TW201107800A - Method for fabricating optical device - Google Patents

Method for fabricating optical device Download PDF

Info

Publication number
TW201107800A
TW201107800A TW98127859A TW98127859A TW201107800A TW 201107800 A TW201107800 A TW 201107800A TW 98127859 A TW98127859 A TW 98127859A TW 98127859 A TW98127859 A TW 98127859A TW 201107800 A TW201107800 A TW 201107800A
Authority
TW
Taiwan
Prior art keywords
layer
material layer
organic material
array
optical component
Prior art date
Application number
TW98127859A
Other languages
Chinese (zh)
Other versions
TWI452354B (en
Inventor
Ching-Hung Kao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098127859A priority Critical patent/TWI452354B/en
Publication of TW201107800A publication Critical patent/TW201107800A/en
Application granted granted Critical
Publication of TWI452354B publication Critical patent/TWI452354B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

A method for fabricating an optical device includes providing a semiconductor substrate having an element region and a peripheral region. The element region has an element array comprised of semiconductor elements formed therein. The peripheral region has at least a bonding pad electrically connected to the element array. A dielectric layer with an opening exposing the bonding pad is formed over the semiconductor substrate. A filter array and a planarizing layer are sequentially formed on the dielectric layer, and an organic layer is filled into the opening. An inorganic layer is formed on the planarizing layer and covers the organic layer. A portion of the inorganic layer and the organic layer are sequentially removed until the bonding pad is exposed. The organic layer can protect the bonding pad from corrosion during the step removing the inorganic layer, and thus the fabrication yield is improved.

Description

201107800 六、發明說明: 【發明所屬之技術領域】 本發月疋有關於種光學元件的製造方法,且特別是有關 於一種能夠提高製程良率之光學元件的製造方法。 【先前技術】 隨著數位相機、掃描器等電子商品不斷的開發與成長,消 費市場對影像感測元件之需求亦持續的增加。目前常用的影像 感測元件包括了電荷輕合感測元件(charge 心以, CCD)以及CM〇S衫像感》則元件(CMOS image sensor,CIS)兩大 類。其中,由於CMOS影像感測元件具有低操作電壓、低功 率消耗與高操作效率、可根據需要進行隨機存取(random access)等因素’並且可以整合於目前的半導體技術來大量製 造’因此受到極廣泛的應用。 圖1A至圖1B為習知的CM〇s影像感測元件在製程步驟 中的剖面示意圖。請參照圖1A,習知CM〇s影像感測元件的 製作方法係先依序在半導體基底1〇〇之元件區1〇2上方依序形 成介電層130、濾光陣列15〇、平坦層160以及微透鏡陣列17〇β • 而且’半導體基底100之元件區102内已形成有多個感光元件 110 ’且基底之周邊區104内則已形成有線路圖案12〇以及與 線路圖案120電性連接的接墊140。其中,介電層130係具有 暴露出接墊140的開口 132。 請參照圖1Β’接著形成保護層ι80覆蓋於微透鏡陣列η〇 上’以保護微透鏡陣列170免於遭受微粒子或其他污染源的傷 害。由於保護層180會同時填入開口 Π2内而覆蓋住接墊140, 因此後續必須再進行蝕刻製程來移除保護層180位於接墊140 上的部分,以使線路圖案120在後續製程中可透過接墊140與 外部線路電性連接。 201107800 一般來說,保護層180大多由是氧化;ε夕、氮化石夕或氮氧化 石夕等無機材料所構成’且目前係利用含氟氣體來進行乾式钱 刻’以移除保護層180位於接墊140上的部分。但是,由於敍 刻製程後所殘留在接塾140上的含氟氣體會腐餘接塾“Ο,導 致接墊140表面產生凹洞或不平整,進而影響後續接墊14〇與 其他元件電性連接的可靠度,所以在移除保護層18〇之後,必 須清除殘留在接墊140上的含氟氣體。201107800 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of manufacturing an optical element, and more particularly to a method of manufacturing an optical element capable of improving process yield. [Prior Art] With the continuous development and growth of electronic products such as digital cameras and scanners, the demand for image sensing components in the consumer market has continued to increase. At present, commonly used image sensing components include two types of charge-sensing sensing components (charge heart, CCD) and CM image sensor (CIS). Among them, CMOS image sensing elements have low operating voltage, low power consumption and high operational efficiency, and can be randomly accessed as needed, and can be integrated into current semiconductor technologies to be mass-produced. A wide range of applications. 1A-1B are schematic cross-sectional views of a conventional CM〇s image sensing element in a process step. Referring to FIG. 1A, a conventional CM 〇 image sensing device is sequentially formed by sequentially forming a dielectric layer 130, a filter array 15 〇, and a flat layer over the device region 1 〇 2 of the semiconductor substrate 1 . 160 and the microlens array 17 〇 β • and a plurality of photosensitive elements 110 ′ have been formed in the element region 102 of the semiconductor substrate 100 and the wiring pattern 12 〇 and the wiring pattern 120 are formed in the peripheral region 104 of the substrate. Connected pads 140. The dielectric layer 130 has an opening 132 exposing the pad 140. Referring to Fig. 1 Β ', a protective layer ι 80 is formed over the microlens array η ’ to protect the microlens array 170 from micro-particles or other sources of contamination. Since the protective layer 180 is filled into the opening 同时2 at the same time to cover the pad 140, an etching process must be further performed to remove the portion of the protective layer 180 on the pad 140 so that the line pattern 120 can be permeable in subsequent processes. The pad 140 is electrically connected to the external line. 201107800 In general, the protective layer 180 is mostly composed of an inorganic material such as oxidized; ε, nitrite or nitrous oxide eve; and currently uses a fluorine-containing gas for dry etching to remove the protective layer 180. The portion on the pad 140. However, since the fluorine-containing gas remaining on the joint 140 after the engraving process is ruined, the surface of the pad 140 may be pitted or uneven, thereby affecting the electrical properties of the subsequent pads 14 and other components. The reliability of the connection, so after removing the protective layer 18, the fluorine-containing gas remaining on the pad 140 must be removed.

然而,目前可有效清除含氟氣體的化學溶劑卻會對含有光 阻材質的濾、光陣列150、平坦層160以及微透鏡陣列ι7〇造成 剝離的現象(peeling)。因此,如何在不影響其他元件或膜層的 情況下,有效地去除接墊140上的含氟氣體,實為現今CM〇s 影像感測元件製程中亟欲解決的問題之一。 一此外’在習知單晶石夕液晶(liquid crystal 〇n s出⑶〜lc〇s) 顯示面板的製程中’同樣存在上述之問題。 【發明内容】 有鑑於此,本發_目的之—就是在提供—種光學元件的 製造方法’其可縣光學元件之接墊在製料綠,進而提高 製程良率。 本發明提f種絲it件的製造紐, 區與周邊區的半導體基底,其中元件區Μ形成杨^半^ 體元件所構成的元件陣列’且周邊區内 件陣列的至少一接墊。接著,在半導體基底上二= 介電層,而此開口係暴露出周邊__塾。 上方:介電層上形成渡光陣列,再形成平 二牛 接奸一層上方形成-無機材料層而覆蓋在有機材料層 201107800 上。之後’先移除部分的無機材料層以暴露出有機材料層,再 移除此有機材料層,以暴露出接墊。 在本發明的一實施例中’於形成無機材料層之前,更包括 在平坦層上形成微透鏡陣列,以對應濾光陣列,而無機材料層 係覆蓋此微透鏡陣列。However, the current chemical solvent which can effectively remove the fluorine-containing gas causes peeling of the filter, the light array 150, the flat layer 160, and the microlens array ι7〇 containing the photoresist material. Therefore, how to effectively remove the fluorine-containing gas on the pad 140 without affecting other components or layers is one of the problems to be solved in the current CM〇s image sensing device process. In addition, the above-mentioned problems occur in the process of the conventional display panel of liquid crystal liquidn s (3) to lc〇s. SUMMARY OF THE INVENTION In view of the above, the present invention is directed to providing a method of manufacturing an optical component, wherein the pads of the optical component of the county are in the green of the material, thereby improving the process yield. The present invention provides a semiconductor substrate for the fabrication of a wire, a region and a peripheral region, wherein the component region Μ forms an array of elements formed by the male and female components and at least one pad of the array of peripheral regions. Next, a dielectric layer is formed on the semiconductor substrate, and the opening exposes the periphery __塾. Above: an array of luminaires is formed on the dielectric layer, and then a layer of inorganic material is formed over the layer of the squad to cover the layer of organic material 201107800. Thereafter, a portion of the inorganic material layer is removed to expose the organic material layer, and the organic material layer is removed to expose the pads. In an embodiment of the invention, prior to forming the inorganic material layer, a microlens array is further formed on the planar layer to correspond to the filter array, and the inorganic material layer covers the microlens array.

在本發明的一實施例中,上述之有機材料層係於濾光陣 列、平坦層及微透鏡陣列至少其中之一的製程中同時填入介電 層之開口内。而且,有機材料層的材質例如是與濾光陣列、平 坦層及微透鏡陣列至少其中之一的材質相同。 a在本發明的一實施例中,形成上述微透鏡陣列的方法例如 疋先在平坦層上形成一圖案化聚合層,然後再對圖案化聚合層 進行烘乾製程’以形成上述之微透鏡。 在本發明的-實施例中’上述之有機材料層係於形成微透 鏡陣列之後填入介電層的開口内。 他ί,一實施例中,上述之有機材料層係於形成微透 人介電層的開σ内。而且,上述之有機材料層例 二2成^坦層之後以及形成微透鏡陣列之前填入介電層 ’上述之有㈣料層也可以是在形成渡光陣列 有機材平坦層之前填人介電層的開口内。另外,上述之 力’士 1彳以在形賴光陣列之前填人介電層的開口内。 一實施例中,上述之半導體元件為感光元件。 晶體 ㈣—實闕中,上述之半導體元料CMOS電 开β ίίΓ㈣—實關巾’上述之轉體基底之元件區内更 形成這些隔離結構的方法可以是淺溝間。其中’ 201107800 fί本發明的一實施例中,上述之濾光陣列包括多個紅色濾 '〜、、多個綠色濾光圖案及多織色濾光圖案。 在本發明的—實施例中,上述之有機材制係於這些紅色 2圖案、綠色濾、光圖案及藍色遽光_至少其中之—的製程 忠於介電層的開口内。而且,有機材料層的材質與這些紅色 y圖案、綠色濾光圖案及藍色遽光圖案至少其中之一的材質 相同。 發明的—實施例中,移除上述部分之無機材料層的方 無機材料層上形成圖案化光阻層,其中此圖案化光阻 出介電層之開口上方的部分該無機材料層。接著,以 再$=^=’#刻開〇上方的部分無機材料層。然後 機材;^ίΓΓ實施财,於侧介縣如·^之部分無 機材科層時,係以含氟之氣體為_氣體。 料層itmr·丨+,上狀目魏細料與有機材 括乾ittr-實施财’移除上述之有機材料層的方法包 本發明之光學元件的製程中,係於形成無機材料 之1C 蓋於接整上’因此可避免餘刻無機材料層 中所使用的3魏體損壞接墊,進而 封裝製程時,接墊與其他元件連接的可靠度。而 層可在濾光陣列、平坦層及微透鏡陣列至少其中一 -併形成於触上,以節省製程成本。/、1製程中 為讓本發明之上述和其他目的、特徵和優 懂,下文特舉較佳實施例’並配合所附圖式,作詳^說明^二 201107800 【實施方式】 圖2A至圖2F為本發明之光學元件在製程步驟中的剖面 示意圖。請參照圖2A,首先提供具有元件區202與周邊區204 的半導體基底200,其中元件區202内已形成有由多個半導體 元件212所構成的元件陣列210,且周邊區204内已形成有至 少一接墊240 ’且其係位於線路圖案220上,而線路圖案220 例如是與元件區202内的元件陣列210電性連接(圖未示), 且其材質例如是銅或其他導電性佳的金屬。 具體來說,將接墊240形成在線路圖案220上的方法例如 籲是先在基板200上形成具有開口 235的氧化層234a,其中開 口 235係暴露出線路圖案220。然後,將金屬材料(例如銘) 以沉積、微影、蝕刻製程形成填於開口 235内同時覆蓋在氧化 層234a上之接墊240。 在本實施例中,半導體元件212例如是感光元件,且其例 如是利用CMOS製程製作而成的光二極體。換言之,利用本 實施例揭露之製程製作而成的光學元件可以是CM〇s影像感 測元件(CMOS Image Sensor,CIS)。在其他實施例中,半導體 •元件212也可以是CM0S電晶體。也就是說,本發明所揭露 之裝程亦適用於製作單晶石夕液晶(liquid cryStai 〇n切丨⑺〜 LCOS)顯示面板之驅動陣列基板,但本發明並不以此為限。, 另外,相鄰的半導體元件212之間例如是透過隔離結構 214而電性絕緣於彼此,且形成隔離結構214的方法可以是淺 溝渠隔離(shallow trench insulation, STI)製程,熟習此技藝者應 該知道其詳細製程步驟,此處不再贅述。 ""μ 凊參照圖2Β,在半導體基底200上形成具有開口 232的 介電層230,其中開口 232係暴露出接墊24〇。進一步來說, 201107800 介電層230可以是單層結構或是由多層材料所組成的複合層 結構。在本實施例中’介電層23〇例如是由氧化層23仆及氮 化矽層236所組成的複合層結構,但本發明並不限定於此。 請參照圖2C,依序在介電層23〇上形成濾光陣列25〇與 平坦層260,並且在開口内填入有機材料層27〇,以覆蓋接墊 240。其中,平坦層260係覆蓋於介電層23〇與濾光陣列25〇 上。濾光陣列250則係對應至元件陣列,且其一般是由多 個紅色濾光圖案R、多個綠色濾光圖案G及多個藍色濾光圖案 $ B排列而成。 值得注意的是’濾光陣列250與平坦層260的材質均為有 機材料,如光阻材料。因此,覆蓋在接墊24〇上的有機材料層 270可以與慮光陣列250及平坦詹260至少其中之一在同一製 程中完成。也就是說,有機材料層270可以與滤光陣列250及 平坦層260至少其中之一具有相同材質。以本實施例來說,有 機材料層270例如是與濾光陣列250在同一製程中完成。詳細 來說,本實施例可以在形成紅色濾光圖案R、綠色濾光圖案G 及藍色濾光圖案B至少其中之一的同時,一併在開口 232内形 • 成有機材料層270。此時,有機材料層270的材質即是與紅色 濾光圖案R、綠色濾光圖案G及藍色濾光圖案B至少其中之 一的材質相同。 請參照圖2D ’本實施例係在形成平坦層260之後,先在 平坦層260上形成微透鏡陣列280,再形成無機材料層290覆 蓋於微透鏡陣列280上’以保護微透鏡陣列280免於遭受污 染。其中’無機材料層290的製程溫度需控制於不會對濾光陣 列250'平坦層260及微透鏡陣列280造成不良影響的範圍内。 以本實施例來說,無機材料層290的製程溫度例如是控制於攝 201107800 氏200度以下。 微透鏡陣列280係對應於濾光陣列25〇,且其形成方法例 如是先在平坦層260上形成圖案化聚合層282(如圖3所示), 然後再對圖案化聚合層282進行烘乾製程,而形成微透鏡陣列 280 〇In an embodiment of the invention, the organic material layer is simultaneously filled in the opening of the dielectric layer in the process of at least one of the filter array, the flat layer and the microlens array. Further, the material of the organic material layer is, for example, the same as that of at least one of the filter array, the flat layer, and the microlens array. In one embodiment of the invention, the method of forming the microlens array described above, for example, first forming a patterned polymeric layer on a planar layer, and then subjecting the patterned polymeric layer to a drying process to form the microlenses described above. In the embodiment of the invention, the organic material layer described above is filled into the opening of the dielectric layer after formation of the microlens array. In one embodiment, the organic material layer is within the open σ forming the micro-transmissive dielectric layer. Moreover, after the above-mentioned organic material layer is formed into a dielectric layer and before the formation of the microlens array, the dielectric layer is filled in. The above-mentioned (four) material layer may also be filled with dielectric before forming the flat layer of the organic layer of the light-emitting array. Inside the opening of the layer. In addition, the above force is filled into the opening of the dielectric layer before the array of light is applied. In one embodiment, the semiconductor component described above is a photosensitive element. In the crystal (4) - in the actual enthalpy, the above-mentioned semiconductor element CMOS is electrically opened, and the method of forming the isolation structure in the element region of the above-mentioned rotating substrate can be between shallow trenches. In an embodiment of the invention, the filter array includes a plurality of red filters, a plurality of green filter patterns, and a multi-color filter pattern. In an embodiment of the invention, the above-described process of making the organic material in the red 2 pattern, the green filter, the light pattern, and the blue phosphor is at least in the opening of the dielectric layer. Further, the material of the organic material layer is the same as the material of at least one of the red y pattern, the green filter pattern, and the blue calender pattern. In an embodiment of the invention, the patterned inorganic resist layer is formed on the side of the inorganic material layer from which the inorganic material layer is removed, wherein the patterned photoresist blocks a portion of the inorganic material layer above the opening of the dielectric layer. Next, a portion of the inorganic material layer above the crucible is engraved with another $=^='#. Then the machine; ^ ΓΓ ΓΓ ΓΓ ΓΓ ΓΓ ΓΓ ΓΓ 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧 侧The material layer ismr·丨+, the upper-layer fine-grain and the organic material include the dry ittr--the method of removing the organic material layer described above. In the process of the optical element of the present invention, the 1C cover for forming the inorganic material is On the junction, it is therefore possible to avoid the reliability of the 3 Wei body damaged pads used in the residual inorganic material layer, and thus the connection of the pads to other components during the packaging process. The layer can be formed on at least one of the filter array, the flat layer and the microlens array - and is formed on the touch to save process cost. The above and other objects, features, and advantages of the present invention will be described in the following description of the preferred embodiments of the present invention in conjunction with the accompanying drawings. FIG. 2A. 2F is a schematic cross-sectional view of the optical component of the present invention in the process step. Referring to FIG. 2A, a semiconductor substrate 200 having an element region 202 and a peripheral region 204 is first provided, wherein an element array 210 composed of a plurality of semiconductor elements 212 has been formed in the element region 202, and at least a peripheral region 204 has been formed therein. A pad 240 ′ is disposed on the circuit pattern 220 , and the circuit pattern 220 is electrically connected to the device array 210 in the component region 202 (not shown), and the material thereof is, for example, copper or other conductive. metal. Specifically, the method of forming the pads 240 on the wiring pattern 220 is, for example, first forming an oxide layer 234a having an opening 235 on the substrate 200, wherein the opening 235 exposes the wiring pattern 220. Then, a metal material (e.g., inscription) is formed in the opening 235 by a deposition, lithography, or etching process while covering the pads 240 on the oxide layer 234a. In the present embodiment, the semiconductor element 212 is, for example, a photosensitive element, and is, for example, a photodiode fabricated by a CMOS process. In other words, the optical component fabricated by the process disclosed in this embodiment may be a CMOS image sensor (CIS). In other embodiments, the semiconductor component 212 can also be a CMOS transistor. That is, the process disclosed in the present invention is also applicable to a driving array substrate for producing a single crystal silicon liquid crystal (liquid cryStai 丨n (7) to LCOS) display panel, but the invention is not limited thereto. In addition, the adjacent semiconductor elements 212 are electrically insulated from each other through the isolation structure 214, and the isolation structure 214 may be a shallow trench insulation (STI) process. Know the detailed process steps, so I will not repeat them here. ""<>> Referring to Figure 2, a dielectric layer 230 having an opening 232 is formed over the semiconductor substrate 200, wherein the opening 232 exposes the pads 24A. Further, the 201107800 dielectric layer 230 may be a single layer structure or a composite layer structure composed of a plurality of layers of materials. In the present embodiment, the dielectric layer 23 is, for example, a composite layer structure composed of the oxide layer 23 and the tantalum nitride layer 236, but the present invention is not limited thereto. Referring to FIG. 2C, a filter array 25A and a flat layer 260 are sequentially formed on the dielectric layer 23A, and an organic material layer 27A is filled in the opening to cover the pad 240. The flat layer 260 covers the dielectric layer 23 and the filter array 25A. The filter array 250 corresponds to the element array, and is generally formed by arranging a plurality of red filter patterns R, a plurality of green filter patterns G, and a plurality of blue filter patterns $B. It is worth noting that the materials of the filter array 250 and the flat layer 260 are all organic materials such as photoresist materials. Therefore, the organic material layer 270 overlying the pads 24 can be completed in the same process as at least one of the optical array 250 and the flat 260. That is, the organic material layer 270 may have the same material as at least one of the filter array 250 and the flat layer 260. In the present embodiment, the organic material layer 270 is completed, for example, in the same process as the filter array 250. In detail, the present embodiment can form the organic material layer 270 in the opening 232 while forming at least one of the red filter pattern R, the green filter pattern G, and the blue filter pattern B. At this time, the material of the organic material layer 270 is the same as the material of at least one of the red filter pattern R, the green filter pattern G, and the blue filter pattern B. Referring to FIG. 2D, in the present embodiment, after forming the planarization layer 260, a microlens array 280 is formed on the planarization layer 260, and an inorganic material layer 290 is formed over the microlens array 280 to protect the microlens array 280 from the microlens array 280. Suffered from pollution. The process temperature of the inorganic material layer 290 is controlled to be within a range that does not adversely affect the filter array 250' flat layer 260 and the microlens array 280. In the present embodiment, the process temperature of the inorganic material layer 290 is controlled, for example, to be less than 200 degrees Celsius. The microlens array 280 corresponds to the filter array 25A, and is formed by, for example, forming a patterned polymer layer 282 on the flat layer 260 (as shown in FIG. 3), and then drying the patterned polymer layer 282. Process, forming a microlens array 280 〇

特別的是,微透鏡陣列280的材質也可以是有機材料,因 此在其他實施例中,亦可以在微透鏡陣列28〇的製程中,一併 形成覆蓋在接墊240上的有機材料層270。由此可知,有機材 料層270可以是與濾光陣列250、平坦層26〇或微透鏡陣列28〇 之材質相同的單層結構,也可以是由膜層25〇a、膜層26〇a及 膜層280a任兩者以上所組成的複合層結構(如圖4所示), 本發明並不在此做任何限定。其中,膜層25〇a係與濾光陣列 250同時形成’膜層260a係與平坦層26〇同時形成,膜層28加 則是與微透鏡陣列280同時形成。 、 除此之外,有機材料層27〇也可以是在形成無機材料層 290之前,另外以獨立製程形成於接墊24〇上。舉例來說形 成有機材料層270的時間點可以在形成濾光陣列25〇之前、形 成濾光陣列250之後及形成平坦層26〇之前、形成平坦層26〇 之後及形成微透鏡陣列2⑽之前或是形成微透鏡陣列^之 後。熟習此技藝者可自行依據實際狀況來決㈣成有機材料層 270的時間點。 請參闕2E至圖2F,移除無機材料層29〇位於有機材料 層270上的部分。在本實施例中,其例如是先在無機材料層 290上形成具有開口 294的圖案化光阻層292,其中開口 294 係暴露出無機材料層290位於接墊240上的部分。接著,以乾 式餘刻的方式移除無機材料層290 ’其中在乾式敍刻中所使^ 201107800 的蝕刻氣體F為含氟之氣體。然後再移除圖案化光阻層292。 值得一提的是,由於有機材料層27〇的材質可以是光阻材 料,因此本實施例可在移除圖案化光阻層292的同時,一併移 除有機材料層270,以暴露出接墊240,此即大致完成光學元 件j00的製程。其中,圖案化光阻層292與有機材料層2川例 如是以乾式蝕刻的方式移除,但本發明並不將其限定於此。In particular, the material of the microlens array 280 may also be an organic material. Therefore, in other embodiments, the organic material layer 270 overlying the pads 240 may be formed in the process of the microlens array 28A. Therefore, the organic material layer 270 may be the same single-layer structure as the filter array 250, the flat layer 26 or the microlens array 28, or may be composed of a film layer 25a, a film layer 26a and The composite layer structure composed of two or more layers of the film layer 280a (as shown in FIG. 4) is not limited herein. Wherein, the film layer 25A is formed simultaneously with the filter array 250. The film layer 260a is formed simultaneously with the flat layer 26, and the film layer 28 is formed simultaneously with the microlens array 280. In addition, the organic material layer 27 may be formed on the pad 24 by a separate process before forming the inorganic material layer 290. For example, the time point of forming the organic material layer 270 may be before the filter array 25 is formed, after the filter array 250 is formed, before the flat layer 26 is formed, after the flat layer 26 is formed, and before the microlens array 2 (10) is formed or After forming the microlens array ^. Those skilled in the art can determine (4) the time point of the organic material layer 270 according to the actual situation. Referring to 2E to 2F, the portion of the inorganic material layer 29 on the organic material layer 270 is removed. In the present embodiment, for example, a patterned photoresist layer 292 having an opening 294 is formed on the inorganic material layer 290, wherein the opening 294 exposes a portion of the inorganic material layer 290 on the pad 240. Next, the inorganic material layer 290' is removed in a dry residual manner, wherein the etching gas F of ?201107800 is a fluorine-containing gas in the dry characterization. The patterned photoresist layer 292 is then removed. It is worth mentioning that, since the material of the organic material layer 27 can be a photoresist material, the organic material layer 270 can be removed at the same time as the photoresist layer 292 is removed to expose the interface. Pad 240, which substantially completes the process of optical element j00. The patterned photoresist layer 292 and the organic material layer 2 are removed by dry etching, for example, but the invention is not limited thereto.

由於本發明係在形成無機材料層290之前,先形成有機材 料層27〇 |蓋於接塾240上,因此可避免餘刻無機材料層mo 之製程中所使用的含氟氣體損壞接墊24〇。 綜上所述,在本發明之光學元件的製程中,係在形成無機 材料層之前,先形成有機材料層覆蓋於接墊上,因此可避^蝕 刻無機材料層之製程中所使用的含氟氣體損壞接墊,進而改盖 後續進行打線封裝製程時,接墊與其他元件連接的可靠度。σ 而且,如欲節省製程成本,還可以在濾光陣列、平坦%及 微透鏡陣列的製程中一併將有機材料層形成於接墊上, 進行額外的製程來形成有機材料層。 雖然本發明已以較佳實施例揭露如上,然其並非用以限七 本發明,任何熟習此技藝者,在不脫離本發明之精神和 内,當可作些許之更動與潤飾,因此本發明之保護 已 附之申請專利範圍所界定者為準。 田視後 【圖式簡單說明】 影像感測元件在製程步驟 圖1Α至圖1Β為習知的CMOS 中的剖面示意圖。 圖2A至圖2F為本發明之光學元件在製程步 示意圖。 的剖面Since the present invention forms the organic material layer 27〇 on the interface 240 before forming the inorganic material layer 290, the fluorine-containing gas damage pad 24 used in the process of the residual inorganic material layer mo can be avoided. . In summary, in the process of the optical component of the present invention, the organic material layer is formed on the pad before the formation of the inorganic material layer, so that the fluorine-containing gas used in the process of etching the inorganic material layer can be avoided. Damage to the pads, and then the reliability of the connection between the pads and other components when the subsequent wire bonding process is changed. σ Moreover, if the process cost is to be saved, an organic material layer can be formed on the pad in the process of filtering the array, the flat %, and the microlens array, and an additional process is performed to form the organic material layer. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The protection is defined by the scope of the patent application. After the field view [Simplified illustration] Image sensing element in the process steps Figure 1A to Figure 1 is a schematic cross-sectional view of a conventional CMOS. 2A to 2F are schematic views showing the manufacturing steps of the optical component of the present invention. Profile

為本發明之光學元件在製程步驟之一中 的剖面示意 201107800 圖。 圖4為本發明之光學元件在製程步驟之一中的剖面示意 圖。 【主要元件符號說明】 100、200 :半導體基底 102、202 :元件區 104、204 :周邊區 110 :感光元件 120、220 :線路圖案 籲 130、230 :介電層 132、232、294 :開口 140、240 :接墊 150、250 :濾光陣列 160、260 :平坦層 170、280 :微透鏡陣列 180 :保護層 210 :元件陣列 φ 212:半導體元件 214 :隔離結構 234a、234b :氧化層 236 :氮化矽層 270 :有機材料層 282 :圖案化聚合層 290 :無機材料層 292 :圖案化光阻層 300 :光學元件 12 201107800 B:藍色濾光圖案 G:綠色滤光圖案 F:餘刻氣體 R:紅色濾光圖案A cross-sectional view of the optical component of the present invention in one of the process steps is shown in the figure 201107800. Figure 4 is a cross-sectional view showing the optical element of the present invention in one of the process steps. [Main component symbol description] 100, 200: semiconductor substrate 102, 202: element region 104, 204: peripheral region 110: photosensitive element 120, 220: line pattern appeal 130, 230: dielectric layer 132, 232, 294: opening 140 240: pads 150, 250: filter arrays 160, 260: flat layers 170, 280: microlens array 180: protective layer 210: element array φ 212: semiconductor elements 214: isolation structures 234a, 234b: oxide layer 236: Tantalum nitride layer 270: organic material layer 282: patterned polymer layer 290: inorganic material layer 292: patterned photoresist layer 300: optical element 12 201107800 B: blue filter pattern G: green filter pattern F: Gas R: red filter pattern

Claims (1)

201107800 七、申請專利範圍: 1. 一種光學元件的製造方法,包括: 提供一半導體基底,其中该半導體基底具有一元件區與一 周邊區,該元件區内已形成有由多個半導體元件所構成的一元 件陣列,且該周邊區内已形成有至少一接墊,電性連接於該元 件陣列; 於該半導體基底上形成一介電層,其中該介電層具有一開 口,且該開口係暴露出該接墊; 於該介電層上形成一濾光陣列,以對應該元件陣列; • 形成一平坦層以覆蓋該介電層與該濾光陣列; 於δ玄開口内填入一有機材料層,以覆蓋該接塾; 於該平坦層上方形成一無機材料層而覆蓋該有機材料層; 移除部分之邊無機材料層,以暴露出該有機材料層;以及 移除該有機材料層,以暴露出該接墊。 2. 如申請專利範圍第丨項所述之光學元件的製造方法,其 中在形成該無機材料層之前,更包括於該平坦層上形成一微透 鏡陣列,以對應該濾光陣列,而該無機材料層係覆蓋該微透鏡 籲 陣列。 3. 如申請專利範圍第2項所述之光學元件的製造方法,其 中該有機材料層係於該濾光陣列、該平坦層及該微透鏡陣列至 少其中之一的製程中填於該開口内,且該有機材料層的材質與 該濾光陣列、該平坦層及該微透鏡陣列至少其中之一的材質相 同。 4. 如申請專利範圍第2項所述之光學元件的製造方法,其 中形成該微透鏡陣列的方法包括: 於該平坦層上形成一圖案化聚合層 ;以及 對該圖案化聚合層進行烘乾製程,以形成該微透鏡陣列。 201107800 5. 如申請專利範圍第2項所述之光學元件的製造方法,其 中該有機材料層係於形成該微透鏡陣列之後填入該開口内。 6. 如申請專利範圍第2項所述之光學元件的製造方法,其 中該有機材料層係於形成該微透鏡陣列之前填入該開口内。 7. 如申請專利範圍第6項所述之光學元件的製造方法,其 中該有機材料層係於形成該平坦層之後填入該開口内。 8. 如申請專利範圍第1項所述之光學元件的製造方法,其 中該有機材料層係於形成該平坦層之前填入該開口内。 9. 如申請專利範圍第7項所述之光學元件的製造方法,其 藝中該有機材料層係於形成該濾光陣列之前填入該開口内。 10. 如申請專利範圍第7項所述之光學元件的製造方法, 其中該有機材料層係於形成該濾光陣列之後填入該開口内。 11. 如申請專利範圍第1項所述之光學元件的製造方法, 其中該些半導體元件為感光元件。 12·如申請專利範圍第1項所述之光學元件的製造方法, 其中該些半導體元件為CMOS電晶體。 13‘如申請專利範圍第1項所述之光學元件的製造方法, • 其中該半導體基底之該元件區内更形成有多個隔離結構,分別 位於該些半導體元件之間。 14. 如申請專利範圍第π項所述之光學元件的製造方法, 其中形成該些隔離結構的方法包括淺溝渠隔離製程。 15. 如申請專利範圍第1項所述之光學元件的製造方法, 其中該濾光陣列包括多個紅色濾光圖案、多個綠色濾光圖案及 多個藍色濾光圖案。 16. 如申請專利範圍第15項所述之光學元件的製造方法, 其中該有機材料層係於該些紅色濾光圖案、該些綠色濾光圖案 15 201107800 及S玄些藍色濾光圖案至少其中之一的製程中填於該開口内, 3亥有機材料層的材質與該些紅色濾光圖案、該些綠色滤光圖案 及该些藍色遽細案至少其中之—的材質相同。 I7.如申請專利範圍第1項所述之光學元件的製造方法, 其中移除部分之該無機材料層的方法包括: 於該無機材料層上形成一圖案化光阻層,其中該圖案化光 阻層係暴露出關π上方的部分該無機材料層; 材料化光阻層為遮罩,⑽該開口上方的部分該無機201107800 VII. Patent application scope: 1. A method for manufacturing an optical component, comprising: providing a semiconductor substrate, wherein the semiconductor substrate has an element region and a peripheral region, and the component region has formed a plurality of semiconductor components. An array of elements, wherein at least one pad is formed in the peripheral region, electrically connected to the device array; a dielectric layer is formed on the semiconductor substrate, wherein the dielectric layer has an opening, and the opening is exposed Forming a filter array on the dielectric layer to correspond to the array of components; • forming a flat layer to cover the dielectric layer and the filter array; filling an organic material in the δ 开口 opening a layer covering the interface; forming an inorganic material layer over the planar layer to cover the organic material layer; removing a portion of the edge inorganic material layer to expose the organic material layer; and removing the organic material layer, To expose the pad. 2. The method of fabricating an optical component according to claim 2, wherein before forming the inorganic material layer, further comprising forming a microlens array on the planar layer to correspond to the filter array, and the inorganic A layer of material covers the array of microlenses. 3. The method of manufacturing an optical component according to claim 2, wherein the organic material layer is filled in the opening in a process of at least one of the filter array, the flat layer, and the microlens array. And the material of the organic material layer is the same as the material of the filter array, the flat layer and the microlens array. 4. The method of manufacturing the optical component of claim 2, wherein the method of forming the microlens array comprises: forming a patterned polymeric layer on the planar layer; and drying the patterned polymeric layer The process is performed to form the microlens array. The method of manufacturing an optical element according to claim 2, wherein the organic material layer is filled in the opening after forming the microlens array. 6. The method of fabricating an optical component according to claim 2, wherein the organic material layer is filled in the opening before forming the microlens array. 7. The method of producing an optical component according to claim 6, wherein the organic material layer is filled in the opening after forming the flat layer. 8. The method of producing an optical component according to claim 1, wherein the organic material layer is filled in the opening before forming the flat layer. 9. The method of fabricating an optical component according to claim 7, wherein the organic material layer is filled into the opening before forming the filter array. 10. The method of manufacturing an optical component according to claim 7, wherein the organic material layer is filled into the opening after forming the filter array. 11. The method of manufacturing an optical component according to claim 1, wherein the semiconductor component is a photosensitive component. The method of manufacturing an optical component according to claim 1, wherein the semiconductor component is a CMOS transistor. A method of manufacturing an optical component according to claim 1, wherein the semiconductor substrate is further provided with a plurality of isolation structures in the component region between the semiconductor components. 14. The method of fabricating an optical component according to claim pi, wherein the method of forming the isolation structure comprises a shallow trench isolation process. 15. The method of manufacturing an optical component according to claim 1, wherein the filter array comprises a plurality of red filter patterns, a plurality of green filter patterns, and a plurality of blue filter patterns. The method of manufacturing an optical component according to claim 15, wherein the organic material layer is at least the red filter pattern, the green filter patterns 15 201107800, and the S-think blue filter pattern are at least In one of the processes, the material is filled in the opening, and the material of the organic material layer is the same as the material of the red filter pattern, the green filter pattern, and at least the blue pattern. The method of manufacturing the optical component of claim 1, wherein the method of removing a portion of the inorganic material layer comprises: forming a patterned photoresist layer on the inorganic material layer, wherein the patterned light The resist layer exposes a portion of the inorganic material layer above the π; the materialized photoresist layer is a mask, and (10) the inorganic portion above the opening 移除該圖案化光阻層。 其中利範料17項所述之辟元件的製造方法! 體為_氣^ 口上方的部分該無機材料層時,係、以含氣之顏 2〇.如申請專利範圍:/有機材枓層於冋—製程中務除。 其中移除該有機材二^^的製造, 16The patterned photoresist layer is removed. Among them, the manufacturing method of the component described in Item 17 of the method is as follows: when the inorganic material layer is above the gas layer, the body is made of gas containing 2 〇. For example, the scope of application: / organic material layer冋—The process is removed. In which the removal of the organic material is removed, 16
TW098127859A 2009-08-19 2009-08-19 Method for fabricating optical device TWI452354B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098127859A TWI452354B (en) 2009-08-19 2009-08-19 Method for fabricating optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098127859A TWI452354B (en) 2009-08-19 2009-08-19 Method for fabricating optical device

Publications (2)

Publication Number Publication Date
TW201107800A true TW201107800A (en) 2011-03-01
TWI452354B TWI452354B (en) 2014-09-11

Family

ID=44835398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127859A TWI452354B (en) 2009-08-19 2009-08-19 Method for fabricating optical device

Country Status (1)

Country Link
TW (1) TWI452354B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504563B1 (en) * 2004-08-24 2005-08-01 동부아남반도체 주식회사 Method for fabricating an image sensor
TWI324800B (en) * 2005-12-28 2010-05-11 Sanyo Electric Co Method for manufacturing semiconductor device
TWI313931B (en) * 2006-08-02 2009-08-21 United Microelectronics Corp Image sensor and method of manufacturing the same
WO2008153128A1 (en) * 2007-06-15 2008-12-18 Rohm Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TWI452354B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
US8049257B2 (en) CMOS image sensor
US9054106B2 (en) Semiconductor structure and method for manufacturing the same
TWI407553B (en) Backside illuminated image sensor having deep light reflective trenches
CN103137636B (en) Semiconductor device, manufacturing method for semiconductor device and electronic equipment
US20090068785A1 (en) Manufacturing method of image sensor device
JP2008166725A (en) Cmos device and method of manufacturing the same
TWI629774B (en) Methods of fabricating image sensor and semiconductor device
TWI331401B (en) Method for fabricating a pixel structure and the pixel structure
JP2010171038A (en) Solid-state image pickup device and method of manufacturing the same
TWI532159B (en) Image sensor apparatus and method for manufacturing the same and image sensor array device
CN104701334A (en) Deep-groove isolated stacked image sensor manufacturing method
JP6168915B2 (en) Manufacturing method of semiconductor device
JP2011014674A (en) Method for manufacturing solid-state image pickup device
US7977142B2 (en) Manufacturing method of microlens of CMOS image sensor
US8039286B2 (en) Method for fabricating optical device
TW201107800A (en) Method for fabricating optical device
JP2008227503A (en) Method of manufacturing image sensor
JP2006134915A (en) Semiconductor substrate, solid state imaging device and method of manufacturing the same
JP6433208B2 (en) Method for manufacturing solid-state imaging device
JP2009290229A (en) Backside illuminated solid-state imaging device and method for manufacturing backside illuminated solid-state imaging device
TWI253722B (en) Method of manufacturing a CMOS image sensor
KR100843967B1 (en) Image sensor and method for fabrication of the same
TWI313931B (en) Image sensor and method of manufacturing the same
TWI590476B (en) Image sensor and fabricating method thereof
TWI599024B (en) Image sensor and method for fabricating the same