TW201101659A - Boost/buck converting device, boost/buck converter, and control module thereof - Google Patents
Boost/buck converting device, boost/buck converter, and control module thereof Download PDFInfo
- Publication number
- TW201101659A TW201101659A TW98120611A TW98120611A TW201101659A TW 201101659 A TW201101659 A TW 201101659A TW 98120611 A TW98120611 A TW 98120611A TW 98120611 A TW98120611 A TW 98120611A TW 201101659 A TW201101659 A TW 201101659A
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- voltage
- buck
- energy
- output
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
201101659 六、發明說明: 、 【發明所屬之技術領域】 本發明是有關於一種升降壓轉換器,特別是指一種具 有負電壓輸出的升降壓轉換器。 【先前技術】 隨著科技的進步,負電壓電源的應用與需求也越來越 多’例如··音訊放大器或電腦PCI(Peripheral Component Interconnect)卡等皆需要負電壓才能正常工作。201101659 VI. Description of the Invention: [Technical Field] The present invention relates to a buck-boost converter, and more particularly to a buck-boost converter having a negative voltage output. [Prior Art] With the advancement of technology, the application and demand of negative voltage power supplies are increasing. For example, audio amplifiers or computer peripheral PCI (Peripheral Component Interconnect) cards require a negative voltage to operate normally.
¢) &知的負電壓電源可為一個直流/直流轉換器(DC/DC converter) ’主要是應用於供電給車用電池或是手提式電子 裝置,其中,升降壓型直流/直流轉換器(buck-boost converter)適合低功率的應用,但是在控制其中的功率開關 時’會產生右半平面的零點(zer〇),導致整個系統不穩定。 因此,如何提供一個電路簡單、成本較低且穩定性高的負 電壓轉換器則為本案之發明重點。 【發明内容】 〇 因此,本發明之目的,即在提供一種電路簡單、穩定 性高且提供一負電壓輸出的升降壓轉換器。 於是,本發明升降壓轉換器,用以對一輸入電壓進行 電壓轉換以輸出一負電壓,其中包含:一第一二極體、一 功率開關組、一第一儲能電容、—第二儲能電容、一第二 一極體、一儲能電感及一輸出電容。 第一二極體的p極接收輸入電壓的陽極;功率開關組 具有-第-開關、一第二開關、_第三開關及一第四開 201101659 關,其中,第一開關&, Η山^ 關的端耦接於第一二極體的ρ極,且 另一端與第二開關的 第-… 串接,第二開關的另-端接地; 第二開料接於H㈣Ν極,¢) & knowing that the negative voltage power supply can be a DC/DC converter (mainly used for power supply to automotive batteries or portable electronic devices, among them, buck-boost DC/DC converters) (buck-boost converter) is suitable for low-power applications, but when controlling the power switch, it will produce a zero point (zer〇) in the right half plane, resulting in instability of the entire system. Therefore, how to provide a negative voltage converter with simple circuit, low cost and high stability is the focus of the invention. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a buck-boost converter which is simple in circuit, high in stability, and which provides a negative voltage output. Therefore, the buck-boost converter of the present invention is configured to perform voltage conversion on an input voltage to output a negative voltage, comprising: a first diode, a power switch group, a first storage capacitor, and a second storage. Capacitor, a second one, a storage inductor and an output capacitor. The p-pole of the first diode receives the anode of the input voltage; the power switch group has a -first switch, a second switch, a third switch, and a fourth open 201101659, wherein the first switch & ^ The closed end is coupled to the p-pole of the first diode, and the other end is connected in series with the -... of the second switch, the other end of the second switch is grounded; the second opening is connected to the H (four) bungee,
四開關的-端串接’第四開關的另一端接地。 J 第一儲能電容具古 、有—耦接於第一二極體之Ν極的第一 端及一耦接於第一閩關沲哲 /、第一開關的串接處的第—减·签 二儲能電容具有—為垃认结— /弟一知,弟 第 ;弟二開關與第四開關的串接處的 極體的Ρ極耦接於第二儲能電 ——* 端及一第二端;第 f的第二端,其Ν極接地,·儲能電感具有—麵: 極體之Ρ極的第_端及一 、第一一 儲能電* 輸出電容具有一麵接於 ㈣感之第二端的第一端及一接地的第二端。 當第-開關與第三開關為非導通 ㈣電容對㈣電感及輸出電容進行 = =開關為導通且第二開關與第四開關為非二: :育b電谷對第二儲能電容釋能,且处 能而輸出該負電壓。 %電感及輪出電容釋 功率m2:能電容的容值與升降壓轉換器的輸出 與釋能=1=任週期呈正比’且與儲能電容在儲能 释-之間所產生的能量誤差、輸 開關組的切換頻率呈反比。 貞電壓及功率 電壓的平方呈正比,且 功率開關組的切換頻率 較佳地’儲能電感的感值與負 /、升降壓轉換器的最小輸出功率、 及第—開關的責任週期呈反比。 201101659 較佳地,輸出電容的容值、與升降壓轉換器的最小輸出 功率呈正比,且與負電壓及負電壓的連波電壓呈反比。 成本較低的控制模組 此外,本發明之另一目的,即在提供一種電路簡單且 本發明控制模組,適合與一直流/直流轉換器(dc/dc ⑶nverter)配合使用,該直流/直流轉換器具有一功率開關, 該控制模組包含:_比較器及—比例積分微分控制器。 比較器用以將直流/直流轉換器的輪出電壓與一參考電The other end of the fourth switch is grounded. The first storage capacitor has a first end connected to the first pole of the first diode and a first minus sign coupled to the first joint of the first switch and the first switch The second storage capacitor has a ----------------------------------------------------------------------------------------- The second end; the second end of the fth, the drain is grounded, the energy storage inductor has a surface: the first end of the pole of the pole body and the first one of the first energy storage electric* output capacitor has one side connected to (4) The first end of the second end of the sense and the second end of the ground. When the first switch and the third switch are non-conducting (four) capacitor pair (four) inductance and output capacitance == the switch is conducting and the second switch and the fourth switch are non-two: : u b electric valley to the second storage capacitor discharge And can output the negative voltage. % inductance and wheel-out capacitance release power m2: the capacitance error of the capacitance and the output voltage of the buck-boost converter = 1 = proportional to the cycle and the energy error between the storage capacitor and the energy storage The switching frequency of the transmission switch group is inversely proportional. The square of the voltage and power voltage is proportional, and the switching frequency of the power switch group is preferably 'the sense of the sense of the energy storage inductance is inversely proportional to the negative /, the minimum output power of the buck-boost converter, and the duty cycle of the first switch. 201101659 Preferably, the capacitance of the output capacitor is proportional to the minimum output power of the buck-boost converter and inversely proportional to the voltage of the negative voltage and the negative voltage. Lower Cost Control Module In addition, another object of the present invention is to provide a control circuit module of the present invention which is simple in circuit and suitable for use with a DC/DC converter (dc/dc (3) nverter). The converter has a power switch, and the control module comprises: a comparator and a proportional integral derivative controller. The comparator is used to convert the voltage of the DC/DC converter to a reference voltage
壓進行比較’並輸出—數位邏輯訊號;比例積分微分控制 器,根據數位邏輯訊號產生一控制功率開關啟閉的控制訊 號0 較佳地,控制模組還包含一耦接於直流/直流轉換器的 輸出端與比較器之間的分壓器,用以根據一分壓比例將 輸出端的電壓進行分壓。 較佳地’控制模組還包含二耦接於比例積分微分控制 器與直流/直流轉換器的功率開關之間的閘極驅動器,用以 將控制§fl號轉換成足以驅動功率開關的驅動訊號。 此外,本發明之另一目的,即在提供一種電路簡單、 成本較低、穩定性高且提供一負電壓輸出的升降壓轉換裝 置。 本發明升降壓轉換裝置包含:一升降壓轉換器及一控 制模組。其中’升降壓轉換器包含:一第一二極體、一功 率開關組、一第一儲能電容 '一第二儲能電容、一第二二 極體、一儲能電感及一輸出電容。 201101659 且右t二極體的P極接收輸入電磨的陽極;功率開關組 關,盆中—開關、一第二開關、一第三開關及-第四開 ’、,第—開關的一端耦接於第一二極體的P極,且 3 第二開關的-端串接,第二開關的另-端接地; =端麵接於第一二極體…,且另-端與第 四開關的-端串#,第四開關的另一端接地。 *第儲月匕電谷具有一麵接於第一二極體之N極的第一 端及^接於第一開關與第二開關的串接處的第二端;第 :儲=電容具有—麵接於第三開關與第四開關㈣接處的 六〃及-第二端’·第二二極體的p極叙接於第二錯能電 二第一鳊’其N極接地;儲能電感具有一耦接於二 的第:端及一第二端;輸出電容具有一耗接於 v :之第一端的第一端及一接地的第二端。 關A 1第—開關與第三開關為非導通且第二開關與第四開 ,導通時’輸入電壓對第一儲能電容進行儲能,且第二 ==對儲能電感及輸出電容進行儲能;當第一開關與 幵為導通且第二開關與第四開關為非導通時,第一 儲此電讀第二儲能電容釋能,且儲能電感 能而輪出該負電I。較佳地,第二儲能電容的容值 塵轉換器的輸出功率及第一開關的責任週期呈正比,且虚 儲能電容在儲能與釋能之間所產生的能量誤差、輸入電 壓、負電壓及功率開關組的切換頻率呈反比。 較佳地,儲能電感的感值與負電壓的平方呈正比,且 與升降壓轉換器的最小輸出功率、功率開關組的切換頻率 4 201101659 及第一開關的責任週期呈反比。 較佳地,輪出電容的容值與升降壓轉換器的最小輸出 功率呈正比,且與負電壓及負電壓的連波電壓呈反比。 進一步地,控制模組的内部架構可如同上述控制模組 包含.-分壓器、一比較器、一比例積分微分控制器及二 閘極驅動器。本發明之功效在於,可以提供—個電路簡 單、成本較低且在控制上不會產生右半平面的零點的負電 壓電源。 〇 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖1’為本發明升降壓轉換裝置之較佳實施例,該 升降壓轉換裝置100用以對一輸入電壓^進行電壓轉換以輸 出一負電壓匕’其中包含一升降壓轉換器(Buck_Boost Converter)〗及一控制模組2。 〇 升降壓轉換器1包括一第一二極體凡、一第二二極體 A2、一第一儲能電谷、一第二儲能電容&、一儲能電感 总、一輸出電容c;及一功率開關組丨丄。 功率開關組11具有一第一開關S1、一第二開關S2、 一第三開關S3及一第四開關S4。其中,第一開關S1的一 端101耦接第一二極體£>61的卩極1〇3,且另一端1〇2與第二 開關S2的一端117相互串接,第二開關S2的另一端118 接地;第三開關S3的一端1〇5耦接第一二極體凡的N極 201101659 104另端106與第四開關s 互 四開關S4的另-端120接地。 相互串接,第 電容= = P# 1G3接收—輸人電以;第一儲能 二極體^之^ 104的第一端 與第四開關S4 $接 ^具有一麵接於第三開關S3 110;第二二極體β的點1〇6(119)的第一端109及一第二端 二端Π。,且::Γ 11純於第二儲能電容㈣ 二極體…心12;健能電感4具有-耦接於第二 容u有二 第一端113及一第二端114;輸出電 =地^ 能電感4之第二端114的第一端115及 、第-端116,其中,輸出電 降壓轉換器丨的輸出端。 。的第端115為升 接著,將詳細說明升降壓轉換器1中各個元件的作動 可輸出負電壓,且在本實施例中,升降壓轉換器1 操作在連續導通模式(C_i_S Conduction Mede, )因此升降壓轉換器j將有兩個操作模式,以下將分 別進行說明。當然’升降壓轉換器1亦可操作在不連續導 通模式(Discontinuous Conducti〇n M〇de,DCM)或是邊界導 通模式(Boundary Conduction Mode,BCM),不以連續導通 模式為限。 配合參閱圖2,當升降壓轉換器丨於第一操作模式:第 —開關S1與第三開關S3為開啟(open/〇ff),第二開關“與 第四開關S4為關閉(close/on),輸入電壓v開始對第一儲能 201101659 電容g進行充電(儲能),卜 、拍〜此時’第一二極體%的p極103的 電壓高於其N極1 〇4的番藤.1 # 的電屋而導通;第二儲能電容C62對儲 此電感4及輸出電谷c。進行儲能,第二二極體〜會因為其p 極ill的電壓低於其112的電壓而截止。值得一提的 疋,在第操作模式τ,第—健能電容&的跨電壓會被充 電至輸入電壓V|.。Pressing to compare 'and output-digit logic signal; proportional integral derivative controller, according to the digital logic signal to generate a control signal for controlling the power switch to open and close 0. Preferably, the control module further comprises a coupling to the DC/DC converter A voltage divider between the output terminal and the comparator is used to divide the voltage at the output voltage according to a voltage division ratio. Preferably, the control module further includes a gate driver coupled between the proportional integral derivative controller and the power switch of the DC/DC converter for converting the control §fl into a driving signal sufficient to drive the power switch. . Further, another object of the present invention is to provide a buck-boost conversion device which is simple in circuit, low in cost, high in stability, and which provides a negative voltage output. The buck-boost conversion device of the present invention comprises: a buck-boost converter and a control module. Wherein the buck-boost converter comprises: a first diode, a power switch group, a first storage capacitor 'a second storage capacitor, a second diode, a storage inductor and an output capacitor. 201101659 and the P pole of the right t diode receives the anode of the input electric grinder; the power switch group is closed, the basin switch - the second switch, the third switch and the - fourth open ', and the first end of the first switch is coupled Connected to the P pole of the first diode, and the end of the second switch is connected in series, the other end of the second switch is grounded; the end face is connected to the first diode, and the other end is connected to the fourth The -end string # of the switch, the other end of the fourth switch is grounded. * The first storage moon valley has a first end connected to the N pole of the first diode and a second end connected to the tandem of the first switch and the second switch; - the six poles connected to the third switch and the fourth switch (four) and the second end 'the second pole of the second diode is connected to the second fault energy second first ''N pole grounded; The energy storage inductor has a first end coupled to the second end and a second end; the output capacitor has a first end that is coupled to the first end of the v: and a grounded second end. Off A 1 first switch and third switch are non-conducting and second switch and fourth open, when the input voltage is used to store the first storage capacitor, and the second == for the storage inductor and the output capacitor When the first switch and the second switch are turned on and the second switch and the fourth switch are non-conductive, the first storage of the second storage capacitor discharges the energy, and the energy storage inductor can turn the negative power I. Preferably, the output power of the capacitance filter of the second storage capacitor is proportional to the duty cycle of the first switch, and the energy error, the input voltage, and the input voltage of the virtual storage capacitor between the energy storage and the release energy are The switching frequency of the negative voltage and power switch group is inversely proportional. Preferably, the sensed value of the energy storage inductor is proportional to the square of the negative voltage, and inversely proportional to the minimum output power of the buck-boost converter, the switching frequency of the power switch group 4 201101659, and the duty cycle of the first switch. Preferably, the capacitance of the wheel-out capacitor is proportional to the minimum output power of the buck-boost converter and inversely proportional to the voltage of the negative voltage and the negative voltage. Further, the internal structure of the control module may include a voltage divider, a comparator, a proportional integral derivative controller, and a two-gate driver as the control module. The effect of the present invention is that it is possible to provide a negative voltage source which is simple in circuit, low in cost and which does not control the zero point of the right half plane. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIG. 1 is a preferred embodiment of the buck-boost conversion device of the present invention, the buck-boost conversion device 100 is configured to perform voltage conversion on an input voltage to output a negative voltage 匕' including a buck-boost converter (Buck_Boost Converter) ) and a control module 2. The buck-boost converter 1 includes a first diode, a second diode A2, a first energy storage valley, a second energy storage capacitor, a storage inductor, and an output capacitor c. ; and a power switch group 丨丄. The power switch group 11 has a first switch S1, a second switch S2, a third switch S3, and a fourth switch S4. The one end 101 of the first switch S1 is coupled to the first pole of the first diode £61, and the other end 1〇2 is connected to the one end 117 of the second switch S2. The second switch S2 The other end 118 is grounded; one end 1〇5 of the third switch S3 is coupled to the first diode of the N pole 201101659 104, the other end 106 and the fourth switch s are connected to the other end 120 of the fourth switch S4. In series, the first capacitor is connected to the third switch S3. 110; a first end 109 of the point 1 〇 6 (119) of the second diode β and a second end end Π. And:: Γ 11 pure to the second storage capacitor (four) diode ... heart 12; the fitness inductor 4 has - coupled to the second cavity u has two first end 113 and a second end 114; output power = The first end 115 of the second end 114 of the inductor 4 and the first end 116, wherein the output of the electrical buck converter 输出 is output. . The first end 115 is a step up, and the operation of each element in the step-up and step-down converter 1 will be described in detail to output a negative voltage, and in the present embodiment, the step-up and step-down converter 1 operates in a continuous conduction mode (C_i_S Conduction Mede) The buck-boost converter j will have two modes of operation, which will be described separately below. Of course, the buck-boost converter 1 can also operate in a discontinuous conduction mode (DCM) or a Boundary Conduction Mode (BCM), and is not limited to the continuous conduction mode. Referring to FIG. 2, when the buck-boost converter is in the first operation mode: the first switch S1 and the third switch S3 are open (open / 〇 ff), the second switch "with the fourth switch S4 is closed (close / on ), the input voltage v starts to charge the first energy storage 201101659 capacitor g (storage energy), Bu, beat ~ At this time, the voltage of the p-pole 103 of the first diode % is higher than the voltage of the N pole 1 〇 4 The second storage capacitor C62 stores energy for storing the inductor 4 and the output capacitor c. The second diode is lower than its 112 The voltage is cut off. It is worth mentioning that in the first operation mode τ, the cross-voltage of the first-energy capacitor & will be charged to the input voltage V|.
換。之在第一操作模式下,升降壓轉換胃1會有二 個充电坦路.第-充電迴路i為輸人電壓^通過第一二極體 第—儲能電容及第二開關S2至地;第二充電迴路π 則是由第二儲能電容&、第四開關S4、輸出電容&及儲能 電感I。所組成。二個充電迴路!及π的充電電流方向如圖2 之虚線所示,且符合以下方程式(1): T di Γ~Άchange. In the first mode of operation, the buck-boost conversion stomach 1 has two charging channels. The first-charging circuit i is the input voltage ^ passes through the first diode-storage capacitor and the second switch S2 to the ground; The second charging circuit π is composed of a second storage capacitor & a fourth switch S4, an output capacitor & and a storage inductor I. Composed of. Two charging circuits! The charging current direction of π and π is shown by the dotted line in Figure 2, and conforms to the following equation (1): T di Γ~Ά
l0 ~ 'Ζ62 = ihA (l) 其中,纟為輸入電壓'所輸出的電流,L為通過儲能電感 4的電流,仏為流經第一儲能電容仏的電流,為流經第二 儲能電容cw的電流’ V,.為第一儲能電容Cm及第二儲能電容 心的跨電壓’ V。為升降壓轉換器1的輸出電壓,Λ。為跨接於 輸出電容ca的一負載(圖未示)。 配合參閱圖3,當升降壓轉換器1於第二操作模式.第 一開關S1與第三開關S3為關閉(close/on),第二開關S2與 第四開關S4為開啟(open/off),第一儲能電容&開始對第一 201101659 儲能電容G進行放電(釋 i釋i),使得第二儲能電容&的跨電 壓會充電至2倍的輪入雷 電壓'。此外,第一二極體%因為其 N極104電壓高於其p描 極103電壓而截止,第二二極體β 的Ρ極111電壓高於直Ν 極112的電壓而導通。輸出電容 ς及儲能電感I。則藉由第-_ 弟一一極體Z)i2的導通而進行放電,並 產生一個負電壓^;輪屮。枯〜 。出值传一提的是,在第一操作模式 下,電感電流L是以逆時斜古 矸針方向進行儲能,由於儲能電感1 的瞬間電流方向不變,+ ° 因此’在功率開關組11切換後,電 感電流1_°會仍以逆時針方向通過第二二極體Α2進行放電,如 圖3之虛線方向所示。L0 ~ 'Ζ62 = ihA (l) where 纟 is the current output by the input voltage, L is the current through the energy storage inductor 4, and 仏 is the current flowing through the first storage capacitor ,, flowing through the second storage The current 'V,. of the energy capacitor cw is the crossover voltage 'V of the first storage capacitor Cm and the second storage capacitor core. To boost the output voltage of the converter 1, Λ. It is a load (not shown) that is connected across the output capacitor ca. Referring to FIG. 3, when the buck-boost converter 1 is in the second operation mode, the first switch S1 and the third switch S3 are closed (close/on), and the second switch S2 and the fourth switch S4 are open (open/off). The first storage capacitor & begins to discharge the first 201101659 storage capacitor G (release i), so that the crossover voltage of the second storage capacitor & will be charged to 2 times the wheeling lightning voltage'. Further, the first diode % is turned off because the voltage of the N pole 104 is higher than the voltage of the p-type 103, and the voltage of the drain 111 of the second diode β is higher than the voltage of the direct diode 112. Output capacitor ς and energy storage inductor I. Then, discharge is performed by the conduction of the first -th body - one body Z) i2, and a negative voltage ^; rim is generated. Withered ~. The value is that in the first mode of operation, the inductor current L is stored in the direction of the reverse-time oblique pin. Since the instantaneous current direction of the energy storage inductor 1 is constant, + ° therefore 'in the power switch After the group 11 is switched, the inductor current 1_° will still discharge through the second diode Α2 in the counterclockwise direction, as shown by the dashed direction in FIG.
在第二操作模式下,升降壓轉換器ι會有二個放電迴 路:第一放電迴路111 4輸人電壓V,通過第-開_ S卜第一 儲能電容Q,、第三開關S3、第二儲能電容c,第二二極體 D*2至地,第二放電迴路IV A 一一 為輸出電容、儲能電感£。及第 二一極體£)w至地,二個放雷迪 也迴路111及1V的放電電流方向In the second mode of operation, the buck-boost converter ι has two discharge circuits: the first discharge circuit 111 4 inputs a voltage V, passes through the first-on-sb first storage capacitor Q, and the third switch S3, The second storage capacitor c, the second diode D*2 to the ground, and the second discharge loop IV A are the output capacitor and the storage inductor. And the second polar body £) w to the ground, the two discharges of Reddy also the circuit discharge direction of 111 and 1V
L 如圖=虛線所示,且符合以下方程式(2): ~VoL is shown in the figure = dotted line and conforms to the following equation (2): ~Vo
R zio dt - h=~hi =ib2 (2) -體來說,本實施例之升降堡轉換器!在第一操作模 式下’利用第二赌能電容Cw所儲存的能量對輸出電容C及 儲能電感4進行充電;在第二操作模式下,藉由輸出電容c 進打充電而輪“電此外,透過功率開闕組η的切 換,即可調整升降壓轉換器i所輪出之負電。的大小,其 10 201101659 輸入ϊ壓^與輸出電壓r。之關係會符合以下方程式(3):R zio dt - h=~hi = ib2 (2) - Body, the lift truck converter of this embodiment! In the first mode of operation, 'the output capacitor C and the energy storage inductor 4 are charged by the energy stored by the second benzing capacitor Cw; in the second mode of operation, the output capacitor c is charged and the wheel is electrically charged. Through the switching of the power switch group η, the negative voltage of the buck-boost converter i can be adjusted. The relationship between the input voltage and the output voltage r of the 201101659 input voltage will be in accordance with the following equation (3):
Vi (3) 其中為第-開關S1的責任週期㈣帅由於 第二開關S3與第一 pj 。 關S1同步,而第二開關S2、第四開 則與第-開關S1之作動相反,即第__關81開啟 #開關S2及第四開關S4關閉·’第一開關S1關閉 ΟVi (3) where is the duty cycle of the first-switch S1 (four) handsome due to the second switch S3 and the first pj. S1 is synchronized, and the second switch S2 and the fourth switch are opposite to the operation of the first switch S1, that is, the first __off 81 is turned on. #Switch S2 and the fourth switch S4 are turned off. 'The first switch S1 is turned off Ο
G 時=開關S2及第四開關S4開啟,故方程式⑶僅以第 一開關S1的責任週期表示之。 實施例中彳降壓轉換裝置1GG可接受的輸入電 壓K的範圍為10〜16伏特,读 /β 特透過升降壓轉換器1的轉換後可 得輸出電射。為-12伏特。換 傻了 特’升降壓轉換器i則為升二以小於12伏 伏特,井降厫絲她 為升壓轉換,右輸入電壓K大於12 伙特升降壓轉換器1則為降壓轉換。 此外,在本實施例中,升降壓轉換器1的規格如下: (1) 輸入電壓β為10〜16V; (2) 輸出電壓Κ為12ν(取絕對值); (3) 輸出功率6_^為24W; (4) 功率開關組U的開關頻率為195kHz ; (5) 升降壓轉換器】操作在連續導通模式下的最小輸出 功率Ιπώ為3.6W ;及 ⑹最大峰對峰(peak_tG_peak)輸出電壓[的連波(吻】^ 電屡Λν。為60mv。(以上單位v:伏特,w:瓦特) c及二配合上述規格,針對儲能電感4、第二館能電容 心及輸出電容c。進行設計。在本實施例中,第二儲能電容 (4) 201101659 Q會符合^列方程式(4): C*2 = —^~r〇ted ' D 2'e-V〇-Vrfs 值得—提的是,第二 設: 儲Hb電谷會付合以下三點假 (1)第一儲能電容Cm的容值與第二儲能電容q的容 相同; (^)在第一操作模式下,第二儲能電容&維持一個2 倍的輸入電| γ,即; (iii)第二儲能電容&在充電及放電之間所產生的能量❶ 誤差ε為0.1%。 因此,帶入所有規格參數的數值並將輸入電壓Κ設定為 10伏特,第一開關S1的責任週期乃為6〇%,可得第二儲能 電容心為307pF。換言之,第二儲能電容&的數值只要大 於307叶即可,而本實施例是設計為47〇卟’但不以此為 限。 而且’儲能電感I。及輸出電容C。則是分別符合下列方程 式(5)及(6): ij L K2-(i-P) ° 2-Ρ^.χ (5) 〇_ >〇·Δν0 (6) 同樣地’帶人所有規格參數的數值,可得難電感^及 輸出電容G的最小值分別為41·5μΗ及650μΡ。本實施例是 分別設計為45μΗ及850pF。 12 201101659 再參閱圖1 ’本實施例之控制模組2包含一分壓器 (voltage divider)21、一 比較器(comparator)22、一比例積分 微分(Proportional Integral Deruvative,PID)控制器 23 及二 閘極驅動器(gate driver)24。 分壓器21搞接於升降壓轉換器1的輸出端(即輸出電容 C。的第一端),用以接收輸出電壓g,並且根據一分壓比例 將其進行分壓,此外,為了使邏輯電路正常運作,分壓器 21還會將輸出電壓r。轉換成正電壓輸出。比較器22耦接於 ❹ 分壓器21,用以接收分壓器21的輸出電壓,並與一參考電 壓相互比較而輸出一數位邏輯訊號,即邏輯丨及邏輯〇所 組成之資料流(data stream);比例積分微分控制器23耦接於 比較器22,用以根據數位邏輯訊號輸出一控制訊號,以決 定功率開關組11的切換;二閘極驅動器24皆輕接於比例積 分微分控制器23,用以將控制訊號轉換成足以驅動功率開 關組11中第一開關S1到第四開關S4啟閉的驅動訊號。 I言之’分壓器21接收升降壓轉換器i的輸出電壓 〇 ^ ’透過比較器22比較後傳送至比例積分微分控制器23, 比例積分微分控制器23根據輸出電壓K產生下一週期的第 一開關S1到第四開關S4的責任週期,以維持輸出電射 為-12伏特。特別說明的是,本實施例之比較器21利用輸 出電壓F。與參考電壓進行多次比較,而產生串列式的控制訊 號(即資料流),以取代類比數位轉換器(Anai〇g如叫⑽G = switch S2 and fourth switch S4 are open, so equation (3) is represented only by the duty cycle of the first switch S1. In the embodiment, the input voltage K of the 彳 step-down converter 1GG can be in the range of 10 to 16 volts, and the read/β can be converted by the buck-boost converter 1 to obtain an output. It is -12 volts. For the stupid special 'buck-boost converter i is the second to less than 12 volts volts, the well drop is the boost conversion, the right input voltage K is greater than 12 hoppers buck-boost converter 1 is the buck conversion. Further, in the present embodiment, the specifications of the step-up and step-down converter 1 are as follows: (1) The input voltage β is 10 to 16 V; (2) The output voltage Κ is 12 ν (absolute value); (3) The output power is 6 _ ^ 24W; (4) The switching frequency of the power switch group U is 195 kHz; (5) The buck-boost converter operates at a minimum output power 连续πώ of 3.6 W in continuous conduction mode; and (6) maximum peak-to-peak (peak_tG_peak) output voltage [ The continuous wave (kiss) ^ electric repeatedly Λ ν. is 60mv. (The above unit v: volt, w: watt) c and two with the above specifications, for the energy storage inductor 4, the second museum energy capacitor and output capacitor c. In this embodiment, the second storage capacitor (4) 201101659 Q will meet the equation (4): C*2 = —^~r〇ted ' D 2'eV〇-Vrfs worthwhile The second setting: The storage Hb electric valley will pay the following three points (1) The capacitance of the first storage capacitor Cm is the same as the capacity of the second storage capacitor q; (^) In the first operation mode, The second storage capacitor & maintains a 2x input power | γ, ie; (iii) the second storage capacitor & the energy ❶ error ε between charge and discharge is 0.1%. , bringing in the values of all the specifications and setting the input voltage 10 to 10 volts, the duty cycle of the first switch S1 is 6〇%, and the second storage capacitor is 307pF. In other words, the second storage capacitor & The value of ; is only greater than 307 leaves, and this embodiment is designed to be 47〇卟' but not limited to this. Moreover, 'storage inductance I. and output capacitance C are respectively in accordance with the following equation (5) and (6): ij L K2-(iP) ° 2-Ρ^.χ (5) 〇_ >〇·Δν0 (6) Similarly, the value of all the specifications can be obtained, and the hard inductor and output capacitor can be obtained. The minimum values of G are 41·5 μΗ and 650 μΡ, respectively. This embodiment is designed to be 45 μΗ and 850 μF, respectively. 12 201101659 Referring again to FIG. 1 'The control module 2 of the present embodiment includes a voltage divider 21 and a Comparator 22, a Proportional Integral Deruvative (PID) controller 23 and a gate driver 24. The voltage divider 21 is connected to the output of the buck-boost converter 1 (ie, the output) a first end of the capacitor C. for receiving the output voltage g, and according to one The voltage divider divides it. In addition, in order to make the logic circuit operate normally, the voltage divider 21 converts the output voltage r into a positive voltage output. The comparator 22 is coupled to the ❹ voltage divider 21 for receiving the voltage divider. The output voltage of the device 21 is compared with a reference voltage to output a digital logic signal, that is, a data stream composed of a logical volume and a logical volume; the proportional integral derivative controller 23 is coupled to the comparator 22 for The control signal is output according to the digital logic signal to determine the switching of the power switch group 11; the two gate drivers 24 are all connected to the proportional integral derivative controller 23 for converting the control signal into enough to drive the power switch group 11 A drive signal that opens and closes from switch S1 to switch S4. In other words, the voltage divider 21 receives the output voltage of the buck-boost converter i, which is compared by the comparator 22 and then sent to the proportional-integral-derivative controller 23, which generates the next cycle based on the output voltage K. The duty cycle of the first switch S1 to the fourth switch S4 is to maintain the output electric radiation to -12 volts. Specifically, the comparator 21 of the present embodiment utilizes the output voltage F. Multiple comparisons with the reference voltage to generate a serial control signal (ie, data stream) instead of an analog digital converter (Anai〇g, called (10)
Converter,ADC) ° 在本實施例中’比例積分微分控㈣23是應用於場效 13 201101659 邏輯陣列(Field Programmable Gate Array,FPGA),且比例 積分微分控制器23中的參數值<及&分別為1、〇25及 2,但以上均不以實施例為限。 參閱圖4,為升降壓轉換裝置1〇〇的輸出電壓匕、電感 電流4及驅動訊號之波形圖,其中,橫轴皆為時間(1〇_5秒), 輸入電壓6為10伏特,負載電流為i安培,u為第一開關 S1的驅動訊號,L2為輸出電壓c,L3則為電感電流&。由 圖4可知,輸出電壓p;會保持12伏特的電壓,且電感電流^ 會於1.134〜1.135安培之間變動。此外,輸出電壓g是以正 電壓來表不(絕對值)。 參閱圖5,為升降壓轉換裝置1〇〇的輸出電壓&、電感 電流^及驅動訊號之波形圖,其中的設定大致圖*相同,不 同的疋負載電流為2安培。同樣的,輸出電壓厂會保持 伏特的電壓,且電感電流t會於2.138〜2139安^培之間變 動。 參閱圖6,為升降壓轉換裝置100的輪出電壓r、電感 電^及驅動訊號之波形圖,其中的設定大致圖4相同不 同的是輸入電壓…6伏特。同樣的,輸出電㈣保持 η伏特的電壓,且電感電^會於1〇48〜1〇52安培之間變 動。 參閱圖7,為升降壓轉換裝置100的輸出電壓厂、電感 電^及驅動訊號之波形圖,其中的設定大致圖4相同,不 同的是輸入電壓ο 16伏特且負載電流為2安>。同樣 的,輸出電計。會保持12伏特的電壓,且電感電^會於 14 201101659 2.072〜2.075安培之間變動。 由圖4至圖7可知,弁隊 升降壓轉換裝置1〇〇透過控制模 組2的控制,適當地切換功率 兴刀半開關組中的第一開關S1到第 四開關S4,使得輸出電壓「维技 。維持一個固定的12伏特(負)電 廢輪出’而驅動第一開關S1釗笙m 荆到第四開關S4啟閉的驅動訊 遽之振幅皆為10伏特。此外,園Z ^ 此外圖4至圖7皆是利用模擬軟 體MATLAB所產生的模擬結果。 Ο Ο 綜上所述,本發明升降麼轉換裝置⑽藉由升降麼轉 換器丨及控制模組2的配合而產生一固定的負電壓輸出, 且控制難2巾制比較11來取代類比數位轉換H,不僅 電路簡單且成本較低。此外,本發明之㈣额2對於升 降壓轉換裝置100不會產生六主亚工+ 个嘗座生右+平面的零點(zero),在控制 上也較為穩定。 准以上所述者,冑為本發明之較佳實施例❿已,奋不 能以此限定本發明實施之範圍,即大凡依本發明申請:利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1疋一電路圖,說明本發明升降壓轉換裝置之 實施例; 圖2是一示意圖,說明升降壓轉換器於第一操作模 下的二個充電迴路; 工 圖3是一示意圖,說明升降壓轉換器於第二操作 下的二個放電迴路; 八 15 201101659 圖4是一波形圖,說明升降壓轉換裝置的輸出電壓ρ;、 電感電流ί。及驅動訊號之模擬結果,其中,輸入電壓γ為1〇 伏特,負載電流為1安培; 圖5是一波形圖,說明升降壓轉換裝置的輸出電壓Γ。、 電感電流ζ·。及驅動訊號之模擬結果,其中,輸入電壓^為1〇 伏特,負載電流為2安培; 圖6是一波形圖,說明升降壓轉換裝置的輸出電壓F。、 電感電流(及驅動訊號之模擬結果,其中,輸入電壓d 16 伏特,負載電流為1安培;及 圖7是一波形圖,說明升降壓轉換裝置的輸出電壓匕、 電感電流!·„及驅動訊號之模擬結果,其中,輸入電壓〇 16 伏特,負載電流為2安培。 16 201101659 【主要元件符號說明】 100 ••… ••升降壓轉換裝置 111 ·.·_ •••P極(第二二極體) 1 ........ ••升降壓轉換器 112 ···· -••N極(第二二極體) 101 .···· ••弟 開關的 知 113 ·.·· …第一端(儲能電感) 102 ••第一開關的另一 114 ···· …第二端(儲能電感) 端 115 ···· …第端(輸出電容) 103 ·.... ••P極(第一二極體) 116 ···_ …第二端(輸出電容) 104 ••N極(第一二極體) 117 ···· …第二開關的一端 105 ·.··. ••弟__開關的 知》 118 ..·· …第二開關的另一 106 ··... ••第三開關與第四 端 開關的串接點 119 ···· …第四開關的 107 ··.·· ••第一端(第一儲能 120 ···· …第四開關的另一 電容) 端 108 ···.· ·-第二端(第一儲能 2 ....... …控制裝置 電容) 21…… …分壓器 109 ••第一端(第二儲能 22…… …比較器 電容) 23…… …比例積分微分控 11....... ••功率開關組 制器 110 ···.· ••第二端(第二儲能 24…… …閘極驅動器 電容) 17Converter, ADC) ° In the present embodiment, 'Proportional Integral Derivative Control (4) 23 is applied to the field effect 13 201101659 Field Programmable Gate Array (FPGA), and the parameter values in the proportional integral derivative controller 23 <&&; They are 1, 〇 25 and 2, respectively, but the above are not limited to the examples. Referring to FIG. 4, the waveforms of the output voltage 匕, the inductor current 4 and the driving signal of the buck-boost conversion device 1 ,, wherein the horizontal axis is time (1 〇 _ 5 sec), the input voltage 6 is 10 volts, and the load is The current is i ampere, u is the drive signal of the first switch S1, L2 is the output voltage c, and L3 is the inductor current & As can be seen from Figure 4, the output voltage p; will maintain a voltage of 12 volts, and the inductor current ^ will vary between 1.134 and 1.135 amps. Further, the output voltage g is expressed as a positive voltage (absolute value). Referring to Fig. 5, the waveforms of the output voltage & inductor current and drive signal of the buck-boost converter 1〇〇 are the same as the same figure, and the different load currents are 2 amps. Similarly, the output voltage plant will maintain a voltage of volts, and the inductor current t will vary between 2.138 and 2139 amps. Referring to Fig. 6, the waveforms of the voltage r, the inductance, and the driving signal of the buck-boost conversion device 100 are the same as those of the input voltage of 6 volts. Similarly, the output power (4) maintains a voltage of η volts, and the inductor voltage changes between 1 〇 48 〜 1 〇 52 amps. Referring to Fig. 7, the waveform diagrams of the output voltage factory, the inductor circuit and the driving signal of the buck-boost converter 100 are the same as those of Fig. 4, except that the input voltage is ο 16 volts and the load current is 2 amps. Similarly, the output meter. Will maintain a voltage of 12 volts, and the inductance will change between 14 201101659 2.072~2.075 amps. As can be seen from FIG. 4 to FIG. 7 , the squadron buck-boost conversion device 1 适当 appropriately switches the first switch S1 to the fourth switch S4 in the power tool half-switch group through the control of the control module 2, so that the output voltage is “ Maintaining a fixed 12 volt (negative) electric waste wheel' drive the first switch S1钊笙m to the fourth switch S4 to open and close the amplitude of the drive signal is 10 volts. In addition, the park Z ^ In addition, FIG. 4 to FIG. 7 are simulation results generated by using the simulation software MATLAB. Ο Ο In summary, the lifting and lowering device (10) of the present invention generates a fixed by the cooperation of the lifting and lowering converter and the control module 2. The negative voltage output, and the control is difficult to replace the 11 to replace the analog digital conversion H, not only the circuit is simple and the cost is low. Moreover, the (4) amount 2 of the present invention does not generate six main sub-workers for the buck-boost conversion device 100. The zero point of the right + plane is also relatively stable in control. The above is a preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. Dafan according to the invention application: profit range BRIEF DESCRIPTION OF THE DRAWINGS The simple equivalent changes and modifications made by the present invention are still within the scope of the present invention. [FIG. 1] A circuit diagram illustrating an embodiment of the buck-boost conversion device of the present invention; A schematic diagram illustrating two charging circuits of a buck-boost converter in a first operating mode; Figure 3 is a schematic diagram showing two discharging circuits of a buck-boost converter in a second operation; eight 15 201101659 Figure 4 is a The waveform diagram illustrates the output voltage ρ of the buck-boost conversion device, the inductor current ί, and the simulation result of the driving signal, wherein the input voltage γ is 1 volt and the load current is 1 amp; FIG. 5 is a waveform diagram illustrating the lifting and lowering The output voltage of the voltage conversion device 、, the inductor current ζ·. and the simulation result of the driving signal, wherein the input voltage ^ is 1 volt, the load current is 2 amps; FIG. 6 is a waveform diagram illustrating the buck-boost conversion device Output voltage F., inductor current (and the simulation result of the drive signal, where the input voltage is d 16 volts, the load current is 1 amp; and Figure 7 is a waveform diagram, The output voltage 匕, the inductor current of the buck-boost converter, and the simulation result of the drive signal, where the input voltage is 〇16 volts and the load current is 2 amps. 16 201101659 [Key component symbol description] 100 ••... •• Buck-Boost Switching Device 111 ···_ •••P pole (second diode) 1 ........ •• buck-boost converter 112 ···· -••N pole (second two Polar body 101.·····•• The knowledge of the switch 113 ····...the first end (storage inductance) 102 ••the other 114 of the first switch ····...the second end (energy storage) Inductor) Terminal 115 ···· ... Terminal (Output Capacitor) 103 ·.... ••P pole (first diode) 116 ···_ ...2nd terminal (output capacitor) 104 ••N pole (First Diode) 117 ···· ...One end of the second switch 105 ····.••弟__Switch knowledge” 118 ..··...the other 106 of the second switch ··.. ••Splicing point 119 of the third switch and the fourth end switch ····...107 of the fourth switch ·····••The first end (the first energy storage 120 ····...the fourth switch of a capacitor) terminal 108 ···.··-the second end (first energy storage 2 .... ... control device capacitance) 21 ... ... voltage divider 109 • • first end (second storage Can 22...... ... Comparator Capacitor) 23... ...Proportional Integral Differential Control 11........• Power Switch Controller 110 ····· •• Second End (Second Energy Storage 24... ... gate driver capacitor) 17
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98120611A TWI395397B (en) | 2009-06-19 | 2009-06-19 | Buck-boost converter, step-up and step-down converter and its control module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98120611A TWI395397B (en) | 2009-06-19 | 2009-06-19 | Buck-boost converter, step-up and step-down converter and its control module |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201101659A true TW201101659A (en) | 2011-01-01 |
TWI395397B TWI395397B (en) | 2013-05-01 |
Family
ID=44837084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98120611A TWI395397B (en) | 2009-06-19 | 2009-06-19 | Buck-boost converter, step-up and step-down converter and its control module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI395397B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI407671B (en) * | 2011-01-04 | 2013-09-01 | Hon Hai Prec Ind Co Ltd | Buck circuit |
TWI450485B (en) * | 2012-04-25 | 2014-08-21 | Univ Nat Taipei Technology | High boost ratio device |
TWI465020B (en) * | 2013-03-21 | 2014-12-11 | Univ Nat Taipei Technology | Can produce three times the input voltage of the gate driver and drive method |
TWI466425B (en) * | 2012-11-14 | 2014-12-21 | Ind Tech Res Inst | Dc converting circuit |
US9331578B2 (en) | 2013-07-12 | 2016-05-03 | Asustek Computer Inc. | Multi-phase buck DC converter |
TWI784695B (en) * | 2021-08-31 | 2022-11-21 | 國立臺北科技大學 | Multi-input converter |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4791260B2 (en) * | 2006-06-09 | 2011-10-12 | 富士通セミコンダクター株式会社 | DC-DC converter, control circuit for DC-DC converter, and control method for DC-DC converter |
JP4638856B2 (en) * | 2006-10-04 | 2011-02-23 | ザインエレクトロニクス株式会社 | Comparator DC-DC converter |
TWI319929B (en) * | 2006-11-03 | 2010-01-21 | Dc-dc converting circuit | |
TW200910744A (en) * | 2007-08-23 | 2009-03-01 | Univ Nat Taipei Technology | Voltage boost circuit |
-
2009
- 2009-06-19 TW TW98120611A patent/TWI395397B/en not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI407671B (en) * | 2011-01-04 | 2013-09-01 | Hon Hai Prec Ind Co Ltd | Buck circuit |
TWI450485B (en) * | 2012-04-25 | 2014-08-21 | Univ Nat Taipei Technology | High boost ratio device |
TWI466425B (en) * | 2012-11-14 | 2014-12-21 | Ind Tech Res Inst | Dc converting circuit |
US9190904B2 (en) | 2012-11-14 | 2015-11-17 | Industrial Technology Research Institute | DC conversion circuit |
TWI465020B (en) * | 2013-03-21 | 2014-12-11 | Univ Nat Taipei Technology | Can produce three times the input voltage of the gate driver and drive method |
US9331578B2 (en) | 2013-07-12 | 2016-05-03 | Asustek Computer Inc. | Multi-phase buck DC converter |
TWI784695B (en) * | 2021-08-31 | 2022-11-21 | 國立臺北科技大學 | Multi-input converter |
Also Published As
Publication number | Publication date |
---|---|
TWI395397B (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101223220B1 (en) | Serial resonance type converter circuit | |
TWI438599B (en) | Power-factor-corrected resonant converter and parallel power-factor-corrected resonant converter | |
TWI360284B (en) | ||
JP6134479B2 (en) | Active step-down power factor correction device | |
TW201101659A (en) | Boost/buck converting device, boost/buck converter, and control module thereof | |
TW201123684A (en) | DC uninterruptible power supply circuit having combined charging and discharging circuit | |
TW201401753A (en) | High-efficiency alternating current-direct current voltage converting circuit | |
CN105244970A (en) | Charging circuit | |
KR20090044137A (en) | Transformer-less boost converter | |
TW201037952A (en) | Global-type switching power supply and serial-parallel DC-DC power converting circuit thereof | |
Chen et al. | A new bidirectional DC-DC converter with a high step-up/down conversion ratio for renewable energy applications | |
CN203617902U (en) | Integrated buck-flyback type high power factor constant current circuit and device | |
TW201141033A (en) | High voltage gain power converter | |
TW200925843A (en) | Converting device with multiple power inputs and UPS system having the same | |
CN116885946B (en) | Step-down circuit and control method thereof | |
CN205178560U (en) | Charging circuit | |
JP5599911B2 (en) | Common core power factor improved resonant converter | |
TW201101658A (en) | Boost converting device, boot converter, and the control module thereof | |
TW201131957A (en) | Boost converter circuit and boost converter | |
TWI403067B (en) | Multiport power converting device | |
TWI444811B (en) | High boost ratio circuit | |
TWI433440B (en) | High boost converter | |
TW200908808A (en) | Power controlling circuit and electronic stabilizer thereof | |
TWI455465B (en) | High pressurization device | |
Ozsoy et al. | Modified SEPIC DC-to-DC converter 2/(1-k) output gain configuration for renewable power energy and high voltage applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |