201102462 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種製備海島紗用的紡嘴,尤指一種製 備海島紗用的紡嘴’其能夠避免紡紗期間島部的聚集,縱 使是該等島部之數目很多。 【先前技術】 海島紗為一種紗線,其截面結構中島成分被散佈在一 海成分當中。當海成分於紡紗之後的後處理期間藉由洗提 (elution)或溶解而移除時,僅會留下島成分。因此,由於樹 脂的浪費及使用溶劑來洗提該海成分,製備成本會不利地 增加且會發生環保問題。儘管有這些問題,由於海島紗能 夠製備無法使用習知微纖維製備方法取得之微纖維,因此 仍廣泛地做為工業材料的紗線,例如人造麂皮、過滤材及 清潔產品。 在習知的海島紗中,所謂「海成分」代表於紡紗之後 的後處理期間被洗提或溶解的成分’而所謂「島成分」代 表在移除該海成分之後所留下的纖維成分。由該等海島紗 製備應皮織品的程序需要一系列的步驟,其中包括重量降 低、起絨、染色等。微型化的海成分纖維之微細度(fineness) 均勻性及起絨均勻性在穩定化纖維品質當中相當重要,因 此島成分纖維之截面的配置與結構為決定品質之核心因 素。 因此’為了最大化地利用該島成分,係以海中島的形 201102462 式藉由複合纺紗(conjugate-spinning)做為海成分之鹼可溶 性聚合物及做為島成分之纖維形成聚合物來製備海島紗。 該等海島紗的製備目的一般係為了取得微纖維。也就是 說,所製備而得的海島妙係利用一鹼性溶液處理,以洗提 作為該海成分的可溶性聚合物,並藉此獲得僅包含該島成 分之微鐵維。因此’相較於使用直接纺紗(direct-spinning) ,來製備微纖維的方法,由該等海島紗製備微纖維的方法較 佳地呈現出優良的紡紗與拉伸作業效率,並能製備出較高 微細度的微纖維’但其需要在梭織或針織之後的後處理期 間利用有機溶劑洗提移除該海成分聚合物。最終產品之品 質改善之實ί見取決於島成分纖維之微型化程度。因此, 實務上進行了大量的研究與開發來進—步微型化島成分纖 維的微細度。 、根據現今的習知商用技術,所獲得的島成分纖維的數 目為37或更低’而所獲得的微型化島成分纖維的微細度為 雜,:⑨、因此有而要開發出―種方法來製備島成分纖 :语?藉由增加島成分纖維的數目到%或更多,而達到微 、、-田度為0.04丹尼或更低。 構非^ #島成分纖維的數目為38或更多時,其截面結 、、-吊S且在海島紗中島成分纖維的截面設置必須精 特別是’第1圖所示為用於製備㈣紗之習知 :二上視圖J更具體而言,用於製備海島紗之紡嘴1包 2之周^ 2 ’猎此排出海島紗’及周邊部3,其環繞排出部 σ、’於排出4 2之結構中,複數個島成分供應通道$ 5 201102462 基於一紡紗核心4放射性地設置,且島成分供應通道5之 數目可取決想要的島成分數目而改變。海成分供應通道6 形成在環繞排出部2周緣的周邊部3。當一島成分與一海成 分經由第1圖中該紡嘴的個別供應通道注入時,經由該紡 嘴中海成为供應通道6供應的該海成分被引入到排出部2 内’並環繞島成分絲通道5,而填滿排出部2。經由此程 序,可製備出海島紗,其中島部被設置在該海成分當中。 第2圖及第3圖為經由第!圖之紡嘴進行纺紗所得 習知海島紗(包含331個島部)之截面。在第2圖中,島 邛12基於在海島紗中一紡紗核心、u而同心地設置且, ^島部佔了海島紗的整«面之30到7〇%。在第3圖^ 邛14亦基於在海島紗中一紡紗核心13而同心地設置, 且該等島部佔用海島紗的整賴面之3 3=’此截面結構為正常,而當島部數目报= 成在海島:之=島部的截面面積比例增加時,鄰近於形 在紡紗期間會聚集:::紗島:會非常,’並 的數目增加時,即會發生存在於= 部被聚㈣結塊的㈣& K巾央處的島 此,應用包含37或更少“η—10。因 不能夠確賴_面之穩㈣置樣式, 設計來適當地設置海島紗截面中之島部。^要特定的 【發明内容】 201102462 技術問題 因此,本發明係基於上述問題進行研發而得,且本發 明一目的在於提供一種用於製備海島紗的紡嘴,以避免島 部的聚集,並獲得顯色(Chromogenic)的海島紗。 技術解決方案 根據本發明,上述及其它的目的可藉由提供製備海島 ㈣的紡嘴而達成,其包括:―排出部,其包括複數個島成 为供應通道來排出海島紗;及一周邊部,其設置在該排出 部的周邊中’該周邊部包括一海成分供應通道,盆中 島成分供應通道在該排出部中被區隔成複數個群組。μ 該排出部另可包括-或多個海成分供應通道。 組化該等罐嶋㈣㈣崎編)核心被群 該等紡紗核心可以包括一標準纺紗核心,龙 海島紗的中央,及複數個周邊紡紗核心 ^在该 紗核心來設置。 一土;該標準紡 較佳地S,該標準纺紗核,讀該 的距離可以實質上相等。 门瓊、、方紗核心之間 心彼此間可以相同的 該等周邊紡紗核心的數目可為3到。 同開。 該等周邊紡紗核心的數目可為6到忉。 相對於一個標準紡紗核心或一個 置的該等島部的數目可為10到3〇〇。 、、方紗核心所設 201102462 該海成分供應通道可插入在該標準紡紗核心與該周 邊紡紗核心之間。 該等島成分供應通道之總數可為38到1,500。 該等島成分供應通道之總數可為500到1,500。 該等島成分供應通道之總數可為1,〇〇〇到1,500。 該等島成分供應通道群組可具有圓形、橢圓形、多邊 形或非圓形的截面。 該等島成分供應通道群組可具有相同或不同的形狀。 該等紡紗核心可基於該排出部的中心來設置。 一海成分供應通道可設置在該排出部的中心處。 該等紡紗核心的數目可為3到20。 該等紡紗核心的數目可為6到10。 該海成分供應通道可設置在該等紡紗核心之間。 該排出部之直徑可為15到5 0 mm。 該島成分供應通道之直徑可為0.1到0.3 mm。 該海成分供應通道之直徑可為0.1到0.3 mm。 該排出部的數目可為2到20。 存在於一群組中相鄰島成分供應通道的該等中心之間 的最大距離,可小於存在於兩個相鄰群組中相鄰島成分供 應通道之該等中心之間的最大距離。 以下將對於此處所使用的術語做簡短的說明。 除非有特別提出,所謂「紡紗核心」代表一特定標準 點,在該處島成分供應通道被群組化(區隔化)在·—纺嘴 的一上板上。 201102462 所„月‘準紡紗核心」(standard spinning core)代表一 作為中心之紡紗核心,而所謂「周邊紡紗核心」(peripheral spinning core)代表一其餘紡紗核心,其基於該標準紡紗核 心而設置,當該等紡紗核心為複數,姐由一紡紗核心及基 於該個紡紗核心所設置的其它紡紗核心所構成時。 所謂「島成分供應通道之設置使得它們被群組化」代 表一種狀態’其中該等島成分供應通道基於一紡紗核心而 設置’使得它們以一預定形狀被區隔,例如當兩個紡紗核 心存在於一纺嘴中時’島成分供應通道基於各別的紡紗核 心以一預定形狀而設置’且因此該等島成分供應通道在使 用該紡嘴紡紗而得的該等海島紗中被區分成兩個群組。 所謂「光顯色纖維」(photochr〇mic fiber)代表一種纖 維’其並非經由色彩呈現物質(例如染料或顏料)的物理 及化學鍵結呈現色彩,而是利用經由纖維之結構性及光學 設計的光線干涉來呈現色彩。 所謂「纖維為雙折射」代表當光線照射到根據方向而 有不同折射率的纖維時,入射到該等纖維的光線被折射到 兩個不同方向上。 所謂「等向性」(isotrope)代表一種性質,其中一物件 具有一固定的折射率,不論光線以哪個方向通過該物件。 所謂「各向異性」(anisotrope)代表一種性質,其中一 物件的光學性質根據光線之方向而變化,且一各向異性物 件為雙折射,且相反於等向性。 所謂「光學調變」(optical modulation)代表一種現象, 201102462 其中照射進來的光線被反射、折射或散射, 運動循環或特性被改變。 或其強度、 波 【實施方式】 有利效果 使用本發明用於製備海島紗的該 =在其中心處不會聚集島部,即使島部的m =多’因為在該等海島紗中的島部被區隔成兩二 ,且。因此’海島紗顯著地有利於微纖維的製備,因為 Γ海島紗中可設置有500或更多的島部,因此 製二::度。此外’該等海島紗之優點在於可顯著地降低 ^成本’因為或更多的微纖維可由一海島紗中產出 海島紗根據海部對島部之比例及纖維的直 :見-特疋色彩,而不需要加入顯色化合物,例如染 的強卢::::到光顯色纖維。該等光顯色纖維根據光線 的強度及規察者的位置與角度可以呈現多種色彩。 ,者’包含光學特性不同之島部與海部之海島紗可在 部與海部之間形成雙折射界面,且因此相較於雙折 可更顯著地改善光學調變效率,且在其_心中不 1島部的轉,即使該島料數目4 500或更多。因此, ^人海島/可將一光學調變界面之面積最大化,且相較於 =個紡紗核心之f知海島紗’可以顯著地改善光學調 1 。因此,相較於包含習知雙折射纖維或海島紗之輝 強膜包3 5亥等海島紗之輝度增強膜具有優良的光學 201102462 調變效果,並呈賴著改善的輝度。 最佳實施方式 以下將更為詳細地說明本發明。 有-備海島紗用的f知纺嘴所製備的該等海島紗具 島部t構’其中島部基於—紡紗核地設置,或 日::紗核心而隨機地配置。當島部數目很少 ;)1面斤結構為正常,而當島部數目很多日寺(約3 00或 隹於形成在海島紗之中央處的紡紗核心之島部則 ==並在纺紗期間會聚集在一起。也就是說,當在 之中、錢即會發生存在於該等海島紗 .Ί Λ集與結塊之不想要的副作用(島接 合,island-conjUgation)。 因為了在—具體實施例中防止該等島部的聚集, 盆:供一種製備海島紗用的紡嘴,其包含-排出部, ,、匕含複數個島成分供應通道以排出海島紗,及一 =其設置在該排出部的周邊,並包含—海成分供應通道, 八中料島成分供應通道被區隔成群組。更佳地是, 題可藉由設計該等島齡供應通道基於兩個 = 心被區隔成群組來解決。 我 因此,島部被過度集中在-紡紗核心上的現象可被防 微纖維可藉由在一海島紗中形成5〇〇或更多的島部來 =二並可降低製造成本’因為由數百微纖維可由一海島 紗製得15 201102462 第4圖所示為根據本發明一具體實施例中用於製備海 島紗的紡嘴之上板的上視圖。製備海島紗用的紡嘴200包 括排出部210,藉以排出海島紗,及周邊部220,其環繞耕 出部210的周邊。於排出部210之結構中複數個島成分供 應通道215係基於四個紡紗核心211、212、213及214被 區隔成群組。該等島成分供應通道群組在本發明中為圓 形,但不限於此,並可具有圓形、橢圓形或多種非圓形形 狀。排出部210另可包含一海成分供應通道216。海成分供 應通道216的位置並無限制。但是,海成分供應通道216 之設置在相鄰島成分供應通道群組之間係有利於防止島鄯 的聚集。同時,海成分供應通道216的數目可為一個或更 多。類似於習知的製備海島紗用紡嘴,周邊部220包含海 成分供應通道221、222、223及224,而海成分供應通道 22卜222、223及224的數目並無限制,並巧等於紡紗核心 211、212、213 及 214 的數目。 第5圖所示為使用第4圖之紡嘴製備的群組式海島紗 之縱向截面圖。四個紡紗核心設置在海島紗250中’且島 部255、256、257、258係基於紡紗核心251、252、253及 254被群組化。也就是說,複數個島部255、256、257、258 係基於個別的紡紗核心251、252、253及254被區隔’而 海島紗250具有一截面結構,其中可存在與紡紗核心一樣 多的島部群組。在此例中,當截面之邊緣膨服時,基於紡 紗核心251、252、253及254設置的島部255、256、257 、258之群組會變形,此係由於海島紗之紡紗期間的模具膨 12 201102462 ::游雖然第4圖之纺嘴的該等島成分供應通雜呈 =固形截面。因此’紡紗所得之海島紗的島部群址可且ς 半圓形 '扇形、圓形、橢球 夕 ’、有 且它們的來壯计“μ體幵/夕邊形或非圓形截面, 二匕二狀並無特殊限制’並可為相同 ,,母個纺紗核心係由—粗黑點所 , 際的中心,且該點可為—島 :=、、且之實 島'v中的工間實際上可填入島部,或僅填入海部。 在-較佳第—具體實施例中,一標準纺紗核心可設置 在排出部310之中心虚,B、包 碑且複數個周邊紡紗核心係基於該 :二:T設置。以下將省略重複的說明,僅說明該第 =實:例之特殊的特性。第6圖所示為製備海島紗用 2的上板之上視圖。特別是,排㈣训之結構中島成 =供應通道係基於設置在其中心處的一標準紡紗核心3ΐι 群組化,且七個周邊紡紗核心mm· 17 318係基於;^準紡紗核心31丨向外設置。海成分供 :通道319 320、32卜322、323、324及325被插入在標 準纺紗核心311與各別的周邊紡紗核心312、313、314、315 316 317及318之間。類似於習知製備海島紗的纺嘴, 海成分供應通道331、332、333、334、335、336及337可 形成在環繞排出部310之周邊的周邊部33()中但本發明 並不限於此。 第7圖所示為使用第6圖之紡嘴製備的群組式海島紗 的電子顯微圖片。如第7圖所示,—個標準紡紗核心351 I S3: 13 201102462 被設置在海島紗的中心處,且七個周邊紡紗核心352〜358 係基於標準紡紗核心351設置。在此例中,較佳地是標準 纺紗核心351與複數個周邊紡紗核心352〜358之間的距離 可以實質相等也可不相等。當該海島紗的縱向截面為圓形 時’如果標準紡紗核心351與複數個周邊紡紗核心352〜358 之間的距離為實質相等,則島部的聚集可被有效率地最小 化。另一方面,當該等海島紗的縱向截面具有一橢球體形 時’較佳地是標準紡紗核心351與該等周邊紡紗核心 352〜358之形成使得標準纺紗核心351與周邊紡紗核心 352〜358之間的距離在該橢球體的長軸方向上較長,而在 其短轴方向上較短。 同時’周邊紡紗核心的數目較佳地是3到20,更佳地 是6到10。如第7圖所示,當基於標準紡紗核心351來設 置的周邊紡紗核心352〜358之數目為6到8,而在標準紡 紗核心351與周邊紡紗核心352〜358中群組的島部數目為 100到200時,即可得到最優良的效果(表1 )。 根據本發明一較佳的第二具體實施例,該等海島紗包 含基於該排出部之中心設置的一或多個纺紗核心,更佳地 是’該等海島紗在其中央處並不包含紡炒核心。 以下將省略重複的說明,並僅說明該第二具體實施例 之特殊的特性。第8圖所示為根據第二具體實施例製備海 島紗用紡嘴的一上板之上視圖。特別是,排出部410包含 三個基於其中心430設置的紡紗核心411、412、413 ’而八 個紡紗核心 414、415、416、417、418、419、420、421 係 201102462 設置在紡紗核心411、412、413之外。此時’設置在一内 部區域的三個紡紗核心411、412、413及設置在該等紡紗 核心之外的八個紡紗核心414、415、416、417、418、419 、420、421係基於該海島紗之中心430設置。在此例中, 紡紗核心的數目可為3到20 ’更佳地是6到10,但本發明 並不限於此。同時,海成分供應通道430可形成在紡紗核 9 心411、412及413之間的空間中,也就是說,在排出部410 之中心處,於三個纺紗核心411、412、413與八個紡紗核 心 414、415、416、417、418、419、420、421 之間可形成 複數個海成分供應通道422、423、424、425、426、427、 428及429。再者,周邊部440亦可包含複數個海成分供應 通道 441、442、443、444、445、446、447 及 448。第 9 圖所示為使用第8圖之紡嘴紡紗所得的該海島紗的縱向戴 面圖。特別是,三個纺紗核心452、453、454係基於該海 島紗的中心451設置,而八個紡紗核心455〜462被設置在 紡紗核心452、453、454之外。此時,設置在〆内部區域 ' 的三個紡紗核心452、453、454及設置在該等紡紗核心之 , 外的八個紡紗核心455〜462係皆基於該海島紗的中心451 設置° 同時’當島成分供應通道的數目被適當地控制時’存 在於該排出部之島成分供應通道的數目可為38到丨,5〇〇, 更传地是在500到1,5〇〇,最隹地是1,〇〇〇到I/00。再者 ,設置在每個紡紗核心中的該等島成分供應通道之數目可 為10到300,更佳地是1〇〇到150 ’雖然本發明並不限於 【S ] 15 201102462 此。因此,設置鄰近於每個紡紗核心之島成分供應通道的 數^目可被適當地控制,使該等島部不會聚集,且海島紗及 島。卩之微細度、所想要的微纖維之微細度及光學調變效率 下所述)皆可最大化。同時’該等島成分供應通道之 直徑可為0.1到〇.3 mm,該海成分供應通道之直徑可為〇.玉 到〇.3 mm。該島成分供應通道群組之直徑可為8到15 mm 且"亥排出部之直徑可為15到50 mm。同時,類似於習知 :嘴,該紡嘴具有一漏斗形狀,其中實際上排出海島紗的 下板的直挺小於一上板之直徑。類似於習知之實施方式 ,在該下板中的該排出部之直徑可為〇1到〇 6 mm。同時 ,忒紡嘴存在於一群組中相鄰島成分供應通道的該等申心 之間的取大距離係小於兩個相鄰群組中相鄰島成分供應通 道之該等k之距離。也就是說,該紡嘴在二個 才4群、、且之間具有非相等距離,藉此使形成相鄰群組之間 的邊界之相鄰島成分供應通道的中心之間的最大距離(存 在於兩個相鄰群組中相鄰島成分供應通道之該等中心之間 的最大距離)’大於存在於—群財相鄰島成分供應通道之 該等中心之間的最大距離。因此’島成分供應通道不合存 在於該等群組之間的㈣中,且該等空間為空的,因^ 助於防止在該中心處島部的聚集。 再者,一紡嘴可包含2到2G個排出部,且在此實施例 十’經由一單一紡紗作業可以獲得2到20線的海島紗。 使用本發明之紡嘴製備的該等海島紗若具有與常用海 島紗之單紗微細度相比擬的微細度時即足矣,且較佳地是 201102462 具有0.5到30丹尼之單紗微細度,以有效率達成本發明之 目的之角度而言,較佳地是其單紗微細度為0.0001到1.0 丹尼。因此,該群組式海島紗能夠設置最多的島部,且因 此明顯地有助於微纖維的大量生產。 同時,LCD的輝度增強膜可使用該等海島紗製造,且 其海部並不洗提。 習知的LCD裝置不一定可有效率利用自背光所放射之 光線。此係因為自該背光放射之50%或更多的光線由一後 側光學膜所吸收。因此,為了增加LCD裝置中該背光光線 之使用效率,乃在一光學凹穴與一液晶顯示組件之間插入 一輝度增強膜。但是,習知的輝度增強膜係藉由交替地堆 疊平板形狀的等向性光學層與平板形狀的各向異性光學層 來製造,其具有不同的折射率,並在該堆疊結構上執行一 延伸程序,使得該堆疊層具有該等各別光學層之一折射率 及一光學厚度,其可對於入射的極化光線之選擇性反射及 穿透來做最佳化。因此,此製造程序之缺點在於該輝度增 強膜之製造過程複雜。 特別是,因為該輝度增強膜之每一光學層具有一平板 形狀,P極化光線與S極化光線必須彼此隔開,以因應於 該入射的極化光線之入射角度的大範圍。因此,此膜的結 構當中堆疊有數目過度增加的光學層,因此其缺點在於造 成製造成本之快速增加,並由於光學損耗而造成光學效能 惡化。 因此,使用本發明之紡嘴製備的該等海島紗之設置可 [S3: 17 201102462 使得自一光源射出的光線在該等海島紗與一等向性板材之 間的该雙折射界面上被反射、散射及折射,藉此誘發光學 T變,並顯著地改善輝度。㈣是,自—外部総放射的 可被大致區分成s極化光線與p極化光線。如果其中 僅而要光線的-特定極性,則該p極化光線通過一輝度增 強膜而不會%到錢折射界面之影響。然而,該S極化 光線在該雙折射界面上被調變成隨機地折射、散射或反射 的波長,即S極化光線或P極化光線。如果經調變的光線 再次於該輝度增強膜上被反射及照射,則該p極化光線通 過該輝度增強膜,且該S極化光線會被再次散射或反射。 經由重複此程序,即可得到想要的p極化光線。 、因此,當與一板材形成一雙折射界面的複數個群組式 海島〜被配置在該板材中,輝度將可顯著地改善,而不需 要使用習知的堆疊式輝度增_。本發明之發明人發現到 使用般的雙折射纖維做為具有雙折射界面之聚合物之優 點在於製造成本低及製造簡易’但相較於習知堆疊式輝度 增強膜,其缺點在於不能夠改善輝度到想要的程度,且因 此不適合於產業應用。 因此’前述的問題可藉由使用雙折射海島紗做為具有 :折射界面之雙折射纖維來解決。更具體而言,相較於使 =知雙折射纖維的實施例,使用雙折射海島紗的實_ 員著改善的光學調變效率及輝度。於海島紗之構成 :’該等島部為各向異性,而區隔該等島部之海部則 等向性。當構成該等海島紗的複數個島部及複數個海部 201102462 之門=界面,以及該等海島紗及該板材之間的界面皆為雙 折射蚪,相較於其中僅有該板材與雙折射纖維之間的界面 為雙折射的習知雙折射纖維,將可呈現出顯著改善的光風 调變效率,且因此可以應用在產業界來做為堆疊式輝度= 的另—種選擇。因此,相較於使用常用雙折射纖維二 , —列,使用雙折射海島紗的實施例可呈現出優良的光學 , 概效率’且包含呈現不同光學性質之島部與海部的雙折 在其中形成雙折射界面,以更為顯著地改 調變效率。更具體而言’在包含光學等向性海部盘 „性島部之海島紗當中,沿著空間軸的折 射^之間實質上相等或不等的程度會影響極化光線的散 ^概二之’散射效能與折射率之差異的平方成比例變化。 二一特定軸之折射率的差異增加時’根據該軸 ==線會有更強的散射。另一方面,當根據一特定軸 異很低時,根據該軸極化的光束即為微弱地 ι ^ 特絲之海部的折射率實質上等於島部之折 射:,由平行於此轴的一電場極化的入射光線並未散射’ ^於該等海島紗之一部份的大小、形狀及密度為何但 可通過該等海島紗。更具, 本發明之雙折射海島紗之為先線穿透 通道的截面圖。在此例中,Ρ波(由 線表不)通過海㈣’無關於外側與該雙折射海 =面:在雙折射海島紗中的島部與海部之間的界面, 之η 點所表7^則會f到_材與該雙折射海島紗 …,及/或在雙折射海島料的島部與海部之間的201102462 VI. Description of the Invention: [Technical Field] The present invention relates to a spinning nozzle for preparing island yarns, and more particularly to a spinning nozzle for preparing island yarns, which can avoid the accumulation of islands during spinning, even if The number of such islands is large. [Prior Art] The island yarn is a kind of yarn in which the island component is dispersed in a sea component. When the sea component is removed by elution or dissolution during post-treatment after spinning, only island components are left. Therefore, the production cost is disadvantageously increased and environmental problems occur due to waste of the resin and the use of a solvent to elute the sea component. Despite these problems, the island yarns are widely used as yarns for industrial materials, such as artificial suede, filter materials, and cleaning products, since they can produce microfibers that cannot be obtained by conventional microfiber preparation methods. In the conventional island yarn, the "sea component" represents a component that is eluted or dissolved during post-treatment after spinning, and the so-called "island component" represents the fiber component left after the sea component is removed. . The procedure for preparing a fabric from such island yarns requires a series of steps including weight reduction, napping, dyeing and the like. The fineness uniformity and napping uniformity of the miniaturized sea component fibers are important in stabilizing the fiber quality. Therefore, the arrangement and structure of the cross section of the island component fibers are the core factors determining the quality. Therefore, in order to maximize the utilization of the island composition, it is prepared by the conjugate-spinning as a sea-based alkali-soluble polymer and as an island-forming fiber-forming polymer in the shape of a sea-island shape 201102462. Island yarn. These island yarns are generally prepared for the purpose of obtaining microfibers. That is, the prepared island is treated with an alkaline solution to elute the soluble polymer as the sea component, and thereby obtain a micro iron dimension containing only the island component. Therefore, the method of preparing microfibers from such island yarns preferably exhibits excellent spinning and drawing efficiency and can be prepared as compared with the method of preparing microfibers by using direct-spinning. The higher fineness of the microfibers' is required to remove the sea component polymer by elution with an organic solvent during post-treatment after weaving or knitting. The quality improvement of the final product depends on the miniaturization of the island's constituent fibers. Therefore, a lot of research and development has been carried out in practice to further miniaturize the fineness of the constituent fibers of the island. According to the conventional commercial technology, the number of island component fibers obtained is 37 or less, and the fineness of the miniaturized island component fibers obtained is heterogeneous, and 9, therefore, a method is developed. To prepare the island component fiber: language, by increasing the number of island component fibers to % or more, to achieve micro, - field of 0.04 denier or lower. When the number of constituent fibers of the island is 38 or more, the cross-section of the island, the suspension of S, and the cross-section of the island component fibers in the island-in-the-sea yarn must be fine, especially as shown in Fig. 1 for the preparation of the (four) yarn. The conventional knowledge: two upper view J, more specifically, the circumference of the spinning spout 1 package 2 for preparing the island yarn 2 'hunting the discharge island yarn' and the peripheral portion 3, which surrounds the discharge portion σ, 'discharges 4 In the structure of 2, a plurality of island component supply passages $5 201102462 are radioactively disposed based on a spinning core 4, and the number of island component supply passages 5 may vary depending on the number of desired island components. The sea component supply passage 6 is formed in the peripheral portion 3 surrounding the periphery of the discharge portion 2. When an island component and a sea component are injected through the individual supply passages of the spinning nozzle in Fig. 1, the sea component supplied through the sea into the supply passage 6 through the spinning nozzle is introduced into the discharge portion 2' and surrounds the island constituent yarn The passage 5 fills the discharge portion 2. Through this procedure, island-in-the-sea yarns can be prepared in which islands are disposed in the sea component. Figures 2 and 3 are via the first! The spinning nozzle of the figure is obtained by spinning a cross section of a conventional island yarn (including 331 island parts). In Fig. 2, the island 12 is concentrically arranged based on a spinning core, u in the island yarn, and the island portion accounts for 30 to 7% of the entire surface of the island yarn. In Fig. 3, Fig. 14 is also arranged concentrically based on a spinning core 13 in the island yarn, and the islands occupy the entire surface of the island yarn 3 3 = 'this cross-sectional structure is normal, and when the island The number of reports = in the island: = the proportion of the cross-sectional area of the island increases, adjacent to the shape will gather during spinning: :: yarn island: will be very, 'when the number of parallel increases, it will occur in the = part The island of the (four) & K towel is gathered by the (four) & K towel, the application contains 37 or less "n-10. Because it can not be sure of the steadily (four) setting style, the design is to properly set the island in the island yarn section The present invention is based on the above problems, and an object of the present invention is to provide a spinning nozzle for preparing island yarns to avoid aggregation of islands, and Chromogenic Island Yarn is obtained.Technical Solution According to the present invention, the above and other objects are attained by providing a spinning nozzle for preparing an island (four), comprising: a discharge portion comprising a plurality of islands as a supply passage To discharge island yarns; a peripheral portion disposed in a periphery of the discharge portion, the peripheral portion including a sea component supply passage in which the island component supply passage is divided into a plurality of groups. The discharge portion may further include - or a plurality of sea component supply channels. The group of such cans (4) (four) Kawasaki) core groupings These spinning cores can include a standard spinning core, the center of the Dragon Island yarn, and a plurality of peripheral spinning cores. The core of the yarn is provided. One of the soils; the standard spinning is preferably S, the standard spinning core, the distance of reading can be substantially equal. The borders between the cores of the door and the core of the square yarn can be identical to each other. The number of spinning cores can be from 3. To the same. The number of such peripheral spinning cores can be from 6 to 忉. The number of such islands relative to a standard spinning core or one can be 10 to 3 inches. 、., The core of the square yarn is set to 201102462. The sea component supply channel can be inserted between the standard spinning core and the peripheral spinning core. The total number of supply channels of the island components can be 38 to 1,500. Total number of island component supply channels It is 500 to 1,500. The total number of supply channels for these island components can range from 1 to 1,500. The group of island supply channels can have a circular, elliptical, polygonal or non-circular cross section. The group of island component supply channels may have the same or different shapes. The spinning cores may be arranged based on the center of the discharge portion. A sea component supply channel may be provided at the center of the discharge portion. The number of the spinning cores may be from 6 to 10. The sea component supply passage may be disposed between the spinning cores. The discharge portion may have a diameter of 15 to 50 mm. The island supply channel can have a diameter of 0.1 to 0.3 mm. The sea component supply channel can have a diameter of 0.1 to 0.3 mm. The number of the discharge portions may be 2 to 20. The maximum distance between the centers of adjacent island component supply channels present in a group may be less than the maximum distance between the centers of adjacent island component supply channels present in two adjacent groups. A brief description of the terms used herein will be given below. Unless specifically mentioned, the so-called "spinning core" represents a specific standard point at which the island component supply channels are grouped (divided) on an upper plate of the spinning nozzle. 201102462 The “standard spinning core” represents a spinning core as a center, and the so-called “peripheral spinning core” represents a spinning core based on the standard spinning. The core is provided when the spinning cores are plural and the sister is composed of a spinning core and other spinning cores based on the spinning core. The so-called "island component supply channels are arranged such that they are grouped" represent a state in which the island component supply channels are arranged based on a spinning core such that they are separated by a predetermined shape, for example when two spinning When the core is present in a spinning nozzle, the 'island component supply passage is set in a predetermined shape based on the respective spinning cores' and thus the island component supply passages are in the island yarns obtained by using the spinning spun yarn Divided into two groups. The so-called "photochr" mic fiber represents a fiber that does not exhibit color through the physical and chemical bonding of a color-presenting substance (such as a dye or pigment), but uses light that is structurally and optically designed through the fiber. Interfere to present color. The term "fiber is birefringent" means that when light is irradiated to fibers having different refractive indices depending on the direction, light incident on the fibers is refracted into two different directions. The so-called "isotrope" represents a property in which an object has a fixed refractive index regardless of which direction the light passes through the object. The so-called "anisotrope" represents a property in which the optical properties of an object vary depending on the direction of the light, and an anisotropic object is birefringent and opposite to isotropic. The so-called "optical modulation" represents a phenomenon, in which the illuminating light is reflected, refracted or scattered, and the motion cycle or characteristics are changed. Or its strength, wave [Embodiment] Advantageous Effects The use of the present invention for preparing an island-in-the-sea yarn = does not collect islands at its center, even if the island is m = more 'because the islands in the island yarns It is divided into two or two, and. Therefore, the 'island yarn is significantly advantageous for the preparation of microfibers because there are 500 or more islands in the island yarn, so the system is two degrees. In addition, the advantage of these island yarns is that they can significantly reduce the cost. Because or more microfibers can be produced from an island yarn, according to the proportion of the sea to the island and the straightness of the fiber: see - special color, It is not necessary to add a chromogenic compound, such as dyed strong Lu:::: to light coloring fiber. These optically colored fibers can exhibit a variety of colors depending on the intensity of the light and the position and angle of the viewer. The island yarn containing the islands and the seas with different optical characteristics can form a birefringent interface between the portion and the sea portion, and thus the optical modulation efficiency can be more significantly improved than that of the double fold, and is not in its heart. 1 Island's turn, even if the island has a quantity of 4,500 or more. Therefore, the human island can maximize the area of an optical modulation interface and can significantly improve the optical tone 1 compared to the = island spinning yarn of a spinning core. Therefore, the brightness enhancement film of the island yarn having a high-strength film package such as a conventional birefringent fiber or an island-in-the-sea yarn has excellent optical effect of the 201102462 modulation, and exhibits an improved luminance. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The island-in-the-sea yarns prepared by the f-spinning nozzles for the island-in-the-sea yarns are in which the island portions are arranged randomly based on the spinning core or the day: yarn core. When the number of islands is small;) 1 jin structure is normal, and when the number of islands is many, the temple (about 00 or the island of the spinning core formed at the center of the island yarn == and spinning The yarns will gather together. That is to say, when there is money, the unwanted side effects (island-conjUgation) that exist in the island yarns. - preventing the aggregation of the islands in a specific embodiment, the basin: for a spinning nozzle for preparing island-in-the-sea yarns, comprising: a discharge portion, comprising: a plurality of island component supply passages for discharging island yarns, and a = It is disposed at the periphery of the discharge portion and includes a sea component supply passage, and the eight middle material island supply passages are divided into groups. More preferably, the problem can be based on designing the island supply channels based on two = The heart is divided into groups to solve. Therefore, the phenomenon that the island is excessively concentrated on the spinning core can be prevented by microfibers by forming 5 or more islands in an island yarn. = two and can reduce manufacturing costs 'because of hundreds of microfibers available from an island Manufactured 15 201102462 Figure 4 is a top view of a top plate of a spinning nozzle for preparing island-in-the-sea yarns in accordance with an embodiment of the present invention. The spinning nozzle 200 for preparing island-in-the-sea yarns includes a discharge portion 210 for discharging island yarns. And a peripheral portion 220 that surrounds the periphery of the tilling portion 210. In the structure of the discharging portion 210, a plurality of island component supply passages 215 are grouped into groups based on the four spinning cores 211, 212, 213, and 214. The group of island component supply channels is circular in the present invention, but is not limited thereto, and may have a circular shape, an elliptical shape or a plurality of non-circular shapes. The discharge portion 210 may further include a sea component supply passage 216. The position of the component supply passage 216 is not limited. However, the arrangement of the sea component supply passage 216 between the adjacent island component supply passage groups is advantageous for preventing the accumulation of the islands. Meanwhile, the number of the sea component supply passages 216 may be One or more. Similar to the conventional preparation of the island yarn spun, the peripheral portion 220 includes the sea component supply passages 221, 222, 223 and 224, and the number of the sea component supply passages 22 222, 223 and 224 is not limited. And skillfully The number of spinning cores 211, 212, 213 and 214. Figure 5 is a longitudinal sectional view of a group of island-in-the-sea yarns prepared using the nozzle of Figure 4. Four spinning cores are disposed in the island yarn 250 'And the islands 255, 256, 257, 258 are grouped based on the spinning cores 251, 252, 253, and 254. That is, the plurality of islands 255, 256, 257, 258 are based on individual spinning cores. 251, 252, 253, and 254 are separated by 'the island yarn 250 has a cross-sectional structure in which there may be as many island groups as the spinning core. In this example, when the edge of the cross-section is swollen, based on spinning The group of islands 255, 256, 257, 258 set by the yarn cores 251, 252, 253 and 254 will be deformed, which is due to the mold expansion during the spinning of the island yarn 12 201102462 :: Tour although the nozzle of Figure 4 The constituents of these islands are supplied in a heterogeneous = solid cross section. Therefore, the island group of the island yarn obtained by spinning can be semi-circular, such as a fan-shaped, circular, ellipsoidal, and their own "μ body 幵 / 夕 边 or non-circular section There is no special restriction on the shape of the second and second, and the same, the center of the spinning core is the center of the thick black point, and the point can be - island: =, and the real island 'v The work space in the middle can actually be filled into the island, or only filled into the sea. In the preferred embodiment, a standard spinning core can be placed at the center of the discharge portion 310, B, the monument and the plural The peripheral spinning cores are based on this: two: T setting. The repeated description will be omitted below, and only the special characteristics of the first embodiment will be described. Fig. 6 shows the upper plate of the island yarn 2. In particular, the structure of the row (4) training is based on the formation of a standard spinning core 3ΐι grouped at its center, and the seven peripheral spinning cores are based on the mm·17 318 system; The yarn core 31丨 is set outward. The sea component is supplied: the channels 319 320, 32 322, 323, 324 and 325 are inserted in the standard spinning core 311 Between each of the peripheral spinning cores 312, 313, 314, 315 316 317 and 318. Similar to the conventional spinning nozzle for preparing island yarn, the sea component supply passages 331, 332, 333, 334, 335, 336 and 337 can be It is formed in the peripheral portion 33 () surrounding the periphery of the discharge portion 310, but the present invention is not limited thereto. Fig. 7 is an electron micrograph of the group-type island-in-the-sea yarn prepared using the nozzle of Fig. 6. As shown in Fig. 7, a standard spinning core 351 I S3: 13 201102462 is placed at the center of the island yarn, and seven peripheral spinning cores 352 to 358 are set based on the standard spinning core 351. In this example Preferably, the distance between the standard spinning core 351 and the plurality of peripheral spinning cores 352-358 may be substantially equal or unequal. When the longitudinal section of the island yarn is circular, 'if the standard spinning core 351 is The distance between the plurality of peripheral spinning cores 352 to 358 is substantially equal, and the aggregation of the island portions can be minimized efficiently. On the other hand, when the longitudinal section of the island-in-the-sea yarn has an ellipsoidal shape, Jiadi is the standard spinning core 351 and these peripheral spinning The cores 352 to 358 are formed such that the distance between the standard spinning core 351 and the peripheral spinning cores 352 to 358 is longer in the long axis direction of the ellipsoid and shorter in the short axis direction. The number of yarn cores is preferably from 3 to 20, more preferably from 6 to 10. As shown in Fig. 7, the number of peripheral spinning cores 352 to 358 set based on the standard spinning core 351 is 6 to 8 The best results are obtained when the number of islands in the group of the standard spinning core 351 and the peripheral spinning cores 352 to 358 is 100 to 200 (Table 1). According to a preferred second embodiment of the present invention, the island-in-the-sea yarns comprise one or more spinning cores disposed based on the center of the discharge portion, and more preferably, the island-in-the-sea yarns are not included at the center thereof. Spinning the core. The repeated description will be omitted below, and only the specific characteristics of the second embodiment will be described. Fig. 8 is a top plan view showing an upper plate for preparing a spun yarn for a sea island yarn according to a second embodiment. In particular, the discharge portion 410 comprises three spinning cores 411, 412, 413' arranged based on its center 430 and eight spinning cores 414, 415, 416, 417, 418, 419, 420, 421 series 201102462 are set in the spinning Outside the yarn cores 411, 412, 413. At this time, three spinning cores 411, 412, 413 disposed in an inner region and eight spinning cores 414, 415, 416, 417, 418, 419, 420, 421 disposed outside the spinning cores are disposed. It is based on the center 430 of the island yarn. In this case, the number of spinning cores may be 3 to 20', more preferably 6 to 10, but the present invention is not limited thereto. At the same time, the sea component supply passage 430 may be formed in the space between the spinning cores 9 cores 411, 412 and 413, that is, at the center of the discharge portion 410, at the three spinning cores 411, 412, 413 and A plurality of sea component supply passages 422, 423, 424, 425, 426, 427, 428 and 429 may be formed between the eight spinning cores 414, 415, 416, 417, 418, 419, 420, 421. Further, the peripheral portion 440 may also include a plurality of sea component supply channels 441, 442, 443, 444, 445, 446, 447, and 448. Fig. 9 is a longitudinal longitudinal view of the island yarn obtained by spinning the spun yarn of Fig. 8. In particular, three spinning cores 452, 453, 454 are arranged based on the center 451 of the sea island yarn, and eight spinning cores 455 to 462 are disposed outside the spinning cores 452, 453, 454. At this time, the three spinning cores 452, 453, 454 disposed in the inner region of the crucible and the eight spinning cores 455 to 462 disposed outside the spinning core are all based on the center 451 of the island yarn. ° At the same time, when the number of island component supply channels is properly controlled, the number of island component supply channels present in the discharge portion may be 38 to 丨, 5 〇〇, and more than 500 to 1, 5 传. The most embarrassing thing is 1, to I/00. Further, the number of the island component supply passages provided in each of the spinning cores may be 10 to 300, more preferably 1 to 150' although the present invention is not limited to [S] 15 201102462. Therefore, the number of the island component supply passages adjacent to each of the spinning cores can be appropriately controlled so that the islands do not gather, and the island yarns and islands. The fineness of the crucible, the desired fineness of the microfibers, and the optical modulation efficiency are all maximized. At the same time, the diameter of the island component supply passage may be 0.1 to 3.3 mm, and the diameter of the sea component supply passage may be 〇. j. to 〇.3 mm. The island component supply channel group can have a diameter of 8 to 15 mm and the diameter of the "Hai discharge can be 15 to 50 mm. At the same time, similar to the conventional nozzle: the nozzle has a funnel shape in which the lower plate of the island yarn which is actually discharged is substantially smaller than the diameter of an upper plate. Similar to the conventional embodiment, the discharge portion in the lower plate may have a diameter of 〇1 to 〇6 mm. At the same time, the large distance between the centers of the neighboring island component supply channels in the group is smaller than the distance of the k of the adjacent island component supply channels in the two adjacent groups. That is, the spun nozzle has a non-equal distance between the two groups, thereby making the maximum distance between the centers of the adjacent island component supply channels forming the boundary between adjacent groups ( The maximum distance between the centers of adjacent island component supply channels in two adjacent groups) is greater than the maximum distance between the centers of the supply channel of the adjacent island component supply channels. Therefore, the 'island component supply passage does not coexist in (4) between the groups, and the spaces are empty because it helps prevent the accumulation of islands at the center. Further, a spinning nozzle may contain 2 to 2G discharge portions, and in this embodiment, a 2 to 20-line island yarn may be obtained via a single spinning operation. The island-in-the-sea yarns prepared using the spinning nozzle of the present invention have sufficient fineness compared to the single yarn fineness of a conventional island-in-the-sea yarn, and are preferably 201102462 having a single yarn fineness of 0.5 to 30 denier. In terms of efficiently achieving the object of the present invention, it is preferred that the single yarn fineness is 0.0001 to 1.0 denier. Therefore, the group of island-in-the-sea yarns can set the most island portions, and thus contributes significantly to the mass production of microfibers. At the same time, the brightness enhancement film of the LCD can be manufactured using these island yarns, and the sea portion is not eluted. Conventional LCD devices do not necessarily utilize the light radiated from the backlight efficiently. This is because 50% or more of the light emitted from the backlight is absorbed by a rear side optical film. Therefore, in order to increase the efficiency of use of the backlight light in the LCD device, a luminance enhancement film is interposed between an optical recess and a liquid crystal display device. However, the conventional luminance enhancement film is manufactured by alternately stacking an isotropic optical layer of a flat plate shape and a plate-shaped anisotropic optical layer having different refractive indices and performing an extension on the stacked structure. The program is such that the stacked layer has a refractive index and an optical thickness of the respective optical layers that are optimized for selective reflection and penetration of incident polarized light. Therefore, a disadvantage of this manufacturing procedure is that the manufacturing process of the luminance enhancing film is complicated. In particular, since each optical layer of the luminance enhancement film has a flat plate shape, the P-polarized light and the S-polarized light must be spaced apart from each other to accommodate a wide range of incident angles of the incident polarized light. Therefore, an excessively large number of optical layers are stacked among the structures of the film, so that it is disadvantageous in that a manufacturing cost is rapidly increased, and optical performance is deteriorated due to optical loss. Therefore, the arrangement of the island-in-the-sea yarns prepared using the spinning nozzle of the present invention can [S3: 17 201102462 such that light emitted from a light source is reflected at the birefringent interface between the island-in-the-sea yarn and an isotropic sheet material. , scattering and refraction, thereby inducing optical T-change and significantly improving luminance. (d) Yes, the radiation from the external 総 can be roughly divided into s-polarized light and p-polarized light. If only the specific polarity of the light is desired, the p-polarized light passes through a luminance enhancing film and does not affect the refractive index interface. However, the S-polarized light is modulated at the birefringent interface into a wavelength that is randomly refracted, scattered, or reflected, i.e., S-polarized light or P-polarized light. If the modulated light is again reflected and illuminated on the luminance enhancement film, the p-polarized light passes through the luminance enhancement film, and the S-polarized light is again scattered or reflected. By repeating this procedure, the desired p-polarized light is obtained. Therefore, when a plurality of group islands ~ forming a birefringent interface with a sheet are disposed in the sheet, the brightness can be remarkably improved without using the conventional stacked luminance increase _. The inventors of the present invention have found that the use of a birefringent fiber as a polymer having a birefringent interface is advantageous in that the manufacturing cost is low and the manufacturing is simple. However, compared with the conventional stacked luminance enhancement film, the disadvantage is that it cannot be improved. The brightness is to the extent desired and therefore not suitable for industrial applications. Therefore, the aforementioned problem can be solved by using a birefringent island-in-the-sea yarn as a birefringent fiber having a refractive interface. More specifically, compared to the embodiment in which the birefringent fiber is made, the use of the birefringent island-in-the-sea yarn improves the optical modulation efficiency and luminance. The composition of the island yarn: 'The islands are anisotropic, and the sea parts that separate the islands are isotropic. When the plurality of islands constituting the island yarns and the gates of the plurality of seas 201102462=the interface, and the interface between the island yarns and the plate are birefringence 蚪, compared to only the plate and the birefringence Conventional birefringent fibers in which the interface between the fibers is birefringent will exhibit significantly improved haze modulation efficiency, and thus can be applied in the industry as an alternative to stacked luminance =. Therefore, the embodiment using the birefringent island-in-the-sea yarn can exhibit excellent optical efficiency, and includes a double fold of the island portion and the sea portion exhibiting different optical properties, as compared with the use of the conventional birefringent fiber. Birefringent interface to change the efficiency more significantly. More specifically, in the island yarn containing the optically isotropic sea plate, the degree of refracting along the spatial axis is substantially equal or unequal to affect the dispersion of polarized light. 'The scattering efficiency is proportional to the square of the difference in refractive index. When the difference in refractive index of a particular axis increases, 'the line will have stronger scattering according to the axis ==. On the other hand, when it is different according to a specific axis When low, the beam polarized according to the axis is the faintly polarized sea. The refractive index of the sea is substantially equal to the refraction of the island: the incident light polarized by an electric field parallel to this axis does not scatter ' ^ The size, shape and density of one portion of the island yarns may pass through the island yarns. Further, the birefringent island-in-the-sea yarn of the present invention is a cross-sectional view of the first-line penetration passage. In this example, Chopper (not by the line) through the sea (four) 'nothing about the outer side and the birefringence sea = face: the interface between the island and the sea in the birefringent island yarn, the η point of the table 7 ^ will f _ material with the birefringent island yarn... and/or in the island of birefringent island material Between the sea part
I S J 19 201102462 1面ί影響,因此會有光學調變。因此,該等群組式海島 :艮海部對島部之比例及纖維的直徑即可呈現一特定色 5丨土而不而要加入顯色化合物,例如染料’且因此可應用 到光顯色纖維。 同時’較佳地是在兩個轴之折射率的差異為〇〇3或更 低而在其餘轴上折射率之差異為⑽$或更高。在此實施 =中’Ρ波通過海島紗的雙折射界面,而s波進行光學調 交更佳地是’當海島紗中海部與島部之間的折射率在一 ^方向上的差異為G.1或更高,且相對於其餘兩個軸向 I、4之折射率實質上等於該島部之折射 學調變效率最大化。 將光 因此’為了將海島紗之光學調變效率最大化,島部與 宮部必須呈現不同的光學特性,且一光學調變區域必須更 寬。為此目的,該等島部的數目必須儘可能地多。但是 聚集’習知包含500或更多島部之海島紗的優點 ;、予凋變界面面積減少與光學調變效率劣化,即使它 們包含各向雜島部與等向性海部。因此,在本發明中, 島部的聚集可藉由兩個或更多的紡紗核心解決,^使存在 或更多的島部。因此,使用本發明之纺嘴製備的該 島、ν呈現出最大化的光學調變效率’且使用該等海島 二的輝度增強膜亦可呈現出顯著改善的光學調變效率與輝 任何材料均可使用於海部及/或島部,只要其—般係做 為海島紗的材料即可’該海部及/或島部材料的實施例包括 20 201102462 聚萘二甲酸乙二酯(PEN)、共聚萘二甲酸乙二酯(CO-PEN)、 聚對酞酸乙二酯(PET)、聚碳酸酯(PC)、聚碳酸酯(PC)合金 、聚苯乙烯(PS)、耐熱型聚苯乙烯(PS)、聚甲基丙烯酸曱醋 (PMMA)、聚對酞酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(pE) 、丙烯腈-丁二烯-苯乙烯(ABS)、聚胺基甲酸酯(PU)、聚醯 亞胺(PI)、聚氣乙烯(PVC)、苯乙烯丙烯腈(SAN)混合物、 乙婦-乙酸乙烯 g旨(EVA ’ ethylene vinyl acetate)、聚醯胺(PA) 、聚縮醛(POM)、酚、環氧樹脂(EP)、尿素(UF)、三聚氰胺 (MF)、不飽和聚酯(UP)、矽(Si)、彈性體及環烯烴聚合物及 其組合。為有效改善光學調變,較佳地是採用在兩個軸上 具有實質上相同折射率但自一個軸上具有大不相同的折射 率之該等島部與該等海部之材料。但是,更佳地是,當在 該等雙折射海島紗中使用聚萘二甲酸乙二酯(PEN)做為島 部之材料’而單獨使用共聚萘二甲酸乙二酯及聚碳酸酯合 金或其組合做為海部之材料時,相較於由常用材料製成的 雙折射海島紗,可大幅改善其輝度。特別是當以聚碳酸酉旨 合金做為該等海部時,即可製備具有最優良光學調變性質 的雙折射海島紗。在此實施例中,該聚碳酸酯合金較佳地 是由聚碳酸酯與改質的聚對酞酸伸環己基二亞甲基酯二醇 (PCTG ,modified poly cyclohexylenedimethylene terephthalate glycol),更佳地是’當所使用的聚碳酸酯合金 係由聚碳酸酯與改質的聚對酞酸伸環己基二亞甲基酯二醇 構成’且其重量比例為15:85.到85:15時,將可有效地改善 輝度。當聚碳酸酯存在的量小於15%時,紡紗效能所需要 21 201102462 的聚合物黏度被過度地增加,故不利地於是使用一紡紗機 ,而當聚碳酸酯存在的量超過85%時,自一喷嘴排出之後 ,玻璃轉換溫度增加,且紡紗張力增加,因此使其很難確 保紡紗效能。 最佳地是,使用由聚碳酸酯與改質的聚對酞酸伸環己 基二亞曱基酯二醇構成的該聚碳酸酯合金,且其重量比例 為4:6到6·.4,即可有效地改善輝度。再者,為了有效改善 光學調變效率,較佳地是採用在兩個軸上具有實質上相同 折射率但在一個軸上具有大不相同的折射率之該等島部與 該等海部之材料。 同時,將等向性材料改質成為雙折射材料之方法為本 技術中所熟知,例如聚合物分子被導向,因此材料在當它 們在適當溫度條件之下拉伸時即成為雙折射性。 因此,使用本發明之製備海島紗用之紡嘴所製備的該 等海島紗之結構當中島部被區隔成兩個或更多的群組,因 此可避免在其中心處島部的聚集,雖然該等島部的數目為 500或更多。因此,海島紗顯著地有利於微纖維的製備, 因為在一海島紗中可設置有500或更多的島部,因此可降 低島部的微細度。此外,該等海島紗之優點在於可顯著地 降低製造成本,因為500或更多的微纖維可由一海島紗產 出。再者,該等海島紗根據海部對島部之比例及纖維的直 徑可呈現一特定色彩,而不需要加入顯色化合物,例如染 料,且因此可應用到光顯色纖維。當其海部並未洗提的該 等海島紗被應用到LCD的輝度增強膜時,它們可提供最大 22 201102462 的光學調變效果。 發明模式 以下將提供實施例及實驗性實施例以進一步瞭解本發 明。這些實施例僅做為例示性用途,其並非要限定本發明 之範疇。 <實施例1> 由比例為5:5之聚碳酸酯與改質的聚對酞酸伸環己基 二亞曱基酯二醇構成的一等向性PC合金(nx=l.57、 ny=1.57、nz=1.57)係做為一海成分,而各向異性 PEN(nx=1.88、ny=1.57、nz=1.57)係做為一島成分。為了 獲得具有如第7圖所示之截面的海島紗,海島紗(其中130 個島部設置在一紡紗核心中,且島部的總數為1040)被放置 在一紡嘴上,其上板具有如第6圖所示之截面。在這種組 成之下,150/24未拉伸紗線在紡紗溫度305°C及紡紗速率 1,500 M/min之下紡紗,然後拉伸三倍來獲得50/24拉伸紗 線。第7圖為使用第6圖之紡嘴紡紗所得的海島紗之電子 顯微圖片。由第7圖可看出,未觀察到島部的聚集。 <比較實施例1> 以相同於實施例1的方式執行紡紗,除了該等海島紗 係使用一紡嘴進行紡紗,其中存在有一紡紗核心,且在該 紡紗核心中設置有334個島成分供應通道,如第1圖所示。 E 5 ] 23 201102462 為使用第1圖之紡嘴進行紡紗所得之海島紗的電子 島部的聚集。 有出了在海料之中心處觀察到 產業應用性 本:明2備海島紗用的纺嘴呈現出優良的光學調變 海IV Γ:""成島部之聚集’且因此可廣泛地用於製備 叙V、、可應用到微纖維領域、光學裝置(如相 動電話及需要高輝度的J^CD。 丁 雖財發明的較佳具體實施例已經為了例示的目的 不热習本技藝者將可瞭解可有多種 ::其皆不請專利範圍中所揭示的二= 範疇與精神。 明之 【圖式簡單說明】 上述以及其它本發_目的、特徵及其它優 屬圖式的實施方式而更為清楚地瞭解’4 苐1圖所示為習知用於製備海 八 第2圖及第3圖為使用第m $_上視圖; 截面的電子顯微圖片 圖之纺嘴製備的海島紗之 的紡據本發明——於製備海島紗 面圖 第5圖為使用第4圖之纺嘴製備的群組式海島紗的截 24 201102462 弟6圖為根據本發明另一具體實施例中用於製備海島 紗的紡嘴之上視圖; ^ 第7圖為使用第6圖之紡嘴製備的群組式 子顯微圖片; 叫、’:/的巷 紗二:=本發明另-具體實施财用於製備海島 面圖第Γ為使用第8圖之纺嘴製備的群組式海島紗的截 第10圖為放射到使用本發明 , 之光線通道的截面圖。 汸嘴製備的該等海島紗 【主要元件符號說明】 1 紡嘴 2 排出部 3 周邊部 4 紡紗核心 5 島成分供應通道 6 海成分供應通道 11 紡紗核心 12 島部 13 纺紗核心 14 島部 200 紡嘴 210 排出部 25 紡紗核心 紡紗核心 紡紗核心 紡紗核心 島成分供應通道 海成分供應通道 周邊部 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海島紗 紡紗核心 紡紗核心 紡紗核心 紡紗核心 島部 島部 島部 島部 紡嘴 排出部 標準紡紗核心 周邊紡紗核心 26 201102462 313 314 315 316 317 318 319 * 320 321 322 323 324 325 330 331 332 ' 333 , 334 335 336 337 351 352 353 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 周邊部 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 標準紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 周邊紡紗核心 紡嘴 排出部 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 紡紗核心 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 海成分供應通道 28 201102462 428 海成分供應通道 429 海成分供應通道 430 中心 430 海成分供應通道 440 周邊部 441 海成分供應通道 • 442 海成分供應通道 1 443 海成分供應通道 444 海成分供應通道 445 海成分供應通道 446 海成分供應通道 447 海成分供應通道 448 海成分供應通道 450 海島紗 451 中心 452 紡紗核心 , 453 紡紗核心 454 紡紗核心 455 紡紗核心 456 紡紗核心 457 紡紗核心 458 紡紗核心 459 紡紗核心 460 紡紗核心 29 201102462 461 462 紡紗核心 紡紗核心 30I S J 19 201102462 1 surface ί influence, so there will be optical modulation. Therefore, the group islands: the ratio of the sea to the island and the diameter of the fiber can present a specific color of 5 bauxite instead of adding a chromogenic compound, such as a dye' and thus can be applied to optical coloring fibers. . At the same time, it is preferable that the difference in refractive index between the two axes is 〇〇3 or lower and the difference in refractive index on the remaining axes is (10)$ or higher. In this implementation, the 'chopper wave passes through the birefringent interface of the island yarn, and the s wave is optically adjusted. It is better that the difference in the refractive index between the sea and the island in the island yarn is G. .1 or higher, and the refractive index relative to the remaining two axial directions I, 4 is substantially equal to the refractive index modulation efficiency of the island portion being maximized. Therefore, in order to maximize the optical modulation efficiency of the island yarn, the island and the palace must exhibit different optical characteristics, and an optical modulation region must be wider. For this purpose, the number of such islands must be as much as possible. However, it is known that the conventional island yarns of 500 or more islands have advantages; the reduced interface area is reduced and the optical modulation efficiency is deteriorated even if they contain the respective island portions and the isotropic sea portion. Therefore, in the present invention, the aggregation of the islands can be solved by two or more spinning cores, so that there are more or more islands. Therefore, the island prepared by using the nozzle of the present invention, ν exhibits maximum optical modulation efficiency' and the brightness enhancement film using the islands 2 can also exhibit significantly improved optical modulation efficiency and any material. It can be used for the sea and/or the island as long as it is generally used as the material of the island yarn. 'Examples of the sea and/or island material include 20 201102462 polyethylene naphthalate (PEN), copolymerization Ethylene naphthalate (CO-PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate vinegar (PMMA), polybutyl phthalate (PBT), polypropylene (PP), polyethylene (pE), acrylonitrile butadiene styrene (ABS), Polyurethane (PU), polyimine (PI), polyethylene (PVC), styrene acrylonitrile (SAN) mixture, EVA 'ethylene vinyl acetate, poly Indoleamine (PA), polyacetal (POM), phenol, epoxy resin (EP), urea (UF), melamine (MF), unsaturated polyester (UP), cerium (Si), elastomers and rings Hydrocarbon polymer, and combinations thereof. In order to effectively improve the optical modulation, it is preferred to use materials of the islands and the sea portions having substantially the same refractive index on two axes but having greatly different refractive indices from one axis. More preferably, however, when polyethylene naphthalate (PEN) is used as the material of the island in the birefringent island-in-the-sea yarns, the copolymer of ethylene naphthalate and polycarbonate alloy or When the combination is used as a material for the sea, the brightness can be greatly improved compared to the birefringent island yarn made of a common material. In particular, when a polycarbonate-based alloy is used as the sea portions, a birefringent island-in-the-sea yarn having the most excellent optical modulation properties can be prepared. In this embodiment, the polycarbonate alloy is preferably made of polycarbonate and modified polycyclohexylene dimethylene terephthalate glycol (PCTG), more preferably It is 'when the polycarbonate alloy used is composed of polycarbonate and modified poly(p-butylene hexamethylene dimethylene glycol diol) and its weight ratio is from 15:85 to 85:15. Will effectively improve the brightness. When the amount of polycarbonate present is less than 15%, the viscosity of the polymer required for the spinning performance 21 201102462 is excessively increased, so that a spinning machine is disadvantageously used, and when the amount of the polycarbonate exceeds 85% After the discharge from a nozzle, the glass transition temperature is increased and the spinning tension is increased, so that it is difficult to ensure the spinning efficiency. Most preferably, the polycarbonate alloy composed of polycarbonate and modified polyparasinic acid cyclohexyldimethylene glycol diol is used, and the weight ratio thereof is 4:6 to 6.4. It can effectively improve the brightness. Furthermore, in order to effectively improve the optical modulation efficiency, it is preferable to use the islands and the materials of the sea portions having substantially the same refractive index on two axes but having greatly different refractive indices on one axis. . At the same time, methods for upgrading isotropic materials to birefringent materials are well known in the art, for example, polymer molecules are oriented so that the materials become birefringent when they are stretched under suitable temperature conditions. Therefore, among the structures of the island-in-the-sea yarns prepared by using the spinning nozzle for producing island-in-the-sea yarns of the present invention, the island portions are divided into two or more groups, so that the aggregation of the island portions at the center thereof can be avoided. Although the number of such islands is 500 or more. Therefore, the island-in-the-sea yarn is remarkably advantageous for the preparation of microfibers because 500 or more island portions can be provided in a sea-island yarn, so that the fineness of the island portion can be reduced. Moreover, these island-in-the-sea yarns have the advantage that the manufacturing cost can be remarkably reduced because 500 or more microfibers can be produced from a sea-island yarn. Further, the island yarns may exhibit a specific color depending on the ratio of the sea portion to the island portion and the diameter of the fibers, without the need to add a color developing compound such as a dye, and thus may be applied to the optical color developing fiber. When the island yarns that are not washed out in the sea are applied to the brightness enhancement film of the LCD, they provide an optical modulation effect of up to 22 201102462. Mode for the Invention The examples and experimental examples are provided below to further understand the present invention. These examples are for illustrative purposes only and are not intended to limit the scope of the invention. <Example 1> An isotropic PC alloy composed of a polycarbonate having a ratio of 5:5 and modified poly(p-butylene phthalate dicyclodecyl decyl diol) (nx = 1.57, ny =1.57, nz=1.57) is a sea component, and anisotropic PEN (nx=1.88, ny=1.57, nz=1.57) is used as an island component. In order to obtain an island-in-the-sea yarn having a section as shown in Fig. 7, island-in-the-sea yarns (130 islands are disposed in a spinning core and the total number of islands is 1040) are placed on a spinning nozzle, the upper plate It has a cross section as shown in Fig. 6. Under this composition, the 150/24 undrawn yarn was spun at a spinning temperature of 305 ° C and a spinning rate of 1,500 M/min, and then stretched three times to obtain a 50/24 drawn yarn. Fig. 7 is an electron micrograph of the island-in-the-sea yarn obtained by spinning the spun yarn of Fig. 6. As can be seen from Fig. 7, no aggregation of the islands was observed. <Comparative Example 1> Spinning was carried out in the same manner as in Example 1, except that the island-in-the-sea yarns were spun using a spinning nozzle in which a spinning core was present, and 334 was provided in the spinning core. An island component supply channel, as shown in Figure 1. E 5 ] 23 201102462 The aggregation of the islands of the island-in-the-sea yarn obtained by spinning using the spinning nozzle of Fig. 1 . There is an industrial applicability observed at the center of the sea material. The spinning nozzle for the 2nd island yarn exhibits an excellent optical modulation sea Γ:""the accumulation of the islands and thus can be widely For the preparation of the V, can be applied to the field of microfibers, optical devices (such as phase-shifting phones and J^CD requiring high brightness. The preferred embodiment of the Ding Cai invention has not been used for the purpose of illustration. Those who know will be able to understand a variety of things: they do not ask for the scope and spirit of the two scopes disclosed in the patent scope. [Simplified description of the schema] The above and other embodiments of the present invention, features and other preferred schemas A clearer understanding of the '4 苐 1 diagram is shown in the figure for the preparation of Hai Ba 2 and 3 is the use of the m $_ top view; the section of the electron micrograph image of the island prepared by the nozzle Yarn of the yarn according to the present invention - in the preparation of the island yarn surface Figure 5 is a sectional sea-island yarn prepared using the nozzle of Figure 4, section 24 201102462, Figure 6 is in accordance with another embodiment of the present invention Top view of the spinning nozzle used to prepare the island yarn; ^ Figure 7 Group sub-micrograph prepared using the nozzle of Fig. 6; called: ': / lane yarn two: = another invention - specific implementation of the preparation of the island surface map Γ for the use of the eighth figure of the spinning Section 10 of the group-type island-in-the-sea yarn prepared by the nozzle is a cross-sectional view of the light passage radiated to the use of the present invention. The island-in-the-sea yarns prepared by the nozzle [Description of main components] 1 Spinning ring 2 The periphery of the discharge portion 3 4 Spinning core 5 Island component supply channel 6 Sea component supply channel 11 Spinning core 12 Island 13 Spinning core 14 Island 200 Spinner 210 Discharge part 25 Spinning core spinning core spinning core spinning core island component supply Channel sea component supply channel peripheral sea component supply channel sea component supply channel sea component supply channel sea component supply channel island yarn spinning core spinning core spinning core spinning core island island island island spinning mouth discharge standard Spinning core peripheral spinning core 26 201102462 313 314 315 316 317 318 319 * 320 321 322 323 324 325 330 331 332 ' 333 , 334 335 336 337 351 352 353 Peripheral spinning core week Side spinning core peripheral spinning core peripheral spinning core peripheral spinning core peripheral spinning core sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel peripheral part Sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel standard spinning core peripheral spinning core peripheral spinning core peripheral spinning core peripheral spinning core peripheral spinning Yarn core peripheral spinning core peripheral spinning core spinning nozzle discharge spinning core spinning core spinning core spinning core spinning core spinning core spinning core spinning core spinning core spinning core spinning core sea component Supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel sea component supply channel 28 201102462 428 sea component supply channel 429 sea component supply channel 430 center 430 sea component supply channel 440 peripheral part 441 sea component supply channel • 442 sea component supply channel 1 443 sea component supply channel 444 sea component supply channel 445 sea component supply channel 446 sea component supply channel 447 sea component supply channel 448 sea component supply channel 450 island yarn 451 center 452 spinning core, 453 spinning Core 454 Spinning Core 455 Spinning Core 456 Spinning Core 457 Spinning Core 458 Spinning Core 459 Spinning Core 460 Spinning Core 29 201102462 461 462 Spinning Core Spinning Core 30