsorbent polymer
TWI449732B (en) Production efficiency of superabsorbent polymer
CN1312185C (en) Silicatel multifunctional organic alkoxy silane cross linked polyacrylate water suction resin and its preparing method
JP3168240B2 (en) Thermosensitive absorption and drainage composition
TWI466933B (en) Process for the production of a superabsorbent polymer
TWI736927B (en) Superabsorbent polymer composition, superabsorbent polymer and method for producing the same
JP4244084B2 (en) Water-absorbing agent, method for producing the same, and body fluid-absorbing article
TWI342885B (en) Production efficiency of superabsorbent polymer
TWI522410B (en) Production efficiency of superabsorbent polymer
CN1970617A (en) Preparation method of powdery, water-insoluble high hydroscopicity resin capable of adsorbing water, urine or blood and highly resisting etiolation
TWI388606B (en) Production efficiency of superabsorbent polymer
TWI316859B (en) Method of continuously preparing the super-absorbent polymer powder insoluble in water, absorbing water, urine and blood, and having low residual monomer, high retention and water absorbency under a high pressure