TW201141939A - Liquid crystal sealant and liquid crystal display cell using same - Google Patents

Liquid crystal sealant and liquid crystal display cell using same Download PDF

Info

Publication number
TW201141939A
TW201141939A TW100112626A TW100112626A TW201141939A TW 201141939 A TW201141939 A TW 201141939A TW 100112626 A TW100112626 A TW 100112626A TW 100112626 A TW100112626 A TW 100112626A TW 201141939 A TW201141939 A TW 201141939A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
weight
epoxy resin
sealing agent
crystal sealing
Prior art date
Application number
TW100112626A
Other languages
Chinese (zh)
Other versions
TWI509017B (en
Inventor
Masahiro Kida
Hideyuki Ota
Naoyuki Ochi
Eiichi Nishihara
Masanori Hashimoto
Tsunetoshi Sakano
Naomi Hasumi
Tsutomu Namiki
Hiroaki Miwa
Saki Yoshida
Kikuo Imazumi
Original Assignee
Nippon Kayaku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kk filed Critical Nippon Kayaku Kk
Publication of TW201141939A publication Critical patent/TW201141939A/en
Application granted granted Critical
Publication of TWI509017B publication Critical patent/TWI509017B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Sealing Material Composition (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is a UV curable type liquid crystal sealant containing (a) talc which containing no crystalline silica, (b) (meth)acrylic epoxy resin and (c) photopolymerization initiator, further containing (e) epoxy resin, (f) thermal curing agent, and inorganic filler (h) other than said (a) talc as arbitrary ingredient. While the sealant is forming gap and curing, the wiring on the substrate has less breakage, the adhesiveness to glass substrate is excellent, liquid crystal pollution is less, and the moisture resistance of the formed liquid crystal seal is also extraordinary.

Description

201141939 六、發明說明: 【發明所屬之技術領域】 本發明係有關於用以接著TFT ( Thin film Transistor ) 基板與CF (Color Filter)基板,以及將液晶封入内部所使 用之液晶密封劑,以及使用該密封劑之液晶顯示單元。 【先前技術】 近年的液晶顯示單元展開於電視等大型顯示畫面之 應用,其為多用途且需求與日倶增。因此,有關液晶面板 製造,為了提高量產性,以ODF ( One Drop Fill)方式(也 稱為液晶滴下方式等)代替液晶注入方式成為主流(參照 專利文獻1、2、3、4)。 ODF方式為先在附有兩枚電極之透明基板的一面以 分配器(dispenser)形成由長方形的未硬化密封劑所構成 的密封劑圖案。接著,在密封劑未硬化的狀態,將液晶的 微小滴滴下塗佈在透明基板的密封劑圖案框内全面,再立 刻與其他的透明基板貼合而製作成液晶單元。此液晶單元 的密封劑圖案部份以紫外光照射進行光硬化(暫時硬化)。 之後,依必要加熱進行熱硬化(實硬化)而製作成液晶顯 示單元。 近年來隨著玻璃基板尺寸的大型化,強烈要求對於玻 璃基板的高接著性,然而,過去〇DF方式的密封劑相較於 液aa左入方式所用之熱硬化型樹脂組成物而成的密封劑, 與玻璃基板的接著力較弱,有玻璃基板剝離之問題點。 為解決此問題,而開發使用滑石粉作為填充劑之液晶 323019 4 201141939 密封劑(專利文獻5)。 [先前技術文獻] [專利文獻] [專利文獻1]曰本特開昭63_179323 [專利文獻2]曰本特許2754004 [專利文獻3]日本特許3162179 [專利文獻4]日本特許3583326 [專利文獻5]曰本特開2008-40015 【發明内容】 (發明欲解決之課題) 本發明者等發現在使用滑石粉作為無機填充劑時,會 發生在密封劑下方之鋁配線產生斷線之原因不明的問題, 對其原因進行各種檢討時,發現為只含有在滑石粉中極少 量(通常在0.2至〇‘3%左右)的非結晶性二氧化矽所造成 的影響。 亦即’由於一般的滑石粉為由天然存在之礦石經粉碎 而知’故含有白雲石(d〇i〇mite)、菱鎮礦(magnesite)、 結晶性二氧化矽(silica)等各種雜質。根據本發明者等的 檢討’發現在此等雜質中,雖然含量極少,但由於結晶性 二氧化矽硬度高且具有結晶構造,在間隙形成時及硬化時 因與玻璃基板之摩擦,故造成密封劑下方之鋁配線斷線, 從而完成本發明。 因此’本發明之目的係提供一種液晶密封劑及使用此 等之液晶顯示單元,其由於使用滑石粉,作為無機填充劑, 5 323019 201141939 而無因設置於 晶污染亦少, 著性亦佳。 單元基板之配線之密封劑所產生的斷線,液 相對於玻璃基板之接著性、硬化厚的耐濕接 (解決課題之方法) 本發明者等精心檢討之結果,發現使用不含处 氧化石夕之滑石粉可達成前述課題,遂完成本發明。口日日一 亦即,本發明係有關於以下(1)至(11)者。 (1) 一種紫外線硬化型液晶密封劑,其含有 ::晶性二氧化梦之濟石粉、⑴(甲基)丙焊酸化環氧樹 月曰及(C)光聚合起始劑。 (2)上述第⑴項所述之液晶密封劑,其中,滑石 73 3 )的平均粒徑在1以m以下。 中,^3)上述第(1)或(2)項所述之液晶密封劑,其 ’=有:滑石粉⑴,其相對於液晶密封__ U 重罝%’(甲基)丙烯酸化環氧樹脂⑴,其相對於 晶密封劑總量為30至90重量%,光聚合起始劑(小其 相對於100重量份之Q基)丙烯酸化環氧樹脂⑴為 0.01至20重量份。 ⑷上述第⑴至⑶項任—所述之液晶密封齊 ,、滑石粉(a)為經(d)矽烷偶合劑進行表面處理之 石粉。 ’ 上述第(4)項所述之液晶密封劑,其中,矽烷 偶合劑(d)為環氧矽烷偶合劑。 (6)上述第⑴至⑷項中任一項所述之液晶密 323019 6 201141939 封劑’其中復含有(〇環氧樹脂及⑴熱硬化劑。 封劑,i中^⑴至⑷項中任—項所述之液晶密 曹旦。(甲基)丙稀酸化環氧樹脂(b) 30至90 ^里从⑴環氧樹脂3至5G重量%;相對於_重量 if丙婦酸?環氧樹脂(b),係含有光聚合起始 樹1至2〇重置份’以及相對於100重量份之環氧 樹月曰〇,係含有熱硬化劑⑴1()至8()重量份的比例。 上述第⑴至(7)項中任一項所述之紫外線 更化里液晶密封劑,其中’在(a)不含結晶性二氧化矽之 =粉卜結紐二氧切含量以χ光繞咖定為㈣ (9)上述第⑴至⑴項中任—項所述之紫外線 硬化型液晶密封劑,其中,含有不含結晶性二氧化石夕之滑 石粉(a)與其他無機填充劑⑴,且相料密封劑之她量, 無機填充劑之總量為10至40重量%,相對於無機填細 之總量’不含結晶性二氧化梦之滑石粉(a)的含量為5 至90重量% ’其他無機填充劑⑴的含量為⑺至^重 量%。 (10) 上述第(1) ϋ (9)項巾任—項所述之紫外線 硬化型液晶㈣劑,其卜復含有丙烯酸醋單體 (g)。 (11) 一種液晶顯示單元,係以上述第(2)至(9) 項中任一項所述之液晶密封劑硬化所得之硬化物進行密封 323019 7 201141939 者。 (發明的效果) 本發明之液晶密封劑其接著性優異,且可防止基板上 配線的斷線。此外,該液晶密封劑之液晶污染性低,接著 強度及耐濕接著強度亦優異。因此,藉由使用此密封劑, 可容易地製造信賴性優異的液晶顯示面板。 【實施方式】 以下詳細說明本發明。本發明之液晶顯示元件用密封 劑組成物係含有:不含結晶性二氧化矽之滑石粉(a)、(曱 基)丙烯酸化環氧樹脂(b)、光聚合起始劑(c)作為必要 成分。 滑石粉為由氫氧化鎂與矽酸鹽所構成之滑石經粉碎 成粉末而得。因此滑石粉通常含有作為雜質之結晶性二氧 化石夕。 本發明中不含結晶性二氧化矽之滑石粉(a)(以下, 亦簡稱為「滑石粉(a)」)意指例如藉由X光繞射測定, 其結晶性二氧化矽含量在檢驗極限以下(具體而言為0.1 重量%以下)之滑石粉,更佳為結晶性二氧化矽含量未達 0.1重量%者。此種滑石粉係可由一般市面上獲得。 滑石粉中之結晶性二氧化矽含量可由在X光繞射測定 中,源自結晶性二氧化矽之繞射角26.8°的波鋒面積比而 求得(容許±0.2°左右的誤差)。該X光繞射測定的測定條 件之具體例如下。 測定機器:X’Pert-PRO-MPD (Spectris股份有限公司 8 323019 201141939 製) 鞋*材.銅 掃描角度:5°至60° 掃描速度:2°/分201141939 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal sealing agent used for a TFT (Thin Film Transistor) substrate and a CF (Color Filter) substrate, and a liquid crystal sealed inside, and the like. The liquid crystal display unit of the sealant. [Prior Art] In recent years, liquid crystal display units have been developed for use in large-scale display screens such as televisions, which are versatile and demanding. Therefore, in order to improve mass productivity, liquid crystal panel manufacturing has become the mainstream in place of liquid crystal injection by ODF (One Drop Fill) method (also referred to as liquid crystal dropping method) (see Patent Documents 1, 2, 3, and 4). In the ODF method, a sealant pattern composed of a rectangular unhardened sealant is formed by a dispenser on one surface of a transparent substrate having two electrodes. Then, in a state where the sealant is not cured, fine droplets of the liquid crystal are dripped and applied to the sealant pattern frame of the transparent substrate, and then bonded to other transparent substrates to form a liquid crystal cell. The sealant pattern portion of the liquid crystal cell is photohardened (temporarily hardened) by irradiation with ultraviolet light. Thereafter, it is thermally cured (solidified) by heating as necessary to prepare a liquid crystal display unit. In recent years, as the size of the glass substrate has increased in size, high adhesion to the glass substrate has been strongly demanded. However, in the past, the sealant of the 〇DF method was sealed with the thermosetting resin composition used for the liquid aa left-in method. The adhesion between the agent and the glass substrate is weak, and there is a problem that the glass substrate is peeled off. In order to solve this problem, a liquid crystal 323019 4 201141939 sealant using talc powder as a filler was developed (Patent Document 5). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. The present inventors have found that when talc is used as an inorganic filler, the cause of disconnection of the aluminum wiring under the sealant is unknown. When conducting various reviews of the causes, it was found to contain only a small amount (usually around 0.2 to 〇 '3%) of non-crystalline cerium oxide in talc. That is, since the general talc powder is known to be pulverized by the naturally occurring ore, various impurities such as dolomite (m〇site), magnesite (magnesite), and crystalline silica are contained. According to the review by the inventors of the present invention, it has been found that the content of such impurities is extremely small, but since the crystalline cerium oxide has a high hardness and a crystal structure, it is sealed against the glass substrate during the formation of the gap and at the time of curing. The aluminum wiring under the agent is broken, thereby completing the present invention. Therefore, the object of the present invention is to provide a liquid crystal sealing agent and a liquid crystal display unit using the same, which uses talc as an inorganic filler, and has no crystal contamination, and is excellent in properties. The wire breakage of the sealing agent of the wiring of the unit substrate, the adhesion of the liquid phase to the glass substrate, and the hardening resistance of the glass substrate (method of solving the problem). The inventors carefully examined the results and found that the use of the oxidized stone was not included. The talc talc powder can achieve the aforementioned problems, and the present invention has been completed. The present invention relates to the following (1) to (11). (1) An ultraviolet curable liquid crystal sealing agent comprising: a crystalline oxidized dreaming stone powder, (1) a (meth) propidium acidified epoxy resin, and (C) a photopolymerization initiator. (2) The liquid crystal sealing agent according to the above (1), wherein the talc 73 3 ) has an average particle diameter of 1 or less. The liquid crystal sealing agent of the above item (1) or (2), which has a talc powder (1) which is 相对_% 罝 '%' (meth) acrylated ring with respect to the liquid crystal. The oxy-resin (1) is 30 to 90% by weight based on the total amount of the crystal sealant, and the photopolymerization initiator (small relative to 100 parts by weight of the Q-based) acrylated epoxy resin (1) is 0.01 to 20 parts by weight. (4) The liquid crystal sealing according to any one of the above items (1) to (3), wherein the talc powder (a) is a stone powder surface-treated with the (d) decane coupling agent. The liquid crystal sealing agent according to the above item (4), wherein the decane coupling agent (d) is an epoxy decane coupling agent. (6) The liquid crystal dense 323019 6 201141939 sealing agent according to any one of the above items (1) to (4), wherein (including epoxy resin and (1) heat hardener. Sealing agent, i in ^(1) to (4) - Liquid crystal dense Cao Dan. (Methyl) acrylated epoxy resin (b) 30 to 90 ^ from (1) epoxy resin 3 to 5 G weight%; relative to _ weight if pro-glycolic acid? The resin (b) contains a photopolymerization starting tree 1 to 2 〇 a reset portion' and a proportion of the heat hardener (1) 1 () to 8 () by weight relative to 100 parts by weight of the epoxy tree The ultraviolet ray-correcting liquid crystal sealing agent according to any one of the above items (1) to (7), wherein (a) does not contain crystalline cerium oxide; The ultraviolet curable liquid crystal sealing agent according to any one of the above items (1) to (1), wherein the talc powder (a) containing no crystalline non-crystalline silica is contained, and other inorganic fillers are contained. (1), and the amount of the phase sealant, the total amount of the inorganic filler is 10 to 40% by weight, relative to the total amount of the inorganic filler, 'the crystalline talc dioxide-free talc powder (a) The content of the other inorganic filler (1) is from (7) to 重量%. (10) The ultraviolet curable liquid crystal (four) agent according to the above item (1), wherein (1) A liquid crystal display unit which is sealed with a cured product obtained by curing the liquid crystal sealing agent according to any one of the above items (2) to (9). (Effect of the invention) The liquid crystal sealing agent of the present invention is excellent in adhesion and can prevent disconnection of wiring on a substrate. Further, the liquid crystal sealing agent has low liquid crystal contamination, and is excellent in strength and wet strength. Therefore, the liquid crystal display panel which is excellent in reliability can be easily manufactured by using this sealing agent. [Embodiment] The present invention will be described in detail below. The sealant composition for a liquid crystal display element of the present invention contains: crystallinity-free Talc powder (a), (fluorenyl) acrylated epoxy resin (b), and photopolymerization initiator (c) are essential components. Talc is a talc composed of magnesium hydroxide and niobate. Crushed into powder Therefore, the talc powder usually contains crystalline silica dioxide as an impurity. In the present invention, the crystalline talc powder (a) which does not contain crystalline cerium oxide (hereinafter, also referred to as "talc powder (a)") Refers to talc powder whose crystalline cerium oxide content is below the test limit (specifically, 0.1% by weight or less), for example, by X-ray diffraction, and more preferably, the crystalline cerium oxide content is less than 0.1% by weight. The talc powder can be obtained from the general market. The crystalline cerium oxide content in the talc powder can be determined by the wave front area ratio of the diffraction angle of 26.8° derived from crystalline cerium oxide in the X-ray diffraction measurement. Obtained (allows an error of ±0.2°). The specific conditions of the measurement of the X-ray diffraction measurement are as follows. Measuring machine: X'Pert-PRO-MPD (Spectris Co., Ltd. 8 323019 201141939) Shoes * Material. Copper Scanning angle: 5° to 60° Scanning speed: 2°/min

管電壓:40kVTube voltage: 40kV

管電流:30mA 入射側狹縫:0.04°索勒狹縫(Soller slit),自動可變 型發散狹縫(£)ivergence Slit),AS1。 受光側狹縫:0.04° 此外,由此條件之滑石粉中結晶性二氧化石夕含有率的 檢驗極限為0.1%。 本發明所使用之滑石粉(a)的平均粒徑較佳為丨私❿ 以下。若滑石粉的平均粒徑過大,則在液晶單元製造時, 上下基板貼合形成間隙時可能會出現問題。此外,本發明 所使用之滑石粉(a)的平均粒徑下限通常為〇 左右。 較佳之滑石粉(a)的平均粒徑為〇 3至左右, 更佳為0.4至0.9 // m左右。 此外,平均粒徑是指以雷射繞射粒度分佈測定裝置 (SALD-2000J島津製作所股份有限公司製)所測定之中 數直徑(median diameter)。 本發明所使用之滑石粉(a),亦可使用預先以矽烷偶 合劑表面處理之滑石粉。藉由表面處理使得叙(甲美)丙 烯酸化環氧樹脂(b )之相容性變好,耐濕性賴性也會提升。 因此’預先以碎烧偶合劑表面處理之滑石粉(a)為較佳。 323019 9 201141939 本發明所使用之滑石粉(a)的市售品,可列舉出ΝΑΝΟ ACERTMD-600F (曰本talc股份有限公司製)等。此外,預 先以石夕烧偶合劑表面處理之滑石粉(a )的市售品,可列舉 出 NANO ACErtmD-600FC3BM43、ΝΑΝΟ ACErtmD-600FC3BM63 (兩者皆為曰本taic股份有限公司 製)等。 此外,在本說明書中上標之「RTM」表示註冊商標。 用以施行本發明滑石粉(a)之表面處理的矽烷偶合劑 (d)(以下,亦簡稱為「矽烷偶合劑(d)」),只要為無機 填充劑表面改質可使用之矽烷偶合劑,並且不妨礙本發明 的效果都可使用。 該矽烷偶合劑(d),可列舉出例如3_環氧丙氧基丙基 三曱氧基矽烷、3-環氧丙氧基丙基曱基二甲氧基矽烧、2_ (3,4-環氧環己基)乙基三曱氧基矽烷等具有環氧基的矽 烷偶合劑;N-苯基-3-胺丙基三甲氧基矽烷、Ν· ( 2_胺乙基) 3-胺丙基甲基二甲氧基矽烷、Ν_ (2-胺基乙基)3-胺丙基 三曱氧基矽烷、3-胺丙基三乙氧基矽烷等具有胺基的矽烷 偶合劑;3-鲅丙基三甲氧基矽烷等具有酼基(mercapt〇) 的矽烷偶合劑;乙烯基三曱氧基矽烷、N_ (2_ (乙烯基苄 胺)乙基)3-胺丙基三甲氧基矽烷鹽酸鹽等具有乙烯基的 矽烷偶合劑;3-曱基丙烯醯氧基丙基三曱氧基矽烷等具有 (甲基)丙烯醯氧基的矽烷偶合劑;3_氯丙基甲基二甲氧 基矽烷、3-氯丙基三曱氧基矽烷等等具有函素原子的矽烷 偶合劑等。此等矽烷偶合劑(d)可單獨使用亦可兩種以上 323019 10 201141939 混合使用。此等之中較佳為具有胺基的矽烷偶合劑及具有 環氧基的矽烷偶合劑。其中尤以3-環氧丙氧基丙基三曱氧 基矽烷、3-環氧丙氧基丙基曱基二曱氧基矽烷、2- (3,4-環氧環己基)乙基三曱氧基矽烷等具有環氧基的矽烷偶合 劑為較佳。藉由使用經該矽烷偶合劑(d)處理過之滑石粉 (a),可使本發明之密封劑獲得更良好的耐濕信賴性。 以矽烷偶合劑進行滑石粉(a)的表面處理,可藉由在 滑石粉(a)以喷霧等方法將矽烷偶合劑塗佈於滑石粉(a) 表面而進行。 上述使用矽烷偶合劑(d)進行滑石粉(a)的表面處 理時,相對於100重量份之滑石粉(a),矽烷偶合劑(d) 的使用量通常為0.1至10重量份左右,較佳為1至5重量 份。 本發明所使用之滑石粉(a )在液晶密封劑中的含量通 常為1至40重量%,較佳為3至20重量%。滑石粉(a) 在本發明的密封劑中作為無機填充劑使用。在本發明中, 作為無機填充劑可單獨使用該滑石粉(a )亦可與其他無機 填充劑併用。通常較佳為與其他無機填充劑併用。其他無 機填充劑(h )只要是液晶密封劑一般所使用之滑石粉以外 的無機填充劑皆可使用。此種無機填充劑(h),可列舉出 例如二氧化矽(熔融二氧化矽等)、氮化矽、氮化硼、碳酸 鈣、硫酸鋇、硫酸鈣、雲母、氧化鋁、氫氧化鋁、矽酸鈣 及矽酸鋁等。在此等之中較佳為二氧化矽,更佳為熔融二 氧化矽(非晶質二氧化矽),又更佳為球狀非晶質二氧化矽 11 323019 201141939 (熔融球狀二氧化矽)。 上述其他無機填充劑(h)的平均粒徑較佳為l//m以 下,更佳為0.9# m以下。下限則無特別限定,通常在0.1 # m以上,較佳為0.2 # m以上。 在本發明的密封劑中,相對於密封劑之總量,含有滑 石粉(a)之無機填充劑的含量為5至40重量%左右,較 佳為10至40重量%左右,更佳為15至30重量%左右。 當併用滑石粉(a)與其他無機填充劑(h)時,相對 於無機填充劑之總量,滑石粉(a)的含量通常為5至90 重量%左右,較佳為26至80重量%左右,更佳為41至80 重量%左右,最佳為41至60重量%左右。其他無機填充 劑(h)含量通常為10至95重量%左右,較佳為20至74 重量%左右,更佳為20至59重量%左右,最佳為40至59 重量%左右。當併用滑石粉(a)與其他無機填充劑(h) 時,相對於密封劑之總量,滑石粉(a )的含量較佳為3 至35重量%左右,更佳為3至20重量%左右,又更佳為6 至20重量%左右。此外,上述其他無機填充劑(h)的含 量,相對於密封劑總量,通常為2至30重量%,較佳為5 至20重量%,更佳為5至15重量%。 此外,在本發明之密封劑中,當併用滑石粉(a)與其 他無機填充劑(h)時,含有滑石粉(a)多於其他無機填 充劑(h)的態樣為較佳的態樣之一。 當滑石粉(a)的含量過少時,對於玻璃基板的接著強 度降低,此外耐濕信賴性也會劣化,因此吸濕後接著強度 12 323019 201141939 也會大幅降低。此外,包典 量過多時,液晶密封劑變=人a)’當無機填充物含 單元的間隙,會有產生樹轉難— 缺點的疑慮。 X減弱、接著強度降低等 本發明所使用之(甲It ^ 藉由環氧樹脂與(甲基)^ =稀酸化環氧樹脂⑴係 在環氧樹脂的環氧基场應而得。換言之,亦可 (甲基)丙稀酸化環=:力二(甲基)丙_。作為該 之部分(甲A)丙Mi日⑴’可為殘留有部份環氧基 皆以(甲環氧樹脂,較佳為於所有環氧基 氧樹r 稱進行開環加成之(甲基)丙稀酸化環 氧樹月曰(亦稱為環氧(甲基)丙烯酸醋)。 另外’「(甲基)丙烯酸化」或「( 中「(甲基)丙烯酸」是指「丙嫌於芬//「)丙席酉夂」4 」疋扣丙烯0夂」及/或「甲基丙烯酸,。 本發明之(曱基)丙埽酸化環氧樹脂⑴較佳為對 ^曰污染性及溶解性低者。作為該(甲基)丙騎化環氧 ^脂⑴原料之環氧樹脂,賴特別的限定但較佳為2 B能以上之環氧樹脂。該環氧樹脂的環氧#量並沒有特別 的限定,通常為50至i _g/eq左右,較佳為i⑼至5〇〇g/eq 左右0 該環氧樹脂具體例,可列舉出例如雙酚A型環氧樹 脂、雙酴F型環氧樹脂、雙酚s型環氧樹脂、酚系酚醛清 漆型環氧樹脂(Phenol novolac epoxy resin)、甲酚酚酸清 漆型環氧樹脂(cresol novolac epoxy resin )、雙酚A酚醛 清漆型環氧樹脂、雙酚F酚醛清漆型環氧樹脂、脂環式環 323019 13 201141939 氧樹脂、脂環族鏈狀環氧樹脂、縮水甘油酯型環氧樹脂、 縮水甘油胺型環氧樹脂、乙内醯脲(hydant〇in)型環氧樹 脂、異氰酸酯(iS0Cyanurate)型環氧樹脂、具有三酚甲烷 骨架之酚系酚醛清漆型環氧樹脂、二官能酚類之二縮水甘 油醚化物及二官能醇類之二縮水甘油醚化物,以 齒化物或氫化物等。 等之 此等之中,以液晶污染性的觀點來看,較佳者為 型環氧樹脂及酚醛清漆型環氧樹脂,更佳為雙酚型環氧 脂(例如雙盼A型環氧樹脂、雙紛Μ環氧樹脂及、 型J衣氧樹脂等)。最佳為雙紛Α型環氧樹脂。 較佳之該(甲基)丙稀酸化環氧樹脂(b)係對上 t佳、更佳或最佳之環氧樹脂開環加成(曱基)丙烯釀1 環氧(曱基)丙稀酸S旨。具體來說,較佳為雙齡型環氧 基)丙稀酸酉旨或祕清漆型環氧(甲基)丙婦酸醋 : 為雙紛型環氧(甲基)丙稀酸醋,特別佳為雙紛A型環ί (曱基)丙稀酸酉旨。 氧 該(甲基)丙稀酸化環氧樹脂(b)之環氧當量通常 為50至1000g/eq左右,較佳為1〇〇至5〇〇g/叫左右。 本發明所用之(甲基)丙烯酸化環氧樹脂⑴ 晶密封劑中的含量(相對於密封劑總量之含量)為3 9〇重量%,較佳為40至80重量%,更佳為5〇至8〇 %左右。若(曱基)丙稀酸化環氧樹脂⑴ 在液晶密封劑之熱硬化時,會因硬化不足而產生基板則 本發明所使用之光聚合起始劑㈦為 323〇i9 14 201141939 生自由基之光自由基聚合起始劑。該光聚合起始劑(C)的 - 具體例,可列舉出苄基二甲基縮酮、1-羥基環己基笨鲖、 二乙基0塞吨 3同(2-ethylthioxanthone)、二笨基酮 (benzophenone)、2-乙基蒽醌i、2-經基-2-甲基苯丙網 (2-hydroxy-2-methylpropioplienoiie)、2-甲基-〔4-(曱硫 基)苯基〕-2-嗎啉基-1-丙酮及2,4,6-三曱基苄醯基二笨基 氧化膦等。市售之光聚合起始劑(c)之具體例,可列舉出 IRGACURErtm184、IRGACURErtm369、 IRGACURErtm651、IRGACURErtm2959、 IRGACURErtm8 19 (皆為汽巴精化股份有限公司製)、 LucirmRTMTPO ( BASF 製)、ADEKARTM OPTOMER N-1414、ADEKARTM OPTOMERN-1717 (皆為旭電化工業 股份有限公司製)、Esacure KIP150、Esacure KK (皆為 DKSH Japen股份有限公司製)等。 此等可單獨使用或亦可兩種以上併用。此外,相對於 100重量份之(甲基)丙烯酸化環氧樹脂(b),使用量較 佳為0.01至20重量份。若使用量過少,則本發明的密封 劑無法充分硬化。另外若使用量過多,則會有因起始劑造 成對液晶的汙染及硬化後樹脂特性降低的問題點。 本發明之液晶密封劑中,前述滑石粉(a)、前述(曱 基)丙烯酸化環氧樹脂(b)及前述光聚合起始劑(c)以 外之剩餘部份為任意的添加成分,其含有量相對於液晶密 封劑’通常為0至60重量%、較佳為〇至4〇重量%。 任意的添加成分,可列舉出前述其他無機填充劑 323019 15 201141939 (h)、下述環氧樹脂(e)及熱硬化劑(f)、後述之(曱基) 丙烯酸酯單體(g)及其他的添加劑等。 為了使熱硬化後接著強度提升,本發明之液晶密封劑 亦可含有環氧樹脂(e)及熱硬化劑(f),含有此等之態樣 為較佳的態樣之一。 ,本發明之液晶密封劑所使用之環氧樹脂(〇 (以下, 亦:稱為「環氧樹脂(〇」)只要為通常液晶密封劑可使用 之環氧樹脂皆可使用,較佳為對液晶污染性及溶解性低 者^適合的環氧樹脂(e)之例子,可列舉出(i)雙紛A 里衣氧樹月日、雙紛F型環氧樹脂、雙紛s型環氧樹脂等 龄型環氧樹脂;(ii)雙盼A祕清漆型環氧樹脂、雙紛^ 祕β漆型環氧樹脂等雙㈣酸清漆型環氧樹脂;(出)紛 系紛^漆型環氧樹脂、酸清漆型環氧樹脂或具有 ^盼甲貌骨架之_清漆型環氧樹脂等祕清漆型環氧樹 户诛、及(1V)其他環氧樹脂’例如脂環式環氧樹脂、脂 環氧樹脂、縮水甘油㈣環氧樹脂、縮水甘油胺 二::樹脂、乙内酿脲型環氧樹脂、異氰酸醋型環氧樹脂、 吕此_貞之二縮水甘⑽化物及二官能醇類之二縮水甘 並’以及此等之齒化物或氫化物等。環氧樹脂 並不限疋於此等化合物。 該環氧樹月旨(e)較佳為上述⑴至㈤者,更佳 二紛型環氧樹脂及紛酸清漆型環 型環氧樹脂,特佳為雙紛A型環氧樹脂。以圭為雙齡 於本發明液晶密封劑中使用環氧樹脂(e)時,其含量 323019 16 201141939 相對於液晶密封劑總量,通常為1重量%以上,較佳為3 重量%以上,通常為50重量%以下,較佳為25重量%以下。 更佳為相對於液晶密封劑總量,為3至15重量%。 若該環氧樹脂(e)使用量過少,則無法顯現接著強度 提升的效果。此外,若使用量過多時,則有因環氧樹脂(e) 造成對液晶的汙染之問題。 熱硬化劑(f)只要為與環氧樹脂(e)反應形成硬化 物者’則無特別的限定,重點為加熱時液晶密封劑不會汙 染液晶、均一且迅速的開始反應及使用時在室溫下黏度隨 時間變化少。在以液晶滴下方式時,熱硬化劑(f)的熱硬 化條件,為了控制封入之液晶其特性降低在最低限度,一 般要求可在120°C、1小時左右之低溫硬化能力。有鑑於以 上各點,本發明之液晶密封劑中,熱硬化劑(f)較佳為多 官能醯肼(hydrazide )類或多價胺類。 於本發明之密封劑中使用熱硬化劑(f)時,其含量相 對於100重1份之環氧樹脂(e),較佳為⑺至⑽重量份 左^更佳為15至60重量份左右。此外,相對w當量 2礼樹脂(e)所具有之環氧基,較佳為使用熱硬化劑⑴ 中相對於環氧基之反應基為(U至K5當量之量的熱硬化 劑(f)。若熱硬化劑⑴使用量相對於環氧樹脂(e)過 少時’則縣樹脂無法充分硬化。❹卜,若紐用量過多 時’則密封劑的耐濕性能會有問題。 上述之多官能醯肼類在此是指分子中具有兩個以上 醯肼基的化合物。多官能醢肼類具體例,可列舉出例如卡 323019 201141939 肼(carbohydrazide)、乙二酸二醢肼、丙二酸二醢肼、丁 二酸二醯肼、己二酸二醯肼、庚二酸二醯肼、辛二酸二醯 肼、壬二酸二醯肼、癸二酸二醯肼、十二烷二羧酸二醯肼 (Dodecanedihydrazide)、十六烧二叛酸二醢肼、順丁坪 二酸二醯肼、反丁烯二酸二醯肼、3-氧代戊二酸二醯肼 (diglycol acid dihydrazide)、酒石酸二醯肼、蘋果酸二醢 肼、間苯二甲酸二醯肼、對苯二曱酸二醯肼、2,6-萘甲酸 二醯肼、4,4-雙(苯)二醯肼、1,4-萘甲酸二醯肼、2,6-吡 啶二醯肼、1,2,4-苯三醯肼、1,2,4,5-苯四曱酸四醯肼、 1,4,5,8-萘曱酸四醯肼及1,3-雙(肼基碳乙基)-5-異丙基乙 内醯脲(hydantoin)等具有纈胺酸乙内醯脲骨架之二醯肼 類,但並不限定於此等化合物。 多官能醯肼類作為熱硬化劑(f)使用時,因為作為潛 在性硬化劑’較佳為粒徑小且能均勻分散者。此時較佳的 平均粒徑為0.3至3以m左右。 較佳為以多官能醯肼類作為熱硬化劑(f),多官能醯 肼類中較佳為一醜肼。從液晶污染性的觀點來看,較佳的 硬化劑(f)為癸二酸二醯肼、己二酸二醯肼、間苯二甲酸 二醯肼及具有纈胺酸乙内醯脲骨架之二醯肼類,特佳為^ 二酸二醯肼。 ♦’、、六 竹百钩】ί工刺汉應性及黏度亦可使用(甲夷) 酸醋之單體(或寡聚物亦可)(g)(町亦可稱為土、 丙烯酸醋單體(g))。此等(甲基)丙騎醋單 要為對液晶污染性低者即無特別限制,可舉出例 id 323019 201141939 醇(pentaerythritol )、二季戊四醇或己内酯改質二季戊四 醇與(甲基)丙烯酸之反應物等。在此等之中,較佳為季 戊四醇或二季戊四醇與(甲基)丙烯酸之反應物,更具體 來說,可舉出季戊四醇單至四丙烯酸酯或二季戊四醇單至 六丙烯酸酯。更佳為季戊四醇二至四丙烯酸酯或二季戊四 醇一至六丙烯酸酯,最佳為季戊四醇二至四丙稀酸酯。 (甲基)丙烯酸酯單體(g)在本發明液晶密封劑中 可單獨使用亦可兩種以上併用。使用(甲基)丙烯酸酯單 體(g)時之含量,對於液晶密封劑總量,較佳為2至3〇 重量% ’更佳為5至20重量%。 本發明之液晶密封劑,復可依其必要與有機填充劑、 顏料、偶合劑、調平劑(leveling agent)及消泡劑等之其 他添加劑調配。該其他添加劑的使用量,相對於液晶密封 劑總量,為0至10重量%左右。 本發明液晶密封劑的黏度別無特別限定,以配佈性等 觀點來看’較佳為1〇至500 pa . s (25°c ),更佳為1〇〇 至 300 Pa · s (25。(:)。 本發明之液晶密封劑較佳的態樣如下所例示。此外 「%」表示重量%,「份」表不重量份。 (I )液晶密封劑,含有:不含結晶性二氧化矽之滑 石粉(a)、(曱基)丙婦酸化環氧樹脂(b)及光聚合起始 劑(c )。 (Π)上述(X )所述之液晶密封劑,其中,滑石粉 (a)的平均粒徑為〇·3至1 /zm。 323019 19 201141939 (m)上述(i )或(II)所述之液晶密封劑,其中, (甲基)丙烯酸化環氧樹脂(b)含有雙紛型環氧(甲 丙烯酸醋或祕清漆型環氧(甲基)丙稀酸醋。 土 (rv)上述(ί )至(π)中任一所項述之液晶密封 劑’其中’滑石粉(a)為經碎烧偶合劑(d)進行表面處 (V) 上述(ΪΥ)所述之液晶密封劑,其中,矽烷偶 合劑(d)為含有環氧基之矽烷偶合劑。 (VI) 上述⑴至⑺中任一項所述之液晶密封 劑,其中,復含有環氧樹脂(e)及熱硬化劑(f)。 (Vi)上述(VI)所述之液晶密封劑,其中,環氧樹 脂(e)含有雙酚型環氧樹脂。 (Μ )上述(Π )或(通)所述之液晶密封劑其中, 雙酚型環氧樹脂為雙酚Α型環氧樹脂。 (Κ)上述(VI)至(遞)中任一項所述之液晶密封 劑,其中係含有二醯肼類作為熱硬化劑(f)。 (X)上述(J)至(κ)中任一項所述之液晶密封 劑’其中’復含有(曱基)丙烯酸酯單體(g)。 (X I )上述(X)所述之液晶密封劑,其中,係含 有季戊四醇、二季戊四醇或己内酯改質二季戊四醇與(曱 基)丙烯酸之反應物作為(曱基)丙烯酸酯單體(g)。 (ΧΠ)上述(Ϊ)至(X ;[)中任一項所述之液晶 密封劑’其中’復含有其他無機填充劑(h)。 (xm)上述(Xπ)所述之液晶密封劑,其中,其 323019 20 201141939 他無機填充劑(h)的平均粒徑為〇」至】从m。 (XIV)上述(ΧΠ)或(χπ)所述之液晶密封劑, -其中,無機填充劑(h)為熔融球狀二氧化矽。 ^ ( X V )上述(I )至(XIV)中任項所述之液晶 费封劑,其中,不含結晶性二氧化矽之滑石粉(a)相對於 液晶密封劑總量,為1至40%,(曱基)丙烯酸化環氧樹 脂(b)相對於液晶密封劑總量,為3〇至9〇%,相對於咖 份之(曱基)丙烯酸化環氧樹脂(b),含有光聚合起始劑 (c) 〇.〇1至20份’剩餘部份為任意的添加成分。 (X VI )上述(X v )所述之液晶密封劑,其中,相 對於液晶密封劑總量,滑石粉(a)的含量為3至2〇%。 (XW) 上述(X v )或(XVI)所述之液晶密封劑, 其中,相對於液晶密封劑總量,(曱基)丙烯酸化環氧樹脂 (b)的含量為50至80%。 (ΧΥΙΠ)上述(χν)至(XW)中任一項所述之液 晶密封劑,其中,復含有環氧樹脂(e)及熱硬化劑(f), 環氧樹脂(e)的含量相對於液晶密封劑總量為3至5〇0/〇, 熱硬化劑(f)的含量相對於1〇0份環氧樹脂為1〇至 80份。 (XIX)上述(XV)至(ΧΥΙΠ)中任一項所述之液 晶密封劑,其中,復含有(甲基)丙烯酸酯單體,其 含量相對於液晶密封劑總量為1至30%。 (XX) 上述(XIX)所述之液晶密封劑,其中,相 對於液晶密封劑總量,係含有1至30%季戊四醇、二季戊 21 323019 201141939 四醇或己内醋改質二季戊四醇與(尹基)丙烯酸之反應物 作為Cf基)丙稀酸酯單體(g)。 (XX I)上述(χχ)所述之液晶密封劑,其中, 季戊四醇或二季戊四醇與(甲基)丙烯酸之反應物為季戊 四醇二至四丙烯酸酯或二季戊四醇二至六丙烯酸酯。 (ΧΧΠ)上述(χν)至(xx J )中任一項所述 之液晶密封劑’其中,液晶密封劑含有其他無機填充劑 (h),包括滑石粉(a)之無機填充劑(h)的總量,相對 於液晶密封劑總量為5至40%。 (ΧΧΠΙ )上述(XX Π )所述之液晶密封劑,其中, 相對於無機填充劑總量,滑石粉(a)含量為41至8〇%。 (XXIV)上述(xxn)《(xxm)所述之液晶 密封劑,其中,其他無機填充劑⑴為溶融球狀二氧化石夕。 本發明之液晶密封劑可藉由將樹脂成分((甲基)丙 稀酸化環氧樹脂⑴,必要時環氧樹脂(e)及(甲基)丙 烯酸醋單體(g))及光聚合起始劑⑷溶解混合而得樹脂 組成物中,與無機填充劑(填充劑成分)(滑石粉(a)及 必要時熱硬化劑⑺,以周知之混合裝置,例如三滾筒親 磨機、混砂機、球磨機或行星式軋機等均勾地混合而製 造。混合後,為了將夾雜物從液晶密封劑除去,較佳為實 施過濾處理。 ‘' 本發明之液晶顯示單元是將形成有㊣定的電極之一 對的基板’以分開預定的間隔且互相面對的方式配置,在 此基板周圍以本發明密封劑密封且在其間隙將液晶封入而 323019 22 201141939 製作。本發明液晶顯示單元所封人之液晶種類並無特別限 本發明液晶顯示單元所使用之基板只要為可作為液 晶顯示單元之基板❹者皆可制,可舉出例如通常所使 用之以玻璃、石英、_或料為㈣之基板。本發明液 晶顯示單福使狀—_基板巾至少_者為具有光穿透 性的基板。 本發明液晶顯示單元例如可藉由下述製法而製造。在 本發明液晶密封劑中添加玻璃纖維等間隔物(間隙控制材) 後’在該-對的基板之一者,以分配器等將該液晶密封劑 塗佈成堰狀。其後在該液晶㈣劑所構成㈣的内侧滴下 液晶’在真空中與另-者的玻璃基板重合而形成間隙。間 隙形成後,財外賴射機錢晶密封部分照射紫外線使 液晶密封劑光硬化。此時的紫外線照射量之累積光量通常 為 200mJ/cm2 至 _〇mj/cm2,較佳為 5〇〇mJ/cm2 至 4000mJ/Cm2。其後’在90至140。〇、!至2小時的條件使 液晶密封劑熱硬化,從而可得到本發明液晶顯示單元。 在製造本發明液晶顯示單元所使用之間隔物,可舉出 例如玻璃纖維、矽粒珠、聚合物粒珠等。其直徑依液晶顯 示單元目的而有所不同,通常為2至8/zm,較佳為4至7 // m。其使用量相對於1〇〇份本發明液晶密封劑,通常為 0.1至4重量份,較佳為0.5至2重量份左右。 (實施例) 以下以實施例更詳細地說明本發明。並且,本發明並 323019 23 201141939 不限定於此實施例。 並且,實施例及比較例之液晶密封劑的黏度係以R型 黏度劑(東機產業股份有限公司製)測定。 實施例1 將作為(甲基)丙烯酸化環氧樹脂(b)之 KAYARADrtmR-93100(日本化藥股份有限公司製、雙酚A 型環氧樹脂與丙烯酸反應所得之環氧丙烯酸酯)58.4重量 份、作為(曱基)丙烯酸酯單體(g)之KAYARADrtmPET-30 (曰本化藥股份有限公司製、季戊四醇三丙烯酸酯)1〇 〇 重量份、作為環氧樹脂(e)之YD-8125 (東都化成股份有 限公司製:環氧當量175g/eq、雙酚A型環氧樹脂)5.5重 量份、作為光聚合起始劑(c)之IRGACURErtm2959 (汽 巴精化股份有限公司製)3.7重量份於90°C加熱溶解而得 樹脂組成物。 所得之樹脂組成物冷卻至室溫後,在該樹脂組成物中 添加作為熱硬化劑(f)之SDH(商品名、JAPENFINECHEN 股份有限公司製:將癸二酸二醯肼以喷射磨機微粉碎者) 18重量份、作為其他無機填充劑(h)之s〇-C2(Admatechs 股份有限公司製、熔融球狀二氧化;ε夕、平均粒徑〇 5 /z m ) 9.6重量份、作為滑石粉(a)之ΝΑΝΟ ACErtmD-600FC3BM43(商品名;日本talc股份有限公司 製)11.0重量份。所得樹脂組成物以三滚筒輥磨機混練而 得本發明液晶密封劑。所得之液晶密封劑之黏度(25°c ) 為 230Pa · s 〇 323019 24 201141939 並且,本實施例所使用之ΝΑΝΟ ACErtmD-600FC3BM43 為 NANO ACERTMD-600F (不含有 結晶性二氧化矽之滑石粉)(商品名;日本talc股份有限 公司製)以相對於滑石粉3重量%之3-環氧丙氧基丙基三 甲氧基矽烷表面處理而得平均粒徑為0.6# m的矽烷偶合 劑處理之滑石粉。 參考合成例 上述實施例所使用的雙酚A型環氧樹脂之環氧丙烯酸 酯(KAYARADrtmR-93100)的合成 將雙酚A型環氧樹脂282.5g (製品名:YD-8125、新 曰鐵化學股份有限公司製)溶解於甲苯266.8g中,在此加 入作為聚合禁止劑之二丁基羥基曱苯0.8g,升溫至60°C。 之後加入環氧基之100%當量的丙烯酸117.5g,再升溫至 80°C,在此加入反應觸媒之三曱基氣化銨〇.6g,在98°C授 拌約30分鐘。將所得反應液水洗,將甲苯蒸餾去除使環氧 基全數丙烯酸化,即得到標的之雙酚A型環氧丙烯酸酯 395g (R-93100)。 實施例2 使用NANOACErtmD-600FC3BM63代替實施例1中 所使用之滑石粉(a) NANOACErtmD-600FC3BM43,其 他與實施例1完全相同方式,得本發明之液晶密封劑。所 得之液晶密封劑之黏度(25°C )為230Pa · s。 並且,本實施例所使用之ΝΑΝΟ ACErtmD_600FC3BM63 為 NANO ACErtmD-600F (商品 323019 25 201141939 名’日本talc股份有限公司製)(不含有結晶性二氧化石夕 之滑石粉)以相對於滑石粉3重量%之N- (2-胺基乙基) 3-胺丙基三甲氧基矽烷表面處理而得平均粒徑為〇6#m 的矽烷偶合劑處理之滑石粉。 實施例3 使用NANOACERTMD-600F (商品名;日本talc股份 有限公司製;未以石夕烧偶合劑處理,平均粒徑〇 6 // m,不 含有結晶性二氧化矽)代替實施例1中所使用之滑石粉 NANO ACErtmD-600FC3BM43,其他與實施例i完全相同 方式,得本發明之液晶密封劑。所得之液晶密封劑之黏度 (25°C )為 250Pa . s。 比較例1 使用NANOACERTMD-600 (日本talc股份有限公司 製;平均粒徑0.6//m ’含有結晶性二氧化矽〇 2%)代替 實施例1中所使用之滑石粉(a) ΝΑΝΟ acektmD 6〇〇FC3BM43,其他與實施例1完全相同方式, 得到本發明之液晶密封劑。所得之液晶密封劑之黏度(25 〇C )為 250Pa · s。 比較例2 使用P-4 (日本talc股份有限公司製;平均粒徑4.6 ,含有結晶性二氧化矽〇.2〇/0)代替實施例1中所使用 之滑石粉(a) NANOACErtmD-600FC3BM43,其他與實 施例1完全相同方式,得到本發明之液晶密封劑。所得之 液晶密封劑之黏度(25°C )為220Pa . s。 26 323019 201141939 比較例3 使用HTP ultra 5c (巴工業股份有限公司製;平均粒徑 0.5 # m,含有結晶性二氧化矽0.3%)代替實施例1中所使 用之滑石粉(a) NANOACErtmD-600FC3BM43,其他與 實施例1完全相同方式,得到本發明之液晶密封劑。所得 之液晶密封劑之黏度(25°C )為270Pa · s。 (評估) 對於所製作之實施例1至3及比較例1至3之密封劑 進行以下試驗,並進行各項目的評估,表1為評估結果的 整合。 (1 )配線斷線試驗 在上述實施例1至3及比較例1至3所得之液晶密封 劑1 g中添加作為間隔物之平均粒徑5 /z m的玻璃纖維 O.Olg並混合攪拌。準備具有鋁狹縫圖案(狹縫總數5〇〇 條 ’ L/S (狹縫寬(Line) /狹縫間隔(Space)) =5//m/15. # m、膜厚〇·1 // m)之玻璃基板與不具有狹縫圖案之玻璃 基板。使用分配器在該基板外圍將密封劑以與狹缝垂直交 又的方式塗佈成直線狀。此時塗佈成塗佈截面積為3800 至4200/zm2。在真空中將不具有狹縫圖案之玻璃基板與塗 佈密封劑之玻璃基板重疊形成間隙。形成間隙後,以紫外 線照射機在密封部分以累積光量為3000mJ/cm2之紫外線 照射’使密封劑光硬化。將所得之單元以顯微鏡觀察,確 認鋁狹縫被削磨的狹縫圖案條數。 實施例1者斷線數為0條’實施例2者斷線數為1條, 27 323019 201141939 實施例3者斷線數為〇條,比較例1者斷線數為7條,比 較例2者斷線數為12條,比較例3者斷線數為13條。 以下述之基準與比較例者一同判定鋁配線的斷線,其 結果如表1所示。 〇(1條以下) △ ( 2至4條) X (5條以上) (2 )比電阻(specific resistance)測定 在樣品瓶内放入前述實施例1至3及比較例1至3所 得之液晶密封劑O.lg,以累積光量為3000mJ/cm2之紫外線 照射使密封劑硬化。之後,於其中加入液晶(默克公司製, MLC-6866-100) lm卜將樣品瓶放置於120。(:烘箱一小時。 之後將樣品瓶放在室溫放置〇.5小時。上述處理結束後從 樣品瓶中僅取出液晶,將液晶放入液體電極LE21(安藤電 器股份有限公司製)’以Advantest股份有限公司製 electrometerR-8340通以測定電壓ιον的電流4分鐘後測 定液晶的比電阻。 實施例1者之有效電阻:3.21X1012、實施例2者之有 效電阻:2.12xl012、實施例3者之有效電阻:2.85xl012、 比較例1者之有效電阻:2.92x1012、比較例2者之有效電 阻:1.23xl012、比較例3者之有效電阻:2.〇5xl〇12。 由有效電阻的測定值,以下述之基準與比較例者一同 判定液晶的汙染程度,其結果如表1所示。 〇(l.OOxlO12 以上) 28 323019 201141939 △ (5.00X1011 至 9.99xl〇u) X (4.99Χ1011 以下) (3) 接著強度 在前述實施例1至3及比較例1至3所得之液晶密封 劑lg中添加作為間隔物之平均粒徑為5/zm之玻璃纖維 0.01 g並將其混合授拌。將此液晶密封劑塗佈在50mmx 50mm之玻璃基板上’在此液晶密封劑之塗佈膜上將 1.5mmxl.5mm之玻璃片貼合。以UV照射機,累積光量為 3000mJ/cm2之紫外線照射玻璃基板的密封部後,將玻璃基 板放置於120°C烘箱一小時使液晶密封劑硬化。此玻璃片 剪力接著強度用BondtesterSS-30WD (Seishin企業股份有 限公司)以10mm/sec測定。 實施例1者之剪力接著強度:75MPa、實施例2者之 剪力接著強度:78MPa、實施例3者之剪力接著強度: 68MPa、比較例1者之剪力接著強度:68MPa、比較例2 者剪力接著強度:43MPa、比較例3者之剪力接著強度: 62MPa。 由測定值以下述之基準判定各液晶密封劑之接著強 度,與比較例者一同判定,其結果如表1所示。 〇(60MPa以上) △ (59MPa 至 40MPa) X (39MPa 以下) (4) 耐濕接著強度 與上述(3)接著試驗相同方式製作之接著試驗片, 323019 29 201141939 以121°C、2大氣壓、濕度100%、24小時的條件進行壓力 锅試驗(Pressure Cooker Test),此玻璃片之剪力接著強度 用BondtesterSS-30WD (Seishin企業股份有限公司)以 10mm/sec 測定。 實施例1者之剪力接著強度:55MPa、實施例2者之 剪力接著強度:41MPa、實施例3者之剪力接著強度: 46MPa、比較例1者之剪力接著強度:39MPa、比較例2 者之剪力接著強度:32MPa、比較例3者之剪力接著強度: 40MPa ° 由測定值以下述之基準判定各液晶密封劑之接著強 度,與比較例者一同判定,其結果如表1所示。 〇(50MPa以上) △ (49MPa 至 30MPa) X ( 29MPa 以下) 【表1】 323019 30 201141939 CO ο τ— τ™· 寸 CO in CO lf> in cq τ~ <〇 oi ο ο τ~ ο ο ο CSJ X 〇 〇 <1 CNJ Ο 寸 CO in Γ^. CO ιο in CO τ— CD 〇> ο ο V— ο ο •r— CSI X 〇 < <1 〇· T—· 甘 00 in r- ci in ιο 00 1— CO 〇> ο ο ο ο 1Γ— S CSi X 〇 〇 < CO o t—· T— 寸 cd in 卜 CO in in 00 τ~* <£> cri ο ο ο ο τ—· s CM 〇 〇 〇 < CM p 寸 od in 卜 CO in in CO CO cri ο ο ο ο •r— ο c〇 Oi 〇 〇 〇 < τ·» P 寸 <x> in r*^ co m in 00 CO cr! ο ο •τ™ ο ο ▼— o o CM 〇 〇 〇 〇 2 ο ω CO Ο U. ο (Ο a CO CO Έ ω o u. 0 s 1 〇 i 1 a 0 § 1 o Τ" α. Ο LO m b 卜 工 O •r— CO σ> cr Q < oc < CD 10 0) CSJ LXi (ϊ D °< 〇 in CSJ r— CO Q >- X Q CO 灸 jj ,1 CM 〇 o CO ο CO ii a. Q < cr < > < 才0 /*—V w _ (D D. 綠 % 备 W Μ iper 玉 CN1 漉 御 /^N CO m 御 邾 m § jj Ί ®s Jl >1 ®s £ 4° ν>» / am >en Φ- /^S iim 05; % s3 藏 l6i> Q 顰 Λ 鍥 詩 JQI «I 紫 S- Nw/ 如以上所示,可確認本發明之密封劑為對於玻璃基板 之接著強度優異,且可解決基板配線之斷線者。此外,液 晶污染性、接著劑及耐濕接著強度亦優異,係作為液晶密 封劑之特性優異者。再者,使用經具有環氧基之石夕烧偶合 31 323019 201141939 劑進行表面處理之滑石粉作為滑石粉(a)之實施例1之液 晶密封劑,其耐濕接著強度特別優異。 【圖式簡單說明】 益〇 【主要元件符號說明】 32 323019Tube current: 30mA Incident side slit: 0. 04° Soller slit, automatic variable divergence slit (£)ivergence Slit), AS1. Light receiving side slit: 0. 04° In addition, the test limit of the crystalline sulphur dioxide content in the talc powder of this condition is 0. 1%. The average particle diameter of the talc powder (a) used in the present invention is preferably the following. If the average particle diameter of the talc is too large, problems may occur when the upper and lower substrates are bonded together to form a gap at the time of manufacture of the liquid crystal cell. Further, the lower limit of the average particle diameter of the talc powder (a) used in the present invention is usually about 〇. Preferably, the talc powder (a) has an average particle diameter of from about 3 to about 3, more preferably about 0. 4 to 0. 9 // m or so. In addition, the average particle diameter refers to a median diameter measured by a laser diffraction particle size distribution measuring apparatus (manufactured by SALD-2000J Shimadzu Corporation). As the talc powder (a) used in the present invention, talc powder which has been surface-treated with a decane coupling agent in advance may also be used. By surface treatment, the compatibility of the urethane (b) is improved, and the moisture resistance is also improved. Therefore, it is preferred that the talc powder (a) previously treated with a breaker coupling agent is preferred. 323019 9 201141939 A commercial product of the talc powder (a) used in the present invention may, for example, be ΝΑΝΟACERTMD-600F (manufactured by tal本 talc Co., Ltd.). In addition, commercially available products of the talc powder (a) which has been surface-treated with the shovel-based coupling agent are exemplified by NANO ACErtm D-600FC3BM43 and ACE ACErtm D-600FC3BM63 (both manufactured by ta本 taic Co., Ltd.). In addition, the "RTM" superscripted in this manual means a registered trademark. The decane coupling agent (d) (hereinafter, also simply referred to as "decane coupling agent (d)") for carrying out the surface treatment of the talc powder (a) of the present invention, as long as it is a decane coupling agent which can be used for surface modification of an inorganic filler And the effects of the present invention are not impaired and can be used. Examples of the decane coupling agent (d) include 3-glycidoxypropyltrimethoxy decane, 3-glycidoxypropyl fluorenyldimethoxy oxime, and 2_(3,4). a decane coupling agent having an epoxy group such as epoxycyclohexyl)ethyltrimethoxy oxane; N-phenyl-3-aminopropyltrimethoxydecane, Ν·(2-aminoethyl)-3-amine a decane coupling agent having an amine group such as propylmethyldimethoxydecane, Ν_(2-aminoethyl)3-aminopropyltrimethoxy decane, 3-aminopropyltriethoxydecane; - Mercapt(R) decane coupling agent such as mercaptotrimethoxydecane; vinyl trimethoxy decane, N_(2-(vinylbenzylamine)ethyl) 3-aminopropyltrimethoxydecane a decane coupling agent having a vinyl group such as a hydrochloride; a decane coupling agent having a (meth) acryloxy group such as 3-mercapto acryloxypropyltrimethoxy oxane; and 3-chloropropylmethyl group A decane coupling agent having a functional atom or the like, such as methoxydecane, 3-chloropropyltrimethoxy decane or the like. These decane coupling agents (d) may be used singly or in combination of two or more 323019 10 201141939. Among these, a decane coupling agent having an amine group and a decane coupling agent having an epoxy group are preferred. Among them, 3-glycidoxypropyltrimethoxy decane, 3-glycidoxypropyl decyl decyloxydecane, 2-(3,4-epoxycyclohexyl)ethyl three A decane coupling agent having an epoxy group such as a decyloxydecane is preferred. By using the talc powder (a) treated with the decane coupling agent (d), the sealant of the present invention can be made more resistant to moisture. The surface treatment of the talc (a) with a decane coupling agent can be carried out by applying a decane coupling agent to the surface of the talc (a) by spraying or the like on the talc (a). When the talc coupling agent (d) is used for the surface treatment of the talc (a), the amount of the decane coupling agent (d) is usually 0. It is about 1 to 10 parts by weight, preferably 1 to 5 parts by weight. The talc powder (a) used in the present invention is usually contained in the liquid crystal sealing agent in an amount of from 1 to 40% by weight, preferably from 3 to 20% by weight. Talc powder (a) is used as an inorganic filler in the sealant of the present invention. In the present invention, the talc powder (a) may be used alone as an inorganic filler or may be used in combination with other inorganic fillers. It is usually preferred to use in combination with other inorganic fillers. The other inorganic filler (h) can be used as long as it is an inorganic filler other than the talc powder generally used for the liquid crystal sealing agent. Examples of such an inorganic filler (h) include cerium oxide (such as molten cerium oxide), tantalum nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, alumina, and aluminum hydroxide. Calcium citrate and aluminum citrate. Among these, cerium oxide is preferred, and molten cerium oxide (amorphous cerium oxide) is more preferred, and spherical amorphous cerium oxide is more preferred. 11 323019 201141939 (Fused spherical cerium oxide) ). The average particle diameter of the above other inorganic filler (h) is preferably 1 / / m or less, more preferably 0. 9# m or less. The lower limit is not particularly limited, and is usually at 0. 1 # m or more, preferably 0. 2 # m or more. In the sealant of the present invention, the content of the inorganic filler containing the talc (a) is from about 5 to 40% by weight, preferably from about 10 to 40% by weight, more preferably 15%, based on the total amount of the sealant. Up to 30% by weight. When talc (a) and other inorganic fillers (h) are used in combination, the content of talc (a) is usually from about 5 to 90% by weight, preferably from 26 to 80% by weight, based on the total amount of the inorganic filler. The right and left is more preferably about 41 to 80% by weight, and most preferably about 41 to 60% by weight. The content of the other inorganic filler (h) is usually from about 10 to 95% by weight, preferably from about 20 to 74% by weight, more preferably from about 20 to 59% by weight, most preferably from about 40 to 59% by weight. When talc (a) and other inorganic fillers (h) are used in combination, the content of talc (a) is preferably from about 3 to about 35% by weight, more preferably from 3 to 20% by weight, based on the total amount of the sealant. The left and right, and more preferably about 6 to 20% by weight. Further, the content of the above other inorganic filler (h) is usually 2 to 30% by weight, preferably 5 to 20% by weight, more preferably 5 to 15% by weight based on the total amount of the sealing agent. Further, in the sealant of the present invention, when the talc powder (a) and other inorganic fillers (h) are used in combination, the aspect containing the talc (a) more than the other inorganic fillers (h) is preferred. One of them. When the content of the talc (a) is too small, the adhesion strength to the glass substrate is lowered, and the moisture resistance is also deteriorated, so that the strength after the moisture absorption is 12 323 019 201141939 is also greatly reduced. Further, when the package amount is too large, the liquid crystal sealing agent becomes a person a)' when the inorganic filler contains a gap in the unit, there is a fear that the tree is difficult to turn. The X is weakened, the strength of the subsequent strength is lowered, and the like is used in the present invention (method is obtained by epoxy resin and (meth)^ = dilute acidified epoxy resin (1) in the epoxy group field of the epoxy resin. In other words, Also (meth)acrylic acid ring =: force di(methyl) propyl _. As part of this (A A) propylene Mi day (1) ' may be a part of the epoxy group remaining (methacrylate) Preferably, all of the epoxy oxygen tree is subjected to ring-opening addition of (meth)acrylic acid epoxide (also known as epoxy (meth) acrylate). "Acrylic" or "("("(M)")""""""""""""""""""""""""" The (mercapto)propionated epoxy resin (1) of the invention is preferably one which is low in pollution and solubility, and is an epoxy resin which is a raw material of the (meth) propylene riding epoxy resin (1). The epoxy resin is preferably limited to 2 B. The amount of the epoxy resin of the epoxy resin is not particularly limited and is usually about 50 to i _g/eq, preferably i (9) to 5 〇〇 g/eq.Right 0 Specific examples of the epoxy resin include, for example, bisphenol A type epoxy resin, biguanide F type epoxy resin, bisphenol s type epoxy resin, and phenol novolak type epoxy resin (Phenol novolac epoxy resin) ), cresol novolac epoxy resin, bisphenol A novolak epoxy resin, bisphenol F novolak epoxy resin, alicyclic ring 323019 13 201141939 Oxygen resin, alicyclic Group chain epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydant〇in type epoxy resin, isocyanate (iS0Cyanurate) type epoxy resin, with trisphenol methane a phenolic novolac type epoxy resin having a skeleton, a diglycidyl ether compound of a difunctional phenol, and a diglycidyl ether compound of a difunctional alcohol, such as a dentate or a hydride, etc. From the viewpoint of pollution, it is preferably an epoxy resin and a novolac type epoxy resin, and more preferably a bisphenol epoxy resin (for example, a double-prepared A-type epoxy resin, a double-density epoxy resin, and Type J Oxygen Resin, etc.) Double-type epoxy resin. Preferably, the (meth)acrylic epoxy resin (b) is a good, better or best epoxy ring-opening addition (fluorenyl) propylene brewing 1 Epoxy(mercapto)acrylic acid S. Specifically, it is preferably a two-year-old epoxy group acrylic acid hydrazine or a secret varnish type epoxy (methyl) propylene vinegar: Epoxy (meth) acrylic acid vinegar, especially preferably double-type A-type ring ί (曱) acrylic acid 。. Oxygen (meth) acrylated epoxy resin (b) epoxy equivalent usually It is about 50 to 1000 g/eq, preferably about 1 to 5 〇〇g/min. The content of the (meth)acrylated epoxy resin (1) used in the present invention is relative to the total amount of the sealant. The content) is 39% by weight, preferably 40 to 80% by weight, more preferably about 5 to 8% by weight. If the (fluorenyl) acrylated epoxy resin (1) is thermally hardened by a liquid crystal sealing agent, the substrate is produced by insufficient hardening. The photopolymerization initiator (7) used in the present invention is 323 〇i9 14 201141939 free radical. Photoradical polymerization initiator. Specific examples of the photopolymerization initiator (C) include benzyldimethylketal, 1-hydroxycyclohexyl alum, diethyl 2-oxothione, and diphenyl. Benzophenone, 2-ethyl蒽醌i, 2-hydroxy-2-methylpropioplienoiie, 2-methyl-[4-(indolyl)phenyl -2- morpholinyl-1-propanone and 2,4,6-trimercaptobenzylidene diphenylphosphine oxide. Specific examples of the commercially available photopolymerization initiator (c) include IRGACURErtm184, IRGACURErtm369, IRGACURErtm651, IRGACURErtm2959, IRGACURErtm8 19 (all manufactured by Ciba Specialty Chemicals Co., Ltd.), LucirmRTMTPO (made by BASF), and ADEKARTM OPTOMER N -1414, ADEKARTM OPTOMERN-1717 (all manufactured by Asahi Kasei Kogyo Co., Ltd.), Esacure KIP150, and Esacure KK (all manufactured by DKSH Japen Co., Ltd.). These may be used singly or in combination of two or more. Further, the amount of use is preferably 0. by weight relative to 100 parts by weight of the (meth)acrylated epoxy resin (b). 01 to 20 parts by weight. If the amount used is too small, the sealant of the present invention cannot be sufficiently cured. Further, if the amount used is too large, there is a problem that the starting agent causes contamination of the liquid crystal and deterioration of the resin property after curing. In the liquid crystal sealing agent of the present invention, the remaining portion other than the talc powder (a), the (fluorenyl) acrylated epoxy resin (b), and the photopolymerization initiator (c) is an optional additive component. The content is usually from 0 to 60% by weight, preferably from 〇 to 4% by weight, based on the liquid crystal sealant. Examples of the optional additional components include the above-mentioned other inorganic fillers 323019 15 201141939 (h), the following epoxy resin (e) and a thermosetting agent (f), and a (mercapto) acrylate monomer (g) described later. Other additives, etc. The liquid crystal sealing agent of the present invention may further contain an epoxy resin (e) and a heat hardener (f) in order to enhance the strength after heat hardening, and it is one of preferable embodiments. The epoxy resin used in the liquid crystal sealing agent of the present invention (hereinafter, also referred to as "epoxy resin") may be used as long as it is a liquid crystal sealing agent, and it is preferably used. Liquid crystal contamination and low solubility. Suitable examples of epoxy resin (e) include (i) Shuangyi A Lixia tree, double F-type epoxy resin, double s-type epoxy Resin and other age-type epoxy resin; (ii) double-anti-A secret varnish type epoxy resin, double-layered [beta] lacquer type epoxy resin and other double (tetra) acid varnish type epoxy resin; (out) various lacquer type Epoxy resin, acid varnish type epoxy resin, or varnish type epoxy tree hull with lacquer type epoxy resin, and (1V) other epoxy resin such as alicyclic epoxy resin , Epoxy epoxy resin, glycidol (tetra) epoxy resin, glycidylamine II:: resin, B-type urea resin, isocyanate type epoxy resin, Lu _ 贞 二 缩 甘 ( (10) and two The condensate of the functional alcohols and the dentate or hydride of the above, etc. The epoxy resin is not limited to such a combination The epoxy tree (e) is preferably the above (1) to (f), more preferably a two-part epoxy resin and a varnish-type ring-type epoxy resin, and particularly preferably a double-type A-type epoxy resin. When the epoxy resin (e) is used in the liquid crystal sealing agent of the present invention, the content of 323019 16 201141939 is usually 1% by weight or more, preferably 3% by weight or more, usually based on the total amount of the liquid crystal sealing agent. 50% by weight or less, preferably 25% by weight or less, more preferably 3 to 15% by weight based on the total amount of the liquid crystal sealing agent. If the amount of the epoxy resin (e) used is too small, the subsequent strength improvement cannot be exhibited. In addition, when the amount used is too large, there is a problem that the epoxy resin (e) causes contamination of the liquid crystal. The heat hardener (f) is a compound that reacts with the epoxy resin (e) to form a cured product. The special limitation is that the liquid crystal sealing agent does not pollute the liquid crystal during heating, and the reaction starts uniformly and rapidly, and the viscosity changes little with time at room temperature. When the liquid crystal is dropped, the heat of the heat hardener (f) Hardening conditions, in order to control the liquid crystal The lowering of the property is at a minimum, and the low-temperature hardening ability at 120 ° C for about 1 hour is generally required. In view of the above, in the liquid crystal sealing agent of the present invention, the thermosetting agent (f) is preferably a polyfunctional hydrazine ( A hydrazide or a polyvalent amine. When the thermosetting agent (f) is used in the sealant of the present invention, the content thereof is preferably (7) to (10) parts by weight relative to 100 parts by weight of the epoxy resin (e). More preferably, it is about 15 to 60 parts by weight. Further, the epoxy group having the equivalent of w equivalent of the resin (e) is preferably a reactive group based on the epoxy group in the thermosetting agent (1) (U to A heat hardener (f) in an amount of K5 equivalent. If the amount of the heat hardener (1) is too small relative to the epoxy resin (e), the resin in the county cannot be sufficiently hardened. If the amount of the rubber is too large, the sealant is There is a problem with moisture resistance. The above polyfunctional oxime refers herein to a compound having two or more thiol groups in the molecule. Specific examples of the polyfunctional oxime include, for example, card 323019 201141939 carb (carbohydrazide), bismuth oxalate, diammonium malonate, bismuth succinate, diammonium adipate, gem Diterpenoids, diterpene dicaptanate, diterpene sebacate, diterpene sebacate, dodecanedihydrazide, sixteen burnt two acid, two Diping dierpene diacetate, diammonium fumarate, diglycol acid dihydrazide, diterpenic tartrate, diterpene malate, diammonium isophthalate Bismuth, terephthalic acid diterpene, 2,6-naphthoic acid diterpene, 4,4-bis(phenyl)dioxene, 1,4-naphthoic acid diterpene, 2,6-pyridine dioxime Bismuth, 1,2,4-benzenetriazole, tetramethylene 1,2,4,5-benzoic acid tetraruthenium, tetramethyl phosphonium 1,4,5,8-naphthoic acid and 1,3-double A diterpenoid having a guanidinium carbendazim skeleton such as fluorenylcarboethylamine-5-isopropylhydantoin, but is not limited thereto. When the polyfunctional quinone is used as the thermal curing agent (f), it is preferred that the latent curing agent is small in particle size and uniformly dispersible. The preferred average particle size at this time is 0. 3 to 3 or so. Preferably, a polyfunctional anthracene is used as the thermosetting agent (f), and a polyfunctional anthracene is preferably ugly. From the viewpoint of liquid crystal contamination, a preferred hardener (f) is diterpene sebacate, diammonium adipate, diammonium isophthalate, and a carbendazim urea skeleton. Diterpenoids, especially good for dioxalate. ♦ ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Monomer (g)). These (meth) propyl vinegars are not particularly limited to those having low liquidus pollution, and may be exemplified by id 323019 201141939 alcohol (pentaerythritol), dipentaerythritol or caprolactone modified dipentaerythritol and (methyl) Acrylic reactants, etc. Among these, a reaction product of pentaerythritol or dipentaerythritol and (meth)acrylic acid is preferable, and more specifically, pentaerythritol mono-tetraacrylate or dipentaerythritol mono-hexaacrylate is mentioned. More preferably, it is pentaerythritol di-tetraacrylate or dipentaerythritol mono-hexaacrylate, and most preferably pentaerythritol di-tetrapropyl acrylate. The (meth) acrylate monomer (g) may be used singly or in combination of two or more kinds in the liquid crystal sealing agent of the present invention. The content at the time of using the (meth) acrylate monomer (g) is preferably from 2 to 3 % by weight, more preferably from 5 to 20 % by weight, based on the total amount of the liquid crystal sealing agent. The liquid crystal sealing agent of the present invention can be formulated with other additives such as an organic filler, a pigment, a coupling agent, a leveling agent, and an antifoaming agent as necessary. The amount of the other additive to be used is about 0 to 10% by weight based on the total amount of the liquid crystal sealing agent. The viscosity of the liquid crystal sealing agent of the present invention is not particularly limited, and is preferably from 1 to 500 pa from the viewpoint of compatibility and the like.  s (25 ° C ), more preferably 1 〇〇 to 300 Pa · s (25. (:). The preferred embodiment of the liquid crystal sealing agent of the present invention is exemplified as follows. Further, "%" means % by weight, "parts" (I) Liquid crystal sealant containing: talc powder (a), (fluorenyl) acetoacetated epoxy resin (b) and photopolymerization initiator (c) without crystalline cerium oxide (Π) The liquid crystal sealing agent according to (X) above, wherein the talc powder (a) has an average particle diameter of 〇·3 to 1 /zm. 323019 19 201141939 (m) (i) or (II) above The liquid crystal sealing agent, wherein the (meth) acrylated epoxy resin (b) contains a double-type epoxy (methacrylic acid vinegar or a secret varnish type epoxy (meth) acrylate vinegar. Soil (rv) The liquid crystal sealing agent of any one of the above ( ί ) to (π) wherein 'the talc powder (a) is the surface of the crushing coupler (d) (V), the liquid crystal sealing described above (ΪΥ) The liquid crystal sealing agent according to any one of the above (1), wherein the epoxy resin (e) and the heat are further contained in the liquid crystal sealing agent according to any one of the above (1) to (7). (Vi) The liquid crystal sealing agent according to the above (VI), wherein the epoxy resin (e) contains a bisphenol type epoxy resin. (Μ) The above (Π) or (通) In the liquid crystal sealing agent, the bisphenol type epoxy resin is a bisphenol quinone type epoxy resin, which is a liquid crystal sealing agent according to any one of the above (VI) to (X) The liquid crystal sealing agent of any one of the above (J) to (k), wherein the compound contains a (fluorenyl) acrylate monomer (g). (XI) The liquid crystal sealing agent according to the above aspect, wherein the reaction product containing pentaerythritol, dipentaerythritol or caprolactone-modified dipentaerythritol and (mercapto)acrylic acid is used as the (fluorenyl) acrylate monomer (g). The liquid crystal sealing agent of any one of the above-mentioned (X), wherein the liquid crystal sealing agent of the above-mentioned (X) is further contained in the liquid crystal sealing agent of the above-mentioned (X). 323019 20 201141939 The inorganic filler (h) has an average particle diameter of 〇" to m" (XIV) of the above (ΧΠ) or (χπ) liquid crystal sealant, - The inorganic filler (h) is a molten spherical cerium oxide. The liquid crystal sealing agent according to any one of the above (1) to (XIV), wherein the crystalline talc is free of crystalline cerium oxide. The powder (a) is 1 to 40% with respect to the total amount of the liquid crystal sealing agent, and the (fluorenyl) acrylated epoxy resin (b) is 3 to 9 % by weight relative to the total amount of the liquid crystal sealing agent, relative to the coffee (曱) acrylated epoxy resin (b) containing photopolymerization initiator (c) 〇. 〇 1 to 20 parts The remaining portion is any added component. (X VI) The liquid crystal sealing agent according to (X v) above, wherein the content of the talc (a) is from 3 to 2% by weight based on the total amount of the liquid crystal sealing agent. (XW) The liquid crystal sealing agent according to the above (X v ) or (XVI), wherein the (fluorenyl) acrylated epoxy resin (b) is contained in an amount of from 50 to 80% based on the total amount of the liquid crystal sealing agent. The liquid crystal sealing agent according to any one of the above (a), wherein the epoxy resin (e) and the heat hardener (f) are contained in combination, and the content of the epoxy resin (e) is relative to The total amount of the liquid crystal sealing agent is 3 to 5 Å/min, and the content of the heat hardener (f) is 1 to 80 parts based on 1 part by weight of the epoxy resin. (XIX) The liquid crystal sealing agent according to any one of the above (XV), wherein the (meth) acrylate monomer is contained in an amount of from 1 to 30% based on the total amount of the liquid crystal sealing agent. (XX) The liquid crystal sealing agent according to the above (XIX), which contains 1 to 30% of pentaerythritol, dipenta 21 323019 201141939 tetraol or caprolactone modified dipentaerythritol and (yin) with respect to the total amount of the liquid crystal sealing agent The reaction of acrylic acid as a Cf-based acrylate monomer (g). (XX) The liquid crystal sealing agent according to the above (a), wherein the reaction product of pentaerythritol or dipentaerythritol and (meth)acrylic acid is pentaerythritol di-tetraacrylate or dipentaerythritol di-hexaacrylate. The liquid crystal sealing agent of any one of the above (a) to (x), wherein the liquid crystal sealing agent contains other inorganic filler (h), and the inorganic filler (h) including talc (a) The total amount is 5 to 40% with respect to the total amount of the liquid crystal sealing agent. (ΧΧΠΙ) The liquid crystal sealing agent according to the above (XX), wherein the talc (a) content is from 41 to 8 % by weight based on the total amount of the inorganic filler. (XXIV) The liquid crystal sealing agent according to (xxn), wherein the other inorganic filler (1) is a molten spherical silica. The liquid crystal sealing agent of the present invention can be obtained by photopolymerizing a resin component ((meth)acrylic acid epoxy resin (1), if necessary, epoxy resin (e) and (meth)acrylic acid vine monomer (g)) The starting agent (4) is dissolved and mixed to obtain a resin composition, and an inorganic filler (filler component) (talc (a) and, if necessary, a heat hardener (7), a well-known mixing device, such as a three-roller grinder, sand mixing A machine, a ball mill, or a planetary mill is produced by mixing and mixing. After mixing, in order to remove inclusions from the liquid crystal sealing agent, it is preferred to carry out a filtration treatment. ''The liquid crystal display unit of the present invention is formed with positive definite The substrate 'one of the pair of electrodes is disposed at a predetermined interval and facing each other, and is sealed with the sealant of the present invention around the substrate and sealed with liquid crystal at the gap thereof, 323019 22 201141939. The liquid crystal display unit of the present invention is sealed. The liquid crystal type of the liquid crystal display unit of the present invention is not particularly limited as long as it can be used as a substrate for a liquid crystal display unit, and for example, glass which is generally used can be used. The substrate of the present invention is a substrate having a light transmittance. The liquid crystal display unit of the present invention can be produced, for example, by the following method. After adding a spacer such as a glass fiber (gap control material) to the liquid crystal sealing agent of the present invention, the liquid crystal sealing agent is applied to a crucible by one of the substrates of the pair, and then the liquid crystal sealing agent is applied to the liquid crystal sealing agent. (4) The liquid crystal on the inner side of the composition (4) is overlapped with another glass substrate in a vacuum to form a gap. After the gap is formed, the liquid crystal sealing agent is irradiated with ultraviolet rays to cure the liquid crystal sealing agent. The cumulative amount of ultraviolet light is usually from 200 mJ/cm 2 to _〇mj/cm 2 , preferably from 5 〇〇 mJ/cm 2 to 4000 mJ/cm 2 , and thereafter 'at 90 to 140. 〇, ! to 2 hours for liquid crystal The sealing agent is thermally hardened to obtain the liquid crystal display unit of the present invention. The spacer used in the production of the liquid crystal display unit of the present invention may, for example, be glass fiber, ruthenium beads, polymer beads, etc. The diameter thereof depends on the liquid crystal display unit. purpose However, it is usually 2 to 8/zm, preferably 4 to 7 // m, and is used in an amount of usually 0% relative to 1 part of the liquid crystal sealing agent of the present invention. 1 to 4 parts by weight, preferably 0. 5 to 2 parts by weight or so. (Examples) Hereinafter, the present invention will be described in more detail by way of examples. Further, the present invention and 323019 23 201141939 are not limited to this embodiment. Further, the viscosity of the liquid crystal sealing agent of the examples and the comparative examples was measured by an R type viscosity agent (manufactured by Toki Sangyo Co., Ltd.). Example 1 KAYARADrtmR-93100 (manufactured by Nippon Kayaku Co., Ltd., epoxy acrylate obtained by reacting bisphenol A type epoxy resin with acrylic acid) as a (meth)acrylated epoxy resin (b) 58. 4 parts by weight of KAYARADrtmPET-30 (manufactured by Sakamoto Chemical Co., Ltd., pentaerythritol triacrylate) as a (fluorenyl) acrylate monomer (g), 1 part by weight, YD as epoxy resin (e) -8125 (made by Dongdu Chemical Co., Ltd.: epoxy equivalent 175g/eq, bisphenol A epoxy resin) 5. 5 parts by weight of IRGACURErtm 2959 (manufactured by Ciba Specialty Chemicals Co., Ltd.) as a photopolymerization initiator (c). 7 parts by weight was dissolved by heating at 90 ° C to obtain a resin composition. After the obtained resin composition was cooled to room temperature, SDH as a thermosetting agent (f) was added to the resin composition (trade name, manufactured by JAPENFINECHEN Co., Ltd.: bismuth azelaic acid was finely pulverized by a jet mill) 18 parts by weight of s〇-C2 as another inorganic filler (h) (manufactured by Admatechs Co., Ltd., spheroidal oxidization; ε, average particle size 〇5 /zm). 6 parts by weight, as talc (a) ACE ACErtmD-600FC3BM43 (trade name; manufactured by Japan talc Co., Ltd.) 11. 0 parts by weight. The obtained resin composition was kneaded by a three-roller roll mill to obtain a liquid crystal sealing agent of the present invention. The obtained liquid crystal sealing agent has a viscosity (25 ° C ) of 230 Pa · s 〇 323019 24 201141939 and ΝΑΝΟ ACErtmD-600FC3BM43 used in the present embodiment is NANO ACERTMD-600F (talc powder containing no crystalline cerium oxide) ( The product name; manufactured by Japan Tal Co., Ltd.) is obtained by surface treatment with 3% by weight of 3-glycidoxypropyltrimethoxydecane relative to talc. 6# m talc coupling agent treated talc powder. Reference Synthesis Example Synthesis of epoxy acrylate of bisphenol A type epoxy resin (KAYARADrtmR-93100) used in the above examples bisphenol A type epoxy resin 282. 5g (product name: YD-8125, manufactured by New Iron Chemical Co., Ltd.) dissolved in toluene 266. In 8 g, dibutyl hydroxy fluorene as a polymerization inhibitor is added thereto. 8 g, warmed to 60 ° C. Then add 100% equivalent of acrylic acid 117. 5g, and then heated to 80 ° C, here to add the reaction catalyst triterpene carbamide. 6 g, at 98 ° C for about 30 minutes. The obtained reaction liquid was washed with water, and toluene was distilled off to completely acrylate the epoxy group, thereby obtaining 395 g (R-93100) of the target bisphenol A type epoxy acrylate. Example 2 The liquid crystal sealing agent of the present invention was obtained in the same manner as in Example 1 except that NANOACErtm D-600FC3BM63 was used instead of the talc powder (a) NANOACErtm D-600FC3BM43 used in Example 1. The resulting liquid crystal sealant had a viscosity (25 ° C) of 230 Pa · s. Further, ΝΑΝΟ ACErtmD_600FC3BM63 used in the present example is NANO ACErtmD-600F (product 323019 25 201141939 'made by Japan Tal Co., Ltd.) (containing no crystalline SiO2 talc powder) to be 3% by weight relative to talc The N-(2-aminoethyl) 3-aminopropyltrimethoxydecane was surface-treated to obtain a talc coupling agent-treated talc powder having an average particle diameter of 〇6#m. Example 3 Using NANOACERTMD-600F (trade name; manufactured by Japan Tal Co., Ltd.; not treated with Shixia coupling agent, average particle diameter 〇6 // m, containing no crystalline cerium oxide) was used instead of Example 1. The talc powder NANO ACErtm D-600FC3BM43 was used, and in the same manner as in Example i, the liquid crystal sealing agent of the present invention was obtained. The obtained liquid crystal sealing agent has a viscosity (25 ° C) of 250 Pa.  s. Comparative Example 1 NANOACERTMD-600 (manufactured by Japan Tal Co., Ltd.; average particle diameter of 0. 6//m 'containing crystalline cerium oxide 2%) Instead of the talc powder (a) ace acektmD 6 〇〇 FC3BM43 used in Example 1, the liquid crystal sealing of the present invention was obtained in the same manner as in Example 1. Agent. The resulting liquid crystal sealant had a viscosity (25 〇C) of 250 Pa·s. Comparative Example 2 P-4 (manufactured by Nalta Co., Ltd.; average particle diameter 4. 6, containing crystalline cerium oxide. 2 〇 / 0) In place of the talc powder (a) NANOACErtm D-600FC3BM43 used in Example 1, the liquid crystal sealing agent of the present invention was obtained in the same manner as in Example 1. The obtained liquid crystal sealing agent has a viscosity (25 ° C) of 220 Pa.  s. 26 323019 201141939 Comparative Example 3 Using HTP ultra 5c (made by Ba Industrial Co., Ltd.; average particle size 0. 5 # m, containing crystalline cerium oxide 0. 3%) In place of the talc powder (a) NANOACErtm D-600FC3BM43 used in Example 1, the liquid crystal sealing agent of the present invention was obtained in the same manner as in Example 1. The obtained liquid crystal sealing agent had a viscosity (25 ° C) of 270 Pa · s. (Evaluation) The following tests were conducted on the sealants of Examples 1 to 3 and Comparative Examples 1 to 3 which were produced, and evaluation of each item was made. Table 1 shows the integration of the evaluation results. (1) Wiring disconnection test Glass fibers having an average particle diameter of 5 /z m as spacers were added to 1 g of the liquid crystal sealing agent obtained in the above Examples 1 to 3 and Comparative Examples 1 to 3. Olg and mix and stir. Prepare with aluminum slit pattern (total number of slits 5 ’ L / S (slit width / slit spacing (Space)) = 5 / / m / 15.  #m, film thickness 〇·1 // m) glass substrate and glass substrate without slit pattern. The sealant was applied in a straight line in a manner perpendicular to the slit at the periphery of the substrate using a dispenser. At this time, the coating was applied in a coating sectional area of 3,800 to 4,200 / zm 2 . The glass substrate not having the slit pattern is overlapped with the glass substrate coated with the sealant in a vacuum to form a gap. After the gap was formed, the sealant was photocured by ultraviolet irradiation of a cumulative amount of light of 3000 mJ/cm 2 in a sealed portion by an ultraviolet ray irradiator. The obtained unit was observed under a microscope to confirm the number of slit patterns in which the aluminum slit was ground. In the first embodiment, the number of disconnections is 0. In the second embodiment, the number of disconnected lines is one, 27 323019 201141939. The number of disconnected lines in the third embodiment is a purlin, and the number of disconnected in the comparative example 1 is seven, and the comparative example 2 The number of disconnected lines was 12, and the number of broken lines in Comparative Example 3 was 13. The disconnection of the aluminum wiring was judged together with the comparative example on the basis of the following, and the results are shown in Table 1. 〇 (1 or less) △ (2 to 4) X (5 or more) (2) Specific resistance measurement The liquid crystal obtained by placing the above Examples 1 to 3 and Comparative Examples 1 to 3 in a sample bottle was measured. Sealant O. Lg, the sealant was hardened by ultraviolet irradiation with a cumulative amount of light of 3000 mJ/cm2. Thereafter, liquid crystal (MLC-6866-100, manufactured by Merck & Co., Inc.) was added thereto to place the sample vial at 120. (: oven for one hour. Then place the vial at room temperature. 5 hours. After the completion of the above-mentioned treatment, only the liquid crystal was taken out from the sample bottle, and the liquid crystal was placed in the liquid electrode LE21 (manufactured by Ando Electric Co., Ltd.). The electromagnet R-8340 manufactured by Advantest Co., Ltd. was passed through to measure the current of the voltage ιον for 4 minutes, and then the liquid crystal was measured. Specific resistance. The effective resistance of the embodiment 1 is: 3. 21X1012, the effective resistance of the second embodiment: 2. 12xl012, the effective resistance of the embodiment 3: 2. 85xl012, the effective resistance of the first example: 2. Effective resistance of 92x1012 and Comparative Example 2: 1. 23xl012, the effective resistance of the third example: 2. 〇5xl〇12. From the measured values of the effective resistance, the degree of contamination of the liquid crystal was judged together with the comparative example on the basis of the following, and the results are shown in Table 1. 〇(l. OOxlO12 or more) 28 323019 201141939 △ (5. 00X1011 to 9. 99xl〇u) X (4. 99 Χ 1011 or less) (3) Next, the glass fiber having an average particle diameter of 5/zm as a spacer was added to the liquid crystal sealing agent lg obtained in the above Examples 1 to 3 and Comparative Examples 1 to 3. 01 g and mix and mix. The liquid crystal sealing agent is coated on a glass substrate of 50 mm x 50 mm, which will be on the coating film of the liquid crystal sealing agent. 5mmxl. 5mm glass piece fits. After irradiating the sealing portion of the glass substrate with ultraviolet light having a cumulative amount of light of 3000 mJ/cm 2 by a UV irradiator, the glass substrate was placed in an oven at 120 ° C for one hour to cure the liquid crystal sealing agent. The shear strength of this glass piece was measured by Bondtester SS-30WD (Seishin Co., Ltd.) at 10 mm/sec. The shear strength of Example 1 was 75 MPa, the shear strength of Example 2 was 78 MPa, the shear strength of Example 3 was 68 MPa, and the shear strength of Comparative Example 1 was 68 MPa. Comparative Example 2 The shear strength of the joint was 43 MPa, and the shear force of Comparative Example 3 was followed by the strength: 62 MPa. The adhesion strength of each liquid crystal sealing agent was determined from the measured values on the basis of the following, and was judged together with the comparative example. The results are shown in Table 1. 〇 (60 MPa or more) △ (59 MPa to 40 MPa) X (39 MPa or less) (4) Submerged test piece prepared in the same manner as the above (3) followed by the test, 323019 29 201141939 at 121 ° C, 2 atm, humidity The pressure cooker test (Pressure Cooker Test) was carried out under conditions of 100% and 24 hours, and the shear strength of this glass piece was measured by Bondtester SS-30WD (Seishin Co., Ltd.) at 10 mm/sec. The shear strength of Example 1 was 55 MPa, the shear strength of Example 2 was 4 MPa, the shear strength of Example 3 was 46 MPa, and the shear strength of Comparative Example 1 was 39 MPa. Comparative Example The shear strength of the second member was 32 MPa, and the shear strength of the comparative example 3 was followed by the strength: 40 MPa. The adhesion strength of each liquid crystal sealing agent was determined from the measured values on the basis of the following, and was judged together with the comparative example. The results are shown in Table 1. Shown. 〇 (50MPa or more) △ (49MPa to 30MPa) X (29MPa or less) [Table 1] 323019 30 201141939 CO ο τ— τTM· inch CO in CO lf> in cq τ~ <〇 oi ο ο τ~ ο ο ο CSJ X 〇 〇 <1 CNJ 寸 inch CO in Γ^. CO ιο in CO τ— CD 〇> ο ο V— ο ο •r— CSI X 〇 <<1 〇·T—·甘 00 in r- ci in ιο 00 1—CO 〇> ο ο ο ο 1Γ — S CSi X 〇 〇 < CO o t—· T—inch cd in Bu CO in in 00 τ~* <£> cri ο ο ο ο τ—· s CM 〇 〇 〇 < CM p inch od in 卜 CO in in CO CO cri ο ο ο ο rr ο c〇 Oi 〇 〇 〇 < τ·» P inch <x> in r*^ co m in 00 CO cr! ο ο •τTM ο ο ▼— oo CM 〇〇〇〇2 ο ω CO Ο U. ο (Ο a CO CO Έ ω o u. 0 s 1 〇i 1 a 0 § 1 o Τ" α. Ο LO mb 卜 O · r - CO σ > gt Q < oc < CD 10 0) CSJ LXi (ϊ D ° < 〇 in CSJ r— CO Q >- X Q CO moxibustion jj , 1 CM 〇 o CO ο CO ii a. Q < cr <>< 才0 /*—V w _ (D D. 绿% 备W Μ iper 玉CN1 漉御/^N CO m 邾m § jj Ί ®s Jl >1 ®s £ 4° ν>» / Am >en Φ- /^S iim 05; % s3 藏 l6i> Q 锲 锲诗JQI «I violet S- Nw/ As shown above, it can be confirmed that the sealant of the present invention is excellent in adhesion strength to a glass substrate In addition, the liquid crystal contamination, the adhesive, and the wet-resistance strength are also excellent, and it is excellent in the characteristics of the liquid crystal sealing agent. Further, the use of an epoxy group is used. Coupling 31 323019 201141939 Agent-treated talc powder As the talc powder (a), the liquid crystal sealing agent of Example 1 has particularly excellent wet-resistance strength. [Simplified illustration] Yiyi [Major component symbol description] 32 323019

Claims (1)

201141939 七、申請專利範圍: 一種紫外線硬化型液晶密封劑,其含有(a)不含結晶 性二氧化矽之滑石粉、(b)(甲基)丙烯酸化環氧樹脂 及(c)光聚合起始劑。 2. 如申請專利範圍第〖項所述之紫外線硬化型液晶密封 4]其中’滑石粉(a)的平均粒徑在以下。 3. 如申請專利範圍帛1項所述之紫外線硬化型液晶密封 其中,含有:滑石粉(a),其相對於液晶密封劑總 1為1至40重量%,(甲基)丙烯酸化環氧樹脂(b), 其相對於液晶密封劑總量為3〇至9〇重量%,光聚合起 始劑(c),其相對於100重量份之(甲基)丙烯酸化環 氧樹脂(b)為〇.〇1至2〇重量份。 4. 如申請專利範圍第丨項所述之紫外線硬化型液晶密封 劑,其中,滑石粉(a)為經(d)矽烷偶合劑進行表面 處理之滑石粉。 如申明專利fell第4項所述之紫外線硬化型液晶密封 劑,其中,矽烷偶合劑(d)為環氧矽烷偶合劑。 =申π專利㈣第1項所述之紫外線硬化型液晶密封 ,其中,復含有(e)環氧樹脂及⑺熱硬化劑。 =申印專利fell第1項所述之紫外線硬化型液晶密封 ^ ’其中,相對於液晶密封劑總量,係含有滑石粉(a) 至40重1% ’(甲基)丙烯酸化環氧樹脂⑴3〇至 f量%及(e)環氧樹脂3至⑽重量% ;相對於· 重份之(甲基)丙烯酸化環氧樹脂⑴,係含有光聚 323019 1 201141939 合起始劑(c) 0.01至20重量份,以及相對於100重量 份之環氧樹脂(e),係含有熱硬化劑(f) 10至80重量 份的比例。 8. 如申請專利範圍第1項所述之紫外線硬化型液晶密封 劑,其中,在(a)不含結晶性二氧化矽之滑石粉中, 結晶性二氧化矽含量以X光繞射測定為0.1%以下。 9. 如申請專利範圍第1項所述之紫外線硬化型液晶密封 劑,其中,含有不含結晶性二氧化矽之滑石粉(a)與 其他無機填充劑(h),且相對於密封劑之總量,無機填 充劑之總量為10至40重量%,相對於無機填充劑之總 量,不含結晶性二氧化矽之滑石粉(a)的含量為5至 90重量%,其他無機填充劑(h)的含量為10至95重 量0/〇。 10. 如申請專利範圍第1項或第6項所述之紫外線硬化型液 晶密封劑,其中,復含有(曱基)丙烯酸酯單體(g)。 11. 一種液晶顯示單元,係以申請專利範圍第1至9項中任 一項所述之紫外線硬化型液晶密封劑硬化所得之硬化 物進行密封者。 323019 201141939 四、指定代表圖:本案無圖式。 -(一)本案指定代表圖為:無。 (二)本代表圖之元件符號簡單說明:無。 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無代表化學式。 3 323019201141939 VII. Patent application scope: An ultraviolet curing liquid crystal sealing agent containing (a) talc powder containing no crystalline cerium oxide, (b) (meth) acrylated epoxy resin and (c) photopolymerization Starting agent. 2. The ultraviolet ray-curable liquid crystal seal 4 described in the scope of the patent application is as follows: wherein the average particle diameter of the talc (a) is below. 3. The ultraviolet curable liquid crystal seal according to claim 1, wherein the talc powder (a) contains 1 to 40% by weight, based on the total liquid crystal sealant 1, (meth)acrylated epoxy Resin (b), which is 3 〇 to 9 〇 by weight based on the total amount of the liquid crystal sealing agent, photopolymerization initiator (c), which is relative to 100 parts by weight of (meth) acrylated epoxy resin (b) It is 〇.〇1 to 2 parts by weight. 4. The ultraviolet curable liquid crystal sealing agent according to the above aspect of the invention, wherein the talc powder (a) is a talc powder surface-treated with a (d) decane coupling agent. The ultraviolet curable liquid crystal sealing agent according to the fourth aspect of the invention, wherein the decane coupling agent (d) is an epoxy decane coupling agent. The invention relates to the ultraviolet curable liquid crystal sealing of the above-mentioned item (4), which further comprises (e) an epoxy resin and (7) a thermal hardener. = UV-curable liquid crystal sealing film according to item 1 of the printing patent, which contains talc powder (a) to 40% by weight of 1% (meth) acrylated epoxy resin relative to the total amount of liquid crystal sealing agent. (1) 3〇 to f% by weight and (e) epoxy resin 3 to (10)% by weight; relative to · part by weight of (meth)acrylated epoxy resin (1) containing photopolymerization 323019 1 201141939 starting agent (c) 0.01 to 20 parts by weight, and with respect to 100 parts by weight of the epoxy resin (e), a ratio of 10 to 80 parts by weight of the heat hardener (f). 8. The ultraviolet curable liquid crystal sealing agent according to claim 1, wherein in the (a) talc powder containing no crystalline cerium oxide, the crystalline cerium oxide content is measured by X-ray diffraction. 0.1% or less. 9. The ultraviolet curable liquid crystal sealing agent according to claim 1, wherein the talc powder (a) containing no crystalline ceria and the other inorganic filler (h) are contained, and the sealant is used. The total amount, the total amount of the inorganic filler is 10 to 40% by weight, and the content of the talc powder (a) containing no crystalline cerium oxide is 5 to 90% by weight based on the total amount of the inorganic filler, and other inorganic filling The content of the agent (h) is from 10 to 95% by weight. 10. The ultraviolet curable liquid crystal sealing agent according to claim 1 or 6, wherein the (fluorenyl) acrylate monomer (g) is further contained. A liquid crystal display unit which is sealed by a hardened material obtained by curing an ultraviolet curable liquid crystal sealing agent according to any one of claims 1 to 9. 323019 201141939 IV. Designated representative map: There is no schema in this case. - (a) The representative representative of the case is: No. (2) A brief description of the symbol of the representative figure: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: This case does not represent a chemical formula. 3 323019
TW100112626A 2010-04-14 2011-04-12 Liquid crystal sealant and liquid crystal display cell using same TWI509017B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092776 2010-04-14

Publications (2)

Publication Number Publication Date
TW201141939A true TW201141939A (en) 2011-12-01
TWI509017B TWI509017B (en) 2015-11-21

Family

ID=44798472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112626A TWI509017B (en) 2010-04-14 2011-04-12 Liquid crystal sealant and liquid crystal display cell using same

Country Status (5)

Country Link
JP (1) JP5577403B2 (en)
KR (1) KR20130086116A (en)
CN (1) CN102859428B (en)
TW (1) TWI509017B (en)
WO (1) WO2011129087A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374666B1 (en) * 2012-03-30 2013-12-25 積水化学工業株式会社 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP5340474B1 (en) * 2012-11-22 2013-11-13 積水化学工業株式会社 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
CN110484098A (en) * 2018-05-14 2019-11-22 广东天丛新材料有限公司 A kind of ultra-thin encapsulating coating and its spraying process applied to LED display
CN114106742B (en) * 2021-11-01 2023-03-14 苏州润邦半导体材料科技有限公司 High-viscosity liquid crystal frame sealing adhesive

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245782B (en) * 2001-05-16 2005-12-21 Sekisui Chemical Co Ltd Curing resin composition and sealants and end-sealing materials for displays
JP2004037937A (en) * 2002-07-04 2004-02-05 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using same
JP4645804B2 (en) * 2004-10-06 2011-03-09 株式会社スリーボンド Curable composition for liquid crystal display device
JP4802461B2 (en) * 2004-07-22 2011-10-26 株式会社スリーボンド Photopolymerization initiator and photocurable material using the same
TW200627061A (en) * 2004-10-20 2006-08-01 Mitsubishi Chem Corp Photosensitive composition, image-forming base material, image-forming material, and image-forming method
JP2008040015A (en) * 2006-08-03 2008-02-21 Shin Etsu Chem Co Ltd Sealing material composition for liquid crystal display element
JP2009155589A (en) * 2007-12-28 2009-07-16 Three Bond Co Ltd Curable composition
JP5138405B2 (en) * 2008-02-12 2013-02-06 三井化学株式会社 Liquid crystal sealant and liquid crystal display panel manufacturing method using the same

Also Published As

Publication number Publication date
KR20130086116A (en) 2013-07-31
JPWO2011129087A1 (en) 2013-07-11
TWI509017B (en) 2015-11-21
WO2011129087A1 (en) 2011-10-20
JP5577403B2 (en) 2014-08-20
CN102859428A (en) 2013-01-02
CN102859428B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI344975B (en)
TWI470067B (en) Sealant for liquid crystal and liquid crystal display cell using the same
TW200419264A (en) Liquid crystal sealant and liquid display unit using the sealant
JPWO2004090621A1 (en) Liquid crystal sealant and liquid crystal display cell using the same
KR20120125552A (en) Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
KR20100084162A (en) Liquid crystal sealing agent and liquid crystal display cell using the same
CN110168441B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2008004455A1 (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP5138405B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method using the same
TW201623543A (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
JP2010014771A (en) Thermosetting liquid crystal sealing material for liquid crystal dropping method and liquid crystal display cell using the same
TW201141939A (en) Liquid crystal sealant and liquid crystal display cell using same
JP5645765B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
TW201627464A (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
CN105849632A (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
WO2020235357A1 (en) Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same
JP2014156596A (en) Pressure-sensitive adhesive and optical member
JP4845667B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP5340474B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2016013214A1 (en) Liquid crystal sealing agent and production method for liquid crystal display panel
JP5748273B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
KR20100028556A (en) Sealing material for liquid crystal and liquid-crystal display cell made with the same
TWI831810B (en) Light-shielding sealant for liquid crystal dripping process and method of manufacturing liquid crystal display panel using same
CN111892894B (en) Sealing agent for liquid crystal display element, vertical conduction material, liquid crystal display element, and cured product
JP2005060651A (en) Curable resin composition, sealing agent for liquid crystal display element, mouth-sealing agent for liquid crystal display element, vertical conduction material for liquid crystal display element and liquid crystal display element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees