JP2002121291A - Water-absorbing resin powder and method for producing the same - Google Patents

Water-absorbing resin powder and method for producing the same

Info

Publication number
JP2002121291A
JP2002121291A JP2001052664A JP2001052664A JP2002121291A JP 2002121291 A JP2002121291 A JP 2002121291A JP 2001052664 A JP2001052664 A JP 2001052664A JP 2001052664 A JP2001052664 A JP 2001052664A JP 2002121291 A JP2002121291 A JP 2002121291A
Authority
JP
Japan
Prior art keywords
water
absorbent resin
resin powder
drying
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001052664A
Other languages
Japanese (ja)
Other versions
JP4676625B2 (en
Inventor
Kunihiko Ishizaki
邦彦 石▲崎▼
Teruyuki Kanto
照幸 神頭
Nobuyuki Harada
信幸 原田
Takumi Hatsuda
卓己 初田
Shinichi Fujino
眞一 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2001052664A priority Critical patent/JP4676625B2/en
Publication of JP2002121291A publication Critical patent/JP2002121291A/en
Application granted granted Critical
Publication of JP4676625B2 publication Critical patent/JP4676625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a water-absorbing resin powder excellent in particle size distribution and physical properties, preventing their adhesion and coagulation in their production process, also excellent in energy efficiency, drying efficiency and productivity. SOLUTION: The method for producing the water-absorbing resin powder comprises heating for drying a water-containing gel state cross linked polymer obtained by polymerizing an aqueous monomer solution containing a cross linking agent and then crushing, and is characterized by having 200-600 μm range mean particle diameter of the water-absorbing resin particles after crushing and <=15 wt.% ratio of particles having 150-850 μm diameter, and compulsorily cooling the dried polymer after the heat-drying before the crushing or at the crushing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸水性樹脂粉末お
よびその製造方法に関するものである。さらに詳しく
は、粒度分布や物性に優れた吸水性樹脂粉末の製造方法
であって、製造工程での付着や凝集を防止した上、さら
にエネルギー効率や乾燥効率、生産性に優れた製造方法
を提供するものである。さらに、得られた粉末に水性液
を添加して改質された吸水樹脂粉末を得る方法におい
て、特殊な混合機や有機溶媒を特に使用しなくても、水
性液の均一混合性をより改善して、吸水性樹脂粉末の物
性をさらに改良する方法に関する。
The present invention relates to a water-absorbent resin powder and a method for producing the same. More specifically, a method for producing a water-absorbent resin powder having excellent particle size distribution and physical properties, which prevents adhesion and agglomeration in the production process and provides a production method that is further excellent in energy efficiency, drying efficiency, and productivity. Is what you do. Furthermore, in a method of obtaining a modified water-absorbing resin powder by adding an aqueous liquid to the obtained powder, even if a special mixer or an organic solvent is not particularly used, the uniform mixing of the aqueous liquid is further improved. And a method for further improving the physical properties of the water-absorbent resin powder.

【0002】[0002]

【従来の技術】近年、大量の水を吸収させることを目的
として、紙オムツや生理用ナプキン、失禁パット等の衛
生材料を構成する材料の一つに吸水性樹脂が幅広く利用
されている。また衛生材料以外にも、土壌保水剤並びに
食品等のドリップシート等、吸水、保水を目的として吸
水性樹脂が広範囲に利用されている。上記の吸水性樹脂
としては、例えば、ポリアクリル酸部分中和物架橋体、
澱粉−アクリロニトリル共重合体の加水分解物、澱粉−
アクリル酸グラフト重合体の中和物、酢酸ビニル−アク
リル酸エステル共重合体の鹸化物、アクリロニトリル共
重合体もしくはアクリルアミド共重合体の加水分解物ま
たはこれらの架橋体、カルボキシメチルセルロース架橋
体、2−アクリルアミド−2−メチルプロパンスルホン
酸(AMPS)の共重合架橋体、ポリエチレンオキサイ
ド架橋体、ポリアリルアミン架橋体、ポリエレンイミン
架橋体等が知られ、これらの多くは粉末状で使用されて
いる。
2. Description of the Related Art In recent years, for the purpose of absorbing a large amount of water, a water-absorbent resin has been widely used as one of materials constituting sanitary materials such as disposable diapers, sanitary napkins, incontinence pads and the like. In addition to hygienic materials, water-absorbing resins are widely used for the purpose of absorbing and retaining water, such as soil water retention agents and drip sheets for foods and the like. As the above water-absorbing resin, for example, a cross-linked polyacrylic acid partially neutralized product,
Starch-hydrolyzate of acrylonitrile copolymer, starch-
Neutralized acrylic acid graft polymer, saponified vinyl acetate-acrylic acid ester copolymer, hydrolyzed product of acrylonitrile copolymer or acrylamide copolymer or cross-linked product thereof, cross-linked carboxymethyl cellulose, 2-acrylamide A crosslinked copolymer of 2-methylpropanesulfonic acid (AMPS), a crosslinked product of polyethylene oxide, a crosslinked product of polyallylamine, a crosslinked product of polyelemine, and the like are known, and most of them are used in powder form.

【0003】これら吸水性樹脂の製造方法としては、必
要により架橋剤を含む単量体の水溶液を重合させて得ら
れた含水ゲル状架橋重合体を乾燥してさらに必要により
粉砕することで粉末として得る方法が主流であるが、吸
水性樹脂の含水ゲル状架橋重合体は、その高い吸水能、
粘着性や付着性、低い耐熱性のために、乾燥や乾燥後の
粉砕が非常に困難であり、生産性が低く、得られる吸水
性樹脂の物性やエネルギー効率が非常に悪いものであっ
た。かかる吸水性樹脂の含水ゲル状架橋重合体の乾燥方
法としては、例えば、ドラムドライヤー乾燥(特開昭5
4−53165号)、乾燥した粉末状のアクリル酸重合
体と含水ゲルを混合して攪拌乾燥する方法(特開昭57
−117551号)、共沸脱水(特開昭57−1987
14号)、特定露点での乾燥(特開平1−26604号
/米国特許4920202号)、凍結乾燥(特開平1−
304127号、特開平1−304128号)、円筒状
乾燥機中で攪拌乾燥する方法(特開平2−240112
号/米国特許5005771号)、特定孔でゲルを押し
出した後に乾燥する方法(米国特許5275773
号)、マイクロ波乾燥(特開平5−209010号/米
国特許5075344号)、特定のゲル細断機を用いた
後に熱風乾燥する方法(特開平5−230124号)、
差圧を測定しながら熱風乾燥する方法(特開平8−73
518号)、界面活性剤を加えて攪拌乾燥する方法(特
開平8−134134号)、静置乾燥した後に粉砕して
次いで攪拌ないし流動乾燥する方法(特開平11−24
0914号/欧州特許0926162号)などが知られ
ている。
As a method for producing these water-absorbent resins, a water-containing gel-like cross-linked polymer obtained by polymerizing an aqueous solution of a monomer containing a cross-linking agent, if necessary, is dried and further pulverized, if necessary, to obtain a powder. Although the method of obtaining is the mainstream, the hydrogel crosslinked polymer of the water-absorbing resin has a high water-absorbing ability,
Due to the tackiness, adhesion, and low heat resistance, drying and pulverization after drying were extremely difficult, the productivity was low, and the physical properties and energy efficiency of the resulting water-absorbent resin were very poor. As a method for drying the water-containing gel-like crosslinked polymer of the water-absorbent resin, for example, drum dryer drying (Japanese Patent Laid-Open No.
4-53165), a method of mixing a dried powdery acrylic acid polymer and a hydrogel and stirring and drying the mixture (Japanese Patent Application Laid-Open No. 57-57).
117551), azeotropic dehydration (JP-A-57-1987)
No. 14), drying at a specific dew point (JP-A-1-26604 / US Pat. No. 4,920,202), and freeze-drying (JP-A-1-26204).
304127, JP-A-1-304128), a method of stirring and drying in a cylindrical dryer (JP-A-2-240112)
US Pat. No. 5,275,773), a method in which a gel is extruded through specific pores and then dried (US Pat. No. 5,275,773).
), Microwave drying (JP-A-5-209010 / U.S. Pat. No. 5,075,344), a method of drying with hot air after using a specific gel shredding machine (JP-A-5-230124),
A method of drying with hot air while measuring the differential pressure (Japanese Patent Laid-Open No. 8-73)
No. 518), a method of adding a surfactant and drying by stirring (Japanese Patent Application Laid-Open No. 8-134134), a method of drying by standing, pulverizing, and then stirring or fluid-drying (Japanese Patent Application Laid-Open No. 11-24).
No. 0914 / European Patent No. 0926162).

【0004】また、乾燥のため、パンチングメタルや金
網上に含水ゲル状架橋重合体を積層する乾燥方法は知ら
れているが、乾燥後の乾燥重合体は剥離性が悪く、金網
や孔への付着や目詰まりのため、特に熱風乾燥などでは
通気性低下に伴う乾燥効率の大幅な低下という問題を有
していた。そこで、かかる付着や目詰まりの防止のため
に、ピンを有した特殊なコンベアを用いる乾燥方法(特
開平7−270070号/ドイツ特許19511769
号)も知られている。さらに吸水性樹脂は物性(吸水倍
率、水可溶分、通液性など)以外にも、その粒度分布が
重要であり、特定の狭い粒度の吸水性樹脂(特開平1−
132802号/米国特許5061259号、特開平2
−196802号/米国特許5244735号、特開平
2−191604号/米国特許4973632号、特開
平6−507564号/米国特許5419956号、欧
州特許0629411号)の重要性も知られており、ま
た、粒度分布が複数の吸水性樹脂(欧州特許08452
72号、特開平11−130978号)も知られてい
る。
[0004] Further, for drying, a drying method of laminating a hydrogel cross-linked polymer on a punching metal or a wire mesh is known. Due to the adhesion and clogging, particularly in hot air drying, there is a problem that the drying efficiency is greatly reduced due to a decrease in air permeability. Therefore, in order to prevent such adhesion and clogging, a drying method using a special conveyor having pins (Japanese Patent Laid-Open No. 7-270070 / German Patent 19511769).
No.) is also known. Further, in addition to physical properties (water absorption capacity, water-soluble content, liquid permeability, etc.), the particle size distribution of the water-absorbent resin is important.
No. 132802 / US Pat. No. 5,061,259;
-196802 / U.S. Pat. No. 5,244,735, JP-A-2-191604 / US Pat. No. 4,973,632, JP-A-6-507564 / US Pat. No. 5,419,956, and EP-0629411) are also known. Water-absorbing resin having a plurality of distributions (EP08452
No. 72, JP-A-11-130978) are also known.

【0005】そこで、かかる目的とする粒度調整の為の
分級方法として、効率的な分級が求められ、乾燥後の吸
水性樹脂の分級方法として、加熱ないし保温させた篩を
用いる方法(特開平10−202187号/欧州特許0
855232号)、テフロンなどで被覆した分級網を用
いる方法(特開平11−156299号)も知られてい
る。粉砕前または粉砕工程中に、乾燥時の未乾燥物を分
級する方法(特開平11−292919号/欧州特許0
948997号)も知られている。しかしながら、これ
らの方法にあっても、吸水性樹脂やその含水ゲル状架橋
重合体はその高い吸水能や粘着性、低い耐熱性のため
に、乾燥や乾燥後の粉砕が非常に困難であり、得られる
吸水性樹脂の物性や粒度分布の低下が見られ、しかも、
エネルギー効率や生産性が非常に悪いものであった。ま
た、粉砕後や分級後にも製造工程で粉末の凝集が見られ
て、生産効率や品質を低下させるという問題を有してい
た。
[0005] Therefore, efficient classification is required as a classification method for adjusting the target particle size. As a classification method for a water-absorbent resin after drying, a method using a heated or heated sieve (Japanese Patent Laid-Open No. -202187 / European Patent 0
855232) and a method using a classification network coated with Teflon or the like (JP-A-11-156299) are also known. A method of classifying undried matter before drying or during the pulverizing step (Japanese Patent Application Laid-Open No. 11-292919 / European Patent 0
No. 948997) is also known. However, even in these methods, the water-absorbent resin and its hydrogel cross-linked polymer are very difficult to dry or pulverize after drying due to their high water-absorbing ability and tackiness, and low heat resistance. The properties and particle size distribution of the resulting water-absorbent resin are reduced, and
Energy efficiency and productivity were very poor. In addition, agglomeration of the powder is observed in the production process even after pulverization or classification, which causes a problem that production efficiency and quality are reduced.

【0006】さらに、得られた重合体粉末に対して、水
単独または添加剤を含む水性液を添加することで吸水性
樹脂粉末の粒度分布や加圧下吸収特性を改良する方法は
知られ、かかる方法は、造粒(米国特許5369148
号)や表面架橋(米国特許5409771号,同542
2405号,同5597873号)、残存エポキシ化合
物の低減(米国特許5981070号)などとして多用
されている。しかし、吸水性樹脂は瞬時に水を吸収し粘
着性を発揮するため、従来、水性液の不均一な混合のた
めに、その物性改良も不十分であるのみならず、さらに
場合よっては、不均一な混合によって生成した吸水性樹
脂の凝集物が混合機中に付着して、連続操業そのものが
困難であった。また、架橋剤やその溶媒として多価アル
コールは物性面や安全性面でも好ましいが、その高い親
水性や粘度のために、これら水性液の中でも多価アルコ
ール水溶液の吸水性樹脂への均一な混合は特に困難であ
った。
Further, there is known a method for improving the particle size distribution and absorption under pressure characteristics of a water-absorbent resin powder by adding water alone or an aqueous liquid containing additives to the obtained polymer powder. The method involves granulation (US Pat. No. 5,369,148).
No. 5) and surface crosslinking (US Pat. Nos. 5,409,771 and 542).
Nos. 2405 and 5597873) and reduction of residual epoxy compounds (US Pat. No. 5,981,070). However, since the water-absorbing resin instantaneously absorbs water and exhibits adhesiveness, conventionally, the uneven mixing of the aqueous liquid has not only led to an insufficient improvement in the physical properties, and in some cases, the water-absorbing resin has an unsatisfactory property. Agglomerates of the water-absorbing resin produced by the uniform mixing adhered to the mixer, making continuous operation itself difficult. In addition, polyhydric alcohol as a cross-linking agent or its solvent is also preferable in terms of physical properties and safety, but because of its high hydrophilicity and viscosity, evenly mixing these polyhydric alcohol aqueous solutions into the water-absorbent resin among these aqueous liquids Was particularly difficult.

【0007】そこで、吸水性樹脂粉末に水性液を添加し
て改質する際に、特殊な混合機の使用(欧州特許045
0923号,欧州特許0812873号など)、無機粉
末の使用(米国特許4587308号)、水性液中に有
機溶媒を併用する技術(米国特許4734478号)は
知られているが、有機溶媒の使用、特に揮発性有機溶媒
の使用はコストや環境問題・安全性に加えて、物性低下
を引起こす問題を伴っていた。さらに、吸水性樹脂に水
性液を添加する際に、樹脂の物性(AUL/Absorbency un
der Load)を特定範囲に制御する技術(WO98/4
9221号)も知られているが、かかる方法では、適用
される吸水性樹脂粉末も非常に限られ且つその製造も困
難であった。
Therefore, when a water-based resin powder is modified by adding an aqueous liquid, a special mixer is used (European Patent No. 045).
0923, EP0812873, etc.), the use of inorganic powders (US Pat. No. 4,587,308), and the technique of using an organic solvent in an aqueous liquid (US Pat. No. 4,734,478) are known. The use of a volatile organic solvent has been accompanied by a problem of causing deterioration in physical properties in addition to cost, environmental problems and safety. Furthermore, when adding an aqueous liquid to a water-absorbent resin, the properties of the resin (AUL / Absorbency un
der Load) in a specific range (WO98 / 4)
No. 9221) is also known, but in such a method, the applied water-absorbent resin powder is very limited and its production is difficult.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来の
問題点に鑑みなされたものであり、その目的は、上記現
状のため、含水ゲル状架橋重合体を熱劣化なく、効率的
に乾燥ないし粉砕し粒度調整することで、粒度分布が狭
く且つ高物性の吸水性樹脂粉末を製造することができる
とともに、その製造工程での付着や凝集を防止した上、
さらにエネルギー効率よく且つ高生産性を示す製造方法
を提供することである。さらに、水性液を添加する方法
において、混合性をさらに改良して、特殊な混合機や有
機溶媒を使用せずとも、均一な水性液(特に架橋剤水溶
液や多価アルコール水溶液)の添加によって吸水性樹脂
粉末の物性をより改良することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to efficiently dry a hydrogel cross-linked polymer without thermal deterioration due to the above-mentioned current situation. Or by grinding and adjusting the particle size, it is possible to produce a water-absorbent resin powder having a narrow particle size distribution and high physical properties, while preventing adhesion and agglomeration in the production process,
It is another object of the present invention to provide a manufacturing method that is energy efficient and exhibits high productivity. Furthermore, in the method of adding an aqueous liquid, the mixing property is further improved, and the water absorption is achieved by adding a uniform aqueous liquid (particularly an aqueous solution of a crosslinking agent or an aqueous solution of polyhydric alcohol) without using a special mixer or an organic solvent. Another object of the present invention is to improve the physical properties of the conductive resin powder.

【0009】[0009]

【課題を解決するための手段】本願発明者等は、上記目
的を達成すべく鋭意検討した結果、架橋剤を含む単量体
水溶液を重合してなる含水ゲル状架橋重合体を加熱乾燥
した後に粉砕する吸水性樹脂粉末の製造方法であって、
当該粉砕後の吸水性樹脂粉末の平均粒子径が200〜6
00μmの範囲であり、さらに150μm以下ないし8
50μm以上の粒子の割合が15重量%以下であり、加
熱乾燥後の乾燥重合体を粉砕前または粉砕時に冷却する
ことを特徴とする製造方法によって、エネルギー効率も
よく、製造工程の粉末の凝集もなく、乾燥時の熱劣化や
付着も非常に少なく、乾燥後の粉砕も極めて効率的にな
されることを見出し本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, after heating and drying a hydrogel cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent, A method for producing a water-absorbent resin powder to be crushed,
The average particle diameter of the water-absorbent resin powder after the pulverization is 200 to 6
00 μm, and 150 μm or less to 8 μm.
The production method characterized in that the ratio of particles having a particle size of 50 μm or more is 15% by weight or less and the dried polymer after heating and drying is cooled before or during pulverization. Further, the present inventors have found that heat deterioration and adhesion during drying are extremely small, and that pulverization after drying is extremely efficient, and the present invention has been completed.

【0010】さらに、吸水性樹脂粉末を冷却しさらに嵩
比重を調整することで、従来困難であった水性液(特に
架橋剤水溶液や多価アルコール水溶液)の混合性を改良
し、連続操業性や物性を改良できることを見出し本発明
を完成した。すなわち、本発明に係る吸水性樹脂粉末の
製造方法は、架橋剤を含む単量体水溶液を重合してなる
含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水
性樹脂粉末の製造方法であって、当該粉砕後の吸水性樹
脂粉末の平均粒子径が200〜600μmの範囲であ
り、さらに150μm以下ないし850μm以上の粒子
の割合が15重量%以下であり、加熱乾燥後の乾燥重合
体を粉砕前または粉砕時に冷却することを特徴とする。
Further, by cooling the water-absorbent resin powder and further adjusting the bulk specific gravity, the mixing property of an aqueous liquid (particularly, an aqueous solution of a cross-linking agent or an aqueous solution of a polyhydric alcohol), which has been difficult in the past, is improved. The inventors have found that the physical properties can be improved and completed the present invention. That is, the method for producing a water-absorbent resin powder according to the present invention is a method for producing a water-absorbent resin powder in which a water-containing gel-like crosslinked polymer obtained by polymerizing a monomer aqueous solution containing a crosslinking agent is heated, dried, and then pulverized. The average particle diameter of the water-absorbent resin powder after the pulverization is in the range of 200 to 600 μm, and the ratio of particles of 150 μm or less to 850 μm or more is 15% by weight or less. It is characterized by cooling before or during grinding.

【0011】また、本発明に係る別の吸水性樹脂粉末の
製造方法は、架橋剤を含む単量体水溶液を重合してなる
含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水
性樹脂粉末の製造方法であって、加熱乾燥後の乾燥重合
体を強制冷却して得られた熱を吸水性樹脂の製造工程に
おける強制加熱に再利用することを特徴とする。また、
本発明に係る別の吸水性樹脂粉末の製造方法は、架橋剤
を含む単量体水溶液を重合してなる含水ゲル状架橋重合
体を加熱乾燥した後に粉砕して得られた粉末に混合機中
で水性液を添加する吸水性樹脂粉末の製造方法であっ
て、加熱乾燥温度が110〜230℃の範囲であるこ
と、水性液添加前に乾燥重合体を80〜35℃に冷却す
ること、および、粉砕後の乾燥重合体の嵩比重を0.6
5g/ml以上とすることを特徴とする。
Another method for producing a water-absorbent resin powder according to the present invention is to provide a method for producing a water-absorbent resin powder by heating and drying a water-containing gel-like cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent. Wherein the heat obtained by forcibly cooling the dried polymer after heating and drying is reused for forced heating in the process of producing the water-absorbent resin. Also,
Another method for producing a water-absorbent resin powder according to the present invention is to heat and dry a hydrogel crosslinked polymer obtained by polymerizing a monomer aqueous solution containing a crosslinking agent, and then pulverize the powder obtained in a mixing machine. A method for producing a water-absorbent resin powder by adding an aqueous liquid, wherein the heating and drying temperature is in the range of 110 to 230 ° C, cooling the dried polymer to 80 to 35 ° C before adding the aqueous liquid, and , The bulk specific gravity of the dry polymer after grinding is 0.6
It is characterized by being at least 5 g / ml.

【0012】また、本発明に係る別の吸水性樹脂粉末の
製造方法は、架橋剤を含む単量体水溶液を重合してなる
含水ゲル状架橋重合体を加熱乾燥した後に粉砕して得ら
れた粉末に混合機中で水性液を添加する吸水性樹脂粉末
の製造方法であって、加熱乾燥温度が110〜230℃
の範囲であること、水性液添加前に乾燥重合体を80〜
35℃に冷却すること、および、混合機の内壁温度が4
0℃以上の攪拌混合機であること、および、110〜2
30℃に再加熱することを特徴とする。
Further, another method for producing a water-absorbent resin powder according to the present invention is obtained by heating and drying a water-containing gel-like cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent, followed by pulverization. A method for producing a water-absorbent resin powder in which an aqueous liquid is added to a powder in a mixer, wherein the heating and drying temperature is 110 to 230 ° C.
That the dry polymer is 80 to 80% before addition of the aqueous liquid.
Cooling to 35 ° C., and when the inner wall temperature of the mixer is 4
A stirring mixer at 0 ° C. or higher;
It is characterized by reheating to 30 ° C.

【0013】また、本発明に係る別の吸水性樹脂粉末の
製造方法は、架橋剤を含む単量体水溶液を重合してなる
含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水
性樹脂粉末の製造方法であって、加熱乾燥後の乾燥重合
体を強制冷却すること、乾燥重合体を粉砕して嵩比重
0.65g/ml以上の吸水性樹脂粉末とすること、冷
却された吸水性樹脂粉末をさらに表面架橋すること、を
特徴とする。
Another method for producing a water-absorbent resin powder according to the present invention is to provide a water-absorbent resin powder obtained by heating and drying a water-containing gel-like cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent and then pulverizing it. Wherein the dried polymer after heating and drying is forcibly cooled; the dried polymer is pulverized into a water-absorbent resin powder having a bulk specific gravity of 0.65 g / ml or more; The powder is further subjected to surface crosslinking.

【0014】また、本発明に係る別の吸水性樹脂粉末の
製造方法は、架橋剤を含む単量体水溶液を重合してなる
含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水
性樹脂粉末の製造方法であって、加熱乾燥後の乾燥重合
体を強制冷却すること、乾燥重合体を粉砕して嵩比重
0.65g/ml以上の吸水性樹脂粉末とすること、冷
却された吸水性樹脂粉末にさらに水性液を添加するこ
と、水性液が内壁が加熱された攪拌混合機で添加される
こと、を特徴とする。
Another method for producing a water-absorbent resin powder according to the present invention is to provide a method for producing a water-absorbent resin powder by heating and drying a water-containing gel-like cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent. Wherein the dried polymer after heating and drying is forcibly cooled; the dried polymer is pulverized into a water-absorbent resin powder having a bulk specific gravity of 0.65 g / ml or more; It is characterized in that an aqueous liquid is further added to the powder, and the aqueous liquid is added by a stirring mixer whose inner wall is heated.

【0015】また、本発明に係る吸水性樹脂粉末は、本
発明のいずれかの製造方法を経て得られた加圧下吸収倍
率(1.96kPa)が25g/g以上の吸水性樹脂粉末
であり、本発明に係る吸収物品は当該吸水性樹脂粉末を
含む。また、本発明に係る別の吸水性樹脂粉末は、架橋
剤を含む単量体水溶液を重合してなる含水ゲル状架橋重
合体を加熱乾燥した後に粉砕して得られた粉末に混合機
中で揮発性有機溶媒を含有しない多価アルコール水溶液
を添加して得られた、(1)嵩比重が0.65g/ml
以上、(2)平均粒子径200〜600μm、(3)1
50μm以下ないし850μm以上の粒子の合計が10
重量%以下、(4)加圧下吸収倍率(1.96kPa)が
25g/g以上の吸水性樹脂粉末であり、本発明に係る
別の吸収物品は当該吸水性樹脂粉末を含む。
Further, the water-absorbent resin powder according to the present invention is a water-absorbent resin powder having an absorption capacity under pressure (1.96 kPa) of 25 g / g or more obtained through any of the production methods of the present invention. The absorbent article according to the present invention contains the water absorbent resin powder. Further, another water-absorbent resin powder according to the present invention is obtained by heating and drying a hydrogel cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent, and then pulverizing the obtained powder in a mixer. (1) Bulk specific gravity obtained by adding a polyhydric alcohol aqueous solution containing no volatile organic solvent is 0.65 g / ml.
As described above, (2) the average particle diameter is 200 to 600 μm, and (3) 1
The total of particles of 50 μm or less to 850 μm or more is 10
% Or less, (4) a water-absorbent resin powder having an absorbency against pressure (1.96 kPa) of 25 g / g or more, and another absorbent article according to the present invention contains the water-absorbent resin powder.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の一形態につ
いて詳しく説明する。本発明の吸水性樹脂粉末の製造方
法では、架橋剤を含む単量体水溶液を重合してなる含水
ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水性樹
脂粉末の製造方法であって、当該粉砕後の吸水性樹脂粉
末の平均粒子径が200〜600μmの範囲であり、さ
らに150μm以下ないし850μm以上の粒子の割合
が15重量%以下であり、加熱乾燥後の乾燥重合体を粉
砕前または粉砕時に冷却することを特徴とする製造方法
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. The method for producing a water-absorbent resin powder of the present invention is a method for producing a water-absorbent resin powder, which is obtained by heating and drying a hydrogel cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent, followed by grinding. The average particle size of the water-absorbent resin powder after pulverization is in the range of 200 to 600 μm, and the ratio of particles having a size of 150 μm or less to 850 μm or more is 15% by weight or less. This is a production method characterized by occasionally cooling.

【0017】先ず、以下、本発明の含水ゲル状架橋重合
体の製造方法について説明する。本発明における吸水性
樹脂とは、飽和膨潤時に無荷重下では自重の3〜100
0倍、好ましくは5〜1000倍、より好ましくは10
〜800倍、さらに好ましくは100〜700倍のイオ
ン交換水を吸収して水不溶性の膨潤含水ゲルを形成しう
る架橋重合体のことである。なお、本発明での水不溶性
とは通常、吸水性樹脂中の水可溶成分量が40重量%以
下、好ましくは20重量%以下、さらに好ましくは15
重量%以下、特に好ましくは10重量%以下、最も好ま
しくは5重量%以下である。なお、これらの物性の測定
法は、後述の実施例の欄で説明する。水可溶成分量が多
いと、諸物性(加圧下吸収,加圧下通液量など)の低下
のみならず、吸水性樹脂粉末の水性液の均一な添加が困
難となるので好ましくない。
First, the method for producing the hydrogel crosslinked polymer of the present invention will be described below. The water-absorbent resin in the present invention is 3 to 100 of its own weight under no load during saturated swelling.
0 times, preferably 5 to 1000 times, more preferably 10 times
A crosslinked polymer capable of absorbing 交換 800-fold, more preferably 100-700-fold ion-exchanged water to form a water-insoluble swollen hydrogel. In the present invention, the term "water-insoluble" generally means that the amount of water-soluble components in the water-absorbent resin is 40% by weight or less, preferably 20% by weight or less, and more preferably 15% by weight or less.
% By weight, particularly preferably 10% by weight or less, most preferably 5% by weight or less. In addition, the measuring method of these physical properties is demonstrated in the column of the below-mentioned Example. If the amount of the water-soluble component is large, not only the physical properties (absorption under pressure, amount of liquid passing under pressure, etc.) are lowered, but also it becomes difficult to uniformly add the aqueous liquid of the water-absorbing resin powder, which is not preferable.

【0018】本発明にかかる吸水性樹脂粉末の製造方法
において用いられる含水ゲル状架橋重合体は、架橋剤を
含む単量体水溶液を重合してなる重合体である。上記含
水ゲル状架橋重合体としては、吸水性のカチオン性、ア
ニオン性、ノニオン性の架橋重合体の1種または混合物
が挙げられるが、本発明の効果を最も発揮する点から、
好ましくは、必須にアニオン性架橋重合体を主成分と
し、さらには好ましくは、官能基の主成分はカルボキシ
ル基であることが好ましい。本発明では、その効果の大
きさから、アニオン性架橋重合体は酸基含有不飽和単量
体(塩)としてアクリル酸(塩)を用いた含水ゲル状架
橋重合体が好ましく、また、0〜90モル%、さらには
0〜80モル%が中和されたアクリル酸(塩)を重合し
てなる含水ゲル状架橋重合体であることが更に好まし
く、特に、0〜10モル%が中和されたアクリル酸
(塩)を重合してなる含水ゲル状架橋重合体であること
が更により好ましい。すなわち、従来、ポリアクリル酸
架橋体、特に未中和ないし低中和のポリアクリル酸架橋
体では乾燥工程や粉砕工程での物性低下が大きかったた
め、本発明の方法が好適に適用される。
The hydrogel crosslinked polymer used in the method for producing a water absorbent resin powder according to the present invention is a polymer obtained by polymerizing an aqueous monomer solution containing a crosslinking agent. Examples of the water-containing gel-like crosslinked polymer include one or a mixture of water-absorbing cationic, anionic, and nonionic crosslinked polymers.From the viewpoint of maximizing the effects of the present invention,
Preferably, the anionic crosslinked polymer is essentially used as a main component, and more preferably, the main component of the functional group is a carboxyl group. In the present invention, the anionic crosslinked polymer is preferably a water-containing gel-like crosslinked polymer using acrylic acid (salt) as the acid group-containing unsaturated monomer (salt) because of its effect. It is further preferable that the crosslinked polymer is a hydrogel cross-linked polymer obtained by polymerizing 90 mol%, more preferably 0 to 80 mol% of neutralized acrylic acid (salt), and in particular, 0 to 10 mol% is neutralized. It is even more preferred that the polymer is a hydrogel crosslinked polymer obtained by polymerizing acrylic acid (salt). That is, conventionally, in the crosslinked polyacrylic acid, particularly the crosslinked polyacrylic acid which is unneutralized or lowly neutralized, the physical property is greatly reduced in the drying step and the pulverizing step. Therefore, the method of the present invention is suitably applied.

【0019】また、上記単量体は、上記アクリル酸
(塩)を主成分とし、必要に応じて、上記アクリル酸
(塩)以外のその他の単量体、つまり、上記アクリル酸
(塩)と共重合可能なその他の単量体を含んでいてもよ
いし、また、アクリル酸以外の単量体で吸水性樹脂を得
てもよい。用いられるアクリル酸以外の単量体として
は、特に限定されるものではないが、具体的には、例え
ば、メタクリル酸、マレイン酸、クロトン酸、ソルビン
酸、イタコン酸、ケイ皮酸、無水マレイン酸、ビニルス
ルホン酸、アリルスルホン酸、ビニルトルエンスルホン
酸、スチレンスルホン酸、2−(メタ)アクリルアミド
−2−メチルプロパンスルホン酸、2−(メタ)アクリ
ロイルエタンスルホン酸、2−(メタ)アクリロイルプ
ロパンスルホン酸、2−ヒドロキシエチル(メタ)アク
リロイルホスフェート等の酸基含有不飽和単量体および
その塩;アクリルアミド、メタアクリルアミド、N−エ
チル(メタ)アクリルアミド、N,N−ジメチル(メ
タ)アクリルアミド、2−ヒドロキシエチル(メタ)ア
クリレート、2−ヒドロキシプロピル(メタ)アクリレ
ート、メトキシポリエチレングリコール(メタ)アクリ
レート、ポリエチレングリコールモノ(メタ)アクリレ
ート、ビニルピリジン、N−ビニルピロリドン、N−ア
クリロイルピペリジン、N−アクリロイルピロリジン等
のノニオン性の親水基含有不飽和単量体等が挙げられ
る。これらその他の単量体は、一種類のみを用いてもよ
く、適宜、二種類以上を混合して用いてもよい。これら
その他の不飽和単量体を用いる場合には、アクリル酸を
含む単量体中のその他の不飽和単量体割合が50モル%
以下、好ましくは30モル%以下となるように設定すれ
ばよい。
The above-mentioned monomer contains the above-mentioned acrylic acid (salt) as a main component, and if necessary, other monomers other than the above-mentioned acrylic acid (salt), ie, the above-mentioned acrylic acid (salt). Other copolymerizable monomers may be included, and a water-absorbing resin may be obtained from a monomer other than acrylic acid. The monomer other than acrylic acid used is not particularly limited, but specifically, for example, methacrylic acid, maleic acid, crotonic acid, sorbic acid, itaconic acid, cinnamic acid, maleic anhydride , Vinylsulfonic acid, allylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfone Acid, unsaturated monomer containing an acid group such as 2-hydroxyethyl (meth) acryloyl phosphate and salts thereof; acrylamide, methacrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2- Hydroxyethyl (meth) acrylate, 2-hydroxypro Unsaturated non-hydrophilic group-containing unsaturated monomer such as meth (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol mono (meth) acrylate, And the like. One of these other monomers may be used alone, or two or more of them may be used as a mixture. When these other unsaturated monomers are used, the ratio of the other unsaturated monomers in the monomer containing acrylic acid is 50 mol%.
The content may be set to be equal to or less than 30 mol% or less.

【0020】本発明で酸基含有単量体や塩基含有単量体
を用いる場合、単量体ないし重合体の酸基官能基ないし
塩基官能基は中和してもよい。本発明で用いられる中和
剤としては、特に限定されるものではなく、公知の無機
または有機の塩基または酸を単量体ないし重合体に対し
て使用することができる。例えば、本発明で酸基含有単
量体を用いる場合、単量体ないし重合体の中和剤の塩基
としては、具体的には、例えば、水酸化ナトリウム、水
酸化カリウム、水酸化リチウム、炭酸リチウム、水酸化
アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸ア
ンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、
炭酸水素アンモニウムなどの無機塩基、エタノールアミ
ン、ジエタノールアミン、トリエタノールアミン、ポリ
エチレンイミン、ポリアリルアミン、(ポリ)リジン、
(ポリ)アルギニンなどの有機塩基が挙げられる。ま
た、本発明で塩基含有単量体を用いる場合、同様に中和
剤として無機酸ないし有機酸が適宜選択される。
When an acid group-containing monomer or a base-containing monomer is used in the present invention, the acid group-functional group or the base functional group of the monomer or polymer may be neutralized. The neutralizing agent used in the present invention is not particularly limited, and a known inorganic or organic base or acid can be used for the monomer or the polymer. For example, when an acid group-containing monomer is used in the present invention, specific examples of the base of the monomer or polymer neutralizer include, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, and carbonate. Lithium, ammonium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate,
Inorganic bases such as ammonium bicarbonate, ethanolamine, diethanolamine, triethanolamine, polyethyleneimine, polyallylamine, (poly) lysine,
Organic bases such as (poly) arginine. When a base-containing monomer is used in the present invention, similarly, an inorganic acid or an organic acid is appropriately selected as a neutralizing agent.

【0021】なお、高分子の中和剤(例えば、ポリアミ
ン)を用いる場合は架橋体としてもよいが、これら中和
剤の中でもアルカリ金属塩、特にリチウム塩ないしナト
リウム塩が好ましく用いられ、吸水性樹脂の酸基の50
〜90モル%、さらには60〜80モル%が中和され
る。本発明で得られる吸水性樹脂の最終的な中和率は上
記範囲が好ましい。また、中和は上記塩基や酸を水溶
液、分散液またはゲルとして行ってもよいし、塩基や酸
を固体のまま加えるいわゆるドライブレンド(粉体混
合)で行ってもよい。また、中和は単量体でもよく、乾
燥前の含水ゲル状架橋重合体で行ってもよいし、乾燥後
の乾燥重合体やその粉砕物や分級物に対して行ってもよ
いし、これら中和を併用してもよい。さらに、中和は酸
基と塩基を完全に反応させてもよいし、ドライブレンド
などの方法で一部のみを反応させて、上記酸基と上記塩
基との混合物である吸水性樹脂組成物を得る事で中和と
してもよい。
When a high-molecular neutralizing agent (for example, polyamine) is used, a crosslinked product may be used. Among these neutralizing agents, alkali metal salts, particularly lithium salts and sodium salts, are preferably used. 50 of the acid groups of the resin
~ 90 mol%, furthermore 60-80 mol% are neutralized. The final neutralization ratio of the water absorbent resin obtained in the present invention is preferably in the above range. The neutralization may be carried out as an aqueous solution, dispersion or gel of the above base or acid, or may be carried out by so-called dry blending (powder mixing) in which the base or acid is added as a solid. In addition, the neutralization may be a monomer, may be performed with a hydrogel crosslinked polymer before drying, or may be performed on a dried polymer or a pulverized product or a classified product after drying. Neutralization may be used in combination. Further, the neutralization may completely react the acid group and the base, or only partially react by a method such as dry blending, to obtain a water-absorbent resin composition that is a mixture of the acid group and the base. It may be neutralized by obtaining.

【0022】また、本発明で中和する場合、その手法と
して、含水ゲル状架橋重合体またはその乾燥重合体の後
中和、特に乾燥重合体の後中和は本発明の好適な手法の
一つである。すなわち、本発明では、未中和ないし低中
和のポリアクリル酸架橋体をその物性低下なく効率的に
乾燥(粉末化)できるので、ポリアクリル酸架橋体粉末
を用いた後中和が可能であり、よって、ポリアクリル酸
架橋体粉末を後中和するという方法で、さらに高物性の
吸水性樹脂を得る事もできて好ましい。また、上記含水
ゲル状架橋重合体を得る際には、その手段は、重合体が
水不溶性となればラジカル架橋や自己架橋などでもよい
が、通常、内部架橋剤を用いて架橋構造を重合体の内部
に導入する。上記の内部架橋剤は、重合性不飽和基およ
び/または反応性基を一分子中に複数有する化合物であ
ればよく、単量体と共重合および/または反応する置換
基を一分子中に複数有する化合物であればよい。また、
反応する置換基を一分子中に複数有する化合物を用いる
場合、重合後の水溶性ないし水不溶性の重合体ゲルに架
橋剤を均一に添加してその内部を後架橋してもよい。
In the case of neutralization according to the present invention, post-neutralization, particularly post-neutralization of a dry polymer, is a preferred method of the present invention. One. That is, in the present invention, the unneutralized or low-neutralized crosslinked polyacrylic acid can be efficiently dried (pulverized) without deteriorating its physical properties. Therefore, the method of post-neutralizing the crosslinked polyacrylic acid powder is preferable because a water absorbent resin having higher physical properties can be obtained. When the above hydrogel cross-linked polymer is obtained, the means may be radical cross-linking or self-cross-linking as long as the polymer becomes water-insoluble, but the cross-linked structure is usually formed using an internal cross-linking agent. To be introduced inside. The internal crosslinking agent may be a compound having a plurality of polymerizable unsaturated groups and / or reactive groups in one molecule, and may have a plurality of substituents in one molecule which copolymerize and / or react with a monomer. Any compound may be used. Also,
When a compound having a plurality of reactive substituents in one molecule is used, a cross-linking agent may be uniformly added to a water-soluble or water-insoluble polymer gel after polymerization to post-crosslink the inside.

【0023】上記内部架橋剤としては、具体的には、例
えば、N,N’−メチレンビス(メタ)アクリルアミ
ド、(ポリ)エチレングリコールジ(メタ)アクリレー
ト、(ポリ)プロピレングリコールジ(メタ)アクリレ
ート、トリメチロールプロパントリ(メタ)アクリレー
ト、トリメチロールプロパンジ(メタ)アクリレート、
グリセリントリ(メタ)アクリレート、グリセリンアク
リレートメタクリレート、エチレンオキサイド変性トリ
メチロールプロパントリ(メタ)アクリレート、ペンタ
エリスリトールテトラ(メタ)アクリレート、ジペンタ
エリスリトールヘキサ(メタ)アクリレート、トリアリ
ルシアヌレート、トリアリルイソシアヌレート、トリア
リルホスフェート、トリアリルアミン、ポリ(メタ)ア
リロキシアルカン、(ポリ)エチレングリコールジグリ
シジルエーテル、グリセロールジグリシジルエーテル、
エチレングリコール、ポリエチレングリコール、プロピ
レングリコール、グリセリン、ペンタエリスリトール、
エチレンジアミン、ポリエチレンイミン、グリシジル
(メタ)アクリレート等が挙げられるが、特に限定され
るものではない。
Specific examples of the internal crosslinking agent include N, N'-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate,
Glycerin tri (meth) acrylate, glycerin acrylate methacrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, Triallyl phosphate, triallylamine, poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, glycerol diglycidyl ether,
Ethylene glycol, polyethylene glycol, propylene glycol, glycerin, pentaerythritol,
Examples thereof include ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate, but are not particularly limited.

【0024】これら内部架橋剤は、一種類または二種類
以上を混合ないし分割して用いてもよい。上記例示の内
部架橋剤のうち、重合性不飽和基を一分子中に複数有す
る内部架橋剤を重合時に用いることにより、得られる吸
水性樹脂の物性をより一層向上させることができるので
好ましい。上記内部架橋剤の使用量は、架橋剤の種類や
目的の架橋密度にもよるが、前記単量体に対して、好ま
しくは0.005〜3モル%、より好ましくは0.01
〜1.5モル%、さらに好ましくは0.05〜1モル%
の範囲で用いられる。上記内部架橋剤の使用量が0.0
05モル%よりも少ない場合、並びに、3モル%よりも
多い場合には、所望の物性を備えた吸水性樹脂が得られ
ない虞れがある。
These internal crosslinking agents may be used alone or in combination of two or more. It is preferable to use an internal cross-linking agent having a plurality of polymerizable unsaturated groups in one molecule at the time of polymerization among the internal cross-linking agents exemplified above, since the physical properties of the obtained water-absorbing resin can be further improved. The amount of the internal cross-linking agent used depends on the type of the cross-linking agent and the desired cross-linking density, but is preferably 0.005 to 3 mol%, more preferably 0.01 to 3 mol%, based on the monomer.
-1.5 mol%, more preferably 0.05-1 mol%
Used in the range. The amount of the internal crosslinking agent used is 0.0
If the amount is less than 05 mol% or more than 3 mol%, there is a possibility that a water-absorbing resin having desired physical properties cannot be obtained.

【0025】尚、上記重合に際しては、反応系に、澱
粉、澱粉の誘導体、セルロース、セルロースの誘導体、
ポリビニルアルコール、ポリアクリル酸(塩)、ポリア
クリル酸(塩)架橋体等の親水性高分子(以上のものに
ついての添加量は、単量体100重量部に対して0〜4
0重量部が好ましく、0〜10重量部がより好まし
い);次亜リン酸(塩)等の連鎖移動剤、キレート剤、
炭酸塩などの発泡剤等(以上のものについての添加量
は、単量体100重量部に対して0〜5重量部が好まし
く、0〜1重量部がより好ましい)を添加してもよい。
上記単量体の重合方法としては、特に限定されるもので
はなく、例えば、水溶液重合、逆相懸濁重合、バルク重
合、沈澱重合等の公知の方法を採用することができる。
このうち、重合反応の制御の容易さ、および、得られる
吸水性樹脂の性能面から、本発明では、単量体成分を水
溶液にして重合させる方法、即ち、水溶液重合および逆
相懸濁重合が好ましい。
In the above polymerization, starch, starch derivative, cellulose, cellulose derivative,
Hydrophilic polymers such as polyvinyl alcohol, polyacrylic acid (salt) and crosslinked polyacrylic acid (salt) (the addition amount of the above is 0 to 4 with respect to 100 parts by weight of monomer)
0 parts by weight, more preferably 0 to 10 parts by weight); a chain transfer agent such as hypophosphorous acid (salt), a chelating agent,
A blowing agent such as a carbonate or the like (the addition amount of the above-mentioned compounds is preferably 0 to 5 parts by weight, more preferably 0 to 1 part by weight based on 100 parts by weight of the monomer).
The method for polymerizing the above monomers is not particularly limited, and for example, known methods such as aqueous solution polymerization, reversed phase suspension polymerization, bulk polymerization, and precipitation polymerization can be employed.
Among these, from the viewpoint of easy control of the polymerization reaction and the performance of the obtained water-absorbent resin, in the present invention, a method of polymerizing a monomer component into an aqueous solution, that is, aqueous solution polymerization and reverse phase suspension polymerization are used. preferable.

【0026】なお、逆相懸濁重合とは、単量体水溶液を
疎水性有機溶媒に懸濁させる重合法であり、例えば、米
国特許4093776号、同4367323号、同44
46261号、同4683274号、同5244735
号などの米国特許に記載されている。水溶液重合は分散
溶媒を用いずに単量体水溶液を重合する方法であり、例
えば、米国特許4625001号、同4873299
号、同4286082号、同4973632号、同49
85518号、同5124416号、同5250640
号、同5264495号、同5145906号、同53
80808号などの米国特許や、欧州特許081163
6号、同0955086号,同0922717号などの
欧州特許に記載されている。本発明ではこれらを含め特
に重合法に限定されないが、乾燥や粉砕が従来困難であ
った水溶液重合に特に好適に本発明は使用される。
The reversed-phase suspension polymerization is a polymerization method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent. For example, US Pat.
46261, 4683274, 5244735
And US patents. Aqueous solution polymerization is a method of polymerizing a monomer aqueous solution without using a dispersion solvent. For example, US Pat. No. 4,625,001 and US Pat.
Nos. 4286082, 4973632, 49
No. 85518, No. 5124416, No. 5250640
Nos. 5,264,495, 5,145,906, 53
U.S. Patents such as 80808;
No. 6, No. 0955086, No. 0922717, and the like. The present invention is not particularly limited to the polymerization method including these, but the present invention is particularly preferably used for aqueous solution polymerization, which has conventionally been difficult to dry and pulverize.

【0027】上記重合方法として水溶液重合および逆相
懸濁重合を採用する場合の単量体成分の濃度、即ち、水
溶液中における単量体の割合は、特に限定されるもので
はないが、物性面から好ましくは10〜70重量%、よ
り好ましくは15〜60重量%、さらに好ましくは20
〜50重量%、特に好ましくは30〜45重量%の範囲
内である。また、反応温度や反応時間等の反応条件は、
用いる単量体に応じて適宜設定すればよく、特に限定さ
れるものではないが、通常、0℃〜沸点以下、好ましく
は10〜110℃、より好ましくは15〜100℃の範
囲内(最低〜最高温度、または、開始温度〜ピーク温
度)での重合が行われ、かかる重合は窒素などの不活性
ガスの雰囲気下で行われることが好ましい。さらに、重
合時の雰囲気も減圧や加圧にしてもよいが、通常は常圧
で行われる。
When the aqueous solution polymerization and the reversed phase suspension polymerization are employed as the above polymerization method, the concentration of the monomer component, that is, the ratio of the monomer in the aqueous solution is not particularly limited, but the physical properties are not limited. From 10 to 70% by weight, more preferably from 15 to 60% by weight, even more preferably from 20 to 70% by weight.
To 50% by weight, particularly preferably 30 to 45% by weight. The reaction conditions such as reaction temperature and reaction time are as follows:
It may be appropriately set according to the monomer used, and is not particularly limited, but is usually in the range of 0 ° C to the boiling point or lower, preferably 10 to 110 ° C, more preferably 15 to 100 ° C (minimum to The polymerization is carried out at the maximum temperature (or the starting temperature to the peak temperature), and the polymerization is preferably carried out in an atmosphere of an inert gas such as nitrogen. Further, the atmosphere during the polymerization may be reduced or increased in pressure, but is usually performed at normal pressure.

【0028】重合開始には、例えば、過硫酸カリウム、
過硫酸アンモニウム、過硫酸ナトリウム、t−ブチルハ
イドロパーオキサイド、過酸化水素、2,2’−アゾビ
ス(2−アミジノプロパン)二塩酸塩等のラジカル重合
開始剤、或いは、紫外線重合開始剤を必要により用いて
の紫外線や電子線等の活性エネルギー線等を用いること
ができ、これらを併用してもよい。また、かかる酸化性
ラジカル重合開始剤を用いる場合には、例えば、亜硫酸
ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L−
アスコルビン酸等の還元剤を併用してレドックス重合を
行ってもよい。これら重合開始剤の使用量は0.001
〜2モル%の範囲内が好ましく、0.01〜0.5モル
%の範囲内がより好ましい。尚、重合開始剤は、通常、
水等の溶媒に溶解または分散させて添加すればよい。
To initiate the polymerization, for example, potassium persulfate,
A radical polymerization initiator such as ammonium persulfate, sodium persulfate, t-butyl hydroperoxide, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, or an ultraviolet polymerization initiator is used as required. All active energy rays such as ultraviolet rays and electron beams can be used, and these may be used in combination. When such an oxidizing radical polymerization initiator is used, for example, sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-
Redox polymerization may be carried out using a reducing agent such as ascorbic acid in combination. The amount of these polymerization initiators used is 0.001.
The range is preferably from 2 to 2 mol%, more preferably from 0.01 to 0.5 mol%. Incidentally, the polymerization initiator is usually
It may be added by dissolving or dispersing in a solvent such as water.

【0029】上記重合によって得られた含水ゲル架橋架
橋重合体は必要により細分化され、次いで乾燥される。
本発明で好ましくは、物性面からも乾燥は粒子状の含水
ゲル状架橋重合体(例えば、平均粒子径が2cm以下、
好ましくは1cm以下、より好ましくは5mm以下)と
して行われる。本発明で含水ゲル状架橋重合体を粒子状
とする為の細分化方法としては、ニーダーなどを用いて
重合と同時に細分化を行ってもよいし、また、重合後に
別途細分化してもよいし、重合時の細分化と重合後の細
分化を併用してもよい。なお、含水ゲル状重合体が粒子
状で乾燥されない場合、例えば、フィルム状などでは、
物性や粒度が劣る場合ある。
The crosslinked hydrogel polymer obtained by the above polymerization is finely divided as necessary and then dried.
In the present invention, drying is preferably performed in terms of physical properties as well.
(Preferably 1 cm or less, more preferably 5 mm or less). As the fragmentation method for converting the hydrogel crosslinked polymer into particles in the present invention, the fragmentation may be performed simultaneously with the polymerization using a kneader or the like, or the fragmentation may be separately performed after the polymerization. Alternatively, the fragmentation during polymerization and the fragmentation after polymerization may be used in combination. If the hydrogel polymer is not dried in the form of particles, for example, in the form of a film,
Physical properties and particle size may be poor.

【0030】乾燥に先立っての含水ゲル状架橋重合体の
粒子径としては、乾燥効率や物性面からも重量平均粒径
で、好ましくは45〜4000μm、より好ましくは5
0〜2000μm、より好ましくは100〜1500μ
m、更に好ましくは200〜1000μmの範囲であ
る。この様な細分化に適した装置としては、例えば、ニ
ーダー、カッター刃を備えた縦切り型スリッター、カッ
ター刃を備えた横切り型スリッター、回転刃を備えたカ
ッター型の粉砕機、所定の孔径のミートチョパーなどが
例示できる。なお、含水ゲル状架橋重合体の重量平均粒
径が上記範囲を外れると、得られる吸水性樹脂粉末の吸
水倍率の低下や水可溶分の増加などを引き起こす恐れが
ある。
The particle size of the hydrogel crosslinked polymer prior to drying is preferably from 45 to 4000 μm, more preferably from 5 to 4000 μm in terms of drying efficiency and physical properties.
0 to 2000 μm, more preferably 100 to 1500 μ
m, more preferably in the range of 200 to 1000 μm. Apparatus suitable for such subdivision include, for example, a kneader, a vertical slitter with a cutter blade, a horizontal slitter with a cutter blade, a cutter-type crusher with a rotary blade, and a predetermined hole diameter. A meat chopper can be exemplified. If the weight-average particle size of the hydrogel cross-linked polymer is out of the above range, the resulting water-absorbent resin powder may cause a decrease in water absorption capacity or an increase in water-soluble components.

【0031】こうして得られた含水ゲル状架橋重合体は
必須に加熱乾燥される。なお、本発明で乾燥とは、上記
含水ゲル状架橋重合体をその固形分が80重量%以上、
好ましくは85重量%以上、より好ましくは90%重量
以上、特に好ましくは93重量%以上の固体状態にする
ことを示す。また、本発明におけるかかる乾燥は、必ず
しも固形分100重量%(水分ゼロ)の乾燥重合体にす
る必要はなく、好ましくは固形分99重量%以下、さら
に好ましくは固形分98重量%以下、さらにより好まし
くは97重量%以下、最も好ましくは97〜93重量%
の範囲にまで含水ゲル状架橋重合体が乾燥される。
The hydrogel crosslinked polymer thus obtained is essentially heated and dried. The drying in the present invention means that the above hydrogel crosslinked polymer has a solid content of 80% by weight or more,
The solid state is preferably 85% by weight or more, more preferably 90% by weight or more, and particularly preferably 93% by weight or more. Further, such drying in the present invention does not necessarily need to be a dry polymer having a solid content of 100% by weight (zero moisture), and is preferably 99% by weight or less, more preferably 98% by weight or less, and still more preferably 98% by weight or less. Preferably no more than 97% by weight, most preferably 97-93% by weight
The hydrated gel-like crosslinked polymer is dried up to the range of.

【0032】すなわち、乾燥後の固形分が高いと、表面
架橋による物性も向上しやすく、また、その後の製造工
程での粉末の凝集が少なく粉体での扱いが容易である
が、乾燥に時間を要するのみならず、粉砕時やその後の
工程や使用時の微粉の増加や長時間の乾燥で物性低下を
引起こす場合がある。しかし、乾燥後に強制冷却する本
発明では、製造工程の粉末の凝集防止のため、また、乾
燥重合体の粉砕のため、従来の様に、過度に乾燥重合体
や吸水性樹脂粉末の固形分を上昇させる必要もないた
め、乾燥時間の短縮や物性の向上が図れるので好まし
い。本発明で用いられる加熱乾燥方法としては、特に限
定されるものではなく、例えば、熱風乾燥、ドラムドラ
イヤー等を用いた薄膜乾燥、減圧乾燥法、攪拌乾燥、流
動床乾燥など乾燥方法の1種または2種以上を用いるこ
とができるし、乾燥の連続または回分は特に問わない。
これらの中でも物性面からも乾燥効率の面からも、本発
明では、熱風乾燥、特に連続の熱風乾燥が好ましく用い
られ、例えば、ベルト上で静置乾燥すればよい。
That is, when the solid content after drying is high, the physical properties due to surface cross-linking are also easily improved, and the powder is less likely to coagulate in the subsequent production process and is easier to handle with the powder. Not only is required, but also a decrease in physical properties may be caused by an increase in fine powder at the time of pulverization, subsequent steps or use, or drying for a long time. However, in the present invention in which forced cooling is performed after drying, in order to prevent agglomeration of the powder in the production process and to pulverize the dried polymer, the solid content of the excessively dried polymer or the water-absorbent resin powder is reduced as in the related art. Since it is not necessary to raise, the drying time can be shortened and the physical properties can be improved. The heating drying method used in the present invention is not particularly limited, and may be, for example, one of drying methods such as hot air drying, thin film drying using a drum dryer, a reduced pressure drying method, stirring drying, and fluidized bed drying. Two or more kinds can be used, and continuous or batch drying is not particularly limited.
Among these, from the viewpoint of physical properties and drying efficiency, in the present invention, hot-air drying, particularly continuous hot-air drying, is preferably used.

【0033】かかる熱風乾燥には、乾燥効率から、金網
/ないし孔やスリットを有するパンチングメタル上に粒
子状の含水ゲル状架橋重合体を積層した上、ゲルの上下
方向ないし横方向、好ましくは上下方向に、積層した粒
子の空隙間に熱風を通気すればよい。用いられる金網や
孔径として、例えば、孔や金網の場合、0.1〜5m
m、さらには0.2〜2mm程度の通気孔を有すればよ
い。また、金網ないしパンチングメタル上でのゲルの積
層は、乾燥後の物性面から1〜20cm、好ましくは
1.5〜10cm、より好ましくは2〜8cmの一定厚
みに粒子状の含水ゲル状架橋重合体を積層すればよい。
In the hot air drying, a particulate hydrogel cross-linked polymer is laminated on a wire mesh / or a punching metal having holes or slits, and the gel is vertically or horizontally oriented, preferably vertically. In the direction, hot air may be ventilated into the gaps between the stacked particles. As a wire mesh or a hole diameter used, for example, in the case of a hole or a wire mesh, 0.1 to 5 m
m, and moreover, it may have a ventilation hole of about 0.2 to 2 mm. The lamination of the gel on a wire mesh or a punching metal is performed in such a manner that the water-containing gel-like crosslinked polymer has a constant thickness of 1 to 20 cm, preferably 1.5 to 10 cm, more preferably 2 to 8 cm from the viewpoint of physical properties after drying. What is necessary is just to laminate | stack the union.

【0034】上記の含水ゲル状架橋重合体を乾燥させる
際の乾燥温度は、物性面や生産性の面からも通常100
℃以上、さらには110〜230℃、好ましくは130
〜200℃、特に好ましくは150〜190℃の程度に
設定すればよい。なお、乾燥温度は材料温度または熱媒
(熱風など)の温度で規定されるが、好ましくは熱媒温
度で規定される。また、乾燥期間中で乾燥温度は一定で
あってもよく、上記温度範囲で乾燥途中で適宜変化させ
てもよい。さらに、熱風乾燥する際、熱風の露点は、物
性やエネルギー効率から、好ましくは40〜100℃、
より好ましくは50〜90℃、さらに好ましくは60〜
85℃の範囲である。
The drying temperature for drying the above hydrogel crosslinked polymer is usually 100 from the viewpoint of physical properties and productivity.
° C or higher, more preferably 110 to 230 ° C, preferably 130 ° C.
The temperature may be set to about 200 to 200C, particularly preferably about 150 to 190C. The drying temperature is defined by the material temperature or the temperature of the heat medium (such as hot air), but is preferably specified by the heat medium temperature. Further, the drying temperature may be constant during the drying period, or may be appropriately changed during the drying in the above temperature range. Furthermore, when drying with hot air, the dew point of the hot air is preferably 40 to 100 ° C. from the viewpoint of physical properties and energy efficiency.
More preferably 50 to 90 ° C, still more preferably 60 to 90 ° C.
85 ° C. range.

【0035】こうして得られた乾燥重合体は必須に強制
冷却された後、次いで、または同時に粉砕される。本発
明において強制冷却と粉砕は同時に行ってもよいが、好
ましくは、強制冷却後に粉砕される。本発明でいう強制
冷却とは外的且つ意図的な乾燥重合体の冷却操作ないし
冷却工程であり、また、粉砕とは得られた乾燥重合体な
いしその凝集物(ブロック状物)を流動性ある粉末にす
る機械的操作であり、さらに、解砕とは乾燥重合体の物
理的破壊や粒径の減少にまでは至らず、数mm〜数10
程度mmにまで軽く凝集を解す機械的操作である。な
お、積層されて乾燥された粒子状含水ゲル状架橋重合体
は、乾燥後、粒子間の凝集で流動性を失ったブロック状
乾燥物となり易いことも併記しておく。かかるブロック
状物は乾燥重合体粒子の凝集体であるため、連続した空
隙と、ブロック内部への通気性は有しているが、凝集の
為に流動性がないため、粉砕(解砕)工程を必要とす
る。
The dry polymer thus obtained is compulsorily cooled, then milled, or simultaneously. In the present invention, the forced cooling and the pulverization may be performed simultaneously, but preferably, the pulverization is performed after the forced cooling. The forced cooling referred to in the present invention is an external and intentional cooling operation or a cooling step of the dried polymer, and the pulverization is a step of pulverizing the obtained dried polymer or its aggregate (block-like material) with fluidity. It is a mechanical operation to make a powder, and furthermore, crushing does not lead to physical destruction of the dried polymer or reduction of the particle size.
This is a mechanical operation for lightly disaggregating to about mm. It is also noted that the particulate hydrogel crosslinked polymer that has been laminated and dried tends to become a block-shaped dried product that has lost fluidity due to aggregation between particles after drying. Such a block is an aggregate of dried polymer particles, and thus has continuous voids and air permeability to the inside of the block. However, since there is no fluidity due to aggregation, the block (crushing) step is performed. Need.

【0036】本発明で強制冷却する方法としては、乾燥
工程と粉砕工程の間に意図的に冷却工程を設けることで
所定温度まで乾燥重合体を冷却すればよく、例えば、加
熱乾燥して得られた乾燥重合体を、冷却伝熱面を有し
必要により攪拌される容器(ホッパー)や筒中に投入し
て強制冷却する方法、(乾燥に用いた)連続ベルト上
で十分に放冷する方法、冷風を重合体に通気して強制
冷却する方法、冷えた空気を用いて輸送と同時に強制
冷却する方法、冷却伝熱面を有する低温スクリューコ
ンベアーなどが挙げられる。これら方法の中で、冷却効
率や乾燥重合体の流動性から、本発明では好ましくは、
冷風を通気する方法が用いられ、その場合、乾燥重合
体の表面のみを通気してもよいが、好ましくは、積層し
た乾燥重合体ないしそのブロック状物を上下方向ないし
横方向、好ましくは上下方向に、積層した粒子の空隙間
を通気する事でより効率的な強制冷却が行えるので好ま
しい。なお、積層する場合、その厚みは前述の範囲が好
ましい。
In the present invention, the forced cooling may be performed by cooling the dried polymer to a predetermined temperature by intentionally providing a cooling step between the drying step and the pulverizing step. A method in which the dried polymer is placed in a container (hopper) or a cylinder having a cooling heat transfer surface and stirred as required, and is forcibly cooled; Examples of the method include forced cooling by passing cold air through the polymer, forced cooling simultaneously with transportation using cooled air, and a low-temperature screw conveyor having a cooling heat transfer surface. Among these methods, from the viewpoint of cooling efficiency and fluidity of the dried polymer, in the present invention, preferably,
A method of passing cool air is used, and in that case, only the surface of the dried polymer may be ventilated, but preferably, the laminated dried polymer or its block-like material is vertically or horizontally, preferably vertically. In addition, it is preferable to ventilate the voids of the laminated particles so that more efficient forced cooling can be performed. When the layers are stacked, the thickness is preferably in the above-described range.

【0037】本発明で強制冷却は粉砕前または粉砕時が
必須であり、また、実験室での小スケールの重合・乾燥
・粉砕であり/さらに各々の実験操作間が非連続で且つ
間隔が数10分〜数時間以上空くため、自然に放冷され
やすい実験室スケールの乾燥および粉砕と違って、むし
ろ、生産スケールの乾燥では粉砕前又は粉砕時の強制冷
却を行わない場合、本発明の目的が達成されないことが
分かった。すなわち、本発明は、生産設備での大スケー
ル(例えば、1ラインあたり、吸水性樹脂粉末が1t/
日以上、好ましくは10t/日以上)の連続乾燥、連続
粉砕およびその後の連続水性液添加に、より好適であ
る。
In the present invention, forced cooling is indispensable before or during pulverization, and is a small-scale polymerization / drying / pulverization in a laboratory / Furthermore, each experimental operation is discontinuous with a few intervals. Unlike lab-scale drying and crushing, which are apt to be allowed to cool naturally because they are vacant for 10 minutes to several hours or more, rather than forced-cooling before or during crushing in production-scale drying, the object of the present invention is Was not achieved. That is, the present invention provides a large-scale production equipment (for example, 1 t /
It is more suitable for continuous drying of 10 days / day or more, preferably 10 t / day or more), continuous grinding and subsequent addition of a continuous aqueous liquid.

【0038】本発明の特徴である加熱乾燥後の強制冷却
を行わない場合、粉砕ないし分級効率が大きく低下し
て、粒度分布に優れた吸水性樹脂粉末を生産性よく得る
ことができない。さらに、金網ないしパンチングメタル
上で熱風乾燥する場合、従来、乾燥重合体が金網やパン
チングメタルに付着したり目詰まりを起こし通気性や乾
燥効率や生産性を大きく低下させていたが、強制冷却す
る本発明ではかかる問題もなく、特別な付着防止装置
(特開平7−270070号)や/乾燥機の附着や目詰
まりの定期的な除去も必要ない。しかも、粉砕前または
粉砕時に、強制冷却することで、得られる吸水性樹脂粉
末の粒度分布や粉砕速度も優れて、さらに、粉砕機での
附着や製造工程での粉末の凝集も大きく低減される。ま
た、その後の製造工程での粉末の凝集防止のため、過度
に吸水性樹脂粉末を乾燥する必要もなく、よって、乾燥
時間の短縮や物性の向上も達成される。
If the forced cooling after heating and drying, which is a feature of the present invention, is not performed, the efficiency of pulverization or classification is greatly reduced, and a water-absorbent resin powder having an excellent particle size distribution cannot be obtained with high productivity. Furthermore, when hot-air drying is performed on a wire mesh or a punched metal, conventionally, the dried polymer adheres to the wire mesh or the punched metal or causes clogging, which significantly reduces air permeability, drying efficiency, and productivity. In the present invention, there is no such problem, and it is not necessary to attach a special anti-adhesion device (Japanese Patent Laid-Open No. 27070/1995) or to attach a dryer or to periodically remove clogging. In addition, by forcibly cooling before or during pulverization, the resulting water-absorbent resin powder has an excellent particle size distribution and pulverization speed, and furthermore, powder agglomeration in a pulverizer and in a manufacturing process is greatly reduced. . Further, it is not necessary to excessively dry the water-absorbing resin powder in order to prevent agglomeration of the powder in the subsequent manufacturing process, so that the drying time is shortened and the physical properties are improved.

【0039】本発明での方法で用いられる冷風(気
体)は、目的の乾燥重合体の温度によって適宜決まる
が、冷却効率から60℃以下、好ましくは50〜−50
℃、さらに好ましくは40〜−10℃、特に好ましくは
35〜5℃の気体での強制冷却がなされ、その際、気体
の露点は好ましくは60℃以下、さらに好ましくは50
℃以下である。また、かかる気体は窒素などの不活性ガ
ス、不活性ガスと空気の混合気体でもよいが、好ましく
は空気、特に、フィルターを通した空気が用いられる。
さらに、その風速は10〜0.1m/秒、さらには5〜
0.5m/秒程度の冷風であり、冷却時間は好ましくは
60〜0.1分、より好ましくは20〜0.2分、さら
に好ましくは10〜0.5分の範囲である。
The cold air (gas) used in the method of the present invention is appropriately determined depending on the temperature of the target dry polymer, but is preferably 60 ° C. or less, and more preferably 50 to −50 in view of the cooling efficiency.
C., more preferably from 40 to -10.degree. C., particularly preferably from 35 to 5.degree. C., in which case the gas has a dew point of preferably 60.degree. C. or less, more preferably 50.degree.
It is below ° C. Such a gas may be an inert gas such as nitrogen, or a mixed gas of an inert gas and air, but preferably air, particularly air that has passed through a filter.
Furthermore, the wind speed is 10-0.1 m / sec,
The cooling air is about 0.5 m / sec, and the cooling time is preferably 60 to 0.1 minutes, more preferably 20 to 0.2 minutes, and further preferably 10 to 0.5 minutes.

【0040】本発明における強制冷却温度としては、本
発明を達成する上で乾燥重合体の温度が95℃以下、好
ましくは85〜35℃、より好ましくは80〜40℃、
さらに好ましくは70〜45℃の範囲に強制冷却され
る。なお、強制冷却温度は、接触式温度計や非接触式温
度計(赤外線温度計など)などで適宜、材料温度を測定
することで求められ、また、必要により、制御される。
乾燥重合体の温度が95℃を超えると、乾燥機の金網や
パンチングメタルからの剥離性が困難で乾燥効率が低
く、また、乾燥重合体の粉砕や分級の効率が大きく低下
して、結果的に粒度分布の狭い優れた吸水性樹脂粉末を
得る事が困難である。また、冷却温度が低く過ぎると、
冷却に大きな時間や設備が必要であるのみならず、意外
なことに、粉砕時や分級時に吸水性樹脂粉末の凝集物が
生成するので好ましくない。さらに、過度の冷却は、後
述の強制加熱や表面架橋にも、物性やエネルギー面で不
利なこともある。
As the forced cooling temperature in the present invention, in order to achieve the present invention, the temperature of the dried polymer is 95 ° C. or less, preferably 85 to 35 ° C., more preferably 80 to 40 ° C.
More preferably, it is forcibly cooled to the range of 70 to 45 ° C. The forced cooling temperature is obtained by appropriately measuring the material temperature with a contact thermometer or a non-contact thermometer (such as an infrared thermometer), and is controlled as necessary.
When the temperature of the dried polymer exceeds 95 ° C., the drying efficiency is low due to difficulty in peeling from the wire mesh or the punching metal of the dryer, and the efficiency of the pulverization and classification of the dried polymer is greatly reduced. It is difficult to obtain an excellent water-absorbent resin powder having a narrow particle size distribution. Also, if the cooling temperature is too low,
In addition to requiring a large amount of time and equipment for cooling, unexpectedly, agglomerates of the water-absorbent resin powder are generated during pulverization and classification, which is not preferable. In addition, excessive cooling may be disadvantageous in terms of physical properties and energy even in forced heating and surface crosslinking described below.

【0041】また、本発明を達成する上で、その強制冷
却による乾燥重合体の温度低下は、加熱乾燥温度にもよ
るが、強制冷却前の乾燥重合体と比較して、冷却前後の
重合体の温度変化が好ましくは40℃以上、より好まし
くは60℃以上、さらに好ましくは80℃以上、特に好
ましくは100℃以上の冷却が乾燥重合体に対してなさ
れることで、上記目的とする乾燥重合体の温度(例え
ば、より好ましくは80〜40℃)にまで強制冷却すれ
ばよい。なお、強制冷却によって乾燥重合体より奪われ
た熱は、好ましくはリサイクルされる。例えば、前述の
ように本発明で加熱乾燥は熱風乾燥(特に好ましくは、
150〜180℃)であり、また、強制冷却は風冷(特
に好ましくは70〜45℃の範囲に重合体を強制冷却)
されるが、本発明でかかる熱風乾燥と風冷による強制冷
却を行う場合、乾燥重合体の強制冷却に用いられた冷風
は、その風量や通気量、重合体の温度などにより適宜制
御されるが、温風ないし熱風(通常、50℃以上であ
り、50〜200℃が好ましく、より好ましくは60〜
150℃、さらに好ましくは70〜110℃)となるた
め、リサイクルされて、温風ないし熱風としてそのまま
吸水性樹脂の製造工程に利用されたり、再加熱されて前
述の熱風乾燥などの吸水性樹脂の製造工程に利用すれば
よい。
In order to achieve the present invention, the temperature decrease of the dried polymer due to the forced cooling depends on the heating / drying temperature. Is preferably 40 ° C. or more, more preferably 60 ° C. or more, still more preferably 80 ° C. or more, and particularly preferably 100 ° C. or more. What is necessary is just to forcibly cool to the temperature of a union (for example, more preferably 80 to 40 degreeC). The heat removed from the dried polymer by forced cooling is preferably recycled. For example, as described above, in the present invention, the heat drying is hot air drying (particularly preferably,
150 to 180 ° C.), and forced cooling is air cooling (particularly preferably, the polymer is forcibly cooled to 70 to 45 ° C.).
However, in the case of performing forced cooling by hot air drying and air cooling according to the present invention, the cool air used for forced cooling of the dried polymer is appropriately controlled by the amount of air, the amount of ventilation, the temperature of the polymer, and the like. Warm air or hot air (usually 50 ° C. or higher, preferably 50 to 200 ° C., more preferably 60 to 200 ° C.)
150 ° C., more preferably 70 to 110 ° C.). It may be used for the manufacturing process.

【0042】本発明で強制冷却によって得られた熱は、
好ましくは再利用される。再利用される製造工程として
は、保温工程などもあるが、前述の乾燥工程が最も好ま
しい。すなわち、本発明で強制冷却に用いられる冷風
は、乾燥重合体を通気後に温風となるため、本発明では
好ましくは、強制冷却後の温風(例えば、60〜150
℃)を配管を通じて熱風乾燥機の空気供給口に供給し
て、乾燥に用いる熱風の原料として、連続乾燥を行うこ
とが可能である。このようにして、本発明の熱風乾燥で
は、室温の空気を用いる代わりに強制冷却で発生した温
風を用いて、熱風を製造しているため、その分、大きな
省エネルギーを実現でき、かつ、温風(廃ガス)を環境
に排出しない利点を有する。かかるリサイクルの観点か
らも、本発明の強制冷却には冷風を重合体に通気する強
制冷却、また、本発明の加熱乾燥には熱風乾燥が用いら
れる。
The heat obtained by forced cooling in the present invention is:
It is preferably reused. As a manufacturing process to be reused, there is a warming process and the like, but the above-mentioned drying process is most preferable. That is, the cold air used for forced cooling in the present invention becomes hot air after aeration of the dried polymer. Therefore, in the present invention, preferably, hot air after forced cooling (for example, 60 to 150) is used.
C.) can be supplied to an air supply port of a hot air dryer through a pipe to perform continuous drying as a raw material of hot air used for drying. In this way, in the hot air drying of the present invention, since hot air is produced by using hot air generated by forced cooling instead of using room temperature air, a large amount of energy can be saved by that much, It has the advantage of not discharging wind (waste gas) to the environment. From the viewpoint of such recycling, forced cooling in which cold air is passed through the polymer is used for forced cooling in the present invention, and hot air drying is used for heating and drying in the present invention.

【0043】すなわち、本発明は、架橋剤を含む単量体
水溶液を重合してなる含水ゲル状架橋重合体を加熱乾燥
した後に粉砕する吸水性樹脂粉末の製造方法であって、
加熱乾燥後の乾燥重合体を強制冷却して得られた熱を吸
水性樹脂の製造工程における強制加熱に再利用すること
を特徴とする、吸水性樹脂粉末の製造方法をも提供す
る。ここにおいて、強制加熱に再利用するとは、強制冷
却工程で得られた熱を、強制加熱工程で利用することで
あり、該強制冷却工程と該強制加熱工程は、同一の生産
ラインの中に含まれるものでもよく、また、それぞれが
別々の生産ラインに含まれる工程であってもよい。
That is, the present invention relates to a method for producing a water-absorbent resin powder, which comprises heating and drying a water-containing gel-like crosslinked polymer obtained by polymerizing a monomer aqueous solution containing a crosslinking agent, followed by pulverization,
Also provided is a method for producing a water-absorbent resin powder, characterized in that heat obtained by forcibly cooling a dried polymer after heating and drying is reused for forced heating in a process for producing a water-absorbent resin. Here, reusing for forced heating means that the heat obtained in the forced cooling step is used in the forced heating step, and the forced cooling step and the forced heating step are included in the same production line. Or may be steps included in separate production lines.

【0044】また、本発明で熱風乾燥と風冷を行う場
合、乾燥装置および冷却装置としては、流動床などを別
途設置してもよいし、例えば、連続熱風乾燥を行う場
合、ベルト式乾燥機を用いて乾燥機の後半の一部分を冷
却工程に用いることも好ましい方法である。かかる場
合、冷却装置を別途設けなくとも、熱風乾燥機のベルト
後半の1/4〜1/20の部分、好ましくは後半1/8
〜1/16の部分を別途区切って冷却装置として冷風を
送ることで強制冷却工程とし、さらには乾燥重合体より
奪った熱をリサイクルすればよい。本発明では、乾燥重
合体の強制冷却によって得られた熱が再利用されるの
で、エネルギー効率に優れたプロセスとすることができ
る。また、乾燥機の後半を強制冷却する事で、ベルトの
金網やパンチングメタルからの乾燥重合体の剥離が飛
躍的に改善され、ベルトの目詰まりもなく通気性向上に
よる乾燥効率も向上するので好ましい。
When hot air drying and air cooling are performed in the present invention, a fluidized bed or the like may be separately provided as a drying device and a cooling device. For example, when continuous hot air drying is performed, a belt-type dryer is used. It is also a preferable method to use a part of the latter half of the dryer in the cooling step by using the above method. In such a case, even if a cooling device is not separately provided, the latter half of the belt of the hot air dryer is preferably 1/4 to 1/20, preferably 1/8 of the latter half.
A forced cooling step may be performed by separately dividing a portion of about 1/16 and sending cool air as a cooling device, and furthermore, heat taken from the dried polymer may be recycled. In the present invention, since the heat obtained by forced cooling of the dried polymer is reused, a process with excellent energy efficiency can be achieved. In addition, by forcibly cooling the latter half of the dryer, the releasability of the dried polymer from the wire mesh and punched metal of the belt is dramatically improved, and there is no clogging of the belt. preferable.

【0045】こうして所定温度に強制冷却された乾燥重
合体は次いで粉砕ないし分級、好ましくは、必須に粉砕
され更に分級される。前記乾燥と粉砕ないし分級は連続
工程でなされることが好ましく、乾燥機出口から粉砕機
入口までの時間は10分以内、好ましくは5分以内、さ
らに好ましくは2分以内でなされる。本発明ではこのよ
うな連続工程でも、乾燥工程と粉砕工程の間に強制冷却
工程を入れることで、乾燥効率と粉砕効率を飛躍的に向
上することが可能である。本発明で粉砕方法としては、
乾燥重合体やその凝集物(ブロック状物)を流動性ある
粉末、好ましくは平均粒子径2mm以下の粉末にできれ
ば特に限定されるものではなく、例えば、ハンマー式粉
砕機、ロール式粉砕機、またはジェット気流式粉砕機等
を用いて粉砕する方法、従来公知の種々の粉砕ないし解
砕方法の1種または2種以上を用いることができる。ま
た、乾燥時の凝集が弱い場合、特に粉砕機を用いなくて
も、乾燥重合体に振動を与えて分級することで重合体の
凝集をほぐして粉砕工程としてもよい。
The dried polymer thus forcibly cooled to a predetermined temperature is then pulverized or classified, preferably indispensably pulverized and further classified. The drying and pulverization or classification are preferably performed in a continuous process, and the time from the outlet of the dryer to the inlet of the pulverizer is within 10 minutes, preferably within 5 minutes, more preferably within 2 minutes. In the present invention, even in such a continuous process, the drying efficiency and the pulverization efficiency can be significantly improved by inserting a forced cooling step between the drying step and the pulverization step. In the present invention, as a pulverizing method,
It is not particularly limited as long as the dried polymer or its aggregate (block-like material) can be made into a fluid powder, preferably a powder having an average particle diameter of 2 mm or less. For example, a hammer mill, a roll mill, or A method of pulverization using a jet air flow type pulverizer or the like, and one or more of various conventionally known pulverization or pulverization methods can be used. Further, when the aggregation during drying is weak, the aggregation of the polymer may be loosened by vibrating and classifying the dried polymer without using a pulverizer, and a pulverization step may be performed.

【0046】本発明では上記の粉砕後、さらに必要によ
り/好ましくは分級され、粗大粒子や微粉末が除去され
る。こうして得られる吸水性樹脂粉末の平均粒子径は目
的に応じて決定されるが、例えば、衛生材料を目的とす
る場合、最終的に得られる吸水性樹脂粉末は、平均粒子
径200〜600μm、さらには300〜600μm、
さらには300〜550μmの範囲であり、好ましく
は、さらに150μm以下ないし850μm以上の粒子
の合計が15重量%以下、より好ましくは10重量%以
下、さらに好ましくは5重量%以下である。特に、本発
明においては、粉砕後に得られて次工程に用いられる吸
水性樹脂粉末の平均粒子径が上記範囲内、すなわち20
0〜600μmの範囲内であり、さらに150μm以下
ないし850μm以上の粒子の割合が15重量%以下で
あることが好ましい。
In the present invention, after the above-mentioned pulverization, classification is performed as necessary / preferably, and coarse particles and fine powder are removed. The average particle size of the water-absorbent resin powder thus obtained is determined depending on the purpose. For example, when the purpose is a sanitary material, the finally obtained water-absorbent resin powder has an average particle size of 200 to 600 μm, Is 300 to 600 μm,
Further, the particle size is in the range of 300 to 550 μm, and preferably, the total of particles having a size of 150 μm or less to 850 μm or more is 15% by weight or less, more preferably 10% by weight or less, and further preferably 5% by weight or less. In particular, in the present invention, the average particle diameter of the water-absorbent resin powder obtained after pulverization and used in the next step is within the above range, that is, 20%.
It is preferably in the range of 0 to 600 µm, and more preferably, the proportion of particles having a size of 150 µm or less to 850 µm or more is 15% by weight or less.

【0047】こうして得られた吸水性樹脂粉末の嵩比重
は、モノマー組成に一義的によって決まる真比重(g/
cm3)によって種々変化するが、例えば、吸水性樹脂
がポリアクリル酸ナトリウム、特に中和率50〜90モ
ル%、さらには60〜80モル%の場合、その嵩比重が
通常0.63g/ml以上、特に0.65g/ml(J
IS K−3362の装置で測定)とすることが好まし
い。本発明の強制冷却する方法では、粉砕後の吸水性樹
脂粉末は鱗片も少なく、より丸みを帯びて均一な形状と
なるので、嵩比重は高くなり易く、嵩比重は好ましくは
0.65〜0.89g/ml、より好ましくは0.67
〜0.88g/ml、さらに好ましくは0.73〜0.
87g/ml、さらに好ましくは0.74〜0.86g
/ml、さらに好ましくは0.75〜0.85g/ml
に調整される。
The bulk specific gravity of the water-absorbent resin powder thus obtained is determined by the true specific gravity (g / g) which is uniquely determined by the monomer composition.
cm 3 ), for example, when the water-absorbing resin is sodium polyacrylate, particularly when the neutralization ratio is 50 to 90 mol%, and more preferably 60 to 80 mol%, the bulk specific gravity is usually 0.63 g / ml. Above, especially 0.65 g / ml (J
ISK-3362). In the method of forced cooling of the present invention, the water-absorbent resin powder after pulverization has few scales and is more rounded and has a uniform shape. .89 g / ml, more preferably 0.67
-0.88 g / ml, more preferably 0.73-0.1 g / ml.
87 g / ml, more preferably 0.74 to 0.86 g
/ Ml, more preferably 0.75 to 0.85 g / ml
It is adjusted to.

【0048】粉砕後の嵩比重が0.63g/mlよりも
低いと、温度を制御しても、後述の水性液の混合が困難
となり、物性低下(加圧下吸収倍率,加圧下通液性)の
みならず、吸水性樹脂粉末の耐衝撃性の(プロセスダメ
ージ)低下、単位体積あたりの重量減による輸送コスト
アップ、などが見られる場合もあり好ましくない。ま
た、嵩比重が0.89g/mlよりも高いと、加圧下通
液性膨潤時にゲル間の通液空間を確保することが困難に
なる場合が起こりうる。上記粉砕後に粗大粒子(例え
ば、850μmオン品)や微粉(例えば、150μmパ
ス品)は場合により適宜リサイクルすればよい。粗い粒
子は再粉砕され、細かい粒子は除去ないし回収されるこ
とで、前記粒度分布とすればよい。しかし、本発明では
粒度分布がシャープなため、かかるリサイクルの必要性
が大きく低減する。なお、吸水性樹脂の微粉のリサイク
ル方法は、米国特許4950692号、同506458
2号、同5264495号、同5478879号や、欧
州特許0812873号、同0885917号、同08
44270号などに開示されており、これらの微粉リサ
イクル方法の本発明への適用も可能である。また、微粉
のリサイクル量は全体の15重量%以下、好ましくは1
〜10重量%、より好ましくは2〜8重量%の範囲であ
る。本発明では粉砕で粒度分布のシャープな吸水性樹脂
粉末が高い生産性で得られるため、少量の微粉のリサイ
クルでさらに粒度分布のシャープな吸水性樹脂粉末が得
られるので好ましい。
When the bulk specific gravity after the pulverization is lower than 0.63 g / ml, it becomes difficult to mix the aqueous liquid described below even if the temperature is controlled, and the physical properties are reduced (absorption capacity under pressure, liquid permeability under pressure). In addition, the impact resistance (process damage) of the water-absorbent resin powder may be reduced, and the transport cost may be increased due to a decrease in weight per unit volume. If the bulk specific gravity is higher than 0.89 g / ml, it may be difficult to secure a liquid passing space between the gels when the liquid is swollen under pressure. After the above-mentioned pulverization, coarse particles (for example, 850 μm on product) and fine powder (for example, 150 μm pass product) may be appropriately recycled in some cases. The particle size distribution may be obtained by re-grinding coarse particles and removing or collecting fine particles. However, the sharpness of the particle size distribution in the present invention greatly reduces the need for such recycling. The method for recycling the fine powder of the water absorbent resin is described in US Pat.
Nos. 5,264,495 and 5,478,879, and European Patents 0812873, 0888517, 08
No. 44270, etc., and these fine powder recycling methods can also be applied to the present invention. Also, the recycle amount of the fine powder is 15% by weight or less of the whole, preferably 1%.
%, More preferably 2 to 8% by weight. In the present invention, a water-absorbent resin powder having a sharp particle size distribution can be obtained with high productivity by pulverization. Therefore, recycling a small amount of fine powder is preferable because a water-absorbent resin powder having a sharp particle size distribution can be obtained.

【0049】粉砕前に冷却を行う本発明では、従来より
粒度分布がよりシャープであり、また、かかる粒度分布
を得る為の粉砕時間も短くなり、且つ目的粒度以上の粗
大な吸水性樹脂粉末が減少し、目的外の最大粒子や微粉
末を分離する手間もなく、粗大粒子(例えば、850μ
mオン品)の再粉砕や微粉(例えば、150μmパス
品)の再分級などのリサイクルの手間も減少するという
効果も奏する。冷却後に粉砕し分級した後の吸水性樹脂
粉末は、次の工程にさらに保温ないし強制加熱すること
が好ましい。外部からの保温温度としては40〜100
℃、さらには50〜90℃の範囲であり、吸水性樹脂粉
末をかかる温度に保温することで、吸水性樹脂粉末の取
り扱い性も向上し、製造工程での吸水性樹脂粉末の凝集
や附着も防止される。本発明では、乾燥重合体を敢えて
強制冷却して、粉砕ないし分級することで、乾燥効率や
粉砕効率を向上させ、別途、さらに冷却後の吸水性樹脂
粉末を保温ないし強制加熱(再加熱)すればよい。
According to the present invention in which cooling is performed before pulverization, the particle size distribution is sharper than before, the pulverization time for obtaining such particle size distribution is shortened, and coarse water-absorbent resin powder having a target particle size or more is obtained. Coarse particles (e.g., 850 μm)
This also has the effect of reducing the labor for recycling, such as re-crushing of (m-on product) and re-classifying fine powder (for example, 150 μm pass product). It is preferable that the water-absorbent resin powder after pulverization and classification after cooling is further heated or forcibly heated in the next step. 40-100 as the heat retention temperature from outside
℃, even more in the range of 50-90 ℃, by keeping the water-absorbent resin powder at such a temperature, the handleability of the water-absorbent resin powder is also improved, aggregation and attachment of the water-absorbent resin powder in the manufacturing process Is prevented. In the present invention, the dried polymer is dared to be forcibly cooled and pulverized or classified, thereby improving the drying efficiency and the pulverization efficiency. Separately, the cooled water-absorbent resin powder is kept warm or forcedly heated (reheated). Just fine.

【0050】なお、本発明で水性液、特に架橋剤水溶液
を添加する場合、粉砕前に強制冷却して得られた吸水性
樹脂粉末に対して、粉砕後にさらに強制冷却して温度を
調整することが好ましい。温度の制御ないし冷却の手段
は特に問わないが、粉砕後の吸水性樹脂粉末は流動性や
比表面積が増大するため、前述の冷却手段がより適用で
き、例えば、冷却伝熱面を有し必要により攪拌される
容器(ホッパー)や筒中に投入して強制冷却する方法、
連続ベルト上で十分に放冷する方法、冷風を重合体
に通気して強制冷却する方法、冷えた空気を用いて輸
送と同時に強制冷却する方法、冷却伝熱面を有する低
温スクリューコンベアーなどが用いられるが、少なくと
もの方法を用いることが好ましい。
When an aqueous liquid, particularly an aqueous solution of a crosslinking agent, is added in the present invention, the water-absorbent resin powder obtained by forcibly cooling before pulverization is further forcibly cooled after pulverization to adjust the temperature. Is preferred. The means for controlling or cooling the temperature is not particularly limited. However, since the water-absorbent resin powder after pulverization has an increased fluidity and specific surface area, the above-mentioned cooling means can be more applied. Method of forced cooling by throwing into a container (hopper) or cylinder stirred by
A method of sufficiently cooling on a continuous belt, a method of forcibly cooling by passing cool air through the polymer, a method of forcibly cooling simultaneously with transportation using cooled air, a low-temperature screw conveyor having a cooling heat transfer surface, etc. are used. However, it is preferable to use at least one method.

【0051】すなわち、水性液添加前の吸水性樹脂粉末
の温度は、前記強制冷却および必要によりさらなる保温
や冷却によって、好ましくは80〜35℃、より好まし
くは70〜35℃、さらに好ましくは60〜35℃、特
に好ましくは50〜35℃の範囲に冷却(制御)された
後、水性液が添加される。水性液添加前の吸水性樹脂粉
末の温度が高いと水性液の混合が不均一になり、また、
35℃未満にまで強制冷却や放冷すると時間がかかるの
みならず、冷却した粉末の凝集が見られたり、再加熱の
際のエネルギーロスが大きくなり好ましくない。上記し
て得られた吸水性樹脂粉末は粒度分布が優れている為、
表面架橋することによって、さらに物性を改善するのに
好適である。表面架橋には、以下の強制加熱を別途行え
ばよい。
That is, the temperature of the water-absorbent resin powder before the addition of the aqueous liquid is preferably 80 to 35 ° C., more preferably 70 to 35 ° C., further preferably 60 to 35 ° C. by the above-mentioned forced cooling and, if necessary, further warming and cooling. After cooling (control) to 35 ° C, particularly preferably in the range of 50 to 35 ° C, the aqueous liquid is added. If the temperature of the water-absorbent resin powder before the addition of the aqueous liquid is high, the mixing of the aqueous liquid becomes uneven, and
Forcibly cooling or leaving to cool to less than 35 ° C. not only takes a long time, but also causes agglomeration of the cooled powder and increases energy loss at the time of reheating, which is not preferable. Because the water-absorbent resin powder obtained above has an excellent particle size distribution,
Crosslinking the surface is suitable for further improving the physical properties. For the surface crosslinking, the following forced heating may be separately performed.

【0052】すなわち、粉砕後や分級後の吸水性樹脂粉
末の強制加熱工程を考えると、エネルギー的にも工程的
にも一見無駄に見える本発明の強制冷却工程は、意外な
ことに、乾燥効率や粉砕効率を比較的に増大させ、ま
た、得られた吸水性樹脂粉末への水性液の混合性も向上
させたのである。本発明で用いられる表面架橋剤として
は、上記重合体が有する官能基と反応可能な化合物であ
れば、特に限定されるものではない。上記表面架橋剤と
しては、具体的には、例えば、プロピレングリコール、
グリセリン、ブタンジオールなどの多価アルコール類、
エチレングリコールジグリシジルエーテルなど多価エポ
キシ化合物(ポリ)エチレンイミン等の多価アミン化合
物、アルキレンカーボネート化合物、多価オキサゾリン
化合物、ハロエポキシ化合物やそのポリアミン付加物
(ポリアミド−ポリアミドのエピハロヒドリン付加物;
商標Kymene;ハーキュレス製)、モノ、ジまたはポリオ
キサゾリジノン化合物、多価金属等が挙げられるが、特
に限定されるものではない。これら表面架橋剤は、一種
類のみを用いてもよく、適宜、二種類以上を混合して用
いてもよい。本発明で併用する場合、表面架橋剤のなか
でも、溶解度パラメータ(SP値)が互いに異なる第一
表面架橋剤および第二表面架橋剤を組み合わせてなる表
面架橋剤(米国特許第5422405号参照)を用いる
ことが、高加圧下(例えば、4.90kPa以上)での吸
収倍率に特に優れる吸水性樹脂粉末を得ることができる
ので好ましい。
That is, in consideration of the forced heating step of the water-absorbent resin powder after pulverization or classification, the forced cooling step of the present invention, which is seemingly useless in terms of both energy and process, is surprisingly effective in drying efficiency. In addition, the pulverization efficiency was relatively increased, and the mixing property of the aqueous liquid with the obtained water-absorbent resin powder was also improved. The surface cross-linking agent used in the present invention is not particularly limited as long as it is a compound capable of reacting with the functional group of the polymer. As the surface crosslinking agent, specifically, for example, propylene glycol,
Polyhydric alcohols such as glycerin and butanediol,
Polyhydric epoxy compounds such as ethylene glycol diglycidyl ether (poly) polyamine compounds such as ethyleneimine, alkylene carbonate compounds, polyvalent oxazoline compounds, haloepoxy compounds and polyamine adducts thereof (epihalohydrin adducts of polyamide-polyamide;
Trade name Kymene; manufactured by Hercules), mono, di or polyoxazolidinone compounds, polyvalent metals and the like, but are not particularly limited. One of these surface cross-linking agents may be used alone, or two or more of them may be appropriately used in combination. When used in combination in the present invention, among the surface cross-linking agents, a surface cross-linking agent obtained by combining a first surface cross-linking agent and a second surface cross-linking agent having different solubility parameters (SP values) (see US Pat. No. 5,422,405). It is preferable to use a water-absorbent resin powder having particularly excellent absorption capacity under high pressure (for example, 4.90 kPa or more).

【0053】上記表面架橋剤の使用量は、その種類や反
応条件などで適宜決定されるが、通常、吸水性樹脂粉末
の固形分100重量部に対して、0.001〜10重量
部、好ましくは0.01〜5重量部、さらに好ましくは
0.5〜4重量部の範囲で使用される。上記重合体と表
面架橋剤とを混合する際には、混合時あるいは混合後
に、必要に応じて、水、水蒸気、または水と親水性有機
溶媒とからなる水性液等を添加してもよい。この場合に
使用される水の量は、用いる重合体の種類や粒径等にも
よるが、吸水性樹脂粉末の固形分100重量部に対し
て、10重量部以下、好ましくは0.1〜10重量部、
より好ましくは1〜5重量部の範囲内である。
The amount of the surface cross-linking agent to be used is appropriately determined depending on its kind, reaction conditions, and the like. Is used in the range of 0.01 to 5 parts by weight, more preferably 0.5 to 4 parts by weight. When mixing the above polymer and the surface cross-linking agent, water, steam, or an aqueous liquid composed of water and a hydrophilic organic solvent may be added as necessary during or after the mixing. The amount of water used in this case depends on the type and particle size of the polymer used, but is 10 parts by weight or less, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the solid content of the water-absorbent resin powder. 10 parts by weight,
More preferably, it is in the range of 1 to 5 parts by weight.

【0054】親水性有機溶媒としては、特に限定される
ものではないが、具体的には、例えば、メチルアルコー
ル、エチルアルコール、n−プロピルアルコール、is
o−プロピルアルコール、n−ブチルアルコール、is
o−ブチルアルコール、t−ブチルアルコール等の低級
アルコール類;アセトン等のケトン類;ジオキサン、テ
トラヒドロフラン等のエーテル類;N,N−ジメチルホ
ルムアミド等のアミド類;ジメチルスルホキシド等のス
ルホキシド類等が挙げられる。上記重合体と表面架橋剤
とを混合する際には、例えば、上記の水性液中に重合体
を分散させた後、表面架橋剤を混合してもよく、水や水
性液に溶解させた表面架橋剤を、重合体に直接、噴霧若
しくは滴下して混合してもよい。また、水を用いて混合
する場合には、水に不溶な微粒子状の粉体や、各種有機
酸や無機酸、界面活性剤等を共存させてもよい。これら
の混合方法の中では噴霧混合が好ましく、その際の水性
液は500μm以下、さらには300μm以下の微細の
液滴で添加される。
The hydrophilic organic solvent is not particularly limited, but specifically, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, is
o-propyl alcohol, n-butyl alcohol, is
lower alcohols such as o-butyl alcohol and t-butyl alcohol; ketones such as acetone; ethers such as dioxane and tetrahydrofuran; amides such as N, N-dimethylformamide; and sulfoxides such as dimethyl sulfoxide. . When mixing the polymer and the surface cross-linking agent, for example, after dispersing the polymer in the aqueous liquid, the surface cross-linking agent may be mixed, the surface dissolved in water or aqueous liquid The crosslinking agent may be directly sprayed or dropped onto the polymer and mixed. In the case of mixing using water, fine powder insoluble in water, various organic acids, inorganic acids, surfactants and the like may coexist. Among these mixing methods, spray mixing is preferable, and the aqueous liquid at that time is added in fine droplets of 500 μm or less, and more preferably 300 μm or less.

【0055】また、本発明において、水性液を添加する
場合、混合機の内壁は室温を超える温度を有しているこ
とが好ましく、混合機の内壁温度が40℃以上、好まし
くは45〜100℃、さらに好ましくは50〜95℃、
より好ましくは55〜90℃に保たれていること、ま
た、内壁温度が水性液添加前の吸水性樹脂粉末より高
温、好ましくは40℃以下、さらには20℃以下、特に
10℃以下の高温であることが好ましい。なお、本発明
で内壁とは攪拌翼を含めた混合機内面のことであり、こ
れら温度は連続混合の場合、定常状態での温度で制御す
ること、特に金属部分は必須に制御することが好まし
い。
In the present invention, when an aqueous liquid is added, the inner wall of the mixer preferably has a temperature higher than room temperature, and the inner wall temperature of the mixer is 40 ° C. or higher, preferably 45 to 100 ° C. , More preferably 50 to 95 ° C,
More preferably, the temperature is maintained at 55 to 90 ° C, and the inner wall temperature is higher than that of the water-absorbent resin powder before the addition of the aqueous liquid, preferably 40 ° C or lower, more preferably 20 ° C or lower, particularly 10 ° C or lower. Preferably, there is. Note that, in the present invention, the inner wall is the inner surface of the mixer including the stirring blade, and in the case of continuous mixing, it is preferable to control the temperature at a steady state temperature, and particularly to control the metal part indispensably. .

【0056】混合機の内壁温度が室温以下である場合、
粉末の温度を制御しても、水性液を添加した吸水性樹脂
粉末が内壁に付着したり、得られた吸水性樹脂粉末の物
性低下が起こる恐れがあり、また、内壁温度が高すぎる
場合、水溶液中の架橋剤などが潰れたり、水性液の混合
が不均一になる恐れがある。混合機の内壁温度の制御
は、上記温度の制御できれば制限はないが、例えば、
温風や熱媒などの外部加熱によって制御してもよいし、
また、混合機自体に十分に保温できる構造を持たせた上
で、さらに、特定温度の粉末や水性液の混合を連続か
つ多量(例えば、500kg/hr以上)に混合するこ
とで混合機内壁を制御してもよいし、水性液添加によ
る吸水性樹脂粉末の水和熱や混合時の摩擦熱を用いて制
御してもよいし、これらを併用してもよいが、好ましく
は、が用いられる。
When the inner wall temperature of the mixer is below room temperature,
Even if the temperature of the powder is controlled, the water-absorbent resin powder to which the aqueous liquid has been added may adhere to the inner wall, or the physical properties of the obtained water-absorbent resin powder may decrease.If the inner wall temperature is too high, There is a possibility that the cross-linking agent or the like in the aqueous solution may be crushed, or the mixing of the aqueous liquid may become uneven. Control of the inner wall temperature of the mixer is not limited as long as the temperature can be controlled, for example,
It may be controlled by external heating such as hot air or heat medium,
In addition, the mixer itself is provided with a structure capable of keeping sufficient heat, and further, a mixture of a powder or an aqueous liquid at a specific temperature is mixed continuously and in a large amount (for example, 500 kg / hr or more) to thereby reduce the inner wall of the mixer. It may be controlled, may be controlled using the heat of hydration of the water-absorbent resin powder by addition of the aqueous liquid or the frictional heat at the time of mixing, or may be used in combination, but is preferably used. .

【0057】さらに、かかる方法において、特定内壁温
度を有する混合機は、攪拌翼を有する高速攪拌型混合機
であることが好ましく、通常、その回転数は10rpm
以上、好ましくは100〜10000rpm、より好ま
しくは300〜5000rpm、最も好ましくは500
〜3000rpmで攪拌混合され、その攪拌時間は通常
5分以内、好ましくは3分以内、さらに好ましくは1分
以内、より好ましくは0.2分以内である。また、混合
機として攪拌翼を複数有する気流攪拌型混合機がより好
ましい。本発明の方法において、混合性改良による物性
改良が大きいことから、水性液が架橋剤水溶液であるこ
とが好ましく、特に、従来、吸水性樹脂への混合が困難
であった架橋剤水溶液が必要により、多価アルコール以
外の架橋剤を含む多価アルコール水溶液、特に多価アル
コールのみを架橋剤とする水溶液である場合、および/
または、水性液が多価アルコール以外の有機溶媒、特に
揮発性有機溶媒を含有しない場合、本発明の効果は飛躍
的に発揮されるので好ましい。また、混合機の内壁温度
を高める場合、本発明の水性液添加は、内壁温度でも不
活性な架橋剤、例えば、再加熱に必要な反応温度110
℃以上の架橋剤、特に多価アルコールに好適に適用され
る。また、本発明で多価アルコールは架橋剤として用い
てもよいし、反応温度以下で用いることで架橋剤の溶媒
としてもよいし、それらの働きを併用させてもよい。な
お、用いられる多価アルコール以外の架橋剤は、前述の
架橋剤や後述の先行文献に例示される。物性面から本発
明の効果を最も顕著に表す多価アルコールとしては、た
とえば、炭素数3〜8の多価アルコールが挙げられ、さ
らにはグリセリン、プロピレングリコール、ブタンジオ
ール、ペンタンジオール、ヘキサンジオールから選ばれ
る少なくとも1種の多価アルコール(なお、ジオールの
置換位置は問わない)が好ましく用いられる。
Further, in such a method, the mixer having the specific inner wall temperature is preferably a high-speed stirring mixer having a stirring blade, and its rotation speed is usually 10 rpm.
Above, preferably 100 to 10000 rpm, more preferably 300 to 5000 rpm, most preferably 500 rpm
The mixture is stirred and mixed at 3000 rpm, and the stirring time is usually within 5 minutes, preferably within 3 minutes, more preferably within 1 minute, and more preferably within 0.2 minutes. Further, an air-flow stirring type mixer having a plurality of stirring blades is more preferable as the mixer. In the method of the present invention, the aqueous liquid is preferably an aqueous solution of a cross-linking agent, since the physical property improvement by the improvement of the mixing property is large. A polyhydric alcohol aqueous solution containing a crosslinking agent other than a polyhydric alcohol, particularly an aqueous solution containing only a polyhydric alcohol as a crosslinking agent, and / or
Alternatively, it is preferable that the aqueous liquid does not contain an organic solvent other than the polyhydric alcohol, particularly a volatile organic solvent, since the effect of the present invention is remarkably exhibited. When the inner wall temperature of the mixer is to be increased, the addition of the aqueous liquid of the present invention requires a crosslinking agent which is inactive even at the inner wall temperature, for example, the reaction temperature 110 required for reheating.
It is suitably applied to a crosslinking agent having a temperature of not less than ° C, particularly a polyhydric alcohol. In the present invention, the polyhydric alcohol may be used as a cross-linking agent, may be used at a reaction temperature or lower to be used as a solvent for the cross-linking agent, or may be used in combination. In addition, the crosslinking agent other than the polyhydric alcohol to be used is exemplified in the above-mentioned crosslinking agent and the following literature. Examples of the polyhydric alcohol that most remarkably exhibits the effects of the present invention in terms of physical properties include polyhydric alcohols having 3 to 8 carbon atoms, and further selected from glycerin, propylene glycol, butanediol, pentanediol, and hexanediol. At least one kind of polyhydric alcohol (the substitution position of the diol does not matter) is preferably used.

【0058】なお、本発明でいう揮発性有機溶媒とはそ
の沸点が後述の架橋反応の温度以下の溶媒であり、特に
沸点が100℃以下、さらには沸点85℃以下の有機溶
媒をさし、本発明では、これら有機溶媒を使用せず水性
液を添加することで環境面、コスト面、安全性の面でも
優れた吸水性樹脂が得られるので好ましい。本発明にお
いては、上記重合体と表面架橋剤とを混合した後、架橋
剤の種類により、必要に応じて強制加熱を行い、重合体
の表面近傍を架橋させる。強制加熱の温度は、用いる表
面架橋剤にもよるが、好ましくは100℃以上、より好
ましくは110〜230℃、さらに好ましくは160〜
220℃であり、強制加熱の時間は適宜決定されるが、
好ましくは1〜120分、よりに好ましくは5〜60分
の範囲である。また、強制過熱に用いられる装置として
は、例えば、溝型混合乾燥機、ロータリー乾燥機、ディ
スク乾燥機、流動層乾燥機、気流型乾燥機、赤外線乾燥
機等が挙げられる。なお、これら加熱装置は前記混合装
置とは別個に設け、それらが互いに連結されることが好
ましい。
The volatile organic solvent referred to in the present invention is a solvent having a boiling point of not higher than the temperature of the crosslinking reaction described below, particularly an organic solvent having a boiling point of not higher than 100 ° C., and further not higher than 85 ° C. In the present invention, adding an aqueous liquid without using these organic solvents is preferable because a water-absorbent resin excellent in environmental, cost and safety aspects can be obtained. In the present invention, after mixing the above polymer and the surface cross-linking agent, forcible heating is performed as necessary depending on the type of the cross-linking agent to cross-link the vicinity of the surface of the polymer. The temperature of the forced heating depends on the surface cross-linking agent used, but is preferably 100 ° C. or higher, more preferably 110 to 230 ° C., and still more preferably 160 to 230 ° C.
220 ° C., and the time of forced heating is appropriately determined,
It is preferably in the range of 1 to 120 minutes, more preferably 5 to 60 minutes. Examples of the apparatus used for forced heating include a groove type mixing dryer, a rotary dryer, a disk dryer, a fluidized-bed dryer, a flash dryer, and an infrared dryer. Preferably, these heating devices are provided separately from the mixing device, and they are connected to each other.

【0059】なお、これらの表面架橋方法は、欧州特許
0349240号、同0605150号、同04509
23号、同0812873号、同0450924号、同
0668080号などの各種欧州特許や、日本国特開平
7−242709号、同7−224304号などの各種
日本特許、米国特許5409771号、同559787
3号、同5385983号、同5610220号、同5
633316号、同5674633号、同546297
2号などの各種米国特許、国際公開特許WO99/42
494号、WO99/43720号、WO99/424
96号などの各種国際公開特許にも記載されており、こ
れらの表面架橋方法も本発明での再加熱や水性液の添加
に適用できる。
These surface cross-linking methods are described in European Patent Nos. 0349240, 0605150 and 04509.
No. 23, No. 0812873, No. 0450924, No. 0668080, etc., various Japanese patents such as Japanese Patent Application Laid-Open Nos. Hei 7-242709 and 7-224304, U.S. Pat.
Nos. 3, 538,983, 5,610,220, 5,
No. 633316, No. 5674633, No. 546297
No. 2 and other various US patents, International Patent Publication WO99 / 42
No. 494, WO99 / 43720, WO99 / 424
It is also described in various international patents such as No. 96, and these surface cross-linking methods can be applied to reheating and addition of an aqueous liquid in the present invention.

【0060】以上、本発明は、架橋剤を含む単量体水溶
液を重合してなる含水ゲル状架橋重合体を加熱乾燥した
後に粉砕して得られた粉末に混合機中で水性液を添加す
る吸水性樹脂粉末の製造方法であって、加熱乾燥温度が
110〜230℃の範囲であること、水性液添加前に乾
燥重合体を80〜35℃に冷却すること、および、粉砕
後の乾燥重合体の嵩比重を0.65g/ml以上とする
ことを特徴とする吸水性樹脂粉末の製造方法をも提供す
る。また、本発明は、架橋剤を含む単量体水溶液を重合
してなる含水ゲル状架橋重合体を加熱乾燥した後に粉砕
して得られた粉末に混合機中で水性液を添加する吸水性
樹脂粉末の製造方法であって、加熱乾燥温度が110〜
230℃の範囲であること、水性液添加前に乾燥重合体
を80〜35℃に冷却すること、および、混合機の内壁
温度が40℃以上の攪拌混合機であること、および、1
10〜230℃に再加熱することを特徴とする吸水性樹
脂粉末の製造方法をも提供する。
As described above, in the present invention, an aqueous liquid is added in a mixer to a powder obtained by heating and drying a hydrogel crosslinked polymer obtained by polymerizing an aqueous monomer solution containing a crosslinker, and then pulverizing the resultant. A method for producing a water-absorbent resin powder, wherein the heating and drying temperature is in the range of 110 to 230 ° C, the dry polymer is cooled to 80 to 35 ° C before the addition of the aqueous liquid, and the dry weight after pulverization. The present invention also provides a method for producing a water-absorbent resin powder, wherein the bulk specific gravity of the coalesced product is 0.65 g / ml or more. The present invention also provides a water-absorbent resin in which a water-containing gel-like cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent is heated and dried, and then pulverized and then an aqueous liquid is added to a powder obtained in a mixer. A method for producing a powder, wherein the heating and drying temperature is 110 to 110.
230 ° C. range, cooling the dried polymer to 80-35 ° C. before adding the aqueous liquid, and a stirring mixer having an inner wall temperature of 40 ° C. or higher;
Also provided is a method for producing a water-absorbent resin powder, which is characterized by reheating to 10 to 230 ° C.

【0061】なお、これら2つの方法において、乾燥温
度と冷却温度の差が大きいほど、本発明の効果は顕著で
あり、好ましい温度範囲などは前述の通りである。こう
して得られた吸水性樹脂粉末の加圧下吸収倍率(1.9
6kPa)や無荷重下吸水倍率(生理食塩水)は好ましく
は25g/g以上、より好ましくは27g/g以上、さ
らに好ましくは30g/g以上、特に好ましくは35g
/g以上である。また、その水可溶成分や粒子径、嵩比
重、吸水倍率などは前述の範囲である。さらに、加圧下
吸収倍率(4.90kPa)は、好ましくは23g/g以
上、より好ましくは25g/g以上、さらに好ましくは
27g/g以上である。本発明ではかかる高物性の吸水
性樹脂粉末が容易に安定的に製造できる。
In these two methods, the effect of the present invention is more remarkable as the difference between the drying temperature and the cooling temperature is larger, and the preferable temperature range is as described above. The absorbency against pressure of the water-absorbent resin powder thus obtained (1.9)
6 kPa) and a water absorption capacity under no load (physiological saline) are preferably 25 g / g or more, more preferably 27 g / g or more, further preferably 30 g / g or more, and particularly preferably 35 g or more.
/ G or more. Further, the water-soluble component, the particle size, the bulk specific gravity, the water absorption ratio, and the like are in the above-mentioned ranges. Further, the absorption capacity under pressure (4.90 kPa) is preferably 23 g / g or more, more preferably 25 g / g or more, and further preferably 27 g / g or more. According to the present invention, the water absorbent resin powder having such high physical properties can be easily and stably produced.

【0062】また、本発明にかかる吸水性樹脂粉末の製
造方法は、架橋剤を含む単量体水溶液を重合してなる含
水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水性
樹脂粉末の製造方法であって、加熱乾燥後の乾燥重合体
を強制冷却すること、乾燥重合体を粉砕して嵩比重0.
65g/ml以上の吸水性樹脂粉末とすること、冷却さ
れた吸水性樹脂粉末をさらに表面架橋すること、を特徴
とする。
The method for producing a water-absorbent resin powder according to the present invention is a method for producing a water-absorbent resin powder in which a water-containing gel-like cross-linked polymer obtained by polymerizing an aqueous monomer solution containing a cross-linking agent is heated, dried and ground. The method comprises forcibly cooling the dried polymer after heating and drying, and pulverizing the dried polymer to obtain a bulk specific gravity of 0.1.
It is characterized in that a water-absorbent resin powder of 65 g / ml or more is obtained, and the surface of the cooled water-absorbent resin powder is further crosslinked.

【0063】また、本発明にかかる吸水性樹脂粉末の製
造方法は、架橋剤を含む単量体水溶液を重合してなる含
水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水性
樹脂粉末の製造方法であって、加熱乾燥後の乾燥重合体
を強制冷却すること、乾燥重合体を粉砕して嵩比重0.
65g/ml以上の吸水性樹脂粉末とすること、冷却さ
れた吸水性樹脂粉末にさらに水性液を添加すること、水
性液が内壁が加熱された攪拌混合機で添加されること、
を特徴とする。
The method for producing a water-absorbent resin powder according to the present invention is a method for producing a water-absorbent resin powder in which a water-containing gel-like crosslinked polymer obtained by polymerizing an aqueous monomer solution containing a crosslinking agent is heated, dried, and ground. Forcibly cooling the dried polymer after heating and drying, and pulverizing the dried polymer to obtain a bulk specific gravity of 0.1.
65 g / ml or more of the water-absorbent resin powder, adding the aqueous liquid to the cooled water-absorbent resin powder, adding the aqueous liquid with a stirring mixer whose inner wall is heated,
It is characterized by.

【0064】よって、本発明は、架橋剤を含む単量体水
溶液を重合してなる含水ゲル状架橋重合体を加熱乾燥し
た後に粉砕して得られた粉末に混合機中で揮発性有機溶
媒を含有しない多価アルコール水溶液を添加して得られ
た、(1)嵩比重が0.65g/ml以上、(2)平均
粒子径200〜600μm、(3)150μm以下ない
し850μm以上の粒子の合計が10重量%以下、
(4)加圧下吸収倍率(1.96kPa)が25g/g以
上の吸水性樹脂粉末をも提供する。本発明は、吸水性樹
脂粉末への水性液の連続混合性が改善され、従来、用い
られていた揮発性有機溶媒を用いなければその混合が困
難であった多価アルコール水溶液によっても、加圧下吸
収倍率や嵩比重の高い吸水性樹脂粉末を提供することが
できる。
Accordingly, the present invention provides a method for preparing a hydrogel cross-linked polymer obtained by polymerizing an aqueous monomer solution containing a cross-linking agent by heating and drying, and then pulverizing the powder to obtain a volatile organic solvent in a mixer. The total of particles having (1) a bulk specific gravity of 0.65 g / ml or more, (2) an average particle diameter of 200 to 600 μm, and (3) 150 μm or less to 850 μm or more obtained by adding an aqueous polyhydric alcohol solution not containing 10% by weight or less,
(4) It also provides a water-absorbent resin powder having an absorption capacity under pressure (1.96 kPa) of 25 g / g or more. The present invention has improved continuous mixing of an aqueous liquid into a water-absorbent resin powder, and has been improved under pressure even with a polyhydric alcohol aqueous solution, which was conventionally difficult to mix without using a volatile organic solvent. A water-absorbent resin powder having a high absorption capacity and a high bulk specific gravity can be provided.

【0065】以上して得られた本発明の吸水性樹脂粉末
に、さらに、必要に応じて、消臭剤、抗菌剤、香料、各
種の無機粉末、発泡剤、顔料、染料、親水性短繊維、可
塑剤、粘着剤、界面活性剤、肥料、酸化剤、還元剤、キ
レート剤、酸化防止剤、水、水溶性高分子、バインダ
ー、塩類等を添加して、種々の機能を付与してもよい。
本発明の製造方法を含んで得られる吸水性樹脂粉末は、
粒度分布および物性に優れてるため、表面架橋やその後
中和などでさらに高物性を発揮する吸水性樹脂粉末とす
ることができる。また、本発明では、かかる吸水性樹脂
粉末を生産性高く簡便に、製造工程での附着や凝集な
く、低エネルギーコストで安価に得ることができる。
The water-absorbent resin powder of the present invention obtained as described above may be further used, if necessary, with a deodorant, an antibacterial agent, a fragrance, various inorganic powders, a foaming agent, a pigment, a dye, a hydrophilic short fiber. , Plasticizers, adhesives, surfactants, fertilizers, oxidizing agents, reducing agents, chelating agents, antioxidants, water, water-soluble polymers, binders, salts, etc., to impart various functions. Good.
Water-absorbent resin powder obtained by including the production method of the present invention,
Because of its excellent particle size distribution and physical properties, it is possible to obtain a water-absorbent resin powder exhibiting further higher physical properties by surface crosslinking and subsequent neutralization. Further, in the present invention, such a water-absorbent resin powder can be obtained easily with high productivity, without attachment or aggregation in the production process, with low energy cost and low cost.

【0066】このため、本発明の吸水性樹脂粉末は広い
用途に使用できるが、特に、紙おむつ/生理用ナプキン
などの衛生材料/吸収物品に好適であり、粉砕パルプ等
の親水性繊維材料と複合化され衛生材料として好ましく
使用することができる。また、本発明の吸水性樹脂粉末
は高物性であるため、衛生材料中でコア濃度(繊維およ
び吸水性樹脂粉末の合計量に対する吸水性樹脂粉末の重
量比)が高い衛生材料で好適に使用することができ、例
えば、吸水性樹脂粉末が30〜100重量%、好ましく
は40〜95重量%以上、さらには50〜90重量%濃
度の衛生材料で好適に使用することができる。
For this reason, the water-absorbent resin powder of the present invention can be used for a wide range of applications, but is particularly suitable for sanitary materials / absorbent articles such as disposable diapers / sanitary napkins and composites with hydrophilic fiber materials such as pulverized pulp. And can be preferably used as a sanitary material. In addition, since the water-absorbent resin powder of the present invention has high physical properties, it is preferably used in a sanitary material having a high core concentration (weight ratio of the water-absorbent resin powder to the total amount of the fiber and the water-absorbent resin powder) in the sanitary material. For example, the water-absorbent resin powder can be suitably used in a sanitary material having a concentration of 30 to 100% by weight, preferably 40 to 95% by weight or more, and more preferably 50 to 90% by weight.

【0067】[0067]

【実施例】本発明を実施するための最良の形態以下、実
施例および比較例により、本発明をさらに詳細に説明す
るが、本発明はこれらにより何ら限定されるものではな
い。尚、吸水性樹脂粉末の諸性能は、以下の方法により
測定した。また、実施例の重合・乾燥・粉砕などは、実
生産をシュミレートした一連の連続操作で行った。 (a)無荷重での吸水倍率 吸水性樹脂粉末0.200gを不織布製の袋(60mm
×60mm)に均一に入れヒートシールした後、大過剰
(約200g)の0.9重量%生理食塩水に室温で浸漬
した。浸漬60分後に袋を引き上げ、遠心分離機を用い
て 250Gで3分間水切りを行った後、袋の重量W1
(g)を測定した。また、同様の操作を吸水性樹脂粉末
を用いないで行い、そのときの重量W0(g)を測定し
た。そして、これら重量W1とW0から、次式(a)に
従って無荷重での吸水倍率(g/g)を算出した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The properties of the water-absorbent resin powder were measured by the following methods. In addition, polymerization, drying, pulverization, and the like in Examples were performed by a series of continuous operations simulating actual production. (A) Water absorption capacity under no load 0.200 g of the water-absorbent resin powder was added to a non-woven bag (60 mm
× 60 mm) and heat-sealed, then immersed in a large excess (about 200 g) of 0.9% by weight physiological saline at room temperature. After 60 minutes of immersion, the bag is pulled up and drained at 250 G for 3 minutes using a centrifuge.
(G) was measured. Further, the same operation was performed without using the water-absorbing resin powder, and the weight W0 (g) at that time was measured. Then, from these weights W1 and W0, the water absorption capacity (g / g) under no load was calculated according to the following equation (a).

【0068】無荷重での吸水倍率(g/g)=(重量W
1(g)−重量W0(g)−0.2)/0.2(g) (b)水可溶成分量 吸水性樹脂粉末1.000gを184.3gの生理食塩
水中に膨潤分散させ、200mlビーカー中で16時間
攪拌した後、濾紙で膨潤ゲルを分離して濾過した。次い
で、得られた濾液を0.1N(0.1mol/l)水酸化ナトリウ
ム水溶液および0.1N(0.1mol/l)塩酸水溶液を用いて
カルボキシル基を中和滴定することで、吸水性樹脂粉末
(膨潤ゲル)中より溶解している濾液中の水溶性ポリマ
ー(=水溶性ポリアクリル酸(塩))、すなわち、吸水
性樹脂粉末の水可溶成分量(重量%)を算出した。
Water absorption capacity without load (g / g) = (weight W
1 (g) -Weight W0 (g) -0.2) /0.2 (g) (b) Amount of water-soluble component 1.000 g of water-absorbent resin powder was swelled and dispersed in 184.3 g of physiological saline, After stirring in a 200 ml beaker for 16 hours, the swollen gel was separated by filter paper and filtered. Then, the obtained filtrate is subjected to neutralization titration of carboxyl groups using a 0.1 N (0.1 mol / l) aqueous solution of sodium hydroxide and a 0.1 N (0.1 mol / l) aqueous solution of hydrochloric acid, whereby a water-absorbent resin powder ( The amount of the water-soluble polymer (= water-soluble polyacrylic acid (salt)) in the filtrate dissolved from the swelled gel), that is, the water-soluble component amount (% by weight) of the water-absorbent resin powder was calculated.

【0069】(c)吸水性樹脂の固形分 乾燥重合体より得られた吸水性樹脂粉末1.000gを
アルミカップ(内径53mm×高さ23mm)に入れ1
80℃の無風オーブンで3時間再乾燥し、その乾燥減量
(g)より吸水性樹脂粉末(ないし乾燥重合体)の固形
分(重量%)を算出した。なお、乾燥重合体について
は、粉砕後にその固形分を上記と同様の方法により測定
することで、乾燥重合体の固形分とした。 (d)粒度分布および平均粒子径 吸水性樹脂粉末をJIS標準篩(850μm、600μ
m、300μm、150μm)で分級して、篩ごとの各
粒度(850μmオン品/850〜600μm/600
〜300μm/300〜150μm/150μmパス
品)の重量を測定した。また、必要によりJIS標準篩
を追加して、求めた各粒度の粒度分布を対数確率紙にプ
ロットすることで、その重量平均粒子径(D50)を求
めた。
(C) Solid Content of Water Absorbent Resin 1.000 g of the water absorbent resin powder obtained from the dried polymer was placed in an aluminum cup (inner diameter 53 mm × height 23 mm) and placed in
The resultant was dried again in an airless oven at 80 ° C. for 3 hours, and the solid content (% by weight) of the water-absorbent resin powder (or dried polymer) was calculated from the loss on drying (g). In addition, about the dry polymer, the solid content was measured by the same method as the above after grinding, and it was set as the solid content of the dry polymer. (D) Particle size distribution and average particle size
m, 300 μm, 150 μm), and each particle size of each sieve (850 μm on product / 850-600 μm / 600)
300300 μm / 300-150 μm / 150 μm pass product). If necessary, a JIS standard sieve was added, and the obtained particle size distribution was plotted on log probability paper to determine the weight average particle size (D50).

【0070】(e)加圧下吸収倍率 欧州特許0885917号、欧州特許0817873号
および欧州特許0811636号の実施例に開示の方法
にしたがって、吸水性樹脂粉末の生理食塩水に対する5
0g/cm2(約4.90kPaに相当)での加圧下吸
収倍率を測定した。すなわち、吸水性樹脂粉末0.90
0gに対して50g/cm(約4.90kPa)の荷
重を均一に加えながら、室温で60分間にわたって吸水
性樹脂粉末が吸収した生理食塩水の重量W2(g)を、
天秤を用いて測定した。そして、上記の重量W2から、
次式bに従って、吸収開始から60分後の加圧下の吸水
倍率(g/g)を算出し、50g/cm2(約4.90
kPa)での加圧下吸収倍率とした。
(E) Absorbency under pressure According to the method disclosed in the examples of EP0888517, EP0817873 and EP0811636, the water-absorbent resin powder was added to physiological saline in 5%.
The absorbency against pressure at 0 g / cm 2 (equivalent to about 4.90 kPa) was measured. That is, the water-absorbent resin powder 0.90
While uniformly applying a load of 50 g / cm 2 (approximately 4.90 kPa) to 0 g, the weight W2 (g) of the physiological saline absorbed by the water-absorbent resin powder at room temperature for 60 minutes,
It measured using the balance. And, from the above weight W2,
According to the following formula b, the water absorption capacity (g / g) under pressure 60 minutes after the start of absorption was calculated, and 50 g / cm 2 (about 4.90)
kPa) as the absorption capacity under pressure.

【0071】式b;加圧下吸収倍率 (g/g)=重量
W2(g) /吸水性樹脂粉末の重量(g) なお、同様の測定において、荷重を20g/cm(約
1.96kPaに相当)で測定する場合、加圧下吸水倍
率(1.96kPa)と称する。 (f)嵩比重 嵩比重測定器(蔵持科学器機製作所社製)を用い、JI
S K 3362に準じて測定した。(なお、嵩比重の
測定法として、欧州特許出願1029886号/特願2
000−35941号も参照。)すなわち、温度は25
±2℃、相対湿度は30〜50%の部屋で、吸水性樹脂
粉末120gをダンパーを閉めた漏斗に入れた後、速や
かにダンパーを開け、試料を受器(100ml)に落と
した。受器から盛り上がった試料は、ガラス棒ですり落
とした後、試料の入った受器の重さ(g)を0.1gま
で正確に量り、嵩比重(g/ml)を算出した。
Formula b; absorption capacity under pressure (g / g) = weight W2 (g) / weight of water-absorbent resin powder (g) In the same measurement, the load was 20 g / cm 2 (approximately 1.96 kPa). (Equivalent), it is referred to as the water absorption capacity under pressure (1.96 kPa). (F) Bulk specific gravity Using a bulk specific gravity measuring device (manufactured by Kuramochi Scientific Instruments), JI
It was measured according to S K 3362. (In addition, as a method for measuring the bulk specific gravity, European Patent Application No.
See also 000-35941. ) That is, the temperature is 25
In a room having a temperature of ± 2 ° C and a relative humidity of 30 to 50%, 120 g of the water-absorbent resin powder was put into a funnel with a damper closed, the damper was opened immediately, and the sample was dropped into a receiver (100 ml). After the sample raised from the receiver was ground with a glass rod, the weight (g) of the receiver containing the sample was accurately measured to 0.1 g, and the bulk specific gravity (g / ml) was calculated.

【0072】(g)耐衝撃性 吸水性樹脂粉末の耐衝撃性を欧州特許0817873号
(米国特許6071976号)に従い、ガラス容器に入
れた粉末30.0gをガラスビーズ10.0gともに3
0分間振動させた後、その加圧下吸収倍率の低下を評価
した。 (h)含水ゲル状架橋重合体の重量平均粒子径 含水ゲル状架橋重合体(含水ゲル)がごく一部しか膨潤
も収縮もしない、20重量%食塩水を用いて粒度分布を
測定した。すなわち、30gの含水ゲルを20重量%食
塩水1000gに分散させ、スターラーチップを用いて
300rpmで2時間攪拌した。2時間後に分散液を6
段重ねのJIS標準篩(目開きが9500μm、200
0μm、850μm、600μm、300μm、75μ
m/JIS・Z8801/ステンレス製篩/内径20c
m)に投入し、さらに6000gの20重量%食塩水を
用いて順次注ぐことで含水ゲルを分級した。次いで、篩
の裏面側を紙で十分に水切りした後、含水ゲルの各粒度
の重量を求め、総重量(g)と初めの重量(30g)か
ら膨潤倍率を求め、各粒度(μm)の膨潤前の粒度(μ
m)に換算して対数確率紙にプロットすることで、含水
ゲルの重量平均粒子径D50を求めた。
(G) Impact Resistance The impact resistance of the water-absorbent resin powder was measured in accordance with European Patent 08117873 (US Pat. No. 6,071,976) according to the following method.
After vibrating for 0 minutes, the decrease in the absorption capacity under pressure was evaluated. (H) Weight average particle size of hydrogel crosslinked polymer The hydrogel crosslinked polymer (hydrogel) only slightly swells or shrinks, and the particle size distribution was measured using a 20% by weight saline solution. That is, 30 g of the hydrogel was dispersed in 1000 g of a 20% by weight saline solution, and stirred at 300 rpm for 2 hours using a stirrer chip. After 2 hours the dispersion is
Stacked JIS standard sieve (9500 μm mesh, 200 mesh
0 μm, 850 μm, 600 μm, 300 μm, 75 μ
m / JIS Z8801 / Stainless steel sieve / 20c inner diameter
m) and further poured sequentially using 6000 g of 20% by weight saline to classify the hydrogel. Next, after the back side of the sieve is sufficiently drained with paper, the weight of each particle size of the hydrogel is determined, and the swelling magnification is determined from the total weight (g) and the initial weight (30 g), and the swelling of each particle size (μm) is determined. Previous particle size (μ
m) and plotted on log probability paper to determine the weight average particle diameter D50 of the hydrogel.

【0073】(製造例1)…未中和ポリアクリル酸架橋
体の重合および乾燥 アクリル酸1066.61g、共重合性架橋剤として
N,N‘−メチレンビスアクリルアミド9.12g、お
よび水4280.11gからなる単量体水溶液(1)を
窒素ガスで60分脱気後、開閉可能な密閉重合容器中に
仕込んだ。次いで、容器上部を窒素気流下の状態とし、
23℃の液温にて、重合開始剤として2,2´−アゾビ
ス(2−アミジノプロパン)2塩酸塩の10重量%水溶
液を32.27g、過酸化水素の10重量%水溶液を1
0.66g、およびL−アスコルビン酸の1重量%水溶
液を26.64g、をそれぞれ添加したところ、約5分
後に重合が開始し、その後、1時間の静置重合を行っ
た。得られた重合体を容器から取出し、孔径7.5mm
のミートチョパー(平賀製作所製)で数mmの粒子状に
細分化することで、平均粒子径1500μmの粒子状の
含水ゲル状架橋重合体(1)を得た。
(Production Example 1) Polymerization and Drying of Unneutralized Crosslinked Polyacrylic Acid 1066.61 g of acrylic acid, 9.12 g of N, N'-methylenebisacrylamide as a copolymerizable crosslinking agent, and 4280.11 g of water The monomer aqueous solution (1) was degassed with nitrogen gas for 60 minutes, and then charged into an openable and closable closed polymerization vessel. Next, the upper part of the container is put under a nitrogen stream,
At a liquid temperature of 23 ° C., 32.27 g of a 10% by weight aqueous solution of 2,2′-azobis (2-amidinopropane) dihydrochloride and 1% by weight of a 10% by weight aqueous solution of hydrogen peroxide were used as polymerization initiators.
When 0.66 g and 26.64 g of a 1% by weight aqueous solution of L-ascorbic acid were respectively added, polymerization started about 5 minutes later, and then, static polymerization was performed for 1 hour. The obtained polymer was taken out of the container and had a pore size of 7.5 mm.
By using a meat chopper (manufactured by Hiraga Manufacturing Co., Ltd.) to obtain a particulate hydrogel crosslinked polymer (1) having an average particle diameter of 1500 μm.

【0074】次いで、粒子状の含水ゲル状架橋重合体
(1)を層厚約50mmにて目開き300μmの金網に
広げて積層し、次いで、ゲルの上下方向に135℃(露
点65℃)の熱風を1m/秒、1時間通気させること
で、熱風乾燥を行った。こうして、固形分95重量%で
粒子状の乾燥重合体(1)からなるブロック状物を得、
その材料温度は約135℃であった。 (製造例2)…部分中和ポリアクリル酸架橋体の重合お
よび乾燥 アクリル酸673.79g、アクリル酸ナトリウムの3
7重量%水溶液5904.7g、内部架橋剤としてポリ
エチレングリコールジアクリレート(平均ポリエチレン
グリコールユニット数8)15.87gおよび水71
4.2gからなる単量体水溶液(2)を窒素ガスで60
分脱気後、内容量10Lでシグマ型羽根を2本有するジ
ャケット付きステンレス製双腕型ニーダーに蓋を付けた
反応器に該水溶液を供給し、20℃の温度に保ちながら
反応系の窒素置換を続けた。
Next, the particulate hydrogel crosslinked polymer (1) is spread over a wire mesh having an opening of 300 μm with a layer thickness of about 50 mm and laminated, and then heated to 135 ° C. (dew point 65 ° C.) in the vertical direction of the gel. Hot air drying was performed by passing hot air at 1 m / sec for 1 hour. In this way, a block-like substance composed of the particulate dry polymer (1) with a solid content of 95% by weight was obtained,
The material temperature was about 135 ° C. (Production Example 2) Polymerization and drying of partially neutralized crosslinked polyacrylic acid 673.79 g of acrylic acid and 3 of sodium acrylate
5904.7 g of a 7% by weight aqueous solution, 15.87 g of polyethylene glycol diacrylate (average number of polyethylene glycol units: 8) as an internal crosslinking agent and 71 of water
An aqueous monomer solution (2) consisting of 4.2 g is
After the degassing, the aqueous solution was supplied to a reactor having an inner volume of 10 L and covered with a jacketed stainless steel double-armed kneader having two sigma-type blades and replacing the reaction system with nitrogen while maintaining the temperature at 20 ° C. Continued.

【0075】次いで、羽根を回転させながら過硫酸ナト
リウムの20重量%水溶液19.55gとL−アスコル
ビン酸の1.0重量%水溶液1.47gを添加したとこ
ろ、1分後に重合が開始し、20分後に反応系はピーク
温度に達した。その際生成した含水ゲル架橋重合体は約
5mmのサイズに細分化されていた。その後更に攪拌を
続け、重合を開始して60分後に、平均粒子径1600
μmの粒子状の含水ゲル架橋重合体(2)を取り出し
た。次いで、粒子状の含水ゲル状架橋重合体(2)を層
厚約50mmにて目開き300μmの金網に広げて積層
し、次いで、ゲルの上下方向に170℃の熱風(露点5
0℃)を1m/秒、1時間通気させることで、熱風乾燥
を行った。こうして、固形分96重量%で粒子状の乾燥
重合体(2)からなるブロック状物を得、その材料温度
は約170℃であった。
Next, 19.55 g of a 20% by weight aqueous solution of sodium persulfate and 1.47 g of a 1.0% by weight aqueous solution of L-ascorbic acid were added while rotating the blades, and polymerization started after 1 minute. After minutes, the reaction reached peak temperature. The resulting hydrogel crosslinked polymer was finely divided into a size of about 5 mm. Thereafter, stirring was further continued, and 60 minutes after the start of the polymerization, the average particle diameter was 1600.
The hydrogel crosslinked polymer (2) having a particle size of μm was taken out. Next, the particulate hydrogel crosslinked polymer (2) is spread over a wire mesh having an opening of 300 μm with a layer thickness of about 50 mm and laminated, and then hot air at 170 ° C. (dew point 5
(0 ° C.) at 1 m / sec for 1 hour to perform hot air drying. In this way, a block of the dry polymer (2) having a solid content of 96% by weight was obtained, and the material temperature was about 170 ° C.

【0076】(製造例3)…部分中和ポリアクリル酸架
橋体の重合および乾燥 製造例2において、単量体水溶液(2)に代えて、アク
リル酸425.1g、アクリル酸ナトリウムの37重量
%水溶液4497.2g、内部架橋剤としてトリメチロ
ールプロパントリアクリレート1.40gおよび水57
7.7gからなる単量体水溶液(3)を用いる以外は、
製造例2と同様にニーダー中で水溶液重合を行うこと
で、平均粒子径1700μmの粒子状の含水ゲル架橋重
合体(3)を得た。次いで、製造例2と同様に粒子状の
含水ゲル状架橋重合体(3)を170℃で1時間の熱風
乾燥を行った。こうして、固形分95重量%で粒子状の
乾燥重合体(3)からなるブロック状物を得、その材料
温度は約170℃であった。
Production Example 3 Polymerization and Drying of Crosslinked Partially Neutralized Polyacrylic Acid In Production Example 2, 425.1 g of acrylic acid and 37% by weight of sodium acrylate were used instead of the aqueous monomer solution (2). 4497.2 g of an aqueous solution, 1.40 g of trimethylolpropane triacrylate as an internal crosslinking agent and water 57
Except for using a monomer aqueous solution (3) consisting of 7.7 g,
By performing aqueous solution polymerization in a kneader in the same manner as in Production Example 2, a particulate hydrogel crosslinked polymer (3) having an average particle size of 1700 μm was obtained. Next, the particulate hydrogel crosslinked polymer (3) was dried with hot air at 170 ° C. for 1 hour in the same manner as in Production Example 2. In this way, a block of the dry polymer (3) having a solid content of 95% by weight was obtained, and the material temperature was about 170 ° C.

【0077】(製造例4)…部分中和ポリアクリル酸架
橋体の重合および乾燥 製造例2において、単量体水溶液(2)に代えて、アク
リル酸369g、アクリル酸ナトリウムの37重量%水
溶液3907g、内部架橋剤としてポリエチレングリコ
ールジアクリレート(平均ポリエチレングリコールユニ
ット数n=8)4.99gおよび水1216gからなる
単量体水溶液(4)を用いる以外は、製造例2と同様に
ニーダー中で水溶液重合を行うことで、平均粒子径17
00μmの粒子状の含水ゲル架橋重合体(4)を得た。
次いで、粒子状の含水ゲル架橋重合体(4)を製造例2
と同様に連続熱風乾燥を行った。こうして、固形分95
重量%で粒子状の乾燥重合体(4)からなるブロック状
物を得、その材料温度は約170℃であった。
Production Example 4 Polymerization and Drying of Crosslinked Partially Neutralized Polyacrylic Acid In Production Example 2, 369 g of acrylic acid and 3907 g of a 37% by weight aqueous solution of sodium acrylate were used instead of the aqueous monomer solution (2). Aqueous polymerization in a kneader in the same manner as in Production Example 2, except that an aqueous monomer solution (4) consisting of 4.99 g of polyethylene glycol diacrylate (average number of polyethylene glycol units n = 8) and 1216 g of water was used as an internal crosslinking agent. By performing, the average particle diameter 17
A 00 μm particulate hydrogel crosslinked polymer (4) was obtained.
Next, a particulate hydrogel crosslinked polymer (4) was produced in Production Example 2.
Continuous hot-air drying was performed in the same manner as described above. Thus, the solid content 95
A block of the dry polymer (4) in the form of particles was obtained at a weight percentage of about 170 ° C.

【0078】(製造例5)…部分中和ポリアクリル酸架
橋体の重合および乾燥 アクリル酸100部、37重量%アクリル酸ナトリウム
水溶液656.4部、ポリエチレングリコールジアクリ
レート(平均ポリエチレングリコールユニット数n=
8)0.77部、および、脱イオン水216.7部を十
分混合し、単量体水溶液(5)を作成した。得られた単
量体水溶液(5)を定量ポンプで290kg/hの連続
フィードを行い、配管の途中では窒素ガスを連続的に吹
き込み、単量体水溶液(5)の酸素濃度を0.5ppm
以下にした。単量体水溶液(5)にさらに2,2´−ア
ゾビス(アミジノプロパン)2塩酸塩(商品名V−5
0、和光純薬工業社製)、過硫酸ナトリウム、L−アス
コルビン酸、過酸化水素の開始剤水溶液を4種類順次ラ
インミキシング(開始剤固形分(成分)で0.08部/
0.08部/0.008部/0.006部)して、12
cm/分で移動するスチール製のエンドレスベルト重合
機(両サイドに50mmの堰を有する平面ベルトを有す
る)に厚み25mmとなるように連続供給した。即座に
重合が開始し、こうして得られた重合体をベルト重合機
の末端から排出して、さらに連続裁断機で約5〜10c
m片に裁断した後、ミートチョッパー(孔径9mm)で
粉砕することにより、平均粒子径1600μmの粒子状
含水ゲル状架橋重合体(5)を得た。
(Production Example 5) Polymerization and Drying of Crosslinked Partially Neutralized Polyacrylic Acid 100 parts of acrylic acid, 656.4 parts of a 37% by weight aqueous solution of sodium acrylate, polyethylene glycol diacrylate (average number of polyethylene glycol units n =
8) 0.77 parts and 216.7 parts of deionized water were sufficiently mixed to prepare an aqueous monomer solution (5). The obtained monomer aqueous solution (5) is continuously fed at a rate of 290 kg / h by a metering pump, and nitrogen gas is continuously blown in the middle of the pipe to reduce the oxygen concentration of the monomer aqueous solution (5) to 0.5 ppm.
I did it below. Further, 2,2′-azobis (amidinopropane) dihydrochloride (trade name V-5) was added to the aqueous monomer solution (5).
0, manufactured by Wako Pure Chemical Industries, Ltd.), four kinds of aqueous initiator solutions of sodium persulfate, L-ascorbic acid and hydrogen peroxide were sequentially line-mixed (0.08 parts / initiator solids (component) /
0.08 parts / 0.008 parts / 0.006 parts)
It was continuously supplied to a steel endless belt polymerization machine (having a flat belt having a 50 mm weir on both sides) moving at a speed of cm / min so as to have a thickness of 25 mm. Polymerization starts immediately, and the polymer thus obtained is discharged from the end of the belt polymerization machine, and is further cut by a continuous cutter at about 5 to 10 c.
After cutting into m pieces, the mixture was pulverized with a meat chopper (pore diameter 9 mm) to obtain a particulate hydrogel crosslinked polymer (5) having an average particle diameter of 1600 μm.

【0079】次いで、粒子状含水ゲル状架橋重合体
(5)をパンチングメタル上に厚み50mmに積載し、
ベルト式乾燥機で連続式熱風乾燥(180℃の熱風(露
点60℃)を上下方向に20分間)を行った。こうし
て、固形分94重量%で粒子状の乾燥重合体(5)から
なるブロック状物が得られ、その材料温度は約180℃
であった。 (実施例1)…乾燥重合体(1)の60℃への強制冷却 製造例1で得られた、粒子状の乾燥重合体(1)のブロ
ック状物(材料温度約135℃)に対して、熱風に代え
て、上下方向に室温の冷風(1m/秒)を通気する事で
粒子状の乾燥重合体(1)のブロック状物を60℃に強
制冷却した後、風冷式冷却装置から取り出した。取り出
したと同時に金網上のブロック状凝集物を解砕し、30
秒以内に、得られた粒子状乾燥物(1)を3段ロールグ
ラニュレーター(ロールギャップが上から1.0mm/
0.45mm/0.25mm)で連続的に粉砕した。乾
燥の際、乾燥重合体(1)のブロック状物の目開き30
0μm金網からの剥離性は非常に良好であり、粉砕によ
って得られた吸水性樹脂粉末(1)の粒度分布を表1に
示す。
Next, the particulate hydrogel crosslinked polymer (5) is loaded on a punching metal to a thickness of 50 mm,
Continuous hot air drying (180 ° C. hot air (dew point: 60 ° C.) for 20 minutes in the vertical direction) was performed by a belt dryer. In this way, a block of the dry polymer (5) having a solid content of 94% by weight was obtained, and the material temperature was about 180 ° C.
Met. (Example 1) ... forced cooling of the dried polymer (1) to 60 ° C With respect to the block-like material (material temperature about 135 ° C) of the particulate dried polymer (1) obtained in Production Example 1. In place of hot air, a block of the dry polymer (1) in the form of particles is forcibly cooled to 60 ° C. by passing cold air (1 m / sec) at room temperature in the vertical direction in the vertical direction. I took it out. At the same time as taking out, block-like aggregates on the wire mesh are crushed, and 30
Within 2 seconds, the obtained particulate dried product (1) was placed in a three-stage roll granulator (roll gap 1.0 mm /
(0.45 mm / 0.25 mm). At the time of drying, the openings 30 of the block-like material of the dried polymer (1)
The releasability from the 0 μm wire mesh was very good, and the particle size distribution of the water-absorbent resin powder (1) obtained by pulverization is shown in Table 1.

【0080】(実施例2)…同45℃への強制冷却 実施例1において、冷風の通気する時間を調整すること
で、ブロック状物を45℃に強制冷却した後、実施例1
と同様に解砕し、得られた粒子状乾燥物(2)を同様に
粉砕した。乾燥の際、乾燥重合体(1)のブロック状物
の目開き300μm金網からの剥離性は非常に良好であ
り、粉砕によって得られた吸水性樹脂粉末(2)の粒度
分布を表1に示す。 (実施例3)…同95℃への強制冷却 実施例1において、冷風の通気する時間を調整すること
で、ブロック状物を95℃に強制冷却した後、実施例1
と同様に解砕し、得られた粒子状乾燥物(3)を同様に
粉砕した。乾燥の際、乾燥重合体(1)のブロック状物
の目開き300μm金網からの剥離性は実施例1,2よ
り若干悪いが良好であり、粉砕によって得られた吸水性
樹脂粉末(3)の粒度分布を表1に示す。
Example 2 Forced cooling to 45 ° C. In the same manner as in Example 1, the block was forcibly cooled to 45 ° C. by adjusting the time for cooling air to flow.
And the obtained particulate dried product (2) was similarly ground. At the time of drying, the releasability of the block of the dried polymer (1) from the metal mesh having an opening of 300 μm was very good, and the particle size distribution of the water-absorbent resin powder (2) obtained by pulverization is shown in Table 1. . (Example 3) ... Forced cooling to 95 ° C. In Example 1, after the block-like material was forcibly cooled to 95 ° C. by adjusting the ventilation time of the cool air, Example 1 was performed.
And the obtained particulate dried product (3) was similarly ground. At the time of drying, the releasability of the dried polymer (1) from the 300 μm wire mesh of the block-like material was slightly better than that of Examples 1 and 2, but was excellent. The water-absorbent resin powder (3) obtained by pulverization was excellent. Table 1 shows the particle size distribution.

【0081】(実施例4)…同80℃への強制冷却 実施例1において、冷風の通気する時間を調整すること
で、ブロック状物を80℃に強制冷却した後、実施例1
と同様に解砕し、得られた粒子状乾燥物(4)を同様に
粉砕した。乾燥の際、乾燥重合体(1)のブロック状物
の目開き300μm金網からの剥離性は実施例1,2よ
り若干悪いが良好であり、粉砕によって得られた吸水性
樹脂粉末(4)の粒度分布を表1に示す。 (実施例5)…乾燥重合体(2)の40℃への強制冷却 製造例2で得られた、粒子状の乾燥重合体(2)のブロ
ック状物(材料温度約170℃)に対して、熱風に代え
て、上下方向に室温の冷風(1m/秒)を通気する事で
粒子状の乾燥重合体(2)のブロック状物を40℃に強
制冷却した後、風冷式冷却装置から取り出した。取り出
したと同時に金網上のブロック状凝集物を解砕し、30
秒以内に、得られた粒子状乾燥物(5)を3段ロールグ
ラニュレーター(ロールギャップが上から1.0mm/
0.45mm/0.25mm)で連続的に粉砕した。乾
燥の際、乾燥重合体(2)のブロック状物の目開き30
0μm金網からの剥離性は非常に良好であり、また、粉
砕によって得られた吸水性樹脂粉末(5)の粒度分布を
表1に示す。
(Embodiment 4) ... Forced cooling to 80.degree. C. In the first embodiment, the block was forcibly cooled to 80.degree.
And the obtained particulate dried product (4) was pulverized in the same manner. Upon drying, the releasability of the block of the dried polymer (1) from the 300 μm mesh was better than that of Examples 1 and 2, but was good. Table 1 shows the particle size distribution. (Example 5) ... forced cooling of the dried polymer (2) to 40 ° C With respect to the block-like material (material temperature about 170 ° C) of the particulate dried polymer (2) obtained in Production Example 2. Then, instead of hot air, a block of the dry polymer (2) in the form of particles is forcibly cooled to 40 ° C. by passing cold air (1 m / sec) at room temperature in the up-down direction. I took it out. At the same time as taking out, block-like aggregates on the wire mesh are crushed, and 30
Within 2 seconds, the obtained particulate dried product (5) was placed in a three-stage roll granulator (roll gap was 1.0 mm /
(0.45 mm / 0.25 mm). At the time of drying, the openings 30 of the block-like material of the dried polymer (2)
The releasability from a 0 μm wire mesh was very good, and the particle size distribution of the water-absorbent resin powder (5) obtained by pulverization is shown in Table 1.

【0082】(実施例6)…水性液添加と再加熱 強制冷却工程を含んで得られた吸水性樹脂粉末(5)1
00重量部に、粉温35℃にて、1,4−ブタンジオー
ル/プロピレングリコール/水/イソプロパノール=
0.32/0.50/2.73/0.45(重量部)か
らなる表面架橋剤の溶液を混合し、さらに、210℃で
30分間の再加熱することで、表面架橋された吸水性樹
脂粉末(6)を得た。吸水性樹脂粉末(6)の無荷重で
の吸水倍率は28g/gであり、加圧下吸水倍率(4.
90kPa)は25g/gであった。
Example 6 Addition of aqueous liquid and reheating Water-absorbent resin powder (5) 1 obtained by including a forced cooling step
1,4-butanediol / propylene glycol / water / isopropanol =
By mixing a solution of a surface cross-linking agent consisting of 0.32 / 0.50 / 2.73 / 0.45 (parts by weight) and further reheating at 210 ° C. for 30 minutes, the surface cross-linked water-absorbing agent is obtained. A resin powder (6) was obtained. The water absorption capacity without load of the water absorbent resin powder (6) was 28 g / g, and the water absorption capacity under pressure (4.
90 kPa) was 25 g / g.

【0083】なお、実施例5で得られた吸水性樹脂粉末
(5)について、その無荷重での吸水倍率と水可溶成分
量を測定したところ、それぞれ31g/g、5重量%で
あった。また、水性液添加前の吸水性樹脂粉末(5)の
嵩比重は0.67g/mlで、温度は35℃であった。 (実施例7)…後中和 実施例1で得られた吸水性樹脂粉末(1)と所定量の炭
酸ソーダ粉末とをドライブレンド(粉体混合)すること
によりカルボキシル基を後中和することで、75モル%
中和の吸水性樹脂粉末(7)を得た。吸水性樹脂粉末
(7)の無荷重での吸水倍率は42g/gであり、水可
溶成分量は3重量%であった。
With respect to the water-absorbent resin powder (5) obtained in Example 5, the water absorption capacity without load and the amount of water-soluble components were measured, and were 31 g / g and 5% by weight, respectively. . The bulk specific gravity of the water-absorbent resin powder (5) before the addition of the aqueous liquid was 0.67 g / ml, and the temperature was 35 ° C. (Example 7) Post-neutralization Carboxyl groups were post-neutralized by dry blending (powder mixing) the water-absorbent resin powder (1) obtained in Example 1 and a predetermined amount of sodium carbonate powder. In, 75 mol%
A neutralized water-absorbent resin powder (7) was obtained. The water absorption capacity of the water-absorbent resin powder (7) under no load was 42 g / g, and the amount of the water-soluble component was 3% by weight.

【0084】さらに実施例2〜4で得られた吸水性樹脂
粉末(2)〜(4)も同様に後中和したところ、無荷重
での吸水倍率は42g/gで、水可溶成分量は3重量%
であった。 (比較例1)…強制冷却なし 実施例1において、製造例1で得られた乾燥重合体
(1)に冷風の通気を用いることなく、乾燥機から取り
出したと同時に、ブロック状物を実施例1と同様に解砕
し、得られた比較粒子状乾燥物(1)(粉砕時は温度1
20℃)を同様に粉砕した。乾燥の際、乾燥重合体
(1)のブロック状物の目開き300μm金網からの剥
離性は悪く、乾燥重合体(1)粒子の金網への目詰まり
が見られ、連続乾燥する際の乾燥効率(均一性や乾燥速
度)が低下していった。粉砕によって得られた比較吸水
性樹脂粉末(1)の粒度分布を表1に示す。
Further, the water-absorbent resin powders (2) to (4) obtained in Examples 2 to 4 were similarly post-neutralized. The water absorption capacity under no load was 42 g / g, and the water-soluble component amount Is 3% by weight
Met. (Comparative Example 1) No forced cooling In Example 1, the dried polymer (1) obtained in Production Example 1 was taken out of the dryer without using cool air ventilation, and at the same time, a block-shaped material was obtained in Example 1. Pulverized in the same manner as in Example 1 to obtain the obtained comparative particulate dry product (1)
20 ° C.) was similarly ground. At the time of drying, the releasability of the block of the dried polymer (1) from the metal mesh having a mesh size of 300 μm is poor. (Uniformity and drying speed) decreased. Table 1 shows the particle size distribution of the comparative water absorbent resin powder (1) obtained by the pulverization.

【0085】(比較例2)…強制冷却なし 実施例5において、製造例2で得られた乾燥重合体
(2)に冷風の通気を用いることなく、乾燥機から取り
出したと同時に、ブロック状物を実施例1と同様に解砕
し、得られた比較粒子状乾燥物(2)(粉砕時は温度1
20℃)を同様に粉砕した。乾燥の際、乾燥重合体
(2)のブロック状物の目開き300μm金網からの剥
離性は悪く、乾燥重合体(2)粒子の金網への目詰まり
が見られ、連続乾燥する際の乾燥効率(均一性や乾燥速
度)が低下していた。また、粉砕によって得られた比較
吸水性樹脂粉末(2)の粒度分布を表1に示す。
(Comparative Example 2) No forced cooling In Example 5, the dried polymer (2) obtained in Production Example 2 was taken out of the dryer without using cool air, and at the same time the block-like material was removed. Crushed in the same manner as in Example 1 to obtain a comparative dry particulate material (2) (at the time of pulverization,
20 ° C.) was similarly ground. At the time of drying, the releasability of the block of the dried polymer (2) from the 300-μm mesh was poor, and the particles of the dried polymer (2) were clogged with the mesh, and the drying efficiency during continuous drying was observed. (Uniformity and drying speed). Table 1 shows the particle size distribution of the comparative water-absorbent resin powder (2) obtained by pulverization.

【0086】(比較例3)…水性液添加と後加熱/ただ
し強制冷却なし 比較例2(乾燥重合体(2)の強制冷却なし)で得られ
た比較吸水性樹脂粉末(2)に対して、実施例6(同重
合体の強制冷却あり)と同様に水性液を添加した。35
〜80℃に冷却しない比較吸水性樹脂粉末(2)では、
吸水性樹脂粉末(5)と同じ粒度に調整しても、粉温が
高いため、混合機中での凝集や付着が徐々に見られ、連
続混合が困難であった。 (実施例8)…乾燥重合体(3)の強制冷却 製造例3で得られた、粒子状の乾燥重合体(3)のブロ
ック状物(材料温度約170℃)に対して、熱風に代え
て、上下方向に室温の冷風(1m/秒)を通気する事で
粒子状の乾燥重合体(3)のブロック状物を50℃に強
制冷却した後、風冷式冷却装置から取り出した。取り出
したと同時に金網上のブロック状の凝集物を解砕し、3
0秒以内に、得られた粒子状乾燥物(6)を3段ロール
グラニュレーター(ロールギャップが上から1.0mm
/0.45mm/0.10mm)で連続的に粉砕した。
乾燥の際、乾燥重合体(3)のブロック状物の目開き3
00μm金網からの剥離性は非常に良好であり、また、
粉砕によって得られた吸水性樹脂粉末(8)の粒度分布
を表1に示す。なお、吸水性樹脂粉末(8)の無荷重で
の吸水倍率は44g/gであり、水可溶成分量は17重
量%であった。
(Comparative Example 3) Addition of aqueous liquid and post-heating / without forced cooling With respect to comparative water-absorbent resin powder (2) obtained in Comparative Example 2 (without forced cooling of dry polymer (2)). An aqueous liquid was added in the same manner as in Example 6 (with forced cooling of the same polymer). 35
In the comparative water-absorbent resin powder (2) not cooled to ~ 80 ° C,
Even when adjusted to the same particle size as the water-absorbent resin powder (5), the powder temperature was high, so that aggregation and adhesion in the mixer were gradually observed, and continuous mixing was difficult. (Example 8) ... forced cooling of the dried polymer (3) The block-like material (material temperature: about 170 ° C) of the particulate dried polymer (3) obtained in Production Example 3 was replaced with hot air. Then, a block of the dry polymer (3) in the form of particles was forcibly cooled to 50 ° C. by passing cold air (1 m / sec) at room temperature in the vertical direction, and then taken out of the air-cooled cooling device. At the same time as taking out, block-like aggregates on the wire mesh are crushed, and 3
Within 0 seconds, the obtained particulate dried product (6) was placed in a three-stage roll granulator (roll gap 1.0 mm from above).
/0.45 mm / 0.10 mm).
At the time of drying, the openings 3 of the block-like material of the dried polymer (3)
The peelability from the 00 μm wire mesh is very good.
Table 1 shows the particle size distribution of the water-absorbent resin powder (8) obtained by the pulverization. The water absorption capacity of the water-absorbent resin powder (8) under no load was 44 g / g, and the amount of the water-soluble component was 17% by weight.

【0087】(実施例9)…同・粉砕条件の変更 実施例8において、乾燥重合体(6)の粉砕条件を変更
した。すなわち、粒子状乾燥物(6)の粉砕をピンミル
(不二パウダル工業製サンプルミルKII−1)で粉砕
(850〜150μmが85重量%)し、さらにモホジ
ナイザー(日本精機社製、高速ホモジナイザー;MX−
7)で表面を研磨することで吸水性樹脂粉末(9)を得
た。粒度分布を表1に示す。 (実施例10)…嵩比重0.74g/mlへの水性液添
加 実施例9で得られた吸水性樹脂粉末(9)を300〜1
50μmに分級した温度40℃の吸水性樹脂粉末(9
A)(嵩比重0.74g/ml)100重量部に対し
て、プロピレングリコール/水/エタノール=0.3/
2.5/1(重量部)からなる水性液を高速混合機中で
噴霧添加して、さらに210℃のオイルバス中で攪拌し
30分間加熱処理することで、表面架橋された吸水性樹
脂粉末(10)を得た。その無荷重下での吸水倍率、加
圧下吸収倍率(1.96kPa)、同(4.90kPa)を表2に示
す。さらに、耐衝撃性試験後の加圧下吸収倍率の値を
( )で示す。
(Example 9) The change of the pulverization conditions In Example 8, the pulverization conditions of the dried polymer (6) were changed. That is, the pulverization of the particulate dried product (6) is pulverized with a pin mill (sample mill KII-1 manufactured by Fuji Paudal Industry Co., Ltd., 85% by weight of 850 to 150 μm), and further a mohogenizer (Nippon Seiki High Speed Homogenizer; MX) −
The surface was polished in 7) to obtain a water-absorbent resin powder (9). Table 1 shows the particle size distribution. (Example 10) Addition of aqueous liquid to 0.74 g / ml of bulk specific gravity
Water-absorbent resin powder (9 ° C.) classified at 50 μm and having a temperature of 40 ° C.
A) Propylene glycol / water / ethanol = 0.3 / 100 parts by weight (bulk specific gravity 0.74 g / ml)
An aqueous liquid composed of 2.5 / 1 (parts by weight) is spray-added in a high-speed mixer, and further stirred in a 210 ° C. oil bath and heat-treated for 30 minutes to obtain a surface-crosslinked water-absorbent resin powder. (10) was obtained. Table 2 shows the water absorption capacity under no load, the absorption capacity under pressure (1.96 kPa), and the absorption capacity under load (4.90 kPa). Further, the value of the absorption capacity under pressure after the impact resistance test is shown in parentheses.

【0088】(実施例11)…嵩比重0.63g/ml
への水性液添加 実施例8で得られた吸水性樹脂粉末(8)を300〜1
50μmに分級した温度40℃の吸水性樹脂粉末(8
A)(嵩比重0.63g/ml)に対して、実施例10
と同様に水性液を添加し、さらに30分間加熱処理し
た。得られた吸水性樹脂粉末(11)の分析結果を表2
に示す。 (実施例12)…嵩比重0.73g/mlへの水性液添
加 実施例9で得られた吸水性樹脂粉末(9)を500〜1
50μmに分級した温度40℃の吸水性樹脂粉末(9
B)(嵩比重0.73g/ml)100重量部に対し
て、実施例10,11と同様に水性液を添加して、さら
に25分間加熱処理した。得られた吸水性樹脂粉末(1
2)の分析結果を表2に示す。
(Example 11): Bulk specific gravity 0.63 g / ml
Addition of aqueous liquid to water The water-absorbent resin powder (8) obtained in
The water-absorbent resin powder (8
A) (bulk specific gravity 0.63 g / ml),
An aqueous liquid was added in the same manner as described above, and heat treatment was further performed for 30 minutes. Table 2 shows the analysis results of the obtained water-absorbent resin powder (11).
Shown in (Example 12) Addition of aqueous liquid to bulk specific gravity of 0.73 g / ml The water-absorbent resin powder (9) obtained in Example 9 was prepared in the range of 500 to 1
Water-absorbent resin powder (9 ° C.) classified at 50 μm and having a temperature of 40 ° C.
B) An aqueous liquid was added to 100 parts by weight (bulk specific gravity 0.73 g / ml) in the same manner as in Examples 10 and 11, and a heat treatment was further performed for 25 minutes. The obtained water-absorbent resin powder (1
Table 2 shows the analysis results of 2).

【0089】(実施例13)…嵩比重0.63g/ml
への水性液添加 実施例8で得られた吸水性樹脂粉末(8)を500〜1
50μmに分級した温度40℃の吸水性樹脂粉末(8
B)(嵩比重0.63g/ml)に対して、実施例10
〜12と同様に水性液を添加し、さらに25分間加熱処
理した。得られた吸水性樹脂粉末(13)の分析結果を
表2に示す。 (実施例14)…乾燥重合体(4)の強制冷却 製造例4で得られた、粒子状の乾燥重合体(4)のブロ
ック状物(材料温度約170℃)に対して、熱風に代え
て、上下方向に室温の冷風(1m/秒)を通気する事で
粒子状の乾燥重合体(4)のブロック状物を65℃に強
制冷却した後、風冷式冷却装置から取り出した。取り出
したと同時に金網上のブロック状の凝集物を解砕し、3
0秒以内に、得られた粒子状乾燥物(8)を3段ロール
グラニュレーター(ロールギャップが上から1.0mm
/0.45mm/0.09mm)で連続的に粉砕した。
なお、乾燥の際、乾燥重合体(4)のブロック状物の目
開き300μm金網からの剥離性は非常に良好であっ
た。得られた吸水性樹脂粉末(14)の無荷重での吸水
倍率は43g/gであり、水可溶成分量は10重量%で
あり、その粒度分布を表1に示す。
Example 13 Bulk specific gravity 0.63 g / ml
Addition of aqueous liquid to water The water-absorbent resin powder (8) obtained in
The water-absorbent resin powder (8
B) (bulk specific gravity 0.63 g / ml),
An aqueous liquid was added in the same manner as in Nos. 1 to 12, and a heat treatment was further performed for 25 minutes. Table 2 shows the analysis results of the obtained water-absorbent resin powder (13). (Example 14) ... forced cooling of dry polymer (4) The block-like material (material temperature: about 170 ° C) of particulate dry polymer (4) obtained in Production Example 4 was replaced with hot air. Then, a block of the particulate dry polymer (4) was forcibly cooled to 65 ° C. by passing cold air (1 m / sec) at room temperature in the vertical direction, and then taken out of the air-cooled cooling device. At the same time as taking out, block-like aggregates on the wire mesh are crushed, and 3
Within 0 seconds, the obtained particulate dried product (8) was placed in a three-stage roll granulator (roll gap 1.0 mm from above).
/0.45 mm / 0.09 mm).
At the time of drying, the releasability of the dried polymer (4) from the metal mesh having a mesh size of 300 μm was very good. The water absorption capacity of the obtained water-absorbent resin powder (14) under no load was 43 g / g, the amount of water-soluble component was 10% by weight, and the particle size distribution is shown in Table 1.

【0090】(実施例15)…水性液添加と後加熱/粉
温60℃ 実施例14で得られた温度60℃の吸水性樹脂粉末(1
4)500gに、エチレングリコールジグリシジルエー
テル/プロピレングリコール/水=0.1/3/1(重
量%)からなる水溶液を、外部加熱により内壁温度を6
0℃に制御したレディゲ混合機(M5R;Lodige社製)中
で高速混合(回転数320rpm)したところ、有機溶
媒を使用せずとも、吸水樹脂粉末の付着は殆どなく連続
混合できた。さらに混合物を205℃のオイルバス中
で、5Lモルタルミキサー(西日本製作所製)で50分
攪拌加熱しすることで、表面架橋された吸水性樹脂粉末
(15)を得た。結果を表2に示す。
(Example 15) Addition of aqueous liquid and post-heating / powder temperature 60 ° C. The water-absorbent resin powder (1) having a temperature of 60 ° C. obtained in Example 14
4) To 500 g of an aqueous solution consisting of ethylene glycol diglycidyl ether / propylene glycol / water = 0.1 / 3/1 (% by weight), the inner wall temperature was raised to 6 by external heating.
High-speed mixing (rotation speed: 320 rpm) in a Loedige mixer (M5R; manufactured by Lodige) controlled at 0 ° C. As a result, even if an organic solvent was not used, the water-absorbing resin powder was hardly attached and continuous mixing was possible. Further, the mixture was stirred and heated in a 205 L oil bath with a 5 L mortar mixer (manufactured by Nishi Nihon Seisakusho) for 50 minutes to obtain a surface-crosslinked water-absorbent resin powder (15). Table 2 shows the results.

【0091】(実施例16)…水性液添加と後加熱/粉
温40℃ 実施例14で得られた温度60℃の吸水性樹脂粉末(1
4)に対して、連続的に風冷して温度を40℃にまで冷
却した。以下、温度40℃の吸水性樹脂粉末(14)を
用いて、以下、実施例15と同様に同様に水性液を添加
したところ、混合機への付着はさらに低減した。得られ
た混合物を実施例12と同様に加熱処理するころで吸水
性樹脂粉末(16)を得た。その分析結果を表2に示
す。 (実施例17)…水性液添加と後加熱/混合機内壁が室
温 実施例14において、混合機の外部加熱を中止して室温
の混合機で水性液を添加した、内壁への付着が大幅に増
加し連続操業性が低下した。
(Example 16) Addition of aqueous liquid and post-heating / powder temperature 40 ° C. The water-absorbing resin powder (1) having a temperature of 60 ° C. obtained in Example 14
In contrast to 4), the temperature was continuously cooled by air to 40 ° C. Thereafter, an aqueous liquid was added in the same manner as in Example 15 using the water-absorbent resin powder (14) at a temperature of 40 ° C., and the adhesion to the mixer was further reduced. The obtained mixture was subjected to a heat treatment in the same manner as in Example 12 to obtain a water-absorbent resin powder (16). Table 2 shows the analysis results. (Example 17) Addition of aqueous liquid and post-heating / mixer inner wall at room temperature In Example 14, the external heating of the mixer was stopped and the aqueous liquid was added by the mixer at room temperature. It increased and continuous operability decreased.

【0092】(実施例18)…乾燥重合体(5)の強制
冷却 製造例5で得られた、粒子状の乾燥重合体(5)からな
るブロック状物(材料温度約180℃)に対して、熱風
に代えて、室温の冷風(1m/s)を上下方向に連続供
給することで、粒子状の乾燥重合体(5)のブロック状
物を60℃に強制冷却した後、連続ベルト風冷式冷却装
置から取り出し、さらに、乾燥重合体(5)を100k
g/hでロール粉砕機に連続供給することで、連続重合
・連続乾燥・連続粉砕を行った。乾燥の際、乾燥重合体
(5)のパンチングメタルからの剥離性は非常に良好で
あり、粉砕によって得られた吸水性樹脂粉末(18)の
粒度分布を表1に示す。吸水性樹脂粉末(18)の無荷
重での吸水倍率は55g/gで、水可溶分は6重量%で
あった。
Example 18 Forced Cooling of Dry Polymer (5) The block of the particulate dry polymer (5) obtained in Production Example 5 (material temperature about 180 ° C.) Then, instead of hot air, cold air (1 m / s) at room temperature is continuously supplied in the vertical direction to forcibly cool the block of the particulate dry polymer (5) to 60 ° C. Taken out of the cooling apparatus, and further dried polymer (5) was added
Continuous polymerization, continuous drying, and continuous pulverization were carried out by continuously supplying g / h to a roll pulverizer. Upon drying, the releasability of the dried polymer (5) from the punching metal was very good, and the particle size distribution of the water-absorbent resin powder (18) obtained by pulverization is shown in Table 1. The water absorption capacity of the water-absorbent resin powder (18) under no load was 55 g / g, and the water-soluble content was 6% by weight.

【0093】また、粒子状の乾燥重合体(5)のブロッ
ク状物の強制冷却に用いられた冷風は、この強制冷却へ
の使用により、約90℃に加熱されていたので、その温
風を配管を通じて製造例5のベルト熱風乾燥機の空気供
給口に供給して、乾燥に用いる熱風(180℃)の原料
として、製造例5の連続乾燥を行った。こうして、製造
例5の熱風乾燥では室温の空気を用いるに代わり、約9
0℃の温風を用いて180℃の熱風を製造しているた
め、その分、大きな省エネルギーとなり、かつ、温風
(排ガス)を環境中に排出しないという利点を有する。 (実施例19)…水性液添加と後加熱/粉温50℃ 実施例18で強制冷却工程を経て得られた吸水性樹脂粉
末(18)を粉温50℃で高速連続混合機(タービュラ
イザー/1000rpm)に100kg/hで供給し
て、さらに、吸水性樹脂粉末(18)に1,4−ブタン
ジオール/プロピレングリコール/水/イソプロパノー
ル=0.32/0.50/2.73/0.51(重量%
/対粉末)からなる表面架橋剤水溶液をスプレー径約2
50μmで噴霧した。次いで、得られた混合物を195
℃で40分の連続再加熱処理を行うことで、表面架橋さ
れた吸水性樹脂粉末(19)を得た。結果を表2に示
す。なお、連続混合時の高速連続混合機(タービュライ
ザー)の内壁温度は、粉温と摩擦熱で約70〜80℃で
あり、加熱されているため付着はほとんどなかった。
The cold air used for forced cooling of the block of the particulate dry polymer (5) was heated to about 90 ° C. by use of the forced cooling. The raw material was supplied to the air supply port of the belt hot air drier of Production Example 5 through a pipe to perform continuous drying of Production Example 5 as a raw material of hot air (180 ° C.) used for drying. Thus, instead of using air at room temperature in the hot air drying of Production Example 5, about 9
Since the hot air of 180 ° C. is produced using the hot air of 0 ° C., there is an advantage that the energy is largely saved and the hot air (exhaust gas) is not discharged into the environment. (Example 19) Addition of aqueous liquid and post-heating / powder temperature 50 ° C. The water-absorbent resin powder (18) obtained through the forced cooling step in Example 18 was mixed at a powder temperature of 50 ° C. with a high-speed continuous mixer (turbulizer). / 1000 rpm) at a rate of 100 kg / h, and further, to the water absorbent resin powder (18), 1,4-butanediol / propylene glycol / water / isopropanol = 0.32 / 0.50 / 2.73 / 0. 51 (% by weight
Spray solution with a surface diameter of about 2
Sprayed at 50 μm. The resulting mixture is then
By performing a continuous reheating treatment at 40 ° C. for 40 minutes, a surface-crosslinked water-absorbent resin powder (19) was obtained. Table 2 shows the results. The inner wall temperature of the high-speed continuous mixer (turbulizer) at the time of continuous mixing was about 70 to 80 ° C. due to the powder temperature and frictional heat.

【0094】(実施例20)…水性液添加と後加熱/粉
温50℃ 実施例19において、表面架橋剤水溶液を、エチレング
リコールジグリシジルエーテル/プロピレングリコール
/水/イソプロパノール=0.03/1/3/0.9
(重量%/対粉末)からなる表面架橋剤水溶液に変更し
て、吸水性樹脂粉末(18)に噴霧し、さらに、190
℃で35分の連続再加熱処理を行うことで、表面架橋さ
れた吸水性樹脂粉末(20)を得た。結果を表2に示
す。 (実施例21)…水性液添加と後加熱/粉温30℃ 実施例18で得られた吸水性樹脂粉末(18)を粉温3
0℃までさらに冷却した以外は、実施例19と同様に表
面架橋剤水溶液を混合し、さらに、195℃で40分の
連続再加熱処理を行った。粉温30℃まで冷却すること
で、長時間運転すると連続混合・輸送時に若干の凝集が
見られ、また、反応時間が若干延びた。結果を表2に示
す。
(Example 20) Addition of aqueous liquid and post-heating / powder temperature 50 ° C. In Example 19, the aqueous solution of the surface crosslinking agent was changed to ethylene glycol diglycidyl ether / propylene glycol / water / isopropanol = 0.03 / 1 / 3 / 0.9
(% By weight / based on powder), and sprayed onto the water-absorbent resin powder (18).
By performing a continuous reheating treatment at 35 ° C for 35 minutes, a surface-crosslinked water-absorbent resin powder (20) was obtained. Table 2 shows the results. (Example 21) Addition of aqueous liquid and post-heating / powder temperature 30 ° C The water-absorbent resin powder (18) obtained in Example 18 was powdered at a temperature of 3
Except for further cooling to 0 ° C., a surface crosslinking agent aqueous solution was mixed in the same manner as in Example 19, and further, a continuous reheating treatment was performed at 195 ° C. for 40 minutes. By cooling to a powder temperature of 30 ° C., a little coagulation was observed during continuous mixing / transportation over a long operation, and the reaction time was slightly extended. Table 2 shows the results.

【0095】(比較例4)…水性液添加と後加熱/ただ
し強制冷却なし 実施例14において、強制冷却することなく、乾燥重合
体(4)を乾燥機から取り出して即座に粉砕することで
比較吸水性樹脂粉末(3)を得た。次いで、実施例15
において、吸水性樹脂粉末(14)に代えて、850μ
m以下に粒度を調整した比較吸水性樹脂粉末(3)に対
して同様に水性液を添加した。40〜80℃に強制冷却
しない比較吸水性樹脂粉末(3)では、実施例15と同
じ粒度に調整しても、混合機中での凝集や付着が徐々に
見られ、連続操業が困難であった。結果を表2に示す。
(Comparative Example 4) Addition of aqueous liquid and post-heating / without forced cooling In Example 14, the dried polymer (4) was taken out of the dryer and immediately pulverized without forced cooling. Water absorbent resin powder (3) was obtained. Then, Example 15
850 μm in place of the water-absorbent resin powder (14)
An aqueous liquid was similarly added to the comparative water-absorbent resin powder (3) whose particle size was adjusted to not more than m. In the comparative water-absorbent resin powder (3) which was not forcibly cooled to 40 to 80 ° C., even if it was adjusted to the same particle size as in Example 15, agglomeration and adhesion in the mixer were gradually observed, and continuous operation was difficult. Was. Table 2 shows the results.

【0096】(比較例5)…乾燥重合体(5)の粉砕/
ただし強制冷却なし 実施例18において、乾燥重合体(5)を強制冷却する
ことなく、そのまま実施例18と同じロール粉砕機に供
給した。連続粉砕をはじめて2時間後、凝集物由来の粉
砕機の異常音や凝集物の付着が生じはじめた。粉砕によ
って得られた比較吸水性樹脂粉末(5)の粒度分布を表
1に示す。 (比較例6)…水性液添加と後加熱/ただし強制冷却な
し 実施例19において、吸水性樹脂粉末(19)に代え
て、比較例5で得られた比較吸水性樹脂粉末(5)を用
いる以外は、実施例19と同様に行うことで、表面架橋
された比較吸水性樹脂粉末(6)を得た。結果を表2に
示す。
(Comparative Example 5): Pulverization of dry polymer (5)
However, without forced cooling In Example 18, the dried polymer (5) was supplied to the same roll grinder as in Example 18 without forced cooling. Two hours after the start of the continuous pulverization, an abnormal sound of the pulverizer derived from the aggregates and adhesion of the aggregates began to occur. Table 1 shows the particle size distribution of the comparative water absorbent resin powder (5) obtained by pulverization. (Comparative Example 6) Addition of aqueous liquid and post-heating / no forced cooling In Example 19, the comparative water-absorbent resin powder (5) obtained in Comparative Example 5 was used instead of the water-absorbent resin powder (19). Except for this point, the same operation as in Example 19 was carried out to obtain a surface-crosslinked comparative water absorbent resin powder (6). Table 2 shows the results.

【0097】(実施例22)…衛生材料の作成 実施例19で得られた、表面架橋された吸水性樹脂粉末
(19)50重量部と、粉砕木材パルプ50重量部と
を、ミキサーを用いて乾式混合した。次いで、得られた
混合物を空気しょう造することにより、12cm×38
cmのウェッブに成形した。圧力2kg/cm2(約1
93kPa)でプレスすることで、坪量約526g/m
2の吸収体(1)を得た。次いで、レッグギャザーを有
するバッグシート(液不透過性シート)、液透過性トッ
プシートの間に吸収体(1)を組み込むことで、重量4
7gでコア濃度50重量%の紙おむつ(1)を作成し
た。
Example 22 Preparation of Sanitary Material Using a mixer, 50 parts by weight of the surface-crosslinked water-absorbent resin powder (19) obtained in Example 19 and 50 parts by weight of ground wood pulp were used. Dry mixed. Then, the obtained mixture was air-purified to obtain 12 cm × 38.
cm web. Pressure 2kg / cm 2 (about 1
By pressing at 93 kPa), the basis weight is about 526 g / m
Thus, 2 absorbers (1) were obtained. Next, by incorporating the absorber (1) between the bag sheet (liquid impermeable sheet) having the leg gather and the liquid permeable top sheet, the weight 4
7 g of a disposable diaper (1) having a core concentration of 50% by weight was prepared.

【0098】紙おむつ(1)に対して、20g/cm2
(約1.93kPa)の荷重を平面板状おもりで与え、
板の中心の穴より加圧下で生理食塩水を注入したとこ
ろ、冷却工程を経て得られた吸水性樹脂粉末(19)よ
り得られた紙おむつ(1)は、約470gの飽和吸収能
を示した。 (比較例7)…衛生材料の作成 実施例22において、吸水性樹脂粉末(19)に代えて
比較例6で得られた比較吸水性樹脂粉末(6)を用いる
以外は、実施例22と同様に行うことにより、比較紙お
むつ(1)を得た。比較紙おむつ(1)は実施例22と
同様に、20g/cm2(約1.93kPa)の荷重を
平面板状おもりで与え、板の中心の穴より加圧下で生理
食塩水を注入したところ、約410gの飽和吸収能を示
し、比較紙おむつ(1)は、冷却工程を経た吸水性樹脂
粉末(19)より得られた紙オムツ(1)よりも劣って
いた。
20 g / cm 2 for the disposable diaper (1)
(Approximately 1.93 kPa) with a flat plate-shaped weight,
When physiological saline was injected from the center hole of the plate under pressure, the disposable diaper (1) obtained from the water-absorbent resin powder (19) obtained through the cooling step showed a saturated absorption capacity of about 470 g. . (Comparative Example 7) ... Preparation of sanitary material Same as Example 22 except that the comparative water absorbent resin powder (6) obtained in Comparative Example 6 was used instead of the water absorbent resin powder (19) in Example 22. In this manner, a comparative diaper (1) was obtained. As in Example 22, the comparative disposable diaper (1) was given a load of 20 g / cm 2 (about 1.93 kPa) with a flat plate-shaped weight, and physiological saline was injected under pressure from the center hole of the plate. The comparative disposable diaper (1) exhibited a saturated absorption capacity of about 410 g, and was inferior to the disposable diaper (1) obtained from the water-absorbent resin powder (19) having undergone the cooling step.

【0099】[0099]

【表1】 [Table 1]

【0100】[0100]

【表2】 [Table 2]

【0101】表1に示した実施例1〜7および実施例1
4は、粉砕後の吸水性樹脂粉末の平均粒子径が200μ
m〜600μmの範囲であり、さらに150μm以下な
いし850μm以上の粒子の割合が15重量%以下とい
う、本発明において好ましい範囲となっていることが分
かる。一方、比較例1〜2では、粉砕後の吸水性樹脂粉
末の平均粒子径が200μm〜600μmの範囲から外
れており、さらに150μm以下ないし850μm以上
の粒子の割合が15重量%を超えていることが分かる。
また、表1に記載の結果から、加熱乾燥後に乾燥重合体
を強制冷却、好ましくは85℃〜35℃、より好ましく
は80〜40℃、さらに好ましくは70〜45℃の範囲
に強制冷却する本願実施例1〜5では、強制冷却しない
本願比較例1,2に比べて、所定粒度から外れたオン品
(850μm以上)が非常に減少しており、本発明では
平均粒径や粒度分布に優れていることが分かる。
Examples 1 to 7 and Example 1 shown in Table 1
No. 4, the average particle diameter of the water-absorbent resin powder after pulverization was 200 μm.
m to 600 μm, and the ratio of particles having a size of 150 μm or less to 850 μm or more is 15% by weight or less, which is a preferable range in the present invention. On the other hand, in Comparative Examples 1 and 2, the average particle size of the water-absorbent resin powder after pulverization is out of the range of 200 μm to 600 μm, and the ratio of particles having a size of 150 μm or less to 850 μm or more exceeds 15% by weight. I understand.
Further, from the results shown in Table 1, the present application in which the dried polymer is forcibly cooled after heating and drying, preferably in the range of 85 ° C to 35 ° C, more preferably 80 to 40 ° C, and still more preferably 70 to 45 ° C. In Examples 1 to 5, ON products (850 μm or more) deviating from the predetermined particle size were significantly reduced as compared with Comparative Examples 1 and 2 of the present invention in which forced cooling was not performed, and the present invention is excellent in average particle size and particle size distribution. You can see that it is.

【0102】また、表1に記載の結果より、本発明で
は、乾燥重合体の金網への附着や目詰まりも減少して、
乾燥効率(乾燥速度、均一性)が上昇する事が分かる。
また、40℃と60℃とでは大きな効果の差もなく、冷
却設備の大きさを考えると60℃までで十分でもあるこ
とも分かる。さらに、表には記載しないが、本発明の吸
水性樹脂粉末は、粉砕後の凝集も少ないという利点も示
す。表2に記載の結果より、本発明では水性液の添加も
均一で、物性に優れていることが判る。また、実施例1
0〜13の比較で粉砕後の嵩比重は0.65g/ml以
上の場合、より加圧下吸水倍率(特に4.90kPa)も
向上することがわかる。なお、表の( )に示すよう
に、衝撃後にも加圧下吸収倍率(1.93kPaおよび
4.90kPa )はほとんど低下せず、耐衝撃性や通液
性も優れている。実施例15〜17の比較で、粉体の温
度や混合機内壁の温度が水性液の添加に重要であること
が判る。
Further, from the results shown in Table 1, in the present invention, the adhesion and clogging of the dried polymer to the wire mesh are reduced,
It can be seen that the drying efficiency (drying speed, uniformity) increases.
In addition, it can be seen that there is no significant difference between the temperatures of 40 ° C. and 60 ° C., and that the temperature up to 60 ° C. is sufficient when considering the size of the cooling equipment. Further, although not described in the table, the water-absorbent resin powder of the present invention also has an advantage that aggregation after pulverization is small. From the results shown in Table 2, it can be seen that in the present invention, the addition of the aqueous liquid was uniform and the physical properties were excellent. Example 1
A comparison of 0 to 13 shows that when the bulk specific gravity after pulverization is 0.65 g / ml or more, the water absorption capacity under pressure (in particular, 4.90 kPa) is further improved. As shown in the parentheses in the table, the absorption capacity under pressure (1.93 kPa and 4.90 kPa) hardly decreases even after the impact, and the impact resistance and liquid permeability are excellent. Comparison of Examples 15 to 17 shows that the temperature of the powder and the temperature of the inner wall of the mixer are important for the addition of the aqueous liquid.

【0103】さらに上記実施例は一連の連続操作で比較
したものであるが、本発明の効果は連続的に生産する場
合、特に1ラインあたり吸水性樹脂粉末で1t/日以
上、好ましくは10t/日以上の連続乾燥、連続粉砕お
よびその後の水性液添加する場合、より顕著に現れる。
なお、発明の詳細な説明の項においてなした具体的な実
施態様、または実施例は、あくまでも本発明の技術内容
を明らかにするものであって、そのような具体例にのみ
限定して狭義に解釈されるべきものではなく、本発明の
精神と次に記載する特許請求事項の範囲内で、いろいろ
と変更して実施することができるものである。
Further, although the above examples are compared in a series of continuous operations, the effect of the present invention is that in the case of continuous production, in particular, 1 t / day or more, preferably 10 t / day, of a water-absorbent resin powder per line. It appears more remarkably when continuous drying for more than one day, continuous grinding and subsequent addition of an aqueous liquid.
It should be noted that specific embodiments or examples made in the section of the detailed description of the invention clarify the technical contents of the present invention, and are limited to only such specific examples in a narrow sense. It should not be construed, but may be practiced with various modifications within the spirit of the invention and the scope of the following claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の吸水性樹脂粉末の製造工程の代表例
を表す工程図。本発明は、重合、乾燥、粉砕を含む連続
プロセスに適しており、その一例を示す。
FIG. 1 is a process chart showing a typical example of a process for producing a water-absorbent resin powder of the present invention. The present invention is suitable for a continuous process including polymerization, drying and pulverization, and shows an example thereof.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 信幸 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 初田 卓己 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 藤野 眞一 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 4F070 AA29 AB01 AB13 DA46 DA48 DB01 DB06 DC07 4G066 AC17B DA13 EA05 FA07 FA21 FA34 FA37 4J100 AJ02P AJ09Q AK01P CA01 CA04 CA05 CA23 CA31 GC26 GC32 HA53 JA60  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Nobuyuki Harada 992, Nishioki, Okihama-shi, Abashi-ku, Himeji-shi, Hyogo Nippon Shokubai Co., Ltd. Inside Nippon Shokubai (72) Inventor Shinichi Fujino 992, Nishioki, Okihama-shi, Abashiri-ku, Himeji-shi, Hyogo Japan F-Term (in reference) AJ09Q AK01P CA01 CA04 CA05 CA23 CA31 GC26 GC32 HA53 JA60

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】架橋剤を含む単量体水溶液を重合してなる
含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸水
性樹脂粉末の製造方法であって、 当該粉砕後の吸水性樹脂粉末の平均粒子径が200〜6
00μmの範囲であり、さらに150μm以下ないし8
50μm以上の粒子の割合が15重量%以下であり、 加熱乾燥後の乾燥重合体を粉砕前または粉砕時に冷却す
ることを特徴とする、 吸水性樹脂粉末の製造方法。
1. A method for producing a water-absorbent resin powder, comprising heating and drying a water-containing gel-like crosslinked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent, followed by grinding. Has an average particle size of 200 to 6
00 μm, and 150 μm or less to 8 μm.
A method for producing a water-absorbent resin powder, wherein the proportion of particles having a particle size of 50 μm or more is 15% by weight or less, and the dried polymer after heating and drying is cooled before or during pulverization.
【請求項2】粉砕後の吸水性樹脂粉末を、さらに表面架
橋する、 請求項1に記載の吸水性樹脂粉末の製造方法。
2. The method for producing a water-absorbent resin powder according to claim 1, wherein the surface of the pulverized water-absorbent resin powder is further crosslinked.
【請求項3】加熱乾燥の温度が110〜230℃の範囲
であり、加熱乾燥後の強制冷却の温度が85〜35℃で
あり、粉砕後の表面架橋の温度が110〜230℃であ
る、 請求項2に記載の吸水性樹脂粉末の製造方法。
3. The temperature of the heating and drying is in the range of 110 to 230 ° C., the temperature of the forced cooling after the heating and drying is 85 to 35 ° C., and the temperature of the surface crosslinking after the pulverization is 110 to 230 ° C. A method for producing the water-absorbent resin powder according to claim 2.
【請求項4】乾燥重合体の固形分が93〜97重量%で
ある、 請求項1から3までのいずれかに記載の吸水性樹脂粉末
の製造方法。
4. The process for producing a water-absorbent resin powder according to claim 1, wherein the solid content of the dried polymer is 93 to 97% by weight.
【請求項5】含水ゲル状架橋重合体が1〜20cmの一
定厚みに粒子状で積層されて乾燥される、 請求項1から4までのいずれかに記載の吸水性樹脂粉末
の製造方法。
5. The method for producing a water-absorbent resin powder according to claim 1, wherein the hydrogel crosslinked polymer is laminated in a particle form to a fixed thickness of 1 to 20 cm and dried.
【請求項6】乾燥重合体の強制冷却によって得られた熱
が再利用される、 請求項1から5までのいずれかに記載の吸水性樹脂粉末
の製造方法。
6. The method for producing a water-absorbent resin powder according to claim 1, wherein heat obtained by forced cooling of the dried polymer is reused.
【請求項7】粉砕後の吸水性樹脂粉末の嵩比重が0.6
5g/ml以上である、 請求項1から6までのいずれかに記載の吸水性樹脂粉末
の製造方法。
7. A pulverized water-absorbent resin powder having a bulk specific gravity of 0.6
The method for producing a water-absorbent resin powder according to any one of claims 1 to 6, wherein the amount is 5 g / ml or more.
【請求項8】粉砕後、得られた吸水性樹脂粉末をさらに
強制加熱ないし保温する、 請求項1から7までのいずれかに記載の吸水性樹脂粉末
の製造方法。
8. The method for producing a water-absorbent resin powder according to claim 1, wherein after pulverization, the obtained water-absorbent resin powder is further forcibly heated or kept warm.
【請求項9】強制冷却後に粉砕した後、得られた吸水性
樹脂粉末にさらに水性液を添加する、 請求項1から8までのいずれかに記載の吸水性樹脂粉末
の製造方法。
9. The method for producing a water-absorbent resin powder according to any one of claims 1 to 8, further comprising adding an aqueous liquid to the obtained water-absorbent resin powder after pulverizing after forced cooling.
【請求項10】架橋剤を含む単量体水溶液を重合してな
る含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸
水性樹脂粉末の製造方法であって、 加熱乾燥後の乾燥重合体を強制冷却して得られた熱を吸
水性樹脂の製造工程における強制加熱に再利用すること
を特徴とする、 吸水性樹脂粉末の製造方法。
10. A process for producing a water-absorbent resin powder, comprising heating and drying a water-containing gel-like crosslinked polymer obtained by polymerizing an aqueous monomer solution containing a crosslinking agent, and then pulverizing the dried polymer. A method for producing a water-absorbent resin powder, wherein heat obtained by forced cooling is reused for forced heating in a process for producing a water-absorbent resin.
【請求項11】架橋剤を含む単量体水溶液を重合してな
る含水ゲル状架橋重合体を加熱乾燥した後に粉砕して得
られた粉末に混合機中で水性液を添加する吸水性樹脂粉
末の製造方法であって、 加熱乾燥温度が110〜230℃の範囲であること、水
性液添加前に乾燥重合体を80〜35℃に冷却するこ
と、および、粉砕後の乾燥重合体の嵩比重を0.65g
/ml以上とすることを特徴とする、 吸水性樹脂粉末の製造方法。
11. A water-absorbent resin powder in which an aqueous liquid is added to a powder obtained by heating and drying a water-containing gel-like cross-linked polymer obtained by polymerizing a monomer aqueous solution containing a cross-linking agent, followed by pulverization in a mixer. The heating and drying temperature is in the range of 110 to 230 ° C., the dry polymer is cooled to 80 to 35 ° C. before adding the aqueous liquid, and the bulk specific gravity of the dry polymer after pulverization 0.65 g
/ Ml or more, a method for producing a water-absorbent resin powder.
【請求項12】乾燥重合体の強制冷却が粉砕前になされ
る、 請求項11に記載の吸水性樹脂粉末の製造方法。
12. The method for producing a water-absorbent resin powder according to claim 11, wherein forced cooling of the dried polymer is performed before pulverization.
【請求項13】水性液が多価アルコール水溶液である、 請求項11または12に記載の吸水性樹脂粉末の製造方
法。
13. The method according to claim 11, wherein the aqueous liquid is an aqueous polyhydric alcohol solution.
【請求項14】架橋剤を含む単量体水溶液を重合してな
る含水ゲル状架橋重合体を加熱乾燥した後に粉砕して得
られた粉末に混合機中で水性液を添加する吸水性樹脂粉
末の製造方法であって、 加熱乾燥温度が110〜230℃の範囲であること、水
性液添加前に乾燥重合体を80〜35℃に冷却するこ
と、および、混合機の内壁温度が40℃以上の攪拌混合
機であること、および、110〜230℃に再加熱する
ことを特徴とする、 吸水性樹脂粉末の製造方法。
14. A water-absorbent resin powder in which an aqueous liquid is added in a mixer to a powder obtained by heating and drying a water-containing gel-like crosslinked polymer obtained by polymerizing an aqueous monomer solution containing a crosslinker, and then pulverizing the powder. Wherein the heating and drying temperature is in the range of 110 to 230 ° C, the dry polymer is cooled to 80 to 35 ° C before adding the aqueous liquid, and the inner wall temperature of the mixer is 40 ° C or higher. A method of producing a water-absorbent resin powder, characterized by being a stirring mixer of (1) and reheating to 110 to 230 ° C.
【請求項15】架橋剤を含む単量体水溶液を重合してな
る含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸
水性樹脂粉末の製造方法であって、 加熱乾燥後の乾燥重合体を強制冷却すること、 乾燥重合体を粉砕して嵩比重0.65g/ml以上の吸
水性樹脂粉末とすること、 冷却された吸水性樹脂粉末をさらに表面架橋すること、 を特徴とする、 吸水性樹脂粉末の製造方法。
15. A method for producing a water-absorbent resin powder, comprising heating and drying a water-containing gel-like crosslinked polymer obtained by polymerizing an aqueous monomer solution containing a crosslinking agent, and then pulverizing the dried polymer. Forced cooling, pulverizing the dried polymer into a water-absorbent resin powder having a bulk specific gravity of 0.65 g / ml or more, and further surface-crosslinking the cooled water-absorbent resin powder. Method for producing resin powder.
【請求項16】架橋剤を含む単量体水溶液を重合してな
る含水ゲル状架橋重合体を加熱乾燥した後に粉砕する吸
水性樹脂粉末の製造方法であって、 加熱乾燥後の乾燥重合体を強制冷却すること、 乾燥重合体を粉砕して嵩比重0.65g/ml以上の吸
水性樹脂粉末とすること、 冷却された吸水性樹脂粉末にさらに水性液を添加するこ
と、 水性液が内壁が加熱された攪拌混合機で添加されるこ
と、 を特徴とする、 吸水性樹脂粉末の製造方法。
16. A method for producing a water-absorbent resin powder, comprising heating and drying a water-containing gel-like cross-linked polymer obtained by polymerizing an aqueous monomer solution containing a cross-linking agent, and pulverizing the dried polymer. Forced cooling, pulverizing the dried polymer into a water-absorbent resin powder having a bulk specific gravity of 0.65 g / ml or more, further adding an aqueous liquid to the cooled water-absorbent resin powder, A method for producing a water-absorbent resin powder, which is added by a heated stirring mixer.
【請求項17】請求項1〜16のいずれかの製造方法を
経て得られた加圧下吸収倍率(1.96kPa)が25g
/g以上の吸水性樹脂粉末。
17. The absorption capacity under pressure (1.96 kPa) obtained through the production method according to any one of claims 1 to 16 is 25 g.
/ G or more of water-absorbent resin powder.
【請求項18】架橋剤を含む単量体水溶液を重合してな
る含水ゲル状架橋重合体を加熱乾燥した後に粉砕して得
られた粉末に混合機中で揮発性有機溶媒を含有しない多
価アルコール水溶液を添加して得られた、(1)嵩比重
が0.65g/ml以上、(2)平均粒子径200〜6
00μm、(3)150μm以下ないし850μm以上
の粒子の合計が10重量%以下、(4)加圧下吸収倍率
(1.96kPa)が25g/g以上の吸水性樹脂粉末。
18. A multivalent polymer containing no volatile organic solvent in a mixer obtained by heating and drying a water-containing gel-like crosslinked polymer obtained by polymerizing a monomer aqueous solution containing a crosslinker and then pulverizing the same. (1) a bulk specific gravity of 0.65 g / ml or more, and (2) an average particle diameter of 200 to 6 obtained by adding an alcohol aqueous solution.
(3) a water-absorbent resin powder having an absorption capacity under pressure (1.96 kPa) of 25 g / g or more; (3) a total of particles of 150 μm or less to 850 μm or more being 10% by weight or less;
【請求項19】請求項17または18に記載の吸水性樹
脂粉末を含む吸収物品。
19. An absorbent article comprising the water-absorbent resin powder according to claim 17.
JP2001052664A 2000-02-29 2001-02-27 Method for producing water absorbent resin powder Expired - Fee Related JP4676625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052664A JP4676625B2 (en) 2000-02-29 2001-02-27 Method for producing water absorbent resin powder

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000052808 2000-02-29
JP2000-52808 2000-08-11
JP2000243951 2000-08-11
JP2000-243951 2000-09-11
JP2001052664A JP4676625B2 (en) 2000-02-29 2001-02-27 Method for producing water absorbent resin powder

Publications (2)

Publication Number Publication Date
JP2002121291A true JP2002121291A (en) 2002-04-23
JP4676625B2 JP4676625B2 (en) 2011-04-27

Family

ID=27342507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052664A Expired - Fee Related JP4676625B2 (en) 2000-02-29 2001-02-27 Method for producing water absorbent resin powder

Country Status (1)

Country Link
JP (1) JP4676625B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083262A1 (en) * 2003-02-28 2004-09-30 Toagosei Co., Ltd. Method of purifying powdery resin
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
JP2005111474A (en) * 2003-09-19 2005-04-28 Nippon Shokubai Co Ltd Water absorbent and manufacturing method therefor
WO2006014031A1 (en) * 2004-08-06 2006-02-09 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
JP2008013748A (en) * 2006-06-07 2008-01-24 Nippon Shokubai Co Ltd Method for producing (meth) acrylic acid (salt) type water-soluble polymer
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
JPWO2006049214A1 (en) * 2004-11-05 2008-05-29 株式会社日本触媒 Vinylpyrrolidone polymer powder and method for producing the same
JP2008142714A (en) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd Water-absorbing agent
CN100406477C (en) * 2003-02-28 2008-07-30 东亚合成株式会社 Method of purifying powdery resin
JP2008528748A (en) * 2005-01-28 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles by droplet polymerization in the gas phase
WO2009028568A1 (en) * 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
JP2009516043A (en) * 2005-11-16 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
WO2009125849A1 (en) * 2008-04-11 2009-10-15 株式会社日本触媒 Surface treatment method of water-absorbing resin and production method of water-absorbing resin
JP2010504418A (en) * 2006-09-25 2010-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Continuous production method of water-absorbing polymer particles
WO2010032694A1 (en) * 2008-09-16 2010-03-25 株式会社日本触媒 Water-absorbent resin manufacturing method and liquid permeability improvement method
WO2010100936A1 (en) * 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
WO2010114058A1 (en) * 2009-03-31 2010-10-07 株式会社日本触媒 Process for producing particulate water-absorbing resin
US7851550B2 (en) 2005-12-22 2010-12-14 Nippon Shokubai Co., Ltd. Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
JP2010540004A (en) * 2007-09-13 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing antibacterial coated superabsorbent
WO2011025012A1 (en) * 2009-08-28 2011-03-03 株式会社日本触媒 Process for production of water-absorbable resin
WO2011024975A1 (en) * 2009-08-27 2011-03-03 株式会社日本触媒 Polyacrylic acid (salt) water absorbent resin and method for producing same
WO2011136301A1 (en) * 2010-04-27 2011-11-03 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water absorbent resin powder
US8487048B2 (en) 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
JP2013532056A (en) * 2010-05-28 2013-08-15 エルジー・ケム・リミテッド Highly water-absorbent resin pulverizer and method for producing superabsorbent resin using the same
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
JP2015506400A (en) * 2012-01-12 2015-03-02 エボニック デグサ ゲーエムベーハーEvonik De Continuous production method of water-absorbing polymer
JP2015515534A (en) * 2012-04-25 2015-05-28 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
JP2015535866A (en) * 2012-09-19 2015-12-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
WO2016159600A1 (en) * 2015-03-30 2016-10-06 한화케미칼 주식회사 Method for preparing superabsorbent resin
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
WO2018092864A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and production device for same
JPWO2018174175A1 (en) * 2017-03-24 2020-01-23 住友精化株式会社 Method for producing water absorbent resin
WO2021187323A1 (en) * 2020-03-18 2021-09-23 住友精化株式会社 Method for producing water-absorbing resin particles
JPWO2020144948A1 (en) * 2019-01-11 2021-11-25 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method
WO2021246244A1 (en) * 2020-06-01 2021-12-09 住友精化株式会社 Method for producing water-absorbing resin particle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071246A1 (en) * 2019-10-07 2021-04-15 주식회사 엘지화학 Method for producing super absorbent polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247225A (en) * 1992-07-09 1993-09-24 Nippon Shokubai Co Ltd Production of particulate polymer in aqueous gel form and of water-absorbing resin
JPH1128355A (en) * 1996-11-06 1999-02-02 Sanyo Chem Ind Ltd Water absorbent and absorptive article
JPH11140194A (en) * 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd Water-absorbing resin composition and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247225A (en) * 1992-07-09 1993-09-24 Nippon Shokubai Co Ltd Production of particulate polymer in aqueous gel form and of water-absorbing resin
JPH1128355A (en) * 1996-11-06 1999-02-02 Sanyo Chem Ind Ltd Water absorbent and absorptive article
JPH11140194A (en) * 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd Water-absorbing resin composition and its production

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142714A (en) * 2003-02-10 2008-06-26 Nippon Shokubai Co Ltd Water-absorbing agent
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2004083262A1 (en) * 2003-02-28 2004-09-30 Toagosei Co., Ltd. Method of purifying powdery resin
CN100406477C (en) * 2003-02-28 2008-07-30 东亚合成株式会社 Method of purifying powdery resin
JPWO2004083262A1 (en) * 2003-02-28 2006-06-22 東亞合成株式会社 Purification method of powdered resin
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
US8487048B2 (en) 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
US7803880B2 (en) 2003-09-19 2010-09-28 Nippon Shokubai Co., Ltd. Water absorbent and producing method of same
JP2012161788A (en) * 2003-09-19 2012-08-30 Nippon Shokubai Co Ltd Method of producing water absorbent
JP2012161789A (en) * 2003-09-19 2012-08-30 Nippon Shokubai Co Ltd Method of producing water absorbent
US8497226B2 (en) 2003-09-19 2013-07-30 Nippon Shokubai Co., Ltd. Water absorbent and producing method of same
JP2011218357A (en) * 2003-09-19 2011-11-04 Nippon Shokubai Co Ltd Water absorbent and its production method
JP2005111474A (en) * 2003-09-19 2005-04-28 Nippon Shokubai Co Ltd Water absorbent and manufacturing method therefor
WO2006014031A1 (en) * 2004-08-06 2006-02-09 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
JPWO2006049214A1 (en) * 2004-11-05 2008-05-29 株式会社日本触媒 Vinylpyrrolidone polymer powder and method for producing the same
JP2008528748A (en) * 2005-01-28 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles by droplet polymerization in the gas phase
US9062140B2 (en) 2005-04-07 2015-06-23 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
JP2009516043A (en) * 2005-11-16 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
US10358558B2 (en) 2005-12-22 2019-07-23 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US7851550B2 (en) 2005-12-22 2010-12-14 Nippon Shokubai Co., Ltd. Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
EP2269720A1 (en) 2005-12-22 2011-01-05 Nippon Shokubai Co., Ltd. Method for manufacturing water-absorbing resin via surface crosslinking
US9926449B2 (en) 2005-12-22 2018-03-27 Nippon Shokubai Co., Ltd. Water-absorbent resin composition, method of manufacturing the same, and absorbent article
US9090718B2 (en) 2006-03-24 2015-07-28 Nippon Shokubai Co., Ltd. Water-absorbing resin and method for manufacturing the same
JP2008013748A (en) * 2006-06-07 2008-01-24 Nippon Shokubai Co Ltd Method for producing (meth) acrylic acid (salt) type water-soluble polymer
JP2010504418A (en) * 2006-09-25 2010-02-12 ビーエーエスエフ ソシエタス・ヨーロピア Continuous production method of water-absorbing polymer particles
JPWO2009028568A1 (en) * 2007-08-28 2010-12-02 株式会社日本触媒 Method for producing water absorbent resin
JP5405304B2 (en) * 2007-08-28 2014-02-05 株式会社日本触媒 Method for producing water absorbent resin
WO2009028568A1 (en) * 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
JP2010540004A (en) * 2007-09-13 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing antibacterial coated superabsorbent
JP5390511B2 (en) * 2008-04-11 2014-01-15 株式会社日本触媒 Surface treatment method for water absorbent resin and method for producing water absorbent resin
US8546492B2 (en) 2008-04-11 2013-10-01 Nippon Shokubai, Co., Ltd. Surface treatment method for water-absorbing resin and production method for water-absorbing resin
WO2009125849A1 (en) * 2008-04-11 2009-10-15 株式会社日本触媒 Surface treatment method of water-absorbing resin and production method of water-absorbing resin
EP2270074A4 (en) * 2008-04-11 2017-06-07 Nippon Shokubai Co., Ltd. Surface treatment method of water-absorbing resin and production method of water-absorbing resin
JPWO2010032694A1 (en) * 2008-09-16 2012-02-09 株式会社日本触媒 Method for producing water absorbent resin and method for improving liquid permeability
WO2010032694A1 (en) * 2008-09-16 2010-03-25 株式会社日本触媒 Water-absorbent resin manufacturing method and liquid permeability improvement method
JP5560192B2 (en) * 2008-09-16 2014-07-23 株式会社日本触媒 Method for producing water absorbent resin and method for improving liquid permeability
US8436090B2 (en) 2008-09-16 2013-05-07 Nippon Shokubai Co., Ltd. Production method and method for enhancing liquid permeability of water-absorbing resin
US9796820B2 (en) 2009-03-04 2017-10-24 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
WO2010100936A1 (en) * 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US8648150B2 (en) 2009-03-04 2014-02-11 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
JP2015014002A (en) * 2009-03-04 2015-01-22 株式会社日本触媒 Water-absorbing resin production method
JP5615801B2 (en) * 2009-03-04 2014-10-29 株式会社日本触媒 Method for producing water absorbent resin
JP5631866B2 (en) * 2009-03-31 2014-11-26 株式会社日本触媒 Method for producing particulate water-absorbing resin
US9175143B2 (en) 2009-03-31 2015-11-03 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbent resin
WO2010114058A1 (en) * 2009-03-31 2010-10-07 株式会社日本触媒 Process for producing particulate water-absorbing resin
US9023951B2 (en) 2009-08-27 2015-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
US8859685B2 (en) 2009-08-27 2014-10-14 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
WO2011024975A1 (en) * 2009-08-27 2011-03-03 株式会社日本触媒 Polyacrylic acid (salt) water absorbent resin and method for producing same
US9138505B2 (en) 2009-08-27 2015-09-22 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
US8907021B2 (en) 2009-08-27 2014-12-09 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
JPWO2011025013A1 (en) * 2009-08-28 2013-01-31 株式会社日本触媒 Method for producing water absorbent resin
JP5616347B2 (en) * 2009-08-28 2014-10-29 株式会社日本触媒 Method for producing water absorbent resin
US8802800B2 (en) 2009-08-28 2014-08-12 Nippon Shokubai Co., Ltd. Production method for water-absorbent resin
WO2011025012A1 (en) * 2009-08-28 2011-03-03 株式会社日本触媒 Process for production of water-absorbable resin
JP5616346B2 (en) * 2009-08-28 2014-10-29 株式会社日本触媒 Method for producing water absorbent resin
US9775927B2 (en) 2009-09-29 2017-10-03 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
JPWO2011136301A1 (en) * 2010-04-27 2013-07-22 株式会社日本触媒 Method for producing polyacrylic acid (salt) water-absorbing resin powder
US8765906B2 (en) 2010-04-27 2014-07-01 Nippon Shokubai, Co., Ltd. Method for producing polyacrylic acid (salt) type water absorbent resin powder
WO2011136301A1 (en) * 2010-04-27 2011-11-03 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water absorbent resin powder
JP5616437B2 (en) * 2010-04-27 2014-10-29 株式会社日本触媒 Method for producing polyacrylic acid (salt) water-absorbing resin powder
US8919683B2 (en) 2010-05-28 2014-12-30 Lg Chem, Ltd. Shredder for super adsorbent polymer and preparation method of super absorbent polymer using the same
JP2013532056A (en) * 2010-05-28 2013-08-15 エルジー・ケム・リミテッド Highly water-absorbent resin pulverizer and method for producing superabsorbent resin using the same
US9120100B2 (en) 2010-05-28 2015-09-01 Lg Chem, Ltd. Shredder for super absorbent polymer and preparation method of super absorbent polymer using the same
US10377057B2 (en) 2012-01-12 2019-08-13 Evonik Degussa Gmbh Process for the continuous preparation of water-absorbent polymers
JP2015506400A (en) * 2012-01-12 2015-03-02 エボニック デグサ ゲーエムベーハーEvonik De Continuous production method of water-absorbing polymer
US10086361B2 (en) 2012-04-25 2018-10-02 Lg Chem, Ltd. Super absorbent polymer and a preparation method thereof
JP2015515534A (en) * 2012-04-25 2015-05-28 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same
JP2015535866A (en) * 2012-09-19 2015-12-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
WO2016159600A1 (en) * 2015-03-30 2016-10-06 한화케미칼 주식회사 Method for preparing superabsorbent resin
JPWO2018092864A1 (en) * 2016-11-16 2019-10-17 株式会社日本触媒 Manufacturing method of water-absorbent resin powder and manufacturing apparatus thereof
WO2018092864A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and production device for same
US11465126B2 (en) 2016-11-16 2022-10-11 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder and production apparatus therefor
JPWO2018174175A1 (en) * 2017-03-24 2020-01-23 住友精化株式会社 Method for producing water absorbent resin
JP7355646B2 (en) 2017-03-24 2023-10-03 住友精化株式会社 Manufacturing method of water absorbent resin
JPWO2020144948A1 (en) * 2019-01-11 2021-11-25 Sdpグローバル株式会社 Water-absorbent resin particles and their manufacturing method
JP7165753B2 (en) 2019-01-11 2022-11-04 Sdpグローバル株式会社 Water-absorbing resin particles and method for producing the same
WO2021187323A1 (en) * 2020-03-18 2021-09-23 住友精化株式会社 Method for producing water-absorbing resin particles
WO2021246244A1 (en) * 2020-06-01 2021-12-09 住友精化株式会社 Method for producing water-absorbing resin particle

Also Published As

Publication number Publication date
JP4676625B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4676625B2 (en) Method for producing water absorbent resin powder
US6576713B2 (en) Water-absorbent resin powder and production process therefor
US7429009B2 (en) Process for production of water-absorbing material
JP5442204B2 (en) Method for producing water absorbent resin particles
JP5430620B2 (en) Method for producing water absorbent resin
JP4271736B2 (en) Superabsorbent polymer with excellent processability
EP0948997B1 (en) Manufacturing method of absorbent resin
JP5337703B2 (en) Method for producing water absorbent resin, water absorbent resin and use thereof
JP5320305B2 (en) Binding method of water absorbent resin
CN106414527B (en) Super absorbent polymer and preparation method thereof
US10821418B2 (en) Super absorbent polymer
JP4460851B2 (en) Method for sizing water-absorbent resin
JP4879423B2 (en) Method for producing water absorbent resin
EP2546285A1 (en) Method for manufacturing a water-absorbing resin
JP5132927B2 (en) Method for producing water absorbent resin
JP2002527547A (en) Method for producing water-swellable hydrophilic polymer, polymer and use thereof
JP2019518821A (en) Method of manufacturing super absorbent resin
CN110372891B (en) Method for producing polyacrylic acid water-absorbent resin
JP4342213B2 (en) Manufacturing method of water absorbent resin
JP3175790B2 (en) Method for producing particulate hydrogel polymer and water absorbent resin
WO2006134085A1 (en) Hydrogel-forming polymers with increased permeability and high absorption capacity
JPH0641319A (en) Production of granular hydrous gelatinous polymer and water absorbing resin
JP2004359943A (en) Water absorption resin and its producing method
JPH1160630A (en) Reparation of water absorbent
WO2022239628A1 (en) Poly(meth)acrylic acid (salt)-based water-absorbing resin, and absorbent body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees