TW201110379A - Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications - Google Patents

Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications Download PDF

Info

Publication number
TW201110379A
TW201110379A TW099119259A TW99119259A TW201110379A TW 201110379 A TW201110379 A TW 201110379A TW 099119259 A TW099119259 A TW 099119259A TW 99119259 A TW99119259 A TW 99119259A TW 201110379 A TW201110379 A TW 201110379A
Authority
TW
Taiwan
Prior art keywords
solar
solar cell
cell
amorphous
cells
Prior art date
Application number
TW099119259A
Other languages
Chinese (zh)
Inventor
Paolo Losio
Christopher Charles Gopsill
Original Assignee
Oerlikon Solar Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Solar Ag filed Critical Oerlikon Solar Ag
Publication of TW201110379A publication Critical patent/TW201110379A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

The present invention relates to an insulated window having two solar cells on each window pane so that the window can be used to generate electric energy. One solar cell is an amorphous Si-Cell, the other either an amorphous or microcrystalline Si-Cell.

Description

201110379 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於指出所謂串聯式的太陽能電池或太陽能 模組,亦即光伏吸收體裝置的堆疊排列。 [先前技術] [0002] 太陽能電池,也被稱為光伏電池,是將像是光或太陽輕 射之電磁能量直接轉換為電力的半導體。這些半導體的 特點是介於其價電子帶及其傳導電子帶之間的能帶間隙 ,使得自由電子不能正常的存在或#持在這些能帶間隙 〇 '、 。然而,當光被光伏電池特有的材料所吸收,佔據低能 階的電子會被激發並跳過能帶間隙到未被佔據的較高& 階。因此,當位在半導體價帶的電子自太陽輻射的光子 吸收足夠的能量,它們跳過能‘帶間隙到較高的能量傳導 帶。 [0003] 被激發到較高能階的電子係留在被稱為電洞之未被佔據 的低能量位置之後。這些位在價鍵中的電洞可以在晶格 〇 中的原子間移動且此電洞係作為電荷載子,像在傳導帶 的自由電子一樣’有助於晶體的導電。大部分在半導體 被吸收的光子產生像這樣的電子-電洞對。在内建電場的 存在之下,這些電子-電洞對產生太陽能電池的光電流以 及光電壓。 [0004] 由光產生的電子電洞對最終將重組以及轉換為熱或光子 ,除非阻止這樣做。為了防止這個現象,藉由摻雜或接 合異種材料在半導體内創造一局部電場以產生一空間電 荷層。此空間電荷層分開作為電荷載子使用的電洞與電 099119259 表單編號A0101 第3頁/共19頁 0993338211-0 201110379 子。一旦分開,這些所收集的電洞和電子電荷載子產生 一空間電荷而導致一電壓通過接面,也就是光電壓。若 這些分開的電洞與電荷載子允許流經外部負載,它們將 構成一光電流。 [0005] 實際上,此半導體必須被設計具有一小能帶間隙,所以 即使較低能量輻射的光子也可以激發電子跳過能帶間隙 ,但是,這樣做至少會有兩個必須被交易的負面影響。 [0006] 第一,此小能帶間隙導致一低光電壓裝置,因此出現低 功率輸出。第二,來自較高能量輻射的光子將產生許多 具有過剩能量的熱載子,其在這些熱載子立即熱化到傳 導帶的邊緣後將以熱的形式耗損。 [0007] 另一方面,若此半導體設計有一較大的能帶間隙以增加 光電壓並減少由熱載子的熱化所造成的能量耗損,則來 自較低能量輻射的光子將不會被吸收。因此,在傳統的 單一接面太陽能電池的設計上,平衡這些考量並嘗試設 計具有最佳能帶間隙的半導體是必要的,在此平衡中可 g v 了解到,來自大與小能量的光子皆必然會有顯著的能量 耗損。 [0008] 像是具有1. 1 eV能帶間隙的矽之類的材料是相對便宜的 且對於傳統單一接面太陽能電池被認為是良好的太陽能 轉換半導體。然而,仍需要一可以捕捉以及利用太陽輻 射光譜中一較大範圍光子能量的裝置,但又不會犧牲光 電壓或多餘的能量經由熱載子的熱化而耗損成熱。 [0009] 幾年前已知雙接面的光伏電池具有較單一接面電池更高 099119259 表單編號 A0101 第 4 頁/共 19 頁 0993338211-0 201110379 的潛力以達到太陽能轉換效率。最簡單的接合裝置是一 單晶、二終端、雙接面的結構,其中兩個接面是垂直堆 疊的。上面的接面是設計用以吸收以及轉換太陽光譜的 藍色部分,而下面的接面吸收以及轉換不被上面接面所 吸收的光譜的紅色部份。 [0010] ο 為了達到最大能量轉換效率:1)接面必須由具有高電子 品質的材料製備以及2)它們必須也是相匹配的電流,也 就是當曝露在串聯配置的太陽光譜時產生相等的電流。 經由電池產生的電壓是取決於能帶間隙,電流產生量是 取決於層的厚度、量子效率以及其他因子,例如光補集 等。對於電流不完全相匹配的串聯式太陽能電池,無論 是在頂部或底部電池所產生的額外的電流都將會失去。 [0011] ο 因此當今的串聯式太陽能電池,其頂部電池為了匹配經 頂部與底部電池產生的電流而被薄型化係為常見。一般 情況下,係選用夠厚的太陽能電池厚度,以使大部分高 於材料能帶間隙的光能量被吸收,然而,朝電池背面所 產生的載子則夠薄而仍然可以被收集。如此經電池產生 的電流實際上是一個最大值。換句話說,頂部電池作的 較薄,所以一些在頂部電池的能帶間隙上的光能量可以 通過頂部電池且被底部電池所吸收,因此增加經底部電 池所產生的電流。以這種方式,頂部與底部電流是相等 的,因而最適化串聯式電池的效率。 在頂部與底部電池產生的電流不僅是兩個材料的能帶間 隙的作用,也是太陽能光譜以及量子效率的作用。太陽 能光譜取決於空氣質量,例如太陽天頂角,以及包括濕 099119259 表單編號Α0101 第5頁/共19頁 0993338211-0 [0012] 201110379 度、濁度與雲量的各種大氣條件。此外,光譜將取決於 收集的幾何模式:當電池在只有直射光束被收集的濃度 下操作,而非正常輻射的平板太陽能電池,其中含有豐 富的短波長光也可以被吸收。雖然地面太陽能電池必須 在各個方面的條件下操作,習慣上在一組條件之下設計 最佳效率的太陽能電池將具有代表性的應用。通常,太 陽能電池是設計為在空氣質量0 (AM 0)照度下的空間中 操作,或設計為在空氣質量1. 5 (AM 1. 5)照度下的地面 操作。 0 [0013] 或可選擇地,當使用獨立或並聯連接的3或4終端裝置, 電流匹配是一較小的問題。3或4終端裝置的使用一直被 認為基本上是較不方便的,因所努力的是在接線和裝配 的增加。 [0014] 美國專利號4, 272, 641教示當本質區域厚度超過約500奈 米時,一單接面非晶矽太陽能電池的轉換效率接近一常 數。這是由於非晶矽的電子品質所具有的固有問題。若 非晶矽可以較佳的電子性質製作,然後電池厚度大於500 奈米將會產生更高的效率。這個問題現在可用一小於500 奈米的非晶矽頂部電池的多接面電池來設法迴避,更好 的是小於300奈米並結合一具有另一種結晶度的底部電池 ,例如微晶或結晶型。底部電池的厚度,更準確的說, 吸收的本質層的厚度接著調整,所以經由上述層產生的 電流約相等於頂部電池產生的電流。 [0015] 當今,已知各種以電漿輔助化學氣相沈積法的沉積矽為 基礎的薄膜太陽能電池的類型,像是單接面類型(氫化非 099119259 表單編號A0101 第6頁/共19頁 0993338211-0 201110379 晶矽)或串聯接面類型,後者係以氫化非晶矽/氫化非s 石夕的堆疊、非晶梦/晶财的堆#,非㈣/微晶石夕的^ 叠來實現。甚至三接面堆疊是熟知的^對於所有直接堆 疊的串聯或三接面設計,上述關於電流巧配中請的考量 ’因為電池是串聯連接的,堆#中的每—電池的電壓是 加總的,而電流必須是相同的。 [0016] Ο 當今’建㈣合太陽光電线(BIPV)解決辦法係藉由使 用像是屋頂或外觀等大範圍受到太陽曝曬的建築表面來 提供產生電能的機會。雖然一般人會嘗試在太陽能電池 收集盡可能多的入射光譜,在某些情況下所需的是讓一 些光通過光伏(PV)模組,所以建築物的内部仍然可被照 凴。典型的例子如機場、火車站、體育場館、工業製造 廠房、辦公大樓、飯店等等。 [0017]201110379 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a stacked arrangement of so-called tandem solar cells or solar modules, that is, photovoltaic absorber devices. [Prior Art] [0002] A solar cell, also called a photovoltaic cell, is a semiconductor that directly converts electromagnetic energy such as light or solar light into electric power. These semiconductors are characterized by an energy band gap between their valence electron bands and their conduction electron bands, so that free electrons cannot exist normally or are held in these band gaps 、 ', . However, when light is absorbed by materials unique to photovoltaic cells, electrons occupying low energy levels are excited and skip the band gap to the unoccupied higher & Thus, when the electrons in the semiconductor valence band absorb enough energy from the photons of the solar radiation, they skip the band gap to the higher energy conduction band. [0003] An electron system that is excited to a higher energy level remains after an unoccupied low energy position called a hole. These holes in the valence bond can move between the atoms in the lattice 且 and the holes act as charge carriers, like the free electrons in the conduction band, contributing to the conduction of the crystal. Most of the photons that are absorbed in the semiconductor produce electron-hole pairs like this. In the presence of a built-in electric field, these electron-hole pairs produce the photocurrent and photovoltage of the solar cell. [0004] Electron hole pairs generated by light will eventually be recombined and converted to heat or photons unless this is prevented. To prevent this, a local electric field is created within the semiconductor by doping or bonding dissimilar materials to create a spatial charge layer. This space charge layer is separated as a charge carrier for use with electric holes. 099119259 Form No. A0101 Page 3 of 19 0993338211-0 201110379 Sub. Once separated, these collected holes and electron charge carriers create a space charge that causes a voltage to pass through the junction, which is the photovoltage. If these separate holes and charge carriers are allowed to flow through an external load, they will constitute a photocurrent. [0005] In fact, this semiconductor must be designed with a small band gap, so even if photons with lower energy radiation can excite the electron skip band gap, there are at least two negatives that must be traded. influences. [0006] First, this small band gap results in a low light voltage device, thus resulting in a low power output. Second, photons from higher energy radiation will produce many hot carriers with excess energy that will be depleted as heat after they are immediately heated to the edge of the conduction band. [0007] On the other hand, if the semiconductor design has a large band gap to increase the photovoltage and reduce the energy loss caused by the thermal charge of the hot carrier, the photons from the lower energy radiation will not be absorbed. . Therefore, in the design of traditional single-junction solar cells, it is necessary to balance these considerations and try to design a semiconductor with the best band gap. In this balance, it can be understood that photons from both large and small energies are inevitable. There will be significant energy loss. [0008] Materials such as germanium having a 1.1 eV band gap are relatively inexpensive and are considered good solar-switching semiconductors for conventional single-junction solar cells. However, there is still a need for a device that can capture and utilize a large range of photon energies in the solar radiation spectrum without sacrificing photovoltage or excess energy to be dissipated into heat via thermalization of the hot carriers. [0009] A few years ago, it was known that a double junction photovoltaic cell has a higher potential than a single junction cell 099119259 Form No. A0101 Page 4 of 19 0993338211-0 201110379 to achieve solar energy conversion efficiency. The simplest bonding device is a single crystal, two terminal, double junction structure in which the two junctions are vertically stacked. The upper junction is designed to absorb and convert the blue portion of the solar spectrum, while the lower junction absorbs and converts the red portion of the spectrum that is not absorbed by the upper junction. [0010] ο In order to achieve maximum energy conversion efficiency: 1) junctions must be prepared from materials with high electron quality and 2) they must also be matched currents, ie equal currents when exposed to the solar spectrum in series configuration . The voltage generated via the battery is dependent on the band gap, and the amount of current generated depends on the thickness of the layer, quantum efficiency, and other factors such as light compensation. For tandem solar cells where the current is not perfectly matched, the extra current generated by either the top or bottom cell will be lost. [0011] Therefore, in today's tandem solar cells, the top cell is thinned to match the current generated by the top and bottom cells. In general, a thick enough solar cell thickness is used so that most of the light energy above the material gap is absorbed, however, the carriers generated toward the back of the cell are thin enough to be collected. The current thus generated by the battery is actually a maximum. In other words, the top cell is made thinner, so some of the light energy on the band gap of the top cell can be absorbed by the top cell and absorbed by the bottom cell, thus increasing the current generated by the bottom cell. In this way, the top and bottom currents are equal, thus optimizing the efficiency of the tandem cell. The current generated by the top and bottom cells is not only the band gap of the two materials, but also the solar spectrum and quantum efficiency. The solar energy spectrum depends on the air quality, such as the solar zenith angle, and includes various wet conditions such as wet 099119259 Form No. 1010101 Page 5 of 19 0993338211-0 [0012] 201110379 degrees, turbidity and cloudiness. In addition, the spectrum will depend on the geometric pattern of the collection: when the cell is operated at a concentration where only the direct beam is collected, rather than a normal-radiated flat-panel solar cell, the rich short-wavelength light can be absorbed. While terrestrial solar cells must operate under all conditions, it is customary to design solar cells that are optimally efficient under a set of conditions. Typically, solar cells are designed to operate in a space with an air mass of 0 (AM 0) illumination or designed for ground operation at an air quality of 1.5 (AM 1.5) illumination. [0013] Alternatively, when using 3 or 4 terminal devices connected independently or in parallel, current matching is a minor problem. The use of 3 or 4 terminal devices has long been considered to be substantially inconvenient due to the increased effort in wiring and assembly. [0014] U.S. Patent No. 4,272,641 teaches that the conversion efficiency of a single junction amorphous germanium solar cell approaches a constant when the thickness of the intrinsic region exceeds about 500 nm. This is due to the inherent problems of the electronic quality of amorphous germanium. If the amorphous germanium can be made with better electronic properties, then a cell thickness greater than 500 nm will result in higher efficiency. This problem can now be avoided with a multi-junction cell of an amorphous tantalum top cell of less than 500 nanometers, more preferably less than 300 nanometers combined with a bottom cell having another crystallinity, such as microcrystalline or crystalline. . The thickness of the bottom cell, more precisely the thickness of the absorbed intrinsic layer, is then adjusted so that the current generated through the above layers is approximately equal to the current produced by the top cell. [0015] Today, various types of thin film solar cells based on plasma-assisted chemical vapor deposition are known, such as single junction type (hydrogenation non-zero 9919259, form number A0101, page 6 / 19 pages 0993338211) -0 201110379 wafer type) or series junction type, the latter is realized by stacking of hydrogenated amorphous germanium/hydrogenated non-s-stone, amorphous dream/crystal rich heap #, non-four/microcrystalline stone . Even the three-junction stack is well known. For all directly stacked series or triple junction designs, the above considerations regarding current matching are because the batteries are connected in series, and the voltage in each of the stacks is the sum of the batteries. And the current must be the same. [0016] 当今 The current “fourth” solar photovoltaic line (BIPV) solution provides the opportunity to generate electricity by using a wide range of sun-exposed building surfaces such as roofs or exteriors. While most people will try to collect as much of the incident spectrum as possible in a solar cell, in some cases it is necessary to have some light passing through the photovoltaic (PV) module, so that the interior of the building can still be illuminated. Typical examples are airports, train stations, stadiums, industrial manufacturing plants, office buildings, restaurants, and more. [0017]

G 讓部分光通過光伏模組以及利用部份考作為能量產生具 有至少一問題。讓一宜人色調的光通_結構體是不容易 的:通常光伏模組在务陽光譜的,特定區段是敏感的。因 此’透射光的色韻可能是令人不愉快的’例如通過非晶 石夕薄膜模組的紅-橙光。 [0018] 在某些情況下’像是美國專利號7, 098, 395、 6, 858, 461或5, 176, 758,材料係從光伏模組局部移除 以允許通過一定量的光。然而,減少可產生的能量數量 以及需要額外的處理步驟以移除在擬半透明區域的材料 。然而像是濕式或乾式蝕刻的額外處理步驟’或雷射為 基礎的材料移除大大的增加了這些光伏模組的成本。 099119259 表單編號A0101 第7頁/共19頁 0993338211-0 201110379 [0019] 相較於單獨使用非晶矽電池,由一非晶矽(a-Si)太陽能 電池結合一微晶矽(// c-S i)太陽能電池所組成的串聯光 伏模組可藉由使用大部分的太陽能光譜來改善能量產生 之整體效率。最常見的體現包含沉積一微晶矽電池在一 非晶矽電池的頂部,如美國專利號6, 30 9, 90 6所示。 [0020] 在建築整合太陽光電系統(BIPV)的情況下,重要的是要 記住在大部分的案例中,建築物的熱絕緣是非常重要以 限制建築物内的供暖或冷卻的成本。一個眾所周知以減 少建築物内的熱損失之解決方案是使用雙重絕緣的玻璃 窗。 [0021] 大面積單接面光伏模組可以成本效率高的生產,且省略 一反射板將甚至減少工作量,然而所產生的面板將只讓 通常令留在建築物内的人們不愉快的色光通過。然而利 用幾個較小的光伏作用區增加了製程的複雜性。 【發明内容】 [0022] 本發明的目的是共同解決或修改一些上述問題:避免電 流匹配的限制,允許簡易的太陽能電池製造方法,通常 適用於建築整合太陽光電系統,特別適合用於作為至少 部分半透明的太陽能電池面板。 [0023] 為了更準確,本發明提供一種太陽能裝置包括至少二相 互間距的透明基板及包含二太陽能電池,其中此二太陽 能電池被提供, -而使入射光首先通過上述透明基板的第一個,接著是二 太陽能電池的第一個,接著是二太陽能電池的第二個及 099119259 最後是上述透明基板的第二個;以及 表單編號A0101 第8頁/共19頁 0993338211-0 201110379 [0024] :太:能電池於空間上是相互分離設置且其中第一太陽 电池包含-本質非晶碎材料(a~Si)。 ί據本發明之一較佳實施例’此二透明基板形成-絕緣 [0025] [0026] 〇 [0027] [0028] 〇 [0029] =果考慮習知技藝之雙重絕緣玻壤:它基本上是由二玻 隔板和—充填氣體所組成。根據本發明此二玻 璃可形成二透明基板。 二,發月之—較佳實施例,此二太陽能電池的每-個 ° 又置在各自的透明基板上。 =本發明,如下圖所示,其建議沉積—電性獨立可連 的非晶残池結構(ρ+η)在例如是破項的第—基板的 :上。各層的順序較佳為基板/透明電極續摻雜石夕/本 与晶石夕/氮摻_/透明電極;具有沉積在與入射光相 對的側面上之層堆疊,如下圖所示。 W 、太?" 根據本發明之—較佳實施例,第二太陽能電池包含一本 ,微晶砂材料。在本文中之^”一詞是為該領域中任 何技術人員所熟知的微晶的縮寫。 然魏據此實施例,—微晶㈣池結構沉積在第二基板 ^第-表面上’例如玻璃、塑黟等’較佳依次為基板/透 明電極/氮摻雜石夕/本質微晶石夕/破換雜發/透明電極。顛 倒的沉積順序是可能的,但其可能導致比當使用建議的 順序較低的效能。 根據本發明之—替代較佳實施例,第二太陽能電池包含 099119259 表單編號Α0101 第9頁/共19頁 0993338211-0 201110379 一本質非晶碎材料。 [0031] [0032] [0033] 作為微晶砍電池結構的替代方案,—第二非晶♦電池結 構沉積在第二基板的第-表面上,例如玻璃塑勝等, 較佳依次為基板/透明電極/氮摻雜石夕/本質#晶石夕/填摻 雜矽/透明電極。再說’顏倒的沉積順序是可能的,佴其 可能導致比當使用建議的順序較低的效能。 在這種If /兄下可以獲得所謂的4終端串聯電池:兩個電>也 皆是電性獨立且具有4個電極。薄膜模組的結構化以習知 技藝所熟知的圖案成形技術所製作,如以雷射,因此 創造個別的、串聯地相互連接的電池形成-面板。此二 個別的面板係以塗層表面彼此相對這樣的方式接合.框 架疋以類似一個隔離窗的方式完成一間隔板結構連接 以及與所謂預處理的個別面板的外部周圍區域保持間隔 。此連接可藉由夾持、黏合、插入成形或相似的方法達 成。電連接埠可設置在所謂的連接模組的邊緣,用於生 成的電能的絕緣套可整合於間隔板中,所以可達到機械 負載至線路的解耦合。 非晶矽電池可利用工業界熟知的標準配方製造。自從微 晶發電池以”反向的”方式製造以及面對面的組裝,從 入射光來看各層的順序為基板—TCO—非晶矽p-i-n — TCO->填充氣體或填充材料微晶矽p-i-n —TCO 〜基板。 或根據具有非晶梦電池的替代實施例:基板—T C 0 非晶 發P-i-n —TCO—填充氣體或填充材料—TCO—非晶矽p- 099119259 表單編號A0101 第10頁/共19頁 0993338211-0 [0034] 201110379 -η -»·ΊΧ0—基板 [0035] 所提議的結構依據光譜開發具有已知串聯接面的所有優 點,然而沒有包括電流匹配議題的缺.點。 Ο 〇 [0036] 具有二非晶矽電池的替代結構相較於非晶矽加微晶矽的 s史4具有較低生產成本的優點。在這種情況下,透射光 的色調可利用例如紅光吸附濾鏡或紅光反射濾鏡的濾色 鏡校正,因而減少紅光的數量以給予更舒適的色調。因 此,根據本發明之一實施例,太陽能裝置包含一或多個 瀘、色鏡。 [0037] 這個解決方案允許選擇在例如較底部電池更接近入射太 陽光的頂部電池被吸收的光溱量,經由調整個別的厚度 ,例如減少每一電池的厚度。因為電池沒;有電性連接, 匹配來自一電池的電流與另一電池的電流是沒有必要的 ,因此在厚度選擇等增加了彈性度。 [0038] 根據本發明之一較佳實施例’第一太陽能電池的本質非 晶矽層的厚度表小於或等於3CK)奈考,k佳是小於或等於 250奈米,更佳是小於或等於200奈米以及最佳是小於或 等於150奈米。 [0039] 根據本發明之一較佳實施例’第二太陽能電池包含一本 質非晶矽材料’以及第二太陽能電池的本質非晶矽層的 厚度是小於或等於3〇〇奈米,較佳是小於或等於250奈米 ,更佳是小於或等於200奈米以及最佳是小於或等於150 奈米。 [〇〇4〇] 根據本發明之一替代較佳實施例,第二太陽能電池包含 099119259 表單編號A0101 第11頁/共19頁 0993» 201110379 一微晶矽材料,以及第二太陽能電池的本質微晶矽層的 厚度是小於或等於300奈米,較佳是小於或等於250奈米 ,更佳是小於或等於200奈米以及最佳是小於或等於150 奈米。 [0041] 上述組件,和所請求的組件以及依照本發明敘述的實施 • 例所使用的組件一樣,關於其大小、形狀、材料選擇與 技術概念並不受任何特殊的例外,所以在相關領域熟知 的選擇準則可以沒有限制的應用。 [0042] 本發明的物件之其他細節、特性與優點細揭露在附屬申 請專利範圍以及下述各自的圖式說明中--其在一示範的 式樣中--顯示對本發明太陽能裝置的一較佳實施例。 【實施方式】 [0043] 第1圖係顯示本發明之太陽能裝置1之一非常簡化的實施 例示意圖。此裝置包含二可由玻璃或塑膠或其他此領域 熟知的適當材料所製作的透明基板1 0與20。應當注意的 是第1圖中太陽能裝置被設4,所以例如一建築物等的“ 外部”是在基板10的侧面上,反之“内部”是在基板20 的侧面上。 [0044] 二透明基板10、20形成一絕緣窗。為此使用,提供二輔 助堆疊器50、51。應當注意的是第1圖是高度簡化的示意 圖,所以實際上的尺寸是相當不同的。此二堆疊器50、 51可以任何材料或以此領域熟知的任何形式所製造。藉 由二基板10、20及堆疊器50、51所形成的絕緣窗係充填 有絕緣氣體60。 099119259 表單編號A0101 第12頁/共19頁 0993338211-0 201110379 [0045]設置在第一透明基板1〇上的是第一太陽能電池30,其包 含一非晶矽電池結構。最佳的非晶矽電池結構將具有 (p-i-n)順序,更精確的說各層的順序是··基板/透明電 極/碟摻雜矽/本質非晶矽/氮摻雜矽/透明電極。可以看 出’太陽能電池是以層堆疊沉積在來自於“外部”的入 射光的對侧’也就是說從第1圖的”頂部,,。 [0046] 〇 設置在第二透明基板2〇上的是第二太陽能電池4〇 ’其在 空間上遠離所謂的第一太陽能電池3〇。因為電池是彼此 遠離且未電性連接的,所以匹配來自一電池的電流與另 一電池的電流是沒有必要的,因此在厚度選擇等增加了 彈性度。 „ [0047] 第二太陽能電池4〇較佳是一微晶電池或是一非晶矽電 池。 [0048] 在第一個案例中,從入射光來看各層的順序為基板,以 :;G has at least one problem with allowing some of the light to pass through the photovoltaic module and using part of the test as energy generation. It is not easy to make a pleasant tone of light _ structure: usually the photovoltaic module is sensitive in the specific section of the yang spectrum. Therefore, the color of the transmitted light may be unpleasant, such as by red-orange light through an amorphous film module. [0018] In some cases, such as U.S. Patent No. 7,098,395, 6, 858, 461 or 5, 176, 758, the material is partially removed from the photovoltaic module to allow passage of a certain amount of light. However, reducing the amount of energy that can be generated and requiring additional processing steps to remove material in the quasi-translucent region. However, additional processing steps such as wet or dry etching or laser-based material removal greatly increases the cost of these photovoltaic modules. 099119259 Form No. A0101 Page 7 of 19 0993338211-0 201110379 [0019] Compared to the use of an amorphous tantalum battery alone, an amorphous germanium (a-Si) solar cell is combined with a microcrystalline germanium (//cS i A tandem photovoltaic module consisting of solar cells can improve the overall efficiency of energy production by using most of the solar spectrum. The most common embodiment involves depositing a microcrystalline germanium cell on top of an amorphous germanium cell as shown in U.S. Patent No. 6, 30 9, 90 6. [0020] In the case of building integrated solar photovoltaic systems (BIPV), it is important to remember that in most cases, the thermal insulation of a building is very important to limit the cost of heating or cooling within the building. One solution known to reduce heat loss in buildings is to use double insulated glass windows. [0021] Large-area single-junction photovoltaic modules can be produced cost-effectively, and omitting a reflector will even reduce the amount of work, but the resulting panels will only allow unpleasant shades of light that would normally remain in the building. . However, the use of several smaller photovoltaic zones increases the complexity of the process. SUMMARY OF THE INVENTION [0022] The object of the present invention is to jointly solve or modify some of the above problems: avoiding the limitation of current matching, allowing a simple solar cell manufacturing method, generally suitable for building integrated solar photovoltaic systems, particularly suitable for use as at least part Translucent solar panel. [0023] In order to be more accurate, the present invention provides a solar device comprising at least two transparent substrates spaced apart from each other and comprising two solar cells, wherein the two solar cells are provided, and the incident light is first passed through the first of the transparent substrates, Next is the first of the two solar cells, followed by the second of the two solar cells and 099119259 and finally the second of the above transparent substrates; and the form number A0101 page 8 / 19 pages 0993338211-0 201110379 [0024]: Too: The energy cells are spatially separated from each other and wherein the first solar cell contains an intrinsic amorphous material (a~Si). According to a preferred embodiment of the present invention, the two transparent substrates are formed and insulated. [0025] [0028] [0029] = Double insulating glass with consideration of conventional techniques: it basically It consists of a two-glass separator and a filling gas. According to the present invention, the two glasses can form two transparent substrates. Second, the moon - in the preferred embodiment, each of the two solar cells is placed on a respective transparent substrate. = The present invention, as shown in the following figure, suggests that the deposition-electrically independently connectable amorphous residual cell structure (ρ + η) is, for example, on the first substrate of the broken substrate. The order of the layers is preferably that the substrate/transparent electrode is doped with a stellite/near and a spar/nitrogen-doped/transparent electrode; there is a layer stack deposited on the side opposite the incident light, as shown in the following figure. W, too? " In accordance with a preferred embodiment of the present invention, the second solar cell comprises a sheet of microcrystalline sand material. The term "" herein is an abbreviation for microcrystals well known to those skilled in the art. However, according to this embodiment, a microcrystalline (four) cell structure is deposited on the second substrate - surface - for example, glass , plastic sputum, etc. 'better in order for the substrate / transparent electrode / nitrogen doped Shi Xi / essence microcrystalline stone / broken hair / transparent electrode. Reversed deposition order is possible, but it may lead to better than when recommended The lower order performance. According to the present invention, instead of the preferred embodiment, the second solar cell comprises 099119259 Form No. 1010101 Page 9/19 pages 0993338211-0 201110379 An essential amorphous material. [0031] [0032 [0033] As an alternative to the microcrystalline cell structure, the second amorphous battery structure is deposited on the first surface of the second substrate, such as glass plastic, etc., preferably in the order of substrate/transparent electrode/nitrogen blending. Miscellaneous Stones/Essence #晶石夕/Filled 矽/transparent electrodes. It is also possible that the deposition order of 'pours down' is possible, which may result in lower efficiency than when using the suggested order. In this If / brother The so-called 4-terminal series can be obtained The pool: two electric > are also electrically independent and have four electrodes. The structuring of the membrane module is made by pattern forming techniques well known in the art, such as lasers, thus creating individual, series The interconnected cells form a panel. The two individual panels are joined in such a way that the coated surfaces are opposite each other. The frame 完成 completes a spacer structure connection in a manner similar to an isolation window and the exterior of the so-called pre-processed individual panels The surrounding area is spaced apart. This connection can be achieved by clamping, bonding, insert forming or similar methods. The electrical connection can be placed at the edge of the so-called connection module, and the insulating sleeve for the generated electrical energy can be integrated into the spacer Medium, so the mechanical load-to-line decoupling can be achieved. Amorphous germanium batteries can be fabricated using standard formulations well known in the industry. Since microcrystalline cells are manufactured in a "reverse" manner and face-to-face assembly, from incident light The order of each layer is substrate-TCO-amorphous 矽pin-TCO-> filling gas or filling material microcrystalline 矽pin-TCO~substrate. Alternative Embodiments of Amorphous Dream Battery: Substrate—TC 0 Amorphous Hair Pin—TCO—Fill Gas or Filler—TCO—Amorphous 矽p- 099119259 Form No. A0101 Page 10 of 19 0993338211-0 [0034] 201110379 - η -»·ΊΧ0—Substrate [0035] The proposed structure develops all the advantages of known series junctions according to the spectrum, but does not include the missing points of the current matching problem. Ο 〇 [0036] has two amorphous 矽The alternative structure of the battery has the advantage of lower production cost compared to the amorphous germanium plus microcrystalline germanium. In this case, the hue of the transmitted light can be utilized, for example, a red light absorption filter or a red light reflection filter. The color filter is corrected, thus reducing the amount of red light to give a more comfortable hue. Thus, in accordance with an embodiment of the invention, a solar device includes one or more neon, color mirrors. [0037] This solution allows for the selection of the amount of light that is absorbed by the top cell, for example, closer to the incident sunlight than the bottom cell, by adjusting the individual thicknesses, for example by reducing the thickness of each cell. Because the battery is not; there is an electrical connection, it is not necessary to match the current from one battery to the current of the other battery, so the flexibility is increased in thickness selection and the like. [0038] According to a preferred embodiment of the present invention, the thickness table of the intrinsic amorphous germanium layer of the first solar cell is less than or equal to 3 CK, and k is less than or equal to 250 nm, more preferably less than or equal to 200 nm and the best is less than or equal to 150 nm. [0039] According to a preferred embodiment of the present invention, the second solar cell comprises an intrinsic amorphous germanium material and the thickness of the intrinsic amorphous germanium layer of the second solar cell is less than or equal to 3 nanometers, preferably It is less than or equal to 250 nm, more preferably less than or equal to 200 nm and most preferably less than or equal to 150 nm. [〇〇4〇] According to an alternative embodiment of the present invention, the second solar cell comprises 099119259 Form No. A0101 Page 11 / Total 19 Page 0993 » 201110379 A microcrystalline material, and the essence of the second solar cell The thickness of the wafer layer is less than or equal to 300 nm, preferably less than or equal to 250 nm, more preferably less than or equal to 200 nm and most preferably less than or equal to 150 nm. [0041] The above-described components, like the components requested and the components used in accordance with the embodiments of the present invention, are not well known in the relevant art with respect to their size, shape, material selection and technical concept without any special exceptions. The selection criteria can be applied without restrictions. [0042] Further details, features and advantages of the articles of the present invention are disclosed in the scope of the accompanying claims and in the following description of the drawings, which in an exemplary embodiment, show a preferred embodiment of the solar device of the present invention. Example. [Embodiment] Fig. 1 is a schematic view showing a very simplified embodiment of a solar device 1 of the present invention. The device comprises two transparent substrates 10 and 20 which may be made of glass or plastic or other suitable materials well known in the art. It should be noted that the solar device in Fig. 1 is provided 4, so that "external" such as a building or the like is on the side of the substrate 10, whereas "inside" is on the side of the substrate 20. [0044] The two transparent substrates 10, 20 form an insulating window. For this purpose, two auxiliary stackers 50, 51 are provided. It should be noted that Figure 1 is a highly simplified schematic, so the actual dimensions are quite different. The two stackers 50, 51 can be fabricated from any material or any form known in the art. The insulating window 60 formed by the two substrates 10, 20 and the stackers 50, 51 is filled with an insulating gas 60. 099119259 Form No. A0101 Page 12 of 19 0993338211-0 201110379 [0045] Disposed on the first transparent substrate 1 is a first solar cell 30 comprising an amorphous germanium cell structure. The preferred amorphous tantalum cell structure will have a (p-i-n) order, more precisely the order of the layers is: substrate/transparent electrode/dish doped 矽/essential amorphous 矽/nitrogen-doped 矽/transparent electrode. It can be seen that 'the solar cell is deposited on the opposite side of the incident light from the "outer side" in a layer stack, that is, from the top of Fig. 1, [0046] 〇 is disposed on the second transparent substrate 2 The second solar cell 4' is spatially separated from the so-called first solar cell 3. Since the cells are remote from each other and are not electrically connected, the current matching the current from one battery to the other battery is not Necessary, therefore, the degree of elasticity is increased in thickness selection, etc. [0047] The second solar cell 4 is preferably a microcrystalline battery or an amorphous germanium battery. [0048] In the first case, the order of the layers from the incident light is the substrate, to:

及包括第一太陽能電ί^30,較佳為:—TCO—非晶石夕ρ-i-n —TCO—填充氣體或填充材料—TCO—微晶矽p-i-n —TCO—基板。,::: -iinc:|VAnd comprising a first solar power, preferably: - TCO - amorphous stone ρ ρ-i-n - TCO - filling gas or filling material - TCO - microcrystalline 矽 p-i-n - TCO - substrate. , :::: -iinc:|V

[0049] 在後面的案例中其為:基板—TCO—非晶矽P-i-n ->TCO —填充氣體或填充材料—TCO—非晶矽p-i-n ->TCO〜基 板。 [0050] 第2圖係顯示一使用在本發明之太陽能裝置且具有厚度為 300奈米的内生層的微晶矽太陽能電池的透射率之示意圖 ,或把它作為是自一減少厚度的單接面非晶$夕電池的預 期透射率的另一例子。厚的黑線係顯示在一沒有背面反 099119259 表單編號A0101 第13頁/共19頁 0993338211-0 201110379 射器的標準非晶矽電池且大概是400奈米到800奈米的可 見光範圍中所測量到的透射光。 [0051] 透射曲線是在大概30 0奈米厚度的標準非晶矽電池上所測 量的。若電池的i層的厚度減少到原本厚度的1/3、1/2或 2/3,一明確數量透射光的增加是可以預期的。 [0052] 透射過非晶矽模組之光將在微晶矽模組中部分被吸收且 部分被穿透。再說,微晶矽模組的厚度的調諧可用來調 整透射光的數量。 [0053] 透射過過完整堆疊器的光之整體數量將較第2圖所示的為 低。 [0054] 透射光的色調可藉由修改二電池的相對厚度而最適化。 [0055] 若有必要,一額外的濾色鏡可被增加到結構中以改善色 調。 [0056] 可以進一步將創新的解決方案與前案結合,例如個別圖 案之區域圖樣化。一或二面板可被圖樣化,即使具有個 別的設計,以致於正規或非正規的設計或花樣可以被達 成。 [0057] 由每一次模組所產生的電壓可藉由改變以串聯方式連接 的區段數目而能自主選擇其他次模組的電壓。若二次模 組沒有連接在一起,獲得一四終端裝置。然而,藉由小 心設定二次模組的電壓而使它們相似,則以並聯的方式 連接二次模組因而獲得一正常的二終端裝置是可能的。 藉由使用一並聯連接,每一次模組所產生的電壓應為相 099119259 表單編號A0101 第14頁/共19頁 0993338211-0 201110379 似且所產生的整體電流將是每一次模組所產生電流的總 合。就非晶矽與微晶矽次模組而言,微晶矽次模組相較 於非晶矽次模組應該具有近兩倍數量的區段。 [0058] 〇 [0059] [0060] Ο [0061] 雙層絕緣玻璃窗的填充氣體具有保護氣體的功能,以及 因此允許省略在模組上層積例如聚乙烯醇縮丁醛(pVB)、 聚醋酸乙烯酯(PVA )或類似的塑料薄膜的保護步驟。為了 保證所謂半導體/TCO堆疊器的耐久度,此氣體必須不含 氧氣以及不含水。 另外’加入氧氣以及水吸氣材料到窗框是可能的。 . . . ............. 上述詳細實施例中之元件及特徵的特定結合僅為舉例性 的’在以引用的方式併入此以及專利/申請中之此些教示 與其他教示的交換與替換亦被明確考慮的。該領域技術 人員將了解對於該領域具有通常知識者可在未脫離如申 請專利範圍所述之本發明之精神與範疇,而對此文件中 所描述内容作變更、修改及其他實施。因此,以上所述 僅為舉例性’而非為限制性者。在申請專利範圍中,” 包含”一字並木排除其他元件或步驟,且不定冠詞” 一 ’並不排除複數。引用於彼此不同的獨立項中之某些測 量之單純事實並非意指這些測量的結合不可以用於有利 條件。本發明之範疇係定義在後附之申請專利範園及其 等同物中。此外,說明書及申請專利範圍中所用之元件 符號並未限制如申請專利範圍所述之本發明之範疇。 【圖式簡單說明】 本發明的這些和其他方面將參考下文中所描述的實施例 之闌述而明顯的。 表單編號A0101 099119259 第15頁/共19頁 0993338211-0 201110379 第1圖係顯示本發明之太陽能裝置之一非常簡化的實施例 示意圖;以及 第2圖係顯示一使用在本發明之太陽能裝置且具有厚度為 300奈米的内生層的微晶矽太陽能電池的透射率之示意圖 〇 【主要元件符號說明】 [0062] 1 :太陽能裝置; 10 :透明基板; 20 :透明基板; 30:第一太陽能電池; 40 :第二太陽能電池; 50 :堆疊器; 51 :堆疊器;以及 60 :絕緣氣體。 099119259 表單編號A0101 第16頁/共19頁 0993338211-0[0049] In the latter case, it is: substrate-TCO-amorphous germanium P-i-n-> TCO-filler gas or filler material-TCO-amorphous germanium p-i-n-> TCO~ substrate. 2 is a schematic view showing the transmittance of a microcrystalline germanium solar cell using the solar device of the present invention and having an endogenous layer having a thickness of 300 nm, or as a single thickness reduction. Another example of the expected transmittance of a junctional amorphous solar cell. The thick black line is displayed on a standard amorphous tantalum battery without a back counter 099119259 Form No. A0101 Page 13 / 19 pages 0993338211-0 201110379 and is measured in the visible range of 400 nm to 800 nm. Transmitted light to. [0051] The transmission curve was measured on a standard amorphous tantalum cell having a thickness of approximately 30 nm. If the thickness of the i-layer of the battery is reduced to 1/3, 1/2 or 2/3 of the original thickness, an increase in the amount of transmitted light is expected. [0052] Light transmitted through the amorphous germanium module will be partially absorbed and partially penetrated in the microcrystalline germanium module. Furthermore, the tuning of the thickness of the microcrystalline germanium module can be used to adjust the amount of transmitted light. [0053] The overall amount of light transmitted through the full stacker will be lower than that shown in FIG. [0054] The hue of transmitted light can be optimized by modifying the relative thickness of the two cells. [0055] If necessary, an additional color filter can be added to the structure to improve color tone. [0056] The innovative solution can be further combined with the previous case, such as the patterning of individual patterns. One or two panels can be patterned, even with individual designs, so that regular or informal designs or patterns can be achieved. [0057] The voltage generated by each module can independently select the voltage of the other sub-modules by changing the number of segments connected in series. If the secondary modules are not connected together, a four terminal device is obtained. However, by carefully setting the voltages of the secondary modules to make them similar, it is possible to connect the secondary modules in parallel to obtain a normal two-terminal device. By using a parallel connection, the voltage generated by each module should be phase 099119259 Form No. A0101 Page 14 / Total 19 Page 0993338211-0 201110379 The overall current generated will be the current generated by each module. total. In the case of amorphous germanium and microcrystalline tantalum modules, the microcrystalline tantalum module should have nearly twice the number of segments compared to the amorphous tantalum module.填充 [0060] [0061] The filling gas of the double-layer insulating glazing has a function of shielding gas, and thus allows omitting lamination of, for example, polyvinyl butyral (pVB), polyacetic acid on the module. A protective step for vinyl ester (PVA) or similar plastic film. In order to guarantee the durability of the so-called semiconductor/TCO stacker, this gas must be free of oxygen and free of water. In addition, it is possible to add oxygen and water getter material to the window frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The exchange and replacement of teachings with other teachings is also explicitly considered. Those skilled in the art will appreciate that variations, modifications, and other implementations of the present invention may be made without departing from the spirit and scope of the invention as described in the appended claims. Therefore, the above description is only illustrative and not limiting. In the context of the patent application, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" does not exclude the plural. The mere fact that certain measures are The invention is not limited to the scope of the invention, and the scope of the invention is defined by the scope of the application and the equivalents thereof. BRIEF DESCRIPTION OF THE DRAWINGS [Brief Description of the Drawings] These and other aspects of the present invention will be apparent from the following description of the embodiments described herein. Form No. A0101 099119259 Page 15 of 19 0993338211-0 201110379 1 is a schematic view showing a very simplified embodiment of one of the solar devices of the present invention; and FIG. 2 is a view showing a microcrystalline germanium solar cell using the solar device of the present invention and having an endogenous layer having a thickness of 300 nm. Schematic diagram of transmittance 〇 [Main component symbol description] [0062] 1 : solar device; 10: transparent substrate; 20: transparent substrate 30: a first solar cell; 40: second solar cell; 50: stacker; 51: stacker; and 60: insulating gas Form Number A0101 099 119 259 Page 16 / Total 19 0993338211-0

Claims (1)

201110379 七、申請專利範圍: 1 . 一種太陽能裝置(1),其包含至少二相互間距的透明基板 (10,20)及包含二太陽能電池(30,40),其中該二太陽 能電池被提供, -而使入射光首先通過該等透明基板的第一個(10),接著 是該二太陽能電池的第一個(30),接著是該二太陽能電 池的第一個(40)及最後是該等透明基板的第二個(2〇); 以及 〇 —该二太陽能電池(30,40)於空間'上·是相互分離設置且其 中该第一太陽能電池3 0 )包含一本質非晶石夕材料。 2 .如申請專利範面第1項所述之太陽能裝置,其中該二透明 基板(10,20)形成一絕緣窗口。 3.如申請專利範圍第1項所述之太陽能裝置,其中該二太陽 能電池(30, 40)的每一個係設置在該等各自的透明基板 (10,20)上。 4 .如申請專利範圍第1項所述之太陽能裝置,其中該第二太 〇 陽能電池(40)包含一本質微晶:麥'材科。 5 ·如申請專利範圍第i項所述之太陽缸裴置,其中該第二太 陽能電池(40)包含一本質非晶矽材料, 6.如申請專利範圍第1項所述之太陽能裝置,其中該第一太 陽能電池(30)之本質非晶矽層的厚度是小於或等於3〇〇奈 米。 7·如申請專利範圍第1項所述之太陽能裝置,其中該第二太 陽能電池(40)包含一本質非晶碎材料以及該第二太陽能 電池的本質非晶矽層的厚度是小於或等於3〇〇奈米。 099119259 表單編號A0101 第17頁/共19頁 0993338211-0 201110379 8 .如申請專利範圍第1項所述之太陽能裝置,其中該第二太 陽能電池(40)包含一本質微晶矽材料以及該第二太陽能 電池(40)的本質微晶矽層的厚度是小於或等於300奈米。 9.如申請專利範圍第1項所述之太陽能裝置,更包含一或多 個濾色鏡。 099119259 表單編號A0101 第18頁/共19頁 0993338211-0201110379 VII. Patent application scope: 1. A solar device (1) comprising at least two transparent substrates (10, 20) spaced apart from each other and comprising two solar cells (30, 40), wherein the two solar cells are provided, - And passing the incident light first through the first (10) of the transparent substrates, followed by the first (30) of the two solar cells, followed by the first (40) of the two solar cells, and finally these a second (2 〇) of the transparent substrate; and 〇 - the two solar cells (30, 40) are disposed apart from each other in space 's and wherein the first solar cell 30 includes an intrinsic amorphous material . 2. The solar device of claim 1, wherein the two transparent substrates (10, 20) form an insulating window. 3. The solar device of claim 1, wherein each of the two solar cells (30, 40) is disposed on the respective transparent substrates (10, 20). 4. The solar device of claim 1, wherein the second solar cell (40) comprises an intrinsic crystallite: a wheat material. 5. The solar cell device of claim 1, wherein the second solar cell (40) comprises an intrinsic amorphous germanium material, 6. The solar device of claim 1, wherein The thickness of the intrinsic amorphous germanium layer of the first solar cell (30) is less than or equal to 3 nanometers. The solar device of claim 1, wherein the second solar cell (40) comprises an intrinsic amorphous material and the thickness of the intrinsic amorphous layer of the second solar cell is less than or equal to 3 〇〇 Nano. The solar device of claim 1, wherein the second solar cell (40) comprises an intrinsic microcrystalline material and the second solar cell device (40). The thickness of the intrinsic microcrystalline layer of the solar cell (40) is less than or equal to 300 nm. 9. The solar device of claim 1, further comprising one or more color filters. 099119259 Form No. A0101 Page 18 of 19 0993338211-0
TW099119259A 2009-06-11 2010-06-11 Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications TW201110379A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18609209P 2009-06-11 2009-06-11

Publications (1)

Publication Number Publication Date
TW201110379A true TW201110379A (en) 2011-03-16

Family

ID=43309273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119259A TW201110379A (en) 2009-06-11 2010-06-11 Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications

Country Status (2)

Country Link
TW (1) TW201110379A (en)
WO (1) WO2010142575A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513406B1 (en) 2006-09-29 2015-04-17 유니버시티 오브 플로리다 리서치 파운데이션, 인크. Method and apparatus for infrared detection and display
AU2012240386A1 (en) * 2011-04-05 2013-11-07 Nanoholdings, Llc Method and apparatus for integrating an infrared (IR) photovoltaic cell on a thin film photovoltaic cell
MX2013015214A (en) 2011-06-30 2014-03-21 Nanoholdings Llc A method and apparatus for detecting infrared radiation with gain.
DE102011089916A1 (en) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Solar cell arrangement in tandem configuration
DE102012110799A1 (en) * 2012-11-09 2014-05-15 Masdar Pv Gmbh Solar module, set of solar modules and corresponding procedure
CN106233485A (en) * 2014-04-21 2016-12-14 株式会社Lg化学 Stacked organic solar batteries
CN107636431A (en) 2015-06-11 2018-01-26 佛罗里达大学研究基金会有限公司 Single dispersing IR absorbs nano particle and associated method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221167A (en) * 1986-03-24 1987-09-29 Seiji Wakamatsu Multilayer thin film solar battery
DE4208710A1 (en) * 1992-03-18 1993-09-30 Flachglas Solartechnik Gmbh Solar cell component e.g. for roof of vehicle - has solar cell assembly of amorphous solar cells with active side directed in opposite direction to active side of poly:silicon solar cells facing incident sunlight
JP2004179560A (en) * 2002-11-28 2004-06-24 Kyocera Corp Integrated thin-film photovoltaic device
JP2005277113A (en) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd Stacked solar cell module

Also Published As

Publication number Publication date
WO2010142575A2 (en) 2010-12-16
WO2010142575A3 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
US6784361B2 (en) Amorphous silicon photovoltaic devices
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
KR101703829B1 (en) Method for manufacturing photovoltaic cells with multiple junctions and multiple electrodes
US9006558B2 (en) Solar panel having monolithic multicell photovoltaic modules of different types
JP4410654B2 (en) Thin-film silicon laminated solar cell and manufacturing method thereof
TW201110379A (en) Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
JP2007294866A (en) Photovoltaic module
EP2467882B1 (en) Solar cell
US20220416107A1 (en) Bifacial tandem photovoltaic cells and modules
CN101789458A (en) Variable band gap double-side transparent electrode thin film solar battery
EP3462505A1 (en) Photovoltaic assembly
Rühle et al. A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror
US20110023951A1 (en) Photovoltaic cell substrate, method of manufacturing the photovoltaic cell substrate, and photovoltaic cell
JP5637089B2 (en) Solar cell module
WO2009110409A1 (en) Solar cell
JP5968244B2 (en) Photoelectric conversion module and manufacturing method thereof
CN106784079A (en) Two-sided hetero-junction solar cell module and preparation method thereof
JP2680579B2 (en) Photovoltaic device
KR101062486B1 (en) Low degradation silicon thin film photovoltaics using heating element
JP2016025119A (en) Solar battery module and manufacturing method for solar battery module
JPH1019388A (en) Hybrid type panel and building equipped with this hybrid type panel
JP4911878B2 (en) Semiconductor / electrode contact structure and semiconductor element, solar cell element, and solar cell module using the same
JP2936269B2 (en) Amorphous solar cell
US20110308569A1 (en) Multi-terminal solar panel
KR102363048B1 (en) Solar cell module having serial and parallel connection structure