TW201200320A - Method for supplying round bar material with bottom surface level kept constant, and device therefor - Google Patents

Method for supplying round bar material with bottom surface level kept constant, and device therefor Download PDF

Info

Publication number
TW201200320A
TW201200320A TW100119381A TW100119381A TW201200320A TW 201200320 A TW201200320 A TW 201200320A TW 100119381 A TW100119381 A TW 100119381A TW 100119381 A TW100119381 A TW 100119381A TW 201200320 A TW201200320 A TW 201200320A
Authority
TW
Taiwan
Prior art keywords
round bar
height
axis direction
bar material
groove
Prior art date
Application number
TW100119381A
Other languages
Chinese (zh)
Other versions
TWI461275B (en
Inventor
Takayoshi Hasegawa
Original Assignee
Amada Co Ltd
Amada Machine Tools Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd, Amada Machine Tools Co Ltd filed Critical Amada Co Ltd
Publication of TW201200320A publication Critical patent/TW201200320A/en
Application granted granted Critical
Publication of TWI461275B publication Critical patent/TWI461275B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/04Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of devices for feeding, positioning, clamping, or rotating work
    • B23D47/06Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of devices for feeding, positioning, clamping, or rotating work for stock of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D55/00Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts
    • B23D55/04Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts of devices for feeding or clamping work

Abstract

Disclosed is a method for supplying round bar material to a cutting machine (1), said method being provided with a material feed means (5), a material furnishing means (9) for furnishing material (W) to the material feed means, a round bar side surface level adjusting means (10) for positioning the material in the Y-axis direction when the material is to be received from the material furnishing means, and a round bar bottom surface level adjusting means (12) for adjusting the material height in the Z-axis direction. This method for supplying round bar material with the bottom surface level kept constant is characterized in that at the same time as, or after, the round bar material is furnished in such a way that the end face level of the round bar material agrees with a main body vise reference line (BL) of the cutting machine, the round bar bottom surface level adjusting means adjusts the height of the round bar material on the basis of the location positioned by the side surface level adjusting means, so that the bottom surface level of the round bar material will be uniquely constant; and that thereby the bottom surface level of the round bar material at the time when the material feed means feeds the material to the cutting machine becomes constant.

Description

201200320 六、發明說明: 【發明所屬之技術領域】 本發明是關於圓棒材料底面高度一定供給方法及其裝 置。 【先前技術】 以往在圓鋸床或橫型帶鋸床等的切斷機,在切斷機的 其中一側(上游側,機械後方側)設置有材料供給裝置’ 並且在切斷機的另一側(下游側,機械前方側),設置有 :切斷機所切斷的製品的製品承台。該材料供給裝置,是 由:當將如圓棒的複數的長條狀材料依序切斷時,將長條 狀材料及切斷後再利用的剩餘材料存放在切斷機的後方側 ’將材料供給到後述的材料輸送機的供給輸送機、以及由 複數的V溝滾子所構成的材料輸送機所構成。 在已知的供給裝置(例如專利文獻1 ),上述材料輸 送機,是將V溝滾子作成朝材料輸送方向(X軸方向)可 自由旋轉,而將材料輸送到切斷機,上述供給輸送機,將 鏈條作成朝向相對於材料輸送方向在水平面上正交的方向 (γ軸方向)自由旋轉’而將材料供給到材料輸送機,在 材料輸送機具有:爲了從供給輸送機接受供給到供材位置 的材料,而用來將材料載置於該v溝滾子的升降裝置,藉 此,V溝滾子可在與X軸鉛直的上下方向(Z軸方向)可自 由升降來載置材料’設置成可自由決定其移動位置。 [先前技術文獻] -5- 201200320 [專利文獻] [專利文獻1] 日本實開平7-24524號公報 【發明內容】 [發明欲解決的課題] 參考第1圖,針對藉由上述專利文獻1記載的材料供給 裝置,將材料輸送到切斷機的情況加以說明。 首先,在省略圖示的供給輸送機的鏈條上載置的如圓 棒的材料W的右側面(第1圖的右側),藉由供給輸送機 而定位在與切斷機的主體虎鉗基準線K-K線一致的位置。 接著,讓由複數的V溝滾子101所構成的材料輸送機的 V溝滾子101的V溝中心,朝Y軸方向水平移動到與材料W的 中心一致的位置,然後藉由使省略圖示的材料輸送機以省 略圖示的升降機壓缸上升到預定位置,在使V溝滾子101朝 z軸方向升降移動(上升)而將材料W支承於V溝滾子上之 後’將V溝滾子1 0 1朝X軸方向的材料輸送方向旋轉驅動, 將材料W輸送所需要的長度’以切斷機的固定虎鉗固定將 其切斷。 藉由上述專利文獻1記載的材料供給裝置,來切斷如 圓棒的長條狀材料的情況,會有如下述的問題。 再次參考第1圖’將具有不同直徑的材料W的右側面 定位在主體虎鉗基準線K - K線’以V溝滾子1 ο 1將材料w上 升支承至一定位置時’材料與V溝滾子切線抵接的位置會 201200320 因爲材料直徑而不同’所以從V溝滾子底面到材料底 距離會變化,因此材料底面高度相對於機械的送料線 生差異。例如,當v溝滾子101的v溝的角度爲151度 在φ 330的圓棒與φ 30的圓棒,被V溝滾子101支承的 W的底面的高度的差約爲4.9 mm。 這樣一來,當將圓棒材料W輸送到如帶鋸床的切 時,當針對V溝滾子的升降高度調整成讓φ 30的圓棒 面高度成爲切斷機側的搬運滾子的搬運高度時,則< 的圓棒的底面會位於較切斷機側的搬運高度更上方4 處,而成爲在輸送材料中,材料W落下的狀態,相反 調整成φ 330的圓棒的底面高度成爲切斷機側的搬運 時,由於Φ 30的圓棒的底面位於4.9mm下方,所以會 到切斷機側的搬運滾子,而會有材料輸送困難的問題201200320 VI. Description of the Invention: [Technical Field] The present invention relates to a method of supplying a certain height of a bottom surface of a round bar material and an apparatus therefor. [Prior Art] Conventionally, in a cutting machine such as a circular sawing machine or a horizontal band sawing machine, a material supply device ' is provided on one side (upstream side, mechanical rear side) of the cutting machine and on the other side of the cutting machine (downstream side, machine front side): A product platform for the product cut by the cutting machine is provided. In the material supply device, when a plurality of long strips of material such as a round bar are sequentially cut, the long material and the remaining material used after cutting are stored on the rear side of the cutter. The supply conveyor is supplied to a material conveyor to be described later, and a material conveyor composed of a plurality of V-groove rollers. In a known supply device (for example, Patent Document 1), the material conveyor is configured to be capable of freely rotating a V-groove roller in a material conveying direction (X-axis direction), and conveying the material to a cutter, the supply conveyor The machine is configured to supply the material to the material conveyor by rotating the chain in a direction orthogonal to the material conveying direction (the γ-axis direction) (the γ-axis direction), and the material conveyor has: for receiving the supply from the supply conveyor The material of the material position, and the material used to place the material on the v-roller lifting device, whereby the V-groove roller can be freely raised and lowered to place the material in the vertical direction (Z-axis direction) perpendicular to the X-axis. 'Set to be free to determine its moving position. [Prior Art Document] -5-201200320 [Patent Document] [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei 7-24524-A SUMMARY OF INVENTION [Problems to be Solved by the Invention] With reference to Fig. 1, the above Patent Document 1 is described. The material supply device will be described in the case of conveying the material to the cutter. First, the right side surface (the right side of the first drawing) of the material W such as the round bar placed on the chain of the supply conveyor (not shown) is positioned on the main vise reference line of the cutting machine by the supply conveyor. The KK line has a consistent position. Next, the center of the V groove of the V-groove roller 101 of the material conveyor composed of the plurality of V-groove rollers 101 is horizontally moved in the Y-axis direction to a position coincident with the center of the material W, and then the drawing is omitted. The material conveyor shown in the figure is raised to a predetermined position by an elevator cylinder (not shown), and the V-groove roller 101 is moved up and down in the z-axis direction to support the material W on the V-groove roller. The roller 1 0 1 is rotationally driven in the material conveying direction in the X-axis direction, and the length required to convey the material W is fixed by fixing the fixed vise of the cutter. When the material supply device described in Patent Document 1 is used to cut a long material such as a round bar, the following problems may occur. Referring again to FIG. 1 'Locating the right side surface of the material W having different diameters on the main vise reference line K - K line 'When the material w is raised and supported to a certain position by the V groove roller 1 ο 1 'material and V groove The position where the roller tangent abuts will be different 201200320 because of the material diameter. Therefore, the distance from the bottom surface of the V-groove roller to the bottom of the material changes, so the height of the bottom surface of the material is different from the mechanical feeding line. For example, when the angle of the v groove of the v groove roller 101 is 151 degrees, the difference between the height of the bottom surface of the round bar supported by the V groove roller 101 and the diameter of the round bar of φ 330 and φ 30 is about 4.9 mm. In this way, when the round bar material W is conveyed to a cutting such as a band saw, the lifting height of the V groove roller is adjusted so that the height of the round bar surface of φ 30 becomes the carrying height of the conveying roller on the cutting machine side. When the bottom surface of the round bar is located at four places higher than the conveyance height on the cutting machine side, the material W is dropped in the conveyed material, and the bottom surface height of the round bar adjusted to φ 330 is reversed. When the cutting machine side is transported, the bottom surface of the round bar of Φ 30 is located below 4.9 mm, so the roller is moved to the cutting machine side, which may cause difficulty in material transportation.

本發明是要用來解決上述問題所構成。本發明的 ’是要提供對於切斷機的材料供給方法及其裝置,當 具備有V溝滾子的材料輸送機將圓棒材料輸送到如帶 的切斷機時,可機械性地修正:被材料輸送機的V溝 所支承的圓棒材料的底面高度與切斷機側的搬運高度 [用來解決課題的手段J 爲了達成上述目的,本發明的第一型態,藉由: 棒材料在該圓棒的長軸方向爲了朝上述切斷機搬運币 軸方向輸送的材料輸送手段、爲了將上述圓棒材料朝 面的 會產 時, 材料 斷機 的底 )330 9mm 地在 闻度 碰撞 0 目的 藉由 鋸床 滾子 的差 將圓 朝X 上述 201200320 材料輸送手段交付’而將上述圓棒材料朝丰I 方向在水平面上正交的Y軸方向供給的材料 上述材料輸送手段從上述材料供給手段接受 時’進行γ軸方向的定位的圓棒側面高度調 相對於上述X Y軸方向成鉛直方向爲Z軸方向 料輸送手段將該圓棒材料朝該切斷機輸送時 向也就是Z軸方向,進行高度調整的圓棒底 段;來將圓棒材料W供給到切斷機的圓棒材 定供給方法’包含有以下的步驟: 上述材料供給手段’以讓該圓棒材料的 斷機的主體虎鉗基準線一致的方式,供給該 時或在供給材料之後’上述圓棒底面高度調 上述圓棒側面高度調整手段的定位位置,唯 圓棒材料的高度以讓該圓棒材料的底面高度 及藉由上述方式,讓上述材料輸送手段5將 機輸送時的該圓棒材料的底面高度成爲一定 本發明的第二型態,是圓棒材料底面高 置,包含有以下:是在圓棒材料的長軸方向 向’將該圓棒朝切斷機輸送供給的材料輸送 料輸送裝置,具有材料輸送機,該材料輸送 V溝至少支承上述圆棒材料且可自由旋轉的 ,是在水平面上相對於上述X軸方向正交的 了將圓棒材料交付到上述材料輸送裝置,而 給到該材料輸送裝置的材料供給裝置,上述 目對於上述X軸 供給手段、當 上述圓棒材料 整手段、以及 ’朝當上述材 的材料高度方 面高度調整手 料底面高度一 端面高度與切 圓棒材料,同 整手段,藉由 一性地調整該 成爲一定;以 材料朝該切斷 0 度一定供給裝 也就是X軸方 裝置,上述材 機設置有:以 材料輸送滾子 γ軸方向,爲 將圓棒材料供 材料供給裝置 -8 - 201200320 ,具有供給輸送機,該供給輸送機設置有:至小 ==的可自由旋轉的鏈在相對於一方: 口匕的方向也就是z軸方向,將上述材料輸送滾子 '、隹 圓棒底面高度調整裝置;以及在從上述材料供㈣ 置i、給上述圓棒的位置’在上述γ軸方向將上述材料輸送 滾子的V溝中心定位的圓棒側面高度調整裝置;在上述構 造’上述材料供給裝置’以使上述圓棒材料的端面高=與 切斷機的主體虎鉗基準面—致的方式,配合在Y軸方向將 該圓棒材料定f立的動作’ # -該圓棒側面冑度調整裝置,以 使上述材料輸送滾子的V溝中心與該圓棒材料的中心—致 的方式將其定位於上述γ軸方向肖’上述圓棒底面高度調 整裝置,藉由將該圓棒材料的高度唯一性地調整成讓該圓 棒材料的底面局度成爲一定,來讓上述材料輸送裝置朝上 述切斷機輸送材料時的該圓棒材料的底面高度成爲一定。 附屬上述第二型態的本發明的第三型態,在上述圓棒 才料底面商度一疋供給裝置,上述圓棒側面高度調整裝置 〜上述圓棒底面局度調整裝置,是一體的構造’設置成可 自由滑動地卡合於導引基座,該導引基座具備有至少一個 朝向上述主體虎鉗基準線的方向傾斜的傾斜面。 附屬上述第二型態的本發明的第四型態,在上述圓棒 材料底面高度一定供給裝置,上述圓棒材料與上述材料輸 送滚子的V溝切線抵接,當V溝角度爲2 α,V溝中心的ζ軸 方向的傾斜度爲時’位在上述圓棒側面高度調整裝置與 上述圓棒底面高度調整裝置之γ軸方向定位手段與Z軸方向 201200320 定位手段,是唯一性連動的構造’設置成可定位調整成讓 「z軸方向的調整量」/「圓棒材料的半徑的差」的比爲 (c〇Sp-sina)/sina ’配合設置成可定位調整成讓「γ軸方向 的調整量」/「圓棒材料的半徑的差」的比爲sinp/sinci。 附屬上述第四型態的本發明的第五型態,在上述圓棒 材料底面高度一定供給裝置,「90。·角度a +角度β」或「9〇 ° -角度a -角度β」’是V溝雙方的傾斜度,針對哪邊的角度 較小’是關於上述圓棒材料的本身重量與施加於該圓棒材 料中心的水平外力’將該本身重量的5 %〜2 5 %的該水平外 力均衡的角度作爲該角度,β爲0。〜5。。 [發明效果] 藉由在上述第一型態〜第五型態所記載的本發明,當 藉由具備有V溝滾子的材料輸送機,將圓棒材料輸送到如 帶鋸床的切斷機時,能將被材料輸送機的V溝滾子支承的 材料的底面高度與切斷機側的搬運高度的差,配合:將材 料的側面高度配合主體虎鉗基準線的動作,而機械性地將 其修正。 於是’當將圓棒材料輸送到切斷機時,作業者不需要 注意被材料輸送機的V溝滾子支承的材料的底面高度與切 斷機側的搬運高度的差,能夠避免材料碰撞到切斷機側的 搬運滾子而材料輸送困難的情形。 【實施方式】 -10- 201200320 以下根據圖面來說明本發明的實施方式。 參考第2圖〜第4圖,在例如像橫型帶鋸床或圓鋸床的 切斷機1的後側(在第2圖爲右側),設置有材料輸送裝置 5及材料供給裝置9;該材料輸送裝置5,具備有:將圓棒 材料W朝其長軸方向也就是X軸方向輸送,對切斷機1進行 供給的可自由旋轉驅動的複數的材料輸送滾子3;該材料 供給裝置9具備有:將圓棒材料w在上述長軸方向朝在水 平面上正交的Y軸方向供給,將材料朝上述材料輸送裝置5 供給的材料供給輸送機7。 上述材料供給輸送機7,在上述複數的材料輸送滾子3 之間’可自由旋轉地繞掛有:在上述長軸方向朝在水平面 上正交的Y軸方向延伸而以適當間隔並排的複數條鏈條1 i ’藉由材料供給輸送機7,將圓棒材料W朝向:複數的材 料輸送滾子3形成的X方向的滾子基準線R L (參考第3圖) 的上方進行材料供給定位。 上述複數條鏈條1 1,藉由省略圖示的鏈條驅動馬達被 同步旋轉驅動,藉由預先輸入到控制裝置的材料直徑資訊 、以及位於從第3圖的主體虎鉗基準線BL朝預定左側偏置 (例如1 0mm )的位置的感應器(省略圖示),於上述複 數條的鏈條Π讓材料朝Y軸方向(在第3圖爲從右朝左方) 供給,且同時以該感應器檢測出材料端面,然後藉由該材 料直徑資訊與該感應器位置的.上述主體虎鉗基準線BL的偏 置量,計算出剩餘的移動量,藉由旋轉編碼器(省略圖示 )檢測出鏈條Π的該剩餘的移動距離,以該控制裝置的指 -11 - 201200320 令,朝χ軸方向的滾子基準線RL的上方進行材料供給定位 ’而成爲具備有材料供給手段的材料供給裝置。 上述複數條鏈條11 ’是藉由於材料供給裝置9的架台 (省略圖示)設置的由槽構件所構成的鏈條支承構件】3 ( 參考第4圖)’而水平地被支承。 上述材料輸送滾子3,是可自由旋轉地軸支承於支柱 17的上部’該支柱17,是在χ軸方向隔著適當的間隔而立 設在:在X軸方向水平地延伸的方管狀的升降基座15的上 面。 如第2圖所示,爲了使上述各材料輸送滾子3旋轉,在 各材料輸送滾子3安裝有鏈輪19,並且在支柱17側面的下 部附近’在上述升降基座15設置有複數的鏈輪21 (參考第 5圖、第6圖)。 在上述升降基座15,安裝著:隔介著如皮帶、鏈條等 的適當的動力傳達機構23而將驅動鏈輪25旋轉驅動的滾子 驅動馬達27,以藉由滾子驅動馬達27將上述材料輸送滾子 3旋轉驅動的方式,在上述驅動鏈輪2 5及上述各鏈輪1 9、 2 1繞掛有鏈條2 9。 於是,藉由將上述滾子驅動馬達27驅動,經由鏈條29 而讓複數的材料輸送滾子3同步朝同方向旋轉,而能將材 料輸送滾子3上的圓棒材料W對於切斷機1輸送,或當逆旋 轉時能夠使剩餘材料返回,而成爲具備有材料輸送手段的 材料輸送裝置。 參考第2圖〜第7圖,在上述升降基座15的前後部,設 -12- 201200320 置有:將升降基座15導引成可朝上下方向(z軸方向)自 由升降的前升降導件3 1 f與後升降導件3丨r (參考第3圖、第 6圖)。 上述後升降導件31r的構造除了 一部分之外是與上述 前升降導件3 1 f相同’所以以該前升降導件3】f爲主來說明 〇 .如第3圖所示’上述前升降導件3 1 f具備有:導引柱3 3 、以及將導引柱33朝Y軸方向(在第3圖的左右方向)導引 的導引基座3 5。 上述導引基座35,是隔介著一體地設置於該導引基座 35的凸緣部35 f而水平地設置於地板面F.L。該導引基座35 的上面,設置有傾斜面3 7,該傾斜面3 7具有:朝向位於Y 軸方向的主體虎鉗基準線B L側(在第3圖的右方向)上升 的斜度Θ。而且在該傾斜面3 7上朝Y軸方向延伸鋪設有:作 成以線性導件能容易地於傾斜面直線移動的一對平行的導 引軌道39。 上述導引柱33,具有:上面平坦的支承基座部34、以 及一體地豎立設置在該支承基座部的升降導引部33f;在 支承基座部34的底面,設置有與上述導引基座35上面的傾 斜面37平行的斜度Θ,在該支承基座部34的底面卡合有導 件4 1,該導件4 1結合於:與上述線性導件的上述導引軌道 3 9可自由移動地卡合地複數個(在實施例爲各兩個而總共 四個)的上述線性導件的軸承。 如第3圖、第5圖所示,在與上述導引柱33—體地設置 -13- 201200320 的支承基座部3 4的下面’讓沿著上述傾斜軸3 7延伸於上述 平行的導引軌道39之間的如滾珠螺桿的驅動軸43 ’可自由 旋轉地螺合於··固定設置在支承基座部3 4的左端部的螺母 構件45。 與設置在正交於上述驅動軸43的同步旋轉軸47的傘齒 輪49卡合的傘齒輪50,是設置於驅動軸43的左端部(在第 3圖、第5圖的左側)》而且在同步旋轉軸47的另一端部設 置有:用來將前升降導件31 f朝Y軸方向移動定位的驅動馬 達51 (參考第7圖)。而在同步旋轉軸47的前端部(在第5 圖在下端部),設置有:檢測出同步旋轉軸47的旋轉量來 測量前升降導件3 1 f的Y軸方向的移動量的旋轉編碼器52。 在上述升降導引部33f,設置有:可進行前升降導件 31 f與升降基座15之間的Z軸方向的移動,且將朝Y軸方向 及X軸方向的相對移動予以限制的X軸導引溝53a與Y軸導 引溝53b。 另一方面,在升降基座15—體地設置有導引滾子保持 部15h’該導引滾子保持部15h固定保持著導引滾子軸56, 該導引滾子軸56軸支承著導引滾子55a、55b,該導引滾子 55a、55b可自由升降地卡合於導引溝53a、53b。 在上述升降基座15的下面,一體地設置有:從升降基 座15朝左右方向(Y軸方向)水平伸出的壓缸托架57;在 該壓缸托架57上設置有兩條氣壓或油壓的壓缸59,該壓缸 59具有活塞桿,該活塞桿抵接卡合於支承基座部34的上面 ’該支承基座部34—體地設置於上述導引柱33。 -14- 201200320 上述後升降導件3 1 r,其與前升降導件3 1 f不同的部分 ,只有在後升降導件31r只具有Y軸導引溝53a之處,所以 在其他相同的構成零件則用相同圖號省略說明。 在上述構造,是根據預先儲存在上述控制裝置的材料 直徑資訊與驅動馬達的現在位置資訊,計算直到滾子基準 線RL的移動量,藉由將驅動馬達5 1正轉或逆轉驅動,使前 升降導件31 f與後升降導件31i•上的與同步旋轉軸47的傘齒 輪49卡合的傘齒輪50旋轉,使被支承基座部34軸支承的驅 動軸43旋轉驅動,前升降導件31f與後升降導件3ir同時可 自由升降地卡合於升降基座15,而能將通過在升降基座15 的支柱1 7設置的材料輸送滾子3的V溝中心的滾子基準線 RL的位置,相對於主體虎鉗基準線Bl進行移動定位,以 該方式成爲具備有圓棒側面高度調整手段的圓棒側面高度 調整裝置10。 也就是說’上述材料供給輸送機7在將材料端面定位 於上述主體虎鉗基準線BL之後或同時,材料輸送裝置5將 滾子基準線RL·設定在其材料的中心,以該方式則能將材料 輸送滾子3的V溝中心在Y軸方向移動定位,所以在上述定 位後使上述壓缸59作動的話’將材料以主體虎鉗基準抓持 的方式被材料輸送滾子3支承。 在對於主體虎鉗基準線BL移動定位時,上述前升降導 件3 1 f與後升降導件3 1 r ’是沿著上述傾斜面3 7朝γ軸方向 移動且同時朝Z軸方向升降,所以材料輸送滾子3也與γ軸 方向的移動量成比例而進行升降。 -15- 201200320 針對與上述Y軸方向的移動量成比例而材料輸送滾子3 升降的量,參考第8圖來說明。 如第8圖所示,例如在材料輸送滾子3的V溝上載置各 種直徑的圓棒材料W 1〜W4,使材料輸送滾子3朝Υ軸方向 的主體虎鉗基準線BL的方向水平移動,將該各種直徑的圓 棒材料W 1〜W4的右側端面定位成與主體虎鉗基準線B L ~ 致的情況,會拉出:通過圓棒材料W 1〜W 4的底面與材料 輸送滾子3的V溝中心V的交點Ρ1〜Ρ4點的直線Α-Α。 上述直線A-Α是朝右下方傾斜的下斜斜度,其斜度, 當圓棒材料W 1的半徑爲R,圓棒材料W4的半徑爲r,交點 P1與P4間的高度的差爲ΔΖ時,以ΔΖ/(ΙΙ·Γ) = ί3ηθ來表示。Θ 爲直線Α_Α以及平行於Υ軸的水平線構成的角度。因此, 如果該斜度爲零的話,則能使各圓棒材料W 1〜W4的底部 的高度成爲相同。 也就是說,如果上述導引基座35的斜度成爲朝向主體 虎鉗基準線BL側上升的AZ/(R-r)的斜度的話,則當將圓棒 材料W1〜W4的右側端面定位成與主體虎鉗基準線BL—致 的情況所產生的高度差能成爲零,而成爲具備有圓棒底面 高度調整手段的圓棒底面高度調整裝置12。 在本發明的圓棒材料底面高度一定供給裝置的實施例 ,材料輸送滾子3的V溝的角度設定爲15Γ,作爲搬運對象 的圓棒材料W的直徑爲φ 3 3 0〜φ 3 0,所以上述傾斜面3 7 的斜度Θ,根據上述理論設定成約1 / 3 0 (角度約爲1 .9度) -16- 201200320 接者,針對上述材料輸送滾子3的v溝的角度與傾斜面 37的斜度θ的關係,參考第9圖來加以說明。 … 參考第9圖,材料輸送滾子3的V溝61的角度爲相對於 中心線V左右分開的2α ’大直徑的圓棒材料% 1的中心爲〇 i ’半徑爲R ’小直徑的圓棒材料W2的中心爲〇 2,半徑爲Γ 時’在讓圓棒材料W1與%2在材料輸送滾子3的^溝61內切 線抵接卡合的狀態’ V溝6 1的底點P3與圓棒材料w 1的底點 P1之間的距離爲Z ’上述底點P3與圓棒材料W2的底部P2之 間的距離爲Z ’的話’傾斜面3 7的斜度θ爲「z軸方向的調整 量」/「圓棒材料的半徑的差」的比,是以下述式子(1 ) 表示。 [數學式1] tanΘ- (Z_Z ) / (R~r) = (1-sino?) /sina · · (1) 這裡 sina=r’/a,=r/a、0。<α<9 0。。 接著在第〗〇圖顯示,材料輸送滾子3相對於V溝61的中 心線V以角度β傾斜時的圖面。 參考第10圖,V溝61的底點Ρ3與圓棒材料W1的底點Ρ1 之間的Ζ軸方向(鉛直方向)的距離爲Ζ,V溝61的底點Ρ3 與圓棒材料W2的中心與02之間的Ζ軸方向(鉛直方向)的 距離爲b ’ .,同樣地上述底點Ρ 3與圓棒材料W2的底部Ρ 2之間 的Z軸方向(鉛直方向)的距離爲Z’( = b’-r),圓棒材料W1 的中心〇 1與上述底點P 3之間的距離爲Η的話,傾斜面3 7的 斜度Θ以下述式子(2)表示。而當β = 0時則與上述式子(1 )一致。 -17- 201200320 [數學式2] tan0= (1-1') / (R-r) = (cos/S-sinor) /sina · (2) 這裡 sinor=r’/a’=r/a、H=a*cos/S、0。< a < 9 〇。。 如第1 〇圖所示,相對於v溝6 1的中心線V讓v溝6 1的中 心傾斜角度β導致的V溝61的中心V’的Y軸方向的斜度Θ2 ’ 是「Υ軸方向的調整量」/「圓棒材料的半徑的差」的比, V溝61的底點Ρ3與圓棒材料W1的Ζ軸方向的中心軸V之間的 距離爲C,與圓棒材料W2的Ζ軸方向的中心之間的距離爲C ’的話,以下述式子(3 )表示。 [數學式3] tan0 2= (C-C') / (R-r) =siri/8/sina · · (3) 第1 1圖是針對圓棒材料W的外徑部以切線沒有接觸於 材料輸送滾子3的V溝的內表面的情況的斜度來硏究的圖面 〇 第Π圖是顯示,在材料輸送滾子3的V溝的角度具有半 角α的材料輸送滾子3的V溝的片部P4,卡合支承著大直徑 的圓棒材料W 1與小直徑材料W 2的外徑的狀態。 在第11圖,V溝的半角α,小直徑材料W2的半徑r,V 溝的底部P3與V溝的片部P4之間的距離L爲已知,小直徑 材料W2的底面與V溝中心線V的交點爲P2,大直徑材料W1 的V溝中心線V的交點爲P 1,大直徑材料W 1的中心爲〇 1, 小直徑材料W2的中心爲02,角Ρ101Ρ4 = Δ1,角Ρ202Ρ4 = Δ2 的話,貝IJ r/sina = L/ sinA2,所以 sinA2 = Lxsina/r,所以 △ 2 = siη -1(LXsina/r) , △1=siη -1 (Lχsiηa/R)。 -18- 201200320 這樣一來,θ = 18(Γ-(α + Δ2),所以V溝的底部P3與小直 徑材料W2的中心〇2之間的距離D爲: [數學式4] D=sin(180。-(〇i+sin-UL*sin〇f/r)))*r/sina . (4) 所以V溝的底部P3與小直徑材料W2的底邊的P2之間的距離 X’是以下述式子(5)表不。 [數學式5] X=sin(180° -(a+sin-1(L*sinor/r)))*r/sin〇f-r· . . (5) 同樣地也計算從W 1的Ο 1到〇 1 V溝的底部P3的距離,當硏 究(X-X,)時,針對(X-X,)··(R_r)的比,藉由半徑r,角度△ 會變化,所以是可變的比率關係,也就是說,無法採用單 純的線形表示的本發明的實施例的單純的機構。 可是,因爲角度△導致的長度L與角度α爲一定,所以 是將r作爲變數的分數函數,當材料W的中心〇與Ρ4與?3構 成的角度爲90°以上時,材料W是以L的端點抵接,所以是L xsina<r 〇 因此,某程度直線近似的方式是可能的,所以將斜度 作成多段的話則可得到實用的範圍。如果進行正確地定位 控制的話,也可採取具有位置計算的結果而使用伺服控制 等任意定位的機構。 根據V溝寬度與圓棒材料直徑的關係,相對於直徑的 大小增加而使圓棒底面上升的比例會漸漸變小,所以預定 即使以最初的一段使用斜度也沒關係的實用範圍。 藉由如上述的材料供給裝置,藉由使導引柱3 3朝向主 -19- 201200320 體虎鉗基準線BL的方向移動,則當使升降基座15上升到與 上述切斷機側的搬運高度(第2圖、第3圖、第4圖的送料 線)一致的材料送料線PL的位置時,藉由分別將圓棒材料 的底面高度設置於導引基座35的上升斜度,將被材料輸送 機的V溝滾子支承的材料的底面高度與切斷機側的搬運高 度的差,機械性地修正,而能將材料輸送到成爲同樣高度 的切斷機。 於是,當將圓棒材料輸送到切斷機時,作業者就不需 要注意被材料輸送機的V溝滾子所支承的材料的底面高度 與切斷機側的搬運高度的差,則不會有材料碰撞到切斷機 側的搬運滾子而材料輸送困難的情形。而上述材料送料線 PL位於較上述材料供給輸送機7的鏈條1 1更稍上方。 在上述的本發明的實施例,藉由使前升降導件31 f與 後升降導件31r沿著Y軸方向的斜度Θ的傾斜面37移動,被 材料輸送滾子3的V溝所支承的材料W的底面高度因爲直徑 的差異而不同的高度差,藉由導引基座的斜度而機械性地 修正,將前升降導件3 1 f與後升降導件3 11•設置成可朝Y軸 方向與Z軸方向移動,藉由控制裝置以同步控制或非同步 控制,使Y軸移動量與Z軸移動量個別進行位置控制也可以 。也就是說,將材料輸送滾子3的Y軸移動量與Z軸移動量 ,藉由控制裝置進行同步控制或非同步控制,藉此來修正 :被材料輸送滾子3的V溝所支承的材料W的底面高度因爲 直徑差異所產生的高度差也可以。 針對以V溝面將圓棒材料切線抵接支承的方式,例如 -20- 201200320 根據日本的建築基準法,希望相對於本身重量的0.2倍的 水平力(中等地震時)爲安全的構造。地震較少的區域或 考慮上述基準的話,預定讓圓棒的本身重量的5 %〜2 5 %的 水平外力施加於該圓棒材料的情況較佳。而在該V溝面可 承受的角度’以上述角度α與上述角度(3考慮的話,以「9〇 -角度α +角度β」或「90。·角度α-角度β」算出的ν溝的雙方 的傾斜度之中’針對那方爲較小的角度a,是關於上述圓 棒材料的本身重量與施加於該圓棒材料中心的水平外力, 能將該本身重量的5 %〜2 5 %的該水平外力均衡的角度做爲 該角度a。 針對該點’以第1 2圖及第1 3圖來說明。第1 2圖爲點A 周圍的力矩平衡的顯示圖,針對工件W的重量與水平外力 F平衡的角度a來說明。將重量w分解爲水平方向的Η與鉛 直方向的V,其中水平方向分力Η與水平外力F平衡即可。 此時,藉由法規或任何規格等,規定水平外力F允許本身 重量W的例如2 0 %的話,則角度a以t a η - 1 ( Η / V )与1 1 · 3度確定 ο 當工件重量W爲150kgf時,水平外力爲W的1%〜30% ,計算出角度a,將角度β從0°轉到T時的a’( = 90°-a),藉由 角度β而變化的(H/V )角度,將φ 400載置於V時的V溝寬 度(單側)計算出時,如第1 3圖。 此時,根據機械的設計意圖,單側的V溝寬度爲40mm 以上9 5 mm以下,計算出水平外力F爲工件重量W的5 %以上 2 5 %以下,符合其條件的區域以粗框圍繞顯示。根據其結 -21 - 201200320 果’判斷角度β在從0°〜5。的範圍可以允許。 改而針對上述角度β硏究的話,如上述從安全面施加 於上述圓棒材料的水平外力,在Υ軸方向的兩側面平均, 而雖然是相對於Υ軸方向的理論上的較佳耐震角度,而與 水平力對於本身重量的允許範圍一起來看,則角度β只在 從0°〜5°能得到實質的效果。 參考日本特許申請第2010-128197號(2010年6月3號 申請)的全內容,加入本案說明書。 本發明並不限於上述發明的實施方式的說明,藉由進 行適當的變更,能以其他各種方式實施。 【圖式簡單說明】 第1圖是將直徑不同的圆棒材料的側面定位於主體虎 鉗基準線時的習知例的說明圖。 第2圖是本發明的相對於切斷機的材料供給裝置的側 面的說明圖。 第3圖是第2圖的ΙΙΙ-ΙΙΙ剖面的說明圖。 第4圖是第3圖的IV-IV剖面圖。 第5圖是第3圖的俯視圖。 第6圖是第2圖的VI-VI剖面圖。 第7圖是第6圖的俯視圖。 14的側面定位 W 4的底面與材 線A - Α來說明的 第8圖是當將直徑不同的圓棒材料⑺卜 於主體虎鉗基準線BL時的通過各材料W卜 料輸送滾子的V溝中心V的交點Ρ1〜Ρ4的直 -22- 201200320 圖面。 第9圖是在本發明的圓棒材料底面高度—定供給方法 及其裝置’針對材料輸送滾子3的V溝的角度α與斜度Θ的關 係說明的圖面。 第10圖是針對在第9圖,材料輸送滾子的V溝中心V相 對於Ζ軸傾斜β度的情況的材料輸送滾子3的ν溝的角度與傾 斜面37的斜度Θ的關係,來說明的圖面。 第1 1圖是針對圓棒材料W的外徑部其切線沒有接觸於 材料輸送滾子3的V溝的內表面的情況的斜度來硏究的圖面 〇 第12圖是說明第1〇圖的角度α、角度β及材料的本身重 量與水平外力的關係的圖面。 第丨3圖是在第10圖’材料直徑爲φ 400,材料重量… 爲150kgf ’水平外力η爲工件重量的1〜3〇%,ν溝寬度( 單側)、根據設計條件’而v溝寬度(單側)爲4〇mm〜 95 mm時的角度β的允許範圍的計算例子。 【主要元件符號說明】 1 :切斷機 3 :材料輸送滾子 5 :材料輸送裝置 7 :材料供給輸送機 9 :材料供給裝置 1 1 :鏈條 -23- 201200320 1 3 :鏈條支承構件 15 :升降機座 1 7 :支柱 1 9 :鏈輪 2 1 :鏈輪 23:動力傳達機構 25 :驅動鏈輪 2 7 :滾子驅動馬達 2 9 :鏈條 3 1 f :前升降導件 3 1 r :後升降導件 33 :導引柱 3 4 :支承基座部 35 :導引基座 3 7 :傾斜面 39 :導引軌道 41 :導件 4 3 :驅動軸 4 5 :螺母構件 4 7 :同步旋轉軸 49 :傘齒輪 5 0 :傘齒輪 5 1 :驅動馬達 5 2 :旋轉編碼器 -24 201200320 56 :導引滾子軸 5 7 :壓缸托架 5 9 :壓缸 -25-The present invention is intended to solve the above problems. The present invention is intended to provide a material supply method for a cutter and an apparatus thereof, which can be mechanically corrected when a material conveyor provided with a V-groove roller conveys the round bar material to a cutter such as a belt: The height of the bottom surface of the round bar material supported by the V groove of the material conveyor and the conveying height on the cutting machine side. [Means for Solving the Problem In order to achieve the above object, the first form of the present invention is made of: bar material In the long axis direction of the round bar, in order to convey the material conveying means in the direction of the cutting machine, in order to bring the material of the round bar material to the surface, the bottom of the material is broken. 0. The material is supplied from the material by means of a difference in the size of the sawing roller, which is supplied to the above-mentioned 201200320 material conveying means, and the material of the round bar is supplied in the Y-axis direction orthogonal to the horizontal plane in the direction of the I. When the means is accepted, the height of the side surface of the round bar which is positioned in the γ-axis direction is the vertical direction of the XY-axis direction, and the material conveying means of the Z-axis direction is used to transport the round bar material toward the cutting machine. In the Z-axis direction, the height-adjusted round bottom portion; the round bar material supply method for supplying the round bar material W to the cutter includes the following steps: The main body of the round bar material is in the same manner as the reference line of the main vise, and when the material is supplied or after the material is supplied, the height of the bottom surface of the round bar is adjusted to the position of the height adjustment means of the round bar, and the height of the material of the round bar is The height of the bottom surface of the round bar material and the height of the bottom surface of the round bar material when the material conveying means 5 is conveyed by the above-described material conveying means 5 are constant in the second form of the present invention, and the bottom surface of the round bar material is placed high, including There is the following: a material conveying material conveying device that conveys and supplies the round bar toward the cutting machine in the longitudinal direction of the round bar material, and has a material conveying device that conveys at least the above-mentioned round bar material and is freely movable. Rotating is to feed the round bar material to the material conveying device orthogonal to the X-axis direction on the horizontal surface, and to supply the material to the material conveying device The above-mentioned means for the above-mentioned X-axis supply means, the above-mentioned round bar material forming means, and the height of the material of the above-mentioned material, the height of the end face height and the material of the round bar, The material adjustment is made constant; the material is supplied to the X-axis device at a level of 0 degrees, and the material machine is provided with a material supply roller for the material of the round bar material. -8 - 201200320, having a supply conveyor provided with a freely rotatable chain of at least == in the direction of the port: the z-axis direction, the material is conveyed by the roller', a round bar bottom height adjusting device; and a round bar side height adjusting device for positioning the center of the V-groove of the material conveying roller in the γ-axis direction from the position where the material is supplied (4) to the round bar; The above-described structure 'the above-mentioned material supply device' is such that the end surface height of the round bar material is equal to the reference surface of the main body of the cutter, and the circle is fitted in the Y-axis direction. The action of the material is set to #' - the round side side adjustment device is such that the center of the V-groove of the material conveying roller and the center of the round bar material are positioned in the above-mentioned γ-axis direction The round bar bottom height adjusting device adjusts the height of the round bar material so that the bottom surface of the round bar material becomes constant, so that the material conveying device conveys the material toward the cutting machine The height of the bottom surface of the round bar material is constant. In the third mode of the present invention attached to the second type, the bottom side of the round bar material is provided with a supply device, and the round bar side height adjusting device to the round bar bottom surface adjusting device is an integrated structure. The guide base is slidably engaged with the guide base, and the guide base is provided with at least one inclined surface that is inclined toward the reference line of the main body vise. A fourth aspect of the present invention according to the second aspect, wherein the round bar material has a constant height on the bottom surface of the round bar material, and the round bar material abuts the V groove tangent of the material conveying roller, and the V groove angle is 2 α The inclination of the center of the V groove in the direction of the 为 axis is the γ-axis direction positioning means of the round bar side height adjusting device and the round bar bottom height adjusting device, and the Z-axis direction 201200320 positioning means are uniquely linked. The ratio of the structure 'adjustable to the "adjustment amount in the z-axis direction" / "the difference in the radius of the round bar material" is (c〇Sp-sina)/sina 'coordinated to be positionally adjustable to let γ The ratio of the amount of adjustment in the axial direction/the difference in the radius of the round bar material is sinp/sinci. According to the fifth aspect of the present invention in the fourth aspect, the height of the bottom surface of the round bar material is constant, and "90.·angle a + angle β" or "9 〇 ° - angle a - angle β" is The inclination of both sides of the V groove, which angle is smaller for which is the level of the self-weight of the above-mentioned round bar material and the horizontal external force applied to the center of the round bar material, which is 5% to 25% of the weight of the itself. The angle at which the external force is equalized is taken as the angle, and β is 0. ~5. . [Effect of the Invention] In the present invention described in the first to fifth modes, the round bar material is conveyed to a cutter such as a band saw machine by a material conveyor provided with a V-groove roller. In this case, the difference between the height of the bottom surface of the material supported by the V-groove roller of the material conveyor and the conveying height on the cutter side can be matched: the side height of the material is matched with the movement of the main vise reference line, and mechanically Fix it. Therefore, when the round bar material is conveyed to the cutter, the operator does not need to pay attention to the difference between the height of the bottom surface of the material supported by the V-groove roller of the material conveyor and the conveyance height on the cutter side, thereby avoiding material collision. It is difficult to convey the material while cutting the roller on the machine side. [Embodiment] -10- 201200320 Hereinafter, embodiments of the present invention will be described based on the drawings. Referring to FIGS. 2 to 4, a material conveying device 5 and a material supply device 9 are provided on the rear side (right side in FIG. 2) of a cutter 1 such as a horizontal band saw or a circular sawing machine; The conveying device 5 is provided with a plurality of material conveying rollers 3 that are rotatably driven to feed the cutting machine 1 in the longitudinal direction of the round bar, that is, in the X-axis direction; the material supply device 9 The round bar material w is supplied in the Y-axis direction orthogonal to the horizontal plane in the longitudinal direction, and the material supplied to the material conveying device 5 is supplied to the conveyor 7. The material supply conveyor 7 is rotatably rotatably mounted between the plurality of material conveying rollers 3 in a plurality of directions extending in the Y-axis direction orthogonal to the horizontal plane in the longitudinal direction and at appropriate intervals. The strip chain 1 i ' is positioned by the material supply conveyor 7 to feed the round bar material W toward the upper side of the roller guide line RL (see FIG. 3 ) in the X direction formed by the plurality of material conveying rollers 3 . The plurality of chain chains 1 1 are synchronously rotationally driven by a chain drive motor (not shown), and the material diameter information input to the control device in advance and located at a predetermined left side from the main vise reference line BL of FIG. a sensor (not shown) at a position (for example, 10 mm) is provided in the chain of the plurality of strips in the Y-axis direction (from right to left in FIG. 3), and at the same time The end surface of the material is detected, and then the remaining amount of movement is calculated by the offset information of the material diameter information and the body vise reference line BL of the sensor position, and is detected by a rotary encoder (not shown). The remaining moving distance of the chain 进行 is a material supply device including a material supply means by performing material supply positioning on the upper side of the roller reference line RL in the x-axis direction by the finger -11 - 201200320 of the control device. The plurality of chains 11' are horizontally supported by a chain supporting member 3 (refer to Fig. 4) formed of a groove member provided by a gantry (not shown) of the material supply device 9. The material conveying roller 3 is rotatably supported by the upper portion of the column 17 in a freely rotatable manner. The column 17 is erected at a proper interval in the z-axis direction and has a square tubular lifting base extending horizontally in the X-axis direction. The top of the seat 15. As shown in Fig. 2, in order to rotate the above-described material conveying rollers 3, a sprocket 19 is attached to each material conveying roller 3, and a plurality of the lifting bases 15 are provided in the vicinity of the lower portion of the side surface of the pillars 17. Sprocket 21 (refer to Figure 5 and Figure 6). A roller drive motor 27 that rotationally drives the drive sprocket 25 via an appropriate power transmission mechanism 23 such as a belt or a chain is attached to the lift base 15 to drive the motor 27 by the roller drive motor 27 The material conveying roller 3 is rotatably driven, and the chain 209 is wound around the drive sprocket 25 and the sprocket 19, 21, respectively. Then, by driving the above-described roller drive motor 27, the plurality of material conveying rollers 3 are synchronously rotated in the same direction via the chain 29, and the material of the round bar W on the material conveying roller 3 can be applied to the cutting machine 1 The material conveying device having the material conveying means can be transported or returned to the remaining material when it is reversely rotated. Referring to FIGS. 2 to 7 , in the front and rear portions of the lift base 15 , -12-201200320 is provided: a front lift guide that guides the lift base 15 to be vertically movable up and down (z-axis direction) Pieces 3 1 f and rear lifting guides 3丨r (refer to Figs. 3 and 6). The structure of the rear elevation guide 31r is the same as that of the front elevation guide 3 1 f except for a part thereof. Therefore, the front elevation guide 3 f is mainly described. As shown in FIG. 3, the above-mentioned front elevation The guide 3 1 f is provided with a guide post 3 3 and a guide base 35 that guides the guide post 33 in the Y-axis direction (in the left-right direction of FIG. 3). The guide base 35 is horizontally provided on the floor surface F.L via a flange portion 35 f integrally provided to the guide base 35. The upper surface of the guide base 35 is provided with an inclined surface 3 7 having a slope which rises toward the main vise reference line BL side in the Y-axis direction (in the right direction of FIG. 3). . Further, the inclined surface 37 is extended in the Y-axis direction to form a pair of parallel guide rails 39 which can be linearly moved linearly by the inclined surface. The guide post 33 has a flat support base portion 34 and a lifting guide portion 33f integrally provided on the support base portion. On the bottom surface of the support base portion 34, the guide is provided. A slope Θ parallel to the inclined surface 37 of the base 35 is engaged with a guide member 4 1 on the bottom surface of the support base portion 34. The guide member 4 is coupled to the guide rail 3 of the linear guide member. 9 A bearing of the above-described linear guide which is freely movably engaged (in the embodiment, two for a total of four). As shown in Figs. 3 and 5, the lower surface of the support base portion 34 of the -13,003,003,20 is integrally provided with the guide post 33, and the parallel guide is extended along the tilting axis 37. A drive shaft 43' such as a ball screw between the guide rails 39 is rotatably screwed to the nut member 45 fixed to the left end portion of the support base portion 34. The bevel gear 50 engaged with the bevel gear 49 provided on the synchronous rotating shaft 47 orthogonal to the drive shaft 43 is provided at the left end portion of the drive shaft 43 (on the left side of FIGS. 3 and 5) and The other end portion of the synchronous rotating shaft 47 is provided with a drive motor 51 for moving the front lifter guide 31f in the Y-axis direction (refer to Fig. 7). On the other hand, the front end portion of the synchronous rotating shaft 47 (the lower end portion in Fig. 5) is provided with a rotation code that detects the amount of rotation of the synchronous rotating shaft 47 and measures the amount of movement of the front lifting guide 3 1 f in the Y-axis direction. 52. The elevation guide portion 33f is provided with X that can move in the Z-axis direction between the front elevation guide 31 f and the elevation base 15 and restrict relative movement in the Y-axis direction and the X-axis direction. The shaft guiding groove 53a and the Y-axis guiding groove 53b. On the other hand, the lifting base 15 is integrally provided with a guide roller holding portion 15h'. The guide roller holding portion 15h fixedly holds the guide roller shaft 56, and the guide roller shaft 56 is axially supported. The guide rollers 55a and 55b are slidably engaged with the guide grooves 53a and 53b. On the lower surface of the lift base 15, a cylinder bracket 57 horizontally projecting from the lift base 15 in the left-right direction (Y-axis direction) is provided integrally; two air pressures are provided on the cylinder bracket 57. Alternatively, the hydraulic cylinder 59 has a piston rod that abuts against the upper surface of the support base portion 34. The support base portion 34 is integrally provided to the guide post 33. -14- 201200320 The above-mentioned rear lifting guide 3 1 r, which is different from the front lifting guide 3 1 f, is only in the same configuration as the rear lifting guide 31r has only the Y-axis guiding groove 53a. Parts are omitted with the same drawing number. In the above configuration, the amount of movement up to the roller reference line RL is calculated based on the material diameter information previously stored in the control device and the current position information of the drive motor, and the drive motor 51 is driven forward or reversed to drive the front The lifting guide 31 f rotates with the bevel gear 50 that engages with the bevel gear 49 of the synchronous rotating shaft 47 on the rear lifting guide 31i, and rotates the driving shaft 43 that is axially supported by the supporting base portion 34, and the front lifting guide The piece 31f and the rear lifting guide 3ir are simultaneously freely movable to and from the lifting base 15, and the roller reference line at the center of the V groove of the roller 3 can be conveyed by the material provided on the column 17 of the lifting base 15. The position of the RL is moved and positioned with respect to the main vise reference line B1, and in this way, the round bar side height adjusting device 10 having the round bar side height adjusting means is provided. That is, the material feeding device 7 sets the roller reference line RL· at the center of the material after the material supply end surface 7 is positioned at the same time as the material end face BL is positioned at the main body vise reference line BL, in this manner Since the center of the V groove of the material conveying roller 3 is moved and positioned in the Y-axis direction, when the cylinder 59 is actuated after the positioning, the material is supported by the material conveying roller 3 so that the material is gripped by the main vise. When the main vise reference line BL is moved and positioned, the front elevation guide 3 1 f and the rear elevation guide 3 1 r ' move in the γ-axis direction along the inclined surface 37 and simultaneously move up and down in the Z-axis direction. Therefore, the material conveying roller 3 also moves up and down in proportion to the amount of movement in the γ-axis direction. -15- 201200320 The amount by which the material conveying roller 3 moves up and down in proportion to the amount of movement in the Y-axis direction will be described with reference to Fig. 8. As shown in Fig. 8, for example, round bar materials W1 to W4 of various diameters are placed on the V grooves of the material conveying roller 3 so that the material conveying roller 3 is horizontally oriented in the direction of the main vise reference line BL in the z-axis direction. Moving, positioning the right end faces of the round bar materials W 1 to W4 of various diameters to be in contact with the main vise reference line BL, and pulling out: passing the bottom surface of the round bar materials W 1 W W 4 and the material conveying roller The intersection of the center V of the V groove of the sub 3 is Α1 to Ρ4 points of the straight line Α-Α. The straight line A-Α is a downward slope inclined to the lower right side, and the slope thereof is such that when the radius of the round bar material W 1 is R, the radius of the round bar material W4 is r, and the difference between the heights of the intersection points P1 and P4 is When ΔΖ, it is represented by ΔΖ/(ΙΙ·Γ) = ί3ηθ. Θ is the angle formed by the straight line Α_Α and the horizontal line parallel to the Υ axis. Therefore, if the slope is zero, the heights of the bottoms of the respective round bar materials W1 to W4 can be made the same. That is, if the inclination of the above-described guide base 35 becomes the inclination of AZ/(Rr) which is raised toward the side of the main vise reference line BL, when the right end faces of the round bar materials W1 to W4 are positioned to be The height difference generated by the main vise reference line BL can be zero, and the round bar bottom height adjusting device 12 having the round bar bottom height adjusting means can be used. In the embodiment in which the height of the bottom surface of the round bar material of the present invention is constant, the angle of the V groove of the material conveying roller 3 is set to 15 Γ, and the diameter of the round bar material W to be transported is φ 3 3 0 to φ 3 0. Therefore, the slope Θ of the inclined surface 3 7 is set to about 1 / 3 0 (the angle is about 1.9 degrees) according to the above theory -16-201200320, the angle and inclination of the v groove of the material conveying roller 3 for the above material. The relationship of the slope θ of the surface 37 will be described with reference to Fig. 9. Referring to Fig. 9, the angle of the V groove 61 of the material conveying roller 3 is 2α' separated by the left and right sides of the center line V. The center of the large rod material %1 is 〇i 'the radius is R' small diameter circle The center of the rod material W2 is 〇2, and the radius is Γ 'the state in which the round bar materials W1 and %2 are tangentially engaged in the groove 61 of the material conveying roller 3'. The bottom point P3 of the V groove 6 1 The distance between the bottom point P1 of the round bar material w1 is Z' and the distance between the bottom point P3 and the bottom portion P2 of the round bar material W2 is Z'. The slope θ of the inclined surface 37 is "z axis". The ratio of the amount of adjustment of the direction / the difference of the radius of the round bar material is expressed by the following formula (1). [Math 1] tanΘ- (Z_Z ) / (R~r) = (1-sino?) /sina · · (1) where sina=r’/a, =r/a, 0. <α<9 0. . Next, the drawing of the material conveying roller 3 with respect to the center line V of the V groove 61 at an angle β is shown in the figure. Referring to Fig. 10, the distance between the bottom point Ρ3 of the V groove 61 and the bottom point Ρ1 of the round bar material W1 in the x-axis direction (vertical direction) is Ζ, and the bottom point Ρ3 of the V groove 61 and the center of the round bar material W2 The distance from the x-axis direction (vertical direction) to 02 is b '. Similarly, the distance between the bottom point Ρ 3 and the bottom Ρ 2 of the round bar material W2 in the Z-axis direction (vertical direction) is Z'. (= b'-r), when the distance between the center 〇1 of the round bar material W1 and the above-described bottom point P 3 is Η, the slope Θ of the inclined surface 37 is expressed by the following formula (2). When β = 0, it is consistent with the above formula (1). -17- 201200320 [Math 2] tan0= (1-1') / (Rr) = (cos/S-sinor) /sina · (2) where sinor=r'/a'=r/a, H= a*cos/S, 0. < a < 9 〇. . As shown in Fig. 1, the inclination Θ2 ' in the Y-axis direction of the center V' of the V-groove 61 caused by the center inclination angle β of the v-groove 6 1 with respect to the center line V of the v-groove 61 is "Υ axis" The ratio of the amount of adjustment of the direction / the difference of the radius of the round bar material, the distance between the bottom point Ρ3 of the V groove 61 and the central axis V of the round bar material W1 in the z-axis direction is C, and the round bar material W2 When the distance between the centers of the x-axis directions is C ', it is expressed by the following formula (3). [Math 3] tan0 2 = (C-C') / (Rr) = siri / 8 / sina · · (3) Figure 11 is for the outer diameter of the round bar material W without tangential contact with the material transport The slope of the inner surface of the V groove of the roller 3 is shown in the drawing. The figure shows the V groove of the material conveying roller 3 having the half angle α at the angle of the V groove of the material conveying roller 3. The sheet portion P4 is engaged with the outer diameter of the large-diameter round bar material W 1 and the small-diameter material W 2 . In Fig. 11, the half angle α of the V groove, the radius r of the small diameter material W2, the distance L between the bottom P3 of the V groove and the sheet portion P4 of the V groove are known, and the bottom surface of the small diameter material W2 and the center of the V groove. The intersection of the line V is P2, the intersection of the V-center line V of the large-diameter material W1 is P 1, the center of the large-diameter material W 1 is 〇1, the center of the small-diameter material W2 is 02, the angle Ρ101Ρ4 = Δ1, the angle Ρ202Ρ4 = Δ2, IJ r / sina = L / sinA2, so sinA2 = Lxsina / r, so △ 2 = siη -1 (LXsina / r), △ 1 = siη -1 (Lχsiηa / R). -18- 201200320 Thus, θ = 18(Γ-(α + Δ2), so the distance D between the bottom P3 of the V groove and the center 〇2 of the small-diameter material W2 is: [Math 4] D=sin (180.-(〇i+sin-UL*sin〇f/r)))*r/sina . (4) Therefore, the distance X between the bottom P3 of the V groove and the P2 of the bottom side of the small-diameter material W2 It is expressed by the following formula (5). [Math 5] X=sin(180° -(a+sin-1(L*sinor/r)))*r/sin〇fr· . . (5) Similarly, from Ο 1 of W 1 to距离1 The distance between the bottom P3 of the V groove, when the (XX,) is considered, the ratio of (XX,)·(R_r) is changed by the radius r, and the angle Δ changes, so it is a variable ratio relationship. That is to say, it is not possible to adopt a simple mechanism of the embodiment of the present invention which is simply represented by a line. However, since the length L and the angle α due to the angle Δ are constant, r is used as a fractional function of the variable, when the center 〇 and Ρ4 of the material W are? 3 When the angle of the structure is 90° or more, the material W is abutted by the end point of L, so L xsina<r 〇 Therefore, a certain degree of straight line approximation is possible, so if the slope is made in multiple stages, it is possible to obtain Practical range. If the positioning control is performed correctly, it is also possible to adopt a mechanism that has a position calculation result and uses an arbitrary positioning such as servo control. According to the relationship between the width of the V-groove and the diameter of the material of the round bar, the ratio of the increase in the diameter of the round bar to the bottom of the round bar is gradually reduced, so it is not a practical range to use the slope in the first segment. When the guide post 3 3 is moved in the direction of the main -19-201200320 body vise reference line BL by the material supply device as described above, the lifting pedestal 15 is lifted to the side of the cutting machine side. When the height (the feed lines of FIGS. 2, 3, and 4) coincides with the position of the material feed line PL, the height of the bottom surface of the round bar material is set to the rising slope of the guide base 35, respectively. The difference between the height of the bottom surface of the material supported by the V-groove roller of the material conveyor and the conveyance height on the cutter side is mechanically corrected, and the material can be conveyed to a cutter having the same height. Therefore, when the round bar material is conveyed to the cutter, the operator does not need to pay attention to the difference between the height of the bottom surface of the material supported by the V-groove roller of the material conveyor and the conveyance height on the cutter side. There is a case where the material collides with the conveying roller on the cutting machine side and material transportation is difficult. The material feed line PL is located slightly above the chain 11 of the material supply conveyor 7. In the above-described embodiment of the present invention, the front elevation guide 31f and the rear elevation guide 31r are moved along the inclined surface 37 of the slope Y in the Y-axis direction, and are supported by the V groove of the material conveying roller 3. The height of the bottom surface of the material W is different due to the difference in diameter, and is mechanically corrected by the inclination of the guiding base, and the front lifting guide 3 1 f and the rear lifting guide 3 11 are set to be The Y-axis direction and the Z-axis direction are moved, and the Y-axis movement amount and the Z-axis movement amount are individually controlled by the control device by synchronous control or asynchronous control. That is, the Y-axis movement amount and the Z-axis movement amount of the material conveying roller 3 are synchronously controlled or asynchronously controlled by the control device, thereby correcting the support by the V groove of the material conveying roller 3. The height of the bottom surface of the material W may also vary depending on the difference in diameter. For the method of tangentially supporting the round bar material by the V-groove surface, for example, -20-201200320, according to the Japanese Building Standard Law, it is desirable to have a horizontal force (0.2 during moderate earthquake) with respect to its own weight as a safe structure. In the case where the earthquake is less or the above reference is considered, it is preferable to apply a horizontal external force of 5% to 25% of the weight of the round bar to the round bar material. On the other hand, the angle "which can be withstood by the V-groove surface" is the above-mentioned angle α and the above-mentioned angle (3, in the case of "9〇-angle α + angle β" or "90.·angle α-angle β" Among the inclinations of the two sides, the angle a for the other side is about the weight of the above-mentioned round bar material and the horizontal external force applied to the center of the round bar material, which can be 5% to 25% of the weight of the bar itself. The angle at which the horizontal external force is equalized is taken as the angle a. The point ' is described in the first and second figures. The first two is a display of the moment balance around the point A, and the weight of the workpiece W is It is explained by the angle a of the balance of the horizontal external force F. The weight w is decomposed into the horizontal direction of the Η and the vertical direction of the V, wherein the horizontal direction component Η is balanced with the horizontal external force F. At this time, by regulations or any specifications, etc. If the horizontal force F is allowed to allow, for example, 20% of its own weight W, the angle a is determined by ta η - 1 ( Η / V ) and 1 1 · 3 degrees. ο When the workpiece weight W is 150 kgf, the horizontal external force is W. 1%~30%, calculate the angle a, transfer the angle β from 0° to T's a'(= 90°-a), borrow The (H/V) angle which is changed by the angle β is calculated by the width (one side) of the V groove when φ 400 is placed at V, as shown in Fig. 13. At this time, according to the design intention of the machine, one side The V-groove width is 40 mm or more and 9 5 mm or less, and the horizontal external force F is calculated to be 5% or more and 25% or less of the workpiece weight W, and the area conforming to the condition is surrounded by a thick frame. According to its knot - 21 - 201200320 It is permissible to determine the angle β in the range from 0° to 5. In the case of the above-described angle β, the horizontal external force applied to the round bar material from the safety surface as described above is averaged on both sides in the x-axis direction, and Although it is a theoretically better shock-resistant angle with respect to the x-axis direction, and the horizontal force is considered together with the allowable range of its own weight, the angle β can only obtain a substantial effect from 0° to 5°. The present invention is not limited to the description of the embodiments of the present invention, and can be implemented in various other forms by appropriately changing the contents of the present invention. [Simple diagram Fig. 1 is an explanatory view showing a conventional example in which the side surface of a round bar material having different diameters is positioned on a reference vise of a main body vise. Fig. 2 is an explanatory view of a side surface of a material supply device for a cutting machine according to the present invention. Fig. 3 is an explanatory view of a ΙΙΙ-ΙΙΙ cross section of Fig. 2. Fig. 4 is a cross-sectional view taken along line IV-IV of Fig. 3. Fig. 5 is a plan view of Fig. 3. Fig. 6 is a view of Fig. 2 Fig. 7 is a plan view of Fig. 6. Fig. 8 is a bottom view of the side of the W 4 and the line A - Α to illustrate the eighth figure is when the diameter of the round bar material (7) is wrapped in the main vise In the case of the reference line BL, the intersection point Ρ1 to Ρ4 of the V-groove center V of each of the materials W is transported. Fig. 9 is a view showing the relationship between the angle α of the V-groove of the material conveying roller 3 and the inclination 在 in the height-fixed supply method of the bottom surface of the round bar material of the present invention. Fig. 10 is a view showing the relationship between the angle of the ν groove of the material conveying roller 3 and the inclination Θ of the inclined surface 37 in the case where the center V of the V groove of the material conveying roller is inclined by β degrees with respect to the Ζ axis in Fig. 9; To illustrate the picture. Fig. 1 is a drawing in which the inclination of the outer diameter portion of the round bar material W is not in contact with the inner surface of the V groove of the material conveying roller 3, and Fig. 12 is a first illustration. The angle α of the graph, the angle β, and the relationship between the weight of the material itself and the horizontal external force. Figure 3 is in Figure 10 'material diameter φ 400, material weight... 150kgf 'horizontal external force η is 1~3〇% of workpiece weight, ν groove width (one side), according to design conditions' An example of calculation of the allowable range of the angle β when the width (one side) is 4 〇 mm to 95 mm. [Description of main component symbols] 1 : Cutting machine 3 : Material conveying roller 5 : Material conveying device 7 : Material supply conveyor 9 : Material supply device 1 1 : Chain -23 - 201200320 1 3 : Chain supporting member 15 : Lift Seat 1 7 : Pillar 1 9 : Sprocket 2 1 : Sprocket 23 : Power transmission mechanism 25 : Drive sprocket 2 7 : Roller drive motor 2 9 : Chain 3 1 f : Front lift guide 3 1 r : Rear lift Guide 33: guide post 3 4 : support base portion 35 : guide base 3 7 : inclined surface 39 : guide rail 41 : guide 4 3 : drive shaft 4 5 : nut member 4 7 : synchronous rotation shaft 49: bevel gear 5 0 : bevel gear 5 1 : drive motor 5 2 : rotary encoder - 24 201200320 56 : guide roller shaft 5 7 : cylinder bracket 5 9 : cylinder-25 -

Claims (1)

201200320 七、申請專利範圍: 1 · 一種圓棒材料底面高度一定供給方法,藉由: 將圓棒材料在該圓棒的長軸方向爲了朝上述切斷機搬 運而朝X軸方向輸送的材料輸送手段、 爲了將上述圓棒材料朝上述材料輸送手段交付,而將 上述圓棒材料朝相對於上述X軸方向在水平面上正交的γ 軸方向供給的材料供給手段' 當上述材料輸送手段從上述材料供給手段接受上述圓 棒材料時’進行Y軸方向的定位的圓棒側面高度調整手段 、 以及相對於上述XY軸方向成鉛直方向爲Z軸方向,朝 S上述材料輸送手段將該圓棒材料朝該切斷機輸送時的材 料局度方向也就是Z軸方向’進行高度調整的圓棒底面高 度調整手段; 來將圓棒材料W供給到切斷機的圓棒材料底面高度— 定供給方法’包含有以下的步驟: 上述材料供給手段,以讓該圓棒材料的端面高度與切 斷機的主體虎鉗基準線一致的方式,供給該圓棒材料,同 時或在供給材料之後, 上述圖棒底面局度調整手段,藉由上述圓棒側面高度 調整手段的定位位置,唯一性地調整該圓棒材料的高度以 讓該圆棒材料的底面高度成爲一定; 以及藉由上述方式’讓上述材料輸送手段(5 )將材 料朝該切斷機輸送時的該圓棒材料的底面高度成爲〜定。 -26- 201200320 2. 一種圓棒材料底面高度一定供給裝置,包含有以 下: 是在圓棒材料的長軸方向也就是χ軸方向,將該圓棒 朝切斷機輸送供給的材料輸送裝置,上述材料輸送裝置, 具有材料輸送機,該材料輸送機設置有:以ν溝至少支承 上述圚棒材料且可自由旋轉的材料輸送滾子: 是在水平面上相對於上述Χ軸方向正交的¥軸方向, 爲了將圓棒材料交付到上述材料輸送裝置,而將圓棒材料 供給到該材料輸送裝置的材料供給裝Μ,上述材料供給裝 置,具有供給輸送機,該供給輸送機設置有:至少支承上 述圓棒材料的可自由旋轉的鏈條; 相S於上述ΧΥ軸方向成給直的力向也就是Ζ軸方向 :將上述材料輸送滾子進行調整的圓棒底面高度調整裝置 以及在從上述材料供給 上述Υ軸方向將上述材料輸 側面闻度調整裝置; 在上述構造, 4置供給上述圓棒的位置,在 送滾子的ν溝中心定位的圓棒 上述材料供給裝置,以使上述 切斷機的主體虎鉗基準面—致的方寸嗣广而面"度,、 該圓棒材料定位的動作,、二式’配合在㈣方向將 使上述材料輸』: 側面高度調整裝置,以 的方式將其定二於上V溝中心與該圓棒材料的中心-致 mmm ^ ^ _ 軸方向時,上述圓棒底面高度調 S將該圓棒材料的高度唯-性地調整成讓該圓 -27- 201200320 棒材料的底面高度成爲一定,來讓上述材料輸送裝置朝上 述切斷機輸送材料時的該圓棒材料的底面高度成爲—定。 3·如申請專利範圍第2項的圓棒材料底面高度一定供 給裝置,其中上述圓棒側面高度調整裝置與上述圓棒底面 闻度調整裝置’是一體的構造,設置成可自由滑動地卡合 於導引基座’該導引基座具備有至少一個朝向上述主體虎 鉗基準線的方向傾斜的傾斜面。 4 ·如申請專利範圍第2項的圓棒材料底面高度一定供 給裝置,其中上述圓棒材料與上述材料輸送滾子的V溝切 線抵接’當V溝角度爲2 α,V溝中心的Z軸方向的傾斜度爲 β時’位在上述圓棒側面高度調整裝置與上述圓棒底面高 度調整裝置之Υ軸方向定位手段與Ζ軸方向定位手段,是唯 一性連動的構造,設置成可定位調整成讓「Ζ軸方向的調 整量」/「圓棒材料的半徑的差」的比爲(cosp-sina)/sina ,配合設置成可定位調整成讓「Y軸方向的調整量」/「圓 棒材料的半徑的差」的比爲sinp/sina » 5 ·如申請專利範圍第4項的圓棒材料底面高度一定 供給裝置,其中「90°-角度a +角度β」或「90°-角度a-角 度β」,是V溝雙方的傾斜度,針對哪邊的角度較小,是 關於上述圓棒材料的本身重量與施加於該圓棒材料中心的 水平外力,將該本身重量的5%〜25 %的該水平外力均衡的 角度作爲該角度,β爲0°〜5"。 -28-201200320 VII. Patent application scope: 1 · A method for supplying the height of the bottom surface of a round bar material by: conveying the material of the round bar material in the direction of the long axis of the round bar to the X-axis direction for transporting to the cutting machine a material supply means for supplying the round bar material to the material conveying means, and feeding the round bar material in a γ-axis direction orthogonal to the X-axis direction on a horizontal surface. When the material supply means receives the round bar material, the round bar side height adjusting means for positioning in the Y-axis direction and the Z-axis direction with respect to the vertical direction of the XY-axis direction, and the material conveying means for the round bar material The direction of the material in the direction of the conveyance of the cutter is the height adjustment of the height of the bottom surface of the round bar in the Z-axis direction; the height of the bottom surface of the round bar material to supply the round bar material W to the cutter - the supply method 'Includes the following steps: The above material supply means to make the end face height of the round bar material and the main body of the cutting machine The bar clamp material is supplied to the round bar material at the same time, or after the material is supplied, the bar bottom degree adjustment means is used to uniquely adjust the round bar material by the positioning position of the round bar side height adjusting means. The height is such that the height of the bottom surface of the round bar material is constant; and the height of the bottom surface of the round bar material when the material conveying means (5) is conveyed toward the cutting machine by the above-described method is set to be constant. -26- 201200320 2. A fixed height supply device for the bottom surface of a round bar material, comprising the following: a material conveying device that conveys and supplies the round bar to the cutting machine in the direction of the long axis of the round bar material, that is, the direction of the x-axis. The material conveying device has a material conveying device provided with a material conveying roller that supports at least the crowbar material in a ν groove and is freely rotatable: is orthogonal to the Χ-axis direction on a horizontal plane In the axial direction, in order to deliver the round bar material to the material conveying device, the round bar material is supplied to the material supply device of the material conveying device, and the material supply device has a supply conveyor, and the supply conveyor is provided with at least: a freely rotatable chain supporting the round bar material; the phase S is in a direction perpendicular to the x-axis direction, that is, a x-axis direction: a bar bottom height adjusting device for adjusting the material conveying roller and The material is supplied to the above-mentioned boring axis direction to transfer the material to the side scent adjusting device; in the above configuration, 4 is supplied to the round bar Position, the material supply device of the round bar positioned at the center of the groove of the roller to make the reference surface of the main body of the cutter to be wide and face, and the material of the round bar is positioned Action, the two type 'coordinated in the (four) direction will make the above material output:: the side height adjustment device, in the way of the center of the V groove and the center of the round bar material - the mmm ^ ^ _ axis direction The height of the bottom surface of the round bar is adjusted so that the height of the material of the round bar is uniquely adjusted so that the height of the bottom surface of the bar material -27-201200320 is constant, so that the material conveying device transports the material toward the cutting machine. The height of the bottom surface of the round bar material becomes constant. 3. The apparatus of claim 2, wherein the round bar side height adjusting device and the round bar bottom surface sound adjusting device are integrally formed, and are slidably engaged. The guiding base is provided with at least one inclined surface inclined toward a direction of the reference vise of the main body vise. 4 · As in the patent application scope 2, the height of the bottom surface of the round bar material is a certain supply device, wherein the round bar material abuts the tangential line of the V groove of the material conveying roller 'When the V groove angle is 2 α, the Z of the V groove center When the inclination in the axial direction is β, the positioning means in the y-axis direction and the y-axis direction positioning means of the round bar side height adjusting device and the round bar bottom height adjusting device are uniquely linked structures, and are arranged to be positionable. Adjust the ratio of the "adjustment amount in the x-axis direction" / "the difference in the radius of the round bar material" to (cosp-sina)/sina, and set it to be positionally adjustable so that the "adjustment amount in the Y-axis direction" / " The ratio of the difference in radius of the round bar material is sinp/sina » 5 · The height of the bottom surface of the round bar material according to item 4 of the patent application is a certain supply device, where "90°-angle a + angle β" or "90°- The angle a-angle β" is the inclination of both sides of the V-groove, and the angle to which the angle is small is about the weight of the round bar material itself and the horizontal external force applied to the center of the round bar material, and the weight of the ball 5 itself. %~25% of this level of external force balance The angle is taken as the angle, and β is 0° to 5". -28-
TW100119381A 2010-06-03 2011-06-02 A method and apparatus for providing a bottom bar height of a bar material TWI461275B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128197A JP5600481B2 (en) 2010-06-03 2010-06-03 Method and apparatus for constant supply of round bar material bottom surface level

Publications (2)

Publication Number Publication Date
TW201200320A true TW201200320A (en) 2012-01-01
TWI461275B TWI461275B (en) 2014-11-21

Family

ID=45066666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119381A TWI461275B (en) 2010-06-03 2011-06-02 A method and apparatus for providing a bottom bar height of a bar material

Country Status (3)

Country Link
JP (1) JP5600481B2 (en)
TW (1) TWI461275B (en)
WO (1) WO2011152298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115924406A (en) * 2023-01-09 2023-04-07 河北汇中管道装备有限公司 Pipe body conveying mechanism suitable for hydraulic press

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579109B (en) * 2016-04-28 2017-04-21 Jin-Cun Zheng The power of the times is improved
JP7187010B2 (en) * 2018-08-26 2022-12-12 株式会社タマディック Position adjustment device for bar surface treatment equipment
CN111137656A (en) * 2020-01-15 2020-05-12 金华硕和自动化设备有限责任公司 Conveying device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673795B2 (en) * 1988-10-18 1994-09-21 英光 合田 Rotating long material feeder
JP2798178B2 (en) * 1989-02-09 1998-09-17 株式会社アマダ Work transfer method and apparatus for cutting machine
JP3126152B2 (en) * 1991-01-18 2001-01-22 株式会社アマダ Feeding method for cutting machine
JPH0724524U (en) * 1993-10-15 1995-05-09 株式会社アマダ Feeding device for cutting machine
JP3844553B2 (en) * 1996-03-29 2006-11-15 株式会社アマダ Work material supply method and apparatus for cutting machine
JP4390496B2 (en) * 2003-07-14 2009-12-24 株式会社アマダ Material supply method and apparatus for cutting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115924406A (en) * 2023-01-09 2023-04-07 河北汇中管道装备有限公司 Pipe body conveying mechanism suitable for hydraulic press

Also Published As

Publication number Publication date
WO2011152298A1 (en) 2011-12-08
JP2011251391A (en) 2011-12-15
JP5600481B2 (en) 2014-10-01
TWI461275B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
CN109335538B (en) Double-loop line cross belt sorting machine, cross belt sorting system and sorting method thereof
TW201200320A (en) Method for supplying round bar material with bottom surface level kept constant, and device therefor
US9302353B2 (en) Apparatus for cutting pipe
KR101422724B1 (en) Apparatus for transferring pipe
KR20140104083A (en) Laser Pipe Cutting Apparatus
KR101606259B1 (en) the horizontality transfer arm for transfer and the transfer robot theirwith
TW201221277A (en) Moving beam type machine tool
KR101220913B1 (en) Belt conveyer system with meandering preventing apparatus
KR101989622B1 (en) Plywood transfer apparatus
CN109465977A (en) A kind of silicon single crystal rod clamping device
CN115339849A (en) Automatic pipe feeding device and laser pipe cutting machine
KR101288430B1 (en) Milling system for long seam of pipe
US7040207B2 (en) Log merchandiser
CN105171448B (en) Three-way pipe flat head machine
CN213893080U (en) Square pipe stacking equipment easy to pack
KR20100095717A (en) Automatic wood cutting apparatus
KR20180110755A (en) Apparatus for carrying pallet
CN108381107A (en) Welding tool for escalator truss
JP2017170451A (en) Laser processing device
JP7138840B2 (en) Raw wood supply device, raw wood processing device equipped with same, and control method for raw wood supply device
CN209736884U (en) Pipe material loading machine
CN208132317U (en) Welding tool for escalator truss
JP6741447B2 (en) Laser processing equipment
JP7100712B2 (en) Work stocker
KR102375886B1 (en) Cutting system of pipe using the length arrest