TW201211593A - Luminance- enhanced film - Google Patents

Luminance- enhanced film Download PDF

Info

Publication number
TW201211593A
TW201211593A TW100110820A TW100110820A TW201211593A TW 201211593 A TW201211593 A TW 201211593A TW 100110820 A TW100110820 A TW 100110820A TW 100110820 A TW100110820 A TW 100110820A TW 201211593 A TW201211593 A TW 201211593A
Authority
TW
Taiwan
Prior art keywords
island
yarn
sea
birefringent
enhancement film
Prior art date
Application number
TW100110820A
Other languages
Chinese (zh)
Other versions
TWI428644B (en
Inventor
Seong-Dae Chi
Kyu-Chang Kim
Deog-Jae Jo
Jin-Soo Kim
Do-Hyun Kim
In-Young Yang
Hyoun-Soo Lee
Original Assignee
Woongjin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100030412A external-priority patent/KR101198207B1/en
Priority claimed from KR1020100030415A external-priority patent/KR20110111037A/en
Priority claimed from KR1020100030414A external-priority patent/KR20110111036A/en
Application filed by Woongjin Chemical Co Ltd filed Critical Woongjin Chemical Co Ltd
Publication of TW201211593A publication Critical patent/TW201211593A/en
Application granted granted Critical
Publication of TWI428644B publication Critical patent/TWI428644B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Abstract

Disclosed is a luminance-enhanced film, more particularly a luminance-enhanced film with the broken filament improved by preventing breakage of the birefringent island-in-the-sea yarn. With no fibrous band occurring by preventing entanglement of birefringent island-in-the-sea yarns, the luminance-enhanced film has improved visibility. In addition, when the birefringent island-in-the-sea yarns are used as monofilaments or when they are composited as composite filaments, breakage of fiber during spinning or stretching can be prevented since only a few thick strands of fiber need to be composited, and thus broken filament can be prevented.

Description

201211593 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種輝度增強膜,尤其是關於一種包含 雙折射海島紗的輝度增強膜,該雙折射海島紗有的斷裂單 絲問題,可藉由防止雙折射海島紗斷裂來解決。 【先前技術】 液晶顯示器(Liquid Crystal Display,LCD)、投影顯示器 及電漿顯示面板(Plasma Display Panel,PDP)在平板顯示器 TV領域,已有牢固的市場。吾人亦期望場發射顯示器(Field Emission Display ,FED)、 電致發光顯示器 (Electroluminescent Display,ELD)等,以該等各別有利的特 性隨同與此相關的技術改良,將會在市場上佔有一席之地 。LCD的應用範圍已延伸至筆記型電腦、個人電腦監視器 、液晶TV、車輛、飛機等。從1998年後半期開始,幸虧 需求的急遽增加,使得LCD佔有約80%平板市場,且全球 性銷售極為強勁。 於習知的LCD結構中,液晶與一電極基質係設置在一 對會吸光的光學膜之間。在LCD中,液晶藉由施加電壓到 兩個電極所產生的電場而移動,因此具有隨電場改變之光 學狀態。此程序係藉由在特定方向極化,來顯示「像素」 影像儲存資訊。據此,LCD包括一前光學膜及一後光學膜 來誘發此極化。 由於背光所放射之光線的50%以上係由後側光學膜所 201211593 吸收,故LCD裝置未必對背光所放射之光線具有高使用效 率。因此’為了增加LCD裝置中該背光光線之使用效率, 可於光學凹穴與液晶組件之間插入輝度增強膜。 第la圖為一習知輝度增強膜之光學原理示意圖。具體 而言,由光學凹穴導向到液晶組件之光線的p極化光線可 經由輝度增強膜轉移到液晶組件,而其§極化的光線在該 輝度增強膜反射到該光學凹穴,再由光學凹穴的擴散反射 表面所反射,其中光線之極化方向成為隨機,然後再次轉 移到該輝度增強膜。結果,該S極化的光線被轉換成P極 化的光線,其可通過該液晶組件之偏光片,然後經由輝度 增強膜轉移到液晶組件。 S極化光線相對於在該輝度増強膜上的入射光線之選 擇性反射及P極化光線之穿透係藉由各別光學層之間折射 率的差異來進行,根據堆疊的光學層之延伸及該光學層之 折射率中的變化決定每一光學層的光學厚度,其狀態當中 具有異向性反射係數之平板光學層與具有等向性反射係數 之平板光學層以複數交替地堆疊。 也就是說,入射在該輝度增強膜上的光線受到該s極 化光線之反射及該P極化光線之穿透,而穿過該等接受的 光學層。因此’僅有該入射的極化光線之p極化光線被轉 移到該液晶組件。同時,該反射的s極化光線由該光學凹 穴的擴散反射表面所反射,其狀態當中其極化狀態如前述 成為隨機’然後再次轉移到該輝度增強膜。因此,可以降 低來自一光源所產生之光線損失及電力的浪費。 201211593 此習知輝度增強膜係藉由交替地堆疊平板形等向性光 學層與平板形異向性光學層來製造,其具有不同的折射 率,並在該堆疊結構上執行一延伸程序,使該堆疊層具有 該等各別光學層之一折射率及一光學厚度,其可對於入射 的極化光線之選擇性反射及穿透來做最適化。因此,此製 造程序複雜。特別是,因為該輝度增強膜之每一光學層具 有一平板形,p極化光線與s極化光線針對該入射的極化 光線之入射角度的大範圍而必須彼此隔開。因此,此膜之 結構當中堆疊有過度增加的光學層數目,因此造成製造成 本之指數性增加。此外,此結構之缺點在於造成光學損失, 因此劣化了光學效能。 吾人發現在基質中包含一雙折射海島紗的輝度增強膜 在解決上述問題極為有利。具體而言,在使用雙折射海島 紗時,相較於使用一般雙折射纖維時可顯著改良光學調變 效率及輝度。海島紗之島部為異向性,另一方面海部為等 向性。在此情況,由於在海島紗之島部及海部間之邊界為 雙折射界面,除了在海島紗及基質之間者之外,相較於一 般雙折射纖維,其中雙折射界面僅形成於基質及雙折射纖 維間之邊界,則光學調變效應被顯著地改善,這使其能夠 替代工業用途的堆疊型輝度增強膜。結果,雙折射海島紗 之使用,相較於一般雙折射纖維之使用,可提供更佳的輝 度改良。也就是說,雙折射海島紗内部之雙折射界面之形 成,其係由島部及海部之不同光學性質所造成,而提供更 顯著的輝度改良。 201211593 折m 率最大化,較佳是存在於雔 斤射海島紗的雙折射界面之面積增大。為此目❸、又 ,折射海島紗中之島部數目應為大量。無論如何,^知^ :至少包括圍繞一紡紗核心呈同心圓配置的島部。: =數目為少時,則該剖面的結構並無問題。然而,卷: 數目為多時(約個或更多),由於高密度,在纺紗;門: 形成於海島紗中心的紡紗核心鄰接的島部可凝: 凝集)。更具體言之’第lb圖表示包含331個島部之習知 海島紗的剖面圖。在圖中,於海島紗中島部12圍繞—纺紗 核心11 i同心圓地配置’且島部佔有海島紗全體剖面^ 30%至7G%。當島部數目少時,此等剖面的結構並無問題 。然而’當島部數目大時(約300個或更多),由於高密度, ,紡紗期間與形成於海島紗中心、的紡紗核心i i鄰接的^部 可凝聚-起。換句話說’在海島紗之島部數目增加時,海 島紗中心的島部之凝聚及結塊的不良副作用(島凝集)很容 易發生。 因此由於島/破集現象,當島部數目增加,具有一般 剖面的雙折射海島紗具有顯著減少的雙折射界面區域,且 無法如所霉改良光學調變效率。 由於使用於輝度增強膜的習知雙折射海島紗僅有 36-300個島部’具有1〇_3〇μιη的直徑且具有⑽·細個島 部的雙折射海島紗單絲已被扭絞成為7-144股(40丹尼/12 單絲至丹尼/144料)以改良«料的鮮調變效 率。雖然由於雙折射界面增加,使得光學調變效率被改良, 201211593 拉二:中生纖維帶。再者,當包括十此^ 斷裂造成裂(紗斷裂),造成斷裂單絲。由於紗 強膜用於LCD時生::導故發生反極化效應。當輝度增 陷。此外,在LI 光學調變效率降低且造成缺 呼導致不海島紗之梭織(織物製造)期間,斷裂單 4導致不良開襟,因而造成梭織工作性不良。 早 【發明内容】 射海提供—輝度㈣膜’藉由防止雙折 島、、:/之糾纏而不會發生纖維帶。 本發明揭示亦指向提供—輝度纟^ ^ ^ ^ ^ ^ ^ ^ 射海島紗之斷裂,而無發生斷裂料強膜藉由防止雙折 包人在態樣’本發明揭示提供—種輝度增強膜,其 ^-基質;及基f内之—雙折射海島紗,其且 的雙折射界面’用以改善^學調變 在至少,向具有不 万程式1疋義之Α值為500或以上: [方程式1] · A=—單絲之島部數目/ 一複合絲之單絲數目 在本發明揭示之-具體實施例,A值可為1〇〇〇或 ’較佳為5000或以上,更佳為〗nnn 或以上。 更佳為1〇_或以上,再更佳為20_ 本發明揭示之另-具體實施例,雙折射海島紗之單絲 201211593 ' 可具有1000個或以上之島部,較佳為5000個或以上之島 部,更佳為10000或以上之島部,最佳是20000個或以上 之島部。 在本發明揭示之一具體實施例,雙折射海島紗之單絲 可具有的直徑為30μιη或以上,最佳是40-100μιη。 在本發明揭示之另一具體實施例,雙折射海島紗可為 15-500丹尼/1-6單絲。 在本發明揭示之另一具體實施例,雙折射海島紗可為 一單絲或一 2-6股之複合絲。 在本發明揭示之另一具體實施例,雙折射海島紗可編 織成為織物,織物之緯紗及經紗之一種可為一雙折射海島 紗,且另一種可為一纖維,且雙折射海島紗之島部的熔化 起始溫度可高於纖維的熔化溫度。 在本發明揭示之另一具體實施例,一雙折射界面可形 成於雙折射海島紗之島部及海部間的邊界。 在本發明揭示之具體實施例中,纖維可為光學等向性 纖維。 在本發明揭示之另一具體實施例中,纖維可為選自由 聚合物纖維、自然纖維及無機纖維所組成群組中之一種或 多種纖維。 在本發明揭示之另一具體實施例,雙折射海島紗之島 部的熔化起始溫度可高於海部的熔化溫度。更佳為,雙折 射海島紗之島部的熔化起始溫度可較海部的熔化溫度高 30°C或以上。 201211593 在本發明揭示之另— 部的炫化起始溫度可實施例’雙折射海島紗之島201211593 VI. Description of the Invention: [Technical Field] The present invention relates to a brightness enhancement film, and more particularly to a brightness enhancement film comprising a birefringent island-in-the-sea yarn, which has a problem of broken monofilament It is solved by preventing the birefringence island yarn from breaking. [Prior Art] Liquid crystal displays (LCDs), projection displays, and plasma display panels (PDPs) have a strong market in the field of flat panel display TVs. We also expect Field Emission Display (FED), Electroluminescent Display (ELD), etc., to have a place in the market with these various advantageous features along with the related technical improvements. LCD applications have extended to notebook computers, personal computer monitors, LCD TVs, vehicles, airplanes, and more. Since the second half of 1998, thanks to the rapid increase in demand, LCDs account for about 80% of the tablet market, and global sales are extremely strong. In a conventional LCD structure, a liquid crystal and an electrode substrate are disposed between a pair of optical films that absorb light. In an LCD, a liquid crystal moves by applying a voltage to an electric field generated by two electrodes, and thus has an optical state that changes with an electric field. This program displays "pixel" image storage information by polarizing in a specific direction. Accordingly, the LCD includes a front optical film and a rear optical film to induce this polarization. Since more than 50% of the light emitted by the backlight is absorbed by the rear side optical film 201211593, the LCD device does not necessarily have high use efficiency for the light emitted by the backlight. Therefore, in order to increase the efficiency of use of the backlight light in the LCD device, a luminance enhancement film can be interposed between the optical recess and the liquid crystal module. Figure la is a schematic diagram of the optical principle of a conventional luminance enhancement film. Specifically, the p-polarized light of the light guided by the optical recess to the liquid crystal component can be transferred to the liquid crystal component via the luminance enhancement film, and the § polarized light is reflected to the optical cavity by the luminance enhancement film, and then The diffuse reflective surface of the optical cavity is reflected, wherein the direction of polarization of the light becomes random and then transferred to the luminance enhancement film again. As a result, the S-polarized light is converted into P-polarized light which can pass through the polarizer of the liquid crystal module and then transferred to the liquid crystal module via the luminance enhancement film. The selective reflection of the S-polarized light with respect to the incident light on the luminance-sensitive film and the penetration of the P-polarized light are performed by the difference in refractive index between the respective optical layers, according to the extension of the stacked optical layers And the change in the refractive index of the optical layer determines the optical thickness of each optical layer, in which a flat optical layer having an anisotropic reflection coefficient and a flat optical layer having an isotropic reflection coefficient are alternately stacked in plural. That is, the light incident on the luminance enhancement film is reflected by the spolarized light and penetrated by the P polarized light to pass through the received optical layers. Therefore, only the p-polarized light of the incident polarized light is transferred to the liquid crystal element. At the same time, the reflected s-polarized light is reflected by the diffuse reflective surface of the optical recess, and its state of polarization is random as described above and then transferred to the luminance enhancement film again. Therefore, it is possible to reduce the light loss and power waste generated from a light source. 201211593 The conventional brightness enhancement film is manufactured by alternately stacking a plate-shaped isotropic optical layer and a flat-plate anisotropic optical layer having different refractive indices and performing an extension process on the stacked structure. The stacked layer has a refractive index and an optical thickness of the respective optical layers that are optimized for selective reflection and penetration of incident polarized light. Therefore, this manufacturing process is complicated. In particular, since each optical layer of the luminance enhancement film has a flat plate shape, the p-polarized light and the s-polarized light must be spaced apart from each other for a wide range of incident angles of the incident polarized light. Therefore, the structure of this film is stacked with an excessively increased number of optical layers, thus causing an exponential increase in manufacturing cost. Moreover, this structure has the disadvantage of causing optical loss, thus deteriorating optical performance. It has been found that a brightness enhancement film comprising a birefringent island-in-the-sea yarn in a matrix is extremely advantageous in solving the above problems. Specifically, when birefringent island-in-the-sea yarns are used, optical modulation efficiency and luminance can be remarkably improved as compared with the case of using general birefringent fibers. The island island of Yarn Island is anisotropic, while the sea is anisotropic. In this case, since the boundary between the island portion of the island yarn and the sea portion is a birefringent interface, in addition to being between the island yarn and the substrate, the birefringent interface is formed only on the substrate and compared with the general birefringent fiber. The boundary between the birefringent fibers, the optical modulation effect is significantly improved, which makes it possible to replace the stacked brightness enhancement film for industrial use. As a result, the use of birefringent island-in-the-sea yarns provides better brightness improvement than the use of conventional birefringent fibers. That is to say, the formation of the birefringent interface inside the birefringent island-in-the-sea yarn is caused by the different optical properties of the island and the sea, and provides a more remarkable brightness improvement. 201211593 The maximum m-fold ratio is maximized, preferably in the area of the birefringent interface existing in the island of the island. To this end, the number of islands in the island yarn should be large. In any case, ^ know ^: at least includes islands arranged concentrically around a spinning core. : = When the number is small, there is no problem with the structure of the section. However, the volume: the number of times (about one or more), due to the high density, in the spinning; the door: the island adjacent to the spinning core formed in the center of the island yarn can be coagulated: agglomerated). More specifically, the 'lb' shows a cross-sectional view of a conventional island-in-the-sea yarn comprising 331 islands. In the figure, in the island yarn, the island portion 12 is arranged concentrically around the spinning core 11 i and the island portion occupies 30% to 7 G% of the entire section of the island yarn. When the number of islands is small, the structure of these sections is not problematic. However, when the number of islands is large (about 300 or more), due to the high density, the portions adjacent to the spinning core i i formed at the center of the island yarn can be agglomerated during the spinning. In other words, when the number of islands on the island yarn increases, the aggregation of the islands in the center of the island yarn and the adverse side effects of agglomeration (island agglutination) are easy to occur. Therefore, due to the island/collision phenomenon, as the number of islands increases, the birefringent island-in-the-sea yarn having a general profile has a significantly reduced birefringence interface region, and the optical modulation efficiency cannot be improved as much as possible. Since the conventional birefringent island-in-the-sea yarn used for the luminance enhancement film has only 36-300 island portions having a diameter of 1〇_3〇μη and having a (10)·fine island portion, the birefringent island yarn monofilament has been twisted Become 7-144 shares (40 Danny / 12 monofilament to Danny / 144) to improve the fresh modulation efficiency of the material. Although the optical modulation efficiency is improved due to the increase of the birefringence interface, 201211593 pulls two: the medium fiber ribbon. Furthermore, when a crack is included in the crack, the yarn breaks, causing the broken monofilament. Since the strong film is used in the LCD, the reverse polarization effect occurs. When the brightness is increased. In addition, during the LI optical modulation efficiency is lowered and the absence of the defect causes the weaving of the island yarn (fabric manufacturing), the breaking sheet 4 causes poor opening, thereby causing poor workability of the weaving. Early [Summary of the Invention] The sea-providing-luminance (four) film ' does not cause a fiber band by preventing the entanglement of the double-fold island, :/. The disclosure of the present invention also points to providing a luminosity y ^ ^ ^ ^ ^ ^ ^ ^ rupture of the island-in-the-sea yarn without the occurrence of a rupture material strong film by preventing the double-folding of the human in the aspect of the invention. , the ^-matrix; and the birefringent island-in-the-sea yarn in the base f, and the birefringent interface 'is used to improve the 学 调 在 在 在 在 在 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少Equation 1] · A = - Number of islands of monofilament / Number of filaments of a composite yarn In the disclosed embodiment - the value of A may be 1 〇〇〇 or 'preferably 5000 or more, more preferably Is nnn or above. More preferably, it is 1 〇 or more, and even more preferably 20 _. In another embodiment of the present invention, the monofilament 201211593' of the birefringent island-in-the-sea yarn may have 1000 or more islands, preferably 5,000 or more. The island is better than the island of 10,000 or more, and the best is the island of 20,000 or more. In one embodiment of the present invention, the monofilament of the birefringent island-in-the-sea yarn may have a diameter of 30 μm or more, preferably 40 to 100 μm. In another embodiment of the present disclosure, the birefringent island-in-the-sea yarn can be 15-500 denier/1-6 monofilament. In another embodiment of the present disclosure, the birefringent island-in-the-sea yarn can be a monofilament or a 2-6 strand composite yarn. In another embodiment of the present disclosure, the birefringent island-in-the-sea yarn can be woven into a fabric, one of the weft and warp yarns of the fabric can be a birefringent island-in-the-sea yarn, and the other can be a fiber, and the island of birefringent island yarn The melting initiation temperature of the portion may be higher than the melting temperature of the fiber. In another embodiment of the present disclosure, a birefringent interface can be formed at the boundary between the island portion of the birefringent island-in-the-sea yarn and the sea portion. In a particular embodiment of the invention disclosed, the fibers can be optically isotropic fibers. In another embodiment of the present disclosure, the fibers may be one or more fibers selected from the group consisting of polymeric fibers, natural fibers, and inorganic fibers. In another embodiment of the present disclosure, the melting initiation temperature of the island portion of the birefringent island-in-the-sea yarn may be higher than the melting temperature of the sea portion. More preferably, the melting initiation temperature of the island of the double-refraction island yarn may be 30 ° C or more higher than the melting temperature of the sea portion. 201211593 The illusion initiation temperature of the other part disclosed in the present invention can be embodied as an island of birefringent island yarn

射海島紗之島部的熔没t隹為’雙折 或以上。 ⑽化起始溫度較纖維之熔化溫度高30T 部可部分=:=另-具體實施例’雙折射海島紗之海 島炒 在本發_示之另—具體實施财,島部可為光學雙 折射,且海部可為光學等向性。 示之另—具體實施财,基f與雙折射海 :轴方向之折射率差異可為㈣或以下,且在 基質與雙折射海島紗間在剩餘之一轴方向的折射率之差異 次乂上。具體而言,假設該基質在χ·、y-及z-軸方 向之折射率分別為ηχι、ηγι及nZl ’且該雙折射海島紗在 X_、y-及Ζ·轴方向之折射率分別為nX2、ηγ2及nz2,則該基 質在X 及&amp;軸方向之折射率之至少一者可能與該雙折 射海島紗折射率相同。更具體而言,可能具有下列關係: nX2 &gt; nY2=n22 〇 在本發明揭示之另一具體實施例中,該雙折射海島紗 之海部與該島部於二軸方向的折射率差異為〇.〇5或以下, 且該雙折射海島紗之海部與該島部於其餘一軸方向的折射 率差異為0.1或以上。 更具體而言,假設該雙折射海島紗之島部於χ_(縱向) 201211593 、y-及z-軸方向之折射率分 於X-、y-及z-軸方向之折…ηχ3 ηγ3及取3,且该海部 基質於X-、y-及Μ由方:率分別為ηχ4、〜及吻,則讀 海島紗之折射率相同。更射率之至少其—可與雙折射 異之絕對值可能為(U—f而言’折射率吻與ηΧ4的差 在本發明揭示之另—且 之海刪物㈣赠射海島紗 在本發明揭示之另一且 編織,以使雙折射海島紗較纖維露於不對稱地 在此使⑽術語將給技要的說明。 而且二π::ϊ雙折射的」意指當光照射在依不同方向 兩不同方向上折射。 人射至該等纖維之光線係在 、二si等向性」係指物品之-種光學性質,當光線通 l該物4 ’該物品在所有方向之折射率均相同。 。異種物品依方向而定之光學性質 術異向性之相反詞為等向性。 I先學讀」意指—種程序 反射、折射或散射,或是其強户所“、、射之先經 術語「單轉替置衣或特性被改變。 股 皁4」係私皁一股之纖維而 形成之物。從一紡嘴被紡紗 疋由扭纹數條 振狂「々人.卜4皁版,且被捲繞使用。 唯,例如心&quot;4」係‘由—或更多股之單絲所形成之鐵 維例如藉由旋轉或橋接,以使該等 已通過纺嘴之上分配板的不同毛細管或島部:給 201211593 後在用以紡紗之押出前進行結合的纖維並不包含於此複合 絲内。因此,具有細纖維島部之雙折射海島紗為單絲,而 非複合絲,因為該細纖維島部已通過不同紡嘴,且其後在 紡紗前結合以形成一雙折射海島紗。 術語「斷裂單絲」係指構成複合絲之纖維的一些股斷 裂所造成的缺陷。 術語「紡紗核心」意指當從海島紗之縱向剖面觀之, 做為海島紗中參考點之特定點,環繞該點之島部被分成群 組(區隔化)。 術語「標準紡紗核心」係指做為中心之紡紗核心;而 術語「周邊紡紗核心」意指環繞該標準紡紗核心之其餘紡 紗核心,該等紡紗核心為複數,並且環繞一個紡紗核心而 排列。 語句「將此等島部以使其分成群組之方式排列」係指 海島紗中之島部環繞一紡紗核心排列之狀態,其排列方式 能使此等島部被分隔而成為具有預定形狀之群組。例如, 當於海島紗中存在二個紡紗核心時,此等島部以預定之形 狀環繞各紡紗核心排列,因此在該海島紗中此等島部被分 成二群組。 術語「熔化起始溫度」意指聚合物開始熔化之溫度, 以及術語「熔化溫度」意指熔化發生最快速之溫度。因此 ,當聚合物之溶化溫度係由示差掃描量熱法(Differential Scanning Calorimetry ,DSC)觀察時,溶化吸熱尖峰起點之溫 度為熔化起始溫度,且對應於吸熱尖峰之頂端的溫度為熔 12 201211593 化溫度。 改良可视^足1的雙折射海島紗之輝度增強膜已經 ,H R1 π又化义因為並不發生雙折射海島紗(單絲)的糾纏 單絲或當此外’當_雙折射海島紗用作 兩 成為複合絲,由於僅有纖維的一些粗的股 而被·復合,而可陕, 而可防止斷罗-、在紡紗或拉伸期間之纖維斷裂,且因 持光風因此,由於不發生反極化效應而可維 符九學調變效率,$ 1 著改良輝度增_ 由於輝度增強膜沒有缺陷而可顯 # θι ^ ^ J 、的外觀。再者,由於在梭織期間不因開 、。本而中斷緯紗之移動 ,故可改良梭織工作性。 明之其他特徵及態樣由下述詳細說明、附圖及申 明專利範圍為明顯可知。 了圓 【實施方式】 由參照下述提及的_之下列具體實施例所描述,本 益/不之優點、特徵及態樣將明顯可知。本發明揭示, =如何’可以不_式具體化且不應被理解為受到在此 以伟t具體實施例所限制。#然,該等具體實施例係提供 揭示内容徹底且完整,且將完全傳達予熟悉該項技 本發明揭示之範嘴。在此使用的術語係僅用以描述 A \。施例且並未意圖限制例示具體實施例。在此所使用 ,’單數形式「―」及「該」也意圖包含複數形式,除 在上下文有另外清楚地說明。吾人進一步瞭解當使於 說明書時’術語「至少、包括」指明存在所述特徵、整數 201211593 、步驟、操作、元件及/或組件,但並不排除存在或附加一 種或多種其他特徵、整數、步驟、操作、元件、組件及/或 群組。 茲參照附圖,詳細說明例示性具體實施例如下。 如上述,島凝集發生於習知的雙折射海島紗,其係使 用於具有100-300個島部的輝度增強膜。具有直徑為 1〇-3〇μΠ1的雙折射海島紗(單絲)且具有已扭絞成7-ηΓ股 (40丹尼m單絲至500丹尼/144單絲)的36_3〇〇個島部, 係用以改良商業應用上的光學調變效率,這是因為島部數 目&gt; _然由於雙折射界面的增加改良了光學調變 效率’在複合的雙折射海島紗單、__度增強膜作為單 絲而被糾纏時’則纖維帶仍易發生。再者 根股的料被拉伸時,料中—些可能斷裂(紗斷裂),造成 斷裂單絲。由於紗斷裂造成纖維方向性改變,產生反極化 效應。此導致光學觀鱗降低,並造_度增強膜的缺 陷。此外’斷裂單絲會導致的問題是,當在雙折射海島紗 之梭織(織造)期間’斷裂纖維通過梭織機綜框的本體及半徑 而被捕獲,因而造成不良梭織工作性。 本表明人等已在韓國專利申請案第2〇〇9_12138號揭示 一種纺嘴’用以製備'海島紗。具體而言,第2圖表示-纺嘴之剖面’該紡嘴至少包括-聚合物射出單元2〇,其可 射出島部及海部聚合物。第3圖表示紡嘴之上分 配板30。 複數個聚口物射出單元31被形成藉以紡紗複數個雙折射海 島紗。在此設置-下纺嘴板(第4圖),其具有與形成在纺嘴 201211593 (例如聚合物射出口數目與聚合物排 if ^ ^ . 数a相同)的上分 -板30之聚合物射出單元31相對應的排出口 41、42、43, 如此可製傷具有觀個島部的雙折射海島 圖)。如第2圖所示可自—聚合物射出單元製備—海島紗(第 5屮圖?1且如第3圖所示複數個海島紗可自複數個聚合物射 出早4備。換句話說’第3圖所示纺嘴之上分配板可具 f第2圖所示2·2()個聚合物射出單元’其排列成一串或平 仃。例如,若紡嘴之上分配板具有12個聚合物射出單元(第 3一圖)’可製傷具有與紡嘴的上分配板的各別聚合物射出單 疋相對應的12個個別的排出口 4卜42、43(第4圖)的下纺 嘴板,且被耦合藉以形成紡嘴。結果,第5圖所示雙折射 海島紗(單絲島部數目=1〇16個,單絲直徑=19使用— 嘴而可紡絲成為12股。 4 然而’由於第5圖所示之具# ι〇16個島部的雙折射海 ^ ν (單絲)僅為單絲(直徑,㈣而具有低光學調變效 ,其被製備成40丹尼(denier)/12單絲(股)、80/24(丹尼/ σ、、)複S、糸且複合絲被編織成作為緯紗或經紗之織 物:並被使用於輝度增強膜。具體而言’第6圖及第7圖 ,表福由複合第5 W之雙折射海島紗(料)所獲得的織物 . 6G ’並梭織成緯紗或經紗。藉由複合-雙折射海島紗61成 為8〇/24(丹尼/單絲)作為經紗,且複合-等向性纖維62作 為緯紗來製備織物6G,其料以梭織 。結果,雖然改良了 光學5周變效率,但是由於所複合的是小單絲直徑及大量絲 口而發生~斷裂(第6圖中a、b、c)’造成斷裂單絲。 15 201211593 本發明提供—種輝度增強膜,其包含:〆 於基質内部之-雙折射海島紗 位 與海部在至少—/、中雙拆射海島紗的鳥部The melting of the island island of the island of yarn is 'double fold or more. (10) The initial temperature of the chemical is higher than the melting temperature of the fiber by 30T. The part can be partially =: = another - the specific example of the 'birefringent island yarn of the sea island fried in the present hair _ show another - specific implementation, the island can be optical birefringence And the sea can be optically isotropic. In addition, the specific implementation, the base f and the birefringent sea: the refractive index difference in the axial direction may be (four) or less, and the difference in refractive index between the matrix and the birefringent island-in-the-sea yarn in the remaining axial direction . Specifically, it is assumed that the refractive indices of the matrix in the χ·, y-, and z-axis directions are ηχι, ηγι, and nZl′, respectively, and the refractive indices of the birefringent island-in-the-sea yarns in the X_, y-, and Ζ· axes are respectively For nX2, ηγ2, and nz2, at least one of the refractive indices of the matrix in the X and & axial directions may be the same as the refractive index of the birefringent island yarn. More specifically, it is possible to have the following relationship: nX2 &gt; nY2=n22 In another embodiment of the present disclosure, the refractive index difference between the sea portion of the birefringent island-in-the-sea yarn and the island portion in the biaxial direction is 〇 〇5 or less, and the difference in refractive index between the sea portion of the birefringent island-in-the-sea yarn and the island portion in the remaining one-axis direction is 0.1 or more. More specifically, it is assumed that the refractive index of the island portion of the birefringent island-in-the-sea yarn in the χ_(longitudinal) 201211593, y-, and z-axis directions is divided into X-, y-, and z-axis directions...ηχ3 ηγ3 and 3, and the sea-based matrix in the X-, y- and Μ by: the rate is η χ 4, ~ and kiss, then the island of yarn has the same refractive index. At least the ratio of the radiance can be different from the absolute value of the birefringence (the difference between the refractive index kiss and the η Χ 4 in the U-f is another in the present invention - and the sea-removed object (four) gives the island yarn in the present The invention discloses another and weave so that the birefringent island-in-the-sea yarn is more asymmetrical than the fiber, and here (10) the term will give a description of the technique. And the two π:: ϊ birefringence means that when the light is irradiated Refraction in two different directions in different directions. The light rays that are incident on the fibers are in the two-isometric, and the optical properties of the article are the optical properties of the article. When the light passes through the object 4' the refractive index of the article in all directions The same is true. The opposite of the optical properties of the heterogeneous object is the isotropic. I first learn to mean - a kind of program reflection, refraction or scattering, or its strong family, ", shoot First, the term "single-replacement clothing or characteristics are changed. The stock soap 4" is a kind of fiber formed by the private soap. It is spun from a spinning spout and is twisted by twists and turns. Bu 4 soap version, and is used for winding. Only, for example, heart &quot;4" is a monofilament of - or more The resulting iron dimension is rotated or bridged, for example, such that the different capillary or island portions of the distribution plate that have passed through the spinning nozzle are not included in the fiber that is bonded before the extrusion for spinning after 201211593 Therefore, the birefringent island-in-the-sea yarn having the fine fiber island portion is a monofilament rather than a composite yarn because the fine fiber island portion has passed through different spinning nozzles, and then combined before spinning to form a pair. Refraction island yarn. The term "fractured monofilament" refers to the defect caused by the breakage of some strands of the fibers constituting the composite yarn. The term "spinning core" means a reference to the island yarn in the longitudinal section of the island yarn. At a specific point of the point, the islands surrounding the point are divided into groups (divisionalization). The term "standard spinning core" refers to the spinning core as the center; and the term "peripheral spinning core" means surrounding The remaining spinning cores of the standard spinning core, which are plural and arranged around a spinning core. The phrase "arrange the islands in groups" means the islands in the island yarn. ring The state of being arranged around a spinning core is arranged in such a manner that the islands are separated into groups having a predetermined shape. For example, when there are two spinning cores in the island yarn, the islands are predetermined The shape is arranged around each of the spinning cores, so that the islands are divided into two groups in the island yarn. The term "melting initiation temperature" means the temperature at which the polymer begins to melt, and the term "melting temperature" means melting. The fastest temperature occurs. Therefore, when the melting temperature of the polymer is observed by Differential Scanning Calorimetry (DSC), the temperature at the start of the melting endotherm is the melting onset temperature and corresponds to the top of the endothermic peak. The temperature is fused 12 201211593. The brightness of the birefringence island yarn is improved. The H R1 π is further defined because the entangled monofilament of the birefringent island yarn (monofilament) does not occur or In addition, when the _ birefringent island yarn is used as two composite yarns, it is composited due to only some coarse strands of fibers, and can be prevented from being broken, and can be broken or pulled. During the stretching, the fiber breaks, and because of the light wind, because of the anti-polarization effect, the efficiency of the nine-dimensional modulation can be improved, and the improved brightness is increased by _ _ because the luminance enhancement film has no defects and can be displayed # θι ^ ^ J , Exterior. Furthermore, since it is not opened during weaving. This interrupts the movement of the weft yarn, so that the woven workability can be improved. Other features and aspects of the invention are apparent from the following detailed description, drawings and claims. Circles [Embodiment] The advantages, features, and aspects of the present invention will be apparent from the following description of the specific embodiments. The present invention reveals that the "how" may not be embodied and should not be construed as being limited to the specific embodiments herein. The specific embodiments are provided to provide a thorough and complete disclosure and will be fully conveyed to the disclosure of the present invention. The terminology used herein is used merely to describe A\. The examples are not intended to limit the specific embodiments. As used herein, the <RTI ID=0.0>" </ RTI> </ RTI> </ RTI> and "the" are intended to include the plural, unless the context clearly dictates otherwise. It is further understood that the term "at least, including" when referring to the specification indicates the presence of the feature, integer 201211593, steps, operations, components and/or components, but does not exclude the presence or addition of one or more other features, integers, steps. , operations, components, components, and/or groups. Exemplary embodiments are described in detail below with reference to the accompanying drawings. As described above, island agglutination occurs in a conventional birefringent island-in-the-sea yarn which is used for a brightness enhancement film having 100 to 300 island portions. Birefringent island-in-the-sea yarn (monofilament) having a diameter of 1〇-3〇μΠ1 and having 36_3 islands twisted into 7-η Γ strands (40 denier m filaments to 500 denier/144 filaments) Department, used to improve the optical modulation efficiency in commercial applications, because the number of islands> _ ─   due to the increase in birefringence interface improved optical modulation efficiency 'in the composite birefringence island yarn, _ _ When the reinforcing film is entangled as a monofilament, the fiber ribbon is still prone to occur. In addition, when the material of the root strand is stretched, some of the material may break (the yarn breaks), causing the broken monofilament. The reverse direction effect occurs due to fiber orientation changes caused by yarn breakage. This leads to a decrease in the optical scale and a defect in the film. Furthermore, the problem with the 'fractured monofilaments' is that the broken fibers are caught by the body and radius of the weft machine heald during the weaving (weaving) of the birefringent island-in-the-sea yarn, thus causing poor woven workability. A spinning nozzle has been disclosed in the Korean Patent Application No. 2-910138 for the preparation of 'island yarns. Specifically, Fig. 2 shows a cross section of the spun nozzle. The spun nozzle includes at least a polymer injection unit 2 that emits an island portion and a sea portion polymer. Fig. 3 shows the distribution plate 30 above the spout. A plurality of blister ejection units 31 are formed to spin a plurality of birefringent sea island yarns. Here, the lower spinner plate (Fig. 4) has a polymer with an upper sub-plate 30 formed in the spun nozzle 201211593 (for example, the number of polymer ejection ports is the same as the polymer row if ^. number a) The discharge ports 41, 42, 43 corresponding to the injection unit 31 can thus damage the birefringence island map having the island portion. As shown in Fig. 2, the island-in-the-sea yarn can be prepared from the polymer injection unit (Fig. 5 and as shown in Fig. 3, a plurality of island yarns can be produced from a plurality of polymers. In other words, The distributor plate on the spinning nozzle shown in Fig. 3 can have a series of 2·2 () polymer injection units shown in Fig. 2, which are arranged in a string or a flat file. For example, if there are 12 distribution plates on the spinning nozzle, The polymer injection unit (Fig. 3) can damage 12 individual discharge ports 4, 42, 43 (Fig. 4) corresponding to the respective polymer ejection units of the upper distribution plate of the nozzle. The lower nozzle plate is coupled and coupled to form a spinning nozzle. As a result, the birefringent island-in-the-sea yarn shown in Fig. 5 (the number of monofilament islands = 1 〇 16 pieces, the diameter of the monofilament = 19 is used - the mouth can be spun into 12 4. However, 'the birefringent sea ^ ν (monofilament) of the 16 islands shown in Fig. 5 is only a monofilament (diameter, (4) and has a low optical modulation effect, which is prepared as 40 denier / 12 monofilament (strand), 80 / 24 (Danny / σ,,) complex S, 复合 and composite yarn is woven into a weft or warp fabric: and used for brightness enhancement Specifically, 'Fig. 6 and Fig. 7, the fabric obtained from the composite 5th W birefringent island yarn (material). 6G 'and woven into weft or warp. By composite-birefringence island The yarn 61 is 8 〇/24 (Danny/monofilament) as a warp yarn, and the composite-isotropic fiber 62 is used as a weft yarn to prepare a woven fabric 6G which is woven. As a result, although the optical 5-week change efficiency is improved, Due to the small monofilament diameter and a large number of wire openings, the fracture (the a, b, c in Fig. 6) causes the broken monofilament. 15 201211593 The present invention provides a brightness enhancement film comprising: The inside of the matrix - the birefringent island yarn position and the sea part of the bird at least - /, in the middle of the island

信A5_ 向具有不同折射率且方程式1定義的A 值為咏m得崎決_。結果 纏及紗斷裂,因而不致f 4的糾 ^ % W 双知生斷裂早絲。因此,改良了輝声 日強膜缺陷且在無反極化問題下,可維持均句的輝度。- [方程式1] A=一單絲之島部數目/ 一複合絲之單絲數目 通吊,係將具有300個島部之習知的5〇股雙折射海島 紗予以複合,或將具有1()16個島部之習知的12股雙折射 海島紗予以複合。在此情形,A值僅各為6與84 7,遠小 於500而且,將具有127個島部的48股雙折射海島紗予 以複合,或將具有297個島部之習知的8股雙折射海島紗 予以複合。在此情況下A值僅各為2.6及37.1,遠小於5〇〇。 對比之下,當使用具有12192個島部(1股)、6096個島 部(2股)、25040個島部(1股)或5008個島部(5股)之雙折射 海島紗’則A值各成為12192、3〇48、25〇4〇及1001.6,遠 大於500。相較於當數根股被複合時之情形,由於使用一單 絲顯著地降低起因於紗斷裂之纖雉纠纏與斷裂單絲之風 險,吾人更想要使用雙折射海島紗’其A值為1000或以上、 10000或以上,或20000或以上。最隹疋具有 或更多島部的雙折射海島紗的一單絲,或約2股的複合絲’ 可用以有效地避免纖維糾纏及斷裂單絲。 設若將具有不同島部數目之單錄予以複合(例如,設若 201211593 將具有297個島部的8單絲,及具有127個島部的佔單絲 予以複合),平均數可界定為一單絲之島部數目。 當具有1016個島部的丨_2股雙折射海島紗被使用時, 雖然A值滿足上述情況,由於雙折射界面面積明顯減少, 而使光學錢效率降低。因此,在本發明齡之具體實施 例,雙折射海島紗之複合絲可具# i 〇個或更多之島部。 雙折射海島紗之單絲的島部數目可為5 〇 〇 〇個或以上,更佳 為10000個或以上,最佳是20000個或以上。 桊钐月揭不之具體實施例中,雙折射海島紗之單絲 可具有30μιη或以上的直徑。當單絲直徑小於3〇μηι,在複 二拉伸d間會發生單絲纟愤或紗斷裂(參見實施例)。具體 :言’雙折射海島紗之單絲可具有4(M卿m的直徑。在本 =揭不之、*體實施例,複合海島紗可為6谓丹尼Μ =丹尼丹尼Λ·4單絲。當雙折射海島紗小於 且由於滯㈣間增加會發生聚合物材料之裂解, ^ 降低,紡紗效能不能令人滿音。且,各 60丹尼時,紡紗後之固化:士八涡意且田其超過 過度流動性,及f人w造成纖維的 股時,在纺紗/思的紡紗效能。且當複合大於7 如心或拉伸期間會發生紗斷裂。 分配板,^上^2圖及第3 ®各別表示-射出單元及-上 以製備揭嘴的複數個射出單元,用 如上述,上分配板與第4 =下\2:2138號的海島紗。 圖所示具有_個島部之雙軒射H成對,以纺紗如第$ 射海島办。韓國專利申請案 17 201211593 第2009-12138號之揭示内容在此併入作為參考。 假没使用如第8圖所示之下紡嘴板,其中該η個個別 的排出口合併成為一排出口,而不使用第4圖所示的下紡 嘴板,以紡紗一雙折射海島紗,則可製備如第9圖所示具 有12192個島部且直徑為66μιη的雙折射海島紗(單絲)。關 於此點’韓國專利申請案第2010-0028219號之揭示内容在 此併入作為參考。然而,本發明揭示並不限於該等,不過 該海島紗可使用各簡嘴型式來製備。 具體έ之’第8圖為根據本發明揭示之具體實施例, 用以製備-海島紗之纺嘴的下紡嘴板剖面圖。形成流道 820、821卩使經由紡嘴之上分配板之個別聚合物射出單元 所供應之聚s物可流向—排出口㈣。流道可在數目上有不 同,又计且依型式而定。經由排出口 81〇,已流經流道82〇、 821之聚合物最後被排出。排出口 81〇數目可較聚合物射出 單元數目/。最佳是可形成—排出口議。第9圖表示使用 紡嘴所紡紗的海島紗(單絲),其具有贈個島部及 .ΙΟΟμιη的直徑。由於第9圖所雜島紗具有一鬆散空 間,在此的島部沒有在巾心緊密地集中,故不會發生島凝 集。 如一般用以製備—海島紗的紡嘴,本發明揭示之紡嘴 的水平σ】Φ具有一漏斗形,其中在排放$島紗之下纺嘴 板的直到、於纺嘴之上分配板之直徑,紡嘴之上分配板可 具有圆形4面。然而’根據海島紗之所需形狀,可予以設 料具有不_狀。當剖面為圓形時,雖然根據海島紗所 201211593 需直徑可不肉,但上分配板剖面直徑較佳為7〇j5〇mm。且 上分配板可具有1 〇-30mm的厚度,但在此沒有受到限制。 一般而言,下紡嘴板直徑可等於或小於上分配板直徑。排 出口直徑可為〇.2-1.0mm,流道長度可為4〇_12〇mm,且流 道寬度可為4-l〇mm。但在此無受到限制,依照海島紗之所 需規格,紡嘴可有不同設計。 、第1〇圖與第11圖係使用第9圖雙折射海島紗之單絲 (無進订複合)作為經紗1(n,及一等向性纖維作為緯紗⑽ 所編織之織物1()()的光學顯微鏡影像,滿足上述 範圍之雙折射海島紗,與無法滿足該直徑範圍者不同,: 無呈現紗斷裂或斷裂單絲。 ,並 第9圖所示之雙折射海島紗(單絲)僅為—例示,且 =T嘴之上板與下板,而可製傭雙折射海島 為不同尺寸與厚度。例如,當使用一具有8個 , 嘴來製傷具有i個島部之單絲,關由使用—排t 可製,具有9600個島部之雙折射海島紗(單絲)。 亦 田使用如帛3圖所示之上分配板與第8圖所示之 嘴板,使雙折射海島紗進行纺紗時,設若海島紗具有編 個島部,如第3圖所示,如果鞘沿著紡紗核心呈同 排列,則紡紗較困難,這是因為鞘係緊密地集中之故。因 此,在本發明揭示之—具體實施例,用以製備—海島 纺嘴係配置如第12圖與第13圖,以解決此問題。關二此 點’韓國專利申職第2G1G.767G號在此併人以供參 考。然而’其僅係一例示,且根據所需目的,紡嘴可有^ 201211593 同之設計。 具體°之’第12圖表示根據本發明揭示之-具體實施 例,用以製備一海島紗的纺嘴之上分配板12〇的剖面,上 分配板120至少包括-核心單元122,其形成於中心並防止 島凝集’複數個島部供給單元121圍繞核心單元122以輕 射狀地形成,且具有—島部供給通道124在其間形成’複 數個海部供給單元123圍繞島部供給單元m之外周邊形 成!,且至少包括複數個海部供給通道。島部供給單元121 至/包括複數個島部供給通道124。由於大約800_14⑻個 島部供給通道124可形成於一島部供給單元121,若1252 ^部供給通道124形成於—島部供給單幻21,且島部供 、〜單元121的數目為2〇個,則紡紗的雙折射島且 約25000個島部。 ’ 再者,在用以製備一海島紗的紡嘴之披薩形狀的上分 板中島部供給單元121可被海部供給單元123圍繞, 且紡嘴之核心單元122可無島部供給單元。因此由於雙折 島紗的海部可容易地穿透島部及中心,在此島部通常 ^於用以製備一海島紗的習知紡嘴仍舊為中 凝集問題可被避免。 ^只要海島紗之製備及島凝集之抑制為可行,則在一海 Ζ供給單元中海部供給通道的數目並無_,但依照海島 二之所需規格可#同。具體而言,1部供給單元可且 有3:25個海部供給通道,且海部供給通道的總數目可為 •⑼個。且圍繞核4元122之外周邊所形成之海部供 20 201211593 給單元123 ’可具有20-500個海部供給通道。 依照海島紗之組成,島部供給通道及海部供給通道之 直住可為不同。具體言之,島部供給通道可具有0.1 3功边 的直徑’且海部供給通道可具有〇.2_2.〇mm的直彳f,彳日在 此不受到限制。 雖然紡嘴的上分配板可具有圓形剖面,上分配板之剖 面形狀依照海島紗之所需形狀可為不同。若剖面具有—圓 形形狀’依照海島紗所需直徑,上分配板直徑可為不同。 具體而言,直徑可為70-250mm。此外,上分配板可具有 l〇-30mm的厚度,但在此不受此限制。 第13圖表示根據本發明揭示之—具體實施例的下紡嘴 板。下紡嘴板可與第12圖所示之上分配板耦合。具體而言, 自島部供給單元121及海部供給單元123所供應的聚合 物,在通過紡紗用之流道131後可在排出口 132收集。下 紡嘴板排出口可具有0.2-1.0mm的直徑,且該流道可具有 40-120mm的長度及3-10mm的寬度。下纺嘴板的寬度可相 等於或小於上分配板寬度’且長度為3-30mm,但在此無受 到限制。 再者,追加的分配板可以適當數目設置於上分配板上 方及/或下方,以促進島部及海部的分配與混合。 第14圖表示由一、纺嘴製備的雙軒射海島紗之單絲(島 部數目=25040個,直徑=66.5μιη)’讀紡嘴至少包括如第12 圖所示之上分配板及如第13圖所示之下訪嘴板。雖然島部 數目超過20000個但不發生島凝集。 21 201211593 第圖表示使用第14圖所示之雙折射海島紗(單絲) 作為經紗,且使用一等向性纖維作為緯紗所編織之織物。 吾人可證實在雙折射海島紗並無斷裂單絲或紗斷裂發生。 上述用以製備雙折射海島紗之紡嘴的技術特徵在於上 分配板及下紡嘴板。上分配板、下紡嘴板及其他結構之耦 合可與該等用以製備海島紗的其他習知紡嘴相同。用以製 備一雙折射海島紗之紡嘴,及使用該紡嘴進行雙折射海島 紗之製備僅是例示性。實際上,滿足方程式1之雙折射海 島紗可以不同方式製備。 當雙折射海島紗滿足方程式1,一至少包括該等雙折射 海島紗的輝度增強膜則具有改良的外觀品質,這是因為不 發生雙折射海島紗(單絲)之糾纏,且因此無纖維帶形成。再 者’由於雙折射海島紗可被用作單絲或與一些粗的股複 合’故在紡紗或拉伸期間可避免紗斷裂。因而可避免斷裂 單絲。因此’由於不發生反極化效應,故可維持光學調變 效率’且輝度增強膜之外觀品質可顯著地改善。再者,由 於因開襟問題造成的緯紗移動中斷並不發生,故可改良梭 織工作性。 虽雙折射海島紗照原樣合併成為一輝度增強膜,在例 如疊層期間’雙折射海島紗可容易地移動(例如被糾纏)。因 包括雙折射海島紗之織物被編織後,織物在基 ==疊層以便修復雙折射海然而,如果雙折射 海島紗合併於輝度增強膜成為織物 叉外耵 於液晶顯示器(LCD),即使構成織私^式’而不疋照原樣用 、匆之纖維係用透明材料製 22 201211593 造,當從外部發光,則織物(纖維)為可見。因此,要商業化 有極大障礙。 因此,為了解決該等問題,本發明提供—種輝度增強 膜,其至少包括—織物,其中織物之緯紗及铿吵中之一個 為雙,射海島紗,而另一侧為―纖維,且雙折射海島紗 之島邻的溶化起始溫度高於纖維的熔化溫度。 首先,包含於輝度增強膜之織物可參照第10圖之描 述第10圖為可用於本發明揭示之織物照片。該鐵物1〇〇至 少包括緯紗102及經紗101。緯紗102及經紗101中之 一個為 雙折射海島紗,另—個為—纖維。換句話說,當〆雙折射 海島紗被用作緯紗102,則一纖維被用作經紗101。且當雙 折射海島紗被用作經紗101 ’則—纖維被用作緯紗102。構 成織物之緯紗及經紗可魏明或半㈣射,以使光 線通過。 雙折射海島紗島部的炫化起始溫度高於纖維的溶化溫 度。因此’當施加熱及/或壓力使織物與基質叠層,而溫度 ^在纖維的熔化溫度與島部_化起始溫相,由於尚未 f到其溶化起始溫度,故島部仍舊靴化,但纖維已部分 :ΐ=二:為緯紗或經紗之纖維洲 雙折射海2《丨之/卩77 ’僅剩下所獲得輝度增強膜内部之 雙折射海島V。、,、。果,纖維可見制題 ,用額外的黏者劑。因此’雙折射海島紗的島部可且有 嫁化起始溫度南於纖維的溶化溫度。具體而言,雙折射海 23 201211593 島紗之島部的熔化起始溫度可較纖維熔化溫度高3〇〇c或以 上,更佳為50°C或以上。 同時,雙折射海島紗之島部的熔化起始溫度可高於海 部之熔化溫度,更佳為雙折射海島紗之島部的熔化起始溫 度可較海部之熔化溫度高30V或以上。結果,由於雙折射 海島紗之海部可部分或全部熔化,纖維可見度問題可改 善,且織物可黏著於基質,而不需使用額外的黏著劑。在 本發明揭示之具體實施例,雙折射海島紗之島部的熔化起 始溫度可為130-430°C,等向性纖維之熔化溫度可為 100 400 C,雙折射海島紗之海部的熔化溫度可^ 100-400%,且疊層溫度可為丨00_42(rc,但在此無受到限制。 結論是,由於用作織物之緯紗或經紗之等向性纖維的 熔化溫度低於用作經紗或緯紗之雙折射海島紗的熔化起始 溫度’當4層係在等向性纖維的熔化起始溫度與雙折射^ 島紗的熔化溫度之間之溫度進行,則包含該織物之輝声辦 強膜能夠解決纖維可見度問題,找因為等向性纖維^ 或全部熔化。再者Μ雙折射海島紗之海部㈣化溫 於島部之雜起始溫度,若疊層之進行係在介於該等二間 之溫度’騎部部分或全雜化’從而提供層間^黏: 不需使用額外黏著劑。 在本發明揭示之另-具體實施例,織物可為不對 編織’以使雙折射海島紗較纖維更加暴露於表面 所使用,織物表面係指織物兩側之任意表面 ,在此 示織物結構之經紗與緯紗有較少的絞經,且經 24 201211593 之 .個鬆弛地上浮於表面。絞 變 換其位置時彼此交又。具有某1 ί讀與緯紗在上下 留於輝度增強膜之織物圖樣最 +稱。構之織物可使殘 追蹤)。織物可經由包含真空 C紗與蟑紗的絞經之 行疊層,該方法經常在輝度増強=之:方法與基質進 倘若是真空熱壓疊層,吾人期盼.★勿圖樣。例如, 後,雙折射紗被熔化以失去紗 x熱壓疊層程序之 、/態。棘 的壓力導致在緯紗與經紗之絞點之雙折Y、、,熱壓所產生 化,因而在輝度增強膜上遺留圖樣。絞紗形態的變 螢幕上之波紋現象,此現象可以不對稱梭織2成在 折射海島紗較纖維更加暴露於表面。 、解決,以使雙 兹說明基質’基質可用熱塑性或熱固性聚 ,其可轉移光波長所需範®,可為 °物來製扭 明或半透明材料。具體而言,該易穿透的f 性’並可為均聚物、共聚物或其混合物。特; 碳酸酯(PC);對排型及同排型聚苯乙烯(PS);烷基苯ζ稀% 烷基、芳香族或脂環族(甲基)丙烯酸酯,例如聚丙烯酸 曱酯(ΡΜΜΑ)及ΡΜΜΑ共聚物;(甲基)丙烯酸己醇鹽及丙 醇鹽;多官能性(甲基)丙烯酸酯;丙烯酸化環氧樹脂;環氧 樹月曰,其他乙烯不餘和化合物;環稀·烴及環婦煙共聚物; 丙烯腈-丁二烯-苯乙烯(ABS);苯乙烯丙烯腈(SAN)共聚物 ;聚乙烯基環己烷;ΡΜΜΑ/聚氟乙烯摻合物;聚苯醚合金 ;苯乙烯嵌段共聚物;聚醯亞胺;聚砜;聚氯乙烯;聚二 甲基矽氧烷(PDMS);聚胺基甲酸酯;不飽和聚酯;聚乙烯 25 201211593 ;聚丙烯(PP);聚對酞酸烷酯,例如聚對酞酸乙二酯(PET) ;聚萘二甲酸烷基酯,例如聚萘二曱酸乙二酯(PEN);聚醯 胺;離子聚合物;乙酸乙烯酯/聚乙烯共聚物;乙酸纖維素 ;乙酸丁酸纖維素;含氟聚合物;聚苯乙烯聚乙烯共聚物 ;PET及PEN共聚物,例如聚烯烴PET及PEN ;及聚碳酸 酯/脂肪族PET摻合物。更具體而言,聚萘二曱酸乙二酯 (PEN)、萘二曱酸乙二酯共聚物(C0-PEN)、聚對酞酸乙二酯 (PET)、聚碳酸酯(PC)、聚碳酸酯(PC)合金、聚苯乙烯(PS) 、耐熱性聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚對 酞酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(PE)、丙烯腈-丁二 烯-苯乙烯(ABS)、聚胺基曱酸酯(pu)、聚醯亞胺(PI)、聚氣 乙烯(PVC)、苯乙烯丙烯腈(SAN)掺合物、乙烯-乙酸乙烯酯 (EVA)、聚醯胺(PA)、聚縮酸(P0M)、聚酚、環氧樹脂(EP) 、尿素(UF)、三聚氰胺(MF)、不飽和聚醋(UP)、矽(si)、彈 性體及環烯烴聚合物(COP,日本ZE0N股份有限公司及日 本JSR股份有限公司),此等可單獨使用或以其組合使用。 更具體而言,該基質可用與雙折射海島紗之海部相同的材 料構成。再者,該基質亦可包含添加劑,只要該添加劑不 會造成物理性質變差即可;此等添加劑例如有抗氧化劑、 光安定劑、熱安定劑、潤滑劑、分散劑、UV吸收劑、白色 色素,及榮光增白劑。該基質可為光學等向性。 在考量不同物理性質下,對於基質之構成成分或其光 學性質可選擇與海部及/或纖維者相同。在該情況,於疊層 製程中,該基質可部分威完全熔化,因此能夠在不使用額 26 201211593 外的黏著劑下,增進雙折射海島紗與基質之間之附著性。 該基質可包含三層。具體而言,經由聚合物之共擠出,可 將該三層形成為具有堆疊結構者,該堆疊結構包含表層(B 層)、核心層(A層)及表層(B層)。對應於織物之表層可具有 與海部及/或纖維相同的熔化溫度,以增進與雙折射海島紗 之黏著。核心層可由具有比海部及/或纖維更高溶化溫度二 材料製成,以防止因燈具所產生熱造成之基質變形。又 接下來,說明可用作織物之緯紗或經紗之纖維。任何 纖維’只要可與雙折射海島紗編織以形成織物且符合上述 有關溫度之規定,均可予以使用而對於纖維類型沒有限定 。具體而言’當考慮將纖維以與雙折射海島紗垂直之方式 編織時,纖維可為光學等向性。此係因為若纖維亦為㈣ =性’關由雙折射海島紗調變過之光線可能無法通過該 °更具體而言’纖維可為與雙折射海島紗之海 邛相同的材料。再者’在本發 ,雙拼me , _不之另—具體實施例中 雙折射海島紗之海部折射率可與基質折射率相同。 二::說明可做為織物之緯紗或經紗的雙折射海島 ^以使光風W島紗巾’ &amp;部及海部可具有不同的光學性 :以使先學調變效率最大化。更具體而 性且海部可為等向性。 丨了為異向 之海=言;:少包π等向性海部及異向性島部 度或不相等程度會影響:光:::折射::本質上相等程 6悔尤之放射。-般而言,散射效能 27 201211593 成比例地隨著折射率的差異之平方值而改變。所以,當在 特定軸之折射率的差異增加時沿著該軸偏極化之光線將更 強地散射。另-方面’在特定軸之折射率的差異小時,沿 著該軸偏極化之光線微弱地散射。當於特定軸海部之折射 率實質上等於島部之折射率時,不論海島紗之尺寸、形狀 及密度為何,被電場偏極化而與該轴平行之入射光可能會 通過海島紗而不被散射。更具體而言,P-波(以實線代旬 通過海島紗而不會受到外部與雙折射海島紗間之界面以及 雙折射海島紗之島部與海部間的界面影響,而s_波(以卢線 代表)受到基質與雙折射海島紗間之界面及/或雙折射^島 紗之島部與海部間之界面影響,因此被光學調變。 上述光學調變現象主要發生在基質與雙折射海島紗間 之界面及/或雙折射海島紗之島部與海部間的界面。且體而 言,當基質為光學等向性時,如同一般唯 學調變發生在基質與雙折射海島紗間之界面更:體: 吕’在基質與海島紗間之二軸方向中折射㈣ 0.05或以下,且在其餘一軸方向折射率的差 〇1 = 以上。更具體而言’假設基質在Χ_、Μ z_軸方向之折射 率分別為ηχι、ηγι及nzl且雙折射海島紗在 向之折射率分別為nX2、ηγ2及nz2 ’基質在: =折射率之至少-者可與雙折射海島紗者相同 而δ,可具有下列關係:ηΧ2&gt;ηγ产nz2〇 更”體 同時,在雙折射海島紗中,島部及海部可 光學性質以形成雙折射界面。星體 /、有不同的 ,、體而舌,當島部為異向性 28 201211593 界=::_可於島部與海部間之邊界形成雙折射 以下,::Γ 二轴方向折射率之差異可為0.05或 上。在^ —軸方向之折射率的差異可為w或以 二=情況,P-波通過海島紗之雙折射界面,而s-波被 為了更詳細㈣,假妙折射海 部在 ΙΓ海tTz•㈣彻物^、邮及吻, η;縣暂Γ Μ心轴方向之折射率分另,J為吻、㈣及 雙折射‘良X-、y_及ζ&quot;&quot;軸方向之折射率之至少一者可與 =折,海島紗者相同。折射率ηχ3與ηχ4之差異之絕對值可 二 上。更具體而言,當海島紗之海部與島部在縱 β折射率的差異為0J或以上且海部與島部在其餘二轴 之折射率實f相料可使光學調變效率最大化。同時,當 土質/、雙折射海島紗之海部具有相同折射率時,可容易地 增進光學調變效率。 斤乂為了增進光學調變效率,可選擇島部及海部在 縱向之折射率差異大,同時在其他二軸具有 實質相同之折 射率之雙折射海島紗。 雙折射海島紗之海部及/或島部可由聚萘二曱酸乙二 酯(PEN)、共聚萘二曱酸乙二酯(c〇_pEN)、聚對酞酸乙二酯 (PET)、聚碳酸酯(ρ〇、聚碳酸酯(pC)合金、聚苯乙烯(ps) 、耐熱性聚苯乙烯(PS)、聚甲基丙烯酸曱酯(PMMA)、聚對 酞酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(PE)、丙烯腈-丁二 烯-苯乙烯(ABS)、聚胺基甲酸酯(PU)、聚醯亞胺(PI)、聚氣 乙烯(PVC)、苯乙烯丙烯腈(SAN)掺合物、乙烯-乙酸乙烯酯 29 201211593 (EVA)、聚醯胺(PA)、聚縮駿(P0M)、聚酚、環氧樹脂(Ep) 、尿素(UF)、三聚氰胺(MF)、不飽和聚醋(UP)、矽(si)、彈 性體及環烯烴聚合物及其組合製成。具體而言,鑑於有效 率地增進光學調變,可選擇島部及海部在二軸具有實質相 同之折射率但在一軸具有之折射率差異大之材料。但是, 更具體而言,當使用聚萘二甲酸乙二酯(PEN)做為雙折射海 島紗之島部的材料’且使用共聚萘二曱酸乙二酯、聚碳酸 酯合金或其組合做為海部之材料時,相較於由常用材料製 成的雙折射海島紗,可大幅增進輝度。尤其當使用聚碳酸 酯合金做為海部時,可製備具有最優良光學調變性質的雙 折射海島紗。在此情況,聚碳酸酯合金較佳地可至少包括 聚碳酸酯及改質的聚對酞酸伸環己基二亞甲基酯二醇 (PCTG)。更具體言之,使用至少包括聚碳酸酯及改質的聚 對酞酸伸環己基二亞曱基酯二醇(PCTG)且該二者之重量比 為15 : 85至85 : 15之聚碳酸酯合金,其可有效地增進輝 度。當聚碳酸醋之存在量小於15%時,將過度增加紡紗致 能所需求的知合物黏度,而有無法使用紡紗機之缺點。且 當聚碳酸醋之存在量超過85%時’自噴嘴喷出後,玻璃轉 移溫度增加且紡紗張力增加,因此變得難以確保紡紗效能 〇 最佳疋使用至少包括聚碳酸醋及改質的聚對酞酸伸環 己基二亞曱基S旨二醇(PCTG)且該二者之重量比為4:6至6 :4之聚碳酸酯合金,其可有效地增進輝度。再者,鑑於光 學調變效率之有效率增進,較佳地島部及海部係選^在縱 201211593 向折射率差異大而在其他二軸具有實質上相同 :等向性材料改質成為雙折射材料之方法在本技術中 :::熟知。例如’聚合物分子可被定向,因此當將1在 適虽溫度條件拉伸時,將成為雙折射性。 w、〃 本發明揭示之—具體實施例中,本發明揭示之輝度 ;強:上可具有結構化之表面層。更具體而言,該二 ^面層可形成在射出光線側。該結構化表面層可為棱鏡、 雙凸型透鏡或凸透鏡之形式。更緒而言,在該輝度增強 膜之射出光線侧可具有凸透鏡形式的曲面。該曲面可聚焦 或散焦通過該表面的光線。x,該射出光線表且 鏡式圖樣。 〃 接下來說明本發明揭示之輝度增強膜之製備方法。首 先在上述織物被編織後,織物可配置於基質間且其後予以 疊層。疊層可藉由例如捲繞式或熱壓程序實施。具體而言 ,為了防止起泡可在真空狀態下進行熱壓,因而可改善接 著力與輝度。具體而言,在熱壓期間之真空度可為5_5〇〇 托,施加壓力可為i.O-iOOkgf/cm2,且處理時間可為 分鐘。如詳述於上,疊層溫度可適度的在雙折射海島紗之 島部的炫化起始溫度及纖維及/或海部的熔化溫度間選擇 。當真空度小於5托’製程效率不令人滿意。當大於5〇〇 托時’則消泡並不充分。當施加壓力低於1〇kgf/cm2,則薄 膜黏附性並不充分,且當壓力超過WOkgf/cm2時,由於過 度壓力’使得纖維排列中斷。當處理時間小於1分鐘時, 則消泡及接著不充分。且當處理時間超過3〇分鐘時,則製 31 201211593 程效率並不令人滿意。 本發明揭示之輝度增強膜至少包括一離型膜,其可在 輝度增強膜之一側或兩侧容易地附加及卸下藉以保護表 面。為了使輝度增強膜增加霧值及防止可見度問題,在輝 度增強膜上需形成一結構化表面。結構化表面可為稜鏡、 半球等之一連續三維圖樣。然而,當形成一三維結構形成 單兀,例如,在一輥上,壓力施加於輝度增強膜藉以在輝 度增強膜上形成一結構化表面,而離型膜則黏貼於該輝度 增強臈上’施加於離型膜的壓力可能不會精確地轉移至輝 度增強膜表面,造成輝度增強膜之霧度減少及可見度問 題。因此為了解決該問題,茲提供一種輝度增強膜至少包 括:一基質膜,至少包括一雙折射海島紗,其具有在島部 及海部間之邊界的雙折射界面;及形成於基質膜之至少一 側的離型膜’其中離型膜至少包括:一第一層,至少包括 二種或以上不相容的聚合物;及一第二層,其形成於第一 層上’藉此,施加於離型膜的壓力可精確地轉移至輝度增 強膜表面’因此輝度增強膜的霧度可顯著地增加,且可改 良可見度之問題。 在本發明揭示之具體實施例,第一層至少包括選自由 聚丙烯、聚乙烯、聚酯、聚苯乙烯及聚醯胺所組成群組中 之二種或以上不相容的聚合物。更具體言之,不相容的聚 合物可為聚丙烯及聚乙烯。在此情況下,第一層中聚乙烯 含量可為3-80wt%,更佳為15_2〇wt%。當聚乙烯含量在該 圍之外時,則所需的效果不能達成。 32 201211593 形成於第一層的第二廣至少包括 ,曰^ 〇栝聚丙烯5〇wt%或以 ,i_在此”,、又到限制。在本發明揭示之—具 第一層及第一声可且古1·。 μ^Ηψ 弟席及乐一赝可具有1:5至1: 10的厚度比。 實施例 兹說明本發明之實施例及實驗方法。下述之實施例及 實驗方法僅作為勤目的,且非意圖限制本發明所揭示之 範疇。 〃 &lt;實施例1&gt; 作為海部(ηχ吐57、ny=1.57、nz吐57,炼化溫度=145。〇 係使用等向性聚碳酸g旨(PC)合金,其包括pc及改質的聚對 酜酸伸環己基二亞曱基g旨二醇(PCTG),比例為5 ·· 5,且島 部係使用異向性聚萘二曱酸乙二酯(pEN)(n^i 88、 %=1.57、nz=1.57,純起始溫度=262巧。藉由供應島部及 海部至如第3圖所示,具有具備12個島部供給單元的上分 配板之紡嘴,與如第8圖所示具備一排出口之下紡嘴板, 藉以製備如第9圖所示具有-剖面的雙折射海島紗(單絲, 島部數目=12192個,直徑=66μπι)。 使用如此製備的雙折射海島紗(單絲)作為經紗,並使用 與海部相同的等向性PC合金纖維(熔化溫度=145。〇作為緯 汐來編織織物(60/24)。其後,織物被放置於兩等向性pc合 金片[。三層結構之表層/核心層/表層,核心層:PC(熔化溫度 -149 C ’ ι5〇μιη) ’ 表層:pc 合金(熔化溫度:145〇c,3〇叫^, 同=海部)]間,並使用真空熱壓(Meiki)在20托的真空狀態 下壓縮在150°C(疊層溫度)且壓力為i5kgf/cm2經20分 33 201211593 鐘,以獲得400-μιη厚的輝度增強膜。 裂發生 第Π)圖錄示賴備_表面㈣ ,影像。可觀察到在用作經紗的雙折射海島紗: 〈實施例2&gt; 一 σ也,比例馮5 : 5 ;j 用作海部(nx=1.57、ny=1.57、n 1 ^ 11广1.57,熔化溫度=145。 而異向性 ΡΕΝ(ηχ=1.88、n y 57 ηζ-1·57,熔化起始溫度 =262°C)被用作島部。 良 為了獲得具有如第14圖所示之剖面的雙折射海島紗, 將該等材料供應至-紡嘴,其具有如第12圖所示具備Η 個島部供給單元之上分配板,及具有如第13圖所示且備一 排出口的下紡嘴板。藉以製備如第14_所示财剖面的雙 折射海島紗(單絲’島部數目=25_個,直㈣6 5㈣。在 以紡紗速率2500MPM製備部衫向紗(ρ()γ,85丹尼八單 絲)之後,ΡΟΥ在140。(:被拉伸2&gt;1次藉以製備fy(4〇丹尼 /1單絲)。 使用如此製備的雙折射海島紗(單絲,40丹尼Λ單絲) 作為經紗,且使用才目同於海部之等向性pc合金纖維(溶化 溫度= M5QC ’ POY6〇丹尼/24單絲)作為緯紗來編織織物。 其後,如實施例1所示在真空條件下將織物疊層,以獲得 厚為400μιη的輝度增強膜。 第15圖所示為在實施例2所製傷的織物表面之随 影像。吾人可觀察到用作經紗的雙折射海島紗並無紗斷裂 34 201211593 或斷裂單絲。 · . &lt;比較例ι&gt; 包括PC及PCTG比率為5 : 5的等向性PC合金被用 作海部(nx=1.57、ny=i.57、nz=1.57,熔化溫度^^),且 異向性 PEN(nx-1.88、ny=1.57、nz=1.57 ’ 熔化起始溫度 =262°C)被用作島部。 為了獲得如第5圖具有剖面的雙折射海島紗,將該等 材料被供應至紡嘴,其具有如第3圖所示之上分配板,及 如第4圖所示之下紡嘴板。兹製備如第5圖所示具有剖面 之雙折射海島紗(單絲,島部數目=1〇16個,直經= 在以紡紗速率2500MPM及紡紗溫度290。(:製備Ρ〇γ(85丹 尼/12單絲)之後,1&gt;0¥在140〇C被拉伸21次以製備ργ(4〇 丹尼/12單絲)。 使用複合成為80丹尼/24單絲的雙折射海島紗 FY40/12之2股作為經紗,且使用與海部相同的等向性^^ 合金纖維(溶化溫度=145。(:,POY60/24)作為緯紗來編織織 物。其後,如實施例1在真空狀態下疊層織物,以獲得厚 為400μιη的輝度增強膜。 第ό圖所示係在比較例1中所製備之織物表面的 影像。吾人可觀察到發生雙折射海島紗糾纏及紗斷 Β 、 C)。 (、 有著高度光學調變效能且無缺陷,本發g月g厂、 增強膜在需要光學調變的應用中可廣泛地適用。=輝度 言,其可廣泛使用於需要高輝度之例如LCD、欢體而 赞光二極體 35 201211593 (Light-emitting Diode,LED)等的照相機、顯微鏡與其他光 學裝置、汽車内裝及外裝部分、行動電話及顯示裝置,平 板顯示器,例如投影顯示器、電漿顯示面板(PDP),場發射 顯示器(FED)及電致發光顯示器(ELD)。 本發明揭示内容就具體實施例而言已做描述,在不偏 離下述申請專利範圍所界定本發明揭示之精神及範驚,本 發明可做不同之變更與修改,對熟悉該項技藝人士明顯可 【圖式簡單說明】 由下列 明顯可 本發明揭示之上述及其他標的、特徵及優點, 連同附圖所提供之一些例示性具體實施例的描述為 知。 第la圖係習知輝度增強膜原理示意圖; 第lb圖係習知雙折射海島紗之剖面圖; 第2圖係根據本發明揭示具體實施例,用以製 島紗的紡嘴之射出單元剖面圖; 海 第3圖根據本發明揭示之具體實施例,用以製# 島紗的紡嘴之上分配板剖面圖; 第4圖係用以製備一海島紗的習知紡嘴之下纺嘴4反% 第5圖係習知雙折射海島紗的剖面圖; 第6圖係至少包括一習知雙折射海島紗的織物之#^ 式電子顯微鏡(Scanning Electron Microscopic ’SEM)3 像 36 201211593 (X25); ' ’ 第7圖係至少包括一習知雙折射海島紗之織物的SEM 影像(X40); 第8圖係根據本發明揭示之具體實施例,用以製備一 海島紗的紡嘴之下紡嘴板剖面圖; 第9圖係根據本發明揭示之具體實施例的雙折射海島 紗剖面圖; 第10圖係根據本發明揭示之具體實施例,至少包括一 雙折射海島紗的織物之SEM影像(X30); 第11圖係根據本發明揭示之具體實施例,至少包括一 雙折射海島紗的織物之SEM影像(X100); 第12圖係根據本發明揭示之具體實施例,用以製備一 海島紗之紡嘴的上分配板剖面圖; 第13圖係根據本發明揭示之具體實施例,用以製備一 海島紗之紡嘴的下紡嘴板剖面圖; 第14圖係根據本發明揭示具體實施例,表示一雙折射 海島紗之剖面的SEM影像; 第15圖係根據本發明揭示之具體實施例,至少包括一 雙折射海島紗的織物之SEM影像。 吾人應暸解附圖並不需要按照比例,提出稍簡略化的 • 不同較佳特徵的代表例已足以說明本發明揭示之基本原 理。如在此所揭示之本發明揭示内容的特定設計特徵,其 包含例如特定尺度、方向性、位置及形狀,將藉由特定意 欲的應用及使用環境來做某種程度的決定。 37 201211593 在圖中,參考數字係表示揭示内容遍及附圖之數種圖 形中之相同或等值部分。 【主要元件符號說明】 11 紡紗核心 12 島部 20 聚合物射出單元 30 上分配板 31 聚合物射出單元 41 、 42 、 43 排出口 60 織物 61 雙折射海島紗 62 等向性纖維 100 織物 101 經紗 102 緯紗 120 上分配板 121 島部供給單元 122 核心單元 123 海部供給單元 124 島部供給通道 131 流道 132 排出口 810 排出口 38 201211593 820 、 821 流道 A、B、C 紗斷裂 P P極化光線 S s極化光線 39The letter A5_ is determined to have a different refractive index and the value of A defined by Equation 1 is 咏m. As a result, the wrap and the yarn are broken, so that the f 4 is not corrected. Therefore, the defect of the strong solar film is improved and the luminance of the uniform sentence can be maintained without the problem of reverse polarization. - [Equation 1] A = number of islands of a single filament / number of filaments of a composite yarn, which is a composite of 5 strands of birefringent island-in-the-sea yarns having 300 islands, or will have 1 () The customary 12-strand birefringent island yarn of 16 islands is compounded. In this case, the A values are only 6 and 84, respectively, much less than 500. Also, 48 strands of birefringent island-in-the-sea yarns with 127 islands are compounded, or 8 strands of birefringence with 297 islands. The island yarn is compounded. In this case, the A values are only 2.6 and 37.1 each, which is much smaller than 5 〇〇. In contrast, when using a birefringent island yarn with 12,192 islands (1 share), 6,096 islands (2 shares), 2,504 islands (1 share), or 5008 islands (5 shares), then A The values are 12192, 3〇48, 25〇4〇 and 1001.6, which are much larger than 500. Compared with the case when a number of strands are compounded, since the use of a monofilament significantly reduces the risk of entanglement and breaking of the filaments due to yarn breakage, we prefer to use the birefringent island-in-the-sea yarn's A value. It is 1000 or more, 10000 or more, or 20,000 or more. A monofilament of the birefringent island-in-the-sea yarn having the most or more islands, or a composite yarn of about 2 strands, can be used to effectively avoid fiber entanglement and breakage of the monofilament. If a single record with a different number of islands is combined (for example, if 201211593 will have 8 monofilaments with 297 islands and a composite of 127 islands), the average number can be defined as a monofilament. Number of islands. When a 丨_2 strand birefringent island-in-the-sea yarn having 1016 islands is used, although the value of A satisfies the above, the optical cost efficiency is lowered due to a significant reduction in the area of the birefringent interface. Therefore, in a specific embodiment of the age of the present invention, the composite yarn of the birefringent island-in-the-sea yarn may have one or more island portions. The number of islands of the monofilament of the birefringent island yarn may be 5 〇 〇 or more, more preferably 10,000 or more, and most preferably 20,000 or more. In a specific embodiment disclosed in the following month, the monofilament of the birefringent island-in-the-sea yarn may have a diameter of 30 μm or more. When the diameter of the monofilament is less than 3 〇μηι, monofilament anger or yarn breakage may occur between the two stretches d (see the examples). Specifically: the monofilament of the birefringent island yarn can have a diameter of 4 (M Qing m. In this example, the composite island yarn can be 6 said Danny Μ = Danny Danieli 4 monofilament. When the birefringent island-in-the-sea yarn is smaller and the cracking of the polymer material occurs due to the increase of the hysteresis (four), the spinning efficiency is not full, and, after 60 denier, the curing after spinning: Shi Ba vortex and the field exceeds the excessive fluidity, and when the f-w is caused by the fiber strands, the spinning performance is in the spinning/swinging, and the yarn breakage occurs when the composite is greater than 7 as the core or the stretching. , ^ ^ ^ 2 and 3 ® each indicate - the injection unit and - a plurality of injection units for preparing the nozzle, using the above-mentioned upper distribution plate and the 4th = 2: 2138 island yarn. The figure shows a pair of islands in the form of a pair of islands in the form of a spun yarn, such as the first island of the island. The disclosure of the Korean Patent Application No. 17 201211593, the disclosure of which is incorporated herein by reference. The lower nozzle plate is shown in Fig. 8, wherein the n individual discharge ports are merged into a row of outlets instead of using the lower one shown in Fig. 4. For the spinning of a birefringent island yarn, a birefringent island-in-the-sea yarn (monofilament) having 12192 islands and a diameter of 66 μm as shown in Fig. 9 can be prepared. [Korean Patent Application No. 2010] The disclosure of the '0028219 is incorporated herein by reference. However, the disclosure of the present invention is not limited thereto, but the island-in-the-sea yarn can be prepared using a variety of simple mouth patterns. [8] Figure 8 is a disclosure according to the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT, A cross-sectional view of a lower spinner plate for preparing a spinning nozzle of a sea-island yarn. The flow channels 820, 821 are formed so that the polyss supplied by the individual polymer injection units of the distribution plate above the spinning nozzle can flow. - Discharge port (4). The flow passages may vary in number, and depending on the type. Through the discharge port 81, the polymer that has flowed through the flow passages 82, 821 is finally discharged. The number of polymer injection units / is optimally formed - the outlet is discussed. Figure 9 shows the island yarn (monofilament) spun by the spinning nozzle, which has the diameter of the island and the diameter of the ΙΟΟμιη. 9 maps of the island yarn have a loose space The island here is not concentrated in the center of the towel, so island agglutination does not occur. As is generally used to prepare the spinning nozzle of the island yarn, the level σ of the spinning nozzle disclosed in the present invention has a funnel shape, wherein The distribution plate above the spinning nozzle can have a circular shape on the spinneret until the diameter of the distribution plate above the spun yarn is discharged. However, according to the desired shape of the island yarn, the material can be set. When the profile is circular, although the diameter of the island yarn is 201211593, the diameter of the upper distribution plate is preferably 7〇j5〇mm, and the upper distribution plate may have a thickness of 1〇-30mm. However, there is no limitation here. In general, the diameter of the lower spinner plate may be equal to or smaller than the diameter of the upper distribution plate. The discharge outlet diameter may be 2-.2-1.0 mm, the flow passage length may be 4〇_12〇mm, and the flow passage width may be 4-l〇mm. However, there is no restriction here. According to the specifications of the island yarn, the spinning nozzles can have different designs. 1st and 11th are the monofilaments (unordered composite) of the birefringent island-in-the-sea yarn of Fig. 9 as the warp yarn 1 (n, and an isotropic fiber as the weft (10) woven fabric 1 () ( The optical microscopy image of the birefringent island-in-the-sea yarn that satisfies the above range is different from the one that cannot satisfy the diameter range: no broken yarn or broken monofilament, and the birefringent island yarn (monofilament) shown in Fig. 9. For example only, and =T upper and lower plates, and the birefringent islands can be made of different sizes and thicknesses. For example, when using one with eight mouths to damage the monofilaments with i islands , by the use of - row t can be made, with 9600 islands of birefringent island yarn (monofilament). Yi Tian uses the distribution plate shown in Figure 3 and the mouth plate shown in Figure 8, so that When the island yarn is refracted for spinning, if the island yarn has an island portion, as shown in Fig. 3, if the sheaths are arranged along the spinning core, the spinning is difficult because the sheath is closely concentrated. Therefore, in the present invention, the specific embodiment is used to prepare the island spinning nozzle configuration as shown in FIG. Figure 13 to solve this problem. Guan 2 this point 'Korean Patent Application No. 2G1G.767G is hereby for reference. However, 'it is only an example, and according to the purpose, the spinning nozzle can have ^ 201211593 The same design. Fig. 12 shows a section of a distribution plate 12A on a spinning nozzle for preparing a sea-island yarn according to a specific embodiment of the present invention. The upper distribution plate 120 includes at least a core unit. 122, which is formed at the center and prevents island agglutination 'a plurality of island supply units 121 are formed lightly around the core unit 122, and have - island supply passages 124 formed therebetween - a plurality of sea supply units 123 surround the island The periphery of the supply unit m is formed and includes at least a plurality of sea supply channels. The island supply unit 121 to/includes a plurality of island supply passages 124. Since approximately 800_14 (8) island supply passages 124 can be formed in an island supply In the unit 121, if the 1252 portion supply passage 124 is formed in the island portion supply single phantom 21, and the number of the island portion supply unit ~ unit 121 is 2 ,, the birefringent island of the spinning and about 25,000 island portions are formed. Again The island supply unit 121 may be surrounded by the sea supply unit 123 in the upper plate of the pizza shape for preparing the spun yarn of a sea-island yarn, and the core unit 122 of the spun may have no island supply unit. The sea can easily penetrate the island and the center, where the conventional spinning nozzle used to prepare a sea-island yarn is still a problem of middle agglutination. ^As long as the island yarn is prepared and the island agglutination is suppressed If feasible, the number of sea supply channels in a sea otter supply unit is not _, but may be the same according to the required specifications of the island 2. Specifically, one supply unit may have 3:25 sea supply channels. And the total number of sea channel supply channels can be (9). The sea portion 20 201211593 can be provided with 20-500 sea portion supply passages around the periphery of the core 4 122. According to the composition of the island yarn, the direct supply of the island supply channel and the sea supply channel can be different. Specifically, the island supply passage may have a diameter of 0.13, and the sea supply passage may have a straight diameter f of 22.2 mm, which is not limited here. Although the upper distribution plate of the spout may have a circular cross-section, the cross-sectional shape of the upper distribution plate may vary depending on the desired shape of the island-in-the-sea yarn. If the profile has a round shape, the diameter of the upper distribution plate may vary depending on the desired diameter of the island yarn. Specifically, the diameter may be 70-250 mm. Further, the upper distribution plate may have a thickness of from 1 to 30 mm, but is not limited thereto. Figure 13 shows a lower spinner plate in accordance with an embodiment of the present invention. The lower spinner plate can be coupled to the upper distribution plate shown in FIG. Specifically, the polymer supplied from the island portion supply unit 121 and the sea portion supply unit 123 can be collected at the discharge port 132 after passing through the flow path 131 for spinning. The lower spinneret discharge port may have a diameter of 0.2 to 1.0 mm, and the flow path may have a length of 40 to 120 mm and a width of 3 to 10 mm. The width of the lower spinneret plate may be equal to or less than the width of the upper distribution plate and the length is 3-30 mm, but there is no limitation here. Furthermore, additional distribution plates can be placed on the upper and/or lower sides of the upper distribution plate to facilitate the distribution and mixing of the islands and the sea. Figure 14 shows the monofilament of the double-dip island yarn prepared by a spinning nozzle (the number of islands = 25040, diameter = 66.5 μιη). The reading spun at least includes the upper distribution plate as shown in Fig. 12 and The mouthpiece is shown below in Figure 13. Although the number of islands exceeds 20,000, island agglutination does not occur. 21 201211593 The figure shows the use of the birefringent island-in-the-sea yarn (monofilament) shown in Fig. 14 as a warp yarn, and the use of an isotropic fiber as a weft-woven fabric. We can confirm that there is no broken monofilament or yarn breakage in the birefringent island yarn. The above-mentioned technical features for producing a birefringent island-in-the-sea yarn are characterized by an upper distribution plate and a lower spinner plate. The coupling of the upper distribution plate, the lower spinneret plate and other structures may be the same as those of other conventional spinning nozzles used to make island-in-the-sea yarns. The spinning nozzle for preparing a birefringent island yarn and the preparation of the birefringent island yarn using the spinning nozzle are merely illustrative. In fact, the birefringent sea island yarn satisfying Equation 1 can be prepared in different ways. When the birefringent island-in-the-sea yarn satisfies Equation 1, a brightness enhancement film including at least the birefringent island-in-the-sea yarns has an improved appearance quality because entanglement of birefringent island-in-the-sea yarns (monofilaments) does not occur, and thus no fiber ribbon form. Furthermore, since the birefringent island-in-the-sea yarn can be used as a monofilament or combined with some coarse strands, yarn breakage can be avoided during spinning or stretching. Therefore, the broken monofilament can be avoided. Therefore, since the reverse polarization effect does not occur, the optical modulation efficiency can be maintained and the appearance quality of the luminance enhancement film can be remarkably improved. Furthermore, since the interruption of the weft movement caused by the opening problem does not occur, the woven workability can be improved. Although the birefringent island-in-the-sea yarns are combined as they are into one luminance enhancement film, the birefringent island-in-the-sea yarn can be easily moved (e.g., entangled) during, for example, lamination. Since the fabric including the birefringent island-in-the-sea yarn is woven, the fabric is laminated at the base = to repair the birefringence sea. However, if the birefringent island-in-the-sea yarn is incorporated into the luminance enhancement film to become a fabric fork, the liquid crystal display (LCD) is formed even if it is composed. The fabric (fiber) is visible when it is illuminated from the outside. Therefore, there are great obstacles to commercialization. Therefore, in order to solve the above problems, the present invention provides a brightness enhancement film comprising at least a fabric in which one of a weft yarn and a noisy fabric is double, a sea-island yarn, and the other side is a fiber, and The melting initiation temperature of the island of the island of refraction is higher than the melting temperature of the fiber. First, the fabric included in the luminance enhancement film can be referred to in Fig. 10 for a photograph of the fabric disclosed in the present invention. The iron 1 includes at least the weft yarn 102 and the warp yarn 101. One of the weft yarns 102 and the warp yarns 101 is a birefringent island-in-the-sea yarn, and the other one is a fiber. In other words, when a yttrium birefringent island yarn is used as the weft yarn 102, a fiber is used as the warp yarn 101. And when the birefringent island-in-the-sea yarn is used as the warp yarn 101', the fiber is used as the weft yarn 102. The weft and warp yarns constituting the fabric can be weiming or half (four) shots to pass the light. The dashed starting temperature of the island island of the birefringent island is higher than the melting temperature of the fiber. Therefore, 'when heat and/or pressure is applied to laminate the fabric with the substrate, and the temperature is at the temperature of the melting of the fiber and the initial temperature of the island, since the temperature has not yet reached the melting initiation temperature, the island is still booted. However, the fiber has been partially: ΐ = two: the fiber of the weft or warp, the birefringent sea 2 "丨之 / 卩 77 ' is only the birefringence island V inside the obtained brightness enhancement film. ,,,. If the fiber is visible, use an additional adhesive. Therefore, the island portion of the 'birefringent island-in-the-sea yarn can have a grafting initiation temperature south of the melting temperature of the fiber. Specifically, the melting initiation temperature of the island of the island of the birefringent sea 23 201211593 may be higher than the fiber melting temperature by 3 〇〇 c or more, more preferably 50 ° C or more. At the same time, the melting initiation temperature of the island of the birefringent island yarn may be higher than the melting temperature of the sea, and it is more preferable that the melting initiation temperature of the island of the birefringent island yarn is 30 V or more higher than the melting temperature of the sea portion. As a result, since the sea portion of the birefringent island yarn can be partially or completely melted, the problem of fiber visibility can be improved, and the fabric can be adhered to the substrate without using an additional adhesive. In a specific embodiment of the present invention, the melting initiation temperature of the island portion of the birefringent island-in-the-sea yarn may be 130-430 ° C, and the melting temperature of the isotropic fiber may be 100 400 C, and the melting of the sea portion of the birefringent island yarn is The temperature can be 100-400%, and the lamination temperature can be 丨00_42 (rc, but there is no limitation here. The conclusion is that the melting temperature of the isotropic fiber used as the weft or warp of the fabric is lower than that of the warp. Or the melting initiation temperature of the birefringent island-in-the-sea yarn of the weft yarn. When the four layers are at a temperature between the melting initiation temperature of the isotropic fiber and the melting temperature of the birefringent island yarn, the fabric of the fabric is included. Strong film can solve the fiber visibility problem, because the isotropic fiber ^ or all melted. In addition, the sea portion of the birefringent island yarn (4) is heated at the island starting temperature, if the lamination is between The temperature of the two rooms is 'partial or fully hybrid' to provide interlayer adhesion: no additional adhesive is required. In another embodiment of the invention, the fabric may be woven to make birefringent island yarn More exposed to the surface than the fiber For the fabric surface, it refers to any surface on both sides of the fabric. Here, the warp and weft of the fabric structure have less twisting, and float to the surface after 24 201211593. The fabric pattern with a 1 ί reading and a weft yarn left and left in the brightness enhancement film is the most +. The fabric can make the residue track. The fabric can be laminated via a twist comprising a vacuum C yarn and a twisted yarn. This method is often too strong in brightness = method and matrix. If vacuum hot laminate, we are looking forward to it. For example, after that, the birefringent yarn is melted to lose the state of the yarn x hot laminate process. The pressure of the spine causes a double fold Y, in the twisted point of the weft yarn and the warp yarn, to be generated by hot pressing, thereby leaving a pattern on the brightness enhancement film. The skein form changes the ripple phenomenon on the screen, and this phenomenon can be asymmetrically woven into 2 in the refractive island yarn more exposed to the surface than the fiber. Solve, so that the matrix 'matrix' can be made of thermoplastic or thermoset poly, which can transfer light wavelengths to the desired range, which can be used to make twisted or translucent materials. In particular, the easily penetrable f' can be a homopolymer, a copolymer or a mixture thereof. Carbonate (PC); paired and homogenous polystyrene (PS); alkyl benzoquinone alkyl, aromatic or alicyclic (meth) acrylates, such as polyethyl acrylate ( ΡΜΜΑ) and ΡΜΜΑ copolymer; (meth) hexyl acrylate and propanolate; polyfunctional (meth) acrylate; acrylated epoxy resin; epoxy resin, other ethylene and compounds; Sparse hydrocarbon and cyclofflower copolymer; acrylonitrile-butadiene-styrene (ABS); styrene acrylonitrile (SAN) copolymer; polyvinyl cyclohexane; ruthenium/polyvinyl fluoride blend; Phenyl ether alloy; styrene block copolymer; polyimine; polysulfone; polyvinyl chloride; polydimethyl siloxane (PDMS); polyurethane; unsaturated polyester; polyethylene 25 201211593 Polypropylene (PP); polyalkyl phthalate, such as polyethylene terephthalate (PET); polyalkyl naphthalate, such as polyethylene naphthalate (PEN); polydecylamine Ionic polymer; vinyl acetate/polyethylene copolymer; cellulose acetate; cellulose acetate butyrate; fluoropolymer; polystyrene polyethylene copolymer; PET and PEN copolymer For example, polyolefin PET and PEN; and polycarbonate/aliphatic PET blends. More specifically, polyethylene naphthalate (PEN), ethylene naphthalate copolymer (C0-PEN), polyethylene terephthalate (PET), polycarbonate (PC), Polycarbonate (PC) alloy, polystyrene (PS), heat resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP) , polyethylene (PE), acrylonitrile-butadiene-styrene (ABS), polyamino phthalate (pu), polyimine (PI), polyethylene (PVC), styrene acrylonitrile ( SAN) blend, ethylene vinyl acetate (EVA), polyamine (PA), poly (oxygen) (P0M), polyphenol, epoxy (EP), urea (UF), melamine (MF), no Saturated polyester (UP), bismuth (si), elastomer, and cyclic olefin polymer (COP, Japan ZE0N Co., Ltd., and Japan JSR Co., Ltd.), which may be used singly or in combination. More specifically, the substrate may be constructed of the same material as the sea portion of the birefringent island-in-the-sea yarn. Furthermore, the substrate may also contain an additive as long as the additive does not cause deterioration of physical properties; such additives include, for example, an antioxidant, a light stabilizer, a thermal stabilizer, a lubricant, a dispersant, a UV absorber, and a white color. Pigment, and glory brightener. The matrix can be optically isotropic. In consideration of different physical properties, the constituents of the matrix or its optical properties may be selected to be the same as those of the sea and/or fiber. In this case, in the lamination process, the matrix can be partially melted completely, so that the adhesion between the birefringent island-in-the-sea yarn and the substrate can be improved without using an adhesive other than the amount 201211593. The matrix can comprise three layers. Specifically, the three layers may be formed to have a stacked structure including a surface layer (B layer), a core layer (layer A), and a surface layer (layer B) via coextrusion of a polymer. The skin layer corresponding to the fabric may have the same melting temperature as the sea and/or fibers to enhance adhesion to the birefringent island yarn. The core layer may be made of a material having a higher melting temperature than the sea portion and/or the fiber to prevent deformation of the substrate due to heat generated by the lamp. Next, fibers which can be used as weft or warp yarns of the fabric will be described. Any fiber ' can be used as long as it can be woven with a birefringent island-in-the-sea yarn to form a fabric and meets the above-mentioned temperature requirements, and is not limited to the fiber type. Specifically, the fibers may be optically isotropic when it is considered to woven the fibers perpendicular to the birefringent island-in-the-sea yarn. This is because if the fiber is also (4) = Sexuality, the light modulated by the birefringent island yarn may not pass the °. More specifically, the fiber may be the same material as the sea of the birefringent island yarn. Furthermore, in the present invention, the double-precision me, _ otherwise, the refractive index of the sea portion of the birefringent island-in-the-sea yarn may be the same as the refractive index of the matrix. Two:: The description can be used as the birefringence island of the weft or warp of the fabric. So that the light wind W island scarf &amp; and the sea can have different optical properties: to maximize the efficiency of the first learning modulation. More specific and the sea can be isotropic.丨 为 异 = = = = = = = = = = = = = = = = = = = = : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : In general, the scattering performance 27 201211593 varies proportionally with the square of the difference in refractive index. Therefore, the light polarized along the axis will scatter more strongly as the difference in refractive index at a particular axis increases. In another aspect, the difference in refractive index at a particular axis is small, and the light polarized along the axis is weakly scattered. When the refractive index of the sea portion of a particular axis is substantially equal to the refractive index of the island portion, regardless of the size, shape and density of the island-in-the-sea yarn, the incident light that is polarized by the electric field and parallel to the axis may pass through the island yarn without being scattering. More specifically, the P-wave (through the island yarn in a solid line is not affected by the interface between the outer and birefringent island-in-the-sea yarns and the interface between the island and the sea of the birefringent island yarn, and the s_wave ( Represented by the Lu line) is affected by the interface between the matrix and the birefringent island-in-the-sea yarn and/or the interface between the island and the sea of the birefringent island yarn, and thus is optically modulated. The above optical modulation phenomenon mainly occurs in the matrix and the double Refraction of the interface between the island yarns and/or the interface between the islands of the birefringent island yarn and the sea. In terms of the body, when the matrix is optically isotropic, as in the case of general physics, the matrix and birefringent island yarns occur. The interface between the two is: body: Lu's refraction in the biaxial direction between the matrix and the island yarn (4) 0.05 or less, and the difference in refractive index in the remaining one axis direction 〇 1 = above. More specifically, 'assuming the matrix is in Χ _, The refractive index of the Μ z_axis direction is ηχι, ηγι, and nzl, respectively, and the refractive index of the birefringent island-in-the-sea yarn is nX2, ηγ2, and nz2 'substrate at: = at least the refractive index - and the birefringent island yarn The same as δ, can have the following relationship: ΧΧ2&gt;ηγ produces nz2〇"" At the same time, in the birefringent island yarn, the island and the sea can be optically formed to form a birefringent interface. Stars /, different, body and tongue, when the island is anisotropic 28 201211593 Boundary =::_ can form birefringence below the boundary between the island and the sea, :: 差异 The difference in refractive index in the biaxial direction can be 0.05 or above. The difference in refractive index in the direction of the ^ axis can be w Or in the case of two =, the P-wave passes through the birefringence interface of the island yarn, and the s-wave is used for more detail (four), the false refraction of the sea in the Bohai tTz • (four) Che Wu ^, post and kiss, η; The refractive index of the axis of the mandrel is different. J is the kiss, (four), and the birefringence of 'good X-, y_, and ζ&quot;&quot; at least one of the refractive indices in the axial direction can be the same as the = fold, the island yarn. The absolute value of the difference between the ratios ηχ3 and ηχ4 can be two. More specifically, when the difference between the vertical β refractive index of the sea portion and the island portion of the island yarn is 0J or more and the refractive index of the sea and the island in the remaining two axes is The f-phase material maximizes the efficiency of optical modulation. At the same time, when the earth/birefringent island yarn has a phase in the sea In the case of the refractive index, the optical modulation efficiency can be easily improved. In order to improve the optical modulation efficiency, it is possible to select a birefringence in which the refractive index difference between the island portion and the sea portion in the longitudinal direction is large, and at the same time, the other two axes have substantially the same refractive index. Island yarn. The sea and / or island of the birefringent island yarn can be made of polyethylene naphthalate (PEN), copolymerized naphthalene diacetate (c〇_pEN), polyethylene terephthalate ( PET), polycarbonate (ρ〇, polycarbonate (pC) alloy, polystyrene (ps), heat-resistant polystyrene (PS), poly(meth) methacrylate (PMMA), poly(p-butyl phthalate) Ester (PBT), Polypropylene (PP), Polyethylene (PE), Acrylonitrile Butadiene Styrene (ABS), Polyurethane (PU), Polyimine (PI), Gas Ethylene (PVC), styrene acrylonitrile (SAN) blend, ethylene vinyl acetate 29 201211593 (EVA), polyamine (PA), poly shrink (P0M), polyphenol, epoxy (Ep) Urea (UF), melamine (MF), unsaturated polyester (UP), cerium (si), elastomer and cyclic olefin polymers and combinations thereof. Specifically, in view of an effective increase in optical modulation, a material having an island portion and a sea portion having substantially the same refractive index on both axes but having a large difference in refractive index on one axis can be selected. However, more specifically, when polyethylene naphthalate (PEN) is used as the material of the island portion of the birefringent island yarn, and copolymerized naphthalene diacetate, polycarbonate alloy or a combination thereof is used. For the material of the sea, the brightness can be greatly improved compared to the birefringent island yarn made of a common material. Particularly when a polycarbonate alloy is used as the sea portion, a birefringent island-in-the-sea yarn having the most excellent optical modulation properties can be prepared. In this case, the polycarbonate alloy preferably includes at least a polycarbonate and a modified poly(p-butylene phthalate) (PCTG). More specifically, the use of at least polycarbonate and modified polyparasinic acid cyclohexyldiiminodecyl diol (PCTG) and a weight ratio of 15:85 to 85:15 Ester alloy, which can effectively enhance the brightness. When the amount of the polycarbonate is less than 15%, the viscosity of the known compound required for the spinning is excessively increased, and there is a disadvantage that the spinning machine cannot be used. And when the amount of the polycarbonate is more than 85%, the glass transition temperature increases and the spinning tension increases after the nozzle is ejected, so it becomes difficult to ensure the spinning performance is optimal. The use includes at least polycarbonate and modification. The poly(p-nonanoic acid) is a polycarbonate alloy of 4:6 to 6:4 in a weight ratio of cyclohexyldifluorenyl S-diol (PCTG), which is effective for enhancing the luminance. Furthermore, in view of the efficiency improvement of the optical modulation efficiency, it is preferable that the island portion and the sea portion are selected to have a large refractive index difference in the longitudinal direction 201211593 and substantially the same in the other two axes: the isotropic material is modified into a birefringent material. The method is in the art::: well known. For example, 'polymer molecules can be oriented, so when 1 is stretched under suitable temperature conditions, it will become birefringent. W, 〃 In the present invention, the brightness disclosed in the present invention is strong; the surface layer can be structured. More specifically, the dim layer may be formed on the side of the emitted light. The structured surface layer can be in the form of a prism, a lenticular lens or a convex lens. More specifically, the light-emitting side of the luminance enhancement film may have a curved surface in the form of a convex lens. The surface can focus or defocus the light that passes through the surface. x, which emits a light meter and a mirror pattern. 〃 Next, a method of preparing the luminance enhancement film disclosed in the present invention will be described. First, after the above fabric is woven, the fabric may be disposed between the substrates and thereafter laminated. The lamination can be carried out by, for example, a winding or hot pressing procedure. Specifically, in order to prevent foaming, hot pressing can be performed under vacuum, whereby the adhesion and the luminance can be improved. Specifically, the degree of vacuum during hot pressing may be 5_5 Torr, the applied pressure may be i.O-iOOkgf/cm2, and the treatment time may be minutes. As described in detail above, the lamination temperature can be appropriately selected between the stimuli onset temperature of the island portion of the birefringent island-in-the-sea yarn and the melting temperature of the fiber and/or sea portion. When the degree of vacuum is less than 5 Torr, the process efficiency is unsatisfactory. When it is larger than 5 Torr, the defoaming is not sufficient. When the applied pressure is less than 1 〇kgf/cm2, the film adhesion is insufficient, and when the pressure exceeds WOkgf/cm2, the fiber arrangement is interrupted due to the excessive pressure. When the treatment time is less than 1 minute, the defoaming is followed by insufficient. And when the processing time exceeds 3 minutes, the efficiency of the process is not satisfactory. The brightness enhancement film disclosed in the present invention comprises at least a release film which can be easily attached and detached on one side or both sides of the brightness enhancement film to protect the surface. In order to increase the haze value and prevent visibility problems of the luminance enhancement film, a structured surface is formed on the luminance enhancement film. The structured surface can be a continuous three-dimensional pattern of 稜鏡, hemisphere, and the like. However, when a three-dimensional structure is formed to form a single crucible, for example, on a roll, pressure is applied to the brightness enhancement film to form a structured surface on the brightness enhancement film, and the release film is adhered to the brightness enhancement layer. The pressure on the release film may not be accurately transferred to the surface of the brightness enhancement film, causing haze reduction and visibility problems of the brightness enhancement film. Therefore, in order to solve the problem, a brightness enhancement film is provided which at least includes: a matrix film comprising at least one birefringent island-in-the-sea yarn having a birefringent interface at a boundary between an island portion and a sea portion; and at least one formed on the matrix film a release film of the side, wherein the release film comprises at least: a first layer comprising at least two or more incompatible polymers; and a second layer formed on the first layer 'by this, applied to The pressure of the release film can be accurately transferred to the surface of the brightness enhancement film'. Therefore, the haze of the brightness enhancement film can be remarkably increased, and the problem of visibility can be improved. In a specific embodiment of the present disclosure, the first layer comprises at least two or more incompatible polymers selected from the group consisting of polypropylene, polyethylene, polyester, polystyrene, and polyamidamine. More specifically, the incompatible polymers can be polypropylene and polyethylene. In this case, the polyethylene content in the first layer may be from 3 to 80% by weight, more preferably from 15 to 2% by weight. When the polyethylene content is outside this range, the desired effect cannot be achieved. 32 201211593 The second broad layer formed on the first layer includes at least 〇 〇栝 〇栝 〇栝 〇 〇 〇 〇 或 或 或 或 i i 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A sound and an ancient 1 · μ ^ Ηψ 弟 及 and Le 赝 can have a thickness ratio of 1:5 to 1: 10. Embodiments illustrate the examples and experimental methods of the present invention. The following examples and experiments The method is only for diligence and is not intended to limit the scope of the invention. &lt;Example 1&gt; As sea portion (ηχ 57 57, ny=1.57, nz 吐 57, refining temperature = 145. 〇 is an isotropic polycarbonate (PC) alloy, which includes pc and modified poly For the decanoic acid cyclohexyldifluorenyl g diol (PCTG), the ratio is 5 · · 5, and the island is made of anisotropic polyethylene naphthalate (pEN) (n ^ i 88, %=1.57, nz=1.57, pure starting temperature=262 clever. By supplying the island and the sea to the figure as shown in Fig. 3, the spinning spout having the upper distribution plate with 12 island supply units Figure 8 shows a row of outlets under the spinneret plate to prepare birefringent island-in-the-sea yarns with a cross section as shown in Fig. 9 (monofilaments, number of islands = 12192, diameter = 66 μm). The birefringent island-in-the-sea yarn (monofilament) was used as a warp yarn, and the same isotropic PC alloy fiber as the sea portion (melting temperature = 145. 〇 was used as weft woven fabric (60/24). Thereafter, the fabric was placed in two Isotropic pc alloy sheet [. Surface layer / core layer / surface layer of three-layer structure, core layer: PC (melting temperature -149 C ' ι5 〇 μιη) ' Surface layer: pc alloy (melting temperature: 145 〇 c , 3 ^ called ^, with = sea part)], and using vacuum hot pressing (Meiki) under a vacuum of 20 Torr at 150 ° C (lamination temperature) and the pressure is i5kgf / cm2 after 20 minutes 33 201211593 clock To obtain a 400-μιη thick luminance enhancement film. The crack occurrence is shown in the figure. The surface (4), image. The birefringent island yarn used as the warp yarn can be observed: <Example 2> A σ also, The ratio von 5 : 5 ; j is used as the sea (nx=1.57, ny=1.57, n 1 ^ 11 wide 1.57, melting temperature = 145. And anisotropic ΡΕΝ (ηχ=1.88, ny 57 ηζ-1·57, melting The initial temperature = 262 ° C) is used as an island portion. In order to obtain a birefringent island-in-the-sea yarn having a cross section as shown in Fig. 14, the materials are supplied to a spun which has a shape as shown in Fig. 12. A distribution plate above the island supply unit and a lower spinner plate having a discharge port as shown in Fig. 13 to prepare a birefringent island yarn (monofilament) as shown in Fig. 14 The number of islands = 25_, straight (four) 6 5 (four). After the partial yarn to the yarn (ρ() γ, 85 Danny eight monofilament) at a spinning rate of 2500 MPM, the crucible is at 140. (: stretched 2&gt; 1 time to prepare fy (4 〇 Danny / 1 monofilament). The birefringent island-in-the-sea yarn (monofilament, 40 Danny Λ monofilament) thus prepared was used as a warp yarn, and the use was the same as that of the sea portion. The sex PC alloy fiber (melting temperature = M5QC 'POY6 〇 Danny / 24 monofilament) is used as the weft yarn to weave the fabric. Thereafter, the fabric was laminated under vacuum as shown in Example 1 to obtain a luminance enhancement film having a thickness of 400 μm. Fig. 15 is a view showing the image of the surface of the fabric wound in Example 2. We can observe the birefringence island yarn used as warp yarn without yarn breakage 34 201211593 or broken monofilament. · . &lt;Comparative Example ι&gt; An isotropic PC alloy including a PC and a PCTG ratio of 5:5 was used as the sea portion (nx=1.57, ny=i.57, nz=1.57, melting temperature ^^), and anisotropy PEN (nx-1.88, ny = 1.57, nz = 1.57 'melting onset temperature = 262 ° C) was used as the island portion. In order to obtain a birefringent island-in-the-sea yarn having a cross section as shown in Fig. 5, the materials are supplied to a spinning nozzle having an upper distribution plate as shown in Fig. 3 and a lower nozzle plate as shown in Fig. 4. Prepare a birefringent island-in-the-sea yarn with a cross-section as shown in Fig. 5 (monofilament, number of islands = 1〇16, straight = at a spinning rate of 2500 MPM and a spinning temperature of 290. (: Preparation of Ρ〇γ ( After 85 Danny/12 monofilament), 1 &gt; 0 ¥ was stretched 21 times at 140 ° C to prepare ργ (4 〇 Danny / 12 monofilament). Using composite to become a birefringence of 80 Danny / 24 monofilament Two strands of the island yarn FY40/12 were used as warp yarns, and the same isotropic alloy fibers (melting temperature = 145. (:, POY 60/24) as the weft yarns were used to weave the fabric. Thereafter, as in Example 1 The fabric was laminated under vacuum to obtain a brightness enhancement film having a thickness of 400 μm. The figure is shown in the image of the surface of the fabric prepared in Comparative Example 1. We can observe the occurrence of birefringence island yarn entanglement and yarn breakage. Β , C) (, has a high degree of optical modulation and no defects, this application can be widely used in applications requiring optical modulation. = Hui said that it can be widely used in high demand A camera such as an LCD, a carnival, and a light-emitting diode 35201211593 (Light-emitting Diode, LED), Micromirrors and other optical devices, automotive interior and exterior parts, mobile phones and display devices, flat panel displays such as projection displays, plasma display panels (PDPs), field emission displays (FEDs) and electroluminescent displays (ELD) The present invention has been described with respect to the specific embodiments, and the present invention may be variously modified and modified without departing from the spirit and scope of the invention as described in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the invention will be apparent from the description of the appended claims. Schematic diagram of the membrane principle; Figure lb is a cross-sectional view of a conventional birefringent island-in-the-sea yarn; Figure 2 is a cross-sectional view of an injection unit of a spinning nozzle for making an island yarn according to a specific embodiment of the present invention; DETAILED DESCRIPTION OF THE INVENTION A specific embodiment of the invention discloses a cross-sectional view of a distribution plate on a spinning nozzle for making an island yarn; and FIG. 4 is a conventional spinning nozzle 4 for preparing an island yarn. Figure 5 is a cross-sectional view of a conventional birefringent island-in-the-sea yarn; Figure 6 is a Scanning Electron Microscopic 'SEM 3 image of a fabric comprising at least one conventional birefringent island-in-the-sea yarn. 36 201211593 (X25) ' ' Figure 7 is an SEM image (X40) of at least one fabric of a conventional birefringent island-in-the-sea yarn; Figure 8 is a spinning example of a spinning machine according to a specific embodiment of the present invention. FIG. 9 is a cross-sectional view of a birefringent island-in-the-sea yarn according to a specific embodiment of the present invention; FIG. 10 is an SEM image of a fabric including at least one birefringent island-in-the-sea yarn according to a specific embodiment of the present invention. (X30); FIG. 11 is an SEM image (X100) of a fabric comprising at least one birefringent island-in-the-sea yarn according to a specific embodiment of the present invention; FIG. 12 is a view of a specific embodiment according to the present disclosure for preparing a FIG. 13 is a cross-sectional view of a lower spinner plate for preparing a spun yarn of a sea-island yarn according to a specific embodiment of the present invention; FIG. 14 is a perspective view of the present invention Specific embodiment, A birefringent illustrates a SEM cross-sectional image of the sea yarns; FIG. 15 of the system according to an embodiment of the present invention specifically disclosed, comprising at least a SEM image of a birefringent island fabric yarns. It should be understood that the drawings are not necessarily to scale, and that the representative embodiments of the various preferred features are sufficient to illustrate the basic principles disclosed herein. Specific design features of the present disclosure as disclosed herein, including, for example, particular dimensions, directionality, location, and shape, are to be determined to some extent by the particular intended application and use. 37 201211593 In the figures, reference numerals are used to indicate the same or equivalent parts of the various figures in the drawings. [Main component symbol description] 11 Spinning core 12 Island portion 20 Polymer injection unit 30 Upper distribution plate 31 Polymer injection unit 41, 42 and 43 Discharge port 60 Fabric 61 Birefringent island yarn 62 Isotropic fiber 100 Fabric 101 Warp 102 Weft yarn 120 Upper distribution plate 121 Island supply unit 122 Core unit 123 Sea supply unit 124 Island supply passage 131 Flow passage 132 Discharge port 810 Discharge port 38 201211593 820, 821 Flow path A, B, C Yarn break PP polarized light S s polarized light 39

Claims (1)

201211593 201211593 七 、申請專利範圍: 1. 一種輝度增強膜,其至少包括: 一基質;及 一雙折射海島紗’其位於該基㈣,在—島部與 …=邊界具有—雙折射界面,用以改良光學調變, 、中該雙折射海島紗之島部及海部,在 具有不同折射率,且方寇々卜&amp; 軸方向 [方程^ 方程式1疋義之A值為或以上: A單絲之島部數目/—複合絲之單絲數目。 =申明專魏_丨項所述之輝 1000或以上。 值為 =申請翻範圍第丨項所叙輝度 10000或以上。 A值為 ·=申明專利範圍第丨項所述之輝度增強膜, 20000或以上。 /A值為 =申請專利項所述之輝度增強膜,其㈣ 海島紗的單絲具有测或更多之島部。 6:ΠΠί圍第1項所述之輝度增強膜’其中該雙折射 海島㈣早絲具有1()_或更多之島部。 7.=^利範圍第1項所述之輝度增強膜,其中該雙折射 海島紗的單絲具有2_0或更多之島部。 雙斤射 8^1㈣,範圍第1項所述之輝度增強膜,其中該雙折射 島㈣單絲直徑為30μιη或以上。 9.如申請專利範圍第1項所述之輝度增強膜,其中該雙折射 201211593 海島紗的單丨絲直徑為40-1 ΟΟμπι。 10. 如申請專利範圍第1項所述之輝度增強膜,其中該雙折 射海島紗至少包括15-500丹尼/1-6單絲。 11. 如申請專利範圍第1項所述之輝度增強膜,其中該雙折 射海島紗為單絲或2-6股之複合絲。 12. 如申請專利範圍第1項所述之輝度增強膜,其中該雙折 射海島紗被編織成一織物,該織物之緯紗與經紗中之一 為雙折射海島紗,另一為纖維,該雙折射海島紗之島部 的熔化起始溫度高於纖維的熔化溫度。 13. 如申請專利範圍第12項所述之輝度增強膜,其中該雙折 射海島紗之島部為光學異向性,且該海部及該纖維為光 學等向性。 H.如申請專利範圍第12項所述之輝度增強膜,其中該纖維 係選自由聚合物纖維、自然纖維及無機纖維所組成群組 中之一種或多種纖維。 15. 如申請專利範圍第12項所述之輝度增強膜,其中該雙折 射海島紗之島部的熔化起始溫度係高於該海部及/或該 纖維的溶化溫度。 16. 如申請專利範圍第12項所述之輝度增強膜,其中該雙折 射海島紗之島部的熔化起始溫度較該海部及/或該纖維 的熔化溫度高30°C或以上。 17. 如申請專利範圍第12項所述之輝度增強膜,其中該纖維 及/或該海部為部分或全部熔化。 18. 如申請專利範圍第1項所述之輝度增強膜,其中該基質 201211593 與該雙折射海島㈣在二心向之折射率 或以下,且該基質與該雙折射海島紗二= 之折射率的差異為0.lst以上。 |釉方向 19.如申請專利範圍第1項所述之輝度增強膜,其中該雙折 射海島紗之海部與島部在二軸方向之折射率的差異^ 〇.〇5或以下,且該雙折射海島紗之海部與島部在剩餘一 軸方向之折射率的差異為〇1或以上。 20’如申凊專利範圍第1項所述之輝度增強膜,其中該雙折 射海島紗之海部折射率與該基質之折射率相同。 21.如申請專利範圍第1項所述之輝度增強膜,其中一離型 膜,其形成在該基質之至少一侧,且該離型膜至少包括: 第層,至少包括二個或以上不相容之聚合物;及一 第二層,其形成於該第一層上。 22·如申請專利範圍第21項所述之輝度增強膜,其中二個或 以上不相容之聚合物係選自由聚丙烯、聚乙烯、聚酯、 聚苯乙烯、聚醯胺所組成的群組。 42201211593 201211593 VII. Patent application scope: 1. A brightness enhancement film comprising at least: a substrate; and a birefringent island-in-the-sea yarn 'located at the base (4), having a birefringence interface at the island portion and the ...= boundary, With improved optical modulation, the island and the sea of the birefringent island yarn have different refractive indices, and the direction of the axis &amp; axis [equation ^ Equation 1 A value of or above: A monofilament Number of islands / number of monofilaments of composite filaments. = Declare the special Wei _ 丨 所述 所述 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 The value is = 10,000 or more for the brightness of the application. A value is == the brightness enhancement film described in the third paragraph of the patent scope, 20000 or above. /A value = the brightness enhancement film described in the patent application, wherein (4) the monofilament of the island yarn has a measured or more island portion. 6: The luminance enhancement film of the above item 1, wherein the birefringent island (four) early filament has an island portion of 1 () or more. 7. The brightness enhancement film of item 1, wherein the monofilament of the birefringent island-in-the-sea yarn has an island portion of 2_0 or more. The invention relates to a brightness enhancement film according to the item 1, wherein the birefringent island (four) monofilament has a diameter of 30 μm or more. 9. The brightness enhancement film of claim 1, wherein the birefringence 201211593 island yarn has a single twisted wire diameter of 40-1 ΟΟμπι. 10. The brightness enhancement film of claim 1, wherein the birefringent island yarn comprises at least 15-500 denier per 1-6 monofilament. 11. The brightness enhancement film of claim 1, wherein the birefringent island yarn is a monofilament or a 2-6 strand composite yarn. 12. The brightness enhancement film of claim 1, wherein the birefringent island-in-the-sea yarn is woven into a fabric, one of the weft and warp yarns of the fabric is a birefringent island-in-the-sea yarn, and the other is a fiber, the birefringence The melting initiation temperature of the island island is higher than the melting temperature of the fiber. 13. The brightness enhancement film of claim 12, wherein the island portion of the birefringent island yarn is optically anisotropic, and the sea portion and the fiber are optically isotropic. H. The brightness enhancement film of claim 12, wherein the fiber is selected from the group consisting of polymer fibers, natural fibers, and inorganic fibers. 15. The brightness enhancement film of claim 12, wherein a melting initiation temperature of the island portion of the birefringent island-in-the-sea yarn is higher than a melting temperature of the sea portion and/or the fiber. 16. The brightness enhancement film of claim 12, wherein the island of the birefringent island-in-the-sea yarn has a melting onset temperature 30 ° C or more higher than a melting temperature of the sea portion and/or the fiber. 17. The brightness enhancement film of claim 12, wherein the fiber and/or the sea portion is partially or completely melted. 18. The brightness enhancement film of claim 1, wherein the substrate 201211593 and the birefringent island (four) have a refractive index of two or less, and the matrix and the birefringent island yarn have a refractive index of two. The difference is above 0.1 sst. The glaze enhancement film according to claim 1, wherein the difference between the refractive index of the sea portion and the island portion of the birefringent island yarn in the biaxial direction is 〇.〇5 or less, and the double The difference in refractive index between the sea portion and the island portion of the refracting island yarn in the remaining one-axis direction is 〇1 or more. The brightness enhancement film of claim 1, wherein the refractive index of the sea portion of the birefringent island-in-the-sea yarn is the same as the refractive index of the substrate. 21. The brightness enhancement film of claim 1, wherein a release film is formed on at least one side of the substrate, and the release film comprises at least: a first layer comprising at least two or more a compatible polymer; and a second layer formed on the first layer. 22. The brightness enhancement film of claim 21, wherein the two or more incompatible polymers are selected from the group consisting of polypropylene, polyethylene, polyester, polystyrene, and polyamidamine. group. 42
TW100110820A 2010-04-02 2011-03-29 Luminance- enhanced film TWI428644B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020100030412A KR101198207B1 (en) 2010-04-02 2010-04-02 Light modulated object
KR1020100030415A KR20110111037A (en) 2010-04-02 2010-04-02 Manufacturing method of brightness enhancement film
KR1020100030414A KR20110111036A (en) 2010-04-02 2010-04-02 Brightness enhancement film

Publications (2)

Publication Number Publication Date
TW201211593A true TW201211593A (en) 2012-03-16
TWI428644B TWI428644B (en) 2014-03-01

Family

ID=44712718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110820A TWI428644B (en) 2010-04-02 2011-03-29 Luminance- enhanced film

Country Status (2)

Country Link
TW (1) TWI428644B (en)
WO (1) WO2011122794A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406239B2 (en) * 2005-02-28 2008-07-29 3M Innovative Properties Company Optical elements containing a polymer fiber weave
US20070281143A1 (en) * 2006-06-05 2007-12-06 Aylward Peter T Diffusely-reflecting element and method of making
US20080057277A1 (en) * 2006-08-30 2008-03-06 3M Innovative Properties Company Polymer fiber polarizers
KR100951700B1 (en) * 2009-01-30 2010-04-07 웅진케미칼 주식회사 Manufacturing method of light modulated object

Also Published As

Publication number Publication date
TWI428644B (en) 2014-03-01
WO2011122794A3 (en) 2012-02-02
WO2011122794A2 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
TW200812805A (en) Diffusely-reflecting element and method of making
US20100195233A1 (en) Luminance-enhanced film
TW200949300A (en) Luminance-enhanced film
KR100955474B1 (en) Manufacturing method of brightness enhancement film
TW201211593A (en) Luminance- enhanced film
US20100195234A1 (en) Luminance-enhanced film
TWI404981B (en) Optical-modulation object
US20110157513A1 (en) Liquid crystal display device
TW201211594A (en) Luminance- enhanced film
TW201211647A (en) Liquid crystal display device
TW200944866A (en) Optical modulated object
US20110014838A1 (en) Luminance-enhanced film and method for fabricating the same
TW201142379A (en) Luminance-enhanced film and method for fabricating the same
KR100955473B1 (en) Method for manufacturing brightness enhancement film using vacuum hot press and brightness enhancement film prepared by the same
KR101094131B1 (en) Brightness enhancement film
KR101198207B1 (en) Light modulated object
KR100951704B1 (en) Method for preparing brightness enhancement sheet and brightness enhancement sheet prepared by the same
KR100951703B1 (en) Method for preparing brightness enhancement sheet and brightness enhancement sheet prepared by the same
KR101109134B1 (en) Manufacturing method of light modulated film
KR100955471B1 (en) Brightness enhancement film
KR20110112604A (en) Manufacturing method of luminance-enhanced film
KR20110111037A (en) Manufacturing method of brightness enhancement film
KR100951701B1 (en) Light modulated object
KR20120021937A (en) Luminance-enhanced film and manufacturing method thereof
KR100951702B1 (en) Method for manufacturing light modulated object using vacuum hot press and light modulated object prepared by the same