TW201115776A - Method for manufacturing light-emitting diode chip - Google Patents

Method for manufacturing light-emitting diode chip Download PDF

Info

Publication number
TW201115776A
TW201115776A TW98135442A TW98135442A TW201115776A TW 201115776 A TW201115776 A TW 201115776A TW 98135442 A TW98135442 A TW 98135442A TW 98135442 A TW98135442 A TW 98135442A TW 201115776 A TW201115776 A TW 201115776A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
substrate
layer
manufacturing
Prior art date
Application number
TW98135442A
Other languages
Chinese (zh)
Other versions
TWI411128B (en
Inventor
Yan-Kuin Su
Kuan-Chun Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98135442A priority Critical patent/TWI411128B/en
Publication of TW201115776A publication Critical patent/TW201115776A/en
Application granted granted Critical
Publication of TWI411128B publication Critical patent/TWI411128B/en

Links

Landscapes

  • Led Devices (AREA)
  • Dicing (AREA)

Abstract

A method for manufacturing a light-emitting diode (LED) chip is described. The method includes the following steps. A substrate including a first surface and a second surface on two opposite sides is provided. A plurality of scribe lines are formed in the first surface of the substrate by laser, wherein the scribe lines includes a laser residue. The laser residue is removed. An illuminant epitaxial structure is formed on the first surface of the substrate outside the scribe lines. The illuminant epitaxial structure includes a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer. A transparent conductive layer is formed on the second conductivity semiconductor layer. A first electrode and a second electrode are respectively formed on the first conductivity type semiconductor layer and the second conductivity type semiconductor layer. An external force is applied on the second surface of the substrate to divide the substrate along the scribe lines, so as to form a plurality of light-emitting diode chips.

Description

201115776 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光元件之製造方法,且特別是 有關於一種發光二極體(LED)晶片之製造方法。 【先前技術】 傳統之發光二極體的製作,通常係在基板上磊晶成長 發光磊晶結構。此時,其上設有發光磊晶結構基板通常稱 為發光二極體晶圓(LED Wafer)。接著,利用薄臈沉積、微 影與蝕刻等技術在基板上製作出一顆顆的晶片。然後,利 用切割方式,將發光二極體晶圓分割成一顆顆獨立的發光 二極體晶片。 目前,發光二極體之切割技術一般係採用鑽石刀先在 發光二極體晶圓上劃出切割道,再以崩裂方式將發光二極 體晶圓分割成數個獨立的發光二極體晶片。然而,鑽石刀 之價格向且耗4貝率面’因此會大幅提高生產成本,不符合 生產趨勢。 因此’目前採用雷射並配合金屬刀來進行發光二極體 晶片的分割。此分割技術係先利用雷射劃出切割道,再利 用金屬刀施壓’以崩裂發光二極體晶圓而形成數個獨立之 發光二極體晶片。 然而’利用雷射劃出切割道時,切割道的侧壁會留下 燒灼的痕跡,而在切割道中留下雷射殘餘物。在發光二極 體晶片分割後,由於此雷射殘餘物會留在發光二極體晶片 的側邊上’因此會造成發光二極體晶片之侧邊的光強度下 201115776 降,進而導致發光二極體晶片之整體光強度下降。 為了改善雷射劃線後發光二極體晶片之側光強度下降 的問題,目前所提出的一種解決方式係先以雷射在磊晶完 成之發光二極體晶圓上劃出切割道,再將發光二極體晶圓 浸入清除液令,以移除切割道中的雷射殘餘物。然後,再 以崩裂方式形成許多獨立的發光二極體晶片。 雖然此一方法可清除發光二極體晶片之側邊的雷射殘 留物,但是清除液會損壞發光二極體晶圓上所有發光二極 Φ 體晶片之發光磊晶結構的側邊,而對發光二極體晶片之電 性造成損壞,進而導致發光二極體晶片之順向導通電壓 (Forward Voltage ; Vf)上升。 【發明内容】 因此,本發明之一態樣就是在提供一種發光二極體晶 片之製造方法,其無需使用鑽石刀來進行發光二極體晶片 的切割,因此可降低製程成本。 • 本發明之另一態樣是在提供一種發光二極體晶片之製 造方法,其可有效清除發光二極體晶片之側邊的雷射殘餘 物,因此可有效提升發光二極體晶片之侧邊的光取出強 度,進而可增進發光二極體晶片之整體光取出強度。 本發明之又一態樣是在提供一種發光二極體晶片之製 造方法,其可避免發光二極體晶片之發光層的側邊電性遭 到強酸破壞,因此不僅可增進發光二極體晶片之電性品 質,更可進一步提升發光二極體晶片之發光效率。 ' 根據本發明之上述目的,提出一種發光二極體晶片之 201115776 製造方法,包含下列步驟。提供一基板,其中基板具有相 對之第一表面與第二表面。利用一雷射在基板之第一表面 中形成複數個切割道,其中這些切割道中包含一雷射殘餘 物。清除雷射殘餘物。形成一發光磊晶結構於基板之切割 道以外之第一表面上。發光磊晶結構包含一第一電性半導 體層、一發光層以及一第二電性半導體層。第一電性半導 體層位於基板之第一表面上。發光層位於部分之第一電性 半導體層上。第二電性半導體層位於發光層上,其中第一 鲁電性半導體層與第二電性半導體層之電性不同。形成一透 明導電層於第二電性半導體層上。形成一第一電極與一第 二電極分別位於第一電性半導體層上與第二電性半導體層 上。施加一外力於基板之第二表面上,以沿著前述之切割 道分割基板’而形成複數個發光二極體晶片。 依據本發明之一實施例,於形成發光磊晶結構之步驟 與形成透明導電層之步驟之間,上述發光二極體晶片之製 造方法更包含形成一電流阻障層於第二電性半導體層上。 • 依據本發明之另一實施例,於形成第一電極與該第二 電極之步驟與施加外力之步驟之間,上述發光二極體晶片 之製造方法更包含形成-透明保護層覆蓋發光遙晶結構、 透明導電層與切割道。 在本發明之實施例中,先以雷射在基板之表面上晝出 刀:丨道並將切割道中的雷射殘餘物予以清除後,才設置 發^晶結構。如此一來,無需使用鑽石刀,即可從基板 之背面來劈裂基板,而順利分割出數個發光二極體晶片, - 目此可降低製程成本。此外,切割道中的雷射殘餘物已在 201115776 發光磊晶結構形成前就遭清除,因此不僅可防止清除液損 傷發光磊晶結構之侧邊的電性,更可避免雷射殘餘物影響 發光一極體晶片的侧向出光強度。故’可有效提升發光二 極體晶片之電性品質,並可提高發光二極體晶片之光強度。 【實施方式】 請參照第1A圖至第10圖,其中第1B圖至第1〇圖係 繪示依照本發明一實施方式的一種發光二極體晶片之製程 剖面圖,而第1A圖為第1B圖之上視圖。在本實施方式中, 製作發光二極體晶片時,先提供基板100。如第1B圖所示, 基板100包含二表面102與104位於基板100之相對二侧。 基板100係供磊晶層成長之原生基板。基板100之材料可 例如包含矽(Si)、碳化矽(SiC)、砷化鎵(GaAs)或藍寶石 (ai2〇3)。 接著,請同時參照第1A圖與第1B圖所示,利用雷射 106,而分別沿著方向1〇8與110刻劃基板100之表面102。 如此可在基板100之表面102中劃出數條切割道112a、 112b、112c與112d,如第2圖所示。在一實施例中,雷射 1〇6之波長可例如介於i95nm與1550nm之間。此外,以 雷射106劃出這些切割道112a、112b、112c與112d時, 雷射106之焦點可聚焦介於基板100之表面102與此表面 102下方3〇〇μ m之間。 在一些實施例中,相鄰之二切割道112a、112b、112c 與112d之間的間距144玎例如介於25 與10000//m之 間。這些切割道112a、112b、112c與112d將基板100之 201115776 表面102分隔成數個區域114。這些區域114係供晶片之發 光磊晶結構124(請先參照第4圖所示)成長的區域,因而這 些區域114的形狀與後續所形成之發光二極體晶片142(請 先參照第9圖)的形狀基本上相同。這些區域η#之形狀可 例如為正方型,或者具有長寬比介於1 : 1至1 〇〇〇 : 1之間 的矩型。 在本實施方式中,所有之切割道112a、112b、112c與 112d可具有相同形狀或不同形狀。在一實施例中,如第2 圖所示’切割道112a、112b、112c與112d具有不同之形 狀。例如’切割道112a之形狀為u字型,切割道112b之 形狀為U字型,切割道112c之形狀為V字型,而切割道 112d之形狀為Y字型。經過雷射1〇6切割後,雷射殘餘物 116附著在切割道112a、112b、112c與112d中。 接下來,如第3圖所示,移除所有切割道n2a、112b、 112c與112d中的雷射殘餘物116。清除切割道112a、112b、 112c與112d中的雷射殘餘物116時,可利用濕式處理方式 或乾式處理方式。在濕式處理方式中,清除雷射殘餘物116 時,可將基板100浸泡於例如溫度為100°C以上的酸性溶 液或鹼性溶液中。在一實施例中,清除雷射殘餘物116時, 可將基板100浸泡於溫度250°C之酸性溶液中,其中此酸 性溶液可例如包含硫酸與磷酸,且硫酸與磷酸之比例可為 3 : 1。在乾式處理方式中,清除雷射殘餘物116時’可利 用反應性離子蝕刻(RIE)法、或者感應耦合電漿反應性離子 蝕刻(ICP-RIE)法。 完成雷射殘餘物116的清除後,即可利用例如蠢晶成 201115776 長方式,形成發光蠢晶結構124於切割道112a、112b、112e 與112d以外之基板100表面102中的區域114上。在一實 施例中,發光磊晶結構124可包含第一電性半導體層118、 發光層120與第二電性半導體層122。其中,第一電性半 導體層118與第二半導體層122具有不同之電性,例如其 中一者為η型,另一者則為p型◊因此,製作此發光蟲晶 結構124時,可先於基板100之表面102的區域114上形 成第一電性半導體層118。再於第一電性半導體層118上成 長發光層120。然後,於發光層120上成長第二電性半導 體層122,而形成如第4圖所示之發光磊晶結構124。在一 實施例中,發光層120可例如包含多重量子井(MQW)結構。 在一些實施例中,發光蠢晶結構124之材料可例如包 含氮化鎵系列(GaN-based)材料、構化銘鎵銦 (AlGalnP-based)系列材料、硫化鉛(PbS-based)系列材料、 碳化碎(SiC-based)系列材料、氮化銦鎵(InGaN-based)系列 材料、氮化銦(InN-based)系列材料或氮化鋁鎵 (AlGaN-based)系列材料。 接著,利用例如微影與蝕刻技術,對發光磊晶結構124 進行圖案定義,而移除部分之第二電性半導體層122與部 分之發光層120,直至暴露出第一電性半導體層118之一 部分126’如第5圖所示。 此外,可根據產品需求,而選擇性地形成電流阻障層 128於第二電性半導體層122上,以提升發光二極體晶片 142(請先參照第9圖)之發光效率。電流阻障層128之材料 可選擇與第二電性半導體層122及後續形成之透明導電層 201115776 130(請先參照第6圖)均形成高阻抗特性的材料,或者與第 二電性半導體層122及透明導電層13〇均形成肖特基接面 特性的材料。在一實施例中,電流阻障層128之材料可例 如為二氧化矽(Si〇2)或氮化鋁(A1N)。 接著’形成透明導電層130覆蓋在第二電性半導體層 122與電流阻p早層12 8上’以利電流分散。在一實施例中, 透明導電層130之材料可例如包含氧化銦錫(IT0)、鎳/金 (Ni/Au)、氧化鋅(ΖηΟ)或氧化鋅鋁(ΑΖΟ)。透明導電層13〇 Φ 之厚度可例如介於10Α與6000Α之間。 接下來,形成第一電極132與第二電極134。第—電 極132位於第一電性半導體層118之暴露部分126上。第 二電極134位於透明導電層130上。在一實施例中,第二 電極134可例如位於電流阻障層128上方之透明導電層13〇 上,以利電流分散。 在一實施例中,第一電極132可例如包含依序堆疊在 第一電性半導體層Π8之暴露部分126上的黏著層1二、 • 擴散阻擋層148與金屬層150。黏著層146之材^可例如 包含鉻、鈦、鎳、或上述金屬之合金。擴散阻擋層148之 材料可例如包含|自、錄、鈦、銘、鶴、或上述金屬之合金。 金屬層150之材料可例如包含金、銀、鋁、或上述金屬之 合金。 在另一實施例中,第二電極134亦可例如包含依序堆 疊在透明導電層130上的黏著層152、擴散阻擋層154與 金屬層156。黏著層152之材料可例如包含鉻、鈦、鎳二 或上述金屬之合金。擴散阻檔層154之材料可例如包含 201115776 始、鎳、鈦、鋁、鎢、或上述金屬之合金。金屬層156之 材料可例如包含金、銀、銘、或上述金屬之合金。 接下來,可依產品需求,而選擇性地形成透明保護層 136覆蓋在發光磊晶結構124、透明導電層ι3〇、以及切割 道112a、U2b、112c與112d之侧壁上’但暴露出第一電 極132與第二電極134,如第6圖所示。在一實施例中, 透明保護層136之材料可例如包含二氧化矽或氮化鋁。 接著’更可依產品需求,而從基板100之另一表面104 來移除部分之基板1〇〇,以縮減基板100之厚度,而形成 發光二極體晶圓158。在一實施例中,可利用例如研磨法 來移除部分之基板1〇〇。如第7圖所示,基板1〇〇之部分 厚度經移除後,基板100之厚度138可例如介於50/zm〜250 &quot;m。 然後,如第8圖所示,可利用例如金屬刀在基板1 〇〇 之表面104上施加外力140,藉以沿著基板1〇〇之另一表 面的切割道U2a、U2b、112c與112d來分割基板1〇〇。 如第9圖所示,藉由外力140的施加,可將基板1〇〇崩裂, 而將發光二極體晶圓158分割成數個發光二極體晶片 142。如此’可完成如第1〇圖所示之發光二極體晶片ι42 的製作。 由上述本發明實施方式可知,本發明之一優點就是因 為發光二極體晶片之製造方法無需使用鑽石刀來進行發光 二極體晶片的切割,因此可降低製程成本。 由上述本發明實施方式可知,本發明之另一優點就是 因為發光二極體晶片之製造方法可有效清除發光二極體晶 201115776 片之侧邊的雷射殘餘物,因此可有效提升發光二極體晶片 之側邊的光取出強度,進而可增進發光二極體晶片之整體 光取出強度。 由上述本發明實施方式可知,本發明之又一優點就是 因為發光二極體晶片之製造方法可避免發光二極體晶片之 發光層的側邊電性遭到強酸破壞,因此不僅可增進發光二 極體晶片之電性品質,更可進一步提升發光二極體晶片之 發光效率 Φ 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因 此本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1A圖係繪示依照本發明一實施方式的一種基板的 上視圖。 第1B圖至第10圖係繪示依照本發明一實施方式的一 種發光二極體晶片之製程剖面圖 【主要元件符號說明】 100 :基板 102 :表面 104 :表面 106 :雷射 12 201115776 108 : 方向 110 : 112a :切割道 112b 112c :切割道 112d 114 : 區域 116 : 118 : 第一電性半導體層 120 : 122 : 第二電性半導體層 124 : 126 : 部分 128 : 130 : 透明導電層 132 : 134 : 第二電極 136 : 138 : 厚度 140 : 142 : 發光二極體晶片 144 : 146 : 黏著層 148 : 150 : 金屬層 152 : 154 : 擴散阻擋層 156 : 158 : 發光二極體晶圓 方向 :切割道 :切割道 雷射殘餘物 發光層 發光蟲晶結構 電流阻障層 第一電極 透明保護層 外力 間距 擴散阻擋層 黏著層 金屬層201115776 VI. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a light-emitting element, and more particularly to a method of manufacturing a light-emitting diode (LED) wafer. [Prior Art] Conventional light-emitting diodes are usually produced by epitaxial growth of a light-emitting epitaxial structure on a substrate. At this time, the substrate on which the light-emitting epitaxial structure is provided is generally referred to as a light-emitting diode wafer (LED Wafer). Next, a single wafer is fabricated on the substrate by techniques such as thin tantalum deposition, lithography, and etching. Then, the light-emitting diode wafer is divided into individual light-emitting diode chips by cutting. At present, the cutting technology of the light-emitting diode generally uses a diamond knife to first cut a dicing street on the light-emitting diode wafer, and then divides the light-emitting diode wafer into a plurality of independent light-emitting diode wafers by cracking. However, the price of diamond knives is 4 ounces in size and therefore greatly increases production costs and does not meet production trends. Therefore, laser segmentation is currently performed using a laser and a metal knife. This segmentation technique uses a laser to draw a dicing street and then presses a metal knife to form a plurality of individual light-emitting diode wafers by cracking the light-emitting diode wafer. However, when a laser is used to draw a scribe line, the side walls of the scribe line leave a burning mark leaving a laser residue in the scribe line. After the light-emitting diode wafer is divided, since the laser residue will remain on the side of the light-emitting diode wafer, the light intensity of the side of the light-emitting diode wafer will fall under 201115776, thereby causing the light-emitting two. The overall light intensity of the polar body wafer is reduced. In order to improve the problem of the decrease of the side light intensity of the light-emitting diode chip after the laser scribing, a solution proposed by the method is to first draw a dicing street on the light-emitting diode wafer completed by the epitaxy, and then Immerse the LED wafer in a purge order to remove the laser residue from the scribe line. Then, a plurality of individual light-emitting diode chips are formed by cracking. Although this method can remove the laser residue on the side of the light-emitting diode chip, the cleaning liquid can damage the side of the light-emitting epitaxial structure of all the light-emitting diode Φ body wafers on the light-emitting diode wafer, and The electrical polarity of the LED chip causes damage, which in turn causes the forward voltage (Vf) of the LED chip to rise. SUMMARY OF THE INVENTION Accordingly, it is an aspect of the present invention to provide a method of fabricating a light-emitting diode wafer which does not require the use of a diamond knife for cutting a light-emitting diode wafer, thereby reducing process cost. Another aspect of the present invention is to provide a method for fabricating a light-emitting diode wafer, which can effectively remove the laser residue on the side of the light-emitting diode chip, thereby effectively improving the side of the light-emitting diode chip The light extraction intensity of the side enhances the overall light extraction intensity of the light-emitting diode wafer. Another aspect of the present invention is to provide a method for fabricating a light-emitting diode wafer, which can prevent the side edge of the light-emitting layer of the light-emitting diode wafer from being damaged by strong acid, thereby not only improving the light-emitting diode wafer The electrical quality further enhances the luminous efficiency of the LED chip. According to the above object of the present invention, a method of manufacturing a light-emitting diode wafer of 201115776 is proposed, which comprises the following steps. A substrate is provided wherein the substrate has opposing first and second surfaces. A plurality of dicing streets are formed in the first surface of the substrate by a laser, wherein the dicing streets contain a laser residue. Remove laser residue. A luminescent epitaxial structure is formed on the first surface other than the dicing street of the substrate. The luminescent epitaxial structure comprises a first electrical semiconductor layer, a luminescent layer and a second electrical semiconductor layer. The first electrically conductive semiconductor layer is on the first surface of the substrate. The luminescent layer is on a portion of the first electrically conductive semiconductor layer. The second electrical semiconductor layer is on the light emitting layer, wherein the first electrical semiconductor layer and the second electrical semiconductor layer are electrically different. A transparent conductive layer is formed on the second electrical semiconductor layer. A first electrode and a second electrode are formed on the first electrical semiconductor layer and the second electrical semiconductor layer, respectively. An external force is applied to the second surface of the substrate to divide the substrate ' along the dicing street as described above to form a plurality of light emitting diode wafers. According to an embodiment of the invention, between the step of forming a light-emitting epitaxial structure and the step of forming a transparent conductive layer, the method for fabricating the light-emitting diode wafer further comprises forming a current blocking layer on the second electrical semiconductor layer. on. According to another embodiment of the present invention, between the step of forming the first electrode and the second electrode and the step of applying an external force, the method for fabricating the LED chip further comprises forming a transparent protective layer covering the luminescent crystal. Structure, transparent conductive layer and cutting track. In an embodiment of the invention, the laser is first placed on the surface of the substrate by a laser: the ramp is removed and the laser residue in the scribe line is removed. In this way, the substrate can be split from the back surface of the substrate without using a diamond knife, and a plurality of light-emitting diode chips can be smoothly divided, thereby reducing the process cost. In addition, the laser residue in the scribe line has been removed before the 201115776 luminescent epitaxial structure is formed, so that not only the cleaning liquid can be prevented from damaging the electrical side of the luminescent epitaxial structure, but also the laser residue can be prevented from affecting the luminescence. The lateral light output of the polar body wafer. Therefore, the electrical quality of the light-emitting diode chip can be effectively improved, and the light intensity of the light-emitting diode chip can be improved. [Embodiment] Please refer to FIGS. 1A to 10, wherein FIG. 1B to FIG. 1 are cross-sectional views showing a process of a light-emitting diode wafer according to an embodiment of the present invention, and FIG. 1A is a first 1B view above. In the present embodiment, when a light-emitting diode wafer is fabricated, the substrate 100 is first provided. As shown in FIG. 1B, the substrate 100 includes two surfaces 102 and 104 on opposite sides of the substrate 100. The substrate 100 is a native substrate on which an epitaxial layer is grown. The material of the substrate 100 may include, for example, bismuth (Si), tantalum carbide (SiC), gallium arsenide (GaAs), or sapphire (ai2〇3). Next, referring to FIGS. 1A and 1B, the surface 102 of the substrate 100 is scribed along the directions 1〇8 and 110 by the laser 106. Thus, a plurality of dicing streets 112a, 112b, 112c and 112d can be drawn in the surface 102 of the substrate 100 as shown in FIG. In an embodiment, the wavelength of the laser 1 〇 6 may be, for example, between i95 nm and 1550 nm. Moreover, when the scribe lines 112a, 112b, 112c, and 112d are drawn by the laser 106, the focus of the laser 106 can be focused between the surface 102 of the substrate 100 and 3 〇〇 μm below the surface 102. In some embodiments, the spacing 144 between adjacent scribe lines 112a, 112b, 112c, and 112d is, for example, between 25 and 10000//m. These scribe lines 112a, 112b, 112c and 112d divide the 201115776 surface 102 of the substrate 100 into a plurality of regions 114. These regions 114 are regions for the growth of the light-emitting epitaxial structure 124 of the wafer (please refer to FIG. 4 first), and thus the shape of these regions 114 and the subsequently formed LED wafer 142 (please refer to FIG. 9 first) The shape is basically the same. The shape of these regions η# may be, for example, a square shape or a rectangular shape having an aspect ratio of between 1:1 and 1 〇〇〇:1. In the present embodiment, all of the dicing streets 112a, 112b, 112c and 112d may have the same shape or different shapes. In one embodiment, the dicing streets 112a, 112b, 112c and 112d have different shapes as shown in Fig. 2. For example, the shape of the dicing street 112a is u-shaped, the shape of the dicing street 112b is U-shaped, the shape of the dicing street 112c is V-shaped, and the shape of the dicing street 112d is Y-shaped. After laser 1 〇 6 cutting, the laser residue 116 is attached to the scribe lines 112a, 112b, 112c and 112d. Next, as shown in FIG. 3, the laser residue 116 in all of the scribe lines n2a, 112b, 112c, and 112d is removed. When the laser residue 116 in the scribe lines 112a, 112b, 112c, and 112d is removed, either a wet process or a dry process can be utilized. In the wet processing mode, when the laser residue 116 is removed, the substrate 100 can be immersed in, for example, an acidic solution or an alkaline solution having a temperature of 100 ° C or higher. In one embodiment, when the laser residue 116 is removed, the substrate 100 may be immersed in an acidic solution having a temperature of 250 ° C, wherein the acidic solution may include, for example, sulfuric acid and phosphoric acid, and the ratio of sulfuric acid to phosphoric acid may be 3: 1. In the dry processing mode, the reactive ion etching (RIE) method or the inductively coupled plasma reactive ion etching (ICP-RIE) method can be used when the laser residue 116 is removed. After the removal of the laser residue 116 is completed, the light emitting amorphous structure 124 can be formed on the region 114 in the surface 102 of the substrate 100 other than the dicing streets 112a, 112b, 112e and 112d by, for example, a stupid crystal 201115776 long manner. In one embodiment, the light emitting epitaxial structure 124 can include a first electrical semiconductor layer 118, a light emitting layer 120, and a second electrical semiconductor layer 122. The first electrical semiconductor layer 118 and the second semiconductor layer 122 have different electrical properties, for example, one of them is an n-type and the other is a p-type ◊. Therefore, when the luminescent crystal structure 124 is fabricated, the A first electrical semiconductor layer 118 is formed over the region 114 of the surface 102 of the substrate 100. Further, the light-emitting layer 120 is grown on the first electrical semiconductor layer 118. Then, the second electrical semiconductor layer 122 is grown on the light-emitting layer 120 to form the light-emitting epitaxial structure 124 as shown in FIG. In an embodiment, the luminescent layer 120 can comprise, for example, a multiple quantum well (MQW) structure. In some embodiments, the material of the light emitting doping structure 124 may include, for example, a GaN-based material, an AlGalnP-based series material, a lead sulfide (PbS-based) series material, SiC-based materials, InGaN-based materials, InN-based materials, or AlGaN-based materials. Then, the luminescent epitaxial structure 124 is patterned by using, for example, lithography and etching techniques, and a portion of the second electrical semiconductor layer 122 and a portion of the luminescent layer 120 are removed until the first electrical semiconductor layer 118 is exposed. A portion 126' is shown in Figure 5. In addition, a current blocking layer 128 can be selectively formed on the second electrical semiconductor layer 122 according to product requirements to enhance the luminous efficiency of the LED array 142 (please refer to FIG. 9 first). The material of the current blocking layer 128 can be selected from the second electrical semiconductor layer 122 and the subsequently formed transparent conductive layer 201115776 130 (please refer to FIG. 6 first) to form a material having high impedance characteristics, or a second electrical semiconductor layer. Both the 122 and the transparent conductive layer 13 are formed of a material having Schottky junction characteristics. In one embodiment, the material of the current blocking layer 128 can be, for example, hafnium oxide (Si〇2) or aluminum nitride (A1N). Then, a transparent conductive layer 130 is formed overlying the second electrical semiconductor layer 122 and the current blocking p early layer 12 8 to facilitate current dispersion. In an embodiment, the material of the transparent conductive layer 130 may include, for example, indium tin oxide (IT0), nickel/gold (Ni/Au), zinc oxide (ΖηΟ), or zinc aluminum oxide (lanthanum). The thickness of the transparent conductive layer 13 〇 Φ may be, for example, between 10 Α and 6000 。. Next, the first electrode 132 and the second electrode 134 are formed. The first electrode 132 is located on the exposed portion 126 of the first electrical semiconductor layer 118. The second electrode 134 is located on the transparent conductive layer 130. In one embodiment, the second electrode 134 can be disposed, for example, on the transparent conductive layer 13A above the current blocking layer 128 to facilitate current dispersion. In an embodiment, the first electrode 132 may include, for example, an adhesive layer 1 2, a diffusion barrier layer 148 and a metal layer 150 which are sequentially stacked on the exposed portion 126 of the first electrical semiconductor layer 8 . The material of the adhesive layer 146 may, for example, comprise chromium, titanium, nickel, or an alloy of the above metals. The material of the diffusion barrier layer 148 may, for example, comprise an alloy of |self, recorded, titanium, inlaid, crane, or a metal as described above. The material of the metal layer 150 may, for example, comprise gold, silver, aluminum, or an alloy of the above metals. In another embodiment, the second electrode 134 may also include, for example, an adhesive layer 152, a diffusion barrier layer 154, and a metal layer 156 that are sequentially stacked on the transparent conductive layer 130. The material of the adhesive layer 152 may, for example, comprise chromium, titanium, nickel or an alloy of the above metals. The material of the diffusion barrier layer 154 may, for example, comprise an alloy of 201115776, nickel, titanium, aluminum, tungsten, or the like. The material of the metal layer 156 may, for example, comprise gold, silver, imming, or an alloy of the above metals. Next, a transparent protective layer 136 may be selectively formed over the sidewalls of the luminescent epitaxial structure 124, the transparent conductive layer ι3, and the scribe lines 112a, U2b, 112c, and 112d according to product requirements, but the exposed An electrode 132 and a second electrode 134 are as shown in FIG. In an embodiment, the material of the transparent protective layer 136 may include, for example, hafnium oxide or aluminum nitride. Then, a portion of the substrate 1 is removed from the other surface 104 of the substrate 100 to reduce the thickness of the substrate 100 to form the light-emitting diode wafer 158. In one embodiment, a portion of the substrate 1 can be removed using, for example, a grinding process. As shown in Fig. 7, after the thickness of the portion of the substrate 1 is removed, the thickness 138 of the substrate 100 may be, for example, between 50/zm and 250 &quot; m. Then, as shown in Fig. 8, an external force 140 may be applied to the surface 104 of the substrate 1 by, for example, a metal knife, thereby dividing along the dicing streets U2a, U2b, 112c and 112d of the other surface of the substrate 1 The substrate is 1 〇〇. As shown in Fig. 9, by the application of the external force 140, the substrate 1A can be broken, and the light-emitting diode wafer 158 can be divided into a plurality of light-emitting diode wafers 142. Thus, the fabrication of the light-emitting diode wafer ι42 as shown in Fig. 1 can be completed. As is apparent from the above-described embodiments of the present invention, an advantage of the present invention is that the manufacturing method of the light-emitting diode wafer eliminates the need for a diamond knife for cutting the light-emitting diode wafer, thereby reducing the process cost. According to the embodiment of the present invention, another advantage of the present invention is that the manufacturing method of the LED chip can effectively remove the laser residue on the side of the LED chip 201115776, thereby effectively improving the LED. The light extraction intensity of the side of the bulk wafer further enhances the overall light extraction intensity of the light emitting diode chip. According to the embodiment of the present invention, another advantage of the present invention is that the manufacturing method of the LED chip can prevent the side edge of the light-emitting layer of the LED chip from being damaged by strong acid, thereby not only improving the light emission. The electrical quality of the polar body wafer further enhances the luminous efficiency of the light-emitting diode wafer. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and anyone having ordinary knowledge in the technical field is known. The scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; Top view of the substrate. FIG. 1B to FIG. 10 are cross-sectional views showing a process of a light-emitting diode wafer according to an embodiment of the present invention. [Main component symbol description] 100: substrate 102: surface 104: surface 106: laser 12 201115776 108: Direction 110: 112a: dicing street 112b 112c: dicing street 112d 114: region 116: 118: first electrical semiconductor layer 120: 122: second electrical semiconductor layer 124: 126: portion 128: 130: transparent conductive layer 132: 134: second electrode 136: 138: thickness 140: 142: light-emitting diode wafer 144: 146: adhesive layer 148: 150: metal layer 152: 154: diffusion barrier layer 156: 158: light-emitting diode wafer direction: Cutting path: cutting track laser residue luminescent layer luminescent insect crystal structure current barrier layer first electrode transparent protective layer external force spacing diffusion barrier adhesion layer metal layer

1313

Claims (1)

201115776 七、申請專利範圍·· 1. 一種發光二極體晶片之製造方法,包含: 提供一基板,其中該基板具有相對之一第一表面與一 第二表面; 利用一雷射在該基板之該第一表面中形成複數個切割 道,其中該些切割道中包含一雷射殘餘物; 清除該雷射殘餘物; 形成一發光磊晶結構於該基板之該些切割道以外之該 • 第一表面上,其中該發光磊晶結構包含: 一第一電性半導體層*位於該基板之該第一表面 上; 一發光層,位於部分之該第一電性半導體層上; 以及 一第二電性半導體層,位於該發光層上,其中該 第一電性半導體層與該第二電性半導體層之電性不 同; • 形成一透明導電層於該第二電性半導體層上; 形成一第一電極與一第二電極分別位於該第一電性半 導體層上與該第二電性半導體層上;以及 施加一外力於該基板之該第二表面上,以沿著該些切 割道分割該基板,而形成複數個發光二極體晶片。 - 2.如請求項1所述之發光二極體晶片之製造方法,其 中該基板之材料包含矽、碳化矽、坤化鎵或藍寶石。 14 201115776 3·如請求項1所述之發光二極體晶片之製造方法,其 中該雷射之波長介於195nm與1550nm之間。 4.如請求項1所述之發光二極體晶片之製造方法,其 中每一該些切割道之形狀為V字型、U字型、Y字型或U 字型。 5·如請求項1所述之發光二極體晶片之製造方法,其 中相鄰之二該些切割道之間的間距介於25//m與10000/z m之間。 6. 如請求項1所述之發光二極體晶片之製造方法,其 中利用該雷射形成該些切割道時,該雷射之焦點介於該基 板之該第一表面與該第一表面下方300//m之間。 7. 如請求項1所述之發光二極體晶片之製造方法,其 中清除該雷射殘餘物之步驟包含將該基板浸泡於溫度100 °C以上之一酸性溶液中。 8. 如請求項1所述之發光二極體晶片之製造方法,其 中清除該雷射殘餘物之步驟包含將該基板浸泡於溫度10 0 °c以上之一臉性溶液中。 201115776 9·如請求項1所述之發光二極體晶片之製造方法,其 中清除該雷射殘餘物之步驟包含利用一反應性離子蝕刻 (RIE)法。 10.如請求項1所述之發光二極體晶片之製造方法, 其中清除該雷射殘餘物之步驟包含利用一感應耦合電漿反 應性離子敍刻(ICP-RIE)法。 • 1L如請求項1所述之發光二極體晶片之製造方法, 其中除該雷射殘餘物之步驟包含將該基板浸泡於溫度 250°C之一酸性溶液中,該酸性溶液包含硫酸與磷酸,且硫 酸與填酸之比例為3 : 1。 12. 如請求項1所述之發光二極體晶片之製造方法, 其中該發光磊晶結構之材料包含氮化鎵系列(GaN_based) 材料、鱗化紐鎵銦(AlGalnP-based)系列材料、硫化船 # (Pbs-based)系列材料、碳化石夕(SiC-based)系列材料、氮化 銦鎵(InGaN-based)系列材料、氮化銦(inN-based)系列材料 或氮化銘鎵(AlGaN-based)系列材料。 13. 如請求項1所述之發光二極體晶片之製造方法, 於形成該發光磊晶結構之步驟與形成該透明導電層之步驟 之間,更包含形成一電流阻障層於該第二電性半導體層上。 14.如請求項13所述之發光二極體晶片之製造方法 201115776 其中該電流阻障層之材料包含二氧化矽或氮化鋁。 15·如請求項1所述之發光二極體晶片之製造方法, 其中該透明導電層之材料包含氧化銦錫(ITO)、鎳/金、氧化 鋅(ZnO)或氧化鋅鋁(AZO)。 16. 如請求項1所述之發光二極體晶片之製造方法, 其中該透明導電層之厚度介於10A與6000A之間。 17. 如請求項1所述之發光二極體晶片之製造方法, 其中該第一電極包含依序堆疊在該第一電性半導體層上之 一黏著層、一擴散阻擋層與一金屬層。 18. 如請求項17所述之發光二極體晶片之製造方法, 其中該黏著層之材料包含鉻、鈦、鎳或其合金。 19. 如請求項17所述之發光二極體晶片之製造方法, 其中該擴散阻擋層之材料包含鉑、鎳、鈦、鋁、鎢或其合 金。 20. 如請求項17所述之發光二極體晶片之製造方法, 其中該金屬層之材料包含金、銀、鋁或其合金。 21. 如請求項1所述之發光二極體晶片之製造方法, 17 201115776 其中該第二電極包含依序堆疊在該第二電性半導體層上之 一黏著層、一擴散阻擔層與一金屬層。 22. 如請求項21所述之發光二極體晶片之製造方法, 其中該黏著層之材料包含鉻、鈦、鎳或其合金。 23. 如請求項21所述之發光二極體晶片之製造方法, 其中該擴散阻擋層之材料包含鉑、鎳、鈦、鋁、鎢或其合 痛 金0 24. 如請求項21所述之發光二極體晶片之製造方法, 其中該金屬層之材料包含金、銀、鋁或其合金。 25. 如請求項1所述之發光二極體晶片之製造方法, 於形成該第一電極與該第二電極之步驟與施加該外力之步 驟之間,更包含形成一透明保護層覆蓋該發光磊晶結構、 該透明導電層與該些切割道。 26. 如請求項25所述之發光二極體晶片之製造方法, 其中該透明保護層之材料包含二氧化矽或氮化鋁。 27.如請求項25所述之發光二極體晶片之製造方法, 於形成該透明保護層之步驟與施加該外力之步驟之間,更 包含從該基板之該第二表面上移除部分之該基板,以縮減 201115776 該基板之一厚度。 28. 如請求項27所述之發光二極體晶片之製造方法, 其中移除該基板之該部分之步驟係利用一研磨法。 29. 如請求項27所述之發光二極體晶片之製造方法, 其中經縮減後,該基板之該厚度介於50 // m〜250 // m。201115776 VII. Patent Application Range 1. A method for manufacturing a light-emitting diode chip, comprising: providing a substrate, wherein the substrate has a first surface and a second surface; and a laser is used on the substrate Forming a plurality of dicing streets in the first surface, wherein the dicing streets comprise a laser residue; removing the laser residue; forming a luminescent epitaxial structure outside the dicing streets of the substrate. a surface, wherein the luminescent epitaxial structure comprises: a first electrical semiconductor layer * on the first surface of the substrate; a luminescent layer on a portion of the first electrical semiconductor layer; and a second a semiconductor layer on the light-emitting layer, wherein the first electrical semiconductor layer and the second electrical semiconductor layer are different in electrical properties; • forming a transparent conductive layer on the second electrical semiconductor layer; forming a first An electrode and a second electrode are respectively disposed on the first electrical semiconductor layer and the second electrical semiconductor layer; and an external force is applied to the second surface of the substrate To cut the substrate along the channel dividing the plurality of cut to form a plurality of light emitting diode chip. 2. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the material of the substrate comprises tantalum, tantalum carbide, gallium arsenide or sapphire. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the laser has a wavelength between 195 nm and 1550 nm. 4. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein each of the dicing streets has a shape of a V-shape, a U-shape, a Y-shape or a U-shape. 5. The method of fabricating a light-emitting diode wafer according to claim 1, wherein a spacing between adjacent ones of the dicing streets is between 25//m and 10000/zm. 6. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the laser is used to form the scribe lines, the focus of the laser is between the first surface of the substrate and the first surface Between 300//m. 7. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the step of removing the laser residue comprises immersing the substrate in an acidic solution having a temperature of at least 100 °C. 8. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the step of removing the laser residue comprises immersing the substrate in a face solution having a temperature of at least 10 °C. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the step of removing the laser residue comprises using a reactive ion etching (RIE) method. 10. The method of fabricating a light-emitting diode wafer according to claim 1, wherein the step of removing the laser residue comprises using an inductively coupled plasma reactive ion characterization (ICP-RIE) method. 1L. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the step of removing the laser residue comprises immersing the substrate in an acidic solution having a temperature of 250 ° C, the acidic solution comprising sulfuric acid and phosphoric acid And the ratio of sulfuric acid to acid filling is 3:1. 12. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the material of the light-emitting epitaxial structure comprises a gallium nitride-based (GaN-based) material, a scalar neo-gallium-indium (AlGalnP-based) series material, and a vulcanization. Ship # (Pbs-based) series materials, SiC-based materials, InGaN-based materials, in-nitride series materials or GaN (AlGaN) -based) series of materials. 13. The method according to claim 1, wherein the step of forming the luminescent epitaxial structure and the step of forming the transparent conductive layer further comprises forming a current blocking layer on the second On the electrical semiconductor layer. 14. The method of manufacturing a light-emitting diode wafer according to claim 13, wherein the material of the current barrier layer comprises ruthenium dioxide or aluminum nitride. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the material of the transparent conductive layer comprises indium tin oxide (ITO), nickel/gold, zinc oxide (ZnO) or zinc aluminum oxide (AZO). 16. The method of manufacturing a light-emitting diode wafer according to claim 1, wherein the transparent conductive layer has a thickness between 10A and 6000A. 17. The method of fabricating a light-emitting diode according to claim 1, wherein the first electrode comprises an adhesive layer, a diffusion barrier layer and a metal layer stacked on the first electrical semiconductor layer in sequence. 18. The method of manufacturing a light-emitting diode wafer according to claim 17, wherein the material of the adhesive layer comprises chromium, titanium, nickel or an alloy thereof. 19. The method of fabricating a light emitting diode according to claim 17, wherein the material of the diffusion barrier layer comprises platinum, nickel, titanium, aluminum, tungsten or an alloy thereof. 20. The method of manufacturing a light-emitting diode wafer according to claim 17, wherein the material of the metal layer comprises gold, silver, aluminum or an alloy thereof. The method for manufacturing a light-emitting diode wafer according to claim 1, wherein the second electrode comprises an adhesive layer, a diffusion resist layer and a layer stacked on the second electrical semiconductor layer in sequence. Metal layer. 22. The method of manufacturing a light-emitting diode wafer according to claim 21, wherein the material of the adhesive layer comprises chromium, titanium, nickel or an alloy thereof. 23. The method of fabricating a light-emitting diode according to claim 21, wherein the material of the diffusion barrier layer comprises platinum, nickel, titanium, aluminum, tungsten or a combination thereof. A method of manufacturing a light emitting diode chip, wherein the material of the metal layer comprises gold, silver, aluminum or an alloy thereof. 25. The method of fabricating a light-emitting diode according to claim 1, wherein the step of forming the first electrode and the second electrode and the step of applying the external force further comprises forming a transparent protective layer to cover the light. An epitaxial structure, the transparent conductive layer and the dicing streets. 26. The method of manufacturing a light-emitting diode wafer according to claim 25, wherein the material of the transparent protective layer comprises hafnium oxide or aluminum nitride. 27. The method of fabricating a light-emitting diode wafer according to claim 25, further comprising the step of forming the transparent protective layer and the step of applying the external force, further comprising removing a portion from the second surface of the substrate The substrate is to reduce the thickness of one of the substrates of 201115776. 28. The method of fabricating a light-emitting diode wafer according to claim 27, wherein the step of removing the portion of the substrate utilizes a grinding method. 29. The method of fabricating a light-emitting diode wafer according to claim 27, wherein the reduced thickness of the substrate is between 50 // m and 250 // m.
TW98135442A 2009-10-20 2009-10-20 Method for manufacturing light-emitting diode chip TWI411128B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98135442A TWI411128B (en) 2009-10-20 2009-10-20 Method for manufacturing light-emitting diode chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98135442A TWI411128B (en) 2009-10-20 2009-10-20 Method for manufacturing light-emitting diode chip

Publications (2)

Publication Number Publication Date
TW201115776A true TW201115776A (en) 2011-05-01
TWI411128B TWI411128B (en) 2013-10-01

Family

ID=44934589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135442A TWI411128B (en) 2009-10-20 2009-10-20 Method for manufacturing light-emitting diode chip

Country Status (1)

Country Link
TW (1) TWI411128B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751398A (en) * 2012-06-21 2012-10-24 华灿光电股份有限公司 Manufacturing method for inverted triangle light emitting diode chip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251372C (en) * 2000-06-08 2006-04-12 日亚化学工业株式会社 Semiconductor laser device, and method of manufacturing the same
TW550836B (en) * 2002-06-13 2003-09-01 Ind Tech Res Inst Structure of brittle material substrate and fabricating process thereof
CN1241253C (en) * 2002-06-24 2006-02-08 丰田合成株式会社 Semiconductor element and mfg method
TWI305683B (en) * 2006-08-10 2009-01-21 Bridgelux Inc Light-emitting diode device and method for fabricating the same
TW200903836A (en) * 2007-07-05 2009-01-16 Everlight Electronics Co Ltd A method of chip cutting of light emitting diodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751398A (en) * 2012-06-21 2012-10-24 华灿光电股份有限公司 Manufacturing method for inverted triangle light emitting diode chip
CN102751398B (en) * 2012-06-21 2014-12-10 华灿光电股份有限公司 Manufacturing method for inverted triangle light emitting diode chip

Also Published As

Publication number Publication date
TWI411128B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
TWI532211B (en) Semiconductor light-emitting device and method for manufacturing the same
KR101134810B1 (en) Light emitting device and method for fabricating the same
TWI711186B (en) Method for manufacturing deep ultraviolet light emitting element
US8766316B2 (en) Semiconductor device having plurality of bonding layers
KR20100097177A (en) Light output enhanced gallium nitride based thin light emitting diode
JP5847732B2 (en) Semiconductor device and manufacturing method thereof
US7846753B2 (en) Vertical light emitting diode and method of making a vertical light emitting diode
US20100207147A1 (en) Semiconductor light emitting device and method of manufacturing the same
US20100187558A1 (en) Semiconductor light emitting device and method of fabricating the same
TW201312792A (en) Light emitting diode structure and method for manufacturing the same
KR101081129B1 (en) Light emitting device and fabrication method thereof
US9048381B1 (en) Method for fabricating light-emitting diode device
KR101072200B1 (en) Light emitting device and method for fabricating the same
KR101007078B1 (en) Light emitting device and fabrication method thereof
KR20070044099A (en) Nitride-based light emitting diode and manufacturing method of the same
KR20090105462A (en) Vertical structured group 3 nitride-based light emitting diode and its fabrication methods
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
WO2012090254A1 (en) Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same
KR101909437B1 (en) Semiconductor Light Emitting Device and Method Manufacturing Thereof
KR20090109598A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TW201115776A (en) Method for manufacturing light-emitting diode chip
KR101014045B1 (en) Light emitting device and method for fabricating the same
US20210343902A1 (en) Optoelectronic semiconductor component having a sapphire support and method for the production thereof
JP5702165B2 (en) High efficiency gallium nitride based light emitting diodes by surface roughening
KR101163021B1 (en) Vertical LED having metal plating layer and manufacturing methode of thesame

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees