JPH01113406A - Manufacture of highly water-absorptive polymer - Google Patents

Manufacture of highly water-absorptive polymer

Info

Publication number
JPH01113406A
JPH01113406A JP63103450A JP10345088A JPH01113406A JP H01113406 A JPH01113406 A JP H01113406A JP 63103450 A JP63103450 A JP 63103450A JP 10345088 A JP10345088 A JP 10345088A JP H01113406 A JPH01113406 A JP H01113406A
Authority
JP
Japan
Prior art keywords
water
polymer
polymer particles
added
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63103450A
Other languages
Japanese (ja)
Inventor
Sanae Fujita
早苗 藤田
Shinya Hirokawa
広川 信哉
Koji Masamizu
正水 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP63103450A priority Critical patent/JPH01113406A/en
Publication of JPH01113406A publication Critical patent/JPH01113406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To produce the title polymer which is highly water-absorptive, whose water-containing gel has a high strength, and which is excellent in water absorbing rate and suitable, for example, as absorbent for sanitary materials or as water-retaining agent for agriculture and horticulture, by mixing specific hydrophilic polymer particles with a specific crosslinking agent, and bringing them into contact with water vapor to crosslink the polymer. CONSTITUTION:Carboxyl- or carboxylate-containing hydrophilic polymer particles [e.g., particles of a polymer obtained by polymerizing (meth)acrylic acid, etc.] is mixed with a crosslinking agent containing two or more functional groups (e.g., ethylene glycol diglycidyl ether), and they are brought into contact with water vapor to crosslink the polymer. A highly water-absorptive polymer is obtained which is highly water-absorptive, whose water-containing gel has a high strength, and which is excellent in water absorbing rate, and can absorb a large amount of water under load. It can be suitably used, for example, as absorbent for sanitary materials, water-retaining agent for agriculture and horticulture, or water-stopping agent in public works or architecture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生理ナプキンや紙おむつ等への体液吸収剤、
土壌の保水剤、種子コーティング剤、止水剤、結露防止
剤などの幅広い用途を有する吸収性ポリマー、特に高吸
水性で、吸収したゲルの強度が太き(、かつ吸水速度の
優れた高吸水性ポリマーの製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a body fluid absorbent for sanitary napkins, disposable diapers, etc.
Absorbent polymers that have a wide range of uses such as soil water retention agents, seed coating agents, water stoppers, and dew prevention agents.In particular, they are highly absorbent polymers that have a high absorbent gel strength (and a high water absorption rate). The present invention relates to a method for producing a synthetic polymer.

〔従来の技術〕[Conventional technology]

従来の衛生材料や農園芸の分野で吸水材として使用され
てきた紙、パルプ等に代るものとしてカルボキシル基や
カルボキシレート基などを有する親水性ポリマーからな
る吸水性ポリマー等の吸水材料が提案されてきた。また
、これらのポリマーの吸水性能を一層向上させるために
種々の改良がなされている。例えば吸水性ポリマーのぬ
れ性を改良するために、逆相懸濁重合または乳化重合に
よりビニルモノマーを重合して吸水性樹脂を製造する際
に水溶性高分子(特開昭57−167307号)あるい
は界面活性剤(特開昭58−32641号)を添加する
方法が行われている。しかしながら、これらの方法では
得られたポリマーの吸水剤としての性能は未だ不十分で
ある。
Water-absorbing materials such as water-absorbing polymers made of hydrophilic polymers having carboxyl groups and carboxylate groups have been proposed as an alternative to paper, pulp, etc., which have been conventionally used as water-absorbing materials in the fields of sanitary materials and agriculture and horticulture. It's here. In addition, various improvements have been made to further improve the water absorption performance of these polymers. For example, in order to improve the wettability of water-absorbing polymers, when producing water-absorbing resins by polymerizing vinyl monomers by reverse-phase suspension polymerization or emulsion polymerization, water-soluble polymers (JP 57-167307) or A method of adding a surfactant (JP-A No. 58-32641) has been used. However, the performance of the polymer obtained by these methods as a water absorbing agent is still insufficient.

さらに、吸水速度を向上させるために、吸水性樹脂を水
と親水性有機溶媒との混合溶媒中で架橋する方法(特開
昭57−44627号)や吸水性樹脂を水の存在下に不
活性有機溶媒中で架橋する方法(特開昭58−1172
22号)が提案されているが、吸水性能の向上が不十分
であるという問題がある。特開昭59−62665号に
は、親水性ポリマーの含水量を10〜40重量%に調整
した後、架橋剤で架橋して吸水速度に優れた高吸水性ポ
リマーの製造方法が開示されているが、この方法では架
橋剤を含有する水溶液をポリマーに噴霧する等により添
加しているため架橋が不均一になりやすく十分な性能が
発揮しにくいという問題がある。また、特開昭59−1
89103号には、吸水性樹脂粉末に架橋剤を混合し必
要により熱処理を行うことによって高吸水性樹脂を製造
する技術が開示されているが、単に架橋剤を混合しただ
けでは、たとえ加熱処理しても架橋反応が不十分であり
、得られた樹脂の吸水能も未だ不十分である。
Furthermore, in order to improve the water absorption rate, there is a method of cross-linking a water-absorbing resin in a mixed solvent of water and a hydrophilic organic solvent (Japanese Patent Laid-Open No. 57-44627), and a method of inactivating a water-absorbing resin in the presence of water. Method of crosslinking in an organic solvent (JP-A-58-1172
No. 22) has been proposed, but there is a problem that the improvement in water absorption performance is insufficient. JP-A-59-62665 discloses a method for producing a super absorbent polymer with excellent water absorption rate by adjusting the water content of a hydrophilic polymer to 10 to 40% by weight and then crosslinking with a crosslinking agent. However, in this method, since an aqueous solution containing a crosslinking agent is added to the polymer by spraying or the like, there is a problem that crosslinking tends to be non-uniform and it is difficult to exhibit sufficient performance. Also, JP-A-59-1
No. 89103 discloses a technique for producing a super absorbent resin by mixing a crosslinking agent with a water absorbent resin powder and subjecting it to heat treatment if necessary. However, the crosslinking reaction is still insufficient, and the water absorption capacity of the resulting resin is still insufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明は従来の吸水性ポリマーよりも高吸水性
であり、かつ吸水ゲルの強度が優れた吸水性ポリマーを
製造する方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for producing a water-absorbing polymer that has higher water absorption than conventional water-absorbing polymers and has superior water-absorbing gel strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、分子内にカルボキシル基及び/又はカルボキ
シレート基を有する親水性ポリマー粒子の表面を架橋す
るにあたり、ポリマー表面に水蒸気が存在する状態にお
いて架橋剤を用いて該ポリマーの表面架橋を行うと、極
めて効率的に表面架橋を行うことができ、上記課題を有
効に解決できるとの知見に基づいてなされたのである。
In crosslinking the surface of hydrophilic polymer particles having a carboxyl group and/or carboxylate group in the molecule, the present invention provides that when the surface of the polymer is crosslinked using a crosslinking agent in the presence of water vapor on the polymer surface. This was done based on the knowledge that surface crosslinking can be carried out extremely efficiently and that the above problems can be effectively solved.

すなわち、本発明は、カルボキシル基又はカルボキシレ
ート基を有する親水性ポリマー粒子に、2個以上の官能
基を有する架橋剤を混合し、かつ水蒸気を接触させて該
ポリマーを架橋させることを特徴とする高吸水性ポリマ
ーの製造方法を提供する。
That is, the present invention is characterized in that hydrophilic polymer particles having a carboxyl group or carboxylate group are mixed with a crosslinking agent having two or more functional groups, and the polymer is crosslinked by contacting with water vapor. A method for producing a superabsorbent polymer is provided.

本発明の対象となる親水性ポリマーとしてはその構成単
位にカルボキシル基及び/又はカルボキシレート基を有
するものであればポリマーの種類及び重合方法は問わな
い。例えばアクリル酸、メタクリル酸、マレイン酸、フ
マール酸、イタコン酸などの不飽和カルボン酸又はこれ
らの水溶性塩の一種又は二種以上を重合して得られるポ
リマー、また上記モノマーと共重合し得る水溶性モノマ
ー、例えばアクリルアミドメチルプロパンスルフォン酸
、アリルスルフォン酸などの不飽和スルフォン酸、 (
メタ)アクリルアミド、 (メタ)アクリル酸のジメチ
ルまたはジエチルアミノエチルエステル三級塩、あるい
は四級塩等を共重合したポリマー、さらに本発明の効果
を低下させない程度に炭素数1〜24のアルキル基を有
するアクリル酸、メタクリル酸等の不飽和カルボン酸エ
ステル類、炭素数1〜24のアルキル基を有するアルキ
ルビニルエーテル類、炭素数1〜24のα−オレフィン
、スチレン等の疎水性モノマーを共重合させた親水性ポ
リマー、デンプン−アクリル酸グラフト共重合体及びそ
の塩、デンブンーアクリロニl−IJルグラフト共重合
体ケン化物、カルボキシメチルセルロース、酢酸ビニル
−アクリル酸エステル共重合体ケン化物及びその塩等が
あげられる。また、これらのポリマーを製造する際に及
び/または重合後に本発明の効果を低下させない範囲で
少量の架橋剤を添加して架橋を行ったものや、開始剤を
2種以上併用したものや、自己架橋したものも含まれる
。尚、上記塩としてはアルカリ金属塩、アルカリ土類金
属塩、アンモニウム塩等があげられる。又、分子中のカ
ルボキシル基の一部がカルボキシレート基となっていて
もよい。
The hydrophilic polymer to be used in the present invention may be any type of polymer and any polymerization method as long as it has a carboxyl group and/or a carboxylate group in its constituent units. For example, polymers obtained by polymerizing one or more of unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid or water-soluble salts thereof, and water-soluble polymers that can be copolymerized with the above monomers. (
A polymer obtained by copolymerizing meth)acrylamide, a dimethyl or diethylaminoethyl ester tertiary salt, or a quaternary salt of (meth)acrylic acid, and further having an alkyl group having 1 to 24 carbon atoms to an extent that does not reduce the effects of the present invention. Hydrophilic products made by copolymerizing unsaturated carboxylic acid esters such as acrylic acid and methacrylic acid, alkyl vinyl ethers having an alkyl group having 1 to 24 carbon atoms, α-olefins having 1 to 24 carbon atoms, and hydrophobic monomers such as styrene. Examples include saponified starch-acrylic acid graft copolymers and their salts, saponified starch-acrylonyl-IJ graft copolymers, carboxymethyl cellulose, saponified vinyl acetate-acrylic acid ester copolymers and their salts, etc. . In addition, when producing these polymers and/or after polymerization, crosslinking is performed by adding a small amount of crosslinking agent within a range that does not reduce the effect of the present invention, or those in which two or more types of initiators are used in combination, Self-crosslinked materials are also included. The above-mentioned salts include alkali metal salts, alkaline earth metal salts, ammonium salts, and the like. Further, a part of the carboxyl groups in the molecule may be carboxylate groups.

これらの親水性ポリマーは溶液重合法、逆相懸濁重合法
などの公知の重合によって合成されるが、ポリマーを乾
燥する際の作業性や粒°径のコントロールの容易さから
、逆相懸濁重合法で得られたポリマーが好ましい。特に
好ましいのは、中間相に前記モノマーを含む相を配した
O/W10型の工マルジョンを形成して重合を行って得
られた多孔性ポリマーである。
These hydrophilic polymers are synthesized by known polymerization methods such as solution polymerization and reversed-phase suspension polymerization. Polymers obtained by polymerization methods are preferred. Particularly preferred is a porous polymer obtained by polymerizing an O/W10 type emulsion in which a phase containing the monomer is arranged as an intermediate phase.

具体的には、はじめに水溶性界面活性剤、または水溶性
高分子分散剤、例えば部分ケン化ポリビニルアルコール
をもちいて、内相がシクロヘキサン等の疎水相で外相が
アクリル酸中和物等のカルボキシル及び/又はカルボキ
シレート基を有するモノマーと過硫酸アンモニウム等の
重合開始剤とを含む水相であるO/Wエマルジョンをつ
くった後、このエマルジョンをエチルセルロースや特願
昭62−25739号で示されたポリエチレングリコー
ル鎖を有するアクリル系共重合体、すなわち分子内にポ
リエチレングリコール鎖及び/又はポリプロピレングリ
コール鎖を有するビニルモノマーAと該モノマーと共重
合性のモノマーBとのコポリマーであって、平均分子量
が1,000〜1.000.000の範囲にある共重合
体等の油溶性高分子分散剤、または油溶性界面活性剤を
含むシクロヘキサン等の疎水性分散媒中に加えて○/W
10エマルジョンをつくり、モノマーを重合させて得ら
れた粒子内に多数の空孔をもつ多孔性ポリマーであり、
このポリマーは表面積が非常に大きいために、本発明の
効果を最も発揮しうる。
Specifically, first, a water-soluble surfactant or a water-soluble polymeric dispersant, such as partially saponified polyvinyl alcohol, is used, and the inner phase is a hydrophobic phase such as cyclohexane, and the outer phase is a carboxyl compound such as a neutralized acrylic acid. After preparing an O/W emulsion, which is an aqueous phase containing a monomer having a carboxylate group and a polymerization initiator such as ammonium persulfate, this emulsion is mixed with ethyl cellulose or the polyethylene glycol disclosed in Japanese Patent Application No. 62-25739. An acrylic copolymer having a chain, that is, a copolymer of a vinyl monomer A having a polyethylene glycol chain and/or a polypropylene glycol chain in the molecule and a monomer B copolymerizable with the monomer, and having an average molecular weight of 1,000. In addition to an oil-soluble polymer dispersant such as a copolymer in the range of ~1.000.000, or a hydrophobic dispersion medium such as cyclohexane containing an oil-soluble surfactant, ○/W
It is a porous polymer with many pores in the particles obtained by creating an emulsion and polymerizing monomers.
Since this polymer has a very large surface area, it can exhibit the effects of the present invention the most.

本発明により架橋を行う際の親水性ポリマー粒子の水分
含量はいかなる量でもよいが、好ましくは0.1%〜6
0重量%(以下、%と略称する。)、より好ましくは0
.5%〜40%であり、更に好ましくは1%〜10%で
ある。水分含量が上記範囲の場合、高い吸水量と吸水ゲ
ル強度の優れた吸水性樹脂が得られる。しかし、水分含
量が上記範囲を大きくはずれ多すぎると、乾燥に手間が
かかり実用的でない。
The water content of the hydrophilic polymer particles during crosslinking according to the present invention may be any amount, but is preferably 0.1% to 6%.
0% by weight (hereinafter abbreviated as %), more preferably 0
.. It is 5% to 40%, more preferably 1% to 10%. When the water content is within the above range, a water-absorbing resin with high water absorption and excellent water-absorbing gel strength can be obtained. However, if the water content is too much outside the above range, drying will take much effort and will be impractical.

本発明では、親水性ポリマー粒子として任意の粒径のも
のを用いることができるが、架橋剤との均一な混合性及
び得られるポリマーの性能から粒径1〜1000μm1
好ましくは10〜300μmのものを用いるのがよい。
In the present invention, any particle size can be used as the hydrophilic polymer particles, but from the viewpoint of uniform mixability with the crosslinking agent and the performance of the resulting polymer,
Preferably, one having a diameter of 10 to 300 μm is used.

本発明で用いる架橋剤としては、親水性ポリマー中のカ
ルボキシル基やカルボキシレート基と反応しろる架橋剤
であればいずれでもよい。たとえば、エチレングリコー
ルジグリシジルエーテル、ポリエチレングリコールジグ
リシジルエーテル、ソルビトールポリグリシジルエーテ
ル等のポリグリシジルエーテル、エピクロルヒドリン、
α−メチルクロルヒドリン等のハロエポキシ化合物、エ
チレンジアミン、キトサン、ポリエチレンイミン等のポ
リアミン、グリオキザーノペグルタルアルデヒド等のポ
リアルデヒド、アルミニウム塩等の多価金属塩、ヘキサ
メチレンジイソシアネート、トルエンジイソシアネート
等の多価インシアネートがあげられる。さらに、上記化
合物の他に、特願昭62−30412号に記載のアミノ
基と2個以上のエポキシ基を分子内に有する架橋剤、た
とえば、ポリグリシジルエーテルとジエタールアミンの
反応物や特開昭60−199010号に記載の多価エポ
キシ化合物、たとえば、イミダゾール類とエピクロルヒ
ドリンを反応させた後、アルカリ処理によりエポキシ化
合物としたもの、またγ−グリシドキシプロピルトリメ
トキシシラン、ビニルトリメトキシシラン等のシランカ
ップリング剤があげられる。
The crosslinking agent used in the present invention may be any crosslinking agent as long as it reacts with the carboxyl group or carboxylate group in the hydrophilic polymer. For example, polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, sorbitol polyglycidyl ether, epichlorohydrin,
Haloepoxy compounds such as α-methylchlorohydrin, polyamines such as ethylenediamine, chitosan, polyethyleneimine, polyaldehydes such as glyoxanopeglutaraldehyde, polyvalent metal salts such as aluminum salts, hexamethylene diisocyanate, toluene diisocyanate, etc. Examples include polyvalent incyanates. Furthermore, in addition to the above compounds, crosslinking agents having an amino group and two or more epoxy groups in the molecule as described in Japanese Patent Application No. 62-30412, such as the reaction product of polyglycidyl ether and diethalamine, and the Polyvalent epoxy compounds described in No. 199010/1982, for example, those made into epoxy compounds by reacting imidazoles with epichlorohydrin and then treating with alkali, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, etc. Examples include silane coupling agents.

本発明で用いる架橋剤の使用量は任意ではあるが、通常
親水性ポリマー粒子に対して0.001〜10%、好ま
しくは0.005〜5%である。すなわち、架橋剤の添
加量が0.001%より少ない場合には十分効果が発現
せず、反対に10%よりも多い場合には吸水量が低下す
る傾向にあり好ましくないからである。
Although the amount of the crosslinking agent used in the present invention is arbitrary, it is usually 0.001 to 10%, preferably 0.005 to 5%, based on the hydrophilic polymer particles. That is, if the amount of the crosslinking agent added is less than 0.001%, sufficient effects will not be exhibited, whereas if it is more than 10%, the amount of water absorption tends to decrease, which is undesirable.

本発明においては、架橋剤は親水性ポリマーにいかなる
方法で添加してもよい。例えば、親水性ポリマーに架橋
剤を添加したり、架橋剤を溶解する溶媒に溶かし、また
は分散させて添加してもよいし、あるいは親水性ポリマ
ーに架橋剤を添加してから有機溶媒を加えてもよいし、
親水性ポリマーに有機溶媒を加えてから架橋剤を添加し
てもよい。また必要ならば、有機溶媒中に、エチルセル
ロースや特願昭62”−25739号で示されたポリエ
チレングリコール鎖を有するアクリル系共重合体、すな
わち分子内にポリエチレングリコール鎖を有するビニル
モノマーAと該モノマーと共重合性のモノマーBとのコ
ポリマーであって、平均分子量が1.000〜1.00
0. (100の範囲にある共重合体等の油溶性高分子
分散剤及び/又は油溶性界面活性剤を添加してもよい。
In the present invention, the crosslinking agent may be added to the hydrophilic polymer by any method. For example, a crosslinking agent may be added to a hydrophilic polymer, dissolved or dispersed in a solvent that dissolves the crosslinking agent, or the crosslinking agent may be added to a hydrophilic polymer and then an organic solvent is added. It's good too,
The crosslinking agent may be added after adding the organic solvent to the hydrophilic polymer. If necessary, in an organic solvent, ethyl cellulose or an acrylic copolymer having a polyethylene glycol chain as shown in Japanese Patent Application No. 62''-25739, that is, a vinyl monomer A having a polyethylene glycol chain in the molecule, and the monomer A copolymer of copolymerizable monomer B with an average molecular weight of 1.000 to 1.00
0. (An oil-soluble polymer dispersant such as a copolymer and/or an oil-soluble surfactant in the range of 100% may be added.

当該溶媒としては、n−ペンタン、シクロペンクン、n
−ヘキサン、シクロヘキサン、n−へブタン、メチルシ
クロヘキサン、ケロシン等の脂肪族炭化水素、ベンゼン
、トルエン、キシレン等の芳香族炭化水素、メチルエチ
ルケトン等の脂肪族ケトン類、酢酸エチル等の脂肪族エ
ステル類などを挙げることができ、これらを一種または
2種以上の混合物として用いることができる。これらの
溶媒量としては、親水性ポリマー1部に対して0.1〜
5部、好ましくは0.1〜2部用いるのがよい。尚、混
合時間は12時間以内が好ましい。これ以上だと、経済
的利点が無くなるからである。尚、水蒸気を接触させる
前に、これらの有機溶媒は、蒸留等により、除去してお
くことが好ましい。
The solvent includes n-pentane, cyclopenkune, n-
- Aliphatic hydrocarbons such as hexane, cyclohexane, n-hebutane, methylcyclohexane, kerosene, aromatic hydrocarbons such as benzene, toluene, xylene, aliphatic ketones such as methyl ethyl ketone, aliphatic esters such as ethyl acetate, etc. These can be used singly or as a mixture of two or more. The amount of these solvents is 0.1 to 1 part of the hydrophilic polymer.
It is recommended to use 5 parts, preferably 0.1 to 2 parts. Note that the mixing time is preferably within 12 hours. This is because if it exceeds this, there will be no economic advantage. Note that it is preferable to remove these organic solvents by distillation or the like before contacting with water vapor.

本発明によれば、親水性ポリマー粒子に2個以上の官能
基を有する架橋剤を混合し、かつ、その前後あるいは同
時に水蒸気を接触させることが必須である。そして必要
ならば同時にあるいは、そののち加熱を行い、架橋を行
う。すなわち水蒸気を用いることにより、水を直接噴霧
したりする時に起こりやすい不均一な架橋を防ぎより効
果的に表面架橋を行うことができるからである。
According to the present invention, it is essential to mix a crosslinking agent having two or more functional groups with the hydrophilic polymer particles, and to contact them with water vapor before, after, or at the same time. Then, if necessary, heat is applied at the same time or afterwards to effect crosslinking. That is, by using water vapor, it is possible to prevent non-uniform crosslinking that tends to occur when water is directly sprayed, and to perform surface crosslinking more effectively.

本発明において、水蒸気を接触させて架橋を行う方法と
しては種々の方法があげられる。例えば、架橋剤を親水
性ポリマー粒子に添加した後または同時に通常の混合機
や撹拌機を用いて親水性ポリマー粒子を撹拌しながら、
ここに水蒸気発生装置から導かれた水蒸気をノズルより
ポリマーに供給し、水蒸気による加熱あるいは外部から
加熱して架橋を行う方法、水蒸気を供給した後、その装
置内で、あるいは別の流動層乾燥機、回転乾燥機、みぞ
型撹拌乾燥機等を用いて加熱を行う方法等があげられる
。尚、加熱は、架橋反応を行わせるために必須ではない
が、架橋反応を20〜200℃で行わせるように加熱す
るのがよい。
In the present invention, various methods can be used for crosslinking by contacting with water vapor. For example, after or simultaneously with adding the crosslinking agent to the hydrophilic polymer particles, while stirring the hydrophilic polymer particles using a conventional mixer or stirrer,
Here, water vapor led from a steam generator is supplied to the polymer through a nozzle, and crosslinking is carried out by heating with the steam or heating from the outside. , a method of heating using a rotary dryer, a groove type stirring dryer, etc. Although heating is not essential for carrying out the crosslinking reaction, it is preferable to heat it so that the crosslinking reaction is carried out at 20 to 200°C.

親水性ポリマー粒子に供給する水蒸気量についてはいか
なる量でもよいが、供給による重量増加が乾燥親水性ポ
リマー粒子1重量部あたり約0.7重量部まで、好まし
くは0.02〜0.4重量部、更に好ましくは0.02
〜0.1重量部とするのが、製品化に至る乾燥効率の点
から好ましい。
The amount of water vapor supplied to the hydrophilic polymer particles may be any amount, but the weight increase due to supply is up to about 0.7 parts by weight, preferably 0.02 to 0.4 parts by weight per 1 part by weight of dry hydrophilic polymer particles. , more preferably 0.02
It is preferable to set the amount to 0.1 parts by weight from the viewpoint of drying efficiency leading to commercialization.

本発明による架橋処理ののち、必要に応じポリマー粒子
を更に乾燥や粉砕、造粒処理を施して使用することがで
きる。
After the crosslinking treatment according to the present invention, the polymer particles can be further subjected to drying, pulverization, or granulation treatment, if necessary, before use.

〔発明の効果〕〔Effect of the invention〕

本発明によれば高吸水性で、吸水したゲルの強度が大き
く、かつ吸水速度の優れた高吸水性ポリマーを製造する
ことができる。又、荷重下での吸水量においても優れた
高吸水性ポリマーを製造できる。
According to the present invention, it is possible to produce a superabsorbent polymer that is highly water absorbent, has a high gel strength after absorbing water, and has an excellent water absorption rate. Furthermore, a superabsorbent polymer with excellent water absorption under load can be produced.

したがって多量の尿や血液をすみやかに吸収する必要が
ある紙おむつや生理用ナプキン等の衛生材料用吸水剤と
して、また農園芸用保水剤や土木建築用の止水剤などに
好適に使用できる。
Therefore, it can be suitably used as a water-absorbing agent for sanitary materials such as disposable diapers and sanitary napkins that need to quickly absorb large amounts of urine and blood, as well as water-retaining agents for agriculture and horticulture, water-stopping agents for civil engineering and construction, and the like.

次に実施例により本発明を説明するが、本発明はこれら
により限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.

〔実施例〕〔Example〕

実施例において、吸水量、吸水速度及び吸水ゲルの強度
は次のようにして測定した。
In Examples, the water absorption amount, water absorption rate, and strength of the water-absorbing gel were measured as follows.

吸水量 吸水性樹脂0.3gを不織布製袋に封入し、水平にして
試料を均一にまぶした。次に、これを300−の生理食
塩水の入ったシャーレ−中に水平に30分間浸漬した後
、引き上げて金網上で1分間水切りして、重量を測定し
た。一方、別に吸水性樹脂の入っていない不織布製袋を
同様の方法で試験して得た重量をブランクとし、上記測
定値からブランクを差し引き、吸水性樹脂1g当りの重
量に換算して得た値を吸水量とした。数値の大きいほど
高吸水性であることを示す。
Water Absorption Amount 0.3 g of water-absorbent resin was sealed in a non-woven fabric bag, and the bag was held horizontally so that the sample was evenly sprinkled on it. Next, the sample was immersed horizontally in a petri dish containing 300 g of physiological saline for 30 minutes, then pulled out and drained on a wire mesh for 1 minute, and its weight was measured. On the other hand, the weight obtained by testing a non-woven bag that does not contain water absorbent resin in the same manner is used as a blank, and the value obtained by subtracting the blank from the above measurement value and converting it to the weight per 1 g of water absorbent resin. was taken as the water absorption amount. The larger the number, the higher the water absorption.

初期吸水速度 6 X 8 cmの紙製ティーバック型の袋にポリマー
0.3gを入れ、この袋を立ててポリマーを底に軽く詰
めた。これを300dのビーカーに入れた生理食塩水中
に1分間袋を立てた形で浸漬した。1分間浸漬復水を切
り、重量を測定した。この値から風袋の吸水量を差引き
、ポリマー1g当りの吸水量に換算した。この値が大き
い程、吸水速度が速いことを示す。
0.3 g of polymer was placed in a paper tea bag type bag with an initial water absorption rate of 6 x 8 cm, the bag was stood upright, and the bottom was lightly filled with polymer. The bag was immersed in physiological saline in a 300 d beaker for 1 minute in an upright position. The condensate was immersed for 1 minute and the weight was measured. The amount of water absorbed by the tare was subtracted from this value and converted into the amount of water absorbed per 1 g of polymer. The larger this value is, the faster the water absorption rate is.

ゲル強度の測定 100m1’のビーカーに吸水性樹脂2gを入れ、メタ
ノール2gを加えて吸水性樹脂を十分に湿潤させた。こ
れに、イオン交換水40gを一気に入れてママコになら
ないように振り混ぜ、均一に吸水させて試料とした。次
にレオメータ−(不動工業製、NRM−2002J)を
用いて、この試料を2cm/minの速度で上昇させ、
アダプター(Φ10mm、円盤上)とゲル面が接してか
ら10秒後の応力を測定し、これをゲル強度とした。こ
の数値が大きい程、吸水ゲルがしっかりしていることを
示す。
Measurement of Gel Strength 2 g of water absorbent resin was placed in a 100 ml beaker, and 2 g of methanol was added to sufficiently wet the water absorbent resin. 40 g of ion-exchanged water was added to the mixture at once, and the mixture was shaken to avoid clumping, and the mixture was uniformly absorbed to prepare a sample. Next, using a rheometer (manufactured by Fudo Kogyo, NRM-2002J), this sample was raised at a speed of 2 cm/min,
The stress 10 seconds after the adapter (Φ10 mm, on a disc) came into contact with the gel surface was measured, and this was taken as the gel strength. The larger this value is, the stronger the water-absorbing gel is.

荷重下での吸水量 吸水性樹脂0.1g(粒径0.2 mm以上)をセル(
φ20mmの円柱、網目0.2111[0)の底に均一
にまぶし、これに62.8 gの重り(20g/cnO
をのせて試料とした。次に、この試料を、吸水測定機(
協和精工製、KM350)を用いて、人工尿で満たされ
た多孔盤上に置き、60分後の吸水量を測定した。この
値を、ポリマー1g当りの吸水量に換算した。この数値
が大きい程、荷重下での吸水量が優れていることを示す
Water absorption amount under load 0.1 g of water absorbent resin (particle size 0.2 mm or more) was placed in a cell (
Sprinkle it evenly on the bottom of a φ20mm cylinder, mesh 0.2111[0], and add a 62.8g weight (20g/cnO) to it.
was used as a sample. Next, this sample was measured using a water absorption measuring device (
(KM350, manufactured by Kyowa Seiko) was placed on a perforated plate filled with artificial urine, and the amount of water absorbed 60 minutes later was measured. This value was converted into the amount of water absorbed per 1 g of polymer. The larger this value is, the better the amount of water absorption under load is.

実施例1 撹拌機、還流冷却器、滴下ロートおよび窒素ガス導入管
を備えたII!の四つロフラスコに、シクロヘキサン3
00gとエチルセルロース3g(ハーキニレス社製、商
品名N−50)を加えて撹拌し窒素ガスを吹き込んで溶
存酸素を追い出し、70℃まで昇温した。また、別のフ
ラスコ中で水酸化ナトリウム43gを水130gに溶解
し、これにアクリル酸(AA)100gを加えてできた
水溶液に、過硫酸アンモニウム(APS)0.16g1
部分ケン化ポリビニルアルコール(日本合成社製、商品
名CH−17)1.2g及びエチレングリコールジグリ
シジルエーテル(EGDG)0.061gを水34gに
溶解して添加し、さらにシクロヘキサン80gを加えて
撹拌し、窒素ガスを吹き込んで溶存酸素を追い出してモ
ノマー水溶液(○/Wエマルジョン)を調製した(モノ
マー濃度40%対水相)。次に上記四つロフラスコ中の
分散媒を4oorpmの速度で十分撹拌させながら、O
/Wエマルジョンを1時間かけて滴下し、さらに3時間
重合した。
Example 1 II! equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube! Add 3 cyclohexane to a four-bottle flask.
00 g and 3 g of ethyl cellulose (manufactured by Harkiniles, trade name N-50) were added, stirred, nitrogen gas was blown in to drive out dissolved oxygen, and the temperature was raised to 70°C. In another flask, 43 g of sodium hydroxide was dissolved in 130 g of water, and 100 g of acrylic acid (AA) was added to the resulting aqueous solution, and 0.16 g of ammonium persulfate (APS) was added to the solution.
1.2 g of partially saponified polyvinyl alcohol (manufactured by Nippon Gosei Co., Ltd., trade name CH-17) and 0.061 g of ethylene glycol diglycidyl ether (EGDG) were dissolved in 34 g of water and added, and further 80 g of cyclohexane was added and stirred. A monomer aqueous solution (○/W emulsion) was prepared by blowing nitrogen gas to drive out dissolved oxygen (monomer concentration 40% vs. aqueous phase). Next, while sufficiently stirring the dispersion medium in the four-roof flask at a speed of 4 oorpm, O
/W emulsion was added dropwise over 1 hour, and polymerization was further continued for 3 hours.

その後、デカンテーションにより分散媒を除き、110
℃にて3時間乾燥したところ水分含量4%の多孔性の親
水性ポリマー粒子(平均粒径150μm)が得られた。
After that, the dispersion medium was removed by decantation, and the
After drying at .degree. C. for 3 hours, porous hydrophilic polymer particles (average particle size: 150 .mu.m) with a moisture content of 4% were obtained.

次にこのポリマー粒子104.2gを、水蒸気発生装置
から導かれたノズルと温度計と外部加熱装置を備えた5
00−四つロフラスコに入れ、グリセロールポリグリシ
ジルエーテル(ナガセ化成工業製デナコールEx−31
3)0.1gを添加しよく撹拌混合した。その後、3分
間ノズルより水蒸気を吹きこみながら、撹拌を続けた(
反応温度105℃)。3分後四つロフラスコよりポリマ
ー粒子を取り出し、重量を測定したところ107.5 
gであった。このポリマー粒子を更に110℃にて3時
間、熱風乾燥機中で加熱し球状の多孔性ポリマー粒子を
得た。
Next, 104.2 g of the polymer particles were transferred to a 500-meter tube equipped with a nozzle led from a steam generator, a thermometer, and an external heating device.
00-Pour into a four-bottle flask and add glycerol polyglycidyl ether (Denacol Ex-31 manufactured by Nagase Chemical Industries).
3) Added 0.1 g and stirred and mixed well. After that, stirring was continued for 3 minutes while blowing steam through the nozzle (
reaction temperature 105°C). After 3 minutes, the polymer particles were taken out from the four-loop flask and the weight was measured, and the result was 107.5.
It was g. The polymer particles were further heated at 110° C. for 3 hours in a hot air dryer to obtain spherical porous polymer particles.

実施例2 グリセロールポリグリシジルエーテルの代りにエチレン
グリコールジグリシジルエーテル(ナガセ化成工業製デ
ナコールEx−810) 0.1gを用い、水蒸気を7
分間(反応温度110℃)吹き込み、重量が111gと
なった外は実施例1と同様の方法で重合、桑橋を行い、
球状の多孔性ポリマー粒子を得た。
Example 2 0.1 g of ethylene glycol diglycidyl ether (Denacol Ex-810 manufactured by Nagase Chemical Industries, Ltd.) was used instead of glycerol polyglycidyl ether, and water vapor was
Polymerization and mulberry bridge were carried out in the same manner as in Example 1, except that the weight was 111 g.
Spherical porous polymer particles were obtained.

実施例3 実施例1と同様に重合を行い、その後、脱水管を用いて
、加温浴の外温を85℃まで上げて、共沸脱水を行い、
生成ポリマーの水分含量が10%となるまで水を除去し
た。続けてシクロヘキサンを除去し、多孔性の親水性ポ
リマー粒子(平均粒径150μm)を得た。このポリマ
ー粒子111gを、水蒸気発生装置から導かれたノズル
と温度計と外部加熱装置を備えた500m1!四つロフ
ラスコに入れ、ソルビトールポリグリシジルエーテル(
ナガセ化成工業製デナコールEx−6148)0.01
g添加し、よく撹拌混合した。次に、15分間ノズルよ
り水蒸気を吹き込みながら撹拌した(反応温度105℃
)。その後四つロフラスコより、ポリマー粒子を取り出
し、重量を測定したところ125gであった。このポリ
マー粒子を更に110℃3時間、熱風乾燥器中で加熱し
、球状の多孔性ポリマー粒子を得た。
Example 3 Polymerization was carried out in the same manner as in Example 1, and then, using a dehydration tube, the external temperature of the heating bath was raised to 85°C to perform azeotropic dehydration.
Water was removed until the water content of the resulting polymer was 10%. Subsequently, cyclohexane was removed to obtain porous hydrophilic polymer particles (average particle size: 150 μm). 111 g of these polymer particles were transferred to a 500 m1 unit equipped with a nozzle led from a steam generator, a thermometer, and an external heating device! Place sorbitol polyglycidyl ether (
Nagase Chemical Industries Denacol Ex-6148) 0.01
g and stirred well to mix. Next, the mixture was stirred for 15 minutes while blowing steam through a nozzle (reaction temperature: 105°C).
). Thereafter, the polymer particles were taken out from the four-hole flask, and the weight was measured to be 125 g. The polymer particles were further heated at 110° C. for 3 hours in a hot air dryer to obtain spherical porous polymer particles.

実施例4 エチルセルロースの代りにポリエチレンクリコール鎮を
有するアクリル系共重合体(メトキシポリエチレングリ
コールメタクリレートEO付加数23とステアIJ )
レアクリレートの1;9 (モル比)共重合体)を3g
用いた以外は実施例1と同様に重合を行い、その後、脱
水管を用いて、加温浴の外温を85℃まで上げて、共沸
脱水を行い、生成ポリマーの水分含量が15%となるま
で水を除去した。続けてシクロヘキサンを除去し、多孔
性の親水性ポリマー粒子(平均粒径200μm)を得た
。このポリマー118gを水蒸気発生装置から導かれた
ノズルと温度計と外部加熱装置を備えた5 00mj!
四つロフラスコに入れエチレングリコールジグリシジル
エーテル(ナガセ化成工業製デナコールE x −81
0) 0.02 g添加し、よく撹拌混合した。次に、
23分間ノズルより水蒸気を吹き込みながら撹拌した(
反応温度90℃)。その後四つロフラスコよりポリマー
を取り出し、重量を測定したところ、143gであった
。このポリマーを更に110℃、3時間、熱風乾燥器中
で加熱し、球状の多孔性ポリマー粒子を得た。
Example 4 Acrylic copolymer having polyethylene glycol instead of ethyl cellulose (methoxypolyethylene glycol methacrylate EO addition number 23 and Stair IJ)
3g of rare acrylate 1:9 (mole ratio) copolymer)
Polymerization was carried out in the same manner as in Example 1, except that the polymer was used, and then, using a dehydration tube, the external temperature of the heating bath was raised to 85 ° C., and azeotropic dehydration was carried out, so that the water content of the produced polymer was 15%. Water was removed until Subsequently, cyclohexane was removed to obtain porous hydrophilic polymer particles (average particle size: 200 μm). 118g of this polymer was introduced into a 500mj vessel equipped with a nozzle, a thermometer, and an external heating device that led from a steam generator!
Add ethylene glycol diglycidyl ether (Denacol Ex-81 manufactured by Nagase Chemical Industries, Ltd.) to a four-bottle flask.
0) 0.02 g was added and mixed well with stirring. next,
The mixture was stirred for 23 minutes while blowing steam through a nozzle (
reaction temperature 90°C). Thereafter, the polymer was taken out from the four-hole flask and its weight was measured, and it was found to be 143 g. This polymer was further heated at 110° C. for 3 hours in a hot air dryer to obtain spherical porous polymer particles.

実施例5 撹拌機、還流冷却器、滴下ロートおよび窒素ガス導入管
を備えた11の四つロフラスコに、シクロヘキサン30
0gとエチルセルロース3g(バーキュレス社製、商品
名N−50)を加えて撹拌し窒素ガスを吹き込んで溶存
酸素を追い出し、70℃まで昇温した。また、別のフラ
スコ中で水酸化ナトリウム43gを水130gに溶解し
、これにアクリル酸(AA)100gを加えてできた水
溶液に、過硫酸アンモニウム(APS)0.16g1及
び、エチレングリコールジグリシジルエーテル0.02
4 gを水1gに溶解して添加し、窒素ガスを吹き込ん
で溶存酸素を追い出して七ツマー水溶液を調製した。次
に上記四つロフラスコ中の分散媒を40Orpmの速度
で十分撹拌させなからモノマー水溶液を1時間かけて滴
下し、さらに3時間重合した。その後、脱水管を用いて
、加温浴の外温を85℃まで上げて、共沸脱水を行い、
生成ポリマーの水分含量が28%となるまで水を除去し
た。引き続きシクロヘキサンも除去し、粒子状の親水性
ポリマー(平均粒子径150μm)を得た。このポリマ
ー粒子139gを水蒸気発生装置から導かれたノズルと
温度計と外部加熱装置を備えた500彪四つロフラスコ
に入れ、エチレングリコールジグリシジルエーテル(ナ
ガセ化成工業製デナコーノ叶X−810) 0.01 
g添加し、よく撹拌混合した。次に四つロフラスコを8
0℃の湯浴にて加温しながら14分間ノズルより水蒸気
を吹き込みながら撹拌した。その後四つロフラスコより
ポリマー粒子を取り出し重量を測定したところ154g
であった。このポリマーを更に110℃、3時間、熱風
乾燥器中で加熱し、粒子状のポリマーを得た。
Example 5 Into 11 four-necked flasks equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube, 30 ml of cyclohexane was added.
0 g and 3 g of ethyl cellulose (manufactured by Vercules, trade name N-50) were added and stirred, nitrogen gas was blown in to drive out dissolved oxygen, and the temperature was raised to 70°C. In addition, in another flask, 43 g of sodium hydroxide was dissolved in 130 g of water, and 100 g of acrylic acid (AA) was added thereto. .02
4 g was dissolved in 1 g of water and added, and nitrogen gas was blown in to drive out the dissolved oxygen to prepare an aqueous seven-mer solution. Next, while stirring the dispersion medium in the four-hole flask sufficiently at a speed of 40 rpm, the monomer aqueous solution was added dropwise over a period of 1 hour, and polymerization was further carried out for 3 hours. Then, using a dehydration tube, raise the external temperature of the heating bath to 85°C to perform azeotropic dehydration.
Water was removed until the water content of the resulting polymer was 28%. Subsequently, cyclohexane was also removed to obtain a particulate hydrophilic polymer (average particle size: 150 μm). 139 g of the polymer particles were placed in a 500 square meter four-bottle flask equipped with a nozzle led from a steam generator, a thermometer, and an external heating device, and 0.01 g of ethylene glycol diglycidyl ether (Denacono Kano X-810 manufactured by Nagase Chemical Industries, Ltd.) was added.
g and stirred well to mix. Next, add 8 4-bottle flasks.
The mixture was heated in a 0°C water bath and stirred for 14 minutes while blowing steam through a nozzle. After that, the polymer particles were taken out from the four-loaf flask and the weight was measured, which was 154g.
Met. This polymer was further heated at 110°C for 3 hours in a hot air dryer to obtain particulate polymer.

実施例6 三角フラスコ中で水酸化ナトリウム43gを水130g
に溶解し、これにアクリル酸100gを加えてできた水
溶液に過硫酸アンモニウム0.3g、エチレングリコー
ルジグリシジルエーテル0.06g加え、窒素ガスを吹
き込んで溶存酸素を追い出してモノマー水溶液を調製し
た。このモノマー水溶液をテフロン板の上に流し、薄膜
状にして120℃にて3時間、熱風乾燥器中で重合と乾
燥を行った。生成した板状のポリマーを100〜300
μ程度に粉砕した。このポリマーの水分含量は10%で
あった。この得られたポリマー111gを、水蒸気発生
装置から導かれたノズルと温度計と外部加熱装置を備え
た500m1四つロフラスコに入れ、シランカップリン
グ剤であるγ−グリシドキシプロビルトリメトキシシラ
ン0.2gを添加し、よく撹拌混合した。次に13分間
、ノズルより水蒸気を吹き込みながら撹拌した(反応温
度75℃)、。
Example 6 43g of sodium hydroxide and 130g of water in an Erlenmeyer flask
0.3 g of ammonium persulfate and 0.06 g of ethylene glycol diglycidyl ether were added to an aqueous solution prepared by adding 100 g of acrylic acid thereto, and nitrogen gas was blown in to drive out dissolved oxygen to prepare an aqueous monomer solution. This aqueous monomer solution was poured onto a Teflon plate, formed into a thin film, and polymerized and dried in a hot air dryer at 120° C. for 3 hours. 100 to 300 of the generated plate-like polymer
It was crushed to about μ size. The water content of this polymer was 10%. 111 g of the obtained polymer was placed in a 500 m1 four-bottle flask equipped with a nozzle led from a steam generator, a thermometer, and an external heating device, and γ-glycidoxyprobyltrimethoxysilane, a silane coupling agent, was added to .2g was added and mixed well with stirring. Next, the mixture was stirred for 13 minutes while blowing steam through a nozzle (reaction temperature: 75°C).

その後回つロフラスコよりポリマーを取り出し重量を測
定したところ125gであった。このポリマーを更に1
10℃、3時間、熱風乾燥機中で加熱し、粉末状のポリ
マーを得た。
Thereafter, the polymer was taken out from the round flask and its weight was measured and found to be 125 g. Add one more layer of this polymer
It was heated in a hot air dryer at 10° C. for 3 hours to obtain a powdery polymer.

比較例1 水蒸気を吹き込まなかった以外は実施例1と同様の重合
とその後の処理を行った。
Comparative Example 1 Polymerization and subsequent treatments were carried out in the same manner as in Example 1, except that water vapor was not blown into the polymer.

比較例2 水蒸気を吹き込まなかった以外は実施例3と同様の重合
とその後の処理を行った。
Comparative Example 2 Polymerization and subsequent treatments were carried out in the same manner as in Example 3, except that water vapor was not blown into the polymer.

比較例3 水蒸気を吹き込まなかった以外は実施例5と同様の重合
とその後の処理を行った。
Comparative Example 3 Polymerization and subsequent treatments were performed in the same manner as in Example 5, except that water vapor was not blown into the polymer.

各ポリマーの性能をまとめて表−1に示す。Table 1 summarizes the performance of each polymer.

表−1 表−1から明らかなように、本発明によれば吸水量、吸
水速度及び吸水ゲルの強度とも良好な性能を示すポリマ
ーが得られることがわかる。
Table 1 As is clear from Table 1, it can be seen that according to the present invention, a polymer exhibiting good performance in terms of water absorption amount, water absorption rate, and water absorption gel strength can be obtained.

実施例7 撹拌機、還流冷却器、滴下ロートおよび窒素ガス導入管
を備えたlI!の四つロフラスコに、シクロへ−1−4
11−ン300gとエチルセルロース1.5 g(ハー
キニレス社製、商品名N−50)を加えて撹拌し窒素ガ
スを吹き込んで溶存酸素を追い出し、70℃まで昇温し
た。また、別のフラスコ中で水酸化ナトリウム43gを
水189gに溶解し、これにアクリル酸100gを加え
てできた水溶液に、過硫酸アンモニウム158mgを加
えて撹拌し、窒素ガスを吹き込んで溶存酸素を追い出し
てモノマー水溶液を調製した。次に上記四つロフラスコ
中の分散媒を40Orpmの速度で十分撹拌させながら
、モノマー水溶液を1時間かけて滴下後、1時間熟成し
て、さらにエチレングリコールジグリシジルエーテル1
23mgを加えて2時間熟成後、溶媒を留去し、減圧下
、110℃で乾燥することにより、含水率2%の球状の
ポリマー粒子が得られた。
Example 7 II equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube! To the four-round flask, to the cyclo-1-4
300 g of 11-ton and 1.5 g of ethyl cellulose (manufactured by Harkiniles, trade name N-50) were added and stirred, nitrogen gas was blown in to drive out dissolved oxygen, and the temperature was raised to 70°C. In another flask, 43 g of sodium hydroxide was dissolved in 189 g of water, and 100 g of acrylic acid was added to the resulting aqueous solution. 158 mg of ammonium persulfate was added and stirred, and nitrogen gas was blown in to drive out the dissolved oxygen. A monomer aqueous solution was prepared. Next, while thoroughly stirring the dispersion medium in the four-bottle flask at a speed of 40 rpm, the monomer aqueous solution was added dropwise over 1 hour, and the mixture was aged for 1 hour.
After adding 23 mg and aging for 2 hours, the solvent was distilled off and dried at 110° C. under reduced pressure to obtain spherical polymer particles with a water content of 2%.

次に、このポリマー120gを、水蒸気発生装置から導
かれたノズルと温度計と外部加熱装置を備えた5 00
mji!の四つロフラスコに入れ、シクロヘキサン12
0gとエチレングリコールジグリシジルエーテル123
mgを加えて2Orpmの速度で1時間撹拌混合した。
Next, 120 g of this polymer was transferred to a 500-meter tube equipped with a nozzle led from a steam generator, a thermometer, and an external heating device.
mji! Put 12 cyclohexane into a four-loaf flask.
0g and ethylene glycol diglycidyl ether 123
mg was added and mixed by stirring at a speed of 2 rpm for 1 hour.

その後、シクロヘキサンを留去した後、ノズルより水蒸
気を吹き込んでポリマーの総合水率を5%にしくポリマ
ー重量123.8g)、さらに110℃で3時間、熱風
乾燥機中で加熱し、球状のポリマー粒子を得た。
Then, after distilling off the cyclohexane, steam was blown through a nozzle to make the total water content of the polymer 5% (polymer weight 123.8 g), and then heated in a hot air dryer at 110°C for 3 hours to form a spherical polymer. Particles were obtained.

実施例8 実施例7において、ノズルから吹き込む水蒸気によるポ
リマーの重量増加を3.8gから6.5gに変えて、ポ
リマーの総合水率を7%にした以外は実施例7と同様の
方法で実験を行い、球状のポリマー粒子を得た。
Example 8 An experiment was carried out in the same manner as in Example 7, except that the weight increase of the polymer due to water vapor blown from the nozzle was changed from 3.8 g to 6.5 g, and the total water content of the polymer was changed to 7%. This was done to obtain spherical polymer particles.

実施例9 実施例7において、ノズルから吹き込む水蒸気によるポ
リマーの重量増加を3.8gから10.7 gに変えて
、ポリマーの総合水率を10%にした以外は実施例7と
同様の方法で実験を行い、球状のポリマー粒子を得た。
Example 9 The same method as in Example 7 was used except that the weight increase of the polymer due to water vapor blown from the nozzle was changed from 3.8 g to 10.7 g, and the total water content of the polymer was 10%. An experiment was conducted and spherical polymer particles were obtained.

実施例10 実施例7において、含水率2%のポリマーの代りに含水
率5%のポリマーを用い、さらにノズルから吹き込む水
蒸気によるポリマーの重量増加を3.8gから6.7g
に変えて、ポリマーの総合水率を10%にした以外は実
施例7と同様の方法で実験を行い、球状のポリマー粒子
を得た。
Example 10 In Example 7, a polymer with a water content of 5% was used instead of a polymer with a water content of 2%, and the weight increase of the polymer due to water vapor blown from the nozzle was increased from 3.8 g to 6.7 g.
An experiment was conducted in the same manner as in Example 7, except that the total water content of the polymer was changed to 10%, and spherical polymer particles were obtained.

実施例11 実施例7において、含水率2%のポリマーの代りに含水
率7%のポリマーを用い、さらにノズルから吹き込む水
蒸気によるポリマーの重量増加を3.8gから4.0g
に変えて、ポリマーの総合水率を10%にした以外は実
施例7と同様の方法で実験を行い、球状のポリマー粒子
を得た。
Example 11 In Example 7, a polymer with a water content of 7% was used instead of a polymer with a water content of 2%, and the weight increase of the polymer due to water vapor blown from the nozzle was increased from 3.8 g to 4.0 g.
An experiment was conducted in the same manner as in Example 7, except that the total water content of the polymer was changed to 10%, and spherical polymer particles were obtained.

実施例12 実施例9において、シクロヘキサン120gを60gに
変えた以外は実施例9と同様の方法で実験を行い、球状
のポリマー粒子を得た。
Example 12 An experiment was carried out in the same manner as in Example 9, except that 120 g of cyclohexane was changed to 60 g, and spherical polymer particles were obtained.

実施例13 実施例9において、シクロヘキサン120gを24gに
変えた以外は実施例9と同様の方法で実験を行い、球状
のポリマー粒子を得た。
Example 13 An experiment was conducted in the same manner as in Example 9, except that 120 g of cyclohexane was changed to 24 g, and spherical polymer particles were obtained.

実施例14 実施例7において、エチレングリコールジグリシジルエ
ーテル123mgをT−グリシドキシプロピルトリメチ
ルシラン123mgに変えた以外は実施例7と同様の方
法で実験を行い、球状のポリマー粒子を得た。
Example 14 An experiment was carried out in the same manner as in Example 7 except that 123 mg of ethylene glycol diglycidyl ether was replaced with 123 mg of T-glycidoxypropyltrimethylsilane to obtain spherical polymer particles.

実施例15 撹拌機、還流冷却器、滴下ロートおよび窒素ガス導入管
を備えた11の四つロフラスコに、シクロヘキサン30
0gとエチルセルロース2.0g(パーキュレス社賢、
商品名N−50)を加えて撹拌し窒素ガスを吹き込んで
溶存酸素を追い出し、70℃まで昇温した。また、別の
フラスコ中で水酸化ナトリウム43gを水130gに溶
解し、これにアクリル酸100gを加えてできた水溶液
に、過硫酸アンモニウム158mg、部分ケン化ポリビ
ニルアルコール(日本合成社製、商品名GH−17)1
.2gを水34gに溶解して添加し、さらにシクロヘキ
サン135gを加えて撹拌し、窒素ガスを吹き込んで溶
存酸素を追い出してモノマー水溶液(○/Wエマルジョ
ン)を調製した。次に上記四つロフラスコ中の分散媒を
40Orpmの速度で十分撹拌させながら、モノマー水
溶液(0/ Wエマルジョン)を1時間かけて滴下後、
1時間熟成して、さらにエチレングリコールジグリシジ
ルエーテル123mgを加えて2時間熟成後、溶媒を留
去し、減圧下、110℃で乾燥することにより、含水率
2%の球状の多孔性ポリマー粒子を得た。
Example 15 Into 11 four-necked flasks equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube, 30 g of cyclohexane was added.
0g and ethyl cellulose 2.0g (Percules Ken,
(trade name N-50) was added, stirred, nitrogen gas was blown into the mixture to drive out dissolved oxygen, and the temperature was raised to 70°C. In addition, in another flask, 43 g of sodium hydroxide was dissolved in 130 g of water, and 100 g of acrylic acid was added to the aqueous solution. 17)1
.. 2 g was dissolved in 34 g of water and added, and 135 g of cyclohexane was added, stirred, and nitrogen gas was blown to drive out dissolved oxygen to prepare an aqueous monomer solution (○/W emulsion). Next, the monomer aqueous solution (0/W emulsion) was added dropwise over 1 hour while thoroughly stirring the dispersion medium in the four-loaf flask at a speed of 40 Orpm.
After aging for 1 hour, 123 mg of ethylene glycol diglycidyl ether was added, and after aging for 2 hours, the solvent was distilled off and dried at 110°C under reduced pressure to obtain spherical porous polymer particles with a water content of 2%. Obtained.

次に、このポリマー120gを、水蒸気発生装置から導
かれたノズルと温度計と外部加熱装置を備えた500m
1の四つロフラスコに入れ、シクロヘキサン120gと
エチレングリコールジグリシジルエーテル123mgを
加えて2Qrpmの速度で1時間撹拌混合した。その後
、シクロヘキサンを留去した後、ノズルから水蒸気を吹
き込んでポリマーの総合水率を10%にしくポリマー重
量130.7g)、さらに110℃で3時間、熱風乾燥
機中で加熱し、球状の多孔性ポリマー粒子を得た。
Next, 120 g of this polymer was transferred to a 500 m
1, 120 g of cyclohexane and 123 mg of ethylene glycol diglycidyl ether were added thereto, and the mixture was stirred and mixed at a speed of 2 Q rpm for 1 hour. Then, after distilling off the cyclohexane, water vapor was blown through a nozzle to bring the total water content of the polymer to 10% (polymer weight: 130.7 g), and then heated at 110°C for 3 hours in a hot air dryer to form spherical porous Polymer particles were obtained.

比較例4 実施例7において、含水率2%のポリマーの代りに含水
率7%のポリマーを用い、さらに水蒸気を吹き込まなか
った以外は実施例7と同様の方法で実験を行い、球状の
ポリマー粒子を得た。
Comparative Example 4 An experiment was conducted in the same manner as in Example 7, except that a polymer with a water content of 7% was used instead of a polymer with a water content of 2%, and water vapor was not blown into the polymer particles. I got it.

比較例5 実施例7において、含水率2%のポリマーの代りに含水
率10%のポリマーを用い、さらに水蒸気を吹き込まな
かった以外は実施例7と同様の方法で実験を行い、球状
のポリマー粒子を得た。
Comparative Example 5 An experiment was conducted in the same manner as in Example 7, except that a polymer with a water content of 10% was used instead of a polymer with a water content of 2%, and water vapor was not blown into the polymer particles. I got it.

比較例6 実施例7において、含水率2%のポリマーにシクロヘキ
サンとエチレングリコールジグリシジルエーテル以外に
水3.79 gを加え、さらに水蒸気を吹き込まなかっ
た以外は実施例7と同様の方法で実験を行い、球状のポ
リマー粒子を得た。
Comparative Example 6 An experiment was carried out in the same manner as in Example 7, except that 3.79 g of water was added in addition to cyclohexane and ethylene glycol diglycidyl ether to the polymer with a water content of 2%, and no steam was blown into the polymer. spherical polymer particles were obtained.

得られたポリマーの性能をまとめて表−2に示す。The performance of the obtained polymer is summarized in Table 2.

Claims (1)

【特許請求の範囲】[Claims]  カルボキシル基又はカルボキシレート基を有する親水
性ポリマー粒子に、2個以上の官能基を有する架橋剤を
混合し、かつ水蒸気を接触させて該ポリマーを架橋させ
ることを特徴とする高吸水性ポリマーの製造方法。
Production of a super absorbent polymer characterized by mixing hydrophilic polymer particles having a carboxyl group or carboxylate group with a crosslinking agent having two or more functional groups, and crosslinking the polymer by contacting with water vapor. Method.
JP63103450A 1987-07-16 1988-04-26 Manufacture of highly water-absorptive polymer Pending JPH01113406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103450A JPH01113406A (en) 1987-07-16 1988-04-26 Manufacture of highly water-absorptive polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-177888 1987-07-16
JP17788887 1987-07-16
JP63103450A JPH01113406A (en) 1987-07-16 1988-04-26 Manufacture of highly water-absorptive polymer

Publications (1)

Publication Number Publication Date
JPH01113406A true JPH01113406A (en) 1989-05-02

Family

ID=26444087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103450A Pending JPH01113406A (en) 1987-07-16 1988-04-26 Manufacture of highly water-absorptive polymer

Country Status (1)

Country Link
JP (1) JPH01113406A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297430A (en) * 1988-05-24 1989-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd Method for treating surface of water-absorbable resin
WO2001079314A1 (en) * 2000-04-13 2001-10-25 Sanyo Chemical Industries, Ltd. Crosslinked polymer, process for producing the same, absorbent structure, and absorbent article
WO2009048157A1 (en) * 2007-10-09 2009-04-16 Nippon Shokubai Co., Ltd. Surface treatment method for water-absorbent resin
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US20110237754A1 (en) * 2010-03-24 2011-09-29 Basf Se Process for Producing Water-Absorbent Polymer Particles by Polymerizing Droplets of a Monomer Solution
EP2028217A4 (en) * 2006-05-12 2012-04-04 Sumitomo Seika Chemicals Process for producing granular carboxylated-polymer particle and granular carboxylated-polymer particle
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
US20160083533A1 (en) * 2013-05-10 2016-03-24 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
CN105492466A (en) * 2013-08-27 2016-04-13 株式会社Lg化学 Method for preparing super absorbent resin
EP3381970A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
EP3381972A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
WO2021187323A1 (en) * 2020-03-18 2021-09-23 住友精化株式会社 Method for producing water-absorbing resin particles
EP3954717A1 (en) 2020-08-10 2022-02-16 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same
EP4317260A1 (en) 2022-08-04 2024-02-07 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297430A (en) * 1988-05-24 1989-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd Method for treating surface of water-absorbable resin
WO2001079314A1 (en) * 2000-04-13 2001-10-25 Sanyo Chemical Industries, Ltd. Crosslinked polymer, process for producing the same, absorbent structure, and absorbent article
US6951911B2 (en) 2000-04-13 2005-10-04 Sanyo Chemical Industries, Ltd. Cross-linked polymer and process for producing the same, absorptive structure and absorptive article
EP2028217A4 (en) * 2006-05-12 2012-04-04 Sumitomo Seika Chemicals Process for producing granular carboxylated-polymer particle and granular carboxylated-polymer particle
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2009048157A1 (en) * 2007-10-09 2009-04-16 Nippon Shokubai Co., Ltd. Surface treatment method for water-absorbent resin
JP2011500872A (en) * 2007-10-09 2011-01-06 株式会社日本触媒 Surface treatment method for water absorbent resin
CN102341435A (en) * 2009-03-04 2012-02-01 株式会社日本触媒 Method for producing water absorbent resin
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US9796820B2 (en) * 2009-03-04 2017-10-24 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
JP2015014002A (en) * 2009-03-04 2015-01-22 株式会社日本触媒 Water-absorbing resin production method
US8648150B2 (en) 2009-03-04 2014-02-11 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
US20140107293A1 (en) * 2009-03-04 2014-04-17 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
JP5615801B2 (en) * 2009-03-04 2014-10-29 株式会社日本触媒 Method for producing water absorbent resin
US20110237754A1 (en) * 2010-03-24 2011-09-29 Basf Se Process for Producing Water-Absorbent Polymer Particles by Polymerizing Droplets of a Monomer Solution
US8450428B2 (en) * 2010-03-24 2013-05-28 Basf Se Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US20160083533A1 (en) * 2013-05-10 2016-03-24 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
US10662300B2 (en) * 2013-05-10 2020-05-26 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
CN105492466A (en) * 2013-08-27 2016-04-13 株式会社Lg化学 Method for preparing super absorbent resin
EP3381970A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
EP3381972A1 (en) 2017-03-31 2018-10-03 Formosa Plastics Corporation Superabsorbent polymer and the method of fabricating the same
WO2021187323A1 (en) * 2020-03-18 2021-09-23 住友精化株式会社 Method for producing water-absorbing resin particles
EP3954717A1 (en) 2020-08-10 2022-02-16 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same
EP4317260A1 (en) 2022-08-04 2024-02-07 Formosa Plastics Corporation Superabsorbent polymer and method for producing the same

Similar Documents

Publication Publication Date Title
KR0143402B1 (en) Method of treating the surface of an absorbent resin
JP4210432B2 (en) Postcrosslinking of hydrogels with 2-oxazolidinone
US6297335B1 (en) Crosslinked, hydrophilic, highly swellable hydrogels, production thereof and use thereof
JP2008528750A (en) Polyamine-coated super absorbent polymer
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
JP2002530490A (en) Method for post-crosslinking hydrogels using N-acyl-2-oxazolylindinones
JP2008528752A (en) Polyamine-coated super absorbent polymer
JP2008528751A (en) Polyamine-coated super absorbent polymer
JPH01113406A (en) Manufacture of highly water-absorptive polymer
WO2005095498A1 (en) Improved method of manufacturing superabsorbent polymers
US4806578A (en) Process for producing highly absorptive resin
US5229466A (en) Powdery absorbing material for aqueous liquids based on water-swellable carboxylate polymers
JP3118779B2 (en) Method for producing improved superabsorbent resin
JPH0617394B2 (en) Method for producing super absorbent polymer
JPH02153903A (en) Production of highly hygroscopic resin
JP2862357B2 (en) Water absorbing agent and method for producing the same
JP4550256B2 (en) Manufacturing method of water absorbent resin
JPH01297430A (en) Method for treating surface of water-absorbable resin
JPS5938271A (en) Water-holding agent
JPH02199104A (en) Water-absorptive resin and its production
JP2967952B2 (en) Method for producing porous polymer
JP2679732B2 (en) Water absorbing gel composition with excellent light resistance and heat resistance
JPH0717758B2 (en) Super absorbent resin manufacturing method
JPS63132901A (en) Production of water-absorbent resin
JPS63199205A (en) Production of highly water absorbing polymer