TW200944866A - Optical modulated object - Google Patents

Optical modulated object Download PDF

Info

Publication number
TW200944866A
TW200944866A TW97147276A TW97147276A TW200944866A TW 200944866 A TW200944866 A TW 200944866A TW 97147276 A TW97147276 A TW 97147276A TW 97147276 A TW97147276 A TW 97147276A TW 200944866 A TW200944866 A TW 200944866A
Authority
TW
Taiwan
Prior art keywords
optical modulation
modulation body
fiber
birefringent
star
Prior art date
Application number
TW97147276A
Other languages
Chinese (zh)
Inventor
Yeon-Soo Kim
Do-Hyun Kim
In-Young Yang
Jin-Soo Kim
Deog-Jae Jo
Original Assignee
Woongjin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woongjin Chemical Co Ltd filed Critical Woongjin Chemical Co Ltd
Publication of TW200944866A publication Critical patent/TW200944866A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to an optical modulated object, and more particularly, to an optical modulated object for having light, being incident on its base material, modulated into light of a desired form such that it is appropriate for optical usage. In the optical modulated object of the present invention, the birefringent polymer is disposed within an isotropic base material. Thus, when light is irradiated to the base material, a birefringent interface is formed between the isotropic base material and the birefringent polymer due to a difference in the optical property. Accordingly, luminance can be improved and consumption power can be saved by changing the property of irradiated light, if appropriate, or integrating, scattering, reflecting or refracting light.

Description

200944866 六、發明說明: 【發明所屬之技術領域】 美材體,尤其有關一種可將入射於其 先線_成所娜式因㈣於絲崎之光學調變體。 [先刖技術】 變體係包括散佈在""連續基® _包體,在相關技 控制包體的特性,可使光學調變體具有 Ο _透性°包體特性可包括包體在光學調變 ,内相對波長之大小,包體之形式與排列方式,包體之 正絲鱗時,麟料與該連 俨槐包括多數無機的條形鏈,其中包括以包 m排列在-15物基質_光學吸收缺。此種薄膜具有吸 =的光線沿著與條形碘鏈平行排列的薄膜 ΐ 的光線隨後沿垂直條體的方向傳輸。碘 ^兩種尺寸,且其波長]、於可見光線之波長,並具有大量光 =的if此’光學調變體的光學特性通常看來就像一 S學調變體之擴散傳輸(漫透射)或從光 光與ί ί ί Ξ 於性各異的無機包體時’可提供不同的 其中—實例係於—聚合物薄膜内包 i其中,該雲母薄片段具有二或多個大於 L接著塗裝,然後賦予金屬玻璃。經由控制 Si存_平面内,可以針對反射方面提供強方向 纽根作用’可以製作一種安全螢幕’從一特定視角觀 J時則i?二ί勞幕具有高反射性,而從另一不同視角觀看 Τ ’則為透明性。此外,在薄膜内包覆一大尺寸薄片段,且該 200944866 / « ,薄片段依照朝入射光定向的狀態而定具有顯色作帛(亦即 擇性正反射)時,亦可提供反射(干擾/碰撞)跡象。在此種 用途中’薄膜内的所有薄片段必須關樣方式彼此定向。 —然而’使用充填無機包體之聚合物所製造的光學薄膜存在 若干缺點。通常,無機微粒與聚合物基質間的黏著力較差。 ‘此,當光學調變體遭受與基質垂直的應力或變形時,其光學 性會劣化。如此會損害基質與包體間的耦合,也會使硬質的I 機包體破裂。此外,為了定向無機包體,必須進一步考慮處g 步驟,因而使製造方法趨於複雜。 “ 然而,最主要的是,因為構成習用光學調變體的基質與基 質内包覆的包體,都具有光學各向同性(is〇tr〇pic)的光學 特性’因而有低化光學調變效率的問題。 【發明内容】 〔所欲解決之技術問題〕 因此,鑑於上述先前技術中發生的問題,特此提出本發 明;同時,本發明之目的係為提供一種光學調變體,其中之基 材内设有光學特性與基材不同之雙折射(birefringent)聚合 物,藉此達到最大的光學調變效率。 ° 〔解決技術問題之手段〕 ❹ 為達成上述目的’根據本發明的一項標的之光學調變體係 於一基材内設有一雙折射聚合物。 在這點上’基材為各向同性’並且較佳的是使用以下各項 中之任一項或多項:聚萘二甲酸乙二醇酯(PEN)、共聚萘二 曱酸乙二醇酯(co-PEN)、聚對苯二曱酸乙二醇酯(pet)、 共聚對苯二曱酸乙二醇酯(C0_PET)、聚碳酸酯(ρ〇、聚碳 酸酯合金、聚苯乙烯(PS)、耐熱聚苯乙烯、聚曱基丙稀酸 曱酯(PMMA)、聚對苯二曱酸丁二酯(PBT)、聚丙烯(pp)、 聚乙烯(PE)、丙烯腈丁二烯苯乙烯共聚物(ABS)、聚氨酯 (PU)、聚醯亞胺(PI)、聚氯乙烯(PVC)、苯乙烯丙烯腈混 合物(SAN)、乙烯醋酸(EVA)、聚醯胺(PA)、聚曱醛(pom)、 200944866 石碳酸、環氧樹脂(EP)、尿素(UF)、黑色素(MF)、非飽 和聚酯(UP)、矽(SI)、合成橡膠、及環烯聚合物。 該雙折射聚合物較宜可使用與基材或基底相同並具有雙 折2的材料。較佳的是,該雙折射聚合物可為複數並沿同一方 向設於基材内。更佳的是,該雙折射聚合物可配置於基材内並 與光源垂直。 該雙折射聚合物之體積,較宜為該光學調變體總體積 。該雙折射聚合物之數量可為相對每lcra3 變體内設置500至I0lfl個。 你要光學纖體較佳可包括—結構表面層,設於與絲反向之 =置。該結構表面層可為稜柱形、雙凸形、凸透鏡形、 規則性或不規則性。此外,該雙折射聚 口物可配置於或不配置於該結構表面層上。 占,一光源照射之光線可透射該光學調變體,且該透射光可 雙折㈣麵可崎^置对或分散 佳可; ❹ 此光學調變纖維可包括-配置於填料内的各向異'4、 同料=有向各= 佳可使用與基材_的材料,或使用具有各^: =料與該各向異性紗芯纖維相對二 =維相對第二軸向上的折射率差異可為〇 〇51 向異性__可包括—_夕卜罩,_ 200944866200944866 VI. Description of the invention: [Technical field to which the invention pertains] The beauty body body, in particular, relates to an optical modulation body which can be incident on its first line _ into the sinusoidal factor (4) in the silk. [Priority technology] The variable system includes the inclusion of the "" continuous base® _ inclusion body, which controls the properties of the inclusion body in the related art to make the optical modulation body have Ο _ permeability. The inclusion body characteristics may include the inclusion body. Optical modulation, the relative wavelength of the inside, the form and arrangement of the inclusions, the positive scale of the inclusion, the stalk and the scorpion include most inorganic strip chains, including the -15 objects arranged in the package m Matrix _ optical absorption is missing. The film has a light absorbing light which is transmitted along a film ΐ which is arranged in parallel with the strip iodine chain and then transmitted in the direction of the vertical strip. Iodine ^ two sizes, and its wavelength], at the wavelength of visible light, and has a large amount of light = if this optical characteristic of the optical modulation body usually looks like a diffusion transmission of a S-sense modulation (diffuse transmission) Or from the light and the different inorganic inclusions, 'may provide a different one - the example is attached to the polymer film, where the mica thin segment has two or more than L and then coated Load and then give the metal glass. By controlling the Si _ plane, it is possible to provide a strong directional root effect for reflection. 'It is possible to make a security screen'. When viewed from a specific perspective, the image is highly reflective, while from a different perspective. Watching Τ 'is transparency. In addition, a large-sized thin segment is coated in the film, and the 200944866 / «, the thin segment can also provide reflection when it has a color development (ie, selective positive reflection) according to the state of the incident light. Interference/collision signs. In such applications, all thin segments within the film must be oriented relative to one another. - However, there are several disadvantages to the use of optical films made with polymers filled with inorganic inclusions. Generally, the adhesion between the inorganic particles and the polymer matrix is poor. ‘This, when the optical modulation body is subjected to stress or deformation perpendicular to the substrate, its optical properties are deteriorated. This will damage the coupling between the substrate and the package, and will also break the rigid I package. Furthermore, in order to orient the inorganic inclusions, the g step must be further considered, thus making the manufacturing process more complicated. "However, the most important thing is that because the matrix constituting the conventional optical modulation body and the inclusion body coated in the matrix have optical properties of optical isotropic properties, thus the optical modulation is reduced. [Problem of the Invention] [Technical Problem to be Solved] Therefore, the present invention has been made in view of the problems occurring in the prior art described above, and at the same time, an object of the present invention is to provide an optical modulation body in which a base is provided. A birefringent polymer having optical characteristics different from that of the substrate is provided in the material, thereby achieving maximum optical modulation efficiency. ° [Means for solving the technical problem] ❹ To achieve the above object, an object according to the present invention The optical modulation system is provided with a birefringent polymer in a substrate. In this regard, 'the substrate is isotropic' and it is preferred to use any one or more of the following: polynaphthalene dicarboxylic acid Ethylene glycol ester (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (pet), copolymerized ethylene terephthalate (C0_PET) , polycarbonate (ρ〇 Polycarbonate alloy, polystyrene (PS), heat resistant polystyrene, polymethyl phthalate (PMMA), polybutylene terephthalate (PBT), polypropylene (pp), polyethylene (PE), acrylonitrile butadiene styrene copolymer (ABS), polyurethane (PU), polyimine (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene acetic acid (EVA) ), polyamine (PA), polyacetal (pom), 200944866, stone carbonate, epoxy resin (EP), urea (UF), melanin (MF), unsaturated polyester (UP), antimony (SI), Synthetic rubber, and cycloolefin polymer. The birefringent polymer is preferably a material which is the same as the substrate or the substrate and has a double fold 2. Preferably, the birefringent polymer can be plural and arranged in the same direction. More preferably, the birefringent polymer can be disposed in the substrate and perpendicular to the light source. The volume of the birefringent polymer is preferably the total volume of the optically modulated body. The number can be set to 500 to I0lfl per lcra3 variant. You should preferably include an optical surface body, which is provided on the surface layer of the structure. The surface layer of the structure may be prismatic, biconvex, convex lenticular, regular or irregular. Further, the birefringent slab may or may not be disposed on the surface layer of the structure. The light irradiated by a light source can transmit the optical modulation body, and the transmitted light can be bi-folded (four) surface can be neatly disposed or dispersed; ❹ the optically modulated fiber can include - disposed in the filler Orientation '4, the same material = directional each = good material to be used with the substrate _, or the use of each of the ^: = material and the anisotropic core fiber relative to the two = dimension relative to the second axial refraction The rate difference can be 〇〇51 to the opposite sex __ can include -_ 夕卜罩, _ 200944866

維。^面不同的光學調變纖 射聚合物物質所構成。纖徒中,至少有—者可由雙折 有-向異性紗芯纖維之中,至少 ⑽複合(一_ 各向異性部對應該 、Ί’,異性攸、纖維可對應天星狀紗線的星部(island poison ) ’而該填料可對應*星狀紗線的 por^orO。在此情況時,天部與星部較佳可在至少—方向上且a 射ί。更佳的是,天部與星部相對於二個轴向上^ 一射率差,、可為0.03或低於〇·〇3,而天部與星部相對於第 三軸向上的折射率差異可為〇 〇5或高於〇 〇5。 、 天部與星部之面積比,較佳可在2:8至8:2的範圍内。 天星狀紗線内較佳可配置多數星部。較佳的是,天部可為 各向同性,而星部可為各向異性。 用於天星狀紗線内的聚合物較佳可為以下各項中的一項 或多項:聚萘二甲酸乙二醇酯(PEN)、共聚萘二曱酸乙二醇 酯(co-PEN)、聚對苯二甲酸乙二醇酯(pET)、共聚對苯二 曱酸乙二醇酯(co-ΡΕΤ)、聚碳酸酯(PC)、聚碳酸酯合金、 聚笨乙稀(PS)、耐熱聚苯乙烯、聚曱基丙稀酸曱酯(p顺八)、 聚對苯二曱酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(PE)、 丙烯腈丁二烯笨乙烯共聚物(ABS)、聚氨酯(ρϋ)、聚醯亞 胺(ΡΙ)、聚氣乙烯(PVC)、苯乙稀丙烯腈混合物(san)、 乙烯醋酸(EVA)、聚醯胺(ΡΑ)、聚曱醛(Ρ0Μ)、石碳酸、 環氧樹脂(EP)、尿素(UF)、黑色素(MF)、非飽和聚酯(up)、 矽(SI)、合成橡膠、及環烯聚合物;且該一或多項聚合物可 分別用作天部及星部。 200944866 天星狀紗線之纖度較佳 (denier)。光學調變體内較佳是每^八八’ go丹尼阚 至4, 000, 〇〇〇條天星狀紗線。 a刀(cm )配置5〇c 形。天星狀紗線之橫截面較佳可為非圓形,亦可為圓形或擴圓 峨佳可為相形截面。 ❹ ❹ 天星狀紗線較基材之折射率相同。 可具有織束方式編織而成,或 一者可為天星狀紗線,而另—者與域令之任 該雙折射纖甘線來形成。 充填部及被該等各向同性充填;二“包括多數各向同性 部。在此情況時,該複!各向異性複合 該各向複合部較佳可為多數。截4相形截面。而 此平同性充填部在該複合紗線内時 ,較佳可為彼 内的雙=二包括-配置於基材 異性^ $====;且該各向 忒基材與该填料較佳可為各向同性。 異較纖維與該填料在二個轴向上的折射率差 填料在第為三炒芯纖幽 0.05。 的折射革差異較佳可為請或高於 χ 14 ζ軸向上的折射率可為nZ1 ;且一雙折射光學:.變二在1 200944866 折射率可為ηΧ2 ’在y軸向上的折射率可為ηΥ2, 向的二射ΐί折ηΖ2 ;那麼該基材在x、y、ζ三軸 纖維在x +y、ζ - 少有—個可與該雙折射光學調變 诗把古 軸向的折射率至少其中之一為相同。 該折射率較佳可為ηχ2〉nY2 = ηζ2。 向異學鞭纖輸佳可包括-配置於填料内的各 哑== 上異的X轴向上的折射率可為 可為η79 厂对手了為Y2 ’在2軸向上的折射率 向丄祕㈣而\真料在χ轴向上的折射率可為ηΧ3,在y轴 獻把4^射率可為沾3,在2軸向上的折射率可為nZ3 .那 Γ之間或者折射率nY2與nY3之間的 盥iz3之ρϋ〇δ〇5或向於〇.05。在此情況時,折射率ηΖ2 Ζ3之間的差異絕對值可為低於0.03。 顧上述光學調變體較佳可作為包覆在一液晶 顯不态内的壳度增強型薄膜。 本說明書内使用的專門術語簡短定義如下。 之折ϋίΐΐΐ聚ΐ物,除非另有_,絲示··當聚合物 ❹ 同,略賴射在此等聚合物上時, 入射$該技合物的光線會折射成兩道方向相異的光線。 各向同性」—詞表示··當光線通過-物體時,該物體之 折射率固定’與其方向無關。 「2異性」一詞表示:一物體之光學特性依光線方向而 不同。各向異性物體具有雙折射,並與各向同性相反。 去:3Ϊ Ϊ J 表示:照射的光線被反射、折射、散射; 或者先線的強度、波動周期或特性已改變。 〔對照先前技術之功效〕 根據本發狀絲_體,若在—各向雜之紐内配置 ,巧聚合物且光線照射在該基材上時,由於該各向同性基材 /、該等雙折射聚合物之光學彳植不同,所以會在兩者之間形成 200944866 ,-雙折射介面。因此,藉由改魏射的光線 整合、散射、反射或折射光線,可以 僅在發!ΐ光學調變體係用作亮度增強型薄膜時, 置式亮度,強型薄臈不同。是故,本發明之光學調變 有優異的⑨度增強效果而不獅成多數層。此外,由 =並未疊置數百層,所以製作非常方便且可大轉省^產^ ❹ 【實施方式】 以下參照關詳細說明本發縣干具體實施例。 ^用之光學機體巾,構成光學調變體的基質與插入 各ίίΐ特性都具有光學各辆性之性f,使照^的 先線並…各種形式之調變。因此,習用光學調 光學顆而ί無法調變光線使之具有所需_式 机於^ 絲_财健·射聚合物 ^射^從外部人_光糊變_光線,會在dimension. The surface is composed of different optically modulated fibrous polymer materials. Among the fiber, at least one of them can be composed of bi-folded and anisotropic yarn core fibers, at least (10) composite (a _ anisotropic part corresponding, Ί', heterogeneous 攸, fiber can correspond to the star of the star-shaped yarn (island poison ) 'and the filler can correspond to the por^orO of the * star yarn. In this case, the celestial part and the star part are preferably at least in the direction and a ί. More preferably, the celestial part The difference from the radiance of the star portion with respect to the two axial directions may be 0.03 or lower than 〇·〇3, and the difference in refractive index between the sky portion and the star portion with respect to the third axis may be 〇〇5 or It is higher than 〇〇5. The area ratio of the celestial part to the star part is preferably in the range of 2:8 to 8:2. The star-shaped yarn is preferably configurable with a majority of stars. Preferably, the sky The portion may be isotropic, and the star portion may be anisotropic. The polymer used in the star-shaped yarn may preferably be one or more of the following: polyethylene naphthalate (PEN) ), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (pET), copolymerized ethylene terephthalate (co-ΡΕΤ), polycarbonate ( PC), Polycarbonate alloy, polystyrene (PS), heat-resistant polystyrene, phthalic acid decyl acrylate (p cis), polybutylene terephthalate (PBT), polypropylene (PP) , polyethylene (PE), acrylonitrile butadiene stupid ethylene copolymer (ABS), polyurethane (ρϋ), polyimine (ΡΙ), polyethylene (PVC), styrene acrylonitrile mixture (san), Ethylene Acetate (EVA), Polyamide (ΡΑ), Polyacetal (Ρ0Μ), Stone Carbonic Acid, Epoxy Resin (EP), Urea (UF), Melanin (MF), Unsaturated Polyester (up), Antimony ( SI), synthetic rubber, and cycloolefin polymer; and the one or more polymers can be used as the celestial and stellar portions respectively. 200944866 The fineness of the star-shaped yarn is better (denier). Each of the eight eight's gondani to 4,000, the scorpion-shaped yarn. The knife (cm) is arranged in a 5〇c shape. The cross section of the star-shaped yarn is preferably non-circular. It can be round or round, but it can be a cross section. ❹ ❹ The celestial yarn has the same refractive index than the base material. It can be woven by weaving, or one can be a star-shaped yarn. The other is formed by the birefringent fiber of the domain. The filling portion is filled with the isotropic; the second "includes the majority of the isotropic portion. In this case, the complex! anisotropic composite Preferably, the respective composite portions may be a plurality of sections, and the four-phase cross-section may be cut. When the flat-type filling portion is in the composite yarn, it may preferably be double-two inclusive-disposed on the substrate heterogeneity ^ $== ==; and the respective ruthenium substrate and the filler are preferably isotropic. The refractive index difference between the different fibers and the filler in two axial directions is at the third refractory of the core. The difference in leather may preferably be higher or higher than χ 14 ζ The refractive index in the axial direction may be nZ1; and a birefringent optical: the second is in 1 200944866 The refractive index may be ηΧ2 'The refractive index in the y-axis may be ηΥ2 , the orientation of the two ΐ 折 Ζ Ζ Ζ 2; then the substrate in the x, y, ζ triaxial fibers in x + y, ζ - rare - with the birefringence optical modulation poetry to the ancient axis of the refractive index at least One of them is the same. The refractive index is preferably η χ 2 > nY2 = η ζ 2 . The transfer to the foreigner can be included - the dull == the upper X-axis refractive index in the filler can be η79 factory opponents for Y2 'refractive index in the 2 axial direction (4) The true refractive index in the axial direction of the crucible may be ηΧ3, and the refractive index in the y-axis may be dip 3, and the refractive index in the 2 axial direction may be nZ3. between the crucibles or the refractive index nY2 Ϋ〇 3 3 盥 盥 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05. In this case, the absolute value of the difference between the refractive indices η Ζ 2 Ζ 3 may be less than 0.03. The optical modulation body described above is preferably used as a shell-enhanced film coated in a liquid crystal display state. The short terms used in this manual are briefly defined as follows. The ϋ ϋ ΐΐΐ ΐΐΐ ΐΐΐ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Light. Isotropic" - the word indicates that when the light passes through the object, the refractive index of the object is fixed 'independent of its direction. The term "2 heterosexuality" means that the optical properties of an object differ depending on the direction of the light. Anisotropic objects have birefringence and are opposite to isotropic. Go: 3Ϊ Ϊ J means: the illuminating light is reflected, refracted, scattered; or the intensity, fluctuation period or characteristic of the first line has changed. [Comparative to the efficacy of the prior art] According to the hairline of the hairline, if the polymer is disposed in the respective fibers, and the light is irradiated on the substrate, the isotropic substrate/these The optical implants of birefringent polymers are different, so a 200944866,-birefringent interface is formed between the two. Therefore, by changing the light of the Wei-ray to integrate, scatter, reflect, or refract light, it can be used only when the brightness-enhanced film is used as a brightness-enhancing film, and the brightness is different. Therefore, the optical modulation of the present invention has an excellent 9-degree enhancement effect without the lion becoming a majority layer. In addition, since there are not hundreds of layers stacked by =, it is very convenient to manufacture and can be greatly changed. [Embodiment] Hereinafter, a specific embodiment of the present invention will be described in detail with reference to the details. ^The optical body towel used to form the optical modulation body of the matrix and the insertion of each of the ΐ ΐ features have optical properties f, so that the first line and ... various forms of modulation. Therefore, it is customary to use an optical modulating optical element and ί can not modulate the light to make it have the desired _ type machine in the ^ _ _ _ _ _ _ _ _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

ϊί# ΐί 學調變。更明確地說,從外部光源照L 先線係大如成s偏振光與ρ偏振^若希望做 會通過光學調變體而不受雙折射介面 辦光會在雙折射介面被折射、散射與反射, 忑,式之波長,亦即,調變成㈣振光或?偏振 =11:光Γ變體’而赚光則會再度散射 重覆此過耘,將可得到所要的Ρ偏振光。 圖。本發明—實關之光學織狀局部剖面概要 絲調魏财錄猜概合物110, ΐίΐΐ射^物110具有雙折射特性,並且自由排列在-且 °同性特質的基材100内。目前可使用的基材1〇〇材料〆包 200944866 括各種可傳輸一標靶範圍内光學波長的熱塑性及熱固性聚合 物。較適當的基材100可為非晶質或半晶質,並可包括單聚 物、共聚物、或其混合物。更明確地說,可以使用以下各項材 料:聚萘二曱酸乙二醇酯(polyethylene naphthalate, PEN)、共聚萘二曱酸乙二醇酯(co-PEN)、聚對苯二甲酸乙二 醇酯(polyethylene terephthalate,PET )、聚碳酸酯 (polycarbonate,PC)、聚碳酸酯合金(polycarbonate ❹Ϊί# ΐί Learn to change. More specifically, from the external source, the L-line is as large as s-polarized light and ρ-polarized. If you want to do it through the optically modulated body without the birefringent interface, it will be refracted and scattered in the birefringent interface. Reflection, 忑, the wavelength of the formula, that is, the modulation into (four) illuminating or? Polarization = 11: the optical Γ variant ‘and the light will be scattered again. Repeat this 耘, you will get the desired Ρ polarized light. Figure. SUMMARY OF THE INVENTION - OVERVIEW OF OPTICAL TEXTURE PORTAL OVERVIEW OF SECURE WIRELESS WIRELESS TECHNIQUE 110, ΐίΐΐ ^ 110 has birefringence characteristics and is freely arranged in a substrate 100 of the same-sex nature. Substrate 1〇〇 material packages currently available 200944866 includes various thermoplastic and thermoset polymers that transmit optical wavelengths within a target range. A more suitable substrate 100 can be amorphous or semi-crystalline and can include monomers, copolymers, or mixtures thereof. More specifically, the following materials can be used: polyethylene naphthalate (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate Polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate alloy (polycarbonate ❹)

alloy )、聚苯乙烯(polystyrene,PS)、耐熱聚苯乙烯 (heat-resistant polystyrene )、聚曱基丙烯酸曱酯 (polymethyl methacrylate,PMMA),、聚對苯二曱酸丁二酯 (polybutylene ter印hthalate,PBT )、聚丙婦 (polypropylene ’ PP)、聚乙烯(polyethylene,PE)、丙婦 腈丁一稀本乙婦共聚物(acrylonitrile butadiene styrene, ABS)、聚氨酯(p〇lyurethane,PU)、聚醯亞胺(p〇lyimide, PI)、聚氯乙烯(poly vinyl chloride,PVC)、苯乙烯丙烯 腈混合物(styrene acrylonitrile mixture,SAN)、乙烯醋 酸(ethylene vinyl acetate,EVA)、聚醯胺(p〇lyamide, PA)、聚甲搭(p〇lyaceta卜 P0M)、石碳酸(phen〇1)、環氧 樹醋(epoxy’EP)、尿素(urea'uF)、黑色素(melanin, MF )、非飽和聚酯(non-saturated polyester,UP)、矽 (3111&lt;:〇11’31)、合成橡膠(61肪1:〇脈1^)、環烯聚合物((^^1〇 olefin polymer,COP,日本 Z_ co.及 JSR c〇.出品)。 Ϊ上^可,使用或混合使用。此外,基材亦可包含添加 齋ί λ匕劑、光穩定劑(抗光劑)、熱穩定劑、潤滑 ί逾Λ劑(i補)、紫外光吸收劑、白色顏料、及螢光增 白劑,但以不會損傷上述物理特性為限。 赏 ^ 100 ; 200944866 而雙折㈣合物110可_具錢卿酸乙 醋(PEN)。基材1〇〇與雙折射聚合物11〇都可採用僅有一種 生f封脂。同時,將各向同性材料改變成雙折射材 ^的方法-般為已知,如,若在適#溫度條件τ定向時,聚 &amp;物分子可以定向並使其材料變成雙折射性。 此等雙折射聚合物可沿同—方向安排於基材内並沿同一 方向拉伸。.. . 第二圖為本發明另-實施例之光學調變體之局部剖面概 ^圖,顯不多數個雙折射聚合物21〇以同一方向配置於基材 Ο 是,等雙娜聚合物210可垂直—光源地配 置於基材内。在此情況時’可轉观大的光學調變效率 時’若屬射,連貫制的雙折躲合物⑽可彼此分散鱼配 置’而居間的雙折射聚合物210可為彼此接觸或彼此分隔。若 居間的雙折射聚合物21G為彼此接觸之情況,雙折射聚人 210可分成多層妓疊置。 麟㈣口物 ㈣tit例而言’若將三或多個直徑不同且為_戴面的 又折射象合物加以排列時,在垂直該等雙折射聚合物沿縱長方 向’截,上,將三個相鄰圓形的圓心互連所得的三角形將為一 不等邊三角形。此外,從垂直該等雙折射聚合物(圓筒體^縱 長向之截面看來’該等圓筒體的排列方式顯示第一層内的圓形 與第二層内的圓形係彼此接觸,第二層内的圓形與第三層内的 圓形係彼此接觸,而第三層下方各層⑽圓形依序彼^接觸: =而,關於此等雙折射聚合物,由於各雙折射聚合物係於其圓 筒體邊面彼此接觸,因此只需要滿足一個條件:「使每一&amp;折 射聚合物與二或三個雙折射聚合物於其圓筒體邊面彼此接 觸」一。譬如,在此範圍内,其結構亦可以是第一層内的圓圈與 第二層的圓圈彼此接觸,第二層内的圓圈與第三層内的圓圈^ 採用介於第二與第三層間的支撐介質彼此間隔的方式,而第三 層内的圓圈與第四層内的圓圈則彼此接觸。 一 11 200944866 車交佳是’在垂直雙折射聚合物 尤圈,互連=== 此心當鱗雙^ 之鑛㈣錢是找更^^真 向的^上合=垂;長軸方 iiii卜表r層位於較内側的各雙折射聚合物,係與ϊίί: ==不同的雙折射體(亦即圓筒體)互相接觸 佳”/’又折射聚合物相對於每1⑽3之光學調變體,較 ΐΐί f _之體積比。若雙折射聚合物之體積比為ί i比為光ί調變效用極小。若雙折射聚合物之體 鑛射細絲_加而產 雙折射聚合物。雙折射聚 一各向異性紗芯纖維之_直徑小於 ===因此很少產生光學 維之截®直减大,光線會在聚合物表面較 ^二他方向的漫射極小。已定向的各向異性紗芯纖維,其截面 直徑可根據-光學物件的標變更 ^ ^的相綠,· _,為了反射、_、或傳^ m有 i外線、紅外線及微波,需要多數不同直徑的纖 光、,良 光學調變體依其目的較佳可包括—結構表面層。第三圖至 π 為本發明再-實施例之光學調變體之結構表面=面 圖。如第三圖所示,光學調變體之入射表面與出射表^可^從 12 200944866 光源300a照射的光線平行。在此情況時,如第四圖所示,雙 折射聚合物321b與雙折射聚合物320b可以斷斷續續地配置。 其中,雙折射聚合物321b係位於(鄰接於)一光源3〇〇b之上 方並呈緊密配置’雙折射聚合物32〇b之位置係遠離光源3〇〇卜 、結構表面層可形成在光線出射之表面上。結構表面層可為 ,柱形、雙凸形或凸透鏡形。更明確地說,如第五圖所示,一 &gt; 光學調變體之光線出射表面可為呈凸透鏡形之弧型表面 330c。弧型表面330c可使透射該表面的光線聚焦或散焦。此 外,如第六圖所示,光線出射表面可形成稜柱掸態33〇d。在 〇 此情況時,結構表面層330d内可以不配置雙折射聚合物 320d ’如第六圖所示。另如第七圖所示,基材與一表面層泊k 二者内皆可配置雙折射聚合物32〇e。或者,如第八圓所示, 雙折射聚合物320f可以僅配置在結構表面層33〇f内。 透過毛面處理(Matt treatment),可以在一光學調變體 至少一表面形成多數凹凸部,並產生抗刮特性。更佳是,若 致於對本發明之效用產生不利的效果,亦可在結構表面之另一 表面上進行毛面處理。 同時’傳輸光源的光線可包括自然光與偏振光,而且有 種雙折射材料可用作雙折射聚合物。然而,從截面形狀的朝向 或穩定性、耐用性等觀點而言,雙折射聚合物最好為實心。° 因此,在本發明第一實施例中,雙折射聚合物係配置在一 各向同性基材内,以便透過基材與雙折射聚合物間的雙 面達成有效的光線調變。 1 在本發明第二實施例中’雙折射聚合物較佳是一雙折 維。更佳是,此雙折射纖維最好為一包括各向異性紗芯維 ,學調變雜。更佳是’此光學調魏料包括設於各向同 填料内的各向異性紗芯纖維。 本發明第一實施例揭示的技術精神中,係於一各向 材内配置多數雙折射聚合物,使光線依據所需的目的經 = 同性基材與雙折射聚合物間的雙折射介面加以調變。然而,用 13 200944866 ΐΐί,折㈣合物的絲輕纖縣是包括設於填料内的 =性紗芯纖_’可以翻該光學調變纖軸的各向性 、、:^纖維與各向频_絲觀效用,係與 光風 與基材_光學調變_ (亦即本發料—實施 &quot;)一樣好。因此,可以顯著改善光學調變效率。 Ξ本發_獅,可採騎相赠述紐的光學各 材料,而且最好是第一實施例令已說明的材料 Ϊί ί性紗芯纖維可採用在雙折射聚合物中說明過^所有 f材:因此,舉例而言,可以使用具有各向異性的聚萘二甲酸 作為紗芯纖維,並使用具有各向同性的共^ 萘一曱馱乙一醇酯(C0-PEN)作為填料。 V 7同々&quot;1’各向雌填料與各向異性紗芯纖維在空間上於X、 的折料實組喊失配的減,對於在各個對 的散雜度有娜響。通常,㈣能力之變化 二 ==方?比例。因此,當折射率在某-特定軸向 ϊ Ϊ!ί1#ίσ時,顧對雜社偏縣陳雜強。相反 ❿ 物暫力-姓填科折射率與一各向異性或雙折射 ~士 I特定抽向之折射率大致相同’不論該雙折射物質一部 二二合度如何’被平行該轴向的電場所偏振的 ΐί射而可通過—纖維。此外,若—各向同性填料之 大致ίί:ί向丄異性或雙折射物質之折射率在一特定軸向上 Β月,光線大致不會散射而會通過一物體。根據本發 填料與該各向異性紗芯纖維的折射率中,當相對兩轴 二卜她差異較佳為〇.03或低於0.03,而相對第三軸 Ϊ調異為05或高於G. G5時,可以獲得最高的光 ⑼^確地說,假設一基材在X軸向之折射率為禮,在 減1與折射率為沿1,在2軸向之折射率為1121,且一雙 折射先予調變纖維在X軸向之折射率為nX2,在y軸向之折 200944866 射率為ηΥ2 ’在2轴向之折射率為成2 ;那麼此 ζ軸向的三個折射率中,最好至 學調變纖維在X、y、ζ軸向的三個折射率至少有二=:射$ 該雙折射光學調變纖唯传〉VL 紅从 為4 Π右 ηΥ2=ηΖ2時,有利於增加°光學調變效率:射2與1周 二气t材二射率相同的軸向上受振動的直線:振i 辦不同的抽 ❹ Ο 射材與雙折射__介面,也細於雙折 射纖..隹=之各向異性紗顧轉各向離填制的介面。 a s i雙折射鮮調變纖維較佳可包括配置在翻内的各 紗;^維。假設該各向異师芯纖維在x軸向之折S t 折射率為nY2,在z軸向之折射率為 H ΐ ίΧΙ^^^_ηΧ3 ’在y轴向之折射率 折射率為nZ3,那麼折射率ηχ2與ΠΧ3 2 可為請或高於G.G5。在此情況時,折 9 :HnZ3之間的差異絕對值可為低於〇.03。更佳 變纖維係沿x轴向拉伸,當折射率nX2與ηΧ3 ηΥ^ΡΙ二邑對值為〇. 1或高於0.1,且折射率ηΥ2與 =3 =及折射率ηΖ2與ηΖ3之間的差異絕對值低於〇肩 Ϊ ’ ΐΐϊ增加光學調變效率。同時,若該光學調變纖維係沿 J二’當Χ轴向上的折射率差異較大,而在其他兩轴 °的折射率差異較小且最好相同時,較為有利。 性紗折射纖維間’以及雙折射纖維内的各向異 钯描:ΐί與填料間’都可以形成一雙折射介面。此種情況比 土材與雙折射纖維間形成雙折射介面的情況,可顯著增 加光學調變效率。 ^日 奸坪各性紗芯纖維較佳可包括—纖維外罩,似包覆纖維 心體’光學調變體較佳可包括多數橫截面不同的鮮調變纖 15 200944866 維,以及,填料與該各向異性紗芯纖維中,至少有一者可由雙 折射聚合物物質構成’例如雙折射膽留醇(ch〇lesteHc)物 質。此外’丨學調變纖維與各向異性紗芯纖維中,至少有 最好可沿一縱長方向拉伸。 根據該光學晴纖維較佳實施例之…其可為—芯勒複合 巧。在此情況時,該芯鞘複合纖維之芯部對應該各向異性紗 忍纖維’其鞍部對應該填料。、 ,,說’第九圖至第十—圖為本發明—列 變纖維剖面圖。第九圖中,芯部她對應各向= ^纖維’而勒部400a對應填料。此外,如第十圖所示 芯纖維之橫截面可為多邊形,諸如三角形,而不是: 二m其中,若將各㈣性紗謂維薇成 言=性紗芯纖維411c、填料働。從同心部份開始“匕 折射介面數隨各向異性紗芯纖維及填料 可以顯著增加光學調變效用。^財圖的配置 該光學調變纖維另一較佳實 φ (island-m-the-sea yarn)。在此μ 拉、星狀、夕線 纖維對應天星錄線部兄異性紗芯 紗線的天部(sea)。 )❿該填料對應天星狀 變二之此折射先學調 該各向異性紗芯織維與該填料 介面。此時,基材較佳為各向同性/且匕數雙折射 折射率。更佳的是’天部與星部相對二 16 200944866 03 ’而天部與星部相對第三軸向上的折 射率差異可為〇·〇5或高於〇.〇5。 人输:以ί星狀紗線作為光學調變纖維時’相較於使用芯鞘複 糾姑外’讀數支或數十支的天星狀祕合絞而形成一複合 ❹Alloy ), polystyrene (PS), heat-resistant polystyrene, polymethyl methacrylate (PMMA), polybutylene terephthalate Hthalate, PBT), polypropylene 'PP', polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (p〇lyurethane, PU), poly P〇lyimide (PI), poly vinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamine (p) 〇lyamide, PA), polymethylate (p〇lyaceta P0M), phenolphthalate (phen〇1), epoxy vinegar (epoxy'EP), urea (urea'uF), melanin (melanin, MF), non Non-saturated polyester (UP), bismuth (3111 &lt;: 〇11'31), synthetic rubber (61 fat 1: 〇 vein 1 ^), cycloolefin polymer ((^^1〇 olefin polymer, COP , Japan Z_ co. and JSR c〇. produced). Ϊ上^可,用或In addition, the substrate may also contain a zan 匕 agent, a light stabilizer (light stabilizer), a heat stabilizer, a lubricant Λ Λ ( agent (i supplement), an ultraviolet light absorber, a white pigment, and a fluorescein. Light whitening agent, but not to damage the above physical properties. Appreciation ^ 100; 200944866 and double-fold (tetra) compound 110 can be _ with money acetic acid ethyl acetate (PEN). Substrate 1 〇〇 and birefringent polymer 11 〇 can use only one kind of raw fat sealing. At the same time, the method of changing the isotropic material into a birefringent material ^ is generally known, for example, if oriented under the temperature condition τ, poly & The molecules can be oriented and their materials become birefringent. These birefringent polymers can be arranged in the same direction in the substrate and stretched in the same direction.. The second figure is an optical of another embodiment of the invention. A partial cross-sectional view of the modulation body, in which a plurality of birefringent polymers 21 are disposed on the substrate in the same direction, and the double-dano polymer 210 can be vertically-light source disposed in the substrate. When 'can turn a large optical modulation efficiency', if it is a shot, a coherent double-folding compound (10) Dispersing another configuration fish 'and intervening birefringent polymer 210 may be in contact with each other or spaced from each other. If the inter-sized birefringent polymer 21G is in contact with each other, the birefringent poly-210 may be divided into a plurality of layers. Lin (4) mouth (4) in the case of the case of 't. If three or more diameters are different and the refractory is refracted, the perpendicular refracting polymer will be cut in the longitudinal direction. The triangle resulting from the interconnection of three adjacent circular centers will be an equilateral triangle. Further, from the vertical alignment of the birefringent polymers (the cross section of the cylindrical body), the arrangement of the cylinders shows that the circular circles in the first layer and the circular systems in the second layer are in contact with each other. The circular shape in the second layer and the circular system in the third layer are in contact with each other, and the layers (10) below the third layer are in circular contact with each other: = and, with respect to such birefringent polymers, due to the respective birefringence The polymer is in contact with each other on the side faces of the cylindrical body, so that only one condition is required: "Each each &amp; refractive polymer and two or three birefringent polymers are in contact with each other on the side faces of the cylindrical body thereof". For example, in this range, the structure may also be that the circle in the first layer and the circle in the second layer are in contact with each other, and the circle in the second layer and the circle in the third layer are used between the second layer and the third layer. The supporting media are spaced apart from each other, and the circles in the third layer and the circles in the fourth layer are in contact with each other. A 11 200944866 Cars are good in the circle of vertical birefringent polymers, interconnect === this heart When the scales of the double ^ mine (four) money is to find more ^ ^ true direction ^ Shanghe = vertical; long axis side iiii The birefringent polymer is located on the inner side of the birefringent polymer, and the birefringent body (ie, the cylinder) different from ϊίί: == is in contact with each other. The refractive polymer is refracted with respect to each optical modifier of 1 (10) 3 . Compared with the volume ratio of ΐΐί f _. If the volume ratio of the birefringent polymer is ί i to the light, the effect is very small. If the body of the birefringent polymer is sprayed with filaments, the birefringent polymer is produced. The diameter of the refractive poly- anisotropic core fiber is less than === so that the optical dimension is rarely reduced, and the light will be slightly diffused on the surface of the polymer. The cross-sectional diameter of the heterogeneous yarn core fiber can be changed according to the standard of the optical object. The green color of the optical object is _, and for the reflection, _, or transmission, there are i lines, infrared rays, and microwaves, which require most different diameters of light, Preferably, the good optical modulation body may include a structural surface layer according to its purpose. The third figure to π is a structural surface of the optical modulation body of the re-embodiment of the invention = a surface view. As shown in the third figure, the optical The incident surface and the emission table of the modulation body can be illuminated from 12 200944866 light source 300a The light rays are parallel. In this case, as shown in the fourth figure, the birefringent polymer 321b and the birefringent polymer 320b may be intermittently arranged. wherein the birefringent polymer 321b is located adjacent to a light source 3〇〇b Above and in close configuration, the position of the birefringent polymer 32〇b is away from the light source 3, and the surface layer of the structure can be formed on the surface of the light. The surface layer of the structure can be a cylindrical, biconvex or convex lens. More specifically, as shown in the fifth figure, the light exit surface of an optical modulator may be a convex lens shaped arcuate surface 330c. The curved surface 330c may focus or disperse light transmitted through the surface. In addition, as shown in the sixth figure, the light exiting surface may form a prismatic state 33〇d. In this case, the birefringent polymer 320d' may not be disposed in the structural surface layer 330d as shown in the sixth figure. As shown in the seventh figure, the birefringent polymer 32〇e can be disposed in both the substrate and a surface layer k. Alternatively, as indicated by the eighth circle, the birefringent polymer 320f may be disposed only within the structural surface layer 33〇f. By the Matt treatment, a large number of irregularities can be formed on at least one surface of an optical modulation body, and scratch resistance can be produced. More preferably, the matte finish may be applied to the other surface of the structure surface if it adversely affects the utility of the present invention. At the same time, the light of the transmission source may include natural light and polarized light, and a birefringent material may be used as the birefringent polymer. However, the birefringent polymer is preferably solid from the viewpoint of the orientation of the cross-sectional shape or stability, durability, and the like. Therefore, in the first embodiment of the present invention, the birefringent polymer is disposed in an isotropic substrate to achieve effective light modulation through the double faces between the substrate and the birefringent polymer. 1 In the second embodiment of the invention, the birefringent polymer is preferably a double-fold. More preferably, the birefringent fiber preferably comprises an anisotropic yarn core dimension and is miscellaneous. More preferably, the optical conditioning material comprises anisotropic core fibers disposed in the respective fillers. In the technical spirit disclosed in the first embodiment of the present invention, a plurality of birefringent polymers are disposed in a plurality of materials, and the light is adjusted according to a birefringent interface between the same-substrate substrate and the birefringent polymer according to a desired purpose. change. However, with 13 200944866 ΐΐί, the silk fabric of the (four) compound is included in the filler, and the directionality of the optical fiber can be turned over. Frequency-silver effect is as good as light wind and substrate _ optical modulation _ (also known as the present material - implementation &quot;). Therefore, the optical modulation efficiency can be remarkably improved. Ξ本发_狮, can take the ride of the optical materials of the New Zealand, and preferably the first embodiment of the material that has been explained Ϊί ί core fiber can be described in the birefringent polymer ^ all f Material: Thus, for example, an anisotropic polynaphthalene dicarboxylic acid can be used as the core fiber, and an isotropic naphthalene monoterpene ethyl ester (C0-PEN) can be used as the filler. V 7 is the same as the "1' of the female filler and the anisotropic core fiber in the space of the X, the set of shouting mismatch, for the dispersion of each pair. Usually, (iv) the change in ability two == square ratio. Therefore, when the refractive index is in a certain specific axis ϊ ί ί ί ί ί ί ί ί ί ί ί 顾 顾 杂 杂 杂 杂 杂 杂 杂 杂 杂 杂. On the contrary, the refractive index of the temporary force-last surname is approximately the same as the refractive index of an anisotropic or birefringent-specific I, regardless of how the birefringence of the birefringent material is parallel to the axial electrical The polarization of the site can be passed through - fiber. In addition, if the refractive index of the isotropic filler or the birefringent material is in a particular axial direction, the light will not substantially scatter and will pass through an object. According to the refractive index of the hair filler and the anisotropic core fiber, when the relative two axes are different, the difference is preferably 〇.03 or lower than 0.03, and the third axis is adjusted to be 05 or higher than G. At G5, the highest light can be obtained (9). Suppose, assuming that the refractive index of a substrate in the X-axis is ruling, the refractive index is 1 and the refractive index is 1 in the 2 axial direction, and A birefringent pre-modulated fiber has a refractive index of nX2 in the X-axis, a fold in the y-axis of 200944866, an incident rate of ηΥ2', and a refractive index of 2 in the axial direction; then three refractions in the axial direction of the crucible In the rate, it is best to have at least two refractive indices in the X, y, and ζ axial directions of the tunable fiber:: shot $ The birefringent optically modulated fiber is only transmitted by > VL red from 4 Π right η Υ 2 = η Ζ 2 When it is beneficial to increase the optical modulation efficiency: the line is the same as the vibration of the 2nd gas t-material at the same time: the vibration is different. The convulsion is different. 射 The material and the birefringence __ interface are also fine. In the double-refractive fiber.. 隹 = anisotropic yarn to turn the opposite interface. Preferably, the a s i birefringent fresh tunable fiber may comprise yarns arranged in the lap; It is assumed that the refractive index of the isotropic core fiber in the x-axis is nY2, and the refractive index in the z-axis is H ΐ ΧΙ ΧΙ ^^^_ηΧ3 'the refractive index in the y-axis is nZ3, then The refractive indices η χ 2 and ΠΧ 3 2 can be either higher or higher than G.G5. In this case, the absolute value of the difference between the folds 9:HnZ3 may be lower than 〇.03. More preferably, the variable fiber system is stretched along the x-axis, and when the refractive index nX2 and ηΧ3 ηΥ^ΡΙ are perpendicular to 〇. 1 or higher than 0.1, and the refractive indices ηΥ2 and =3 = and the refractive indices ηΖ2 and ηΖ3 The difference in absolute value is lower than the 〇 shoulder Ϊ ' ΐΐϊ increases optical modulation efficiency. At the same time, it is advantageous if the optically modulated fiber has a large difference in refractive index along the axis of J ′, and the difference in refractive index between the other two axes is small and preferably the same. Between the refracting fibers of the yarns and the anisotropic palladium in the birefringent fibers: both ΐί and the filler can form a birefringent interface. This is a case where the birefringence interface is formed between the earth material and the birefringent fiber, and the optical modulation efficiency is remarkably increased. ^ The woven fabric core fiber may preferably comprise a fiber outer cover, like a coated fiber core body. The optical modulating body preferably comprises a plurality of freshly tunable fiber bundles having different cross sections, and the filler and the At least one of the anisotropic core fibers may be composed of a birefringent polymer material such as a birefringent cholesteric material. Further, at least the drop-adjusted fiber and the anisotropic core fiber are preferably stretched in a longitudinal direction. According to a preferred embodiment of the optically clear fiber, it can be a composite. In this case, the core of the core-sheath composite fiber corresponds to the anisotropic yarn, and the saddle portion corresponds to the filler. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; In the ninth figure, the core corresponds to each direction = ^ fiber' and the portion 400a corresponds to the filler. Further, as shown in the tenth figure, the cross section of the core fiber may be a polygon, such as a triangle, instead of: two m, wherein each of the (four) yarns is a venetian yarn 411c, a filler 働. Starting from the concentric part, the number of 匕 refractive interfaces can significantly increase the optical modulation effect with anisotropic core fibers and fillers. The configuration of the financial map is another better φ of the optically modulated fiber (island-m-the- Sea yarn). In this case, the μ pull, star shape, and eve fiber correspond to the sky of the star-shaped yarn of the star of the star. The 填料 填料 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应The heterogeneous yarn core is woven with the filler interface. At this time, the substrate is preferably isotropic/parallel birefringence refractive index. More preferably, 'the celestial part and the stellar part are opposite two 16 200944866 03 'and the celestial part The difference in refractive index with respect to the third axis in the opposite direction of the star portion may be 〇·〇5 or higher than 〇.〇5. Human transmission: when the 星 star-shaped yarn is used as the optical modulation fiber, 'compared with the core sheath An external 'reading branch or dozens of stars are secretly twisted to form a composite ❹

G 紗線合_—複合纖維時,該複 二線内有1GG個雙折射介面存在,並可產生⑽次或更 ^光學調變。再者,若魏支交義天星狀紗線時,譬如製作 入天星狀紗線有10支時,該複合紗_將存在個雙折射 L並可產纟⑽或更多次的光學調變。根據本發明之天星 ,紗線,可使用共讎(⑼extrusiQn)法製造之,但不限J 此0 、 ,典型的天星狀紗線中係使用溶離(eluting,洗提) =後留下的星部作為超細紗線,且不論其是否為雙折射;但 =本發明巾’天星狀紗線的天部並未被溶離,並朗 部光學特性不同的天星狀紗線。 天星狀紗線在縱長方向之橫截面可為任何形狀,根據其目 t定。天星狀紗線亦可具有圓形或非圓形橫截面,後者諸如 =形、多邊形、以及非圓度在〇至⑽之非圓形。同樣地, 星狀紗線之星部,其縱向截面可為任何形狀,並可具有 s非圓形截面,後者諸如橢圓形、多邊形、以及非圓产 至100之非圓形。 第十一圖至第二十圖為本發明另一實施例之雙折射光學 ,變纖維剖關。從第忙酿第二十圖可岭出 :’星部之形狀、大小、數目及排列方式可根據光學調變 加以有效的控制。第十二圖為-典型天星狀紗線之剖面圖。^ 17 200944866 中,多數近似圓形的星部520a被一天部51〇a間隔。第十三圖 =天^狀紗線剖面_示天部51Gb的面積大於星部52〇b的面 天tt紗線細目顯補天錄轉具有翻 面。第十五圖中的星部52〇d橫截面為橢圓形,且以曲 列。此外,此圖中的天星狀紗線截面為矩形 為多邊形結構或非圓形截面。 一 血六圓與第十七圖所示,星部可位於天星狀紗線的中 央,或者說天部可以不位於天星狀紗線的中央。 ❹ 在某些實施例中,星部的尺寸大小可以不同。例如,如 及第十九圖所示,天星狀紗線可包城面大小不同的星 ί此特定實施例中,任—星部52Gg的截面可以相對 ^於其他星部521g _面。天部可·二組或纽不同的尺 H可有-實質不同的尺寸。此外,如第二十圖所示,星部 1可添加一雙折射及/或各向同性之鞘部53〇丄。 ,,如前所述’光線通過一基材内的雙折射天星狀紗線 %,可在一雙折射介面處產生光學調變。更明確地說,第二十 二圖剖面圖,顯示光線入射本發明雙折射天星狀紗線^路 Ϊ雒ίίϊ況時,p &amp; (實線)通過雙折射天星狀紗線,未 面的純’亦即’歸触折射天星狀紗線間的介 折射天星狀轉部與天觸的介面,並未影響Ρ波 、=輸。但疋S &gt;皮(虛線)貝Ij在雙折射介面的影響下產生光學 1 ’亦即,基材触獅天星錄制的界線及/或雙折射 =狀紗線内星部與天部間的界線會影響s波 〇部份S波經由光學調變,諸如反射、散射、或折射而H 返回的S波於反射後變成S波或p波,然後 因此,若使用雙雜天錄紗耕,如騎述= :^用八型雙折射纖維之情況,可有優異的亮度增強效率。雙 =射天錄紗線亦可包括絲雜不_星部與天部。因此, 可以2成雙折射介面時,相較於天星狀紗線内 未形成雙折射介_情況,可有顯著的光學調變效率。 200944866 1較佳是’天星狀紗線内可配置多數星部,且天部與 侗ΐ审??比較佳可為2:8至8:2。當-天星狀紗線内有八 時’有利於產生最大的光學調變效用。天星狀 度較佳可為G·3至2G丹尼爾,同時,光學調變體 母if公分(cm3)内配置500 s 4,〇〇〇,_條天 卜,天部的折射率較佳可與光學調變體基材之折 射罕相同。 圖及第二十三圖所示’天星狀紗線較佳可使用 ϊ、ί Π b及經線_、隱的方式編織而成。緯線與 _ ίί ΐί者可為天星狀紗線’而另—緯線或經線則可為 同性纖維。緯線或經線較佳可使用1至200條天星狀紗線 人丨根據光學調變纖維之再一實施例,該雙折射纖維可為一複 Α線’其包括一各向同性充填部及多數被各向同性充填部分 隔的各向異性複合部。 、 各向同性充填部較佳為多數,且此等多數各向同性充填部 較佳可在複合紗_平行或交又W此,該複合轉之橫截面 可為-非圓形截面’諸如非圓度為⑽的橢圓形、扇形。 1明確地說,第二十四圖至第二十八圖為本發明一實施例 〇 之雙折射光學調變纖維剖面圖。第二十四圖中,一各向同性充When the G yarn is _-composite fiber, 1GG birefringent interfaces exist in the double line, and (10) times or more optical modulation can be produced. Furthermore, if there are 10 stars in the form of a star-shaped yarn, the composite yarn _ will have a birefringence L and can produce (10) or more optical modulation. According to the star of the present invention, the yarn can be produced by the conjugate ((9) extrusiQn) method, but is not limited to J. In the typical star-shaped yarn, the star is left after elution (eluting) = The part is an ultrafine yarn, and whether or not it is birefringent; however, the day of the invention, the sky of the star-shaped yarn is not dissolved, and the star-shaped yarn having different optical characteristics is obtained. The cross section of the star-shaped yarn in the longitudinal direction may be any shape, according to its purpose. The star-shaped yarn may also have a circular or non-circular cross section, such as a shape, a polygon, and a non-circularity in which the non-circularity is in the range of 〇 to (10). Similarly, the star-shaped portion of the star-shaped yarn may have any longitudinal section and may have a s non-circular cross section, such as an elliptical shape, a polygonal shape, and a non-circular non-circular shape of 100. 11 to 20 are birefringent optical and variable fiber cross-sections according to another embodiment of the present invention. From the twentieth figure of the busy brewing: "The shape, size, number and arrangement of the stars can be effectively controlled according to optical modulation. Figure 12 is a cross-sectional view of a typical star-shaped yarn. ^ 17 200944866, most of the approximately circular star portions 520a are separated by a day 51〇a. Thirteenth figure = Sky-shaped yarn profile _ shows that the area of the 51Gb of the sky is larger than the surface of the star part 52〇b. The day tt yarn is finely marked and has a turning surface. The star portion 52〇d in the fifteenth figure has an elliptical cross section and is curved. In addition, the cross section of the star-shaped yarn in this figure is a rectangular structure or a non-circular cross section. A blood six-circle and a seventeenth figure, the star may be located in the center of the star-shaped yarn, or the sky may not be located in the center of the star-shaped yarn. ❹ In some embodiments, the size of the stars may vary. For example, as shown in Fig. 19, the star-shaped yarn may be a star of a different size. In this particular embodiment, the cross-section of the 52Gg portion of the star-shaped portion may be opposite to the other surface of the star-shaped portion 521g. The size of the two parts of the genre can be - substantially different sizes. Further, as shown in the twentieth diagram, the star portion 1 may be provided with a birefringent and/or isotropic sheath portion 53A. , as previously described, the light passes through the birefringent star-shaped yarn % in a substrate to produce optical modulation at a birefringent interface. More specifically, the twenty-second cross-sectional view shows that when light is incident on the birefringent star-shaped yarn of the present invention, p & (solid line) passes through the birefringent star-shaped yarn, which is unfaced. The pure 'that is' is the interface between the refracting star-shaped yarn and the interface between the star-shaped turn and the day touch, which does not affect the chopping and = loss. However, 疋S &gt; skin (dotted line) Ij produces optical 1 ' under the influence of the birefringent interface, that is, the boundary and/or birefringence recorded by the substrate lion's celestial yarn = between the star and the sky The boundary line affects the s-wave portion of the S-wave via optical modulation, such as reflection, scattering, or refraction, and the S-wave returned by H becomes S-wave or p-wave after reflection, and therefore, if the double-day recording is used, For example, if you use the eight-type birefringent fiber, you can have excellent brightness enhancement efficiency. Double = shooting the yarn can also include silk and no. Therefore, when the double-refractive interface is used, there is a significant optical modulation efficiency compared to the case where no birefringence is formed in the star-shaped yarn. 200944866 1 It is better to be able to configure most stars in the star-shaped yarn, and the heavens and the courts? ? The best is 2:8 to 8:2. When there is eight o'clock in the -star-shaped yarn, it is advantageous to produce the maximum optical modulation effect. The star shape is preferably G·3 to 2G denier, and the optical modulation body is equal to the centimeter (cm3) of 500 s 4, 〇〇〇, _ 天, the refractive index of the sky is better. The optically modulated substrate has the same refraction. The picture and the twenty-third figure show that the star-shaped yarn can be woven by using ϊ, ί Π b and warp _, hidden. The weft and _ ίί ΐ can be a star-shaped yarn and the other weft or warp can be a homogenous fiber. Preferably, the weft or the warp may use from 1 to 200 star-shaped yarns. According to still another embodiment of the optically modulated fiber, the birefringent fiber may be a retanning line comprising an isotropic filling portion and a majority An anisotropic composite portion partially filled with isotropic filling. Preferably, the isotropic filling portion is a plurality of, and the plurality of isotropic filling portions are preferably in the composite yarn _ parallel or intersecting, and the composite rotating cross section may be a non-circular cross section 'such as non The ellipse with a roundness of (10) and a fan shape. In particular, the twenty-fourth to twenty-eighthth drawings are cross-sectional views of a birefringent optically modulated fiber according to an embodiment of the present invention. In the twenty-fourth figure, an isotropic charge

填部700a以縱向將一複合紗線分隔成兩個各向異性複合部 710a。第二十五圖中,一各向同性充填部7〇〇b以橫向將二^ 合紗線分隔成兩個各向異性複合部71〇b。第二十六圖中形成 的各向同性充填部700c為「+」形。第二十七圖中形成的各 同性充填部7〇〇d為「γ」形。第二十八圖顯示可以縱向形成多 數各向同性充填部700e。在此情況時,該等多數各向同性 填部700e可彼此平行或不平行。 X 根據本發明第二實施例’雙折射聚合物之光學調變紡成 維可以沿一方向延伸、排列成一織物或織束,然後浸潤於一義 材内並固定於基材上。光學調變纖維之紡紗與延伸,或織物&amp; 200944866 、’束之編織過程,可使用習知方法進行,但並無特別限制。將 織物或織束浸潤並固定於基材時,可使用不同的方法,例如: 將非織物浸入單體及/或低聚物溶液中,亦即浸入基材之先質 (Precursor) ’然後使用光及/或熱聚合一支撐介質之先質; 或,,將織物或織束浸入一支撐介質之聚合物溶液中,然後去 巧溶劑;或者,製作細微粉末狀支撐介質,將細微粉末浸潤 織物或織束中,然後熱熔之。 此外,根據另一方法’本發明可使用一熔態擠壓法實現 更明確地說,當基材内分散與排列的雙折射聚合物其垂直 長軸向之橫截面為多邊形時,可採用一種定型擠壓法(profile raeth〇d) ’將一擠壓機的出料口分隔成數個喷絲 =其中’每隔-個喷絲頭以多邊形擠壓出構成雙折射聚合物 抖/曰’再從前述兩相隔喷絲頭間的喷絲頭擠壓出構成基材的 2月曰。若一支撐介質内分散與排列的雙折射共聚物其垂直長軸 ί if面大致為圓形時’可採用另一種定型播壓法,將一擠 以隔成數個喷絲頭,並從橫截面内連續的喷絲頭 =轉壓⑽賴折㈣合物峨脂,再從此冑喷絲賴 機壓if成基材的樹脂。在這些情況中所設計的擠| ❹ 隔^嗜、絲、 ^不同類的熱溶樹脂以特定形式從顧機上間 &amp;的喷絲頭f壓出’因此形成上述分散排刺結構。 各向同性填料内配置各向異性紗芯纖維的 作為雙折射纖維時’如第二十九圖所示,此 ,調變體的光學調變效用可獲得顯著的 “、線内可配置多_ ’天星 複合紗線,且以碰么^將夕支星狀紗賴合以形成一 井與嘲&amp;拄’、’形式交織多數複合紗線,並將其配置於一 二:Γ獲得極其優異的光學調變效用,且其優 碰不疋使用典酸折射纖維時所能比擬的。 20 200944866 〔發明的模式〕 祕將配合若干實施例與實驗例詳細說明本發明。以下實 歹'‘實驗顺供糊獅本發明,目此本發明細並不限於 以下實施例與實驗例。 、 〔實施例1〕 黏度IV〇.53之聚萘二甲酸乙二醇醋⑽)樹脂 聚口後’再紡成未拉伸紗線150/24的原紗時 的,溫度與·公尺/分鐘(M/min)的紡紗^進 Γρίαί^的溫度下,將峨制未拉伸紗雜伸三次, ^製出50/24的拉伸紗線。拉伸過的削纖維顯示雙折射 |生=,且其在三個軸向上的折射率分別為ηχ = L 88、取= …丨、二,取=L 57。隨後’將製出的4200股PEN 50/24拉 為24股的原紗係成組作用’所以實際的纖維股數 7R9 l!!^ ’亦即’ 42〇_股)左右並排地繞捲在寬度 ^rnn的織軸(beam)i,將繞捲過的織軸放在一聚碳酸醋 口片材上’其中,該pC合金片材之後表面係以蛋氨酸處理 過(met-processed)。然後,以特定的張力疊置。其中,該pc 合金片材?折射率是L 57。之後,將環氧丙烯酸醋(_y ❹ ^Τ、,)與尿燒丙緣酸醋(urethane acrylate)混合成的 务外光可硬化塗層樹脂(折射率為i.⑷塗饰在pc合金片 材上。在PC合金片材内疊置多數纖維,且在其上某一點導入 輪i使之接受—次與二次紫外光硬化,藉此製出内有 雙?射纖維璧置的混合片材。該塗層細旨在紫外光塗層硬化前 顯示的折射^為1.54,但在硬化後顯示的折射率為 1.5卜 J:事貫,可製出厚度為4〇μιπ的片材狀光學調變體。 〔實施例2〕 以實施例1相同的方式製作一片材狀光學調變體,但是使 用二芯鞘複合纖維替代典型的雙折射拉伸ρΕΝ纖維。更明確 ,說」在所採用的芯鞘複合纖維中,芯鞘紗線的芯部為ρΕΝ (ηχ = 1.88、ny = 1.57、ηζ = 1.57),其鞘部則為 C0_PEN (ηχ 21 200944866 =h 57、ny = 1 π、 , 、 經過拉伸處理也不會改f = 的折射率,即使 紗線150/24,Ht 成纺紗’以便獲得未拉伸 50/^。 …、後將之拉伸三次,藉此獲得拉伸紗線 〔實施例3〕 用一 同的方作-片材狀光學觀體,但是使 的天星狀紗i、中ί典型的雙折射拉伸纖維。在所採用 的^星狀H係使用各向異性PEN (ηχ = 1.88、ny = ❹ 同性二Ev(nx作〜星广並尸⑽個星部配置在各向 填料中。蔣t卜錄·5取=1,57、nz = h57)製成的 德將之脑-^錢_、’續麟未拉伸紗線150/24,然 後f之拉伸二:欠,觀麟㈣紗線50/24。 〔貫施例4〕 的冗方式製作一片材狀光學調變體’但是其中 〔實施例5〕 例4相同的方式製作一片材狀光學調變體, 抑Hf ί ΐ天星狀紗線經過四次複合(_ X 4),以 獲付2_6紗線,然後使用此紗線。 〔實施例6〕 為了簡化實施例4之片材中所用纖維的混理 織軸將侧股編織成每英寸5〇條的緯線密度。進^用 式’將各股左減狐,剩成762im 的,度射係應用平織法,以使緯線密度最小化 的織物從材擠顯上方的雜釋出時,雌疊置在 々制Ϊ實施例1中相同’並用一塗層劑塗層’再經過硬化,藉 此製出一片材狀的光學調變體。 〔實施例7〕 以實施例1相_方式製作一片材狀光學 ^PEN (nx=1.88&gt; ny = 1.57.nzM.57)^PE^ 22 200944866 1.57、ny = 1.57、 nz 型的雙折射拉伸PEN纖維為各向異性複合部替代典 η” 1. 57、nz = :[· 57)、’、」使用 Co~_ (nx 1. 57、 〔實施例8〕 、複5線作為各向同性充填部。 調變i上形效率’在實施例5的光學 材狀光學機體,但是切财式製作-片 型滾輪频紐絲作齡狀_財,錢一稜柱 〔比較例1〕 ❸ ❹ 用由nrr的方賴作—狀狀絲_體,但是使 性纖維議 〔比較例2〕 例3相同的方式製作一片材狀光學調變體,但是使 (nx = ny = nz = 1.57)^ Co-PEN Ux = ny = nz = 1.57)構成的未拉伸紗線。 〔實驗例〕 以下評估根據實施例1〜8及比較例1〜2所製作的光學調變 體物理特性,並列於表丨内^ 1. 亮度 為了測量先前所製光學調變體的亮度,所以進行以下測試。 將一面板組裝於一32”直接照明型背光模組上,該背光模組 並配備一擴散板、二片擴散片、及本發明之光學調變體。使 用BM-7測試器(韓國T0PC0N出品)測量9點位置的亮度, 並列出其平均值。 2. 透光率 使用COH300A分析設備(日本NIPPON DENSHOKU Co.出品), 並根據ASTM D1003所訂方法測量透光率。 3. 偏振度 使用RETS-100分析設備(日本OTSKA Co.出品)測量偏振 23 200944866 度 4. 吸澄率 依照ASTM D570規定’將光學調變體浸入23°C的水中達24 小時’並測量其在處理前、後的重量%變化。 5. 片材出芽(sprouts ) 將光學調變體組裝在一32”背光模組内,讓背光模組留置在 一恆溫恆溼裝置内’設定溫度與溼度分別為6〇Τ與75〇/〇, 停留96小時,然後分解之,以便用肉眼監看光學調變體出 芽(sprouts)的程度。監看結果用〇、△、X標示。 ❹ ❹ 〇:良好 △:正常 X :不良 6. 抗紫外線特性 以輸出為130mW的紫外線燈(365nm)(使用韓國SEIMYUNG VACTR0NC0.,LTD.出品的SMDT51H)從相距l〇cm的高度位 置照射光學調變體1〇分鐘。使用SD—5〇〇〇分析設備(日本 NIPPON DENSHOKU Co.出品)測量處理前、後的黃色指數, 並評估其黃色指數。 〔表1〕The filling portion 700a divides a composite yarn into two anisotropic composite portions 710a in the longitudinal direction. In the twenty-fifth figure, an isotropic filling portion 7〇〇b divides the two-yarn yarn into two anisotropic composite portions 71〇b in the lateral direction. The isotropic filling portion 700c formed in the twenty-sixth drawing has a "+" shape. The isotropic filling portion 7〇〇d formed in the twenty-seventh figure has a "γ" shape. The twenty-eighth figure shows that most of the isotropic filling portions 700e can be formed longitudinally. In this case, the plurality of isotropic fillers 700e may be parallel or non-parallel to each other. X According to a second embodiment of the present invention, the optically modulated spun-forming of the birefringent polymer may be extended in one direction, arranged into a woven or woven bundle, and then impregnated into a material and fixed to the substrate. The spinning and stretching of the optically modulated fiber, or the weaving process of the fabric & 200944866, 'bundle, can be carried out using a conventional method, but is not particularly limited. When the fabric or woven fabric is wetted and fixed to the substrate, different methods can be used, for example: immersing the non-woven fabric in the monomer and/or oligomer solution, that is, immersing the substrate in the precursor (Precursor) and then using Light and/or thermal polymerization of a precursor of a supporting medium; or, immersing the fabric or woven fabric in a polymer solution of a supporting medium, and then removing the solvent; or, preparing a fine powdery supporting medium, impregnating the fine powder into the fabric Or weaving, then hot melt. Further, according to another method, the present invention can be realized by a melt extrusion method. More specifically, when the birefringent polymer dispersed and aligned in the substrate has a cross section perpendicular to the longitudinal axis, a type of one can be used. Profile raeth〇d 'Separate the discharge port of an extruder into several spun yarns = where 'every-spindle head is extruded in a polygon to form a birefringent polymer shake/曰' The February crucible constituting the substrate was extruded from the spinneret between the two spaced apart spinnerets. If a birefringent copolymer dispersed and aligned in a supporting medium has a vertical long axis ί if the surface is substantially circular, ' another type of squeezing method can be used to squeeze a plurality of spinnerets and cross-section The continuous spinneret = the pressure (10) of the bismuth (four) compound blush, and then the sputum is used as the resin of the substrate. In these cases, a heat-dissipating resin of a different type, such as a filament, a filament, or a different type, is extruded in a specific form from the spinneret f of the upper portion of the machine. Thus, the above-described dispersed spur structure is formed. When the anisotropic yarn core fiber is disposed as a birefringent fiber in the isotropic filler, as shown in the twenty-ninth figure, the optical modulation effect of the modulation body can be remarkably ", and the in-line configurable _ 'Stars composite yarn, and to touch the glory yarn to form a well and ridicule &拄;, 'form interlaced most composite yarn, and placed in one or two: Γ extremely excellent The optical modulation effect is superior to that of the acid-reducing fiber. 20 200944866 [Mode of the Invention] The present invention will be described in detail in conjunction with a number of examples and experimental examples. In view of the present invention, the present invention is not limited to the following examples and experimental examples. [Example 1] Polyethylene naphthalate (10) having a viscosity of IV〇.53 is polymerized and then When the original yarn of the undrawn yarn 150/24 is spun, the temperature of the spinning yarn of the metric/minute (M/min) is twisted into three times, and the undrawn yarn is twisted three times. ^ Produce a 50/24 drawn yarn. The stretched cut fiber shows birefringence | raw =, and it is The refractive indices in the axial direction are respectively η χ = L 88 , taking = ... 丨, two, taking = L 57. Then '4,200 PEN 50/24 are drawn into 24 strands of the original yarns in a group role' The actual number of fiber strands is 7R9 l!!^ 'that is, '42〇_ strands) are wound side by side around the width irnn of the beam i, and the wound weaving shaft is placed in a polycarbonate port. On the sheet, wherein the surface of the pC alloy sheet is met-processed, and then laminated with a specific tension, wherein the pc alloy sheet has a refractive index of L 57. Thereafter, Epoxy acrylated vinegar (_y ❹ ^Τ,,) is mixed with urethane acrylate to form an external photohardenable coating resin (refractive index is i. (4) coated on a pc alloy sheet. A plurality of fibers are stacked in the PC alloy sheet, and the wheel i is introduced at a certain point thereon to receive the secondary and secondary ultraviolet light hardening, thereby producing a mixed sheet having the double-twisted fiber bundle. The coating is intended to exhibit a refractive index of 1.54 before hardening of the UV coating, but after curing, the refractive index is 1.5 J: the thickness can be made. 4 μm of a sheet-like optical modulation body. [Example 2] A sheet-like optically modulated body was produced in the same manner as in Example 1, except that a birefringent composite fiber was used instead of the typical birefringent stretched p-fiber. More specifically, it is said that in the core-sheath composite fiber used, the core of the core sheath yarn is ρΕΝ (ηχ = 1.88, ny = 1.57, ηζ = 1.57), and the sheath portion is C0_PEN (ηχ 21 200944866 = h 57, ny = 1 π, , , and the stretching process does not change the refractive index of f = even if the yarn 150/24, Ht is spun yarn 'to obtain unstretched 50/^. ..., and then stretched three times, thereby obtaining a drawn yarn [Example 3] using the same method - sheet-like optical observation, but making the star-shaped yarn i, the typical birefringence stretching fiber. In the ^ star-shaped H system used, an anisotropic PEN is used (ηχ = 1.88, ny = ❹ isotropic two Ev (nx for ~ Xingguang and corpse (10) stars are arranged in the various fillers. Jiang t Bu Lu·5 Take =1,57, nz = h57) to make the brain of the German--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 24. [Case 4] The redundant method of making a sheet-like optical modulation body 'but in the same manner as in Example 4 of Example 5, a sheet-like optical modulation body was produced, and Hf ί ΐ ΐ 状 状 状The wire was subjected to four times of compounding (_X4) to obtain a 2-6 yarn, and then the yarn was used. [Example 6] In order to simplify the knit woven shaft of the fiber used in the sheet of Example 4, the side strands were woven into The weft density of 5 inches per inch. In the formula, the left side of each strand is reduced to fox, and the remaining is 762 im. The grading method is applied to the weave method, so that the fabric with the minimum weft density is released from the material. At the same time, the female was stacked in the same manner as in Example 1 and coated with a coating agent to be hardened, thereby producing a sheet-like optically modulated body. [Example 7] Example 1 phase_ Method of making a piece of optical optics ^PEN (nx=1.88&gt; ny = 1.57.nzM.57)^PE^ 22 200944866 1.57, ny = 1.57, nz type birefringent stretched PEN fiber is an anisotropic composite part Code η" 1. 57, nz = : [· 57), '," use Co~_ (nx 1. 57, [Example 8], and complex 5 lines as isotropic filling parts. 'The optical material optical body of the embodiment 5, but the cut-and-finish type--the type of the wheel type of the twisted wire is used as the age-like, and the money is a prismatic column [Comparative Example 1] ❸ ❹ used by the nrr Silk-body, but made a sheet-like optically modulated body in the same manner as in Example 3, but made (nx = ny = nz = 1.57)^ Co-PEN Ux = ny = nz = 1.57) The undrawn yarn formed. [Experimental Example] The physical properties of the optical modulators produced in accordance with Examples 1 to 8 and Comparative Examples 1 and 2 were evaluated and listed in the table below. 1. Brightness In order to measure the brightness of the optical modulator previously produced, Perform the following tests. A panel is assembled on a 32" direct illumination type backlight module, which is equipped with a diffusion plate, two diffusion sheets, and an optical modulation body of the present invention. The BM-7 tester (produced by Korea T0PC0N) Measure the brightness at 9 o'clock and list the average value. 2. Transmittance using COH300A analytical equipment (produced by NIPPON DENSHOKU Co., Japan) and measure the transmittance according to the method specified in ASTM D1003. 3. Degree of polarization using RETS -100 Analytical Equipment (produced by Japan OTSKA Co.) Measure Polarization 23 200944866 Degree 4. Absorbency according to ASTM D570 'Immerse optically tunable body in water at 23 ° C for 24 hours' and measure it before and after treatment Change in weight %. 5. Sprouts The optical modulation body is assembled in a 32" backlight module, and the backlight module is placed in a constant temperature and humidity device. The set temperature and humidity are respectively 6〇Τ. 75 〇/〇, stayed for 96 hours, and then disintegrated to visually monitor the extent of sprots of the optically modulated body. The results of the monitoring are marked with 〇, △, and X. ❹ ❹ 〇: Good △: Normal X: Poor 6. Anti-ultraviolet characteristics Ultraviolet lamp (365nm) with an output of 130mW (using SMDT51H from SEIMYUNG VACTR0NC0., LTD., Korea) illuminates the optical tone from a height of l〇cm Variant 1 minute. The yellow index before and after the treatment was measured using an SD-5〇〇〇 analytical device (produced by NIPPON DENSHOKU Co., Japan), and the yellow index was evaluated. 〔Table 1〕

- -------- ww/y V* Ο 民ΧΓ 4, 〇 牲看出’實施例1至8 (包括雙折射纖維)之光學 與Μ包括各向同性纖維)。此外亦可以看出, 折射纖維的實施例1比較時,實施例3中使用天星 狀、,y線的先學凋變體其光學特性顯著 。 〔工業應用性〕 24 200944866 本發明之光學調變體可用於任何需要光 中:而且通常可用在影像輸出裝置(諸如照像機H = f 及行動電話液晶)之光學片材、亮度增強型薄 Ba&lt;’、、不益 【圖式簡單說明】 '4° 本發明其他目的與優點可從以下參照附圖 更加明瞭,附圖包括: M又砰細說明而 【:目施产光學調變體的局部剖面概要圖。 第一圖.g本發明另一貫施例之光學調變體之局部剖面概要 ❹ 第三圖至為本發明再一實施例之光學調變體之#_ 第九圖至ί二圖:為本發明一實施例之雙折射光學調變纖維 第十-圖至第二十圖:為本發明另一實施例 纖維剖面圖。 爾射先學調變 第二十-圖:為-剖面圖,顯示光線入射本發 紗線之路徑。 又外耵大星狀 第一十一圖至第一十二圊:顯示本發明一實 調變纖維之排列方式。 X爾Γ尤予 第二十四圖至第二十八圖:為本發明一實之射光學 調變纖維剖面圖。 第二十九圖:為本發明再-實施例之光學調變體之局部剖面概 要圖。 【主要元件符號說明】 100基材 200基材 300a光源 320b雙折射聚合物 320e雙折射聚合物 321b雙折射聚合物 110雙折射聚合物 210雙折射聚合物 3〇〇b光源 32〇d雙折射聚合物 32〇f雙折射聚合物 330c弧型表面 25 200944866 330d結構表面層(稜柱樣態)330e表面層- -------- ww/y V* Ο ΧΓ 4, 〇 看出 ’ ” ” The optical and Μ of the examples 1 to 8 (including birefringent fibers) include isotropic fibers). Further, it can be seen that in the case of the first embodiment of the refractive fiber, the optical characteristics of the astrological form in the third embodiment using the astrological shape and the y-line are remarkable. [Industrial Applicability] 24 200944866 The optical modulation body of the present invention can be used in any optical light that is required to be used in an image output device such as a camera H = f and a mobile phone liquid crystal, and a brightness enhancement type thin film. </ br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> A partial profile overview. FIG. 1 is a partial cross-sectional view of an optical modulation body according to another embodiment of the present invention. FIG. 3 is a perspective view of an optical modulation body according to still another embodiment of the present invention. A birefringent optical modulation fiber according to an embodiment of the invention is a cross-sectional view of a fiber according to another embodiment of the invention.尔射前学调变 Twenty-figure: is a cross-sectional view showing the path of light entering the yarn. Further, the outer star shape is the eleventh to the twelfth frame: the arrangement of a real variable fiber of the present invention is shown. X Γ Γ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. Twenty-ninth Figure: A partial cross-sectional view of an optical modulator of a further embodiment of the present invention. [Main component symbol description] 100 substrate 200 substrate 300a light source 320b birefringent polymer 320e birefringent polymer 321b birefringent polymer 110 birefringent polymer 210 birefringent polymer 3 〇〇b light source 32 〇 d birefringent polymerization 32〇f birefringent polymer 330c curved surface 25 200944866 330d structural surface layer (prism-like) 330e surface layer

330f結構表面層 400a鞘部 401c填料 410c各向異性紗芯纖維 510a天部 510b天部 520d星部 521g星部 530i鞘部 600a經線 600b緯線 700a各向同性充填部 700b各向同性充填部 700c各向同性充填部 700e各向同性充填部 800基材 400c填料 410a芯部 411c各向異性紗芯纖維 520a星部 520b星部 520g星部 520i星部 610a緯線 610b經線 WOa各向異性複合部 Ή Ob各向異性複合部 700d各向同性充填部 810光學調變纖維 26330f structural surface layer 400a sheath portion 401c filler 410c anisotropic core fiber 510a 510b 520b portion 520d star portion 521g star portion 530i sheath portion 600a warp line 600b weft line 700a isotropic filling portion 700b isotropic filling portion 700c Isotropic filling portion 700e isotropic filling portion 800 substrate 400c filler 410a core portion 411c anisotropic core fiber 520a star portion 520b star portion 520g star portion 520i star portion 610a weft 610b warp WOa anisotropic composite portion Ή Ob The anisotropic composite portion 700d isotropically filled 810 optically modulated fiber 26

Claims (1)

200944866 七、申請專利範圍: 1. 一種光學調變體,係包括一配置於一基材内的雙折射聚合 物。 2. 如申請專利範圍第1項所述之光學調變體,其中該基材為各 向同性。 3. 如申請專利範圍第2項所述之光學調變體,其中之基材包括 以下各項中之一或多項:聚萘二甲酸乙二醇酯(PEN)、共 聚萘二曱酸乙二醇酯(co-PEN)、聚對苯二曱酸乙二醇酯 (PET)、共聚對本&gt;一曱酸乙一醇醋(co-PET )、聚碳酸醋 (PC)、聚碳酸酯合金、聚苯乙烯(ps)、耐熱聚苯乙烯、聚 ❹ 曱基丙稀酸曱酯(PMMA)、聚對苯二曱酸丁二醋(pbt)、 聚丙烯(PP)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯共聚物 (ABS)、聚氨酯(PU)、聚醯亞胺(PI)、聚氣乙烯(pvc)、 苯乙烯丙烯腈混合物(SAN)、乙烯醋酸 (EVA)、聚酿胺 (PA)、聚甲醛(Ρ0Μ)、石碳酸、環氧樹脂(Ep)、尿素 (UF)、黑色素(MF)、非飽和聚g旨(up)、石夕(si)、合 成橡膠、及環烯聚合物。 σ 4. 如申請專利範圍第1項所述之光學調變體,其中之雙折射聚 合物包括以下各項中之一或多項:聚萘二曱酸乙二醇酯 (PEN)、共聚萘二曱酸乙二醇酯(C0-PEN)、聚對苯二曱酸 乙一醇酯(PET)、共聚對苯二甲酸乙二醇醋(c〇_pet)、 聚碳酸酯(PC)、聚碳酸酯合金、聚苯乙烯(pS)、财熱聚 苯乙烯、聚曱基丙烯酸甲酯(PMMA)、聚對苯二曱酸^二 酉曰(PBT)、聚丙稀(PP)、聚乙稀(pe)、丙稀睛丁二烯苯 乙稀共聚物(ABS)、聚氨醋(PU)、聚醯亞胺(pi)、聚 氣乙烯(PVC)、本乙烯丙烯腈混合物(SAN)、乙烯醋酸 (EVA)、聚醯胺(PA)、聚曱醛(p〇M)、石碳酸、環氧樹 脂(EP)、尿素(UF)、黑色素(MF)、非飽和聚酯(ϋΡ)、 矽(SI)、合成橡膠、及環烯聚合物。 5. 如申請專利範圍第1項所述之光學調變體,其中之雙折射聚 27 200944866 合物為多數’係沿同一方向配置於該基材内。 6.如申請專利範圍第5項所述之光學調變體,其中之多數雙 射聚合物係垂直一光源配置於該基材内。 7·如申請專利範圍第1項所述之光學調變體,其中之雙折 合物其體積比含量為該光學調變體總體積之1%〜9〇%。、 8·如申請專利範圍第1項所述之光學調變體,其中之雙 合,其配置數量為相對lcm3之光學調變體内配置 〇 〇 9.如申請專利範圍第1項所述之光學調變體,其中該 體包括一結構表面層。 u予,雯 10. 如申請專利範圍第9項所述之光學調變體,其中之鈐 層係形成於光線出射之表面上。 11. 如申請專利範圍第9項所述之光學調變體,其中之結構表面 層為棱柱形。 12. 如申請專利範圍第η項所述之光學調變體,直 士 層為雙凸形之稜柱。 冓表面 13·如申請專利範圍第9項所述之光學調變體,其中之結構表面 層為雙凸形。 14. 如申請專利範圍第13項所述之光學調變體,里中 層為不規則雙凸形。 ^认構表面 15. 如申請專利範圍第9項所述之光學調變體,复 層為凸透鏡形或顯微透鏡形。 /、t之…構表面 16. 如申料利範圍第15項所述之光糊變體, 層為不規則凸透鏡形或顯微透鏡形。 &quot;構表面 17. 如申請專利範圍第9項所述之光學調變體 層内可配置或不配置雙折射聚合物。、甲U表面 18. 如申請專利範圍第丨項所述之光學調變體, 體至少有一表面係經毛面處理。 、q予”周變 19. 如申請專利範圍第!項所述之光學調變體, 射之光線係透射絲學調變體,且該透射之鱗為自然〉'、… 28 200944866 偏振光® 20·如申請專利範圍第1項所述之光學調變體,其中之雙折射聚 合物係以疊置形式配置於該基材内。 21. 如申請專利範圍第1項所述之光學調變體,其中之雙折射聚 合物係以隨機方式配置於該光學調變體内。 22. 如申請專利範圍第1項所述之光學調變體,其中之雙折射聚 合物為一雙折射纖維。 23·如申請專利範圍第22項所述之光學調變體,其中之雙折射纖 維係包括一各向異性紗芯纖維之光學調變纖維。 24·如申請專利範圍第23項所述之光學調變體,其中之光學調變 〇 纖維包括一配置於一填料内的各向異性紗芯纖維。 25. 如申請專利範圍第24項所述之光學調變體,其中之填料為各 向同性》 26. 如申請專利範圍第25項所述之光學調變體,其中之填料包括 以下各項中之一或多項:聚萘二曱酸乙二醇酯(PEN)、共 聚秦二曱酸乙二醇g旨(co-PEN)、聚對苯二曱酸乙二醇酉旨 (PET)、共聚對苯二曱酸乙二醇酯(c〇_PET)、聚碳酸酯 (PC)、聚碳酸酯合金、聚苯乙稀(ps)、耐熱聚苯乙烯、聚 甲基丙稀酸甲酯(PMMA)、聚對苯二甲酸丁二酯(PBT)、 ❹ 聚丙烯(pp)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯共聚物 (ABS)、聚氨酯(PU)、聚醯亞胺(pi)、聚氯乙烯(pVC)、 苯乙烯丙稀腈混合物(SAN)、乙稀醋酸 (EVA)、聚醯胺 (PA)、聚曱醛(Ρ0Μ)、石碳酸、環氧樹脂(Ep)、尿素 (服)、黑色素以?)、非飽和聚酯(册)、石夕(31)、合 成橡膠、及環烯聚合物。 27·如申請專利範圍第24項所述之光學調變體,其中之各向異性 紗怒纖維包括以下各項中之一或多項:聚萘2曱酸乙二^醋 (PEN)、共聚萘二曱酸乙二醇酉旨(c〇一pen)、聚對苯二曱酸 乙一醇酯(PET)、共聚對苯二曱酸乙二醇醋(c〇—pm)、 聚碳酸酯(PC)、聚碳酸酯合金、聚苯乙烯(PS)、耐熱聚 29 200944866 苯乙烯、聚甲基丙烯酸曱酯(PMMA)、聚對苯二甲酸丁二醋 (PBT)、聚丙烯(pp)、聚乙烯(PE)、丙烯腈丁二稀苯乙 烯共聚物(ABS)、聚氨酯(PU)、聚醯亞胺(pi)、聚氣 乙烯(PVC)、苯乙烯丙烯腈混合物(SAN)、乙稀醋酸 (EVA)、聚醯胺(pa)、聚曱醛(pom)、石碳酸、環氧樹 脂(EP)、尿素(UF)、黑色素(MF)、非飽和聚酯(UP)、 碎(SI )、合成橡膠、及環烯聚合物,並為各向異性。 28.如申請專利範圍第24項所述之光學調變體,其中: 該填料與該各向異性紗芯纖維相對兩個軸向上的折射率差 異為0· 01或低於〇. 〇1 ;以及;200944866 VII. Patent Application Range: 1. An optical modulation body comprising a birefringent polymer disposed in a substrate. 2. The optical modulation body of claim 1, wherein the substrate is isotropic. 3. The optical modulator according to claim 2, wherein the substrate comprises one or more of the following: polyethylene naphthalate (PEN), copolymer naphthalene diacetate Alcohol ester (co-PEN), polyethylene terephthalate (PET), copolymerization of &gt; co-PET, copolycarbonate (PC), polycarbonate alloy, Polystyrene (ps), heat-resistant polystyrene, fluorenyl phthalate (PMMA), polybutylene terephthalate (pbt), polypropylene (PP), polyethylene (PE), Acrylonitrile butadiene styrene copolymer (ABS), polyurethane (PU), polyimine (PI), polyethylene (pvc), styrene acrylonitrile mixture (SAN), ethylene acetic acid (EVA), poly brewing Amine (PA), polyformaldehyde (Ρ0Μ), phenolic carbonate, epoxy resin (Ep), urea (UF), melanin (MF), unsaturated polyg (up), shixi (si), synthetic rubber, and Cycloolefin polymer. The optically modulated body according to claim 1, wherein the birefringent polymer comprises one or more of the following: polyethylene naphthalate (PEN), copolymerized naphthalene Ethylene phthalate (C0-PEN), polyethylene terephthalate (PET), copolymerized ethylene terephthalate (c〇_pet), polycarbonate (PC), polycarbonate Ester alloy, polystyrene (pS), polystyrene polystyrene, polymethyl methacrylate (PMMA), poly-terephthalic acid bismuth (PBT), polypropylene (PP), polyethylene ( Pe), propylene butadiene styrene copolymer (ABS), polyurethane (PU), polyimine (pi), polyethylene (PVC), ethylene acrylonitrile mixture (SAN), ethylene Acetic acid (EVA), polyamine (PA), polyacetal (p〇M), phenolic carbonate, epoxy resin (EP), urea (UF), melanin (MF), unsaturated polyester (ϋΡ), 矽(SI), synthetic rubber, and cycloolefin polymers. 5. The optical modulation body according to claim 1, wherein the birefringent poly 27 200944866 compound is disposed in the substrate in the same direction. 6. The optical modulation body of claim 5, wherein a plurality of birefringent polymers are vertically disposed in the substrate. The optical modulation body according to claim 1, wherein the bi-compound has a volume ratio of 1% to 9% by weight based on the total volume of the optical modulation body. 8. The optical modulation body according to claim 1, wherein the double-fit, the number of which is arranged in an optically modulated body configuration relative to 1 cm 3 is as described in claim 1. An optical modulation body, wherein the body comprises a structural surface layer. U. The optical modulation body according to claim 9, wherein the enamel layer is formed on the surface on which the light is emitted. 11. The optical modulation body of claim 9, wherein the structural surface layer is prismatic. 12. The optical modulation body described in claim n, the straight layer is a biconvex prism. The optical modulation body according to claim 9, wherein the structural surface layer is biconvex. 14. The optical modulation body according to claim 13, wherein the inner middle layer is an irregular double convex shape. The surface of the optical modulation body described in claim 9 is a convex lens shape or a micro lens shape. /, t ... the surface of the fabric 16. As described in the scope of the application of the light paste variant, the layer is irregular convex lens shape or microlens shape. &quot;Structural surface 17. The birefringent polymer may or may not be disposed in the optical modulation layer as described in claim 9. , U-U surface 18. The optical modulation body according to the scope of claim 2, wherein at least one surface of the body is treated with a matte surface. , q予"周变19. As claimed in the patent scope of the item; the optical modulation of the transmitted light is a transmissive silky tone modulation, and the transmission scale is natural>',... 28 200944866 Polarized Light® The optical modulation body according to claim 1, wherein the birefringent polymer is disposed in the substrate in a stacked form. 21. Optical modulation according to claim 1 The birefringent polymer is disposed in a random manner in the optical modulation body. The optical modulation body according to claim 1, wherein the birefringent polymer is a birefringent fiber. The optical modulation body according to claim 22, wherein the birefringent fiber comprises an optically modulated fiber of an anisotropic core fiber. 24· The optical device according to claim 23 The optically modulated 〇 fiber comprises an anisotropic core fiber disposed in a filler. 25. The optical modulating body according to claim 24, wherein the filler is isotropic 》 26. If the scope of patent application is 25 The optical modulation body, wherein the filler comprises one or more of the following: polyethylene naphthalate (PEN), co-PEN, and co-PEN, Poly(ethylene terephthalate) ethylene glycol (PET), copolymerized ethylene terephthalate (c〇_PET), polycarbonate (PC), polycarbonate alloy, polystyrene (ps ), heat resistant polystyrene, polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), hydrazine polypropylene (pp), polyethylene (PE), acrylonitrile butadiene benzene Ethylene copolymer (ABS), polyurethane (PU), polyimine (pi), polyvinyl chloride (pVC), styrene acrylonitrile mixture (SAN), ethylene acetate (EVA), polyamine (PA) , polyfurfural (Ρ0Μ), phenolic carbonate, epoxy resin (Ep), urea (service), melanin?), unsaturated polyester (book), Shixi (31), synthetic rubber, and cycloolefin polymer The optical modulation body according to claim 24, wherein the anisotropic yarn anger fiber comprises one or more of the following: polynaphthalene 2 phthalic acid (PEN), copolymerization Naphthalene diacetate Alcohol (c), poly(ethylene terephthalate) (PET), copolymerized terephthalic acid glycol vinegar (c〇-pm), polycarbonate (PC), polycarbonate Alloy, polystyrene (PS), heat resistant poly 29 200944866 styrene, polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (pp), polyethylene (PE), Acrylonitrile butyl styrene copolymer (ABS), polyurethane (PU), polyimine (pi), polyethylene (PVC), styrene acrylonitrile mixture (SAN), ethylene acetic acid (EVA), poly Guanamine (pa), polyacetal (pom), phenolic carbonate, epoxy resin (EP), urea (UF), melanin (MF), unsaturated polyester (UP), crushed (SI), synthetic rubber, and A cycloolefin polymer and is anisotropic. 28. The optical modulation body according to claim 24, wherein: the difference in refractive index between the filler and the anisotropic core fiber in two axial directions is 0.01 or less. 〇1; as well as; ❹ 該填料與該各向異性紗芯纖維相對第三軸向上的折射率差 異為0.03或高於〇.〇3。 29. 如申請專利範圍第24項所述之光學調變體,其中之各向異性 紗芯纖維包括一纖惟外罩,用以包覆一纖維芯體。 30. 如申請專利範圍第24項所述之光學調變體,其中該光學調變 體包括多數橫截面不同之光學調變纖維。 31. 如申請專利範圍第24項所述之光學調變體,其中該填料及各 向異性紗芯纖維中,至少有一者係包括雙折射聚合物物質。 32. 如申請專利範圍第24項所述之光學調變體,其中該聚合物光 學調變纖維及各向異性紗芯纖維中,至少有一者係沿縱長方 向拉伸。 33. 如申請專利範圍第24項所述之光學調變體,其中該光學 纖維為一芯鞘複合纖維。 34. 如申明專利範圍第33項所述之光學調變體,其中之芯鞘複合 =具有-芯部對應該各向異性紗芯纖維,及一卿對應^ 填料。 35.如申°月專利範圍第24項所述之光學調變體,其中: 該光學調變纖維為一天星狀紗線; 〃 該各向異性紗芯纖維對應天星狀紗線的星部;以及 該填料對應天星狀紗線的天部。 30 200944866 36. 如申請專利範圍第35項所 部在至少—方向上具有不_^;變體’其中之天部與星 37. 如申料娜圍獅項所述 與星部相對第三軸向上的折射率差異為〇5或高 38. ==5至項^變體,其中該 Ο 項所述之光學調變體,其中該天星狀紗 4〇.如申請專利範圍第35項所述之光學調變體,其中: 該天部為各向同性;以及 、 該星部為各向異性。 41. 如申請專利範圍第35項所述之光學調變體,其中之天部包括 項中之一或多項:聚萘二甲酸乙二醇醋(酸)、共 甲酸乙二醇醋(αΗΡΕΝ)、聚對苯二曱酸乙二醇醋 y τ)、共聚對苯二曱酸乙二醇酯(c〇一ρΕΤ)、聚碳酸酯 (PC)、聚碳酸酯合金、聚苯乙烯(PS)、耐熱聚苯乙烯、聚 甲基丙烯酸曱酯(PMMA)、聚對苯二甲酸丁-酯印Bn、 聚丙稀⑽、聚乙烯⑽、丙稀腈甲丁%-二: jABS)、聚氨酯(pu)、聚醯亞胺(ρι)、聚氯乙烯(pvc)、 苯乙烯丙烯腈混合物(SAN)、乙烯醋酸(EVA)、聚醯胺 (PA)、聚曱醛(pom)、石碳酸、環氧樹脂(Ep)、尿素 (UF)、黑色素(做)、非飽和聚酯(up)、矽(si)、合 成橡膠、及環烯聚合物。 口 42. 如申清專利範圍第35項所述之光學調變體,其中之星部包括 以下各項中之一或多項:聚萘二甲酸乙二醇酯(ρΕΝ)、共 聚萘二曱酸乙二醇酯(co-PEN)、聚對苯二甲酸乙二醇酉旨 (PET)、共聚對苯二曱酸乙二醇酯(c〇_pET)、聚碳酸酿 31 200944866 (PC)、聚碳酸酯合金、聚苯乙烯(pS)、耐熱聚苯乙烯、聚 曱基丙烯酸曱酯(PMMA)、聚對苯二曱酸丁二酯(PBT)、 聚丙烯(PP)、聚乙、歸(PE)、丙烯腈丁二稀苯乙稀共聚物 jABS.)、聚氨酯(PU)、聚醯亞胺(ρι)、聚氯乙烯(pvc)、 苯乙烯丙烯腈混合物(SAN)、乙烯醋酸(EVA)、聚醯胺 (PA)、聚甲醛(pom)、石碳酸、環氧樹脂(Ep)、尿素 (UF)、黑色素(做)、非飽和聚酯(ϋρ)、矽(SI)、合 成橡膠、及環烯聚合物,並為各向異性。 口 43. 如申請專利範圍第35項所述之光學調變體,其中之天星狀 線之纖度為0.3至20丹尼爾。 ' 44. 如申請專利範圍第35項所述之光學調變體,其中該光學調變 體内是每立方公分(cm3)配置5〇〇至4 〇〇Μ〇〇條 狀紗線。 45. 如申,專利範圍第35項所述之光學調變體,其中該天星狀紗 線之橫截面為圓形或橢圓形。 46. 如申請專利範圍第35項所述之光學調變體,其中該天星狀 線之橫截面為非圓形截面。 、 47. ^申請專利範圍第35項所述之光學調變體,其中該星部之 截面為非圓形截面。 48. 如申,專利範圍第35項所述之光學調變體,其中該天部之 射率係與申請專利範圍第丨項所述之基材折射率相同。 49. ^申請專利範圍第35項所述之光學調變體,其中該天星 線係以緯線及經線方式織成。 5〇.,申請專利範圍第49項所述之光學調變體,其中: 該緯線與經線中之任一者係為天星狀紗線 ;以及 該,線與經線巾之另-者係為向同性纖維。 • ϋ =利範圍第49項所述之光學調變體,其中該緯線或經 1至2GG職合的天錄祕來形成。 .清專利範圍第22項所述之光學調變體,其中該雙折射 、’’糸-複合紗線,其包括紐各向雌充填部及被該等各向 32 200944866 同性充填部分隔的多數各向異性複合部。 53t==圍J5圓 =酬變艘,其—^ 54. Ϊ=;Γ2項所述之光學調變體,其中該各向異性 55. ίΓίΐ利範圍第52項所述之光學調變體,其中令多數^ ❹ 一配置於一基材内之雙折射光學調變纖維丨 2子纖維包括-g己置在__填料内的各向Λ纖 多異性紗芯纖維與該填料間可ίί 57·Ξ=專利範圍第56項所述之光學調變體,其中之基材為各 58· 專利範圍第56項所述之光學調變體,其中之填料為各 59.如申請專概_56項所狀光學機體,其中. ittff紗芯纖維與該填料在兩個轴向上的折射率差異 為0. 03或低於〇. 〇3 ;以及; 、 各向異性料纖維與該填料在第三軸向 0. 05或高於0.05。 耵千左共馮 範圍第56項所述之光學調變體,其中假設一基材 ζ轴“ w的Ϊ射率為nX1,在乂轴向上的折射率為nY1,在 射率為nZ1;且一雙折射光學調變纖維在X軸向 率為禮命軸向上的折射率為⑽,在z軸向上 率為ηΖ2;那麼該基材在x、y、z軸向的三個折射率 丄至&gt;、有-個係與該雙折射光學調變纖維在X τ 的二個折射率至少其中之一為相同。 61·如申凊專利範圍第6G項所述之光學調變體,其中ηχ2 &gt; ηγ2 33 200944866 nZ2 62.如t請專利範圍第60項所述之光學調變體,其中之雙折射光 學調變纖維包括一配置於一填科内的各向異性紗芯纖維。 63· ^申請專利範園第56項所述之光學調變體,其中假設該各向 J性紗芯纖維在X轴向上的折射率為ηΧ2,在y軸向上的折射 二,nY2’在z轴向上的折射率為nZ2;而該填料在χ軸向上 上的折射率為ηΥ3,_向上的 6為11 為或 1於=射率ηΧ2·ηΧ3之間的差異絕對值 • i 崎之光__,其巾折射率ηΥ2 0.03 或折率必與ηΖ3之間的差異絕對值低於 鬌 34折射率 The difference in refractive index of the filler from the anisotropic core fiber in the third axial direction is 0.03 or higher than 〇.〇3. 29. The optical modulation body of claim 24, wherein the anisotropic core fiber comprises a fiber outer cover for coating a fiber core. The optical modulation body of claim 24, wherein the optical modulation body comprises a plurality of optically modulated fibers having different cross sections. The optical modulation body of claim 24, wherein at least one of the filler and the anisotropic core fiber comprises a birefringent polymer material. The optical modulation body according to claim 24, wherein at least one of the polymer optically modulated fiber and the anisotropic core fiber is stretched in the longitudinal direction. 33. The optical modulation body of claim 24, wherein the optical fiber is a core-sheath composite fiber. 34. The optical modulation body of claim 33, wherein the core-sheath composite = has a core corresponding to the anisotropic core fiber, and a clear corresponding to the filler. 35. The optical modulation body according to claim 24, wherein: the optically modulated fiber is a one-day star-shaped yarn; 〃 the anisotropic core fiber corresponds to a star portion of a star-shaped yarn; And the filler corresponds to the sky of the star-shaped yarn. 30 200944866 36. If the scope of the 35th section of the patent application has at least - the direction has no _ ^; variant 'the part of the sky and the star 37. As stated in the Shen Na Na Lions and the third axis relative to the star The upward refractive index difference is 〇5 or higher 38. ==5 to the item variant, wherein the optically modulated body of the item, wherein the star-shaped yarn is 4〇, as described in claim 35 An optical modulation body, wherein: the sky is isotropic; and the star is anisotropic. 41. The optical modulation body according to claim 35, wherein the heaven part comprises one or more of the items: polyethylene naphthalate (acid), co-formic acid glycol vinegar (αΗΡΕΝ) , polyethylene terephthalate vinegar y τ), copolymerized ethylene terephthalate (c〇-ρΕΤ), polycarbonate (PC), polycarbonate alloy, polystyrene (PS) , heat-resistant polystyrene, polymethyl methacrylate (PMMA), polybutylene terephthalate-printed Bn, polypropylene (10), polyethylene (10), acrylonitrile-butyl-%: two: jABS), polyurethane (pu ), polyimine (ρι), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene acetic acid (EVA), polydecylamine (PA), polyfurfural (pom), sulphuric acid, ring Oxygen resin (Ep), urea (UF), melanin (made), unsaturated polyester (up), bismuth (si), synthetic rubber, and cyclic olefin polymer. The optical modulation body according to claim 35, wherein the star portion comprises one or more of the following: polyethylene naphthalate (ρΕΝ), copolymer naphthalene dicarboxylic acid Ethylene glycol ester (co-PEN), polyethylene terephthalate (PET), copolymerized ethylene terephthalate (c〇_pET), polycarbonate 31 200944866 (PC), Polycarbonate alloy, polystyrene (pS), heat-resistant polystyrene, phthalic acid acrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene, return (PE), acrylonitrile butadiene styrene copolymer jABS.), polyurethane (PU), polyimine (ρι), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene acetic acid ( EVA), polyamine (PA), polyoxymethylene (pom), phenolic carbonate, epoxy resin (Ep), urea (UF), melanin (made), unsaturated polyester (ϋρ), bismuth (SI), synthesis Rubber, and cycloolefin polymers, and anisotropic. The optical modulation body of claim 35, wherein the star-shaped line has a fineness of 0.3 to 20 denier. 44. The optical modulation body of claim 35, wherein the optical modulation body is arranged in a range of 5 to 4 inches of yarn per cubic centimeter (cm3). The optical modulation body of claim 35, wherein the antenna-shaped yarn has a circular or elliptical cross section. 46. The optical modulation body of claim 35, wherein the cross section of the antenna line is a non-circular cross section. 47. The optical modulation body of claim 35, wherein the cross section of the star portion is a non-circular cross section. 48. The optical modulation body of claim 35, wherein the radiance of the celestial portion is the same as the refractive index of the substrate described in the scope of the patent application. 49. The optical modulation body of claim 35, wherein the antenna line is woven in a weft and warp manner. 5. The optical modulation body of claim 49, wherein: any one of the weft and the warp is a star-shaped yarn; and the other of the thread and the warp For isotropic fibers. • ϋ = the optical modulation variant described in item 49, wherein the latitude or the 1 to 2 GG occupation is formed. The optical modulation body of claim 22, wherein the birefringent, ''糸-composite yarn) comprises a neon female filling portion and a majority separated by the same direction 32 200944866 Anisotropic composite part. 53t== circumference J5 circle = reward variable ship, which - ^ 54. Ϊ =; Γ 2 item of the optical modulation body, wherein the anisotropy 55. ίΓίΐ range of the optical modulation body of item 52, Wherein the birefringent optically modulated fiber 丨2 sub-fiber disposed in a substrate comprises -g of the bismuth-polyester yarn core fiber disposed in the __filler and the filler. Ξ 光学 光学 光学 光学 光学 光学 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 The optical body of the item, wherein the difference between the refractive index of the ittff core fiber and the filler in the two axial directions is 0.03 or less. 〇3; and;, the anisotropic fiber and the filler are in the first The three axes are 0.05 or higher than 0.05. The optical modulation body described in item 56 of the 耵千左共冯范围, wherein a substrate ζ axis "w has a radiance of nX1, a refractive index in the 乂 axis is nY1, and an incident rate of nZ1; And a birefringent optically modulated fiber has a refractive index of (10) in the axial direction of the X-axis and a refractive index of ηΖ2 in the z-axis; then the three refractive indices of the substrate in the x, y, and z directions And the optical modulation of the birefringent optically modulated fiber at least one of the two refractive indices of X τ. 61. The optical modulation body of claim 6G, wherein The optically modulated body of claim 60, wherein the birefringent optically modulated fiber comprises an anisotropic core fiber disposed in a filler. · ^ Patent application of the optical modulation body described in Item 56, wherein the refractive index of the respective J-shaped core fibers in the X-axis is η Χ 2, the refraction in the y-axis is n, nY 2 ' is in z The refractive index in the axial direction is nZ2; and the refractive index of the filler in the axial direction of the crucible is ηΥ3, and the upper 6 is 11 or 1 to = the incident rate ηΧ2·η The absolute value of the difference between Χ3 • i Saki __, the towel refractive index η Υ 2 0.03 or the absolute difference between the folding rate and η Ζ 3 is lower than 鬌 34
TW97147276A 2008-04-30 2008-12-05 Optical modulated object TW200944866A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080040486A KR20090114708A (en) 2008-04-30 2008-04-30 Light modulation object

Publications (1)

Publication Number Publication Date
TW200944866A true TW200944866A (en) 2009-11-01

Family

ID=41255525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147276A TW200944866A (en) 2008-04-30 2008-12-05 Optical modulated object

Country Status (3)

Country Link
KR (1) KR20090114708A (en)
TW (1) TW200944866A (en)
WO (1) WO2009134024A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109134B1 (en) * 2009-12-24 2012-02-16 웅진케미칼 주식회사 Manufacturing method of light modulated film
CN103172968A (en) * 2013-04-22 2013-06-26 苏州隆阁新材料有限公司 High-light heat-resistant ABS (acrylonitrile butadiene styrene) alloy and preparation method thereof
DE102017004481A1 (en) * 2017-05-11 2018-11-15 Carl Freudenberg Kg Textile fabric for electrical insulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026743A1 (en) * 2004-08-31 2006-03-09 Fusion Optix, Inc. Enhanced light diffusing sheet
US7356231B2 (en) * 2005-02-28 2008-04-08 3M Innovative Properties Company Composite polymer fibers
JP4834444B2 (en) * 2006-03-31 2011-12-14 富士フイルム株式会社 Method for producing cellulose acylate film

Also Published As

Publication number Publication date
WO2009134024A3 (en) 2010-01-21
WO2009134024A2 (en) 2009-11-05
KR20090114708A (en) 2009-11-04

Similar Documents

Publication Publication Date Title
CN101128758B (en) Composite polymeric optical films with co-continuous phases
CN101523248B (en) Multilayer polarizing fibers and polarizers using same
US7362943B2 (en) Polymeric photonic crystals with co-continuous phases
TW200819803A (en) Polymer fiber polarizers
CN101128759A (en) Reflective polarizers containing polymer fibers
KR20090057233A (en) Polymer fiber polarizers with aligned fibers
TW200949300A (en) Luminance-enhanced film
KR100975351B1 (en) Brightness enhancement film
TW200944866A (en) Optical modulated object
KR100965109B1 (en) Liquid crystal display
KR100951700B1 (en) Manufacturing method of light modulated object
US20100195234A1 (en) Luminance-enhanced film
US8986832B2 (en) Optical-modulation object
US20110157513A1 (en) Liquid crystal display device
KR100951701B1 (en) Light modulated object
KR100951699B1 (en) Light modulated object
KR100955473B1 (en) Method for manufacturing brightness enhancement film using vacuum hot press and brightness enhancement film prepared by the same
KR100955471B1 (en) Brightness enhancement film
JP2012518100A (en) Spinneret for sea-island fiber production
KR100951702B1 (en) Method for manufacturing light modulated object using vacuum hot press and light modulated object prepared by the same
KR20100079823A (en) High-luminance broadband film for lcd
KR101094130B1 (en) Liquid crystal display
KR101109134B1 (en) Manufacturing method of light modulated film
KR101095391B1 (en) Manufacturing method of brightness enhancement film
US20110014838A1 (en) Luminance-enhanced film and method for fabricating the same