WO2021187323A1 - Method for producing water-absorbing resin particles - Google Patents

Method for producing water-absorbing resin particles Download PDF

Info

Publication number
WO2021187323A1
WO2021187323A1 PCT/JP2021/009867 JP2021009867W WO2021187323A1 WO 2021187323 A1 WO2021187323 A1 WO 2021187323A1 JP 2021009867 W JP2021009867 W JP 2021009867W WO 2021187323 A1 WO2021187323 A1 WO 2021187323A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
mass
premix
water
linking agent
Prior art date
Application number
PCT/JP2021/009867
Other languages
French (fr)
Japanese (ja)
Inventor
萌 西田
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022508291A priority Critical patent/JPWO2021187323A1/ja
Publication of WO2021187323A1 publication Critical patent/WO2021187323A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a method for producing water-absorbent resin particles.
  • Patent Document 1 discloses a method for producing surface-crosslinked water-absorbent resin particles that can be used for absorbent articles such as sanitary products.
  • Cross-linking treatment such as surface cross-linking tends to improve the absorption performance of water-absorbent resin particles under pressure.
  • the cross-linking method has a limitation in its application because it tends to reduce the centrifuge holding capacity (CRC), which is the basic water absorption performance of the absorbent resin particles.
  • One aspect of the present invention provides a method for producing water-absorbent resin particles, which can improve the absorption performance of the water-absorbent resin particles under pressure while suppressing the decrease in CRC by cross-linking the polymer particles.
  • One aspect of the present invention relates to a method for producing water-absorbent resin particles containing polymer particles.
  • the method comprises mixing a polymer and a powder of polymer particles containing water with a cross-linking agent and a cross-linking agent solution containing water to form a premix, and premixing the premix with the premix.
  • a cross-linking agent and a cross-linking agent solution containing water to form a premix
  • premixing the premix with the premix By heating so that a part of the water contained in the mixture is removed, thereby forming the cross-linking agent-introduced particles containing the polymer and the cross-linking agent, and further heating the cross-linking agent-introduced particles. It comprises forming polymer particles containing the polymer crosslinked by the cross-linking agent.
  • the total of the water content of the polymer particles at the time when the powder is mixed with the cross-linking agent solution and the water content of the cross-linking agent solution is Y1 (g), and the water content of the premix is Y2 (g).
  • the premix is used to form the cross-linking agent-introduced particles.
  • Moisture residual rate (mass%) (Y2 / Y1) ⁇ 100
  • the water residual ratio of the premix calculated in is 85% by mass or less
  • Formula: Moisture content (mass%) (Y2 / Z2) x 100 It is heated until the moisture content of the premix calculated in 1 is 10% by mass or less.
  • the cross-linking agent-introduced particles in which the cross-linking agent stays near the surface of the polymer particles are formed, and when the cross-linking proceeds in that state, the cross-linking density is increased in a relatively thin region near the surface of the polymer particles.
  • polymer particles in which a region having a relatively low crosslink density is widely maintained can be obtained, which is presumed to contribute to the suppression of CRC decrease.
  • a method for producing water-absorbent resin particles which can improve the absorption performance of the water-absorbent resin particles under pressure while suppressing the decrease in CRC by cross-linking the polymer particles.
  • (meth) acrylic means both acrylic and methacryl.
  • acrylate and “methacrylate” are also referred to as “(meth) acrylate”. This is also true for other similar terms.
  • (Poly) means both with and without the "poly” prefix.
  • the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • Saline refers to a 0.9% by mass sodium chloride aqueous solution.
  • Room temperature means 25 ° C.
  • One embodiment of the method for producing water-absorbent resin particles forms a premix by mixing the polymer and the powder of the polymer particles containing water with a cross-linking agent and a cross-linking agent solution containing water. That is, the premix is heated so that a part of the water contained in the premix is removed, thereby forming the crosslinker-introduced particles containing the polymer and the crosslinker, and the crosslinker-introduced particles are further added. It includes forming polymer particles containing a polymer crosslinked by a cross-linking agent by heating.
  • the polymer forming the polymer particles may be any as long as it can impart water absorption to the polymer particles.
  • the monomer constituting the polymer may be an ethylenically unsaturated monomer.
  • the polymer may be a crosslinked polymer.
  • the ethylenically unsaturated monomer constituting the polymer is, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N, N.
  • -Dimethyl (meth) acrylamide 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl ( It may contain at least one compound selected from the group consisting of meta) acrylate and diethylaminopropyl (meth) acrylamide.
  • the amino group may be quaternized.
  • the ethylenically unsaturated monomer constituting the polymer contains at least one compound selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt, acrylamide, methacrylicamide and N, N-dimethylacrylamide. It may contain acrylic acid and its salt, methacrylic acid and its salt, and at least one compound selected from the group consisting of acrylamide, from acrylic acid and its salt, and methacrylic acid and its salt. It may contain at least one compound selected from the group.
  • the polymer forming the polymer particles may have a functional group that reacts with the cross-linking agent.
  • This functional group may be, for example, a carboxyl group, an amino group, or a combination thereof.
  • the carboxyl group can be, for example, a group derived from acrylic acid, methacrylic acid or salts thereof.
  • the polymer may contain a monomer unit derived from a monomer other than the ethylenically unsaturated monomer.
  • the proportion of the monomer unit derived from the ethylenically unsaturated monomer (particularly (meth) acrylic acid and a salt thereof) in the polymer may be 70 to 100 mol% with respect to the total amount of the monomer.
  • the polymer particles can be obtained by, for example, a polymerization method selected from a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method.
  • Polymer particles containing a crosslinked polymer can be obtained by self-crosslinking during polymerization, reaction with an internal crosslinking agent, or a combination thereof.
  • An example of a method for obtaining polymer particles by an aqueous solution polymerization method is to polymerize an ethylenically unsaturated monomer in a monomer aqueous solution containing an ethylenically unsaturated monomer and water to contain the polymer and water. Forming a lumpy hydrogel polymer, crushing the hydrogel polymer to form a crushed product, drying the crushed product to obtain a dried product, and further crushing the dried product. To obtain polymer particles.
  • the powder of the polymer particles after pulverization may be classified by a sieve or the like.
  • the acid group is neutralized with an alkaline neutralizer if necessary.
  • alkaline neutralizers include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate; and ammonia.
  • the degree of neutralization of the monomer by the alkaline neutralizing agent may be 10 to 100 mol%, 30 to 90 mol%, 40 to 85 mol%, or 50 to 80 mol%.
  • the degree of neutralization means the ratio of neutralized acid groups based on the amount of all acid groups contained in the monomer.
  • the monomer aqueous solution may contain a polymerization initiator.
  • the polymerization initiator may be a photoradical polymerization initiator, a thermal radical polymerization initiator, or a combination thereof.
  • the polymerization initiator may be water-soluble.
  • the thermal radical polymerization initiator may be, for example, an azo compound, a peroxide, or a combination thereof.
  • the amount of the polymerization initiator is, for example, 0.001 to 1 mol, 0.005 to 0.5 mol, 0.008 to 0.3 mol, or 0.01 to 0.2 mol with respect to 100 mol of the monomer. It may be.
  • the monomer aqueous solution may further contain a chain transfer agent or the like, if necessary.
  • the monomer aqueous solution may contain an internal cross-linking agent, in which case polymer particles containing a cross-linked polymer cross-linked by the internal cross-linking agent can be obtained.
  • the internal cross-linking agent may be a compound having two or more reactive functional groups (for example, polymerizable unsaturated groups).
  • Examples of internal cross-linking agents are di or tri (meth) acrylics of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, (poly) glycerin.
  • Acid esters Unsaturated polyesters obtained by reacting the above polyol with unsaturated acids (maleic acid, fumaric acid, etc.); (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) ) Glycidyl group-containing compounds such as glycerin diglycidyl ether and glycidyl (meth) acrylate; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; Tri (meth) acrylic acid esters; di (meth) acrylic acid carbamil esters obtained by reacting polyisocyanates (trilylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylic acid; allylated starch Alylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene; pentaerythr
  • the internal cross-linking agent is composed of polyethylene glycol diacrylate, trimethylpropantriacrylate, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may contain at least one selected.
  • the coarsely crushed product obtained by coarsely crushing the hydrogel polymer may be in the form of particles, or may have an elongated shape in which a plurality of particles are connected.
  • the minimum width of the coarse crushed product may be, for example, about 0.1 to 15 mm or 1.0 to 10 mm.
  • the maximum width of the coarse crushed product may be about 0.1 to 200 mm or 1.0 to 150 mm.
  • devices for coarse crushing include centrifugal crushers, kneaders (eg, pressurized kneaders, double-armed kneaders, etc.), meat choppers, cutter mills, and pharma mills.
  • the moisture content of the dried product obtained by drying may be, for example, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the water content can be measured by the same method as the “moisture content of polymer particles” described later.
  • the drying method may be a general method such as natural drying, heat drying, spray drying, vacuum drying or a combination thereof.
  • the coarsely crushed product may be dried under normal pressure or reduced pressure.
  • the heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
  • the method of crushing the dried product is not particularly limited.
  • the dried product can be crushed by using a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill.
  • a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill.
  • the powder of the polymer particles obtained by pulverization may be classified.
  • Classification means an operation of dividing a particle group (powder) into two or more particle groups having different particle size distributions. A part of the powder of the polymer particles after the classification may be pulverized and classified again.
  • the classification method is not particularly limited, but may be, for example, screen classification or wind power classification.
  • Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker.
  • Wind power classification is a method of classifying particles using the flow of air.
  • the medium particle size of the polymer particles before being mixed with the cross-linking agent solution which is obtained through pulverization and, if necessary, particle size adjustment such as classification, may be, for example, 200 to 500 ⁇ m.
  • the CRC of the polymer particles before being mixed with the cross-linking agent solution which is used in the step for surface cross-linking described later, may be, for example, 30 to 50 g / g.
  • the water content of the polymer particles before being mixed with the cross-linking agent solution may be 0 to 20% by mass, 0 to 10% by mass, or more than 0% by mass and 5% by mass or less.
  • the water content of the polymer particles after the preheating may be within the above range.
  • the "moisture content of the polymer particles” means the ratio of the water content in the polymer particles based on the total mass of the polymer particles containing water.
  • the difference in mass of the polymer particles before and after heating can be regarded as the amount of water in the polymer particles. Details of the method for measuring the water content will be described in Examples described later.
  • the temperature of the polymer particles may be raised by preheating the powder of the polymer particles before mixing with the cross-linking agent solution.
  • the powder of the polymer particles whose temperature has been raised by the preheating is mixed with the cross-linking agent solution.
  • Preheating may be performed while stirring the powder.
  • the temperature reached by the polymer particles by preheating may be in the same range as the heating temperature of the premix.
  • the preheating time may be in the range where the temperature of the polymer particles is equal to or higher than a predetermined temperature, and may be, for example, 2 to 60 minutes.
  • the heating means for preheating is not particularly limited and can be selected from ordinary methods.
  • the preheated polymer particle powder is mixed with the cross-linking agent solution.
  • the amount of the cross-linking agent solution mixed with the powder of the polymer particles may be 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer particles. Additional materials other than the polymer particle powder and the cross-linking agent solution may be further added to the premix, but the amount of the non-water component of the additional material is the polymer particle powder and cross-linking. It may be, for example, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or 1% by mass or less with respect to the total mass of the agent solution.
  • the temperature at which the premix is heated (the temperature of the premix) is adjusted within a range in which the water in the premix is gradually removed and the progress of the reaction by the cross-linking agent is suppressed. Therefore, the temperature of the premix to be heated may be lower than the heating temperature for cross-linking the polymer in the polymer particles with a cross-linking agent.
  • the temperature of the premix to be heated is 50 ° C. or higher, 55 ° C. or higher, 60 ° C. or higher, 65 ° C. or higher, 70 ° C. or higher, 75 ° C. or higher, 80 ° C. or higher, 85 ° C. or higher, 90 ° C. or higher. It may be 95 ° C.
  • the temperature of the premix to be heated is 50 ° C or higher, 55 ° C or higher, 60 ° C or higher, 65 ° C or higher, 70 ° C or higher, 75 ° C or higher, 80 ° C or higher, 85 ° C or higher, 90 ° C or higher, 95 ° C or higher or 100.
  • ° C or higher and may be 180 ° C or lower, 50 ° C or higher, 55 ° C or higher, 60 ° C or higher, 65 ° C or higher, 70 ° C or higher, 75 ° C or higher, 80 ° C or higher, 85 ° C or higher, 90 ° C or higher, 95 ° C. It may be higher than or equal to 100 ° C. or higher and 170 ° C. or lower.
  • the heating temperature is high, the decrease in CRC can be suppressed more effectively, and the heating time of the cross-linking agent-introduced particles tends to be shortened.
  • these temperature ranges may be applied when the cross-linking agent contains an alkylene carbonate compound.
  • the heating temperature of the premix does not have to be kept constant and may vary.
  • the heating time of the premix may be, for example, 2 minutes or more, 5 minutes or more, 60 minutes or less, 50 minutes or less, or 40 minutes or less.
  • the heating time of the premix may be 2 minutes or more and 60 minutes or less, 50 minutes or less, or 40 minutes or less, and 5 minutes or more and 60 minutes or less, 50 minutes or less, or 40 minutes or less. ..
  • the time for the premix to be heated to the above temperature range may be 2 minutes or more, or 5 minutes or more, 60 minutes or less, 50 minutes or less, or 40 minutes or less. You may.
  • the time for the premix to be heated to the above temperature range may be 60 minutes or less, 50 minutes or less or 40 minutes or less in 2 minutes or more, and 60 minutes in 5 minutes or more. Hereinafter, it may be 50 minutes or less or 40 minutes or less.
  • the heating time here can be the time from the time when the powder of the polymer particles is mixed with the total amount of the cross-linking agent solution.
  • the time (mixing time) from the start of mixing the polymer particle powder with the cross-linking agent solution to the time when the polymer particle powder is mixed with the total amount of the cross-linking agent solution is, for example, 1 second or more. It may be present, or it may be within 120 seconds.
  • the heating conditions of the premix are controlled so that the residual water content and the water content of the premix are within a predetermined range, which are calculated by the following formulas.
  • a predetermined range which are calculated by the following formulas.
  • Y1 is the sum of the water content of the polymer particles at the time when the powder of the polymer particles is mixed with the cross-linking agent solution and the water content of the cross-linking agent solution mixed with the polymer particles, and is usually used.
  • Y2 is the amount of water in the premixture
  • Z2 is the mass of the portion of the premixture excluding water.
  • Y1, Y2 and Z2 can be determined from, for example, the amount of the polymer particles and the cross-linking agent solution charged, and the measured values of the water content of the polymer particles and the premixture.
  • the water residual ratio in the premixture (crosslinking agent-introduced particles) after heating is a reserve relative to the total amount of water contained in the polymer particles before forming the premixture and water contained in the crosslinking agent solution. It corresponds to the percentage of the amount of water remaining in the mixture. If any material containing water is added to the premix, the amount of water contained in that material is also added to Y1. That is, Y1 is determined by regarding water derived from some material added other than the polymer particles and the cross-linking agent solution as a part of the water introduced by the cross-linking agent solution.
  • the water residual ratio of the premix after heating is usually 85% by mass or less.
  • the water residual ratio may be 80% by mass or less, 70% by mass or less, 65% by mass or less, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more. , 35% by mass or more, or 40% by mass or more.
  • the residual water content of the premix after heating is 85% by mass or less, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass. It may be 80% by mass or less, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more.
  • the water content of the premix after heating corresponds to the ratio of the amount of water remaining in the premix to the mass of the portion of the premix after heating excluding water.
  • This water content can be calculated from, for example, the total mass of the premix containing water and the water content of the premix.
  • the water content of the premix can be measured in the same manner as the water content of the polymer particles described above.
  • the moisture content of the premix after heating is 10% by mass or less. This corresponds to a small initial water content of the premix.
  • the water content of the premix after heating is 9% by mass or less, 8% by mass or less, 7% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less or 3.5% by mass or less. It may be 0.1% by mass or more.
  • the heating means for heating the premix is not particularly limited and can be selected from ordinary methods.
  • the premix may be heated with stirring.
  • the powder of the polymer particles is preheated in the mixing container, the cross-linking agent solution is added to the powder in the preheated state, and the powder is preheated in the same mixing container as the preheating.
  • the mixture may continue to be heated.
  • the cross-linking agent solution can be water or a solution containing a cross-linking agent dissolved in water.
  • the solvent contained in the cross-linking agent solution may be substantially only water.
  • the proportion of the solvent other than water may be 10% by mass or less, 5% by mass or less, or 1% by mass or less based on the mass of the cross-linking agent solution.
  • the solvent other than water may be a hydrophilic organic solvent, and examples thereof include ethyl alcohol, isopropyl alcohol, and acetone.
  • the cross-linking agent contained in the cross-linking agent solution is mainly used to increase the cross-linking density near the surface of the polymer particles. Therefore, the cross-linking agent may be referred to as a "surface cross-linking agent".
  • surface cross-linking agents include polyol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol.
  • Polyglycidyl compounds such as diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl ether; epichlorohydrin , Epibromhydrin, and haloepoxy compounds such as ⁇ -methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol.
  • 3-Butyl-3-oxetanemethanol 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, and oxetane compounds such as 3-butyl-3-oxetaneethanol; 1,2-ethylenebisoxazoline and the like.
  • These surface cross-linking agents may be used alone or in combination of two or more.
  • the surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof, or may contain an alkylene carbonate compound.
  • the ratio of the alkylene carbonate compound in the surface cross-linking agent is 25 to 100 mol%, 30 to 100 mol%, 30 to 80 mol%, 35 to 70 mol%, or 35 based on the total amount of substance (mol) of the surface cross-linking agent. It may be up to 55 mol%.
  • the amount of the cross-linking agent is 0.00001 to 0. Per mol of the monomer unit constituting the polymer in the polymer particles. It may be 03 mol, 0.00005 to 0.02 mol, or 0.0001 to 0.01 mol.
  • the concentration of the cross-linking agent (surface cross-linking agent) in the cross-linking agent solution may be, for example, 0.1 to 50.0% by mass based on the mass of the cross-linking agent solution.
  • the concentration of the cross-linking agent here means the total concentration of the cross-linking agent solutions when the cross-linking agent solution contains two or more kinds of cross-linking agents.
  • the polymer crosslinked mainly by the surface cross-linking agent in the vicinity of the particle surface is obtained.
  • the containing polymer particles, that is, the surface-crosslinked polymer particles are formed.
  • the heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like.
  • the heating temperature for surface cross-linking may exceed 180 ° C. or 190 ° C. or higher.
  • the heating temperature for surface cross-linking may be 250 ° C. or lower.
  • these temperature ranges may be applied when the surface cross-linking agent contains an alkylene carbonate compound.
  • the heating time for surface cross-linking may be, for example, 5 to 90 minutes.
  • polymer particles (water-absorbent resin particles) in which AAP is increased can be obtained while suppressing a decrease in CRC due to surface cross-linking. That is, the CRC and AAP of the polymer particles before being mixed with the cross-linking agent solution (or before preheating) were surface-crosslinked with "CRC (before surface cross-linking)" and "AAP (before surface cross-linking)", respectively.
  • the CRC and AAP of the polymer particles are "CRC (after surface cross-linking)" and "AAP (after surface cross-linking)"
  • the sum of ⁇ CRC and ⁇ AAP ( ⁇ CRC + ⁇ AAP) calculated by the following formula is large.
  • ⁇ CRC CRC (after surface cross-linking) -CRC (before surface cross-linking)
  • ⁇ AAP AAP (after surface cross-linking) -AAP (before surface cross-linking)
  • Surface cross-linking tends to reduce CRC and increase AAP. Therefore, ⁇ CRC has a negative value, and ⁇ AAP has a positive value in many cases.
  • a large ⁇ CRC + ⁇ AAP means that the AAP increased while suppressing the decrease in CRC associated with surface cross-linking.
  • the polymer particles so that ⁇ CRC + ⁇ AAP is 12.0 g / g or more, 13.0 g / g or more, 14.0 g / g or more, or 15.0 g / g or more.
  • the upper limit of ⁇ CRC + ⁇ AAP is not particularly limited, but is usually about 60 g / g.
  • the surface-crosslinked polymer particles may be further dried or classified if necessary.
  • Inorganic particles may be attached to the surface of the polymer particles. Examples of inorganic particles include silica particles such as amorphous silica.
  • FIG. 1 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 1 includes a sheet-shaped absorber 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40.
  • the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorber 10 has water-absorbent resin particles 10a produced by the method according to the above-described embodiment, and a fiber layer 10b containing a fibrous material.
  • the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • CRC Centrifuge retention capacity
  • the mass Mb of the non-woven fabric bag, which has been subjected to the same operation as the above operation without accommodating the particles to be measured, is measured.
  • AAP Absorption rate under pressure
  • the measuring device 110 is composed of a weight 112, a plastic cylinder 114 having an inner diameter of 60 mm, and a wire mesh 116 having a 400 mesh (opening 38 ⁇ m).
  • the wire mesh 116 closes one opening of the cylinder 114, and the cylinder 114 and the wire mesh 116 are arranged so that the wire mesh 116 is horizontal.
  • the weight 112 has a disc portion 112a, a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a cylindrical portion 112c having a through hole in the center.
  • the rod-shaped portion 112b is inserted into the through hole.
  • the disk portion 112a has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can move in the vertical direction of the cylinder 114 inside the cylinder 114.
  • the diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a.
  • the weight of the weight 112 is adjusted so that a pressure of 2.07 kPa is applied to the particles to be measured.
  • a glass filter 140 (ISO4793 P-250) having a diameter of 90 mm and a thickness of 7 mm is placed in the center of the bottom surface (diameter 150 mm) in the recess of the stainless steel petri dish 130.
  • 0.90 mass% sodium chloride aqueous solution (25 ° C. ⁇ 2 ° C.) is added to the stainless steel petri dish until the water surface is level with the upper surface of the glass filter 140.
  • a sheet of filter paper 150 with a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 ⁇ m) is placed on the glass filter 140, and the entire surface of the filter paper 150 is sodium chloride.
  • the measuring device 110 in which the particles 120 before liquid absorption are charged is placed on the filter paper 150, and the particles 120 are made to absorb the sodium chloride aqueous solution while pressurizing the particles 120 at a pressure of 2.07 kPa.
  • the measuring device 110 is lifted and the total mass Wb [g] of the measuring device 110 and the particles 120 after absorbing the liquid is measured.
  • the absorption ratio under pressure (AAP) [g / g] is calculated by the following formula.
  • AAP [g / g] (Wb [g] -Wa [g]) /0.90 [g]
  • a rotor (8 mm ⁇ 30 mm, without ring) and 50 g of physiological saline are placed in a beaker having a water absorption rate of 100 mL by the Vortex method, and the beaker containing the physiological saline is held at 25 ° C. in a constant temperature bath.
  • 2.0 g of the particles for measurement are put into a vortex of physiological saline stirred at 600 rpm, and at the same time, measurement with a stopwatch is started.
  • the time point at which the vortex on the liquid surface converges is set as the end point, and the time (seconds) up to that point is taken as the water absorption rate.
  • Medium particle size 10 g of powder of polymer particles or water-absorbent resin particles is mixed with a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.) and JIS standard opening 850 ⁇ m, 500 ⁇ m. , 425 ⁇ m, 300 ⁇ m, 250 ⁇ m, 180 ⁇ m and 106 ⁇ m sieves and a saucer are used for sieving.
  • the mass of the particles remaining on each sieve is calculated as a mass percentage with respect to the total amount.
  • the mass percentages of the particles remaining on each sieve are integrated in order from the one with the largest particle size, and the relationship between the mesh size of the sieve and the integrated value of the mass percentages of the particles remaining on the sieve is plotted on logarithmic probability paper. .. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass is obtained, and this is defined as the medium particle size.
  • the temperature of the reaction solution began to rise with the start of polymerization, and 3 minutes later, the maximum temperature reached 93 ° C. Then, the internal temperature was kept at 60 ° C., and 60 minutes after the start of the polymerization, the produced hydrogel-like polymer was taken out from the kneader.
  • the hydrogel polymer was sequentially put into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed.
  • the diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm.
  • the coarsely crushed product of the hydrogel polymer was spread over a wire mesh having a mesh size of 0.8 cm ⁇ 0.8 cm and placed, and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
  • the dried product was crushed using a centrifugal crusher (Resch, ZM200, screen diameter 1 mm, 6000 rpm).
  • the obtained pulverized material was passed through a sieve having a mesh size of 850 ⁇ m, and amorphous crushed particles (medium particle size: 331 ⁇ m) that did not pass through a sieve having a mesh size of 180 ⁇ m were obtained as polymer particles before surface cross-linking. rice field.
  • the obtained polymer particles exhibited a centrifuge holding capacity (CRC) of 39.9 g / g, an absorption ratio under pressure (AAP) of 8.1 g / g, and a water content of 5.4% by mass. ..
  • the cross-linking agent solution contained 11.13% by mass of ethylene carbonate, 17.77% by mass of propylene glycol, and 71.10% by mass of deionized water based on the total mass thereof.
  • the premix containing the polymer particles and the cross-linking agent solution was stirred for 3 minutes after the completion of dropping the cross-linking agent solution. During that time, the temperature of the polymer particles was maintained at about 170 ° C. by heating with an oil bath at 200 ° C.
  • the premix was stirred with heating for 3 minutes, the premix (crosslinking agent-introduced particles) was removed from the separable flask.
  • the water content ⁇ 2 of the premix (crosslinking agent-introduced particles) after the heat treatment was measured and found to be 1.68% by mass.
  • the cross-linking agent-introduced particles taken out from the separable flask are immediately surface-crosslinked with the polymer particles by heating them in a hot air dryer (manufactured by ADVANTEC, model: FV-320) set to an internal temperature of 200 ° C. for 90 minutes. Was advanced.
  • a hot air dryer manufactured by ADVANTEC, model: FV-320
  • X1 / (Z0 + X1) ⁇ 1 / 100
  • the total Y1 of the water content X1 in the polymer particles and the water content in the cross-linking agent solution was calculated by the following formula.
  • the mass of the portion of the premix after heating (crosslinking agent-introduced particles) excluding water that is, the total of the dry mass Z0 of the polymer particles before being mixed with the crosslinking agent solution and the crosslinking agent in the crosslinking agent solution.
  • the mass Z2 of was calculated by the following formula.
  • Example 2 Water-absorbent resin particles, which are surface-crosslinked polymer particles, were obtained in the same manner as in Example 1 except that the time for stirring the premix while heating was changed to 5 minutes. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1.
  • Example 3 Water-absorbent resin particles, which are surface-crosslinked polymer particles, were obtained in the same manner as in Example 1 except that the time for stirring the premix while heating was changed to 35 minutes. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1.
  • Example 4 The surface was the same as in Example 1 except that the temperature of the polymer particles was adjusted to 130 ° C. by changing the temperature of the oil bath for preheating the polymer particles and heating the premixture to 150 ° C. Water-absorbent resin particles, which are crosslinked polymer particles, were obtained. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1. The time for stirring the premix while heating was also set to 3 minutes as in Example 1.
  • Example 5 Water-absorbent resin particles, which are surface-crosslinked polymer particles, were obtained in the same manner as in Example 4 except that the time for stirring the premix while heating was changed to 35 minutes. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1.
  • Example 6 The surface was the same as in Example 1 except that the temperature of the polymer particles was adjusted to 90 ° C. by changing the temperature of the oil bath for preheating the polymer particles and heating the premixture to 110 ° C. Water-absorbent resin particles, which are crosslinked polymer particles, were obtained. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1. However, the time for stirring the premix while heating was set to 35 minutes.
  • Example 1 The surface was the same as in Example 1 except that the temperature of the polymer particles was adjusted to 40 ° C. by changing the temperature of the oil bath for preheating the polymer particles and heating the premixture to 45 ° C. Water-absorbent resin particles, which are crosslinked polymer particles, were obtained. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1. However, the time for stirring the premix while heating was set to 5 minutes.
  • Example 2 25 g of the polymer particles were placed in the same separable flask as in Example 1. The polymer particles were stirred for 35 minutes at a rotation speed of 300 rpm in a room temperature environment. The temperature of the polymer particles was 25 ° C. Next, 0.7 g of the same cross-linking agent solution as in Example 1 was placed in a separable flask, and the formed premix was stirred for 1 minute. The premix was heated in a hot air dryer (manufactured by ADVANTEC, model: FV-320) set to an internal temperature of 200 ° C. for 90 minutes.
  • a hot air dryer manufactured by ADVANTEC, model: FV-320
  • the powder of the polymer particles after heating was classified with a wire mesh having an opening of 850 ⁇ m to obtain water-absorbent resin particles which were fractions passing through the wire mesh of 850 ⁇ m.
  • the residual water content and the water content in the premix were determined by the same method as in Example 1.
  • Comparative Example 3 Water-absorbent resin particles were obtained in the same manner as in Comparative Example 2 except that the time for stirring the premix in the separable flask was changed to 35 minutes. The residual water content and the water content in the premix were determined by the same method as in Example 1.
  • Results Tables 1 and 2 show the evaluation results.
  • heating of the premix causes formation of cross-linking agent-introduced particles having a water content of 85% by mass or less and a water content of 10% by mass or less, and subsequent surface cross-linking reduces CRC. It was confirmed that AAP could be improved while suppressing it.
  • 10 Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 100 ... Absorbent article, 110 ... Measuring device, 112 ... Weight, 112a ... Disc, 112b ... Rod, 112c ... Cylindrical, 114 ... Cylindrical, 116 ... Wire mesh, 120 ... Particles to be measured, 130 ... Stainless petri dish, 140 ... Glass filter, 150 ... Filter paper.

Abstract

A method for producing water-absorbing resin particles is disclosed. This method comprises mixing a powder of polymer particles with a crosslinking-agent solution to form a premix and heating the premix to form particles containing the crosslinking agent introduced. If the sum of the water content in the polymer particles and the water content in the crosslinking-agent solution at the time when the powder is mixed with the crosslinking-agent solution is expressed by Y1, the water content in the premix is expressed by Y2, and the mass of the premix from which the water has been removed is expressed by Z2, then the premix is heated until the premix comes to have a water retention, as calculated with the equation Water retention (mass%) = (Y2/Y1)×100, of 85 mass% or less and a water content, as calculated with the equation Water content (mass%) = (Y2/Z2)×100, of 10 mass% or less.

Description

吸水性樹脂粒子を製造する方法Method for producing water-absorbent resin particles
 本発明は、吸水性樹脂粒子を製造する方法に関する。 The present invention relates to a method for producing water-absorbent resin particles.
 特許文献1には、サニタリー用品等の吸収性物品に用いることのできる、表面架橋された吸水性樹脂粒子の製造方法が開示されている。 Patent Document 1 discloses a method for producing surface-crosslinked water-absorbent resin particles that can be used for absorbent articles such as sanitary products.
特開平7-242709号公報Japanese Unexamined Patent Publication No. 7-242709
 表面架橋等の架橋処理により、吸水性樹脂粒子の加圧下での吸収性能が向上する傾向がある。しかし、架橋による方法は、吸収性樹脂粒子の基本的な吸水性能である遠心分離機保持容量(CRC)を低下させる傾向があるため、その適用に限界があった。 Cross-linking treatment such as surface cross-linking tends to improve the absorption performance of water-absorbent resin particles under pressure. However, the cross-linking method has a limitation in its application because it tends to reduce the centrifuge holding capacity (CRC), which is the basic water absorption performance of the absorbent resin particles.
 本発明の一側面は、重合体粒子の架橋により、CRCの減少を抑制しながら吸水性樹脂粒子の加圧下での吸収性能を向上できる、吸水性樹脂粒子の製造方法を提供する。 One aspect of the present invention provides a method for producing water-absorbent resin particles, which can improve the absorption performance of the water-absorbent resin particles under pressure while suppressing the decrease in CRC by cross-linking the polymer particles.
 本発明の一側面は、重合体粒子を含む吸水性樹脂粒子を製造する方法に関する。当該方法は、重合体及び水を含有する重合体粒子の粉体を、架橋剤及び水を含有する架橋剤溶液と混合することにより、予備混合物を形成することと、前記予備混合物を、前記予備混合物に含まれる水の一部が除去されるように加熱し、それにより前記重合体及び前記架橋剤を含む架橋剤導入粒子を形成することと、前記架橋剤導入粒子を更に加熱することにより、前記架橋剤によって架橋された前記重合体を含む重合体粒子を形成することと、を備える。前記粉体が前記架橋剤溶液と混合される時点の前記重合体粒子における水分量と前記架橋剤溶液における水分量との合計がY1(g)で、前記予備混合物における水分量がY2(g)で、前記予備混合物から水を除いた部分の質量がZ2(g)であるとき、前記架橋剤導入粒子を形成するために、前記予備混合物が、
式:水分残存率(質量%)=(Y2/Y1)×100
で算出される前記予備混合物の水分残存率が85質量%以下で、且つ、
式:水分率(質量%)=(Y2/Z2)×100
で算出される前記予備混合物の水分率が10質量%以下になるまで加熱される。
One aspect of the present invention relates to a method for producing water-absorbent resin particles containing polymer particles. The method comprises mixing a polymer and a powder of polymer particles containing water with a cross-linking agent and a cross-linking agent solution containing water to form a premix, and premixing the premix with the premix. By heating so that a part of the water contained in the mixture is removed, thereby forming the cross-linking agent-introduced particles containing the polymer and the cross-linking agent, and further heating the cross-linking agent-introduced particles. It comprises forming polymer particles containing the polymer crosslinked by the cross-linking agent. The total of the water content of the polymer particles at the time when the powder is mixed with the cross-linking agent solution and the water content of the cross-linking agent solution is Y1 (g), and the water content of the premix is Y2 (g). When the mass of the portion obtained by removing water from the premix is Z2 (g), the premix is used to form the cross-linking agent-introduced particles.
Formula: Moisture residual rate (mass%) = (Y2 / Y1) × 100
The water residual ratio of the premix calculated in is 85% by mass or less, and
Formula: Moisture content (mass%) = (Y2 / Z2) x 100
It is heated until the moisture content of the premix calculated in 1 is 10% by mass or less.
 上記方法により、架橋にともなうCRCの減少を抑制しながら、加圧下での吸収性能が大きく改善された吸水性樹脂粒子を製造することができる。重合体粒子と架橋剤溶液とを含む予備混合物を、水が除去されるように加熱すると、粒子表面近傍で架橋剤溶液の吸収と重合体粒子内部からの水の蒸発が競争するために、架橋剤が重合体粒子の内部深くまで浸透し難いと考えられる。その結果、架橋剤が重合体粒子の表面近傍に留まった架橋剤導入粒子が形成され、その状態で架橋が進行すると、重合体粒子の表面近傍の比較的薄い領域において架橋密度が高められる。それにより、架橋密度が比較的低い領域が内部に広く維持された重合体粒子が得られ、このことがCRC減少の抑制に寄与すると推察される。 By the above method, it is possible to produce water-absorbent resin particles having greatly improved absorption performance under pressure while suppressing a decrease in CRC due to cross-linking. When the premix containing the polymer particles and the cross-linking agent solution is heated so that water is removed, the cross-linking is performed because the absorption of the cross-linking agent solution and the evaporation of water from the inside of the polymer particles compete with each other near the particle surface. It is considered that the agent does not easily penetrate deep inside the polymer particles. As a result, the cross-linking agent-introduced particles in which the cross-linking agent stays near the surface of the polymer particles are formed, and when the cross-linking proceeds in that state, the cross-linking density is increased in a relatively thin region near the surface of the polymer particles. As a result, polymer particles in which a region having a relatively low crosslink density is widely maintained can be obtained, which is presumed to contribute to the suppression of CRC decrease.
 本発明の一側面によれば、重合体粒子の架橋により、CRCの減少を抑制しながら吸水性樹脂粒子の加圧下での吸収性能を向上できる、吸水性樹脂粒子の製造方法が提供される。 According to one aspect of the present invention, there is provided a method for producing water-absorbent resin particles, which can improve the absorption performance of the water-absorbent resin particles under pressure while suppressing the decrease in CRC by cross-linking the polymer particles.
吸収性物品の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an absorbent article. 加圧下吸収倍率(AAP)の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the absorption ratio under pressure (AAP).
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの両方を意味する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。これは他の類似の用語も同様である。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。「室温」は、25℃を意味する。 In the present specification, "(meth) acrylic" means both acrylic and methacryl. Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". This is also true for other similar terms. "(Poly)" means both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution. "Room temperature" means 25 ° C.
 吸水性樹脂粒子を製造する方法の一実施形態は、重合体及び水を含有する重合体粒子の粉体を、架橋剤及び水を含有する架橋剤溶液と混合することにより、予備混合物を形成することと、予備混合物を、予備混合物に含まれる水の一部が除去されるように加熱し、それにより重合体及び架橋剤を含む架橋剤導入粒子を形成することと、架橋剤導入粒子を更に加熱することにより、架橋剤によって架橋された重合体を含む重合体粒子を形成することとを含む。 One embodiment of the method for producing water-absorbent resin particles forms a premix by mixing the polymer and the powder of the polymer particles containing water with a cross-linking agent and a cross-linking agent solution containing water. That is, the premix is heated so that a part of the water contained in the premix is removed, thereby forming the crosslinker-introduced particles containing the polymer and the crosslinker, and the crosslinker-introduced particles are further added. It includes forming polymer particles containing a polymer crosslinked by a cross-linking agent by heating.
 重合体粒子を形成している重合体は、重合体粒子に吸水性を付与できるものであればよい。重合体を構成する単量体がエチレン性不飽和単量体であってもよい。重合体が架橋重合体であってもよい。 The polymer forming the polymer particles may be any as long as it can impart water absorption to the polymer particles. The monomer constituting the polymer may be an ethylenically unsaturated monomer. The polymer may be a crosslinked polymer.
 重合体を構成するエチレン性不飽和単量体は、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、並びにジエチルアミノプロピル(メタ)アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体がアミノ基を含有する場合には、当該アミノ基は4級化されていてもよい。重合体を構成するエチレン性不飽和単量体は、アクリル酸及びその塩、メタクリル酸及びその塩、アクリルアミド、メタクリルアミド並びにN,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよく、アクリル酸及びその塩、メタクリル酸及びその塩、並びにアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよく、アクリル酸及びその塩、並びにメタクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。 The ethylenically unsaturated monomer constituting the polymer is, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N, N. -Dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl ( It may contain at least one compound selected from the group consisting of meta) acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer contains an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer constituting the polymer contains at least one compound selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt, acrylamide, methacrylicamide and N, N-dimethylacrylamide. It may contain acrylic acid and its salt, methacrylic acid and its salt, and at least one compound selected from the group consisting of acrylamide, from acrylic acid and its salt, and methacrylic acid and its salt. It may contain at least one compound selected from the group.
 重合体粒子を形成している重合体は、架橋剤と反応する官能基を有していてもよい。この官能基は、例えば、カルボキシル基、アミノ基、又はこれらの組み合わせであってもよい。カルボキシル基は、例えば、アクリル酸、メタクリル酸又はこれらの塩に由来する基であることができる。 The polymer forming the polymer particles may have a functional group that reacts with the cross-linking agent. This functional group may be, for example, a carboxyl group, an amino group, or a combination thereof. The carboxyl group can be, for example, a group derived from acrylic acid, methacrylic acid or salts thereof.
 重合体は、エチレン性不飽和単量体以外の単量体に由来する単量体単位を含んでいてもよい。重合体におけるエチレン性不飽和単量体(特に、(メタ)アクリル酸及びその塩)に由来する単量体単位の割合は、単量体全量に対し70~100モル%であってもよい。 The polymer may contain a monomer unit derived from a monomer other than the ethylenically unsaturated monomer. The proportion of the monomer unit derived from the ethylenically unsaturated monomer (particularly (meth) acrylic acid and a salt thereof) in the polymer may be 70 to 100 mol% with respect to the total amount of the monomer.
 重合体粒子は、例えば、逆相懸濁重合法、水溶液重合法、バルク重合法、及び沈殿重合法から選ばれる重合方法により得ることができる。重合中の自己架橋、内部架橋剤との反応、又はこれらの組み合わせにより、架橋重合体を含む重合体粒子を得ることができる。 The polymer particles can be obtained by, for example, a polymerization method selected from a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. Polymer particles containing a crosslinked polymer can be obtained by self-crosslinking during polymerization, reaction with an internal crosslinking agent, or a combination thereof.
 水溶液重合法によって重合体粒子を得る方法の一例は、エチレン性不飽和単量体及び水を含有する単量体水溶液中でエチレン性不飽和単量体を重合して、重合体及び水を含有する塊状の含水ゲル状重合体を形成することと、含水ゲル状重合体を粗砕して粗砕物を形成することと、粗砕物を乾燥して乾燥物を得ることと、乾燥物を更に粉砕して重合体粒子を得ることとを含む。粉砕後の重合体粒子の粉体を篩等によって分級してもよい。 An example of a method for obtaining polymer particles by an aqueous solution polymerization method is to polymerize an ethylenically unsaturated monomer in a monomer aqueous solution containing an ethylenically unsaturated monomer and water to contain the polymer and water. Forming a lumpy hydrogel polymer, crushing the hydrogel polymer to form a crushed product, drying the crushed product to obtain a dried product, and further crushing the dried product. To obtain polymer particles. The powder of the polymer particles after pulverization may be classified by a sieve or the like.
 単量体が(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基がアルカリ性中和剤により中和されていてもよい。アルカリ性中和剤の例としては、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;及びアンモニアが挙げられる。アルカリ性中和剤による単量体の中和度は、10~100モル%、30~90モル%、40~85モル%、又は50~80モル%であってもよい。中和度は、単量体が有する全ての酸基の量を基準とする、中和された酸基の割合を意味する。 When the monomer has an acid group such as (meth) acrylic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, etc., the acid group is neutralized with an alkaline neutralizer if necessary. You may. Examples of alkaline neutralizers include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate; and ammonia. The degree of neutralization of the monomer by the alkaline neutralizing agent may be 10 to 100 mol%, 30 to 90 mol%, 40 to 85 mol%, or 50 to 80 mol%. The degree of neutralization means the ratio of neutralized acid groups based on the amount of all acid groups contained in the monomer.
 単量体水溶液は、重合開始剤を含んでいてもよい。重合開始剤は、光ラジカル重合開始剤、熱ラジカル重合開始剤又はこれらの組み合わせであってもよい。重合開始剤が水溶性であってもよい。熱ラジカル重合開始剤は、例えばアゾ系化合物、過酸化物又はこれらの組み合わせであってもよい。重合開始剤の量は、例えば単量体100モルに対して0.001~1モル、0.005~0.5モル、0.008~0.3モル、又は0.01~0.2モルであってもよい。単量体水溶液は、必要により連鎖移動剤等を更に含んでもよい。 The monomer aqueous solution may contain a polymerization initiator. The polymerization initiator may be a photoradical polymerization initiator, a thermal radical polymerization initiator, or a combination thereof. The polymerization initiator may be water-soluble. The thermal radical polymerization initiator may be, for example, an azo compound, a peroxide, or a combination thereof. The amount of the polymerization initiator is, for example, 0.001 to 1 mol, 0.005 to 0.5 mol, 0.008 to 0.3 mol, or 0.01 to 0.2 mol with respect to 100 mol of the monomer. It may be. The monomer aqueous solution may further contain a chain transfer agent or the like, if necessary.
 単量体水溶液が内部架橋剤を含んでいてもよく、その場合、内部架橋剤によって架橋された架橋重合体を含む重合体粒子を得ることができる。内部架橋剤は、反応性官能基(例えば重合性不飽和基)を2個以上有する化合物であってもよい。内部架橋剤の例としては、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、(ポリ)グリセリン等のポリオールのジ又はトリ(メタ)アクリル酸エステル類;上記ポリオールと不飽和酸(マレイン酸、フマル酸等)とを反応させて得られる不飽和ポリエステル類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、グリシジル(メタ)アクリレート等のグリシジル基含有化合物;N,N’-メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉;アリル化セルロース;ジアリルフタレート;N,N’,N”-トリアリルイソシアヌレート;ジビニルベンゼン;ペンタエリスリトール;エチレンジアミン;ポリエチレンイミンが挙げられる。CRCを高めやすい観点、及び、低温での反応性に優れる観点から、内部架橋剤が、ポリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも1種を含んでいてもよい。 The monomer aqueous solution may contain an internal cross-linking agent, in which case polymer particles containing a cross-linked polymer cross-linked by the internal cross-linking agent can be obtained. The internal cross-linking agent may be a compound having two or more reactive functional groups (for example, polymerizable unsaturated groups). Examples of internal cross-linking agents are di or tri (meth) acrylics of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, (poly) glycerin. Acid esters; Unsaturated polyesters obtained by reacting the above polyol with unsaturated acids (maleic acid, fumaric acid, etc.); (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) ) Glycidyl group-containing compounds such as glycerin diglycidyl ether and glycidyl (meth) acrylate; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; Tri (meth) acrylic acid esters; di (meth) acrylic acid carbamil esters obtained by reacting polyisocyanates (trilylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylic acid; allylated starch Alylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene; pentaerythritol; ethylenediamine; polyethyleneimine. From the viewpoint of easily increasing CRC and excellent reactivity at low temperature. From the viewpoint, the internal cross-linking agent is composed of polyethylene glycol diacrylate, trimethylpropantriacrylate, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. It may contain at least one selected.
 含水ゲル状重合体の粗砕により得られる粗砕物は、粒子状であってよく、複数の粒子が連なった細長い形状であってもよい。粗砕物の最小幅は、例えば、0.1~15mm、又は1.0~10mm程度であってもよい。粗砕物の最大幅は、0.1~200mm、又は1.0~150mm程度であってもよい。粗砕のための装置の例としては、遠心粉砕機、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、及びファーマミルが挙げられる。 The coarsely crushed product obtained by coarsely crushing the hydrogel polymer may be in the form of particles, or may have an elongated shape in which a plurality of particles are connected. The minimum width of the coarse crushed product may be, for example, about 0.1 to 15 mm or 1.0 to 10 mm. The maximum width of the coarse crushed product may be about 0.1 to 200 mm or 1.0 to 150 mm. Examples of devices for coarse crushing include centrifugal crushers, kneaders (eg, pressurized kneaders, double-armed kneaders, etc.), meat choppers, cutter mills, and pharma mills.
 粗砕物の乾燥により、粗砕物中の水の大部分が除去される。乾燥により得られる乾燥物の含水率が、例えば30質量%以下、20質量%以下、10質量%以下、又は5質量%以下であってもよい。含水率は、後述の「重合体粒子の含水率」と同様の方法で測定することができる。乾燥の方法は、例えば自然乾燥、加熱乾燥、噴霧乾燥、減圧乾燥又はこれらの組み合わせのような一般的な方法であってもよい。常圧下又は減圧下で粗砕物を乾燥してもよい。常圧下の乾燥のための加熱温度が、70~250℃、又は80~200℃であってもよい。 Most of the water in the crushed product is removed by drying the crushed product. The moisture content of the dried product obtained by drying may be, for example, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 5% by mass or less. The water content can be measured by the same method as the “moisture content of polymer particles” described later. The drying method may be a general method such as natural drying, heat drying, spray drying, vacuum drying or a combination thereof. The coarsely crushed product may be dried under normal pressure or reduced pressure. The heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
 乾燥物を粉砕する方法は特に限定されない。例えば、遠心粉砕機、ローラーミル、スタンプミル、ジェットミル、高速回転粉砕機、及び容器駆動型ミル等の粉砕機を用いて乾燥物を粉砕することができる。 The method of crushing the dried product is not particularly limited. For example, the dried product can be crushed by using a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill.
 粉砕により得られた重合体粒子の粉体を分級してもよい。分級は、粒子群(粉体)を、粒度分布の異なる2以上の粒子群に分ける操作のことを意味する。分級後の重合体粒子の粉体の一部を再度、粉砕及び分級してもよい。 The powder of the polymer particles obtained by pulverization may be classified. Classification means an operation of dividing a particle group (powder) into two or more particle groups having different particle size distributions. A part of the powder of the polymer particles after the classification may be pulverized and classified again.
 分級の方法は、特に限定されないが、例えば、スクリーン分級、又は風力分級であってもよい。スクリーン分級は、スクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法である。スクリーン分級は、例えば振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、又はロータップ式振とう器を用いて行うことができる。風力分級は、空気の流れを利用して粒子を分級する方法である。 The classification method is not particularly limited, but may be, for example, screen classification or wind power classification. Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker. Wind power classification is a method of classifying particles using the flow of air.
 粉砕、及び必要により分級等の粒度調整を経て得られる、架橋剤溶液と混合される前の重合体粒子の中位粒子径が、例えば200~500μmであってもよい。 The medium particle size of the polymer particles before being mixed with the cross-linking agent solution, which is obtained through pulverization and, if necessary, particle size adjustment such as classification, may be, for example, 200 to 500 μm.
 後述の表面架橋のための工程に供される、架橋剤溶液と混合される前の重合体粒子のCRCが、例えば30~50g/gであってもよい。架橋剤溶液と混合される前の重合体粒子の含水率が、0~20質量%、0~10質量%、又は、0質量%を超えて5質量%以下であってもよい。重合体粒子が後述のように予備加熱される場合、予備加熱後の重合体粒子における含水率が上記範囲内であってもよい。本明細書において、「重合体粒子の含水率」は、水を含む重合体粒子の全体質量を基準とする、重合体粒子における水分量の割合を意味する。通常、水を含む重合体粒子を200℃で2時間加熱したときに、加熱前後での重合体粒子の質量の差を、重合体粒子における水分量とみなすことができる。含水率の測定方法の詳細は後述の実施例において説明される。 The CRC of the polymer particles before being mixed with the cross-linking agent solution, which is used in the step for surface cross-linking described later, may be, for example, 30 to 50 g / g. The water content of the polymer particles before being mixed with the cross-linking agent solution may be 0 to 20% by mass, 0 to 10% by mass, or more than 0% by mass and 5% by mass or less. When the polymer particles are preheated as described later, the water content of the polymer particles after the preheating may be within the above range. In the present specification, the "moisture content of the polymer particles" means the ratio of the water content in the polymer particles based on the total mass of the polymer particles containing water. Usually, when the polymer particles containing water are heated at 200 ° C. for 2 hours, the difference in mass of the polymer particles before and after heating can be regarded as the amount of water in the polymer particles. Details of the method for measuring the water content will be described in Examples described later.
 重合体粒子の粉体を、架橋剤溶液と混合する前に予備加熱することにより、重合体粒子の温度を上昇させてもよい。この場合、予備加熱により温度が上昇した状態の重合体粒子の粉体が、架橋剤溶液と混合される。予備加熱により、CRCの減少抑制の効果がより一層顕著に奏され得る。粉体を撹拌しながら予備加熱してもよい。予備加熱により重合体粒子が到達する温度は、予備混合物の加熱温度と同様の範囲であってよい。予備加熱の時間は、重合体粒子の温度が所定の温度以上になる範囲であればよく、例えば2~60分であってもよい。予備加熱のための加熱手段は、特に制限されず、通常の方法から選択することができる。 The temperature of the polymer particles may be raised by preheating the powder of the polymer particles before mixing with the cross-linking agent solution. In this case, the powder of the polymer particles whose temperature has been raised by the preheating is mixed with the cross-linking agent solution. By preheating, the effect of suppressing the decrease in CRC can be exerted even more remarkably. Preheating may be performed while stirring the powder. The temperature reached by the polymer particles by preheating may be in the same range as the heating temperature of the premix. The preheating time may be in the range where the temperature of the polymer particles is equal to or higher than a predetermined temperature, and may be, for example, 2 to 60 minutes. The heating means for preheating is not particularly limited and can be selected from ordinary methods.
 必要により予備加熱された重合体粒子の粉体が、架橋剤溶液と混合される。形成された予備混合物を加熱することにより、予備混合物中の水の一部が除去され、それにより架橋剤及び重合体を含む架橋剤導入粒子が形成される。重合体粒子の粉体に混合される架橋剤溶液の量は、重合体粒子100質量部に対して0.1~20質量部であってもよい。予備混合物に、重合体粒子の粉体及び架橋剤溶液以外の追加の材料が更に加えられてもよいが、その追加の材料のうち水以外の成分の量は、重合体粒子の粉体及び架橋剤溶液の合計質量に対して、例えば5質量%以下、4質量%以下、3質量%以下、2質量%以下、又は1質量%以下であってもよい。 If necessary, the preheated polymer particle powder is mixed with the cross-linking agent solution. By heating the formed premix, some of the water in the premix is removed, thereby forming crosslinker-introduced particles containing the crosslinker and the polymer. The amount of the cross-linking agent solution mixed with the powder of the polymer particles may be 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer particles. Additional materials other than the polymer particle powder and the cross-linking agent solution may be further added to the premix, but the amount of the non-water component of the additional material is the polymer particle powder and cross-linking. It may be, for example, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or 1% by mass or less with respect to the total mass of the agent solution.
 予備混合物を加熱する温度(予備混合物の温度)は、予備混合物の水が徐々に除去されるとともに、架橋剤による反応の進行が抑制される範囲で、調整される。そのため、加熱される予備混合物の温度が、重合体粒子中の重合体を架橋剤によって架橋するための加熱温度よりも低くてもよい。具体的には、加熱される予備混合物の温度が、50℃以上、55℃以上、60℃以上、65℃以上、70℃以上、75℃以上、80℃以上、85℃以上、90℃以上、95℃以上又は100℃以上であってもよく、180℃以下又は170℃以下であってもよい。加熱される予備混合物の温度が、50℃以上、55℃以上、60℃以上、65℃以上、70℃以上、75℃以上、80℃以上、85℃以上、90℃以上、95℃以上又は100℃以上で180℃以下であってもよく、50℃以上、55℃以上、60℃以上、65℃以上、70℃以上、75℃以上、80℃以上、85℃以上、90℃以上、95℃以上又は100℃以上で170℃以下であってもよい。加熱温度が高いと、CRCの低下をより効果的に抑制できるとともに、架橋剤導入粒子の加熱時間を短縮できる傾向がある。例えば、架橋剤がアルキレンカーボネート化合物を含む場合に、これらの温度範囲を適用してもよい。予備混合物の加熱温度は、一定に維持される必要はなく、変動してもよい。 The temperature at which the premix is heated (the temperature of the premix) is adjusted within a range in which the water in the premix is gradually removed and the progress of the reaction by the cross-linking agent is suppressed. Therefore, the temperature of the premix to be heated may be lower than the heating temperature for cross-linking the polymer in the polymer particles with a cross-linking agent. Specifically, the temperature of the premix to be heated is 50 ° C. or higher, 55 ° C. or higher, 60 ° C. or higher, 65 ° C. or higher, 70 ° C. or higher, 75 ° C. or higher, 80 ° C. or higher, 85 ° C. or higher, 90 ° C. or higher. It may be 95 ° C. or higher or 100 ° C. or higher, and may be 180 ° C. or lower or 170 ° C. or lower. The temperature of the premix to be heated is 50 ° C or higher, 55 ° C or higher, 60 ° C or higher, 65 ° C or higher, 70 ° C or higher, 75 ° C or higher, 80 ° C or higher, 85 ° C or higher, 90 ° C or higher, 95 ° C or higher or 100. ° C or higher and may be 180 ° C or lower, 50 ° C or higher, 55 ° C or higher, 60 ° C or higher, 65 ° C or higher, 70 ° C or higher, 75 ° C or higher, 80 ° C or higher, 85 ° C or higher, 90 ° C or higher, 95 ° C. It may be higher than or equal to 100 ° C. or higher and 170 ° C. or lower. When the heating temperature is high, the decrease in CRC can be suppressed more effectively, and the heating time of the cross-linking agent-introduced particles tends to be shortened. For example, these temperature ranges may be applied when the cross-linking agent contains an alkylene carbonate compound. The heating temperature of the premix does not have to be kept constant and may vary.
 予備混合物の加熱時間は、例えば、2分以上、又は5分以上であってもよく、60分以下、50分以下、又は40分以下であってもよい。予備混合物の加熱時間は、2分以上で60分以下、50分以下、又は40分以下であってもよく、5分以上で60分以下、50分以下、又は40分以下であってもよい。予備混合物の加熱温度が変動する場合、予備混合物が上記温度範囲に加熱される時間が、2分以上、又は5分以上であってもよく、60分以下、50分以下又は40分以下であってもよい。予備混合物の加熱温度が変動する場合、予備混合物が上記温度範囲に加熱される時間が、2分以上で60分以下、50分以下又は40分以下であってもよく、5分以上で60分以下、50分以下又は40分以下であってもよい。ここでの加熱時間は、重合体粒子の粉体が架橋剤溶液の全量と混合された時点からの時間であることができる。重合体粒子の粉体を架橋剤溶液との混合を開始してから、重合体粒子の粉体が架橋剤溶液の全量と混合される時点までの時間(混合時間)は、例えば1秒以上であってもよく、120秒以内であってもよい。 The heating time of the premix may be, for example, 2 minutes or more, 5 minutes or more, 60 minutes or less, 50 minutes or less, or 40 minutes or less. The heating time of the premix may be 2 minutes or more and 60 minutes or less, 50 minutes or less, or 40 minutes or less, and 5 minutes or more and 60 minutes or less, 50 minutes or less, or 40 minutes or less. .. When the heating temperature of the premix varies, the time for the premix to be heated to the above temperature range may be 2 minutes or more, or 5 minutes or more, 60 minutes or less, 50 minutes or less, or 40 minutes or less. You may. When the heating temperature of the premix varies, the time for the premix to be heated to the above temperature range may be 60 minutes or less, 50 minutes or less or 40 minutes or less in 2 minutes or more, and 60 minutes in 5 minutes or more. Hereinafter, it may be 50 minutes or less or 40 minutes or less. The heating time here can be the time from the time when the powder of the polymer particles is mixed with the total amount of the cross-linking agent solution. The time (mixing time) from the start of mixing the polymer particle powder with the cross-linking agent solution to the time when the polymer particle powder is mixed with the total amount of the cross-linking agent solution is, for example, 1 second or more. It may be present, or it may be within 120 seconds.
 予備混合物の加熱条件(例えば加熱温度及び加熱時間)は、下記式により算出される、予備混合物の水分残存率及び水分率が所定の範囲となるように制御される。これにより、架橋にともなうCRCの減少を効果的に抑制することができる。水分残存率の制御は、粒子の凝集による粗大粒子の形成を抑制するためにも有利である。
  水分残存率(質量%)=(Y2/Y1)×100
  水分率(質量%)=(Y2/Z2)×100
 ここで、Y1は、重合体粒子の粉体が架橋剤溶液と混合される時点の重合体粒子における水分量と、重合体粒子に混合される架橋剤溶液における水分量との合計であり、通常、予備混合物における初期の水分量に相当する。Y2は予備混合物における水分量であり、Z2は予備混合物から水を除いた部分の質量である。Y1、Y2及びZ2は、例えば、重合体粒子及び架橋剤溶液の仕込み量、並びに、重合体粒子及び予備混合物の含水率の実測値から、求めることができる。
The heating conditions of the premix (for example, heating temperature and heating time) are controlled so that the residual water content and the water content of the premix are within a predetermined range, which are calculated by the following formulas. As a result, the decrease in CRC associated with cross-linking can be effectively suppressed. Controlling the residual water content is also advantageous for suppressing the formation of coarse particles due to the aggregation of particles.
Moisture residual rate (mass%) = (Y2 / Y1) x 100
Moisture content (mass%) = (Y2 / Z2) x 100
Here, Y1 is the sum of the water content of the polymer particles at the time when the powder of the polymer particles is mixed with the cross-linking agent solution and the water content of the cross-linking agent solution mixed with the polymer particles, and is usually used. , Corresponds to the initial water content in the premix. Y2 is the amount of water in the premixture, and Z2 is the mass of the portion of the premixture excluding water. Y1, Y2 and Z2 can be determined from, for example, the amount of the polymer particles and the cross-linking agent solution charged, and the measured values of the water content of the polymer particles and the premixture.
 加熱後の予備混合物(架橋剤導入粒子)における水分残存率は、予備混合物を形成する前の重合体粒子に含まれていた水、及び架橋剤溶液に含まれていた水の合計量に対する、予備混合物中に残存する水の量の割合に相当する。水を含む何らかの材料が予備混合物に更に加えられる場合、その材料に含まれる水の量もY1に加算される。すなわち、重合体粒子及び架橋剤溶液以外に添加される何らかの材料に由来する水も架橋剤溶液によって導入された水の一部とみなして、Y1が決定される。加熱後の予備混合物の水分残存率は、通常85質量%以下である。この水分残存率は、80質量%以下、70質量%以下、65質量%以下であってもよく、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、又は40質量%以上であってもよい。加熱後の予備混合物の水分残存率は、85質量%以下で10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、又は40質量%以上であってもよく、80質量%以下で10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、又は40質量%以上であってもよく、70質量%以下で10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、又は40質量%以上であってもよく、65質量%以下で10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、又は40質量%以上であってもよい。 The water residual ratio in the premixture (crosslinking agent-introduced particles) after heating is a reserve relative to the total amount of water contained in the polymer particles before forming the premixture and water contained in the crosslinking agent solution. It corresponds to the percentage of the amount of water remaining in the mixture. If any material containing water is added to the premix, the amount of water contained in that material is also added to Y1. That is, Y1 is determined by regarding water derived from some material added other than the polymer particles and the cross-linking agent solution as a part of the water introduced by the cross-linking agent solution. The water residual ratio of the premix after heating is usually 85% by mass or less. The water residual ratio may be 80% by mass or less, 70% by mass or less, 65% by mass or less, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more. , 35% by mass or more, or 40% by mass or more. The residual water content of the premix after heating is 85% by mass or less, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass. It may be 80% by mass or less, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more. It may be 70% by mass or less and 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more, 65. In mass% or less, it may be 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more.
 加熱後の予備混合物(架橋剤導入粒子)における水分率は、加熱後の予備混合物から水を除いた部分の質量に対する、予備混合物中に残存する水の量の割合に相当する。この水分率は、例えば、水を含む予備混合物の全体質量と、予備混合物の含水率から算出することができる。予備混合物の含水率は、上述の重合体粒子の含水率と同様の方法で測定することができる。加熱後の予備混合物の水分率は10質量%以下である。これは、予備混合物の初期の水分量が小さいことに相当する。加熱後の予備混合物の水分率は、9質量%以下、8質量%以下、7質量%以下、6質量%以下、5質量%以下、4質量%以下又は3.5質量%以下であってもよく、0.1質量%以上であってもよい。 The water content of the premix after heating (crosslinking agent-introduced particles) corresponds to the ratio of the amount of water remaining in the premix to the mass of the portion of the premix after heating excluding water. This water content can be calculated from, for example, the total mass of the premix containing water and the water content of the premix. The water content of the premix can be measured in the same manner as the water content of the polymer particles described above. The moisture content of the premix after heating is 10% by mass or less. This corresponds to a small initial water content of the premix. Even if the water content of the premix after heating is 9% by mass or less, 8% by mass or less, 7% by mass or less, 6% by mass or less, 5% by mass or less, 4% by mass or less or 3.5% by mass or less. It may be 0.1% by mass or more.
 予備混合物の加熱のための加熱手段は、特に制限されず、通常の方法から選択することができる。予備混合物を撹拌しながら加熱してもよい。重合体粒子を予備加熱する場合、混合容器内で重合体粒子の粉体を予備加熱し、予備加熱された状態の粉体に対して架橋剤溶液を加え、予備加熱と同じ混合容器内で予備混合物を引き続き加熱してもよい。 The heating means for heating the premix is not particularly limited and can be selected from ordinary methods. The premix may be heated with stirring. When preheating the polymer particles, the powder of the polymer particles is preheated in the mixing container, the cross-linking agent solution is added to the powder in the preheated state, and the powder is preheated in the same mixing container as the preheating. The mixture may continue to be heated.
 架橋剤溶液は、水、及び水に溶解した架橋剤を含有する溶液であることができる。架橋剤溶液に含まれる溶媒は、実質的に水のみであってもよい。水以外の溶媒の割合が、架橋剤溶液の質量を基準として、10質量%以下、5質量%以下、又は1質量%以下であってもよい。水以外の溶媒は、親水性の有機溶媒であってもよく、その例としては、エチルアルコール、イソプロピルアルコール、及びアセトンが挙げられる。 The cross-linking agent solution can be water or a solution containing a cross-linking agent dissolved in water. The solvent contained in the cross-linking agent solution may be substantially only water. The proportion of the solvent other than water may be 10% by mass or less, 5% by mass or less, or 1% by mass or less based on the mass of the cross-linking agent solution. The solvent other than water may be a hydrophilic organic solvent, and examples thereof include ethyl alcohol, isopropyl alcohol, and acetone.
 架橋剤溶液に含まれる架橋剤は、主に重合体粒子の表面近傍の架橋密度を高めるために用いられる。そのため、当該架橋剤のことを「表面架橋剤」ということがある。表面架橋剤の例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、及びポリグリセリン等のポリオール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、及び(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、及び3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のアルキレンカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの表面架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。表面架橋剤が、アルキレンカーボネート化合物、ポリオール化合物、又はこれらの組み合わせを含んでいてもよく、アルキレンカーボネート化合物を含んでいてもよい。表面架橋剤におけるアルキレンカーボネート化合物の比率が、表面架橋剤の総物質量(モル)を基準として25~100モル%、30~100モル%、30~80モル%、35~70モル%、又は35~55モル%であってもよい。 The cross-linking agent contained in the cross-linking agent solution is mainly used to increase the cross-linking density near the surface of the polymer particles. Therefore, the cross-linking agent may be referred to as a "surface cross-linking agent". Examples of surface cross-linking agents include polyol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol. Polyglycidyl compounds such as diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl ether; epichlorohydrin , Epibromhydrin, and haloepoxy compounds such as α-methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol. , 3-Butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, and oxetane compounds such as 3-butyl-3-oxetaneethanol; 1,2-ethylenebisoxazoline and the like. Oxazoline compounds; alkylene carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide. These surface cross-linking agents may be used alone or in combination of two or more. The surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof, or may contain an alkylene carbonate compound. The ratio of the alkylene carbonate compound in the surface cross-linking agent is 25 to 100 mol%, 30 to 100 mol%, 30 to 80 mol%, 35 to 70 mol%, or 35 based on the total amount of substance (mol) of the surface cross-linking agent. It may be up to 55 mol%.
 吸水性樹脂粒子の加圧下の吸水性能等の観点から、架橋剤(表面架橋剤)の量は、重合体粒子中の重合体を構成する単量体単位1モル当たり、0.00001~0.03モル、0.00005~0.02モル、又は0.0001~0.01モルであってもよい。 From the viewpoint of water absorption performance under pressure of the water-absorbent resin particles, the amount of the cross-linking agent (surface cross-linking agent) is 0.00001 to 0. Per mol of the monomer unit constituting the polymer in the polymer particles. It may be 03 mol, 0.00005 to 0.02 mol, or 0.0001 to 0.01 mol.
 架橋剤溶液における架橋剤(表面架橋剤)の濃度は、例えば、架橋剤溶液の質量を基準として0.1~50.0質量%であってもよい。ここでの架橋剤の濃度は、架橋剤溶液が2種以上の架橋剤を含む場合、それらの合計の濃度を意味する。 The concentration of the cross-linking agent (surface cross-linking agent) in the cross-linking agent solution may be, for example, 0.1 to 50.0% by mass based on the mass of the cross-linking agent solution. The concentration of the cross-linking agent here means the total concentration of the cross-linking agent solutions when the cross-linking agent solution contains two or more kinds of cross-linking agents.
 水分残存率及び水分率が所定の値以下になるまで予備混合物を加熱することにより形成された架橋剤導入粒子を更に加熱することにより、主として粒子表面近傍において表面架橋剤によって架橋された重合体を含む重合体粒子、すなわち表面架橋された重合体粒子が形成される。 By further heating the cross-linking agent-introduced particles formed by heating the premix until the water residual ratio and the water content are equal to or less than the predetermined values, the polymer crosslinked mainly by the surface cross-linking agent in the vicinity of the particle surface is obtained. The containing polymer particles, that is, the surface-crosslinked polymer particles are formed.
 表面架橋のための加熱温度及び加熱時間は、表面架橋剤の種類等を考慮して、架橋反応が適切に進行するように調整される。例えば、表面架橋のための加熱温度が180℃を超えていてもよく、190℃以上であってもよい。表面架橋のための加熱温度が250℃以下であってもよい。例えば、表面架橋剤がアルキレンカーボネート化合物を含む場合に、これらの温度範囲を適用してもよい。表面架橋のための加熱時間は、例えば5~90分であってもよい。 The heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like. For example, the heating temperature for surface cross-linking may exceed 180 ° C. or 190 ° C. or higher. The heating temperature for surface cross-linking may be 250 ° C. or lower. For example, these temperature ranges may be applied when the surface cross-linking agent contains an alkylene carbonate compound. The heating time for surface cross-linking may be, for example, 5 to 90 minutes.
 本実施形態に係る方法によれば、表面架橋にともなうCRCの減少を抑制しながら、AAPが増加した重合体粒子(吸水性樹脂粒子)を得ることができる。すなわち、架橋剤溶液と混合される前(又は予備加熱の前)の重合体粒子のCRC及びAAPがそれぞれ「CRC(表面架橋前)」及び「AAP(表面架橋前)」で、表面架橋された重合体粒子のCRC及びAAPがそれぞれ「CRC(表面架橋後)」及び「AAP(表面架橋後)」であるとき、下記式で算出されるΔCRCとΔAAPとの和(ΔCRC+ΔAAP)が大きい。
ΔCRC=CRC(表面架橋後)-CRC(表面架橋前)
ΔAAP=AAP(表面架橋後)-AAP(表面架橋前)
 表面架橋により、CRCは減少し、AAPは増加する傾向がある。そのため、ΔCRCは負の値になり、ΔAAPは正の値になることが多い。ΔCRC+ΔAAPが大きいことは、表面架橋にともなうCRCの減少を抑制しながら、AAPが増加したことを意味する。本実施形態に係る方法によれば、例えば、ΔCRC+ΔAAPが12.0g/g以上、13.0g/g以上、14.0g/g以上、又は15.0g/g以上になるように、重合体粒子を表面架橋することができる。ΔCRC+ΔAAPの上限は、特に制限されないが、通常、60g/g程度である。
According to the method according to the present embodiment, polymer particles (water-absorbent resin particles) in which AAP is increased can be obtained while suppressing a decrease in CRC due to surface cross-linking. That is, the CRC and AAP of the polymer particles before being mixed with the cross-linking agent solution (or before preheating) were surface-crosslinked with "CRC (before surface cross-linking)" and "AAP (before surface cross-linking)", respectively. When the CRC and AAP of the polymer particles are "CRC (after surface cross-linking)" and "AAP (after surface cross-linking)", respectively, the sum of ΔCRC and ΔAAP (ΔCRC + ΔAAP) calculated by the following formula is large.
ΔCRC = CRC (after surface cross-linking) -CRC (before surface cross-linking)
ΔAAP = AAP (after surface cross-linking) -AAP (before surface cross-linking)
Surface cross-linking tends to reduce CRC and increase AAP. Therefore, ΔCRC has a negative value, and ΔAAP has a positive value in many cases. A large ΔCRC + ΔAAP means that the AAP increased while suppressing the decrease in CRC associated with surface cross-linking. According to the method according to the present embodiment, for example, the polymer particles so that ΔCRC + ΔAAP is 12.0 g / g or more, 13.0 g / g or more, 14.0 g / g or more, or 15.0 g / g or more. Can be surface crosslinked. The upper limit of ΔCRC + ΔAAP is not particularly limited, but is usually about 60 g / g.
 表面架橋された重合体粒子は、必要により更に乾燥してもよいし、分級してもよい。重合体粒子の表面に無機粒子を付着させてもよい。無機粒子の例としては、非晶質シリカ等のシリカ粒子が挙げられる。 The surface-crosslinked polymer particles may be further dried or classified if necessary. Inorganic particles may be attached to the surface of the polymer particles. Examples of inorganic particles include silica particles such as amorphous silica.
 製造された吸水性樹脂粒子は、例えば、おむつ等の吸収性物品を構成する吸収体を形成するために用いられる。図1は吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、シート状の吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。吸収体10は、上述の実施形態に係る方法によって製造された吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。 The produced water-absorbent resin particles are used to form an absorbent body that constitutes an absorbent article such as a diaper, for example. FIG. 1 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 1 includes a sheet-shaped absorber 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40. In the absorbent article 100, the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. The absorber 10 has water-absorbent resin particles 10a produced by the method according to the above-described embodiment, and a fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1.測定方法
 以下の手順により、含水率、遠心分離機保持容量(CRC)、加圧下吸収倍率(AAP)、Vortex法による吸水速度、及び中位粒子径を測定した。
1. 1. Measurement method The water content, centrifuge holding capacity (CRC), absorption ratio under pressure (AAP), water absorption rate by the Vortex method, and medium particle size were measured by the following procedures.
1-1.含水率(湿量基準)
 試料(重合体粒子又は予備混合物)1.0gを、予め恒量(W1(g))としたアルミホイルケース(8号)に入れ、アルミホイルケースの口を軽く閉じる。この試料入りアルミホイルケースの合計質量W2(g)を精秤する。試料入りアルミホイルケースを、内温を200℃に設定した熱風乾燥機(ADVANTEC社製、型式:FV-320)で2時間乾燥させる。乾燥後の試料入りアルミホイルケースをデシケーター中で室温まで放冷する。放冷後の試料入りアルミホイルケースの合計質量W3(g)を測定する。以下の式から、試料の含水率を算出する。
含水率(質量%)=[{(W2-W1)-(W3-W1)}/(W2-W1)]×100
1-1. Moisture content (wetness standard)
1.0 g of a sample (polymer particle or premixture) is placed in an aluminum foil case (No. 8) having a constant amount (W1 (g)) in advance, and the mouth of the aluminum foil case is lightly closed. The total mass W2 (g) of this sample-containing aluminum foil case is precisely weighed. The aluminum foil case containing the sample is dried for 2 hours in a hot air dryer (manufactured by ADVANTEC, model: FV-320) whose internal temperature is set to 200 ° C. Allow the dried aluminum foil case containing the sample to cool to room temperature in a desiccator. The total mass W3 (g) of the aluminum foil case containing the sample after allowing to cool is measured. The water content of the sample is calculated from the following formula.
Moisture content (mass%) = [{(W2-W1)-(W3-W1)} / (W2-W1)] x 100
1-2.遠心分離機保持容量(CRC)
 EDANA法(NWSP 241.0.R2(15)、page.769~778)に準じた下記の手順により、CRCを温度23℃±2℃、湿度50±10%の環境下で測定する。
1-2. Centrifuge retention capacity (CRC)
The CRC is measured in an environment of a temperature of 23 ° C. ± 2 ° C. and a humidity of 50 ± 10% according to the following procedure according to the EDANA method (NWSP 241.0.R2 (15), page.769-778).
 60mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで60mm×85mmの大きさに調整する。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着する。これにより、幅60mm、長さ85mmのサイズを有し、長手方向における一方の端部に開口部を有する不織布バッグを準備する。不織布バッグの長手方向に沿う両辺において、ヒートシールが不織布の間に介在する幅5mmの圧着部が形成される。不織布バッグの内部に、測定対象の粒子0.2gを収容する。次いで、不織布バッグの開口部をヒートシールで圧着することにより、不織布バッグを閉じる。 Adjust the size to 60 mm x 85 mm by folding a non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) in half in the longitudinal direction. Nonwoven fabrics are heat-sealed against each other on both sides extending in the longitudinal direction. This prepares a non-woven fabric bag having a size of 60 mm in width and 85 mm in length and having an opening at one end in the longitudinal direction. On both sides along the longitudinal direction of the non-woven fabric bag, a crimping portion having a width of 5 mm is formed in which a heat seal is interposed between the non-woven fabrics. 0.2 g of particles to be measured is housed inside the non-woven fabric bag. Next, the non-woven fabric bag is closed by crimping the opening of the non-woven fabric bag with a heat seal.
 粒子が収容された複数の不織布バッグを、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水1000g上に、互いに重ならないように浮かべる。不織布バッグを生理食塩水に投入してから1分後、スパチュラにて不織布バッグを生理食塩水に完全に浸漬させる。 Float a plurality of non-woven fabric bags containing particles on 1000 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) so as not to overlap each other. One minute after the non-woven fabric bag is put into the saline solution, the non-woven fabric bag is completely immersed in the saline solution with a spatula.
 不織布バッグを生理食塩水に投入してから、生理食塩水に浮かせた時間1分と、生理食塩水に浸漬された時間29分の合計30分が経過した時点で、生理食塩水の中から、吸水により形成されたゲルを含む不織布バッグを取り出す。遠心分離機(株式会社コクサン製、型番:H-122)を用い、遠心力が250Gとなる条件で、3分間、不織布バッグ中のゲルを脱水する。脱水後、ゲルの質量を含む不織布バッグの質量Maを秤量する。測定対象の粒子を収容することなく上述の操作と同様の操作を施された不織布バッグの質量Mbを測定する。下記式によりCRCを算出する。Mcは、測定に用いた粒子の質量0.2gの精秤値である。
CRC[g/g]={(Ma-Mb)-Mc}/Mc
After the non-woven fabric bag was put into the saline solution, when a total of 30 minutes had passed, 1 minute for the non-woven fabric bag to float in the saline solution and 29 minutes for the non-woven fabric bag to be immersed in the saline solution, from the saline solution, Remove the non-woven bag containing the gel formed by water absorption. Using a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122), the gel in the non-woven fabric bag is dehydrated for 3 minutes under the condition that the centrifugal force is 250 G. After dehydration, the mass Ma of the non-woven fabric bag containing the mass of the gel is weighed. The mass Mb of the non-woven fabric bag, which has been subjected to the same operation as the above operation without accommodating the particles to be measured, is measured. The CRC is calculated by the following formula. Mc is a scaled value of 0.2 g of the mass of the particles used in the measurement.
CRC [g / g] = {(Ma-Mb) -Mc} / Mc
1-3.加圧下吸収倍率(AAP)
 図2に示す測定装置110を用いて、圧力2.07kPa(0.3psi)での加圧下吸収倍率(AAP)を測定する。測定装置110は、重り112、内径60mmのプラスチック製の円筒114、及び、400メッシュ(目開き38μm)の金網116から構成される。金網116が円筒114の一方の開口を塞ぎ、金網116が水平になるように円筒114及び金網116を配置する。重り112は、円板部112aと、円板部112aに垂直な方向に円板部112aの中央から延びる棒状部112bと、貫通孔を中央に有する円柱部112cとを有し、円柱部112cの貫通孔に棒状部112bが挿入される。円板部112aは、円筒114の内部において円筒114の鉛直方向に移動可能であるように円筒114の内径と略同等の径を有している。円柱部112cの径は円板部112aの径よりも小さい。重り112の重量を、測定対象の粒子に2.07kPaの圧力が加えられるように調整する。円筒114の内部において、0.90gの測定対象の粒子120を金網116上に均一に散布する。散布された粒子の上に、円筒114に挿入された重り112を載せる。この状態で、測定装置110、及び吸液前の粒子120の合計の質量Wa[g]を測定する。
1-3. Absorption rate under pressure (AAP)
Using the measuring device 110 shown in FIG. 2, the absorption ratio (AAP) under pressure at a pressure of 2.07 kPa (0.3 psi) is measured. The measuring device 110 is composed of a weight 112, a plastic cylinder 114 having an inner diameter of 60 mm, and a wire mesh 116 having a 400 mesh (opening 38 μm). The wire mesh 116 closes one opening of the cylinder 114, and the cylinder 114 and the wire mesh 116 are arranged so that the wire mesh 116 is horizontal. The weight 112 has a disc portion 112a, a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a cylindrical portion 112c having a through hole in the center. The rod-shaped portion 112b is inserted into the through hole. The disk portion 112a has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can move in the vertical direction of the cylinder 114 inside the cylinder 114. The diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a. The weight of the weight 112 is adjusted so that a pressure of 2.07 kPa is applied to the particles to be measured. Inside the cylinder 114, 0.90 g of particles 120 to be measured are uniformly scattered on the wire mesh 116. The weight 112 inserted in the cylinder 114 is placed on the sprayed particles. In this state, the total mass Wa [g] of the measuring device 110 and the particles 120 before absorbing the liquid is measured.
 ステンレスシャーレ130の凹部における底面(直径150mm)の中央に、直径90mm、厚さ7mmのガラスフィルター140(ISO4793 P-250)を置く。次いで、ステンレスシャーレに、水面がガラスフィルター140の上面と同じ高さになるまで、0.90質量%の塩化ナトリウム水溶液(25℃±2℃)を入れる。ガラスフィルター140上に直径90mmの1枚のろ紙150(ADVANTEC東洋株式会社、製品名:(No.3)、厚さ0.23mm、保留粒子径5μm)を載せ、ろ紙150の表面全体を塩化ナトリウム水溶液で濡らし、過剰の塩化ナトリウム水溶液を除く。続いて、ろ紙150上に、吸液前の粒子120が仕込まれた測定装置110を載せ、圧力2.07kPaで粒子120を加圧しながら、粒子120に塩化ナトリウム水溶液を吸収させる。吸収開始から1時間後、測定装置110を持ち上げ、測定装置110、及び吸液後の粒子120の合計の質量Wb[g]を測定する。 A glass filter 140 (ISO4793 P-250) having a diameter of 90 mm and a thickness of 7 mm is placed in the center of the bottom surface (diameter 150 mm) in the recess of the stainless steel petri dish 130. Next, 0.90 mass% sodium chloride aqueous solution (25 ° C. ± 2 ° C.) is added to the stainless steel petri dish until the water surface is level with the upper surface of the glass filter 140. A sheet of filter paper 150 with a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 μm) is placed on the glass filter 140, and the entire surface of the filter paper 150 is sodium chloride. Wet with an aqueous solution to remove excess sodium chloride aqueous solution. Subsequently, the measuring device 110 in which the particles 120 before liquid absorption are charged is placed on the filter paper 150, and the particles 120 are made to absorb the sodium chloride aqueous solution while pressurizing the particles 120 at a pressure of 2.07 kPa. One hour after the start of absorption, the measuring device 110 is lifted and the total mass Wb [g] of the measuring device 110 and the particles 120 after absorbing the liquid is measured.
 Wa及びWbから、下記式によって加圧下吸収倍率(AAP)[g/g]を算出する。
  AAP[g/g]=(Wb[g]-Wa[g])/0.90[g]
From Wa and Wb, the absorption ratio under pressure (AAP) [g / g] is calculated by the following formula.
AAP [g / g] = (Wb [g] -Wa [g]) /0.90 [g]
1-4.Vortex法による吸水速度
 100mLのビ-カ-に、回転子(8mm×30mm、リング無し)及び生理食塩水50gを入れ、生理食塩水が入ったビーカーを恒温槽内で25℃にて保持する。次いで、測定用の粒子2.0gを、600rpmで撹拌した生理食塩水の渦中に投入し、同時にストップウォッチによる計測を開始する。液面の渦が収束する時点を終点として、それまでの時間(秒)を吸水速度とする。
1-4. A rotor (8 mm × 30 mm, without ring) and 50 g of physiological saline are placed in a beaker having a water absorption rate of 100 mL by the Vortex method, and the beaker containing the physiological saline is held at 25 ° C. in a constant temperature bath. Next, 2.0 g of the particles for measurement are put into a vortex of physiological saline stirred at 600 rpm, and at the same time, measurement with a stopwatch is started. The time point at which the vortex on the liquid surface converges is set as the end point, and the time (seconds) up to that point is taken as the water absorption rate.
1-5.中位粒子径
 重合体粒子又は吸水性樹脂粒子の粉体10gを、連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)と、JIS規格の目開き850μm、500μm、425μm、300μm、250μm、180μm及び106μmの篩と、受け皿とを用いて篩分けする。各篩上に残った粒子の質量を全量に対する質量百分率として算出する。各篩上に残存した粒子の質量百分率を、粒子径の大きいものから順に積算し、篩の目開きと、篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットする。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を求め、これを中位粒子径とする。
1-5. Medium particle size 10 g of powder of polymer particles or water-absorbent resin particles is mixed with a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.) and JIS standard opening 850 μm, 500 μm. , 425 μm, 300 μm, 250 μm, 180 μm and 106 μm sieves and a saucer are used for sieving. The mass of the particles remaining on each sieve is calculated as a mass percentage with respect to the total amount. The mass percentages of the particles remaining on each sieve are integrated in order from the one with the largest particle size, and the relationship between the mesh size of the sieve and the integrated value of the mass percentages of the particles remaining on the sieve is plotted on logarithmic probability paper. .. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass is obtained, and this is defined as the medium particle size.
2.表面架橋前の重合体粒子の作製
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに、520g(7.22モル)の100%アクリル酸を入れた。アクリル酸を撹拌しながら、セパラブルフラスコ内にイオン交換水445.36gを加えた。その後、セパラブルフラスコ内に氷浴下で454.04gの48質量%水酸化ナトリウムを滴下し、アクリル酸部分中和液(単量体濃度45.08質量%、中和率75.44モル%)1419.4gを得た。本操作を2回繰り返して、合計約2800gのアクリル酸部分中和液を得た。
2. Preparation of Polymer Particles Before Surface Crosslinking 520 g (7.22 mol) of 100% acrylic acid was placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a stirrer. While stirring the acrylic acid, 445.36 g of ion-exchanged water was added into the separable flask. Then, 454.04 g of 48% by mass sodium hydroxide was added dropwise to the separable flask under an ice bath to partially neutralize the acrylic acid (monomer concentration 45.08% by mass, neutralization rate 75.44 mol%). ) 1419.4 g was obtained. This operation was repeated twice to obtain a total of about 2800 g of a partially neutralized acrylic acid solution.
 アクリル酸部分中和液2781.72gに、イオン交換水406.25g及びポリエチレングリコールジアクリレート3.55gを加えた。得られた反応液を窒素ガス雰囲気下で30分間脱気した。次いで、反応液を2本のシグマ型羽根及びジャケットを有するステンレス製双腕型ニーダーに供給し、反応液を30℃に保ちながらニーダー内を窒素ガスで置換した。続いて、反応液に、撹拌しながら2.0質量%の過硫酸ナトリウム水溶液92.63g及び0.5質量%のL-アスコルビン酸水溶液15.85gを加えた。その約1分後、反応液の温度が重合開始にともなって上昇し始め、3分後に最高温度の93℃となった。その後、内温を60℃に保ち、重合開始から60分後、生成した含水ゲル状重合体をニーダーから取り出した。 To 2781.72 g of the acrylic acid partial neutralizing solution, 406.25 g of ion-exchanged water and 3.55 g of polyethylene glycol diacrylate were added. The obtained reaction solution was degassed in a nitrogen gas atmosphere for 30 minutes. Next, the reaction solution was supplied to a stainless steel double-armed kneader having two sigma-type blades and a jacket, and the inside of the kneader was replaced with nitrogen gas while keeping the reaction solution at 30 ° C. Subsequently, 92.63 g of a 2.0 mass% sodium persulfate aqueous solution and 15.85 g of a 0.5 mass% L-ascorbic acid aqueous solution were added to the reaction solution with stirring. Approximately 1 minute later, the temperature of the reaction solution began to rise with the start of polymerization, and 3 minutes later, the maximum temperature reached 93 ° C. Then, the internal temperature was kept at 60 ° C., and 60 minutes after the start of the polymerization, the produced hydrogel-like polymer was taken out from the kneader.
 含水ゲル状重合体を喜連ローヤル株式会社製のミートチョッパー12VR-750SDXに順次投入して粗砕した。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmであった。含水ゲル状重合体の粗砕物を、目開き0.8cm×0.8cmの金網上に広げて配置し、160℃で60分間、熱風乾燥して乾燥物を得た。 The hydrogel polymer was sequentially put into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed. The diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm. The coarsely crushed product of the hydrogel polymer was spread over a wire mesh having a mesh size of 0.8 cm × 0.8 cm and placed, and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
 乾燥物を遠心粉砕機(Retsch社製、ZM200、スクリーン口径1mm、6000rpm)を用いて粉砕した。得られた粉砕物を目開き850μmの篩を通過させ、目開き180μmの篩を通過しなかった不定形破砕状の粒子(中位粒子径:331μm)を、表面架橋前の重合体粒子として得た。得られた重合体粒子は、39.9g/gの遠心分離機保持容量(CRC)、8.1g/gの加圧下吸収倍率(AAP)、及び、5.4質量%の含水率を示した。 The dried product was crushed using a centrifugal crusher (Resch, ZM200, screen diameter 1 mm, 6000 rpm). The obtained pulverized material was passed through a sieve having a mesh size of 850 μm, and amorphous crushed particles (medium particle size: 331 μm) that did not pass through a sieve having a mesh size of 180 μm were obtained as polymer particles before surface cross-linking. rice field. The obtained polymer particles exhibited a centrifuge holding capacity (CRC) of 39.9 g / g, an absorption ratio under pressure (AAP) of 8.1 g / g, and a water content of 5.4% by mass. ..
3.表面架橋された重合体粒子(吸水性樹脂粒子)の作製
(実施例1)
<予備加熱>
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。撹拌機に、外径9cmのフッ素樹脂製イカリ翼を装着した。セパラブルフラスコに、重合体粒子25gを入れた。回転数300rpmで重合体粒子を撹拌しながら、200℃の油浴にセパラブルフラスコを浸漬することにより、重合体粒子を35分間、予備加熱した。予備加熱により、重合体粒子の温度が170℃まで上昇した。この時点の重合体粒子の一部を取り出し、その含水率α1を測定したところ、1.65質量%であった。
3. 3. Preparation of surface-crosslinked polymer particles (water-absorbent resin particles) (Example 1)
<Preheating>
A round-bottomed cylindrical separable flask equipped with a stirrer and having an inner diameter of 11 cm and an internal volume of 2 L was prepared. A fluororesin anchor blade having an outer diameter of 9 cm was attached to the stirrer. 25 g of polymer particles were placed in a separable flask. The polymer particles were preheated for 35 minutes by immersing the separable flask in an oil bath at 200 ° C. while stirring the polymer particles at a rotation speed of 300 rpm. Preheating raised the temperature of the polymer particles to 170 ° C. When a part of the polymer particles at this time was taken out and the water content α1 was measured, it was 1.65% by mass.
<予備混合物の加熱>
 170℃まで加熱された重合体粒子に対して、表面架橋剤としてエチレンカーボネート及びプロピレングリコールを含む架橋剤溶液0.70gを滴下した。架橋剤溶液は、その全体質量を基準として、11.13質量%のエチレンカーボネート、17.77質量%のプロピレングリコール、及び71.10質量%の脱イオン水を含んでいた。架橋剤溶液の滴下終了から3分間、重合体粒子及び架橋剤溶液を含む予備混合物を撹拌した。その間、200℃の油浴による加熱により、重合体粒子の温度を約170℃に維持した。予備混合物を3分間、加熱しながら撹拌した時点で、予備混合物(架橋剤導入粒子)をセパラブルフラスコから取り出した。加熱処理後の予備混合物(架橋剤導入粒子)の含水率α2を測定したところ、1.68質量%であった。
<Heating of premixture>
0.70 g of a cross-linking agent solution containing ethylene carbonate and propylene glycol as a surface cross-linking agent was added dropwise to the polymer particles heated to 170 ° C. The cross-linking agent solution contained 11.13% by mass of ethylene carbonate, 17.77% by mass of propylene glycol, and 71.10% by mass of deionized water based on the total mass thereof. The premix containing the polymer particles and the cross-linking agent solution was stirred for 3 minutes after the completion of dropping the cross-linking agent solution. During that time, the temperature of the polymer particles was maintained at about 170 ° C. by heating with an oil bath at 200 ° C. When the premix was stirred with heating for 3 minutes, the premix (crosslinking agent-introduced particles) was removed from the separable flask. The water content α2 of the premix (crosslinking agent-introduced particles) after the heat treatment was measured and found to be 1.68% by mass.
<表面架橋>
 セパラブルフラスコから取り出した架橋剤導入粒子を、直ちに、内温200℃に設定した熱風乾燥機(ADVANTEC社製、型式:FV-320)内で90分間加熱することにより、重合体粒子の表面架橋を進行させた。表面架橋された重合体粒子の粉体を目開き850μmの金網で分級することにより、850μmの金網を通過した分画である、吸水性樹脂粒子を得た。
<Surface cross-linking>
The cross-linking agent-introduced particles taken out from the separable flask are immediately surface-crosslinked with the polymer particles by heating them in a hot air dryer (manufactured by ADVANTEC, model: FV-320) set to an internal temperature of 200 ° C. for 90 minutes. Was advanced. By classifying the powder of the surface-crosslinked polymer particles with a wire mesh having an opening of 850 μm, water-absorbent resin particles which were fractions passing through the wire mesh of 850 μm were obtained.
<予備混合物(架橋剤導入粒子)における水分残存率及び水分率>
 予備加熱前の重合体粒子の仕込み量25g及び含水率5.4質量%から、予備加熱前の重合体粒子から水を除いた部分の質量(乾燥質量)Z0を下記式により算出した。
Z0(g)=25×(1-5.4/100)=23.65
 Z0と、予備加熱後の重合体粒子の含水率α1(1.65質量%)から、予備加熱後、架橋剤溶液と混合される時点の重合体粒子における水分量X1(g)を下記関係式に基づいて算出した。算出されたX1は0.3968gであった。
X1/(Z0+X1)=α1/100
 重合体粒子における水分量X1と、架橋剤溶液中の水分量との合計Y1を、下記式により算出した。
Y1(g)=X1+0.70×(71.10/100)=0.8945
 加熱後の予備混合物(架橋剤導入粒子)から水を除いた部分の質量、すなわち、架橋剤溶液と混合される前の重合体粒子の乾燥質量Z0と、架橋剤溶液中の架橋剤との合計の質量Z2を、下記式により算出した。
Z2(g)=Z0+0.70×(11.13/100)+0.70×(17.77/100)=23.8523
 加熱後の予備混合物(架橋剤導入粒子)における水分量Y2を、予備混合物の含水率α2(1.68質量%)とZ2、Y2に関する下記関係式に基づいて算出した。算出されたY2は0.4076gであった。
Y2/(Z2+Y2)=α2/100
 Y1、Y2及びZ2から、加熱後の予備混合物(架橋剤導入粒子)における水分残存率及び水分率を下記式により算出した。
水分残存率=(Y2/Y1)×100=45.6質量%
水分率=(Y2/Z2)×100=1.71質量%
<Moisture residual rate and moisture content in premixture (crosslinking agent-introduced particles)>
From the charged amount of the polymer particles before preheating and the water content of 5.4% by mass, the mass (dry mass) Z0 of the portion of the polymer particles before preheating excluding water was calculated by the following formula.
Z0 (g) = 25 x (1-5.4 / 100) = 23.65
From Z0 and the water content α1 (1.65% by mass) of the polymer particles after preheating, the water content X1 (g) in the polymer particles at the time of mixing with the cross-linking agent solution after preheating is the following relational expression. It was calculated based on. The calculated X1 was 0.3968 g.
X1 / (Z0 + X1) = α1 / 100
The total Y1 of the water content X1 in the polymer particles and the water content in the cross-linking agent solution was calculated by the following formula.
Y1 (g) = X1 + 0.70 × (71.10 / 100) = 0.8945
The mass of the portion of the premix after heating (crosslinking agent-introduced particles) excluding water, that is, the total of the dry mass Z0 of the polymer particles before being mixed with the crosslinking agent solution and the crosslinking agent in the crosslinking agent solution. The mass Z2 of was calculated by the following formula.
Z2 (g) = Z0 + 0.70 × (11.13 / 100) + 0.70 × (17.77 / 100) = 23.8523
The water content Y2 in the premix (crosslinking agent-introduced particles) after heating was calculated based on the following relational expression regarding the water content α2 (1.68% by mass) of the premix and Z2 and Y2. The calculated Y2 was 0.4076 g.
Y2 / (Z2 + Y2) = α2 / 100
From Y1, Y2 and Z2, the residual water content and the water content in the premix (crosslinking agent-introduced particles) after heating were calculated by the following formulas.
Moisture residual rate = (Y2 / Y1) x 100 = 45.6% by mass
Moisture content = (Y2 / Z2) x 100 = 1.71% by mass
(実施例2)
 予備混合物を加熱しながら撹拌する時間を5分に変更したこと以外は、実施例1と同様にして、表面架橋された重合体粒子である吸水性樹脂粒子を得た。予備混合物(又は架橋剤導入粒子)における水分残存率及び水分率を、実施例1と同様の方法により求めた。
(Example 2)
Water-absorbent resin particles, which are surface-crosslinked polymer particles, were obtained in the same manner as in Example 1 except that the time for stirring the premix while heating was changed to 5 minutes. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1.
(実施例3)
 予備混合物を加熱しながら撹拌する時間を35分に変更したこと以外は、実施例1と同様にして、表面架橋された重合体粒子である吸水性樹脂粒子を得た。予備混合物(又は架橋剤導入粒子)における水分残存率及び水分率を、実施例1と同様の方法により求めた。
(Example 3)
Water-absorbent resin particles, which are surface-crosslinked polymer particles, were obtained in the same manner as in Example 1 except that the time for stirring the premix while heating was changed to 35 minutes. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1.
(実施例4)
 重合体粒子の予備加熱及び予備混合物の加熱のための油浴の温度を150℃に変更することにより、重合体粒子の温度を130℃に調整したこと以外は実施例1と同様にして、表面架橋された重合体粒子である吸水性樹脂粒子を得た。予備混合物(又は架橋剤導入粒子)における水分残存率及び水分率を、実施例1と同様の方法により求めた。予備混合物を加熱しながら撹拌する時間も、実施例1と同様に3分とした。
(Example 4)
The surface was the same as in Example 1 except that the temperature of the polymer particles was adjusted to 130 ° C. by changing the temperature of the oil bath for preheating the polymer particles and heating the premixture to 150 ° C. Water-absorbent resin particles, which are crosslinked polymer particles, were obtained. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1. The time for stirring the premix while heating was also set to 3 minutes as in Example 1.
(実施例5)
 予備混合物を加熱しながら撹拌する時間を35分に変更したこと以外は、実施例4と同様にして、表面架橋された重合体粒子である吸水性樹脂粒子を得た。予備混合物(又は架橋剤導入粒子)における水分残存率及び水分率を、実施例1と同様の方法により求めた。
(Example 5)
Water-absorbent resin particles, which are surface-crosslinked polymer particles, were obtained in the same manner as in Example 4 except that the time for stirring the premix while heating was changed to 35 minutes. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1.
(実施例6)
 重合体粒子の予備加熱及び予備混合物の加熱のための油浴の温度を110℃に変更することにより、重合体粒子の温度を90℃に調整したこと以外は実施例1と同様にして、表面架橋された重合体粒子である吸水性樹脂粒子を得た。予備混合物(又は架橋剤導入粒子)における水分残存率及び水分率を、実施例1と同様の方法により求めた。ただし、予備混合物を加熱しながら撹拌する時間は35分とした。
(Example 6)
The surface was the same as in Example 1 except that the temperature of the polymer particles was adjusted to 90 ° C. by changing the temperature of the oil bath for preheating the polymer particles and heating the premixture to 110 ° C. Water-absorbent resin particles, which are crosslinked polymer particles, were obtained. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1. However, the time for stirring the premix while heating was set to 35 minutes.
(比較例1)
 重合体粒子の予備加熱及び予備混合物の加熱のための油浴の温度を45℃に変更することにより、重合体粒子の温度を40℃に調整したこと以外は実施例1と同様にして、表面架橋された重合体粒子である吸水性樹脂粒子を得た。予備混合物(又は架橋剤導入粒子)における水分残存率及び水分率を、実施例1と同様の方法により求めた。ただし、予備混合物を加熱しながら撹拌する時間は5分とした。
(Comparative Example 1)
The surface was the same as in Example 1 except that the temperature of the polymer particles was adjusted to 40 ° C. by changing the temperature of the oil bath for preheating the polymer particles and heating the premixture to 45 ° C. Water-absorbent resin particles, which are crosslinked polymer particles, were obtained. The water residual ratio and the water content in the premix (or the cross-linking agent-introduced particles) were determined by the same method as in Example 1. However, the time for stirring the premix while heating was set to 5 minutes.
(比較例2)
 実施例1と同様のセパラブルフラスコに、重合体粒子25gを入れた。室温環境下、回転数300rpmで重合体粒子を35分間撹拌した。重合体粒子の温度は25℃であった。次いでセパラブルフラスコに実施例1と同様の架橋剤溶液0.7gを入れ、形成された予備混合物を1分間撹拌した。予備混合物を内温200℃に設定した熱風乾燥機(ADVANTEC社製、型式:FV-320)内で90分間加熱した。加熱後の重合体粒子の粉体を目開き850μmの金網で分級することにより、850μmの金網を通過した分画である、吸水性樹脂粒子を得た。予備混合物における水分残存率及び水分率を、実施例1と同様の方法により求めた。
(Comparative Example 2)
25 g of the polymer particles were placed in the same separable flask as in Example 1. The polymer particles were stirred for 35 minutes at a rotation speed of 300 rpm in a room temperature environment. The temperature of the polymer particles was 25 ° C. Next, 0.7 g of the same cross-linking agent solution as in Example 1 was placed in a separable flask, and the formed premix was stirred for 1 minute. The premix was heated in a hot air dryer (manufactured by ADVANTEC, model: FV-320) set to an internal temperature of 200 ° C. for 90 minutes. The powder of the polymer particles after heating was classified with a wire mesh having an opening of 850 μm to obtain water-absorbent resin particles which were fractions passing through the wire mesh of 850 μm. The residual water content and the water content in the premix were determined by the same method as in Example 1.
(比較例3)
 予備混合物をセパラブルフラスコ内で撹拌する時間を35分に変更したこと以外は比較例2と同様にして、吸水性樹脂粒子を得た。予備混合物における水分残存率及び水分率を、実施例1と同様の方法により求めた。
(Comparative Example 3)
Water-absorbent resin particles were obtained in the same manner as in Comparative Example 2 except that the time for stirring the premix in the separable flask was changed to 35 minutes. The residual water content and the water content in the premix were determined by the same method as in Example 1.
4.吸水性樹脂粒子の評価
 表面架橋された重合粒子である吸水性樹脂粒子について、CRC、AAP、Vortex法による吸水速度、及び中位粒子径を測定した。表面架橋前の重合体粒子のCRCからのCRCの変化量ΔCRC、及び、表面架橋前の重合体粒子のAAPからのAAPの変化量ΔAAPを求め、両者の和(ΔCRC+ΔAAP)も算出した。
4. Evaluation of Water-absorbent Resin Particles For the water-absorbent resin particles, which are surface-crosslinked polymer particles, the water absorption rate and the medium particle size were measured by the CRC, AAP, and Vortex methods. The amount of change in CRC from CRC of the polymer particles before surface cross-linking ΔCRC and the amount of change in AAP from AAP of the polymer particles before surface cross-linking ΔAAP were obtained, and the sum of the two (ΔCRC + ΔAAP) was also calculated.
5.結果
 表1及び表2に評価結果を示す。各実施例では、予備混合物の加熱により、水分残存率が85質量%以下で、且つ、水分率が10質量%以下である架橋剤導入粒子が形成され、その後の表面架橋により、CRCの減少を抑制しながらAAPを向上できたことが確認された。
5. Results Tables 1 and 2 show the evaluation results. In each example, heating of the premix causes formation of cross-linking agent-introduced particles having a water content of 85% by mass or less and a water content of 10% by mass or less, and subsequent surface cross-linking reduces CRC. It was confirmed that AAP could be improved while suppressing it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、100…吸収性物品、110…測定装置、112…重り、112a…円板部、112b…棒状部、112c…円柱部、114…円筒、116…金網、120…測定対象の粒子、130…ステンレスシャーレ、140…ガラスフィルター、150…ろ紙。 10 ... Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 100 ... Absorbent article, 110 ... Measuring device, 112 ... Weight, 112a ... Disc, 112b ... Rod, 112c ... Cylindrical, 114 ... Cylindrical, 116 ... Wire mesh, 120 ... Particles to be measured, 130 ... Stainless petri dish, 140 ... Glass filter, 150 ... Filter paper.

Claims (5)

  1.  重合体粒子を含む吸水性樹脂粒子を製造する方法であって、当該方法が、
     重合体及び水を含有する重合体粒子の粉体を、架橋剤及び水を含有する架橋剤溶液と混合することにより、予備混合物を形成することと、
     前記予備混合物を、前記予備混合物に含まれる水の一部が除去されるように加熱し、それにより前記重合体及び前記架橋剤を含む架橋剤導入粒子を形成することと、
     前記架橋剤導入粒子を更に加熱することにより、前記架橋剤によって架橋された前記重合体を含む重合体粒子を形成することと、
    を備え、
     前記粉体が前記架橋剤溶液と混合される時点の前記重合体粒子における水分量と前記架橋剤溶液における水分量との合計がY1(g)で、前記予備混合物における水分量がY2(g)で、前記予備混合物から水を除いた部分の質量がZ2(g)であるとき、前記架橋剤導入粒子を形成するために、前記予備混合物が、式:
    水分残存率(質量%)=(Y2/Y1)×100で算出される前記予備混合物の水分残存率が85質量%以下で、且つ、式:
    水分率(質量%)=(Y2/Z2)×100
    で算出される前記予備混合物の水分率が10質量%以下になるまで加熱される、方法。
    A method for producing water-absorbent resin particles containing polymer particles.
    To form a premixture by mixing the polymer and water-containing polymer particle powder with a cross-linking agent and a water-containing cross-linking agent solution.
    The premix is heated so that a part of the water contained in the premix is removed, thereby forming crosslinker-introduced particles containing the polymer and the crosslinker.
    By further heating the cross-linking agent-introduced particles, polymer particles containing the polymer cross-linked by the cross-linking agent can be formed.
    With
    The total of the water content of the polymer particles at the time when the powder is mixed with the cross-linking agent solution and the water content of the cross-linking agent solution is Y1 (g), and the water content of the premix is Y2 (g). In order to form the cross-linking agent-introduced particles, when the mass of the portion obtained by removing water from the premix is Z2 (g), the premix is of the formula:
    Moisture residual ratio (mass%) = (Y2 / Y1) × 100, the water residual ratio of the premix is 85% by mass or less, and the formula:
    Moisture content (mass%) = (Y2 / Z2) x 100
    The method of heating until the moisture content of the premix calculated in 1 is 10% by mass or less.
  2.  当該方法が、前記粉体を予備加熱することを更に含み、予備加熱されている状態の前記粉体が前記架橋剤溶液と混合される、請求項1に記載の方法。 The method according to claim 1, wherein the method further comprises preheating the powder, and the powder in a preheated state is mixed with the cross-linking agent solution.
  3.  前記架橋剤導入粒子を形成するために、前記予備混合物が、前記重合体を前記架橋剤によって架橋するための加熱温度よりも低い温度に加熱される、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein in order to form the cross-linking agent-introduced particles, the premix is heated to a temperature lower than the heating temperature for cross-linking the polymer with the cross-linking agent.
  4.  前記架橋剤導入粒子を形成するために、前記予備混合物が100~180℃に加熱される、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the premix is heated to 100 to 180 ° C. to form the crosslinker-introduced particles.
  5.  前記架橋剤導入粒子を形成するために、前記予備混合物が2分以上加熱される、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the premix is heated for 2 minutes or more in order to form the cross-linking agent-introduced particles.
PCT/JP2021/009867 2020-03-18 2021-03-11 Method for producing water-absorbing resin particles WO2021187323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508291A JPWO2021187323A1 (en) 2020-03-18 2021-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-047837 2020-03-18
JP2020047837 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187323A1 true WO2021187323A1 (en) 2021-09-23

Family

ID=77772059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009867 WO2021187323A1 (en) 2020-03-18 2021-03-11 Method for producing water-absorbing resin particles

Country Status (2)

Country Link
JP (1) JPWO2021187323A1 (en)
WO (1) WO2021187323A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113406A (en) * 1987-07-16 1989-05-02 Lion Corp Manufacture of highly water-absorptive polymer
JP2002121291A (en) * 2000-02-29 2002-04-23 Nippon Shokubai Co Ltd Water-absorbing resin powder and method for producing the same
JP2005113117A (en) * 2003-06-24 2005-04-28 Nippon Shokubai Co Ltd Water-absorptive resin composition and its production process
JP2007119757A (en) * 2005-09-30 2007-05-17 Nippon Shokubai Co Ltd Method for producing particle-formed water-absorbing agent, and particle-formed water-absorbing agent
WO2009123193A1 (en) * 2008-03-31 2009-10-08 株式会社日本触媒 Method of manufacturing particulate water absorbent with water-absorbent resin as main ingredient
WO2010100936A1 (en) * 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
WO2014041968A1 (en) * 2012-09-11 2014-03-20 株式会社日本触媒 Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
WO2016021519A1 (en) * 2014-08-04 2016-02-11 住友精化株式会社 Water-absorbing resin composition
WO2018181565A1 (en) * 2017-03-31 2018-10-04 住友精化株式会社 Water-absorbent resin particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113406A (en) * 1987-07-16 1989-05-02 Lion Corp Manufacture of highly water-absorptive polymer
JP2002121291A (en) * 2000-02-29 2002-04-23 Nippon Shokubai Co Ltd Water-absorbing resin powder and method for producing the same
JP2005113117A (en) * 2003-06-24 2005-04-28 Nippon Shokubai Co Ltd Water-absorptive resin composition and its production process
JP2007119757A (en) * 2005-09-30 2007-05-17 Nippon Shokubai Co Ltd Method for producing particle-formed water-absorbing agent, and particle-formed water-absorbing agent
WO2009123193A1 (en) * 2008-03-31 2009-10-08 株式会社日本触媒 Method of manufacturing particulate water absorbent with water-absorbent resin as main ingredient
WO2010100936A1 (en) * 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
WO2014041968A1 (en) * 2012-09-11 2014-03-20 株式会社日本触媒 Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
WO2016021519A1 (en) * 2014-08-04 2016-02-11 住友精化株式会社 Water-absorbing resin composition
WO2018181565A1 (en) * 2017-03-31 2018-10-04 住友精化株式会社 Water-absorbent resin particle

Also Published As

Publication number Publication date
JPWO2021187323A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6441374B2 (en) Water absorbent resin powder and method for measuring elastic modulus of water absorbent resin powder
KR102348349B1 (en) Absorbent and manufacturing method thereof, evaluation method and measuring method
JP5430620B2 (en) Method for producing water absorbent resin
JP4380873B2 (en) Water absorbent resin powder and use thereof
CN1683442B (en) Powdery, cross-linked absorbent polymers, method for the production thereof and their use
WO2015030129A1 (en) Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
WO2016143736A1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
JP6980398B2 (en) Water absorbent and its manufacturing method
CN108350179A (en) Super absorbent polymer
TW200427715A (en) Water-absorbent resin and its production process
JP3979724B2 (en) Method for producing dried product of water absorbent resin granulated product
WO2016143739A1 (en) Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
KR102373041B1 (en) Production method for polyacrylic acid (polyacrylate) water-absorptive resin
KR20180022883A (en) Particulate absorbent
JP4749679B2 (en) Water absorbent resin and method for producing the same
JP7273067B2 (en) Water-absorbing agent containing water-absorbing resin as main component and method for producing the same
JP6351218B2 (en) Water absorbing agent and method for producing the same
WO2021187323A1 (en) Method for producing water-absorbing resin particles
WO2021187325A1 (en) Method for producing absorbent resin particles
WO2021187526A1 (en) Production methods for granular water absorbent resin composition, absorbent body, and absorbent article
WO2022065365A1 (en) Method for producing water-absorbing resin powder
JPH10101735A (en) Water absorbent and its production
JP3963550B2 (en) Method for producing water-absorbing agent
JP2018039924A (en) Method for producing aqueous liquid absorptive resin particle
JP4244084B2 (en) Water-absorbing agent, method for producing the same, and body fluid-absorbing article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772390

Country of ref document: EP

Kind code of ref document: A1