TW201143412A - Solid-state imaging device and method of reading signals from the pixel array of solid-state imaging device - Google Patents

Solid-state imaging device and method of reading signals from the pixel array of solid-state imaging device Download PDF

Info

Publication number
TW201143412A
TW201143412A TW100102878A TW100102878A TW201143412A TW 201143412 A TW201143412 A TW 201143412A TW 100102878 A TW100102878 A TW 100102878A TW 100102878 A TW100102878 A TW 100102878A TW 201143412 A TW201143412 A TW 201143412A
Authority
TW
Taiwan
Prior art keywords
signal
circuit
column
pixel
signal processing
Prior art date
Application number
TW100102878A
Other languages
Chinese (zh)
Inventor
Shoji Kawahito
Satoshi Aoyama
Takashi Watanabe
Jong-Ho Park
Original Assignee
Univ Shizuoka Nat Univ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Shizuoka Nat Univ Corp filed Critical Univ Shizuoka Nat Univ Corp
Publication of TW201143412A publication Critical patent/TW201143412A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Disclosed is a solid-state imaging device capable of reducing the column fixed pattern noise without being affected by electron diffusion or light leakage from the pixel array. A column signal processing circuit of a column signal processing unit in the solid-state imaging device generates an image signal and a reference signal from a pixel signal from the pixels and from a false signal from the reference circuit, respectively. The pixel signal and the false signal contain column fixed pattern noise of said column signal processing circuit. Because the signal processing unit performs difference processing on the image signal using the reference signal, said column fixed pattern noise decreases in the read signal. Because the false signal source does not contain photoelectric conversion elements, processing for decreasing the column fixed pattern noise is not affected by electron diffusion or light leakage from the pixel array.

Description

201143412 六、發明說明: 【發明所屬之技術領域】 本發明是有關於固體攝像裝置、及從固體攝像裝置之 像素陣列讀出訊號之方法。 【先前技術】 在專利文獻1中係記載了 C Μ 0 S影像感測器。在c Μ 0 S 影像感測器中,攝像部係具有有效像素部和無效像素部。 有效像素部及無效像素部係含有相同的像素電路。在無效 像素部的一部分,設有固定模態雜訊補正用的光學黑暗部 。會測定從光學黑暗部所得之各像素的訊號量,並且從有 效像素部之訊號量扣除光學黑暗部之像素的訊號量。該減 算’係藉由所定之平均化處理而以平均値的方式求出光學 黑暗部的像素平均訊號量,將該平均値從有效像素部之各 像素的訊號量加以扣除。 〔先前技術文獻〕 〔專利文獻〕 〔專利文獻1〕日本特開2008-236787號公報 【發明內容】 〔發明所欲解決之課題〕 在專利文獻1所記載的CMOS影像感測器中,在生成攝 像資料的有效像素部之周圍,設有光學黑暗部。光學黑暗 部係爲含有被遮光的光電轉換元件、傳輸閘極及浮置擴散 -5- 201143412 部,或是含有傳輸閘極及浮置擴散部的像素。會生成從光 學黑暗部之像素所得到的訊號和從有效像素部之像素所得 到的訊號的差,然後將固定模態雜訊予以抵消。 然而,該CMOS影像感測器的固體攝像裝置係會產生 以下問題。無效像素內之像素,係含有被用以遮光之遮光 膜所覆蓋的光電轉換元件、傳輸閘極及浮置擴散部。當光 線入射至攝像裝置時,該光線雖然不會直接入射至無效像 素的光學黑暗部中的光電轉換元件,但會直接入射至有效 像素中的光電轉換元件。依據發明人們的知識,光學黑暗 部係會受到來自有效像素部的漏光或隔著C Μ Ο S影像感測 器之基板的載子擴散之影響。如上記,受到漏光或擴散電 子之影鞞的無效像素,其基準位準會隨著入射光而變化, 因此無法擔任正確的光學黑暗之角色。因此,無法使用光 學黑暗來穏定地去除固定模態雜訊。如此往無效像素之漏 光的影麴,在像素尺寸越小時越爲顯著,尤其在使用細微 化像素的影像感測器中會變成嚴重的問題。 另一方面,固定模態雜訊中,可槪略區分成以下2種 範疇。其一是,起因於像素內之像素電路的固定模態雜訊 (以下稱作「像素固定模態雜訊」而參照),另一則是, 起因於縱欄電路的固定模態雜訊(以下稱作「縱欄固定模 態雜訊」而參照)。像素固定模態雜訊係起因於像素之光 電轉換元件的暗電流、像素電路之電晶體的閩値參差等。 縱欄固定模態雜訊係起因於被排列在像素陣列之縱欄中的 縱欄電路。來自每個縱欄電路的攝像訊號,係反映出該攝 -6- 201143412 像訊號所對應之像素訊號之讀出時所使用過的縱欄電路之 特性。被排列在像素陣列之縱欄裡的縱欄電路,係因爲縱 欄電路內的電子元件,例如電容、電晶體、增幅器等之參 差,導致每一縱欄電路具有不同的特性。因此,來自某個 縱欄電路的訊號,會帶有該縱欄電路所固有的雜訊。例如 當沒有光線入射至沒有參差之像素陣列的黑暗時,每一縱 欄電路的讀出訊號間所呈現之差異,是起因於縱欄固定模 態雜訊。 本發明係有鑑於此種情事而硏發,其目的在於提供一 種不受來自像素陣列之漏光或擴散電子之影響,可降低縱 欄固定模態雜訊的固體攝像裝置,另一目的在於提供一種 可降低縱欄固定模態雜訊的從固體攝像裝置之像素陣列讀 出訊號之方法。 〔用以解決課題之手段〕 本發明之一側面,係涉及固體攝像裝置。該固體攝像 裝置係具備:(a )像素陣列,係含有像素’該像素係具 有光電轉換元件和提供來自該光電轉換元件之訊號的像素 電路;和(b )參照訊號生成部,係被配置在前記像素陣 列之外側,具有一或複數個參照電路’該參照電路係含有 用來降低縱欄固定模態雜訊的擬似訊號源;和(c )縱欄 訊號處理部,係含有縱欄訊號處理電路’用以根據來自前 記像素陣列之像素訊號及來自前記參照訊號生成部之擬似 訊號而分別生成攝像訊號及參照訊號;和(d)訊號處理 -7- 201143412 部,係接受前記攝像訊號及前記參照訊號’並且生成讀出 訊號。前記像素陣列係含有複數縱欄陣列;前記縱欄訊號 處理部,係每一畫格就進行前記擬似訊號的k次(1 S k ) 之讀出;前記參照電路的前記擬似訊號源係不含光電轉換 元件及浮置擴散部;前記訊號處理部的前記讀出訊號,係 藉由使用前記參照訊號而對前記攝像訊號進行用來降低前 記縱欄訊號處理電路所造成之縱欄固定模態雜訊的演算處 理,而被生成。 若依據該固體攝像裝置,則縱欄訊號處理電路係根據 像素訊號及擬似訊號而分別生成攝像訊號及參照訊號。因 此,在攝像訊號及參照訊號中會含有,該當縱欄訊號處理 電路所造成之縱欄固定模態雜訊。訊號處理部,係使用參 照訊號而對攝像訊號進行上記演算處理,因此該當縱欄訊 號處理電路所造成之縱欄固定模態雜訊,在讀出訊號中會 被減低。由於擬似訊號源係不含光電轉換元件及浮置擴散 部,因此縱欄固定模態雜訊的降低處理,係不受來自像素 陣列的漏光或擴散電子之影II。 本發明的另一側面係涉及從含有縱欄訊號處理電路及 參照電路之固體攝像裝置之像素陣列讀出訊號之方法。此 方法係具備:(a )使用前記縱欄訊號處理電路而進行來 自.像素陣列內之像素的像素訊號之讀出,以生成攝像訊號 之步驟;和(b )使用前記縱欄訊號處理電路而進行來自 前記像素陣列外之前記參照電路的、用以減低縱欄固定模 態雜訊的擬似訊號之讀出,以生成參照訊號之步驟;和( -8 - 201143412 C )藉由使用前記參照訊號而對前記攝 低前記縱欄訊號處理電路所造成之縱欄 算處理,以生成讀出訊號之步驟。前記 轉換元件、和用來提供來自該光電轉換 電路;前記參照電路係含有用來生成前 訊號源;前記擬似訊號源係不含光電轉 部:前記縱欄訊號處理電路,係對前記 似訊號,進行相關二重取樣、A/D轉換 動作之至少一種處理。 若依據此方法,則是使用同一縱欄 根據像素訊號及擬似訊號而分別生成攝 。因此,在攝像訊號及參照訊號中會含 處理電路所造成之縱欄固定模態雜訊。 攝像訊號進行上記演算處理,因此該當 所造成之縱欄固定模態雜訊,在讀出訊 於擬似訊號源係不含光電轉換元件及浮 欄固定模態雜訊的降低處理,係不受來 或擴散電子之影響。 在本發明的上記側面所涉及之固體 ,各縱欄陣列內的前記像素係被連接至 電路係可含有’用來對前記縱欄線提供 的開關。前記像素的前記像素電路係可 該當像素之前記光電轉換元件的訊號提 需的控制機構。 像訊號進行用來降 固定模態雜訊的演 像素係具有:光電 元件之訊號的像素 記擬似訊號的擬似 換元件及浮置擴散 像素訊號及前記擬 、增幅及取樣保持 訊號處理電路,而 像訊號及參照訊號 有,該當縱欄訊號 使用參照訊號而對 縱欄訊號處理電路 號中會被減低。由 置擴散部,因此縱 自像素陣列的漏光 攝像裝置及方法中 縱欄線。前記參照 前記擬似訊號所需 含有,用來將來自 供至前記縱欄線所 -9- 201143412 若依據上記的側面’則參照電路係隔著開關而將擬似 訊號提供至縱欄線。又’像素電路係隔著控制機構而將像 素訊號提供至縱欄線。因此,參照電路係可生成適合用來 降低縱欄固定模態雜訊的擬似訊號。 在本發明的上記側面所涉及的固體攝像裝置及方法中 ’前記縱欄訊號處理部係含有前記縱欄訊號處理電路之陣 列’前記縱欄訊號處理電路的每一者係分別連接至前記縱 欄陣列’前記參照訊號生成部係含有前記參照電路之陣列 ’前記參照電路之每一者係分別連接至前記縱欄訊號處理 電路;前記訊號處理部係含有用來進行前記演算處理的演 算電路’前記訊號處理部係對每一前記縱欄訊號處理電路 進行用來生成前記參照訊號與前記攝像訊號之差分的處理 ’來作爲前記演算處理,前記讀出訊號,係可使用前記演 算電路而被生成。 若依據上記之側面,則縱欄訊號處理電路之每一者係 分別電性連接至縱欄陣列,並且參照電路之每一者係分別 電性連接至縱欄訊號處理電路。在每一縱欄陣列裡,設有 縱欄訊號處理電路及參照電路。此形態係爲,每一縱欄陣 列所讀出的攝像訊號及參照訊號,係含有該當縱欄陣列所 需之縱欄訊號處理電路所造成的縱欄固定模態雜訊。訊號 處理部.,係可對每一縱欄陣列,使用參照訊號而對攝像訊 號進行上記演算處理。 在本發明的上記側面所涉及的固體攝像裝置及方法中 ,前記參照訊號生成部係可含有,被連接至前記縱欄訊號 •10- 201143412 處理電路的追加之參照電路。前記參照訊號生成部係可進 行,從前記參照電路及前記追加之參照電路,讀出前記擬 似訊號。若依據上記側面,則可將來自參照電路及追加之 參照電路的擬似訊號加以組合,以生成參照訊號。又,參 照電路之位置係與追加之參照電路的位置不同,因此可將 這些參照電路的參差予以平均化。來自參照電路之擬似訊 號的讀出,係與來自追加參照電路之擬似訊號的讀出在不 同時刻下進行,因此對隨機雜訊的降低是有效的。 在本發明的上記側面所涉及的固體攝像裝置及方法中 ’前記縱欄訊號處理部係可含有相關二重取樣(CDS )電 路。前記相關二重取樣電路係將前記像素訊號予以讀出; 前記像素訊號係含有,含雜訊成分之第1訊號位準與含有 重疊於該雜訊成分上之訊號成分的第2訊號位準;前記攝 像訊號係表示前記第1訊號及前記第2訊號之差分。 若依據上記之側面,則可降低起因於CDS電路的縱欄 固定模態雜訊。可藉由CDS電路,去除像素電路中的重置 雜訊、及電晶體的閩値參差。 在本發明的上記側面所涉及的固體攝像裝置及方法中 ’前記縱欄訊號處理部係可含有A/D轉換電路,用來接受 來自前記相關二重取樣電路的輸出訊號。 若依據上記之側面,則可降低起因於A/D轉換電路的 縱欄固定模態雜訊。A/D轉換電路係提供數位形式的參照 訊號及攝像訊號。 在本發明的上記側面所涉及的固體攝像裝置及方法中 -11 - 201143412 ’前記A/D轉換電路中的A/D轉換之方式,係可爲例如積 分型轉換、巡迴型轉換、逐次比較型轉換及這些所組合成 的轉換方式之至少一種。若依據上記之側面,則可對固體 攝像裝置適用上記的轉換方式》 在本發明的上記側面所涉及的固體攝像裝置及方法中 ’前記縱欄訊號處理電路係可含有:第1及第2電容、演算 增幅電路,以及用來變更前記第1電容、前記第2電容及前 記演算增幅電路之連接所需的開關電路。前記開關電路係 可提供:第1連接’係使前記第1及第2電容以及前記演算 增幅電路可進行相關二重取樣;和第2連接,係使前記第1 及第2電容以及前記演算增幅電路可進行巡迴型a/D轉換。 前記縱欄訊號處理電路’係可藉由前記第1連接而進行前 記相關二重取樣,並且藉由前記第2連接而進行前記巡迴 型A/D轉換。 若依據上記之側面,則可降低起因於演算增幅電路、 第1電容、第2電容及開關電路的縱欄固定模態雜訊。 在本發明的上記側面所涉及的固體攝像裝置及方法中 ’前記像素陣列、前記參照訊號生成部及前記縱欄訊號處 理部’係可被集縮在單一半導體晶片中。若依據上記之側 面’則訊號處理部係被設在半導體晶片的外部。不限定於 集縮在單一宇導體晶片’可以各式各樣的形態來提供訊號 處理部》 或者,在本發明的上記側面所涉及的固體攝像裝置及 方法中,前記像素陣列、前記參照訊號生成部、前記縱欄 -12- 201143412 訊號處理部及訊號處理部’係可被集縮在單—半導體晶片 中。若依據上記之側面’則縱欄固定模態雜訊已被降低的 讀出訊號’係可從固體攝像裝置所需之積體電路作提供。 本發明的上記目的及其他目的、特徵、以及優點,係 可根據參照添附圖面所進行的本發明理想實施形態之以下 詳細說明,而更容易理解。 〔發明效果〕 如以上說明,若依據本發明,則可提供一種不受來自 像素陣列之漏光或擴散電子之影響,可降低縱欄固定模態 雜訊的固體攝像裝置。又,若依據本發明,則可提供從固 體攝像裝置之像素陣列讀出訊號之方法,依據此方法,則 可降低縱欄固定模態雜訊。 【實施方式】 本發明的槪念,可藉由參照所例示之添附圖面並考慮 以下詳細說明,就可容易理解。接下來,一面參照添附圖 面,一面說明本發明的固體攝像裝置、及從像素陣列讀出 訊號之方法的相關之實施形態。在可能的情況下,對同一 部分會標示同一符號。 接下來說明,在像素裡使用增幅電路的增幅型固體攝 像裝置、及其固定模態雜訊去除方法。增幅型固體攝像裝 置係具有,帶有增幅機能之像素和配置在像素周圍的掃描 電路,藉由該掃描電路而從像素中讀出像素資料。增幅型 -13- 201143412 固體攝像裝置之一例,係有一種有利於將像素與周邊之驅 動電路及訊號處理電路作積體化的CMOS (互補式金屬氧 化物半導體)所構成的APS (Active Pixel Sensor)型影像 感測器。APS型影像感測器中的像素之一例,係有可獲得 高畫質的4電晶體型像素。電晶體係可爲例如MIS型、M0S 型。又,本實施形態所述之固體攝像裝置係可適用於攝像 機裝置機器。攝像機裝置機器係含有本實施形態所述之固 體攝像裝置。 圖I係所謂2維影像感測器的固體攝像裝置之區塊構成 的圖面。固體攝像裝置1係含有:像素陣列3、縱欄訊號處 理部5、參照訊號生成部7、及訊號處理部9。在固體攝像 裝置1中,像素1 1係被配置成矩陣狀而構成了像素陣列3。 像素1 1係被連接至縱欄訊號線C,這些像素係構成了縱欄 陣列。藉由行解碼器電路13a而會從各像素的行中選擇出 特定的行。行驅動電路1 4a係向驅動線1 2提供驅動訊號。 驅動線1 2係表示了傳輸電晶體驅動線、重置電晶體驅動線 及選擇電晶體驅動線。藉由參照行選擇電路1 3b,參照訊 號生成部7會被選擇。行驅動電路1 4b係對往參照訊號生成 部的驅動線25,提供驅動訊號。驅動線25係表示參照行選 擇電晶體驅動線。固體攝像裝置1係可含有時序生成電路 10,係會生成用來.控制該當裝置1中所含之電路之動作時 序所需的控制訊號、時脈訊號等。 像素陣列3和含有像素1 1的陣列。各像素1 1,參照圖1 ,係含有光電轉換元件1 1 a和像素電路1 1 b。光電轉換元件 -14- 201143412 1 1 a係可含有例如光二極體。光電轉換元件丨丨a,係將所收 到的光L’轉換成電氣訊號。像素電路nb,係對來自該光 電轉換元件Π a的訊號S ( Ph )實施增幅,以提供像素訊號 S ( pixel )。像素電路1 lb係含有:對傳輸訊號作回應的傳 輸電晶體TR ( TF )、對重置訊號作回應的重置電晶體TR (RS )、增幅電晶體TR ( AM )、及對行選擇訊號作回應 的開關電晶體TR ( S W )。像素電路1 1 b係含有浮置擴散部 FD。傳輸電晶體TR ( TF )係於閘極接受傳輸訊號,被連 接在光電轉換元件1 1 a與浮置擴散部fd之間。傳輸電晶體 TR(TF) ’係控制著來自光電轉換元件na之電荷往浮置 擴散部FD的傳輸。重置電晶體TR(RS)係被連接至浮置 擴散部FD’將浮置擴散部FD予以重置。增幅電晶體TR( ΛΜ )係於閘極接受來自浮置擴散部fd的訊號,被連接在 身爲電源線的基準電位線Vdd與縱欄線C之間。開關電晶體 TR(SW) ’係與增幅電晶體TR(AM)串聯,且被連接在 基準電位線V d d與縱欄線C之間。像素電路1 1 b係將像素訊 號S ( pixel )提供至縱欄線C。 參照訊號生成部7,係與像素陣列3獨立配置》參照訊 號生成部7係具有一或複數個參照電路7a。圖2係參照電壓 生成部的參照電路之構成的圖面。參照圖2 ( a ),參照電 路7 a係含有’提供用來降低縱欄固定模態雜訊所需的擬似 訊號源PSD、及來自擬似訊號源PSD之擬似訊號S ( psd ) 用的開關’例如開關電晶體TR ( SW0 )。參照電路7a的擬 似訊號源PSD係不含光電轉換元件11 a及浮置擴散部FD, -15- 201143412 是由與光電轉換元件lla不同的元件的電晶體所構成。參 照電路7a係含有對應於增幅電晶體的電晶體TR ( PSD ) ’ 電晶體TR ( PSD )的閘極係被連接至身爲電源線Vdd的電 壓源,電晶體TR ( PSD )係被連接在身爲電源線Vdd之基 準電位線與縱欄線C之間。電晶體TR ( PSD )與電晶體TR (SW0)係被串聯,電晶體TR(PSD)與電晶體TR(SW0 )所共通連接的節點,係隔著電晶體TR ( PSD )而被偏壓 。各電晶體TR ( SW0 ) 、TR ( PSD )係可採用與各個像素 1 1內的電晶體TR ( SW ) 、TR ( AM )相同構造者。藉由使 這些對應的電晶體的尺寸、關案形狀或方向等電晶體屬性 彼此相符,就可進行高精度的縱欄固定模態雜訊去除。縱 欄訊號處理部5係例如可每一畫格就進行擬似訊號S ( psd )的k次(1 $ k)之讀出。 再度參照圖1,縱欄訊號處理部5係接受從像素陣列3 內之像素11所送來的像素訊號S ( pixel )及從參照訊號生 成部7所送來的擬似訊號S ( psd ),並且根據像素訊號S ( pixel)及擬似訊號S ( psd)而分別生成攝像訊號S ( img) 及參照訊號S ( ref )。 又,縱欄線C上的訊號,係被導入至縱欄訊號處理部5 。縱欄訊號處理部5,係將例如相關二重取樣、A/D轉換、 增幅及取樣保持動作之至少一種處理,對像素訊號S ( pixel)及擬似訊號S (psd)進行之。這些處理,係可爲類 比或數位的訊號處理。201143412 VI. Description of the Invention: [Technical Field] The present invention relates to a solid-state imaging device and a method of reading a signal from a pixel array of a solid-state imaging device. [Prior Art] Patent Document 1 describes a C Μ 0 S image sensor. In the c Μ 0 S image sensor, the imaging unit has an effective pixel portion and an invalid pixel portion. The effective pixel portion and the invalid pixel portion contain the same pixel circuit. An optical dark portion for fixing modal noise correction is provided in a part of the ineffective pixel portion. The amount of signal of each pixel obtained from the optical dark portion is measured, and the amount of the signal of the pixel of the optical dark portion is subtracted from the signal amount of the effective pixel portion. The subtraction is obtained by averaging processing to obtain the average pixel signal amount in the optical dark portion by the average 値, and subtracting the average 値 from the signal amount of each pixel of the effective pixel portion. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] JP-A-2008-236787 SUMMARY OF INVENTION [Problems to be Solved by the Invention] In the CMOS image sensor described in Patent Document 1, generation is performed. An optical dark portion is provided around the effective pixel portion of the image data. The optical dark part is a photoelectric conversion element, a transmission gate, and a floating diffusion -5 - 201143412, or a pixel including a transmission gate and a floating diffusion. The difference between the signal from the pixels in the optical dark portion and the signal from the pixels in the effective pixel portion is generated, and the fixed modal noise is cancelled. However, the solid-state imaging device of the CMOS image sensor causes the following problems. The pixels in the invalid pixels include a photoelectric conversion element, a transfer gate, and a floating diffusion covered by a light shielding film for shielding light. When the light is incident on the image pickup device, the light is not directly incident on the photoelectric conversion element in the optically dark portion of the invalid pixel, but is directly incident on the photoelectric conversion element in the effective pixel. According to the inventor's knowledge, the optical dark portion is affected by light leakage from the effective pixel portion or carrier diffusion through the substrate of the C Μ S image sensor. As mentioned above, the invalid pixels that are affected by light leakage or diffused electrons change their reference level with incident light, so they cannot assume the correct role of optical darkness. Therefore, optical darkness cannot be used to remove fixed modal noise. The effect of such light leakage on the ineffective pixels is more remarkable as the pixel size is smaller, especially in an image sensor using fine pixels. On the other hand, in fixed modal noise, it can be roughly divided into the following two categories. One is due to the fixed modal noise of the pixel circuit in the pixel (hereinafter referred to as "pixel fixed modal noise"), and the other is the fixed modal noise caused by the column circuit (below) It is called "column fixed modal noise" and is referred to). The pixel fixed modal noise is caused by the dark current of the photoelectric conversion element of the pixel, the enthalpy of the transistor of the pixel circuit, and the like. The column fixed modal noise is caused by a column circuit arranged in a column of the pixel array. The image signal from each column circuit reflects the characteristics of the column circuit used in the reading of the pixel signal corresponding to the signal -6-201143412. The column circuit arranged in the column of the pixel array is characterized by the difference in the electronic components in the column circuit, such as capacitors, transistors, amplifiers, etc., resulting in different characteristics of each column circuit. Therefore, the signal from a certain column circuit will have the noise inherent in the column circuit. For example, when no light is incident on the darkness of the pixel array with no variations, the difference between the read signals of each column circuit is due to the fixed-mode noise of the column. The present invention has been made in view of such circumstances, and an object thereof is to provide a solid-state imaging device capable of reducing vertical fixed-mode noise of a column without being affected by light leakage or diffused electrons from a pixel array, and another object is to provide a solid-state imaging device. A method of reading signals from a pixel array of a solid-state imaging device by reducing column fixed modal noise. [Means for Solving the Problems] One aspect of the present invention relates to a solid-state imaging device. The solid-state imaging device includes: (a) a pixel array including a pixel having a photoelectric conversion element and a pixel circuit for supplying a signal from the photoelectric conversion element; and (b) a reference signal generating unit disposed in the pixel On the outer side of the pre-recorded pixel array, there are one or a plurality of reference circuits 'the reference circuit includes a pseudo-signal source for reducing the fixed-mode noise of the column; and (c) the column signal processing unit includes the column signal processing The circuit 'is respectively used to generate the image signal and the reference signal according to the pixel signal from the pre-recorded pixel array and the pseudo-signal from the previous reference signal generating unit; and (d) the signal processing -7-201143412, which accepts the pre-recording signal and the pre-record Refer to the signal 'and generate a read signal. The pre-recorded pixel array includes a plurality of column arrays; the front column signal processing unit performs reading of the k-times (1 S k ) of the pre-recorded signals for each frame; the pre-recorded reference signal source of the reference circuit does not include The photoelectric conversion element and the floating diffusion unit; the pre-recording signal of the pre-signal processing unit is used to reduce the longitudinal fixed-mode modality caused by the pre-recording signal processing circuit by using the pre-recording reference signal The calculation of the signal is processed and generated. According to the solid-state imaging device, the column signal processing circuit generates the image capturing signal and the reference signal respectively based on the pixel signal and the pseudo-signal. Therefore, the camera signal and the reference signal may contain fixed-mode noise of the column caused by the column signal processing circuit. The signal processing unit performs the above-mentioned calculation of the image signal using the reference signal. Therefore, the column fixed modal noise caused by the column signal processing circuit is reduced in the read signal. Since the pseudo-signal source does not include the photoelectric conversion element and the floating diffusion portion, the reduction processing of the column fixed modal noise is not affected by the light leakage or diffusion electrons from the pixel array. Another aspect of the invention relates to a method of reading a signal from a pixel array of a solid state imaging device including a column signal processing circuit and a reference circuit. The method comprises: (a) reading a pixel signal from a pixel in the pixel array using a front column signal processing circuit to generate an image signal; and (b) using a front column signal processing circuit Performing a readout signal from the pre-recorded pixel array to reduce the readout of the pseudo-signal of the column fixed modal noise to generate a reference signal; and ( -8 - 201143412 C) by using the pre-reference signal And the step of recording the vertical column processing caused by the low-recording column signal processing circuit to generate the read signal. a pre-conversion component, and for providing from the photoelectric conversion circuit; the pre-reference circuit includes a source for generating a pre-signal; the pre-symmetric source includes no opto-electrical portion: the pre-column signal processing circuit is a pre-signal signal, At least one of the related double sampling and A/D conversion operations is performed. According to this method, the same column is used to generate the shots based on the pixel signals and the pseudo-signals. Therefore, the camera signal and the reference signal may contain vertical fixed-mode noise caused by the processing circuit. The camera signal is processed by the above-mentioned calculation, so the fixed-mode noise caused by the column is not reduced in the processing of the source of the analog signal without the photoelectric conversion element and the fixed-mode noise of the floating column. Or the effects of diffusing electrons. In the solids of the above-mentioned side of the present invention, the pre-recorded pixels in each column array are connected to the circuit system and may contain a switch for providing the front column line. The pre-recorded pixel circuit of the pre-recorded pixel is a control mechanism required for the signal of the photoelectric conversion element to be recorded before the pixel. A pixel-based pixel system for reducing fixed-mode noise has: a pixel-like signal of a photoelectric element, a pseudo-like component of a signal, and a floating diffusion pixel signal, and a pre-recorded, amplified, and sample-and-hold signal processing circuit. The signal and reference signals are such that the column signal is reduced by the reference signal and the column signal processing circuit number. Since the diffusing portion is provided, the light is leaked from the pixel array and the vertical line is in the method. For the pre-recording reference, the required signal is used to supply the pseudo-signal from the supply to the front column line. If the side is based on the above, the reference signal is supplied to the column line by means of a switch. Further, the pixel circuit supplies the pixel signal to the column line via the control mechanism. Therefore, the reference circuit can generate a pseudo-signal suitable for reducing the fixed-mode noise of the column. In the solid-state imaging device and method according to the above aspect of the present invention, the 'pre-column signal processing unit includes an array of pre-column signal processing circuits', each of which is connected to the pre-column column. The array 'previous reference signal generation unit includes an array of pre-referenced circuits. Each of the pre-referenced reference circuits is connected to the pre-column signal processing circuit; the pre-signal processing unit includes an arithmetic circuit for performing pre-calculation processing. The signal processing unit performs a process of generating a difference between the pre-recorded reference signal and the pre-recorded image signal for each of the preceding column signal processing circuits as a pre-calculation process, and the pre-recorded signal is generated using a pre-calculation circuit. According to the side of the above, each of the column signal processing circuits is electrically connected to the column array, and each of the reference circuits is electrically connected to the column signal processing circuit. In each column array, a column signal processing circuit and a reference circuit are provided. In this form, the image signal and the reference signal read by each column array contain the column fixed modal noise caused by the column signal processing circuit required for the column array. The signal processing unit can perform the above-mentioned calculation on the image signal by using the reference signal for each column array. In the solid-state imaging device and method according to the above aspect of the present invention, the pre-reference signal generating unit may include an additional reference circuit connected to the processing circuit of the pre-column signal 10.10-2011434. The pre-recording signal generation unit can perform the reading of the pre-symbol signal from the reference circuit and the reference circuit added in the foregoing. According to the above side, the pseudo-signals from the reference circuit and the additional reference circuit can be combined to generate a reference signal. Further, since the position of the reference circuit is different from the position of the additional reference circuit, the variations of these reference circuits can be averaged. The reading of the pseudo-signal from the reference circuit is performed at the same time as the reading of the pseudo-signal from the additional reference circuit, so that the reduction of the random noise is effective. In the solid-state imaging device and method according to the above aspect of the present invention, the 'front column signal processing unit' may include a correlated double sampling (CDS) circuit. The pre-recorded double-sampling circuit reads the pre-recorded pixel signal; the pre-recorded pixel signal contains the first signal level containing the noise component and the second signal level containing the signal component superimposed on the noise component; The pre-recording video signal indicates the difference between the first signal and the second signal. According to the side of the above, the fixed-mode noise caused by the vertical column of the CDS circuit can be reduced. The reset noise in the pixel circuit and the parallax of the transistor can be removed by the CDS circuit. In the solid-state imaging device and method according to the above aspect of the present invention, the pre-column signal processing unit may include an A/D conversion circuit for receiving an output signal from the pre-recorded double-sampling circuit. According to the side of the above, the vertical modal noise caused by the A/D conversion circuit can be reduced. The A/D conversion circuit provides digital reference signals and video signals. In the solid-state imaging device and method according to the above aspect of the present invention, the A/D conversion method in the A/D conversion circuit can be, for example, an integral type conversion, a tour type conversion, or a successive comparison type. Conversion and at least one of the combined conversion methods. According to the side of the above, the solid-state imaging device can be applied to the solid-state imaging device. The solid-state imaging device and method according to the above aspect of the present invention can include: the first and second capacitors. The calculation amplification circuit and the switching circuit required for changing the connection of the first capacitor, the second capacitor, and the preamplifier amplifier circuit. The pre-switching circuit can provide: the first connection is such that the first and second capacitors and the pre-calculated amplification circuit can perform correlated double sampling; and the second connection is used to increase the first and second capacitances and the pre-calculation increase. The circuit can perform a tour type a/D conversion. The pre-column signal processing circuit ’ is capable of performing pre-recorded double-sampling by the first connection, and performing pre-recorded A/D conversion by the second connection. According to the side of the above, the column fixed modal noise caused by the calculation amplification circuit, the first capacitor, the second capacitor, and the switch circuit can be reduced. In the solid-state imaging device and method according to the above aspect of the present invention, the 'previous pixel array, the pre-reference signal generating unit, and the pre-column signal processing unit' can be shrunk in a single semiconductor wafer. According to the side of the above, the signal processing unit is provided outside the semiconductor wafer. The present invention is not limited to the single-conductor wafer, and the signal processing unit can be provided in various forms. In the solid-state imaging device and method according to the above aspect of the present invention, the pre-recorded pixel array and the pre-reference signal generation are performed. Department, pre-column -12- 201143412 The signal processing unit and the signal processing unit' can be contracted in a single-semiconductor wafer. According to the side of the above, the read signal whose column fixed modal noise has been reduced can be supplied from the integrated circuit required for the solid-state imaging device. The above and other objects, features and advantages of the present invention will become more fully understood from [Effect of the Invention] As described above, according to the present invention, it is possible to provide a solid-state imaging device which can reduce the fixed-mode noise of the column without being affected by light leakage or diffused electrons from the pixel array. Further, according to the present invention, a method of reading a signal from a pixel array of a solid-state imaging device can be provided, according to which the vertical fixed-mode noise can be reduced. [Embodiment] The concept of the present invention can be easily understood by referring to the exemplified drawings and considering the following detailed description. Next, an embodiment of the solid-state imaging device of the present invention and a method of reading a signal from a pixel array will be described with reference to the accompanying drawings. Where possible, the same symbol will be indicated for the same part. Next, an amplitude-increasing solid-state imaging device using an amplification circuit in a pixel, and a method of removing the fixed modal noise will be described. The amplitude-amplified solid-state imaging device has a pixel with an amplification function and a scanning circuit disposed around the pixel, and the pixel data is read out from the pixel by the scanning circuit. Amplification type-13-201143412 An example of a solid-state imaging device is an APS (Active Pixel Sensor) consisting of a CMOS (Complementary Metal Oxide Semiconductor) that facilitates integration of pixels with peripheral driving circuits and signal processing circuits. ) Image sensor. An example of a pixel in an APS type image sensor is a 4-crystal type pixel in which high image quality can be obtained. The electro-crystalline system can be, for example, a MIS type or a MOS type. Further, the solid-state imaging device according to the embodiment is applicable to a camera device device. The camera device system includes the solid-state imaging device according to the embodiment. Fig. 1 is a view showing a block configuration of a solid-state imaging device of a so-called two-dimensional image sensor. The solid-state imaging device 1 includes a pixel array 3, a column signal processing unit 5, a reference signal generating unit 7, and a signal processing unit 9. In the solid-state imaging device 1, the pixels 11 are arranged in a matrix to constitute the pixel array 3. Pixels 11 are connected to column signal lines C, which form a column array. A specific line is selected from the rows of the respective pixels by the row decoder circuit 13a. The row driving circuit 14a provides a driving signal to the driving line 12. The drive line 12 represents the transfer transistor drive line, the reset transistor drive line, and the select transistor drive line. The reference signal generating unit 7 is selected by referring to the row selecting circuit 13b. The row driving circuit 14b supplies a driving signal to the driving line 25 to the reference signal generating portion. The drive line 25 indicates the reference row selection transistor drive line. The solid-state imaging device 1 can include a timing generation circuit 10 for generating control signals, clock signals, and the like necessary for controlling the operation timing of the circuits included in the device 1. The pixel array 3 and the array containing the pixels 11. Each of the pixels 1 1 includes a photoelectric conversion element 11a and a pixel circuit 1 1b with reference to FIG. Photoelectric conversion element -14- 201143412 1 1 a system may contain, for example, a photodiode. The photoelectric conversion element 丨丨a converts the received light L' into an electrical signal. The pixel circuit nb amplifies the signal S ( Ph ) from the photo-electric conversion element Π a to provide a pixel signal S ( pixel ). The pixel circuit 1 lb includes: a transmission transistor TR (TF) responsive to the transmission signal, a reset transistor TR (RS) responsive to the reset signal, an amplification transistor TR (AM), and a row selection signal The switching transistor TR (SW) responds. The pixel circuit 1 1 b includes a floating diffusion FD. The transmission transistor TR (TF) is connected to the gate receiving transmission signal and is connected between the photoelectric conversion element 11a and the floating diffusion portion fd. The transfer transistor TR(TF)' controls the transfer of charges from the photoelectric conversion element na to the floating diffusion FD. The reset transistor TR (RS) is connected to the floating diffusion FD' to reset the floating diffusion FD. The amplifying transistor TR (?) receives a signal from the floating diffusion portion fd at the gate, and is connected between the reference potential line Vdd which is the power supply line and the column line C. The switching transistor TR(SW)' is connected in series with the amplifying transistor TR (AM) and is connected between the reference potential line V d d and the column line C. The pixel circuit 1 1 b supplies the pixel signal S ( pixel ) to the column line C. The reference signal generating unit 7 is disposed independently of the pixel array 3. The reference signal generating unit 7 has one or a plurality of reference circuits 7a. Fig. 2 is a view showing the configuration of a reference circuit of the reference voltage generating unit. Referring to FIG. 2( a ), the reference circuit 7 a includes 'a switch for providing a pseudo-signal source PSD required for reducing fixed-mode noise of the column and a pseudo-signal S ( psd ) from the pseudo-signal source PSD'. For example, switching transistor TR (SW0). The pseudo-signal source PSD of the reference circuit 7a does not include the photoelectric conversion element 11a and the floating diffusion FD, and -15-201143412 is constituted by a transistor of a different element from the photoelectric conversion element 11a. The reference circuit 7a is a voltage source including a transistor TR (PSD) corresponding to an amplifying transistor, and a transistor TR (PSD) is connected to a voltage source as a power supply line Vdd, and a transistor TR (PSD) is connected It is between the reference potential line of the power line Vdd and the column line C. The transistor TR (PSD) and the transistor TR (SW0) are connected in series, and the node in which the transistor TR (PSD) and the transistor TR (SW0) are connected in common is biased via the transistor TR (PSD). Each of the transistors TR (SW0) and TR (PSD) can be constructed in the same manner as the transistors TR (SW) and TR (AM) in each of the pixels 11. High-precision column-fixed modal noise removal can be performed by matching the transistor properties such as the size, the shape, or the direction of the corresponding transistors. The vertical column signal processing unit 5 performs, for example, k times (1 $ k) of the pseudo-signal S (psd) for each frame. Referring again to FIG. 1, the column signal processing unit 5 receives the pixel signal S (pixel) sent from the pixel 11 in the pixel array 3 and the pseudo-signal S (psd) sent from the reference signal generating unit 7, and The image pickup signal S (img) and the reference signal S (ref) are respectively generated based on the pixel signal S (pixel) and the pseudo-signal S (psd). Further, the signal on the column line C is introduced to the column signal processing unit 5. The column signal processing unit 5 performs at least one of, for example, correlated double sampling, A/D conversion, amplification, and sample-and-hold operations on the pixel signals S (pixel) and the pseudo-signal S (psd). These processes can be analog or digital signal processing.

訊號處理部9,係接受攝像訊號S ( img )及參照訊號S -16- 201143412 (ref),並且生成讀出訊號S ( OUT)。訊號處理部9的讀 出訊號S ( OUT ),係藉由使用參照訊號S ( ref)而對攝像 訊號S ( img)進行用來降低縱欄訊號處理電路15所造成之 縱欄固定模態雜訊的演算處理’而被生成。在理想的實施 例中,縱欄訊號處理部5的攝像訊號S ( img )及參照訊號S (ref),係可爲所定之數位形成的數位訊號。這些攝像訊 號S (img)及參照訊號S( ref)的每縱欄之訊號,是被提 供至訊號處理部9。在固體攝像裝置1的一例中,每縱欄之 訊號係例如藉由縱欄解碼器電路16而被提供至水平訊號線 1 7,被輸出至半導體元件或感測器區塊外部。在必要時, 縱欄訊號處理部5係可含有縱欄解碼器電路1 6及水平訊號 線1 7。 若依據此固體攝像裝置1,則縱欄訊號處理電路1 5係 根據像素訊號S ( pixel )及擬似訊號S ( psd )而分別生成 攝像訊號S(img)及參照訊號S(ref)。因此,在像素訊 號S ( pixel )及擬似訊號S( psd)中會含有,該當縱欄訊 號處理電路15所造成之縱欄固定模態雜訊。訊號處理部9 ,係使用參照訊號S ( ref )而對攝像訊號S ( img )進行上 記演算處理,因此該當縱欄固定模態雜訊,在讀出訊號S (OUT )中會被減低。由於擬似訊號源PSD係不含光電轉 換元件1 1 a及浮置擴散部FD,因此不需要遮光,縱欄固定 模態雜訊的降低處理,係不受來自像素陣列3的漏光或擴 散電子之影響。槪略的說明如下。 假設: -17- 201143412 攝像訊號:s ( img) = S1+ N1 ; 參照訊號:S ( ref) = R1 + N1 : 參照訊號:S ( ref_OB ) = R_OB + N 1 + N_OB ; 此時,若讀出訊號S (OUT)是由表示攝像訊號S( img )與參照訊號S ( ref )之差分的訊號所生成,則 S1 :縱欄訊號處理電路根據像素訊號S ( pixel )所生 成的部分; R1 :縱欄訊號處理電路根據擬似訊號S ( psd )所生成 的部分: N 1 :縱欄訊號處理電路所固有的縱欄固定模態雜訊; Ν1_ΟΒ :起因於漏光或擴散電子等的雜訊。 S ( OUT ) = S ( i mg ) - S ( ref) =S 1 -R1 如此,縱欄固定模態雜訊就會被去除。 當使用光學黑暗所得之參照訊號S ( ref_OB )時, S ( OUT ) = S ( img) -S ( refOB) =S 1 -R OB + N_OB ; 如此,雖然縱欄固定模態雜訊會被去除,但會被重# 7起@於光學黑暗所固有之漏光或擴散電子等所造成的雜 訊。 參照電路7a係不限定於_ 2 ( a )所示的特定電路,亦 可使用對應於像素1 1內之電晶體TR ( SW ) 、TR ( AM )而 其尺寸、圖案等電晶體特性彼此契合的其他電路7b、7c。 圖2 ( b )係參照電路的另一例的圖示。參照電路715係 -18- 201143412 含有,提供用來降低縱欄固定模態雜訊所需的擬似訊號源 PSD、及來自擬似訊號源PSD之擬似訊號S ( psd )的開關 電晶體TR ( SW0 )。參照電路7b係使用2個電晶體24、TR (PSD )來生成擬似訊號S ( psd )。各電晶體TR ( SW0 ) 、24、TR ( PSD )係可分別與像素電路1 1內的電晶體TR ( SW ) 、TR ( RS ) 、TR ( AM )構造相同。以符合於對應 之電晶體的電流-電壓特性的方式,使幾何學上的尺寸及 方向一致,較爲理想。該電路7b中,係將電晶體24的閘極 27,連接至固定電位(例如Vdd線)。電晶體TR ( PSD ) 的閘極,係總是從導通的電晶體24起被偏壓。 圖2 ( c )係參照電路的再另一例的圖示。在參照電路 7c中,電晶體TR ( PSD )的閘極,係被連接至電壓源29。 擬似訊號源PSD,係含有電壓源29及電晶體TR ( PSD )。 電壓源29係可配置在參照電路7c。電壓源29的設定電位, 係可隨著雜訊的傾向,而按照每一參照電路7c個別地設定 參照電壓位準,因此參照電壓位準係可被設定成契合於縱 欄固有之特性。 圖3係參照電路之陣列的圖面。參照訊號生成部7,係 可含有參照電路的陣列2 1。參照電路7d係含有電晶體TR ( SWO ) 、TR(PSD)。電晶體TR( PSD)的閘極33係被連 接至,在行方向上共通地供給基準電壓的電壓源32。可將 電壓源3 2設置在固體攝像裝置1內。在必要時,亦可從固 體攝像裝置1的外部供給之。電壓源32的設定電位,係將 縱欄線C上的電壓源之位準加以設定。目前爲止的參照電 19- 201143412 路7a、7b、7c、7d都可對每一縱欄作配置。 雖然例示了參照電路7a〜7d可對每一縱欄作配置,但 亦可將這些參照電路對每隔複數行來配置。或著,亦可在 固體攝像裝置1內設置單一的參照電路,讓所有的縱欄訊 號處理電路共用之。又,參照電路7a、7b、7c、7d的實體 位置,並沒有受到特別的限制。因應需要,可將參照電路 7a、7b、7c、7d設置在縱欄訊號處理電路的內側及外側》 參照電路7a、7b、7c、7d內的節點,係可藉由電壓源而直 接地、或藉由導通的電晶體而被設成偏壓。 本贲施形態所述之固體攝像裝置1所用的像素,係不 限定於圖1所示的像素11。可省略像素11中的傳輸電晶體 TR ( TF ),將光電轉換元件1.1 a直接連接至增幅電晶體TR (AM )的閘極。如此配置的像素,係具有3電晶體型的像 素構成。光電轉換元件1 1 a係例如由光二極體所構成,光 一極體係可以用和固體攝像裝置1內作爲電路元件所使用 之電晶體相同的矽製程來製作。然而,在固體攝像裝置1 的製造上,可以適用別的製程(例如GaAs等化合物半導體 )。又’光電轉換元件11 a係可使用,固體攝像裝置]中的 像素讀出電路上所層積的a-Si或屬於有機膜之光導電膜來 製作。在3電晶體型的像素中,首先藉由重置電晶體,把 浮置擴散部FD設定成重置電位。其後,藉由光電轉換所得 到的訊號電荷’會被累積在浮置擴散部FD。在該累積之後 ’浮置擴散部FD的電位係被增幅電晶體TR ( AM )所增幅 ’隔著開關T R ( S W )而作爲訊號電位而供給至縱欄線c。 -20- 201143412 然後,緊臨其後,藉由重置電晶體TR ( RS )的導通/非導 通之動作,浮置擴散部FD會被重置。在該重置時,浮置擴 散部FD的電位係和訊號電位同樣地被增幅電晶體TR ( AM )所增幅,隔著開關T R ( S W 0 )而作爲重置電位而供給至 縱欄線C。於4電晶體型及3電晶體型的像素中,像素訊號S (pixel )係含有,含雜訊成分之第1訊號位準與含有重疊 於該雜訊成分上之訊號成分的第2訊號位準。除了 4電晶體 型像素或3電晶體型像素以外,也可將本實施形態所述之 影像感測器,適用於5電晶體型像素等其他增幅型像素。 圖4係本實施形態所述之固體攝像裝置用的縱欄訊號 處理電路之一例的圖面。縱欄訊號處理電路1 5係可含有相 關二重取樣(簡稱爲「CDS」而參照)電路31。相關二重 取樣電路31,係讀出像素訊號S ( pixel )及擬似訊號S ( psd )。像素訊號S ( pixel )係含有,含雜訊成分之第1訊 號位準S1與含有重疊於該雜訊成分上之訊號成分的第2訊 號位準S2。攝像訊號S(img)係含有第1訊號及第2訊號的 差分。藉由相關二重取樣,就可去除例如像素電路的重置 雜訊或電晶體的閩値參差。 相關二重取樣電路31係含有:開關33a、33b、電容 35a、35b、及演算增幅電路37。演算增幅電路37的一輸入 (負輸入)37a,係隔著被串聯之開關33 a及電容35 a而接 受來自輸入VIN的訊號,演算增幅電路37的另一輸入(正 輸入)37b係接受共通參照訊號(VC0M )。在演算增幅電 路37的一輸入37a與演算增幅電路37的輸出37c之間’係並 -21 - 201143412 聯有開關33b及電容35b。輸出VOUT,係接受著從演算增幅 電路37的輸出37c來的訊號。開關33a係控制著訊號的輸入 動作,開關33b係控制著重置動作。從像素1 1輸出重置電 位時,將開關33a、33b設成閉路,在電容35a中會擷取重 置位準S1。接著,將開關33a保持閉路而將開關33b予以斷 開,將來自像素11的訊號位準S2擷取在電容35a中。由於 開關33b是被斷開,因此在演算增幅電路37的輸出37c上, 會生成重置位準S1與訊號位準S2的差(例如S1-S2 ),亦 即類比CDS結果。在固體攝像裝置1中,爲了縱欄陣列之 每一者,可含有被排列在縱欄的CDS電路31。 即使從縱欄陣列的各像素送來的訊號是一定,在該類 比CDS的結果中,仍會因爲電容35a、3 5b或演算增幅電路 37的特性參差,造成每縱欄會有些微差異,這些就成了縱 欄固定模態雜訊。若依據此實施例,則可降低起因於類比 CDS電路的縱欄固定模態雜訊。 圖5係本贲施形態所述之固體攝像裝置用的縱欄訊號 處理電路之另一例的圖面。縱欄訊號處理電路1 5係可含有 CDS電路31及A/D轉換電路41。A/D轉換電路41,係接受著 來自CDS電路31的訊號。A/D轉換電路41,係將類比CDS結 果進行A/D轉換,生成第1數位訊號(數位攝像訊號)S( ADC 1 )。 從像素11擷取訊號SI、S2而生成類比CDS結果後,將 像素1 1的選擇開關TR ( SW )予以斷開,而將像素陣列3的 縱欄陣列從縱欄線C切離。其後,使圖2及圖3中的參照電 -22- 201143412 路7a〜7d內的選擇開關TR(SWO)導通,將參照電路7a〜 7d連接至縱欄線C。CDS電路31係將開關33a、33b設成閉 路,在電容35a中會擷取擬似訊號S(psd)。其後,保持 開關33a呈閉路而將開關33b予以斷開。藉此,CDS電路31 係會生成用來和擬似訊號S(psd)建立關連的參照訊號S (ref)所需的訊號。A/D轉換電路41,係隔著CDS電路31 而接受擬似訊號S(psd) 。CDS電路31讀出擬似訊號S ( psd)時,A/D轉換電路4 1係將演算增幅電路37的輸出37c 上的訊號,擷取成爲擬似訊號位準。A/D轉換電路41,係 將擬似訊號位準進行A/D轉換,生成第2數位訊號(數位攝 像訊號)S ( ADC2 )。如此所生成之第1與第2之AD轉換結 果,於訊號處理部9中以數位領域進行減算時,每一縱欄 的些微差異會被抵消,可生成沒有縱欄固定模態雜訊的良 好之攝像訊號S ( OUT )»圖5所示的A/D轉換電路,係可 適用積分型、巡迴型、逐次比較型、以及其組合型等各種 方式。此外在上記中,關於將參照電路7a〜7d連接至縱欄 線C的動作,雖然是在生成類比CDS結果後才進行,但亦 可在生成類比CDS結果前就進行之。 若依據上記實施例,則可降低起因於CDS電路3 1及 A/D轉換電路41的縱欄固定模態雜訊。A/D轉換電路41係 提供數位形式的參照訊號及攝像訊號。此外,縱欄訊號處 理電路15係亦可不含CDS電路31,而是含有A/D轉換電路 41 ° 具體而言,縱欄訊號處理電路15係可含有A/D轉換電 -23- 201143412 路。當在像素陣列3的縱欄中設置A/D轉換電路的陣列時, 例如若是巡迴型A / D轉換器,則可提供效率更佳的電路構 成。巡迴型A/D轉換器,係可提供A/D轉換動作,因應需 要還可提供CDS動作。 圖ό係本實施形態所述之固體攝像裝置用的縱欄訊號 處理電路之再另一例的圖面。圖6所示的縱欄訊號處理電 路係可構成爲,使用單一放大器來進行CDS動作、增幅動 作、A/D轉換動作的電路。縱欄訊號處理電路5係含有巡迴 型A/D轉換電路51。巡迴型A/D轉換電路51係可含有:第1 及第2電容43a、43b、演算增幅電路45、開關電路47、D/A 轉換電路48以及比較器49 ( 49a、49b)。在演算增幅電路 45的一輸入45a與輸出45c之間,係連接有開關電路47的重 置開關238及電容43b。在演算增幅電路45的一輸入45a與 輸出45 c之間,係連接有被串聯的電容43 a及開關電路47的 開關234、2 3 5 »演算增幅電路45的另一輸入45b係被連接 至共通參照訊號VC0M。電容43a的一端,係隔著開關236而 連接至參照訊號VC0M線,並且隔著開關電路47的開關235 而連接至演算增幅電路45的一輸入45a。電容43a的另一端 係被連接至D/A轉換電路48,隔著開關電路47的開關232而 被連接至輸入VIN線,並且隔著開關電路47的開關23 4而被 連接至演算增幅電路45的輸出45c。D/A轉換®路48係含有 開關240、241、242,開關電路47的開關240、241、242係 回應於來自比較器49的訊號φΜΙ、Φ〇1、Φρι,當作D/A轉 換電路而將電壓訊號VRM、VC0M、VRP予以切換。 -24- 201143412 開關電路 47 (開關 232、23 4、23 5、236、23 8 ),係 將第1電容43a、第2電容43b及演算增幅電路45的連接’加 以變更。開關電路47係可形成使第1及第2電容43a、43b以 及演算增幅電路4 5之間的連接能進行相關二重取樣動作的 第1連接,也可形成使第1及第2電容43a、43b以及演算增 幅電路45之間的連接能進行巡迴型A/D轉換電路的第2連接 。縱欄訊號處理電路5,係可藉由第1連接而進行相關二重 取樣,並且藉由第2連接而進行巡迴型A/D轉換。若依據此 實施例,則可降低起因於第1電容43a、第2電容43b、演算 增幅電路及開關電路47的縱欄固定模態雜訊。 圖6所示電路中的CDS動作,係可藉由開關電路47形 成與圖4之C D S電路相同的元件連接’就能進行之。開關 電路47中的CDS動作所需的連接方式,具體而言係如以下 。從像素11輸出重置電位位準S1時’將開關23 2、23 5、 238設成閉路,並且在電容43a中擷取重置位準。接著,將 開關23 2、23 5保持閉路而將開關23 8予以斷開,從像素1 1 將訊號電位位準S2擷取在電容43a中,藉此,在演算增幅 電路45的輸出45c上,就可獲得重置位準S1與訊號位準S2 的差,亦即類比CDS結果。但是,在此動作時,開關234 、2 3 6係必須總是保持斷開狀態。 對於演算增幅電路45的輸出45c上的訊號,以2個比較 器49a ' 49b進行1.5位元A/D轉換(副A/D轉換)。使用其 結果來進行下個位數的A/D轉換所需之演算。爲了該演算 ,將開關234、236設成閉路而使電容43a (C1)連接至演 -25- 201143412 算增幅電路45的輸出45c,並且將其他開關全部斷開。其 後,將開關2 34、23 6予以斷開而使電容43a ( C1 )的一端 連接至D/A轉換電路48,並且使電容43a(Cl)的另一端隔 著開關23 5而連接至演算增幅電路45的輸入45a時,將開關 240、241、242均設成ON而生成1.5位元A/D轉換的殘差訊 號。該殘差訊號係被儲存在電容43a、43b。對於殘差訊號 ,進行下個位數的A/D轉換所需之演算。重複殘差生成及 A/D轉換,直到所需到的次數爲止。 藉由將圖6所示的A/D轉換電路51用於縱欄訊號處理電 路15中,就可使CDS電路與A/D轉換器一體化,可和圖5所 示電路等價地作動》此外,A/D轉換動作時,會求出電容 的關係(C1=C2)。另一方面,縱欄訊號處理電路5係在 A/D轉換之前所進行的CDS動作之際,隨著電容之比率( C1/C2 )而與CDS機能一起提供增幅機能。 在固體攝像裝置1中,像素陣列3、縱欄訊號處理部5 及參照訊號生成部7,係可集縮在單一半導體晶片。此時 ,訊號處理部9係被設在半導體晶片的外部,因此不受到 集縮在單一半導體晶片支線定,可以各種形態來提供訊號 處理部。或者,在固體攝像裝置1中,像素陣列3、縱欄訊 號處理部5、參照訊號生成部7及訊號處理部9,可集縮在 單一半導體晶片。此時,縱欄固定模態雜訊已被降低的讀 出訊號,係可從固體攝像裝置所需之積體電路作提供。 一面參照圖7、圖8,一'面說明固體攝像裝置之驅動方 法的數個例子。在這些例子中,訊號處理部9係接受數位 -26- 201143412 參照訊號及數位攝像訊號。 圖7係固體攝像裝置及其讀出方法之一例的圖面。像 素陣列3的一畫格之1H期間,係可含有第1期間61a及第2期 間6 1 b。在第1期間6 1 a中,係將1 Η份的像素訊號s ( p i X e 1 ),從像素陣列3的像素1 1讀出。在第2期間6丨b中,係從 參照訊號生成部7讀出擬似訊號S ( psd )。 在每個1 Η期間中,從像素陣列3的一行份的像素1丨所 送來的像素訊號S ( pixel ),會被讀出。又,在該1H期間 中,會在所有的縱欄陣列中讀出擬似訊號S ( psd )。在像 素陣列3的一畫格中,1行份之像素訊號s ( p i X e 1 )的讀出 與擬似訊號S (psd)的讀出,是被交互進行。因此,每iH 期間會讀出擬似訊號S ( psd ),所以可使用每1H期間被更 新的擬似訊號S ( p s d )之値,對像素陣列3的每一行的攝 像訊號S (img) ’進行演算處理。由於擬似訊號S (psd) 的隨機雜訊是對每一行的攝像訊號S(img)都不同,因此 可避免起因於隨機雜訊的固定模態雜訊之生成。 從像素陣列3所讀出的像素訊號S ( p i X e 1 )係在擬似訊 號S ( psd )之讀出中’被儲存在身爲線記憶體的記憶電路 (圖9 (a)的電路55a)中。於該當iH期間中,在攝像訊 號S ( img )及參照訊號S ( ref )之讀出完成後,將攝像訊 號S ( img )從訊號處理部9內的記憶電路(圖9的電路55a )中讀出’生成對應於攝像訊號S ( img )與參照訊號S ( ref)之差分的訊號。訊號處理部9,係含有用來進行如此 演算處理的演算電路(圖9(a)的電路55b)。因此,爲 -27- 201143412 了生成表示差分的訊號’會使用身爲線記憶體的記憶電路 (例如電路55a )。通常係不進行參照訊號s ( ref)的平均 化處理,以使處理能平滑地進行,但當僅獲得1畫面的靜 止影像攝影等之情況下,有進行參照訊號S ( ref )之平均 化處理較爲理想。 在此形態中’於1H期間中當第1期間61 a是在第2期間 6 lb之後時’記憶電路55a中所儲存的是擬似訊號s ( psd ) ,反之’於1 Η期間中當第2期間6 1 b是在第1期間6 1 a之後時 ,記憶電路5 5 a中所儲存的是像素訊號s ( p i X e 1 )。因此, 當將像素訊號S ( pixel )與擬似訊號S ( psd )相同看待時 ,兩者係爲等價。又,當相較於像素訊號S (pixel)而可 將擬似訊號S ( p s d )的容許訊號振幅縮小時,就可縮小前 者的記憶電路55a之容量(數位時的位元數)。 圖8係固體攝像裝置及讀出方法之另一例的圖面。像 素陣列3的一2格,係含有複數個第1之1H期間63a和單一 的第2之1 Η期間63b。在第1之1H期間63a中,係讀出從像素 陣列3的像素1 1所送來的像素訊號S ( pixel )。在第2之1 Η 期間63b中,係讀出從參照電路7a所送來的擬似訊號S ( psd )。來自參照電路7a的擬似訊號S ( psd )之讀出是在 單一的1H期間63b中進行,因此可提高畫格速率。除了有 必要時以外,不會進行參照訊號S ( psd )的平均化處理, 可使處理平滑地進行。 參照圖8 ( a),第2之1 Η期間63b係位於該當一畫格的 末尾。對該當一 SI格之攝像訊號S ( img )的演算處理,可 -28 - 201143412 使用前一畫格的參照訊號S ( r e f )來進行之。此形態係使 用身爲線記憶體的記億電路(圖9 ( b )的電路56a )來進 行。該記憶電路(圖9(b)的電路56a) ’係儲存著共通 的參照訊號S ( ref )’並且將依序被輸入過來的攝像訊號 S ( img),使用共通的參照訊號S ( ref )而以演算電路( 圖9(b)的電路56b)進行處理° 或者,對該當一畫格之攝像訊號S(img)的演算處理 ,可使用該當畫格的參照訊號s ( ref )來進行之。此形態 係使用身爲畫格記億體的記憶電路(圖9 ( c )的電路5 7 a )來進行。記憶電路(圖9(c)的電路57a) ’係將之前 讀出的一像素陣列份的攝像訊號S ( img )加以儲存,並且 使用之後所被讀出的共通之參照訊號S ( ref ),將所儲存 的攝像訊號,依序以演算電路(圖9(c)的電路5 7b)進 行處理。 參照圖8 ( b ),第2之1 Η期間係位於該當一畫格的開 頭。對該當一畫格之攝像訊號的演算處理,可使用最初的 1 Η期間中所被讀出的參照訊號來進行之。此形態係使用身 爲線記憶體的記憶電路(圖9 ( a )的電路5 5 a )來進行。 在本實施例中,參照訊號係在整個一畫格中都不被變更, 是共通的値。此記憶電路係儲存著該共通的參照訊號,並 且將依序輸入的攝像訊號,使用共通的參照訊號而以演算 電路(圖9(a)的電路55b)進行處理。 第2之1 Η期間係亦可位於從該當一畫格的開頭及末尾 遠離開來的位置。除了特別有需要以外,不會進行參照訊 -29- 201143412 號S ( ref )的平均化處理,就可使處理平滑地進行。 在有必要時,縱欄訊號處理電路7係可進行參照電路 7a的擬似訊號S ( psd )的複數次讀出。若依據上記之側面 ,則從參照電路7a複數次讀出擬似訊號S ( psd )是在不同 時刻下進行,因此對隨機雜訊的降低是有效的。又,在必 要時,參照訊號生成部7係可含有和參照電路7a相同構成 的追加之參照電路(稱作「追加之參照電路7a」而參照) 。此追加之參照電路7a,係被連接至縱欄訊號處理電路5 。參照訊號生成部7,係可從這些複數參照電路7a中讀出 擬似訊號S ( psd )»可進行來自參照電路7a及追加之參照 電路7a的擬似訊號S ( psd )之組合(例如平均化)而生成 參照訊號S ( ref )。又,參照電路7a之位置係與追加之參 照電路7a的位置不同,因此可將這些參照電路7a的參差予 以平均化。來自參照電路7a之擬似訊號S ( psd )的讀出, 係與來自追加參照電路之擬似訊號S ( psd )的讀出在不同 時刻下進行,因此對隨機雜訊的降低是有效的。 圖1 〇係固體攝像裝置及讀出方法之又再另一例的圖面 。固體攝像裝置1及讀出方法中,像素陣列3的一畫格係可 含有m個第1之1H期間67a、和k個第2之1H期間67b。在第1 之1 Η期間67a的每一者,係讀出從像素陣列3的像素1 1所送 來的像素訊號S ( pixel )。在第2之1 Η期間67b中’係讀出 從參照電路7 a所送來的擬似訊號S (psd) 個第1之1H期 間6 7a係被連續排列。k個第2之1 Η期間67b係被連續排列。 k個第2之1 Η期間6 7 b中的參照訊號S ( re f )係被平均化。 •30- 201143412 該平均値的隨機雜訊係被降低成l/sqrt ( k )。此處,sqrt 係表示平方根之演算。 第2之1 Η期間6 7b係可連續於該當一畫格之開頭而排列 。此情況下,可以使用在k個1 Η期間67b中所讀出之參照訊 號S ( ref)的平均値,將攝像訊號S ( img)的演算處理, 以演算電路(圖1 1 ( a )的電路5 8 a )來進行之。參照訊號 S ( ref)的平均値生成,係可以平均値電路(圖1 1 ( a)的 電路58b)來進行之。 第2之1 Η期間6 7b係連續於該當一畫格之末尾而排列。 此情況下,可以使用在前一個畫格中的k個1 Η期間67b中所 讀出之參照訊號S ( ref )的平均値,將該當畫格之攝像訊 號S ( img )的演算處理,以演算電路(圖1 1 ( a )的電路 5 8a )來進行之。參照訊號S ( ref)的平均値生成,係可以 平均値電路(圖11 (a)的電路58b)來進行之。此平均値 ,係跨越整個畫格而被保存。 或者,將該當畫格中的攝像訊號S( img)儲存在身爲 畫格記憶體的記憶電路(圖1 1 ( b )的電路5 9b )之後,生 成該當畫格中的k個1 Η期間中所讀出之參照訊號的平均値 。使用該平均値’將記億電路(例如圖1 1 ( b )的電路5 9 b )中所儲存的攝像訊號的演算處理’以演算電路(圖11 ( b)的電路59a)來進行之。參照訊號S (ref)的平均値生 成,係可以平均値電路(圖Η (b)的電路59c)來進行之 〇 當使用生成平均値的電路時,在平均値中,參照訊號 -31 - 201143412 裡所含之隨機雜訊會被減低。又’擬似訊號3(1?3£1)的讀 出次數k是小於行數η時,可提高畫格速率。k次的讀出係 有以下形態:(a )將同一參照電路重複讀出;(b )將不 同參照電路依序讀出;(c )藉由這些的所望組合而讀出 擬似訊號。 如以上說明’固體攝像裝置1及讀出方法中,縱欄訊 號處理部5係可對每一畫格進行前記擬似訊號的k次(i<k )之歌出。訊號處理部9係亦可含有平均値生成電路,進 行參照訊號S ( ref )之平均化處理以生成平均値。讀出訊 號S(OUT)係表示攝像訊號S(img)與參照訊號S(ref) 之平均値的差分。 圖12係固體攝像裝置及讀出方法之又再另—例的圖面 。如圖12所示,在固體攝像裝置1及讀出方法中,訊號處 理部9係可含有數位濾波器,其係將縱欄訊號處理部5中的 全縱欄的參照訊號S( ref)之每一者,跨越m畫格而進行 處理以生成每縱欄的平均値。若使用數位濾波器處理來平 均化,則可不損及畫格速率就能降低縱欄固定模態雜訊。 平均化處理之一例係爲,訊號處理部9係跨越第η畫格 (n>m )以前之最近的連續m畫格而進行平均化處理,以 生成平均値。藉由跨越最近之m畫格而進行平均化處理, 就可降低時間性緩慢變動之雜訊的影響。將參照訊號S ( ref )跨越複數畫格而進行平均化時,平均値的隨機雜訊係 藉由參照訊號S ( ref)中所含之隨機雜訊而被降低Ι/sqrt ( m )。在第η畫格中,讚出訊號S ( OUT )係使用橫跨最近 -32- 201143412 m畫格之平均値,而被生成。 又,在平均化處理的另一例中,訊號處理部9係可跨 越從第1畫格至m畫格的連續的最初m畫格而進行平均化處 理,以生成平均値。將參照訊號S ( ref )跨越複數畫格而 進行平均化時,平均値的隨機雜訊係藉由參照訊號S ( ref )中所含之隨機雜訊而被降低l/sqrt(m)。在第n(n>m + 1)畫格中,讀出訊號s( OUT )係使用固定的平均値而 被生成。 跨越複數畫格的平均化處理,例如係進行如下。對於 第1〜第m畫格的參照訊號RF ( 1 )〜RF ( m ), RF ( 1 ) — AV ( 1 ) (AV ( i-1 ) + RF ( i ) ) /2— AV ( i ) (2 < i ^ m ) 進行如此處理。在必要時,即使在第(m + 1 )個以後 ,也可進行同樣的處理。此處理係使用圖13所示的訊號處 理部來提供之。圖1 3 ( a )係表示數位濾波器的由硬體所 構成之系統之一例。固體攝像裝置1的訊號處理部9係含有 ,適用於數位參照訊號S ( ref )的數位濾波器60、和使用 來自數位濾波器6〇a之平均値AV而對數位攝像訊號S ( img )實施減算處理的演算電路6 〇 b。圖1 3 ( b )係表示數位濾 波器電路之連接之的一例。數位濾波器電路係將濾波器輸 出yn以延遲電路D延遲過之訊號yn-ι對演算器ALU之輸出以 加算器ADD1進行加算而生成下個濾波器輸出,並且將訊 號yn^於演算器ALU之輸入側從濾波器輸入Xn中扣除濾波 -33- 201143412 器輸出yn.i (將濾波器輸出yn-i的補數對濾波器輸入 算器ADD2進行加算),生成往演算器a的輸入訊號 波器演算的開始時,藉由將適切的初期値X ( init ) 工器MUX而輸入至濾波器電路,就可大幅提高使用 濾波器而求出平均値之際的演算速度。甚至,將6 取成2的次方數(例如2_δ=0·015625),在硬體上 就變得容易,且使用平行平移器等之硬體上的係數 變成可能。因此,可實現小規模、高速且可對應系 彈性之硬體。 表示數位濾波器電路之濾波器特性的傳達函數 ,係可使用例如以下所示: H ( z ) = a/(l-(l-a) χζ·1) 用數位濾波器施加回饋就可求出平均値。該傳 係表示IIR濾波器。這些係將輸入以比率a逐一混合 濾波器,圖14係爲IIR濾波器特性之一例的圖面。 藉由使用a= 0.01之類的較小値,就可獲得高精度 入之平均値。上記的傳達函數所致之LPF的時間常 畫格爲單ίϋ可表不如下: r = -1/ln ( 1-a) a=0.01時係爲r = 99,濾波器輸出係在100畫 就會穩定。 圖1 5係從固體攝像裝置之像素陣列讀出訊號之 的主要步驟之圖面。在步驟S 1 0 1中,從像素陣列3 素1 1所送來之像素訊號S ( pixel )的讀出是使用縱 X n以加 。該濾 透過多 該低通 呑數a選 的實現 變更也 統的富 H ( z ) 達函數 的低通 例如, 的對輸 數,以 格以後 方法中 內的像 欄訊號 -34- 201143412 處理電路15而進行之,生成攝像訊號S(img)。在步驟 S 1 02中,用以減低縱欄固定模態雜訊的擬似訊號S ( psd ) 之讀出,是使用縱欄訊號處理電路15而進行之,以生成參 照訊號S( ref)。在步驟1〇3中,用來降低縱欄訊號處理電 路1 5所造成之縱欄固定模態雜訊的演算處理,是使用參照 訊號S ( ref)而對攝像訊號S ( img)進行之,生成讀出訊 號 S ( OUT)。 若依據此方法,則是使用同一縱欄訊號處理電路1 5而 根據像素訊號S ( pixel )及擬似訊號S ( psd )而分別生成 攝像訊號S ( img)及參照訊號S ( ref)。因此,在攝像訊 號S ( img )及參照訊號S( ref)中會含有,該當縱欄訊號 處理電路1 5所造成之縱欄固定模態雜訊。使用參照訊號s (ref)而對攝像訊號S (img)進行上記演算處理,因此 該當縱欄訊號處理電路15所造成之縱欄固定模態雜訊,在 讀出訊號S ( OUT )中會被減低。由於擬似訊號源s ( psd )係不含光電轉換元件’因此縱欄固定模態雜訊的降低處 理,係不受來自像素陣列3的漏光或擴散電子之影響。 固體攝像裝置1中的訊號處理流程,更具體來說,是 將位於像素陣列3內的像素1 1所送來的像素訊號s ( p i χ e!) 予以讀出後’進行生成A/D轉換過之數位攝像訊號s ( img )、亦即第1數位資料s (ADC1)的工程。又,在讀出了 來自參照電路7a的參照訊號s ( pSd )後,進行生成a/d轉 換過之數位參照訊號S ( ref)、亦即第2數位資料s ( ADC2 )的工程。進行直接將第1數位資料S ( a D C 1 )提供至演 -35- 201143412 算處理電路60b的工程。另一方面,進行將第2數位資料S (ADC2 )隔著平均化處理用的數位濾波器60a而提供至演 算處理電路60b的工程(例如S104)。在數位濾波器60a中 ,針對每畫格依序輸入的m畫格份的數位資料S ( ADC2 ) ,進行加算平均的工程。進行將該過濾後的値< S ( ADC2 )>提供給演算處理電路60b的工程。在演算處理電路60b 中’從動作開始起至m畫格以後,進行用來生成表示數位 資料S(ADC1))與平均値<3(八002) >之差分之訊號 的演算處理之工程(例如S 1 0 5 )。藉由此工程,就可獲得 沒有固定模態雜訊的良好影像訊號。 雖然在理想實施形態中以圖示來說明了本發明的原理 ,但本發明在不脫離此種原理下,當業者自然可在配置及 細節上作變更。本發明係不限定於本實施形態所揭露之特 定構成。例如,可在使用單端電路而構成的電路中,採用 全差動構成的電路。又可在採用全差動構成的電路所構成 的電路中,採用單端電路。因此,申請專利範圍及其精神 範圍內所有的修正及變更,均在要求的權力中。 〔產業上利用之可能性〕 若依據本發明,則可提供一種不受來自像素陣列之漏 光或擴散電子之影響,可降低縱欄固定模態雜訊的固體攝 像裝置。又,若依據本發明,則可提供從固體攝像裝置之 像素陣列讀出訊號之方法,依據此方法,則可降低縱欄固 定模態雜訊。 -36- 201143412 【圖式簡單說明】 〔圖1〕圖1係所謂2維影像感測器的固體攝像裝置之 區塊構成的圖面。 〔圖2〕圖2係參照電壓生成部的參照電路之構成的圖 面。 〔圖3〕圖3係參照電路之陣列的圖面。 〔圖4〕圖4係本實施形態所述之固體攝像裝置用的縱 欄訊號處理電路之一例的圖面。 〔圖5〕圖5係本實施形態所述之固體攝像裝置用的縱 欄訊號處理電路之另一例的圖面。 〔圖6〕圖6係本實施形態所述之固體攝像裝置用的縱 欄訊號處理電路之再另一例的圖面。 〔圖7〕圖7係固體攝像裝置及其讀出方法之一例的圖 面。 〔圖8〕圖8係固體攝像裝置及其讀出方法之另一例的 圖面。 〔圖9〕圖9係訊號處理部之電路構成之例子的圖面。 〔圖10〕圖10係固體攝像裝置及其讀出方法之再另一 例的圖面。 〔圖11〕圖11係訊號處理部之電路構成之例子的圖面 〇 〔圖12〕圖12係固體攝像裝置及其讀出方法之再另一 例的圖面。 -37- 201143412 〔圖13〕圖13係訊號處理部之電路構成之例子的圖面 〇 〔圖14〕圖14係IIR濾波器特性之一例的圖面。 〔圖1 5〕圖1 5係從固體攝像裝置之像素陣列讀出訊號 之方法中的主要步驟之圖面。 【主要元件符號說明】 1 :固體攝像裝置 3 :像素陣列 Π :像素 Π a :光電轉換元件 1 1 b :像素電路 S (pixel):像素訊號 C :縱欄線 7 :參照訊號生成部 7a 、 7b 、 7c 、 7d :參照電路 PSD :擬似訊號源 S ( psd ):擬似訊號 5 :縱欄訊號處理部 1 5 :縱欄訊號處理電路 9 :訊號處理部 S ( ref):參照訊號 S ( img):攝像訊號 S ( OUT ):證出訊號 -38-The signal processing unit 9 receives the image pickup signal S (img) and the reference signal S-16-201143412 (ref), and generates a read signal S (OUT). The read signal S (OUT) of the signal processing unit 9 is used to reduce the vertical fixed mode modality caused by the vertical column signal processing circuit 15 by using the reference signal S (ref). The calculation of the signal is processed and generated. In a preferred embodiment, the image signal S (img) and the reference signal S (ref) of the column signal processing unit 5 are digital signals formed by a predetermined number of digits. The signals of each of the image pickup signals S (img) and the reference signal S (ref) are supplied to the signal processing unit 9. In an example of the solid-state imaging device 1, the signal for each column is supplied to the horizontal signal line 17, for example, by the column decoder circuit 16, and is outputted to the outside of the semiconductor element or the sensor block. When necessary, the column signal processing unit 5 may include a column decoder circuit 16 and a horizontal signal line 17. According to the solid-state imaging device 1, the column signal processing circuit 15 generates the image pickup signal S(img) and the reference signal S(ref) based on the pixel signal S (pixel) and the pseudo-signal S (psd), respectively. Therefore, the pixel signal S (pixel) and the pseudo-signal S (psd) may be included in the vertical column modal noise caused by the column signal processing circuit 15. The signal processing unit 9 performs the above-described calculation processing on the image pickup signal S (img) using the reference signal S ( ref ). Therefore, the fixed-mode noise of the vertical column is reduced in the read signal S (OUT ). Since the pseudo-signal source PSD does not include the photoelectric conversion element 11a and the floating diffusion FD, no shading is required, and the reduction processing of the column fixed modal noise is not caused by light leakage or diffusion of electrons from the pixel array 3. influences. The description of the strategy is as follows. Assumption: -17- 201143412 Camera signal: s ( img) = S1 + N1 ; Reference signal: S ( ref) = R1 + N1 : Reference signal: S ( ref_OB ) = R_OB + N 1 + N_OB ; The signal S (OUT) is generated by a signal indicating a difference between the image signal S(img) and the reference signal S(ref), and S1 is a portion generated by the column signal processing circuit according to the pixel signal S (pixel); R1: The portion of the column signal processing circuit generated according to the pseudo-signal S (psd): N 1 : the column-fixed modal noise inherent in the column signal processing circuit; Ν1_ΟΒ: noise caused by light leakage or diffusion of electrons. S ( OUT ) = S ( i mg ) - S ( ref) = S 1 - R1 Thus, the column fixed modal noise is removed. When using the reference signal S ( ref_OB ) obtained by optical darkness, S ( OUT ) = S ( img ) -S ( refOB) = S 1 -R OB + N_OB ; thus, although the column fixed modal noise is removed However, it will be heavy noise caused by light leakage or diffused electrons inherent in optical darkness. The reference circuit 7a is not limited to the specific circuit shown in _ 2 ( a ), and may be used to match the transistor characteristics such as the size and pattern of the transistors TR ( SW ) and TR ( AM ) in the pixel 1 1 . Other circuits 7b, 7c. Fig. 2 (b) is an illustration of another example of the reference circuit. Reference circuit 715 -18-201143412 includes a pseudo-signal source PSD required to reduce the fixed-mode noise of the column, and a switching transistor TR (SW0) from the pseudo-signal S (psd) of the pseudo-signal source PSD . The reference circuit 7b uses two transistors 24, TR (PSD) to generate a pseudo-signal S (psd). Each of the transistors TR (SW0), 24, and TR (PSD) can have the same structure as the transistors TR (SW), TR (RS), and TR (AM) in the pixel circuit 1 1 , respectively. It is preferable to make the geometric size and direction uniform in accordance with the current-voltage characteristics of the corresponding transistor. In the circuit 7b, the gate 27 of the transistor 24 is connected to a fixed potential (e.g., Vdd line). The gate of the transistor TR (PSD) is always biased from the turned-on transistor 24. Fig. 2 (c) is a diagram showing still another example of the reference circuit. In the reference circuit 7c, the gate of the transistor TR (PSD) is connected to the voltage source 29. The pseudo-signal source PSD includes a voltage source 29 and a transistor TR (PSD). The voltage source 29 is configurable in the reference circuit 7c. The set potential of the voltage source 29 can individually set the reference voltage level for each reference circuit 7c in accordance with the tendency of noise. Therefore, the reference voltage level can be set to match the characteristics inherent in the vertical column. Figure 3 is a drawing of an array of reference circuits. The reference signal generating unit 7 may include an array 2 1 of reference circuits. The reference circuit 7d contains transistors TR (SWO) and TR (PSD). The gate 33 of the transistor TR (PSD) is connected to a voltage source 32 for supplying a reference voltage in common in the row direction. The voltage source 3 2 can be placed in the solid-state imaging device 1. It may be supplied from the outside of the solid-state imaging device 1 as necessary. The set potential of the voltage source 32 is set by the level of the voltage source on the column line C. References so far 19-201143412 Roads 7a, 7b, 7c, 7d can be configured for each column. Although it is exemplified that the reference circuits 7a to 7d can be arranged for each column, these reference circuit pairs can be arranged for every plurality of rows. Alternatively, a single reference circuit may be provided in the solid-state imaging device 1 to share all of the column signal processing circuits. Further, the physical positions of the reference circuits 7a, 7b, 7c, and 7d are not particularly limited. If necessary, the reference circuits 7a, 7b, 7c, and 7d may be disposed at the inner and outer sides of the column signal processing circuit. The nodes in the reference circuits 7a, 7b, 7c, and 7d may be directly connected by a voltage source, or It is biased by a conducting transistor. The pixels used in the solid-state imaging device 1 according to the present embodiment are not limited to the pixels 11 shown in Fig. 1 . The transmission transistor TR (TF) in the pixel 11 can be omitted, and the photoelectric conversion element 1.1a is directly connected to the gate of the amplification transistor TR (AM). The pixel thus arranged has a three-crystal type pixel configuration. The photoelectric conversion element 11a is composed of, for example, a photodiode, and the optical one-pole system can be fabricated by the same tantalum process as that used for the circuit element in the solid-state imaging device 1. However, in the manufacture of the solid-state imaging device 1, another process (for example, a compound semiconductor such as GaAs) can be applied. Further, the 'photoelectric conversion element 11a can be used, and a-Si or a photoconductive film belonging to an organic film laminated on a pixel readout circuit in a solid-state imaging device can be used. In the three-crystal type pixel, the floating diffusion FD is first set to the reset potential by resetting the transistor. Thereafter, the signal charge 'obtained by photoelectric conversion' is accumulated in the floating diffusion FD. After this accumulation, the potential of the floating diffusion FD is amplified by the amplification transistor TR (AM) and supplied to the column line c as a signal potential via the switch T R (S W ). -20- 201143412 Then, immediately afterwards, the floating diffusion FD is reset by resetting the conduction/non-conduction action of the transistor TR (RS). At the time of this reset, the potential of the floating diffusion FD is amplified by the amplification transistor TR ( AM ) in the same manner as the signal potential, and supplied to the column line C as the reset potential via the switch TR (SW 0 ). . In the pixel of the 4-transistor type and the 3-transistor type, the pixel signal S (pixel) contains the first signal level containing the noise component and the second signal bit containing the signal component overlapping the noise component. quasi. The image sensor according to the present embodiment can be applied to other amplification type pixels such as a 5-transistor type pixel, in addition to the 4-transistor type pixel or the 3-transistor type pixel. Fig. 4 is a view showing an example of a columnar signal processing circuit for a solid-state imaging device according to the present embodiment. The column signal processing circuit 15 may include a related double sampling (referred to as "CDS" and reference) circuit 31. The correlated double sampling circuit 31 reads out the pixel signal S (pixel) and the pseudo-signal S (psd). The pixel signal S (pixel) includes a first signal level S1 containing a noise component and a second signal level S2 containing a signal component superimposed on the noise component. The camera signal S (img) is the difference between the first signal and the second signal. By means of correlated double sampling, it is possible to remove, for example, the reset noise of the pixel circuit or the enthalpy of the transistor. The correlated double sampling circuit 31 includes switches 33a and 33b, capacitors 35a and 35b, and a calculation amplifier circuit 37. An input (negative input) 37a of the arithmetic amplification circuit 37 receives a signal from the input VIN via the serially connected switch 33a and the capacitor 35a, and the other input (positive input) 37b of the arithmetic amplification circuit 37 is shared. Reference signal (VC0M). Between the input 37a of the arithmetic amplification circuit 37 and the output 37c of the arithmetic amplification circuit 37, a switch 33b and a capacitor 35b are connected. The output VOUT receives the signal from the output 37c of the calculation amplifier circuit 37. The switch 33a controls the input operation of the signal, and the switch 33b controls the reset operation. When the reset potential is output from the pixel 11, the switches 33a, 33b are set to be closed, and the reset level S1 is taken up in the capacitor 35a. Next, the switch 33a is held in a closed circuit to open the switch 33b, and the signal level S2 from the pixel 11 is extracted in the capacitor 35a. Since the switch 33b is turned off, a difference (e.g., S1-S2) between the reset level S1 and the signal level S2, i.e., analog CDS result, is generated at the output 37c of the arithmetic amplification circuit 37. In the solid-state imaging device 1, a CDS circuit 31 arranged in a vertical column may be included for each of the column arrays. Even if the signal sent from each pixel of the column array is constant, in the result of the analog CDS, the characteristics of the capacitors 35a, 35b or the arithmetic amplification circuit 37 may be different, resulting in slight differences in each column. It became a fixed modal noise in the column. According to this embodiment, the column-fixed modal noise resulting from the analog CDS circuit can be reduced. Fig. 5 is a view showing another example of the column signal processing circuit for the solid-state imaging device according to the embodiment. The column signal processing circuit 15 can include a CDS circuit 31 and an A/D conversion circuit 41. The A/D conversion circuit 41 receives the signal from the CDS circuit 31. The A/D conversion circuit 41 performs A/D conversion on the analog CDS result to generate a first digital signal (digital video signal) S (ADC 1). After the analog signals are generated by the signals SI and S2 from the pixel 11, the selection switch TR (SW) of the pixel 1 1 is turned off, and the column array of the pixel array 3 is cut away from the column line C. Thereafter, the selection switches TR (SWO) in the reference circuits -22-201143412 7a to 7d in Figs. 2 and 3 are turned on, and the reference circuits 7a to 7d are connected to the column line C. The CDS circuit 31 sets the switches 33a, 33b to be closed, and the pseudo-signal S (psd) is captured in the capacitor 35a. Thereafter, the holding switch 33a is closed and the switch 33b is turned off. Thereby, the CDS circuit 31 generates a signal required to establish a reference signal S (ref) associated with the pseudo-signal S (psd). The A/D conversion circuit 41 receives the pseudo-signal S (psd) via the CDS circuit 31. When the CDS circuit 31 reads the pseudo-signal S (psd), the A/D conversion circuit 4 1 extracts the signal on the output 37c of the arithmetic amplification circuit 37 into a pseudo-signal level. The A/D conversion circuit 41 performs A/D conversion on the pseudo-signal level to generate a second digital signal (digital video signal) S (ADC2). When the first and second AD conversion results thus generated are subtracted by the digital processing field in the signal processing unit 9, slight differences in each column are canceled, and it is possible to generate a good modal noise without vertical column. The image signal S (OUT)» The A/D conversion circuit shown in Fig. 5 can be applied to various types such as an integral type, a patrol type, a successive comparison type, and a combination type thereof. Further, in the above, the operation of connecting the reference circuits 7a to 7d to the vertical line C is performed after the analog CDS result is generated, but may be performed before the analog CDS result is generated. According to the above embodiment, the vertical fixed mode modal noise caused by the CDS circuit 31 and the A/D conversion circuit 41 can be reduced. The A/D conversion circuit 41 provides a reference signal and an image signal in digital form. Further, the column signal processing circuit 15 may not include the CDS circuit 31, but may include an A/D conversion circuit 41. Specifically, the column signal processing circuit 15 may include an A/D conversion circuit -23-201143412. When an array of A/D conversion circuits is provided in the vertical column of the pixel array 3, for example, a patrol type A/D converter, a more efficient circuit configuration can be provided. The roving A/D converter provides A/D conversion and provides CDS action as needed. Fig. 图 is a view showing still another example of the column signal processing circuit for the solid-state imaging device according to the embodiment. The column signal processing circuit shown in Fig. 6 can be configured as a circuit for performing CDS operation, amplification operation, and A/D conversion operation using a single amplifier. The column signal processing circuit 5 includes a tour type A/D conversion circuit 51. The patrol type A/D conversion circuit 51 may include first and second capacitors 43a and 43b, an arithmetic amplification circuit 45, a switch circuit 47, a D/A conversion circuit 48, and a comparator 49 (49a, 49b). Between an input 45a and an output 45c of the arithmetic amplification circuit 45, a reset switch 238 and a capacitor 43b of the switch circuit 47 are connected. Between an input 45a and an output 45c of the arithmetic amplification circuit 45, a capacitor 43a connected in series and a switch 234 of the switch circuit 47 are connected, and another input 45b of the arithmetic amplification circuit 45 is connected to Common reference signal VC0M. One end of the capacitor 43a is connected to the reference signal VC0M line via the switch 236, and is connected to an input 45a of the arithmetic amplification circuit 45 via the switch 235 of the switch circuit 47. The other end of the capacitor 43a is connected to the D/A conversion circuit 48, is connected to the input VIN line via the switch 232 of the switch circuit 47, and is connected to the arithmetic amplification circuit 45 via the switch 23 of the switch circuit 47. Output 45c. The D/A conversion® circuit 48 system includes switches 240, 241, and 242, and the switches 240, 241, and 242 of the switch circuit 47 are responsive to the signals φ ΜΙ, Φ 〇 1, Φ ρι from the comparator 49, and function as D/A conversion circuits. The voltage signals VRM, VC0M, and VRP are switched. -24- 201143412 Switch circuit 47 (switches 232, 23 4, 23 5, 236, 23 8 ) changes the connection ′ of the first capacitor 43a, the second capacitor 43b, and the arithmetic amplifier circuit 45. The switch circuit 47 can form a first connection in which the connection between the first and second capacitors 43a and 43b and the calculation amplifier circuit 45 can perform a correlated double sampling operation, and the first and second capacitors 43a can be formed. The connection between the 43b and the arithmetic amplification circuit 45 enables the second connection of the patrol A/D conversion circuit. The column signal processing circuit 5 performs correlated double sampling by the first connection and performs a tour type A/D conversion by the second connection. According to this embodiment, the column-fixed modal noise caused by the first capacitor 43a, the second capacitor 43b, the arithmetic amplification circuit, and the switch circuit 47 can be reduced. The CDS operation in the circuit shown in Fig. 6 can be performed by the switch circuit 47 forming the same component connection as the C D S circuit of Fig. 4. The connection method required for the CDS operation in the switch circuit 47 is specifically as follows. When the reset potential level S1 is output from the pixel 11, 'the switches 23 2, 23 5, 238 are set to be closed, and the reset level is extracted in the capacitor 43a. Next, the switches 23 2, 23 5 are kept closed, the switch 23 8 is turned off, and the signal potential level S2 is extracted from the pixel 11 in the capacitor 43a, whereby on the output 45c of the arithmetic amplification circuit 45, The difference between the reset level S1 and the signal level S2 can be obtained, that is, the analog CDS result. However, during this action, the switches 234, 263 must always remain open. For the signal on the output 45c of the arithmetic amplification circuit 45, 1.5-bit A/D conversion (sub A/D conversion) is performed with two comparators 49a '49b. Use the result to perform the calculations required for the next digit A/D conversion. For this calculation, the switches 234, 236 are set to be closed so that the capacitor 43a (C1) is connected to the output 45c of the amplification circuit 45, and all other switches are turned off. Thereafter, the switches 2 34, 23 6 are turned off to connect one end of the capacitor 43a ( C1 ) to the D/A conversion circuit 48, and the other end of the capacitor 43a (Cl) is connected to the calculation via the switch 23 5 . When the input 45a of the amplifying circuit 45 is turned on, the switches 240, 241, and 242 are all turned ON to generate a 1.5-bit A/D-converted residual signal. The residual signal is stored in capacitors 43a, 43b. For the residual signal, perform the calculation required for the next digit A/D conversion. Repetitive residual generation and A/D conversion are repeated until the required number of times. By using the A/D conversion circuit 51 shown in FIG. 6 in the column signal processing circuit 15, the CDS circuit can be integrated with the A/D converter, and can be operated equivalently to the circuit shown in FIG. In addition, in the A/D conversion operation, the relationship of capacitance (C1=C2) is obtained. On the other hand, the column signal processing circuit 5 provides an amplification function together with the CDS function in accordance with the ratio of capacitance (C1/C2) at the time of the CDS operation performed before the A/D conversion. In the solid-state imaging device 1, the pixel array 3, the column signal processing unit 5, and the reference signal generating unit 7 can be shrunk to a single semiconductor wafer. At this time, since the signal processing unit 9 is provided outside the semiconductor wafer, the signal processing unit can be provided in various forms without being contracted in a single semiconductor wafer branch line. Alternatively, in the solid-state imaging device 1, the pixel array 3, the column signal processing unit 5, the reference signal generating unit 7, and the signal processing unit 9 can be contracted to a single semiconductor wafer. At this time, the read signal in which the column fixed modal noise has been lowered can be provided from the integrated circuit required for the solid-state imaging device. A few examples of the driving method of the solid-state imaging device will be described with reference to Figs. 7 and 8 . In these examples, the signal processing unit 9 accepts the digital -26-201143412 reference signal and the digital video signal. Fig. 7 is a view showing an example of a solid-state imaging device and a reading method thereof. The 1H period of one frame of the pixel array 3 may include the first period 61a and the second period 6 1 b. In the first period 61 1 a, one pixel signal s ( p i X e 1 ) is read out from the pixel 11 of the pixel array 3. In the second period 6丨b, the pseudo-signal S (psd) is read from the reference signal generating unit 7. In each of the 1 Η periods, the pixel signal S (pixel) sent from the pixel 1 一行 of one line of the pixel array 3 is read. Also, during the 1H period, the pseudo-signal S (psd) is read out in all of the column arrays. In a frame of the pixel array 3, the reading of the pixel signal s (p i X e 1 ) of one line and the reading of the pseudo-signal S (psd) are performed interactively. Therefore, the pseudo-signal S (psd) is read every iH period, so the image signal S (img) of each row of the pixel array 3 can be calculated using the pseudo-signal S (psd) updated every 1H period. deal with. Since the random noise of the pseudo-signal S (psd) is different for each line of the image signal S (img), the generation of fixed modal noise due to random noise can be avoided. The pixel signal S (pi X e 1 ) read from the pixel array 3 is stored in the memory circuit as a line memory in the readout of the pseudo-signal S (psd) (circuit 55a of FIG. 9(a)). )in. During the iH period, after the reading of the imaging signal S (img) and the reference signal S (ref) is completed, the imaging signal S (img) is taken from the memory circuit (circuit 55a of FIG. 9) in the signal processing unit 9. The reading 'generates a signal corresponding to the difference between the imaging signal S (img) and the reference signal S (ref). The signal processing unit 9 includes an arithmetic circuit for performing such arithmetic processing (circuit 55b of Fig. 9(a)). Therefore, generating a signal indicating a difference for -27-201143412 uses a memory circuit (e.g., circuit 55a) that is a line memory. Normally, the averaging processing of the reference signal s (ref) is not performed so that the processing can be smoothly performed, but when only one-frame still image shooting or the like is obtained, the averaging processing of the reference signal S (ref) is performed. More ideal. In this form, when the first period 61 a is after the second period 6 lb in the period of 1H, the memory signal 55a stores the pseudo-signal s ( psd ), and the other is the second period during the 1 Η period. The period 6 1 b is after the first period 6 1 a, and the pixel signal s ( pi X e 1 ) is stored in the memory circuit 55 5 a. Therefore, when the pixel signal S (pixel) is treated the same as the pseudo-signal S (psd), the two are equivalent. Further, when the allowable signal amplitude of the pseudo-signal S ( p s d ) can be reduced as compared with the pixel signal S (pixel), the capacity of the former memory circuit 55a (the number of bits at the time of digits) can be reduced. Fig. 8 is a view showing another example of a solid-state imaging device and a reading method. The one or two cells of the pixel array 3 include a plurality of first 1H periods 63a and a single second one 1 period 63b. In the first 1H period 63a, the pixel signal S (pixel) sent from the pixel 11 of the pixel array 3 is read. In the second one of the periods 63b, the pseudo-signal S (psd) sent from the reference circuit 7a is read. The reading of the pseudo-signal S (psd) from the reference circuit 7a is performed in a single 1H period 63b, so that the frame rate can be increased. The averaging processing of the reference signal S (psd) is not performed except when necessary, and the processing can be smoothly performed. Referring to Fig. 8(a), the 2nd 1 period 63b is located at the end of the one frame. The calculation processing of the image signal S (img) of the SI grid can be performed by using the reference signal S ( r e f ) of the previous frame -28 - 201143412. This form is performed using a megapixel circuit (circuit 56a of Fig. 9(b)) which is a line memory. The memory circuit (circuit 56a of FIG. 9(b)) ' stores a common reference signal S ( ref )' and will sequentially input the image signal S (img), using a common reference signal S ( ref ) The processing circuit (the circuit 56b of FIG. 9(b)) performs processing. Alternatively, the calculation processing of the image signal S(img) of a frame can be performed by using the frame reference signal s (ref). . This form is performed using a memory circuit (circuit 5 7 a of Fig. 9 (c)) which is a picture frame. The memory circuit (circuit 57a of FIG. 9(c)) 'stores the image signal S (img) of a pixel array portion read out before, and uses the common reference signal S (ref) read after use, The stored image pickup signals are sequentially processed by an arithmetic circuit (circuit 5 7b of Fig. 9(c)). Referring to Fig. 8(b), the second one is located at the beginning of the one frame. The calculation of the image signal of the picture frame can be performed using the reference signal read out during the first 1 frame period. This form is performed using a memory circuit (circuit 5 5 a of Fig. 9 (a)) which is a line memory. In this embodiment, the reference signal system is not changed in the entire frame, and is a common 値. The memory circuit stores the common reference signal, and the image signals sequentially input are processed by a calculation circuit (circuit 55b of Fig. 9(a)) using a common reference signal. The 2nd Η period may also be located away from the beginning and end of the frame. Except for the special needs, the averaging process of S ( ref ) No. -29-201143412 is not performed, and the processing can be smoothly performed. When necessary, the column signal processing circuit 7 can perform a plurality of readings of the pseudo-signal S (psd) of the reference circuit 7a. According to the side of the above, reading the pseudo-signal S (psd) from the reference circuit 7a at a plurality of times is performed at different timings, so that the reduction of random noise is effective. Further, when necessary, the reference signal generating unit 7 may include an additional reference circuit (referred to as "additional reference circuit 7a") having the same configuration as that of the reference circuit 7a. This additional reference circuit 7a is connected to the column signal processing circuit 5. The reference signal generating unit 7 can read the pseudo-signal S ( psd ) from the complex reference circuit 7a to perform a combination (for example, averaging) of the pseudo-signals S ( psd ) from the reference circuit 7a and the additional reference circuit 7a. The reference signal S ( ref ) is generated. Further, since the position of the reference circuit 7a is different from the position of the additional reference circuit 7a, the variations of these reference circuits 7a can be averaged. The reading of the pseudo-signal S (psd) from the reference circuit 7a is performed at a different timing from the reading of the pseudo-signal S (psd) from the additional reference circuit, so that the reduction of the random noise is effective. Fig. 1 is a view showing still another example of the lanthanum solid-state imaging device and the reading method. In the solid-state imaging device 1 and the reading method, one frame of the pixel array 3 may include m first 1H periods 67a and k second 1H periods 67b. In each of the first one period 67a, the pixel signal S (pixel) sent from the pixel 1 1 of the pixel array 3 is read. In the second 1st period 67b, the readout signals S (psd) and the 1st 1H period 6 7a sent from the reference circuit 7a are successively arranged. The kth 2nd Η period 67b is continuously arranged. The reference signal S (re f ) in the k 2nd 1st 6 period 6 7 b is averaged. • 30- 201143412 The average random noise is reduced to l/sqrt (k). Here, sqrt is the calculation of the square root. The 2nd Η period 6 7b can be arranged continuously at the beginning of the one frame. In this case, the average value of the reference signal S ( ref ) read in the k 1 Η period 67b can be used to calculate the image signal S (img) to calculate the circuit (Fig. 1 1 (a) Circuit 5 8 a) to carry it out. The average 値 generation of the reference signal S ( ref ) can be performed by averaging the 値 circuit (circuit 58b of Fig. 11 (a)). The 2nd Η period 6 7b is arranged continuously at the end of the one frame. In this case, the average 値 of the reference signal S ( ref ) read out in the k 1 Η period 67b in the previous frame can be used to calculate the image signal S ( img ) of the frame. The calculation circuit (circuit 5 8a of Fig. 1 1 (a)) is carried out. The average 値 generation of the reference signal S ( ref ) can be performed by an average 値 circuit (circuit 58b of Fig. 11 (a)). This average 値 is saved across the entire frame. Alternatively, after the image signal S (img) in the frame is stored in the memory circuit of the frame memory (circuit 51 9b of FIG. 11 (b)), k first period periods in the frame are generated. The average 値 of the reference signals read in . Using this average 値', the arithmetic processing of the image pickup signal stored in the circuit (e.g., circuit 5 9 b of Fig. 11 (b)) is performed by an arithmetic circuit (circuit 59a of Fig. 11 (b)). The average 値 generation of the reference signal S (ref) can be performed by an average 値 circuit (circuit c (b) of circuit 59c). When using a circuit that generates an average 値, in the average 値, reference signal -31 - 201143412 The random noise contained in it will be reduced. Further, when the reading number k of the pseudo-signal 3 (1?3 £1) is smaller than the number of rows η, the frame rate can be increased. The reading of k times has the following forms: (a) repeating the same reference circuit; (b) sequentially reading the different reference circuits; and (c) reading the pseudo-signals by the desired combination of these. As described above, in the solid-state imaging device 1 and the reading method, the column signal processing unit 5 can perform pre-recording of the pseudo-signal for each frame (i). <k) song out. The signal processing unit 9 may also include an average chirp generating circuit that performs an averaging process of the reference signal S ( ref ) to generate an average chirp. The read signal S (OUT) is the difference between the average value of the image signal S (img) and the reference signal S (ref). Fig. 12 is a view showing still another example of the solid-state imaging device and the reading method. As shown in FIG. 12, in the solid-state imaging device 1 and the reading method, the signal processing unit 9 may include a digital filter which is a reference signal S(ref) of the full column in the column signal processing unit 5. Each is processed across the m-frame to generate an average 每 for each column. If the digital filter processing is used for averaging, the fixed modal noise of the column can be reduced without damaging the frame rate. In one example of the averaging process, the signal processing unit 9 performs averaging processing over the most recent continuous m-frame before the n-th frame (n>m) to generate an average 値. By averaging across the nearest m-frame, the effects of slow-changing noise can be reduced. When the reference signal S ( ref ) is averaged across the complex frame, the average random noise is reduced by Ι/sqrt ( m ) by referring to the random noise contained in the signal S ( ref ). In the nth frame, the praise signal S (OUT) is generated using the average 値 across the nearest -32-201143412 m frame. Further, in another example of the averaging process, the signal processing unit 9 performs averaging processing across the continuous first m-frame from the first frame to the m-frame to generate an average 値. When the reference signal S ( ref ) is averaged across the complex frame, the average random noise is reduced by 1/sqrt(m) by referring to the random noise contained in the signal S ( ref ). In the nth (n>m + 1) frame, the read signal s(OUT) is generated using a fixed average 値. The averaging process across the complex frames is performed, for example, as follows. Reference signals RF ( 1 ) to RF ( m ) for the first to mth frames, RF ( 1 ) — AV ( 1 ) (AV ( i-1 ) + RF ( i ) ) /2 — AV ( i ) (2 < i ^ m ) This is done. When necessary, the same processing can be performed even after the (m + 1)th. This processing is provided using the signal processing section shown in FIG. Fig. 13 (a) shows an example of a system composed of hardware of a digital filter. The signal processing unit 9 of the solid-state imaging device 1 includes a digital filter 60 suitable for the digital reference signal S ( ref ), and a digital image pickup signal S (img ) using the average 値AV from the digital filter 6〇a. The calculation circuit of the subtraction process 6 〇b. Fig. 1 3 (b) shows an example of the connection of the digital filter circuit. The digital filter circuit adds the filter output yn to the delay signal D, and the output of the calculator ALU is added by the adder ADD1 to generate the next filter output, and the signal yn^ is calculated by the calculator ALU. The input side subtracts the filter from the filter input Xn-33-201143412 The output yn.i (adds the complement of the filter output yn-i to the filter input calculator ADD2), and generates the input signal to the calculator a. At the beginning of the wave calculus calculation, by inputting the appropriate initial X (init) tool MUX to the filter circuit, the calculation speed at which the average 値 is obtained using the filter can be greatly improved. Even if the number of powers of 6 is taken as 2 (for example, 2_δ = 0. 015625), it becomes easy on the hard body, and it is possible to use a coefficient on a hard body such as a parallel translator. Therefore, it is possible to realize a small-sized, high-speed, and compatible hardware. A transfer function indicating the filter characteristics of the digital filter circuit can be used, for example, as follows: H ( z ) = a / (l - (la) χζ · 1) The average 値 can be obtained by applying feedback by a digital filter. . This transmission represents the IIR filter. These are the inputs that are mixed one by one with a ratio a, and Fig. 14 is a diagram of an example of the characteristics of the IIR filter. By using a smaller 値 such as a = 0.01, an average 高精度 of high precision is obtained. The time-normal frame of the LPF caused by the above-mentioned conveyance function is not as follows: r = -1/ln ( 1-a) When a=0.01, the ratio is r = 99, and the filter output is at 100. Will be stable. Figure 15 is a diagram showing the main steps of reading a signal from a pixel array of a solid-state imaging device. In step S1 0 1 , the reading of the pixel signal S (pixel) sent from the pixel array 3 is performed using the vertical X n . The filter passes through the low-pass number a to achieve the change of the H (z)-rich function of the low-pass, for example, the number of pairs, in the subsequent method of the image field signal -34-201143412 processing circuit 15 is performed to generate an image signal S (img). In step S102, the reading of the pseudo-signal S (psd) for reducing the fixed-mode noise of the column is performed by using the column signal processing circuit 15 to generate the reference signal S(ref). In step 1〇3, the calculation process for reducing the fixed-mode noise of the column caused by the column signal processing circuit 15 is performed by using the reference signal S (ref) for the image signal S (img). A read signal S (OUT) is generated. According to this method, the same vertical column signal processing circuit 15 is used to generate the image pickup signal S (img) and the reference signal S (ref) based on the pixel signal S (pixel) and the pseudo-signal S (psd), respectively. Therefore, the image signal S (img) and the reference signal S(ref) are included in the column fixed modal noise caused by the column signal processing circuit 15. The image signal S (img) is subjected to the above-mentioned calculation processing using the reference signal s (ref), so that the column fixed modal noise caused by the column signal processing circuit 15 is to be read in the read signal S (OUT) reduce. Since the pseudo-signal source s (psd) does not contain the photoelectric conversion element, the lowering of the fixed-mode noise of the column is not affected by the light leakage or the diffusion of electrons from the pixel array 3. The signal processing flow in the solid-state imaging device 1 is more specifically, the pixel signal s (pi χ e!) sent from the pixel 11 in the pixel array 3 is read out, and then A/D conversion is performed. The digital image signal s (img), that is, the first digital data s (ADC1). Further, after reading the reference signal s ( pSd ) from the reference circuit 7a, a process of generating the a/d converted digital reference signal S (ref), that is, the second digital data s (ADC2) is performed. The project of directly providing the first digital data S ( a D C 1 ) to the processing circuit 60b of the -35-201143412 is performed. On the other hand, the second digital data S (ADC2) is supplied to the arithmetic processing circuit 60b via the digital filter 60a for averaging processing (for example, S104). In the digital filter 60a, the arithmetic mean is performed for the digital data S (ADC2) of the m-frames input in order for each frame. Carry out the filtered 値 < S (ADC2)> is supplied to the calculation processing circuit 60b. In the calculation processing circuit 60b, 'from the start of the operation to the m-frame, the generation of the representation digital data S(ADC1) and the average 値 are performed. <3 (eight 002) > The signal processing of the difference signal (for example, S 1 0 5 ). By doing this, a good image signal without fixed modal noise can be obtained. Although the principles of the invention have been described in the preferred embodiments, the invention may be modified in the details and details. The present invention is not limited to the specific configuration disclosed in the embodiment. For example, a circuit composed of a fully differential circuit can be used in a circuit constructed using a single-ended circuit. Alternatively, a single-ended circuit can be used in a circuit composed of a circuit composed of fully differential. Therefore, all amendments and changes in the scope of the patent application and its spirit are in the required powers. [Possibility of Industrial Use] According to the present invention, it is possible to provide a solid-state imaging device which can reduce the fixed-mode noise of the column without being affected by light leakage or diffused electrons from the pixel array. Moreover, according to the present invention, a method of reading a signal from a pixel array of a solid-state imaging device can be provided, according to which the vertical fixed mode modal noise can be reduced. -36-201143412 [Simplified description of the drawings] Fig. 1 is a view showing a block configuration of a solid-state imaging device of a two-dimensional image sensor. Fig. 2 is a view showing a configuration of a reference circuit of a reference voltage generating unit. [Fig. 3] Fig. 3 is a drawing of an array of reference circuits. [Fig. 4] Fig. 4 is a view showing an example of a vertical column signal processing circuit for a solid-state imaging device according to the present embodiment. [Fig. 5] Fig. 5 is a view showing another example of a vertical column signal processing circuit for a solid-state imaging device according to the present embodiment. Fig. 6 is a view showing still another example of the vertical column signal processing circuit for the solid-state imaging device according to the embodiment. Fig. 7 is a view showing an example of a solid-state imaging device and a reading method thereof. Fig. 8 is a view showing another example of a solid-state imaging device and a reading method thereof. [Fig. 9] Fig. 9 is a view showing an example of a circuit configuration of a signal processing unit. Fig. 10 is a view showing still another example of a solid-state imaging device and a reading method thereof. Fig. 11 is a view showing an example of a circuit configuration of a signal processing unit. Fig. 12 is a view showing still another example of a solid-state imaging device and a reading method thereof. -37-201143412 [Fig. 13] Fig. 13 is a view showing an example of a circuit configuration of a signal processing unit. Fig. 14 is a view showing an example of an IIR filter characteristic. [Fig. 15] Fig. 15 is a diagram showing the main steps in the method of reading signals from the pixel array of the solid-state imaging device. [Description of main component symbols] 1 : Solid-state imaging device 3 : Pixel array Π : Pixel Π a : Photoelectric conversion element 1 1 b : Pixel circuit S (pixel): Pixel signal C: Column line 7 : Reference signal generating unit 7a 7b, 7c, 7d: reference circuit PSD: pseudo-signal source S (psd): pseudo-signal 5: column signal processing unit 1 5: column signal processing circuit 9: signal processing unit S (ref): reference signal S (img ): Camera signal S ( OUT ): certificate signal -38-

Claims (1)

201143412 七、申請專利範圍: 1. 一種固體攝像裝置,其特徵爲, 具備: 像素陣列,係含有像素,該像素係具有光電轉換元件 和提供來自該光電轉換元件之訊號的像素電路;和 參照訊號生成部,係被配置在前記像素陣列之外側, 具有一或複數個參照電路,該參照電路係含有用來降低縱 欄固定模態雜訊的擬似訊號源;和 縱欄訊號處理部,係含有縱欄訊號處理電路,用以根 據來自前記像素陣列之像素訊號及來自前記參照訊號生成 部之擬似訊號而分別生成攝像訊號及參照訊號;和 訊號處理部,係接受前記攝像訊號及前記參照訊號, 並且生成讀出訊號; 前記像素陣列係含有複數縱欄陣列; 前記縱欄訊號處理部,係每一畫格就進行前記擬似訊 號的k次(1 S k )之讀出; 前記參照電路的前記擬似訊號源係不含光電轉換元件 及浮置擴散部; 前記訊號處理部的前記讀出訊號,係藉由使用前記參 照訊號而對前記攝像訊號實施用來降低前記縱欄訊號處理 電路所造成之縱欄固定模態雜訊的演算處理,而被生成。 2. 如申請專利範圍第1項所記載之固體攝像裝置,其 中, 各縱欄陣列內的前記像素,係被連接至縱欄線; -39- 201143412 前記參照電路係含有,用來對前記縱欄線提供前記擬 似訊號所需的開關; 前記像素的前記像素電路係含有,用來將來自該當像 素之前記光電轉換元件的訊號提供至前記縱欄線所需的控 制機構。 3. 如申請專利範圍第1項或第2項所記載之固體攝像 裝置,其中, 前記縱欄訊號處理部係含有前記縱欄訊號處理電路之 陣列’前記縱欄訊號處理電路的每一者係分別連接至前記 縱欄陣列; 前記參照訊號生成部係含有前記參照電路之陣列,前 記參照電路之每一者係分別連接至前記縱欄訊號處理電路 I 前記訊號處理部係含有用來進行前記演算處理的演算 電路,前記訊號處理部係對每一前記縱欄訊號處理電路進 行用來生成前記參照訊號與前記攝像訊號之差分的處理, 來作爲前記演算處理; 前記讀出訊號,係使用前記演算電路而被生成。 4. 如申請專利範圍第1項〜第3項之任一項所記載之 固體攝像裝置,其中, 前記縱欄訊號處理部,係每一畫格就進行前記擬似訊 號的k次(1<1〇之讀出; 前記訊號處理部係含有平均値生成電路,用來進行前 記參照訊號之平均化處理而生成平均値; -40- 201143412 前記讀出訊號,係表示前記攝像訊號與前記平均値之 差分。 5 ·如申請專利範圍第1項〜第4項之任一項所記載之 固體攝像裝置,其中, 前記縱欄訊號處理部係含有相關二重取樣電路; 前記相關二重取樣電路係將前記像素訊號予以讀出; 前記像素訊號係含有,含雜訊成分之第1訊號位準與 含有重疊於該雜訊成分上之訊號成分的第2訊號位準; 前記攝像訊號係表示前記第1訊號及前記第2訊號之差 分。 6 .如申請專利範圍第5項所記載之固體攝像裝置,其 中, 前記縱欄訊號處理部係含有A/D轉換電路,用來接受 來自前記相關二重取樣電路的輸出訊號。 7.如申請專利範圍第6項所記載之固體攝像裝置,其 中, 目II記A / D轉換電路中的A / D轉換,係爲積分型轉換、 巡迴型轉換、逐次比較型轉換及這些所組合成的轉換方式 之至少一種。 8 ·如申請專利範圍第1項〜第4項之任一項所記載之 固體攝像裝置,其中, 前記縱欄訊號處理電路係含有:第1及第2電容、演算 增幅電路,以及用來變更前記第1電容、前記第2電容及前 記演算增幅電路之連接所需的開關電路; -41 - 201143412 前記開關電路係提供:第1連接,係使前記第1及第2 電容以及前記演算增幅電路可進行相關二重取樣;和第2 連接,係使前記第1及第2電容以及前記演算增幅電路可進 行巡迴型A/D轉換; 前記縱欄訊號處理電路,係藉由前記第1連接而進行 前記相關二重取樣,並且藉由前記第2連接而進行前記巡 迴型A/D轉換。 9. 如申請專利範圍第1項〜第8項之任一項所記載之 固體攝像裝置,其中, 前記像素陣列、前記參照訊號生成部及前記縱欄訊號 處理部,係被集縮在單一半導體晶片中。 10. —種方法,係屬於從含有縱欄訊號處理電路及參 照電路之固體攝像裝置之像素陣列歌出訊號之方法,其特 徵爲, 具備: 使用前記縱欄訊號處理電路而進行來自前記像素陣列 內之像素的像素訊號之讀出,以生成攝像訊號之步驟;和 使用前記縱欄訊號處理電路而進行來自前記像素陣列 外之參照電路的、用以減低縱欄固定模態雜訊的擬似訊號 之讀出,以生成參照訊號之步驟;和 藉由使用前記參照訊號而對前記攝像訊號進行用來降 低前記縱欄訊號處理電路所造成之縱欄固定模態雜訊的演 算處理,以生成讀出訊號之步驟: 前記像素係具有:光電轉換元件、和用來提供來自該 -42- 201143412 光電轉換元件之訊號的像素電路; w記參照電路係含有用來生成前記擬似訊號的擬似訊 號源; % ge μ & m @源係不含光電轉換元件及浮置擴散部; 則s己縱欄訊號處壤電路,係對前記像素訊號及前記擬 似訊號’進行相關二麗取樣、A/D轉換、增幅及取樣保持 動作之至少一種處理。 -43-201143412 VII. Patent application scope: 1. A solid-state imaging device, comprising: a pixel array comprising pixels, wherein the pixel has a photoelectric conversion element and a pixel circuit for providing signals from the photoelectric conversion element; and a reference signal The generating unit is disposed on the outer side of the pre-recorded pixel array, and has one or a plurality of reference circuits including a pseudo-signal source for reducing vertical fixed-mode noise of the column; and a column signal processing unit containing The column signal processing circuit is configured to generate an image capturing signal and a reference signal respectively according to the pixel signal from the pre-recorded pixel array and the pseudo-signal from the preceding reference signal generating unit; and the signal processing unit receives the pre-recording signal and the pre-recording signal. And generating a read signal; the pre-recorded pixel array includes a plurality of column arrays; the front column signal processing unit performs reading of the k-times (1 S k ) of the pre-recorded signal for each frame; The pseudo-signal source system does not contain photoelectric conversion elements and floating diffusion parts; Front note processing unit reads out the signal, line by using the front note with reference to the signal and to remember the imaging signals front embodiment to reduce the former referred Column signal processing circuit arithmetic processing of Columnar fixed modal noise caused, is generated. 2. The solid-state imaging device according to claim 1, wherein the pre-recorded pixels in each column array are connected to the column line; -39- 201143412 The column line provides the switch required for the pre-recorded signal; the pre-recorded pixel circuit of the pre-recorded pixel contains the control means required to provide the signal from the pre-pixel photoelectric conversion element to the pre-column line. 3. The solid-state imaging device according to claim 1 or 2, wherein the pre-column signal processing unit includes an array of pre-column signal processing circuits, each of which is a front-end column signal processing circuit. Connected to the front column array respectively; the pre-reference signal generating unit includes an array of pre-referenced circuits, each of which is connected to the pre-column signal processing circuit I. The pre-signal processing unit is included for performing pre-calculation The processing circuit for processing, the pre-signal processing unit performs a process for generating a difference between the pre-recorded reference signal and the pre-recorded image signal for each of the preceding column signal processing circuits as a pre-calculation process; the pre-recorded signal is a pre-calculation The circuit is generated. 4. The solid-state imaging device according to any one of the preceding claims, wherein the front column signal processing unit performs k times of the pre-recording signal for each frame (1 < 1 The reading of the 讯 ; ; 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 ; 前 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The solid-state imaging device according to any one of the preceding claims, wherein the pre-column signal processing unit includes an associated double sampling circuit; The pre-recorded pixel signal is read; the pre-recorded pixel signal contains the first signal level containing the noise component and the second signal level containing the signal component superimposed on the noise component; the pre-recorded video signal indicates the first note The difference between the signal and the second signal of the foregoing. 6. The solid-state imaging device of claim 5, wherein the front-end column signal processing unit includes A/D conversion a circuit for receiving an output signal from a pre-recorded double-sampling circuit. 7. The solid-state imaging device according to claim 6, wherein the A/D conversion in the A/D conversion circuit is A solid-state imaging device according to any one of the first to fourth aspects of the invention, wherein the solid-state imaging device according to any one of the above-mentioned claims, wherein The pre-column signal processing circuit includes: first and second capacitors, an arithmetic amplification circuit, and a switching circuit for changing the connection of the first capacitor, the second capacitor, and the preamplifier amplification circuit; -41 - 201143412 The pre-switching circuit provides: the first connection, which enables the first and second capacitors and the pre-calculation amplifier circuit to perform the relevant double sampling; and the second connection, which makes the first and second capacitors and the pre-calculation increase. The circuit can perform the patrol type A/D conversion; the pre-column signal processing circuit performs the pre-recording related double sampling by the first connection first, and by the second note The solid-state imaging device according to any one of the first to eighth aspects of the invention, wherein the pre-recorded pixel array, the pre-recorded signal generating unit, and the pre-column column The signal processing unit is condensed in a single semiconductor wafer. 10. The method is a method for outputting a signal from a pixel array of a solid-state imaging device including a vertical column signal processing circuit and a reference circuit, and is characterized in that : reading the pixel signals from the pixels in the pre-recorded pixel array to generate the image pickup signal using the front column signal processing circuit; and performing the reference circuit from the pre-recorded pixel array using the front column signal processing circuit a step of reducing the readout of the pseudo-signal of the fixed-mode noise of the column to generate the reference signal; and using the pre-recorded reference signal to reduce the pre-recorded signal processing circuit The operation of the column modulating the processing of the modal noise to generate the read signal: The pre-recorded pixel system has: photoelectric a replacement component, and a pixel circuit for providing a signal from the -42-201143412 photoelectric conversion component; the w reference circuit system includes a pseudo-signal source for generating a pre-symmetric signal; % ge μ & m @源系不The photoelectric conversion element and the floating diffusion part; the sever column signal circuit is a process for performing at least one of the related pixel sampling, the A/D conversion, the amplification, and the sampling and holding operation on the pre-recorded pixel signal and the pre-recorded signal. -43-
TW100102878A 2010-01-26 2011-01-26 Solid-state imaging device and method of reading signals from the pixel array of solid-state imaging device TW201143412A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014587 2010-01-26

Publications (1)

Publication Number Publication Date
TW201143412A true TW201143412A (en) 2011-12-01

Family

ID=44319213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102878A TW201143412A (en) 2010-01-26 2011-01-26 Solid-state imaging device and method of reading signals from the pixel array of solid-state imaging device

Country Status (3)

Country Link
JP (1) JPWO2011093225A1 (en)
TW (1) TW201143412A (en)
WO (1) WO2011093225A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603621B (en) * 2012-11-15 2017-10-21 精工半導體有限公司 Photoelectric conversion device and image sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459025B2 (en) 2014-07-07 2019-01-30 パナソニックIpマネジメント株式会社 Solid-state imaging device
JP6676983B2 (en) * 2016-01-28 2020-04-08 株式会社リコー Photoelectric conversion element, image reading device, image forming device, and image reading method
WO2017179113A1 (en) * 2016-04-12 2017-10-19 オリンパス株式会社 Noise removing circuit and image sensor
JP2018088648A (en) * 2016-11-29 2018-06-07 ルネサスエレクトロニクス株式会社 Solid-state imaging apparatus
WO2018163895A1 (en) * 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 Solid-state imaging device, and camera system using same
WO2018163896A1 (en) * 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 Solid-state imaging device, and camera system using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273166A (en) * 2003-04-28 2009-11-19 Olympus Corp Image pick-up device
JP3962788B2 (en) * 2003-10-29 2007-08-22 国立大学法人静岡大学 A / D conversion array and image sensor
JP4517660B2 (en) * 2004-02-09 2010-08-04 ソニー株式会社 Solid-state imaging device, image input device, and driving method of solid-state imaging device
JP2008124527A (en) * 2006-11-08 2008-05-29 Sony Corp Solid-state imaging device and imaging apparatus
JP2010114487A (en) * 2008-11-04 2010-05-20 Sony Corp Solid-state image pickup apparatus and image pickup apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603621B (en) * 2012-11-15 2017-10-21 精工半導體有限公司 Photoelectric conversion device and image sensor

Also Published As

Publication number Publication date
JPWO2011093225A1 (en) 2013-06-06
WO2011093225A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP6735582B2 (en) Imaging device, driving method thereof, and imaging device
US9343500B2 (en) Solid-state imaging device, driving method thereof, and electronic device
US7375748B2 (en) Differential readout from pixels in CMOS sensor
JP4929075B2 (en) Solid-state imaging device, driving method thereof, and imaging device
US6914227B2 (en) Image sensing apparatus capable of outputting image by converting resolution by adding and reading out a plurality of pixels, its control method, and image sensing system
JP5034610B2 (en) Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
JP5620693B2 (en) Solid-state imaging device, driving method thereof, and camera
CN111901540B (en) Image pickup apparatus
TW201143412A (en) Solid-state imaging device and method of reading signals from the pixel array of solid-state imaging device
WO2012105259A1 (en) Solid-state image capture device and method of driving same
EP2135443B1 (en) Ultra low noise cmos imager
JP4440315B2 (en) Solid-state imaging device
US20070236590A1 (en) Output auto-zero for CMOS active pixel sensors
TW201018223A (en) Solid-state image sensor and camera system
JP2014060573A (en) Solid-state image sensor, control method and electronic apparatus
US7479995B2 (en) On chip real time FPN correction without imager size memory
JP2005311487A (en) Solid-state imaging unit and drive method of solid-state imaging unit
JP4546563B2 (en) Semiconductor integrated circuit
JP2003051989A (en) Photoelectric converter, solid-state image pickup device and system
JP6177060B2 (en) Photoelectric conversion device, imaging system, and driving method of photoelectric conversion device
JP2004266597A (en) Image sensor with full-pixel simultaneous electronic shutter function
JP2005130322A (en) Image sensor noise eliminating device
JP2012114641A (en) Semiconductor device and solid-state image pickup device
JP4507937B2 (en) Solid-state imaging device
TW201212646A (en) Solid-state imaging device and camera system