201131243 六、發明說明: 【發明所屬之技術領域】 本發明相關於-種電容式觸控面板,尤指一種無接縫電容式觸 控面板。 【先前技術】 近年來,觸控螢幕因觸控手機的採用而獲得了市場的認同,因 此有眾多的廠商加人觸控縣的開發與設計行列。其巾,電容式觸 控裝置,由於㈣性佳且具有錄_賊受,而成為可取代目前 主流的電阻式雛螢幕的下-代產品。然而,由於絲式觸控裝置 的成本較尚,成為其尚未大量運用於消費性產品的主要原因。 請參考第1圖,第1圖為先前技術之投射電容式觸控(Pr〇jective Capacitance Touch Sensor,PCT)裝置之感測墊之示意圖。投射電容式 觸控裝置運用了兩層感測墊,以方便進行電路的掃描動作,主要包 含一基板(未圖示),例如,採用玻璃基板,一配置於該玻璃板上之 覆蓋層(未圖示);於玻璃板的上層表面配置一 Y軸感測塾層12 , γ 軸感測墊層以係以固定間隔設置多個丫軸感測墊^丨,;^,”,”^。 在玻璃板的下層表面則配置一 X軸感測墊層11,以與γ軸感測塾 正交並以固定間隔設置多個X軸感測墊(Χΐ,χ2,χ3,χ4..·)。當手指觸摸 201131243 或靠近覆蓋層時’在觸携 、 生變化,經由偵測電心#、抽感測塾及γ軸感測塾的電容發 標資料。運用此種雙層=即可檢測出Χ議料咖 面利用同時絕緣層製作兩層透明二=或疋在該玻璃板的單側表 〇月參考第2圖,第2圖益止 電容式馳秘包含__^讀蚊電^控秘之剖面圖。 下透明導電層22 -=1=21以及-翻覆蓋板25,其中- 、色緣層23、一上透明導電層 明基板2丨之表面。接著,將透蓋板25以_^=成於透 =1,即完成電容式觸控面板的組裝,圖所示: 控面板具有X _測墊以及γ軸感·,χ㈣測塾 式觸 層22形成,Υ轴感測塾以上透明導電層24。然而,由2電 塾以及Υ軸感測塾形成於不同之透明導電層,當測轴感測 軸感測塾的解魏餅,在透明紐21 ±就可_ X Υ 以及Υ轴感難之接縫處所形成的細線,進而影 。 品質。 a工蛩桊之畫面 【發明内容】 因此,本發明之一目的在於提供一種無接縫電容式觸控面板 本發明係提供一種電容式觸控面板,包含—美.一 土蚁、一圖案層、 201131243 一第一感測墊以及一第二感測墊。該圖案層形成於該基板上。該第 一感測墊形成於該圖案層上’該第二感測墊形成於該基板上’該第 二感測墊與該第一感測墊被該圖案層隔開而不相互導電。 本發明另提供一種電容式觸控面板,包含一基板、一第一圖案 層、一第一感測塾、一第二圖案層以及一第二感測塾。該第一圖案 層形成於該基板之第一側。該第一感測墊形成於該基板之第一側以 及該第一圖案層上,形成於該基板之第一感測墊與形成於該第一圖 案層之第一感測墊被該第一圖案層隔開。該第二圖案層形成於該基 板之第二側。該第二感測墊形成於該基板之第二側以及該第二圖案 層上,形成於該基板之第二感測墊與形成於該第二圖案層之第二感 測墊被該第二圖案層隔開。 【實施方式】 • 凊參考第3圖至第6圖’第3圖至第6圖說明本發明之電容式 觸控面板之第-實施例。本發明之電容式觸控裝置包含χ轴感測塾 以及γ軸感測塾,電容式觸控裝置之架構可參考第i圖所示。本發 明之電容式觸控面板主要係利用圖案層來隔開感測塾,使感測塾之 間無接縫產生,提升觸控螢幕之畫面品質。 第圖斤示首先’在基板31上塗佈(spin-coat)光阻層,基 板31所制的底材可為各錢質基板,或硬質基板例如玻璃基板、 201131243 塑膝土板或石英基板等。此外,本發明之觸控面板亦可與顯示面板 整合以製作出-觸控顯示面板。舉例來說,以觸控面板的基板μ 作為-輔助基板,並於觸控面板製作完成後貼附至一顯示面板上。 此外,觸控面板亦可與顯示面板共用同基板31,即觸控面板的基板 31即為顯讀板之_ ’例如_彩色濾光朗基板。於觸控面板製 作完成後’再將賴基板與其它崎城細細賴板。在將光 阻層塗佈於基板31上之後,彻第—道光罩對光阻層進行微影 (Ph〇t〇llth〇graphy)製程,使光阻層形成X轴感測塾之圖案層32。前 述圖案化之步驟包含先於基板31上全面形成光阻層,接著利用灰階 光罩 '半色調光罩、或是相婦光轉光阻層騎曝光㈣·e) 製程’光阻層在齡彡(deve丨啊ent)—彡濃度以及曝光時 產生的感光深度差’留下χ軸感測墊之圖案層32。乂軸感測墊之圖 案層32與基板31具有—段高度差,且在較佳實施例中,光阻層在 進行顯影製程後,X轴感測塾之圖案層32的邊緣會產生底切 (undercut),形成小於9〇度的邊角。201131243 VI. Description of the Invention: [Technical Field] The present invention relates to a capacitive touch panel, and more particularly to a seamless capacitive touch panel. [Prior Art] In recent years, touch screens have gained market recognition due to the adoption of touch phones. Therefore, many manufacturers have joined the development and design ranks of Touch County. Its towel, capacitive touch control device, because of its (4) goodness and recording, has become a lower-generation product that can replace the current mainstream resistive screen. However, due to the relatively high cost of the silk touch device, it has become the main reason why it has not been widely used in consumer products. Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a sensing pad of a prior art Pr〇jective Capacitance Touch Sensor (PCT) device. The projected capacitive touch device utilizes two layers of sensing pads to facilitate the scanning operation of the circuit, and mainly includes a substrate (not shown), for example, a glass substrate, and a cover layer disposed on the glass plate (not shown) As shown in the figure), a Y-axis sensing layer 12 is disposed on the upper surface of the glass plate, and the γ-axis sensing pad layer is provided with a plurality of x-axis sensing pads at regular intervals; ^, ",". An X-axis sensing mat 11 is disposed on the lower surface of the glass plate to be orthogonal to the γ-axis sensing 并 and a plurality of X-axis sensing pads are disposed at regular intervals (Χΐ, χ2, χ3, χ4..·) . When the finger touches 201131243 or is close to the overlay, the capacitance is transmitted by the touch, the change, the sense of the core, the sense of the sense, and the sense of the gamma. Using this double layer = can detect the use of the surface of the coffee and the use of the insulating layer to make two layers of transparent two = or 疋 in the single side of the glass plate, see the second picture, the second picture of the capacitor The secret contains __^ reading mosquitoes ^ control secret profile. The lower transparent conductive layer 22 - = 1 = 21 and - the flip cover 25, wherein - the color edge layer 23, an upper transparent conductive layer, the surface of the substrate 2 . Then, the transparent cover 25 is formed by _^=, ie, the assembly of the capacitive touch panel is completed, as shown in the figure: The control panel has an X _ test pad and a γ-axis sense, and the 四 (4) 塾 touch layer 22 is formed, and the x-axis senses the transparent conductive layer 24 above. However, the 2-electrode and the x-axis sensing 塾 are formed on different transparent conductive layers. When the axis of the sense axis senses the 解 解 饼 cake, it can be _ X Υ and the Υ axis is difficult in the transparent button 21 ± The thin lines formed at the seams, and then the shadows. quality. The invention is directed to a seamless capacitive touch panel. The present invention provides a capacitive touch panel comprising: a terracotta, a patterned layer , 201131243 a first sensing pad and a second sensing pad. The pattern layer is formed on the substrate. The first sensing pad is formed on the pattern layer. The second sensing pad is formed on the substrate. The second sensing pad and the first sensing pad are separated by the pattern layer without being electrically conductive to each other. The invention further provides a capacitive touch panel comprising a substrate, a first pattern layer, a first sensing layer, a second pattern layer and a second sensing layer. The first pattern layer is formed on a first side of the substrate. The first sensing pad is formed on the first side of the substrate and the first pattern layer, and the first sensing pad formed on the substrate and the first sensing pad formed on the first pattern layer are first The pattern layers are separated. The second pattern layer is formed on the second side of the substrate. The second sensing pad is formed on the second side of the substrate and the second pattern layer, and the second sensing pad formed on the substrate and the second sensing pad formed on the second pattern layer are the second The pattern layers are separated. [Embodiment] The first embodiment of the capacitive touch panel of the present invention will be described with reference to Figs. 3 to 6 'Fig. 3 to Fig. 6 . The capacitive touch device of the present invention comprises a x-axis sensing 塾 and a γ-axis sensing device. The structure of the capacitive touch device can be referred to the first drawing. The capacitive touch panel of the present invention mainly uses a pattern layer to separate the sensing flaws, so that no joints are generated between the sensing jaws, and the screen quality of the touch screen is improved. The first figure shows that first, the spin-coat photoresist layer is coated on the substrate 31, and the substrate made of the substrate 31 may be each of the money substrate, or a hard substrate such as a glass substrate, 201131243 plastic knee plate or quartz substrate. Wait. In addition, the touch panel of the present invention can also be integrated with the display panel to produce a touch display panel. For example, the substrate μ of the touch panel is used as an auxiliary substrate, and is attached to a display panel after the touch panel is completed. In addition, the touch panel can also share the same substrate 31 with the display panel, that is, the substrate 31 of the touch panel is the display board, for example, a color filter substrate. After the touch panel is completed, the substrate will be spliced with other sagas. After the photoresist layer is coated on the substrate 31, the photo-resist layer is subjected to a lithography process to form a pattern layer 32 of the X-axis sensing 塾. . The step of patterning includes forming a photoresist layer on the substrate 31 in advance, and then using a gray-scale mask "halftone mask" or a maternal light-transfer layer to expose the exposure (4)·e) process of the photoresist layer The age of 彡 (deve ent ent) - the concentration of erbium and the difference in photographic depth produced during exposure - leaves the pattern layer 32 of the 感-axis sensing pad. The pattern layer 32 of the x-axis sensing pad has a height difference from the substrate 31. In the preferred embodiment, after the development process of the photoresist layer, the edge of the pattern layer 32 of the X-axis sensing layer is undercut. (undercut), forming a corner of less than 9 degrees.
如第4圖所示,_凹凸面塗覆、濺渡(sputtering)、蒸鑛 (vaporation)化學氣相沉積、網印或襯墊印刷等製程將一透明導電 層沈積於基板31上,透明導電層可為各式透明導電材料構成,例如 ^化銦錫_、氧化觸(ATQ)、減轉_)、祕轉()、 乳化鋅鎵(GZ0)、氧化_ (腦)或選自鈦、鋅嗜、録、姻、 錫、雜、及石夕等所構成之金屬氧化物群組中的其中之一者,並利用 气薄膜技術例如物理氣相沉積或化學氣相沉積加⑽成。由於X 201131243 軸感測墊之圖案層32與基板31之高度差以及底切,χ軸感測墊之 圖案層32將使得形成於圖案層32上之透明導電層與形成於基板31 上之透明導電層被隔開,如此一來,沈積於圖案層32上之透明導電 層將形成X軸感測墊41。另一方面,形成於基板31上之透明導電 層還需要將X軸方向之連接斷開,以形成γ軸感測墊42。因此, 利用第二道光罩對形成於基板31上之透明導電層進行微影製程以 及触刻製程,以形成Y軸感測塾42,而γ軸感測墊42在Y軸方向 因圖案層32形成底切,自然將X軸感測塾々I與γ軸感測塾42分 開。 如第5圖所示,在X軸感測墊41以及γ軸感測墊42上形成絕 緣層51。X軸感測墊41與γ軸感測墊42被圖案層32隔開而不相 互導電,但圖案層32兩端之Y軸感測墊42也因此隔開。因此,圖 案層32兩端之γ軸感測墊42需利用第三道光罩進行微影製程以及 蝕刻製程,以在絕緣層51上產生貫穿孔52,貫穿孔52可用來電性 連接圖案層32兩端之Y轴感測塾42。 如第6圖所示’在絕緣層51上形成導電層61將圖案層%兩端 之Y軸感測墊42電性連接。之後,於基板3丨上形成保護層62。導 電層61可為金屬導電層,由於設於γ軸感測墊犯間之導電層61 的面積很小,所以使用不透明的金屬材質並不會影響觸控螢幕的透 光率,而且藉由金屬的低電阻又可補償γ軸感測墊42與導電層61 之串接介面的影響,而得到較佳的導電率。前述形成導電層Μ之步 201131243 驟利用第四道光罩進行微影製程以及蝕刻製程,以形成橋接圖案層 32兩端之Y軸感測塾42之導電廣61。 第6圖顯示了本發明之第一實施例之電容式觸控面板之結構, 電容式觸控面板60包含基板31、圖案層32、X軸感測墊4]、γ軸 感測墊42、絕緣層51、導電層61以及保護層62。本發明之電容式 觸控面板之X軸感測墊41形成於圖案層32上,X軸感測墊41以 及Y軸感測墊42正交,利用圖案層32將X軸感測墊41與Y軸感 測墊42隔開而不相互導電,如此X軸感測墊41以及γ軸感測墊 42之間無接縫產生。 請參考第7圖’第7圖為本發明之第二實施例之電容式觸控面 板之剖面圖,電容式觸控面板7〇包含基板71、導電層72、圖案層 73、X轴感測墊74、Y軸感測墊75以及保護層76。在第二實施例 中’先於基板71上形成連接γ軸感測墊75之導電層72,所以導電 層72位於圖案層73之下方,如此可省去絕緣層以及貫穿孔之製程。 同樣地’X軸感測塾74形成於圖案層72上,X軸感測墊74以及γ 軸感測墊75正交’由於圖案層72的邊緣會產生底切,形成小於9〇 度的邊角77 ’所以圖案層72將使X軸感測墊74與^軸感測墊乃 隔開而不相互導電,如此X轴感測塾 74以及Y軸感測墊75之間無 接縫產生。 °月參考第8圖’第8圖為本發明之第三實施例之電容式觸控面 201131243 板之剖面圖。電容式觸控面板80包含基板81、X軸圖案層82、X 轴感測墊83、Y軸圖案層84、Y軸感測墊85以及保護層86。在第 三實施例中,X軸感測墊83以及Y軸感測墊85分別形成於基板81 之二側,X軸感測墊83以及Y軸感測墊85為正交。由於圖案層82 的邊緣會產生底切’形成小於90度的邊角87,使形成於X軸圖案 層82上之X軸感測墊83與形成於基板81上之X軸感測墊83被隔 開,如此X軸感測墊83之間無接縫產生。同樣地,形成於γ軸圖 案層84上之Y軸感測墊85與形成於基板81上之Y軸感測墊85 被隔開’如此Y軸感測墊85之間無接縫產生。此外,電容式觸控 面板80之X軸感測墊83以及Y軸感測墊85之數目為電容式觸控 面板70之二倍,所以電容式觸控面板8〇具有更高的解析度。 綜上所述,本發明之電容式觸控面板利用圖案層來隔開感測 塾,使感測堅之間無接縫產生,提升觸控螢幕之晝面品質。電容式 觸控面板可感測層设置於基板的同一側或基板的二侧。當電容式觸 控面板之感測層設置於基板關-側時,由於χ軸感測墊形成於圖 案層上,所以圖賴將使X軸感尋與丫軸_墊隔開而不相互導 電,如此X軸感測塾以及γ軸感測塾之間無接縫產生。當電容式觸 控面板之感測層設置於基板的二側時,χ抽感測塾與γ袖感測整分 別由X軸圖案層與Υ軸圖案層所隔開,所以χ軸感測塾以及γ車由 感測塾分別無接縫產生,且X軸感測塾以及Υ轴感測塾之數目加 倍,使電容式觸控面板具有更高的解析度。 201131243 戶以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 文之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1 第圖為先前技術之投射電容式觸控裝置之感測墊之示意圖。 2圖為先前技術之電容式觸控面板之剖面圖。 圖至第6圖說明本發明之電容式觸控面板之第—實施例。 7圖為本發明之第二實施例之電容式觸控面板之剖面圖。 8圖為本發明之第三實施例之電容式觸控面板之剖面圖。 【主要元件符號說明】 11 12 21 22 23 24 25 26 31 、 71、 81 32、73As shown in FIG. 4, a transparent conductive layer is deposited on the substrate 31 by a process such as uneven surface coating, sputtering, vapor deposition chemical vapor deposition, screen printing or liner printing, and transparent conductive The layer may be composed of various transparent conductive materials, such as indium tin oxide, oxidized touch (ATQ), reduced _), secret transfer (), emulsified zinc gallium (GZ0), oxidation _ (brain) or selected from titanium, One of a group of metal oxides composed of zinc, lanthanum, lanthanum, tin, hetero, and shixi, and is formed by a gas thin film technique such as physical vapor deposition or chemical vapor deposition. Due to the height difference of the pattern layer 32 of the X 201131243 shaft sensing pad and the substrate 31 and the undercut, the pattern layer 32 of the x-axis sensing pad will make the transparent conductive layer formed on the pattern layer 32 and the transparent layer formed on the substrate 31 The conductive layers are spaced such that the transparent conductive layer deposited on the pattern layer 32 will form the X-axis sensing pads 41. On the other hand, the transparent conductive layer formed on the substrate 31 also needs to be disconnected in the X-axis direction to form the γ-axis sensing pad 42. Therefore, the transparent conductive layer formed on the substrate 31 is subjected to a lithography process and a etch process using a second mask to form a Y-axis sensing pad 42, and the γ-axis sensing pad 42 is in the Y-axis direction due to the pattern layer 32. Forming an undercut naturally separates the X-axis sense 塾々I from the γ-axis sense 塾42. As shown in Fig. 5, an insulating layer 51 is formed on the X-axis sensing pad 41 and the γ-axis sensing pad 42. The X-axis sensing pads 41 and the gamma-axis sensing pads 42 are separated from each other by the pattern layer 32 without being electrically conductive, but the Y-axis sensing pads 42 at both ends of the pattern layer 32 are also spaced apart. Therefore, the γ-axis sensing pad 42 at both ends of the pattern layer 32 needs to use a third mask to perform a lithography process and an etching process to create a through hole 52 in the insulating layer 51. The through hole 52 can be electrically connected to the pattern layer 32. The Y-axis of the end senses 塾42. As shown in Fig. 6, a conductive layer 61 is formed on the insulating layer 51 to electrically connect the Y-axis sensing pads 42 at both ends of the pattern layer. Thereafter, a protective layer 62 is formed on the substrate 3A. The conductive layer 61 can be a metal conductive layer. Since the area of the conductive layer 61 disposed on the γ-axis sensing pad is small, the use of the opaque metal material does not affect the transmittance of the touch screen, and the metal is used. The low resistance can compensate for the influence of the serial interface of the γ-axis sensing pad 42 and the conductive layer 61 to obtain a better electrical conductivity. The step of forming the conductive layer 2011 201131243 uses a fourth mask to perform the lithography process and the etching process to form the conductive width 61 of the Y-axis sensing 塾 42 at both ends of the bridge pattern layer 32. 6 is a view showing the structure of a capacitive touch panel according to a first embodiment of the present invention. The capacitive touch panel 60 includes a substrate 31, a pattern layer 32, an X-axis sensing pad 4], a γ-axis sensing pad 42, The insulating layer 51, the conductive layer 61, and the protective layer 62. The X-axis sensing pad 41 of the capacitive touch panel of the present invention is formed on the pattern layer 32, and the X-axis sensing pad 41 and the Y-axis sensing pad 42 are orthogonal, and the X-axis sensing pad 41 is used by the pattern layer 32. The Y-axis sensing pads 42 are spaced apart from each other without conduction, such that no seam is produced between the X-axis sensing pads 41 and the γ-axis sensing pads 42. 7 is a cross-sectional view of a capacitive touch panel according to a second embodiment of the present invention. The capacitive touch panel 7A includes a substrate 71, a conductive layer 72, a pattern layer 73, and an X-axis sensing. Pad 74, Y-axis sensing pad 75, and protective layer 76. In the second embodiment, the conductive layer 72 connecting the γ-axis sensing pads 75 is formed on the substrate 71, so that the conductive layer 72 is located under the pattern layer 73, so that the process of the insulating layer and the through holes can be omitted. Similarly, the 'X-axis sensing pad 74 is formed on the pattern layer 72, and the X-axis sensing pad 74 and the γ-axis sensing pad 75 are orthogonal 'because the edge of the pattern layer 72 will produce an undercut, forming a side less than 9 degrees. Angle 77' so the pattern layer 72 will separate the X-axis sensing pads 74 from the ^-axis sensing pads without being electrically conductive to each other, such that no seams are produced between the X-axis sensing pads 74 and the Y-axis sensing pads 75. FIG. 8 is a cross-sectional view of the capacitive touch surface 201131243 of the third embodiment of the present invention. The capacitive touch panel 80 includes a substrate 81, an X-axis pattern layer 82, an X-axis sensing pad 83, a Y-axis pattern layer 84, a Y-axis sensing pad 85, and a protective layer 86. In the third embodiment, the X-axis sensing pad 83 and the Y-axis sensing pad 85 are formed on both sides of the substrate 81, and the X-axis sensing pad 83 and the Y-axis sensing pad 85 are orthogonal. Since the edge of the pattern layer 82 produces an undercut 'forming a corner 87 of less than 90 degrees, the X-axis sensing pad 83 formed on the X-axis pattern layer 82 and the X-axis sensing pad 83 formed on the substrate 81 are Separated, such that no seams are produced between the X-axis sensing pads 83. Similarly, the Y-axis sensing pad 85 formed on the γ-axis pattern layer 84 is spaced apart from the Y-axis sensing pad 85 formed on the substrate 81. Thus, no seam is produced between the Y-axis sensing pads 85. In addition, the number of the X-axis sensing pads 83 and the Y-axis sensing pads 85 of the capacitive touch panel 80 is twice that of the capacitive touch panel 70, so the capacitive touch panel 8 has a higher resolution. In summary, the capacitive touch panel of the present invention uses the pattern layer to separate the sensing flaws, so that no joints are generated between the sensing and the surface quality of the touch screen. The capacitive touch panel can be provided on the same side of the substrate or on both sides of the substrate. When the sensing layer of the capacitive touch panel is disposed on the off-side of the substrate, since the x-axis sensing pad is formed on the pattern layer, the X-axis sensing is separated from the x-axis pad without being electrically conductive to each other. Thus, no seam is produced between the X-axis sensing 塾 and the γ-axis sensing 塾. When the sensing layer of the capacitive touch panel is disposed on two sides of the substrate, the snagging sensing 塾 and the γ-sleeve sensing are respectively separated by the X-axis pattern layer and the Υ-axis pattern layer, so the χ-axis sensing 塾And the gamma car is generated by the sensing 塾 without seams, and the number of the X-axis sensing 塾 and the Υ-axis sensing 加 is doubled, so that the capacitive touch panel has higher resolution. The above description of the preferred embodiments of the present invention is intended to be within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a sensing pad of a prior art projected capacitive touch device. 2 is a cross-sectional view of a prior art capacitive touch panel. Figures to 6 illustrate a first embodiment of a capacitive touch panel of the present invention. 7 is a cross-sectional view of a capacitive touch panel according to a second embodiment of the present invention. 8 is a cross-sectional view of a capacitive touch panel according to a third embodiment of the present invention. [Main component symbol description] 11 12 21 22 23 24 25 26 31, 71, 81 32, 73
X幸4感測塾 Y幸i感測墊 透明基板 下透明導電層 絕緣層 上透明導電層 透明覆蓋板 光學膠 基板 圖案層 10 201131243 41 ' 74 ' 83 X軸感測墊 42、75、85 Y軸感測墊 51 絕緣層 52 貫穿孔 61 ' 72 導電層 62、76、86 保護層 82 X軸圖案層 84 Y軸圖案層X幸4感感塾Y幸i sensing pad transparent substrate transparent conductive layer insulating layer transparent conductive layer transparent cover plate optical adhesive substrate pattern layer 10 201131243 41 ' 74 ' 83 X-axis sensing pad 42, 75, 85 Y Axis sensing pad 51 insulating layer 52 through hole 61 ' 72 conductive layer 62, 76, 86 protective layer 82 X-axis pattern layer 84 Y-axis pattern layer