TWI433440B - High boost converter - Google Patents

High boost converter Download PDF

Info

Publication number
TWI433440B
TWI433440B TW100124243A TW100124243A TWI433440B TW I433440 B TWI433440 B TW I433440B TW 100124243 A TW100124243 A TW 100124243A TW 100124243 A TW100124243 A TW 100124243A TW I433440 B TWI433440 B TW I433440B
Authority
TW
Taiwan
Prior art keywords
switching element
diode
voltage
capacitor
clamp
Prior art date
Application number
TW100124243A
Other languages
Chinese (zh)
Other versions
TW201304377A (en
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW100124243A priority Critical patent/TWI433440B/en
Publication of TW201304377A publication Critical patent/TW201304377A/en
Application granted granted Critical
Publication of TWI433440B publication Critical patent/TWI433440B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

高升壓轉換裝置High boost converter

本發明是有關於一種升壓轉換裝置,特別是指一種能將低電壓轉成高電壓的高升壓轉換裝置。The present invention relates to a boost converter, and more particularly to a high boost converter capable of converting a low voltage to a high voltage.

在許多的應用場合中常常需要將現有的低電壓升壓至較高電壓以提供設備之需求,如汽車用之電力電子、具能量回收之主動式燒機負載,其中以升壓型轉換器(Boost Converter)及升降壓型轉換器(Buck-Boost Converter)在市面上使用較為普遍,但不論為升壓型轉換器或升降壓型轉換器均存在一個無法達到高升壓比的缺點。In many applications, it is often necessary to boost the existing low voltage to a higher voltage to provide equipment requirements, such as power electronics for automobiles, active burner loads with energy recovery, and boost converters ( Boost Converters and Buck-Boost Converters are commonly used in the market, but there is a disadvantage that neither a boost converter nor a buck-boost converter can achieve a high boost ratio.

升壓型轉換器在連續導通模式(CCM)下,其升壓比,D為責任週期(duty cycle);理論上,雖然升壓比沒有上限,但實際上受限於元件寄生效應以及控制器之能力,其升壓比達到4至5倍時將下降,因此不可能無限制的提高升壓比。Boost converter in continuous conduction mode (CCM), its boost ratio , D is the duty cycle; in theory, although the boost ratio There is no upper limit, but it is actually limited by the parasitic effects of the components and the ability of the controller, and the boost ratio is lowered by 4 to 5 times, so it is impossible to increase the boost ratio without limitation.

依據現有技術缺失,申請人於台灣第97149233號專利申請案提出的升壓轉換裝置的輸出電壓V o 與輸入電壓V in 之電壓轉換比為,相較於一般的升壓比已有較佳的表現。According to the prior art, the voltage conversion ratio of the output voltage V o of the boost converter device and the input voltage V in proposed by the applicant in the patent application No. 97294233 is Compared to the general boost ratio There has been better performance.

為了精益求精,讓升壓轉換裝置能有更佳的升壓比,本發明能提供一種具有更高的升壓比的高升壓轉換裝置。In order to achieve better performance and a better boost ratio of the boost converter, the present invention can provide a high boost converter having a higher boost ratio.

因此,本發明高升壓轉換裝置包括一第一電荷幫浦、一第二電荷幫浦、一耦合電感、一電壓箝制緩衝器及一輸出電路。Therefore, the high boost converter of the present invention includes a first charge pump, a second charge pump, a coupled inductor, a voltage clamp buffer, and an output circuit.

該第一電荷幫浦用以接收一輸入電壓並使該輸入電壓升壓,具有一第一開關元件、一串接該第一開關元件之第二開關元件、一連接該第一開關元件之一端的二極體及一跨接該第一開關元件及該二極體之第一升壓電容;該第二電荷幫浦電性連接該第一電荷幫浦,具有一第三開關元件、一串接該第三開關元件之第四開關元件、一連接該第三開關元件之一端的二極體及一跨接該第三開關元件及該二極體之第二升壓電容。The first charge pump is configured to receive an input voltage and boost the input voltage, and has a first switching element, a second switching element connected in series with the first switching element, and a terminal connected to the first switching element a diode and a first boosting capacitor bridging the first switching element and the diode; the second charge pump is electrically connected to the first charge pump, and has a third switching element and a string a fourth switching element connected to the third switching element, a diode connected to one end of the third switching element, and a second boosting capacitor bridging the third switching element and the diode.

該耦合電感電性連接該第二升壓電容及該第五開關元件,並具有一一次側電感、一二次側電感及一漏感;該電壓箝制緩衝器電性連接該耦合電感及該第二電荷幫浦,具有一第五開關元件且箝制該第五開關元件之跨壓;及該輸出電路具有一輸出二極體及一輸出電容,該輸出電容經該輸出二極體耦接該電壓箝制緩衝器,用以儲存該耦合電感之漏感所釋放之能量。The coupled inductor is electrically connected to the second boosting capacitor and the fifth switching component, and has a primary side inductance, a secondary side inductance, and a leakage inductance; the voltage clamping buffer is electrically connected to the coupled inductor and the a second charge pump having a fifth switching element and clamping a voltage across the fifth switching element; and the output circuit has an output diode and an output capacitor coupled to the output diode A voltage clamp buffer is used to store the energy released by the leakage inductance of the coupled inductor.

第一實施例中,該等開關元件受一波寬調整控制訊號驅動而呈導通或不導通,該波寬調整控制訊號的責任週期區間分別為D及1-D,其中的區間D是該第一開關元件、該第三開關元件與該第五開關元件導通且該第二開關元件與該第四開關元件不導通,區間1-D是該第二開關元件與該第四開關元件導通且該第一開關元件、該第三開關元件與該第五開關元件不導通。In the first embodiment, the switching elements are turned on or off by a wave width adjustment control signal, and the duty cycle intervals of the wave width adjustment control signals are D and 1-D, respectively, wherein the interval D is the first a switching element, the third switching element is electrically connected to the fifth switching element, and the second switching element is not conductive to the fourth switching element, and the interval 1-D is that the second switching element is electrically connected to the fourth switching element and the The first switching element, the third switching element, and the fifth switching element are not conductive.

第二實施例中,該等開關元件受一波寬調整控制訊號驅動而呈導通或不導通,該波寬調整控制訊號的責任週期區間分別為D及1-D,其中的區間D是該第一開關元件、該第四開關元件與該第五開關元件導通,區間1-D是該第二開關元件與該第三開關元件導通。In the second embodiment, the switching elements are turned on or off by a wave width adjustment control signal, and the duty cycle intervals of the wave width adjustment control signals are D and 1-D, respectively, wherein the interval D is the first A switching element, the fourth switching element is electrically connected to the fifth switching element, and the interval 1-D is that the second switching element is electrically connected to the third switching element.

較佳的,該電壓箝制緩衝器還具有一箝制電容、至少一箝制二極體與一箝制電感,當該第五開關元件不導通時,該漏感的能量會經由該箝制二極體對該箝制電容充電,且該箝制電容所儲存之能量將經由該箝制電感輸出。當該高升壓轉換裝置採N相交錯控制以提高輸出功率時,係在該電壓箝制緩衝器加入N-1個箝制二極體。Preferably, the voltage clamping buffer further has a clamping capacitor, at least one clamping diode and a clamping inductor. When the fifth switching component is non-conductive, the leakage energy is passed through the clamping diode. The clamp capacitor is charged and the energy stored by the clamp capacitor is output via the clamp inductor. When the high boost converter is N-phase interleaved to increase the output power, N-1 clamp diodes are added to the voltage clamp buffer.

本發明高升壓轉換裝置是結合包括兩組電荷幫浦、耦合電感、電壓箝制緩衝器及輸出電容等元件,電路精簡,且能在全負載範圍達到高效率之能量轉移。The high boost converter of the present invention combines components including two sets of charge pumps, coupled inductors, voltage clamp buffers, and output capacitors, and the circuit is simplified, and energy transfer can be achieved at a high load range.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。The foregoing and other objects, features, and advantages of the invention are set forth in the <RTIgt;

參閱圖1,本發明高升壓轉換裝置1之較佳實施例包含一第一電荷幫浦111、一第二電荷幫浦112及一耦合電感12。Referring to FIG. 1, a preferred embodiment of the high boost converter 1 of the present invention includes a first charge pump 111, a second charge pump 112, and a coupled inductor 12.

第一電荷幫浦111用以接收一輸入電壓V i 並使該輸入電壓V i 升壓,具有一第一開關元件S 1 (並聯有一二極體D 1 )、一串接第一開關元件S 1 之第二開關元件S 2 (並聯有一二極體D 2 )、一連接第一開關元件S 1 之一端的第一二極體D b 1 ,及一跨接第一開關元件S 1 及第一二極體D b 1 之第一升壓電容C b 1 ;第二電荷幫浦112電性連接第一電荷幫浦111,具有一第三開關元件S 3 (並聯有一二極體D 3 )、一串接第三開關元件S 3 之第四開關元件S 4 (並聯有一二極體D 4 )、一連接第三開關元件S 3 之一端的第二二極體D b 2 及一跨接第三開關元件S 3 及第二二極體D b 2 之第二升壓電容C b 2The first charge pump 111 is configured to receive an input voltage V i and boost the input voltage V i , and has a first switching element S 1 (with a diode D 1 connected in parallel) and a series connected first switching element the second switching element S 1 S 2 (connected in parallel a diode D 2), a first diode D is connected one end of a first switching element S 1 b 1, a crossover and a first switching element. 1 S and a first diode D b 1 of the first boost capacitor C b 1; a second charge pump 112 is electrically connected to the first charge pump 111, having a third switching element S 3 (a diode connected in parallel D 3 ), a fourth switching element S 4 connected in series with the third switching element S 3 (with a diode D 4 connected in parallel), and a second diode D b 2 connected to one end of the third switching element S 3 and a third switching element connected across the second S 3 and diode D b 2 of the second boost capacitor C b 2.

參閱圖2,高升壓轉換裝置1之耦合電感12電性連接第二升壓電容C b 2 的一端,並具有一一次側電感L p 、一二次側電感L s 及一漏感L LK ;一次側電感L p 與二次側電感L s 分別為耦合電感12的一次側自感與二次側自感,耦合電感12存在漏感L LK Referring to FIG. 2, the coupled inductor 12 of the high boost converter 1 is electrically connected to one end of the second boost capacitor C b 2 and has a primary side inductance L p , a secondary side inductance L s , and a leakage inductance L LK ; the primary side inductance L p and the secondary side inductance L s are the primary side self-inductance and the secondary side self-inductance of the coupled inductor 12, respectively, and the coupled inductor 12 has a leakage inductance L LK .

參閱圖3,由於高升壓轉換裝置1之漏感L LK 的能量會累積在第五開關元件S 5 的寄生電容上,若此時電壓太高則會擊穿第五開關元件S 5 ,因此本發明高升壓轉換裝置1還包括一電壓箝制緩衝器(Snubber)13以克服漏感L LK 的問題;電壓箝制緩衝器13電性連接耦合電感12及第二電荷幫浦112,並具有一與第四開關元件S 4 耦接之第五開關元件S 5 (並聯有一二極體D 5 )、一箝制電容C sn 、一箝制二極體D sn 與一箝制電感L sn ;電壓箝制緩衝器13就是以箝制第五開關元件S 5 之跨壓來避免電壓太高而擊穿第五開關元件S 5 的缺失。Referring to FIG. 3, since the energy of the leakage inductance L LK of the high boost converter 1 is accumulated on the parasitic capacitance of the fifth switching element S 5 , if the voltage is too high, the fifth switching element S 5 is broken. The high boost converter device 1 of the present invention further includes a voltage clamping buffer (Snubber) 13 to overcome the leakage inductance L LK problem; the voltage clamping buffer 13 is electrically connected to the coupling inductor 12 and the second charge pump 112, and has a a fifth switching element S 5 coupled to the fourth switching element S 4 (with a diode D 5 connected in parallel), a clamping capacitor C sn , a clamping diode D sn and a clamping inductor L sn ; voltage clamping buffer The device 13 is configured to clamp the fifth switching element S 5 across the voltage to avoid the voltage being too high to break through the fifth switching element S 5 .

至於高升壓轉換裝置1之輸出電路的電路還具有一輸出二極體D o 、一輸出電容C o 及一輸出電阻R o ,輸出電容C o 經輸出二極體D o 耦接該電壓箝制緩衝器13,用以儲存耦合電感12漏感所釋放之能量,然後加載於輸出電阻R o 。需說明的是,當高升壓轉換裝置1採多相(Multi-phase)交錯控制以提高輸出功率時,例如N相,只須加入N-1個箝制二極體D sn 即可,電路十分簡潔。The circuit of the output circuit of the high boost converter device 1 further has an output diode D o , an output capacitor C o and an output resistor R o , and the output capacitor C o is coupled to the voltage clamp via the output diode D o . The buffer 13 is configured to store the energy released by the leakage inductance of the coupled inductor 12 and then loaded to the output resistor R o . It should be noted that when the high boost converter 1 adopts multi-phase interleaving control to increase the output power, for example, the N phase, only N-1 clamp diodes D sn need to be added, and the circuit is very concise.

本較佳實施例中,高升壓轉換裝置1的元件規格為:(i)輸入電壓V i 設定為5伏;(ii)輸出電壓Vo設定為60伏;(iii)直流輸出功率為30瓦;(iv)切換頻率fs選定為120 kHz;(v)耦合電感的匝數比(turn ratio) Ns/Np為5;(vi)輸出電容C o 的容值為100-μF;(vii)第一二極體D b 1 的型號為STPS20L25LT,第二二極體D b 2 的型號為STPS20-L25LT,箝制二極體D sn 的型號為RGP10G,D o 的型號為BYQ28X;(viii)第一開關元件S 1 、第二開關元件S 2 、第三開關元件S 3 、第四開關元件S 4 及第五開關元件S 5 選用型號為IRF1404、IRF1404、IRF1404、IRF1404及IRFB3206;(ix) FPGA控制晶片(圖未示)選用型號為EP1C3T100。In the preferred embodiment, the component specifications of the high boost converter 1 are: (i) the input voltage V i is set to 5 volts; (ii) the output voltage Vo is set to 60 volts; (iii) the DC output power is 30 watts. (iv) The switching frequency fs is selected to be 120 kHz; (v) the turns ratio of the coupled inductor is Ns/Np is 5; (vi) the capacitance of the output capacitor C o is 100-μF; (vii) The model of a diode D b 1 is STPS20L25LT, the model of the second diode D b 2 is STPS20-L25LT, the model of the clamp diode D sn is RGP10G, and the model of D o is BYQ28X; (viii) first The switching element S 1 , the second switching element S 2 , the third switching element S 3 , the fourth switching element S 4 and the fifth switching element S 5 are selected as IRF 1404, IRF 1404, IRF 1404, IRF 1404 and IRFB 3206; (ix) FPGA control The chip (not shown) is model EP1C3T100.

參閱圖4至圖7,假設在開關元件處於連續導通模式,依據閘極驅動信號不同的二種實施例,第一實施例是假設在第一電容C b 1 、第二電容C b 2 的電壓為輸入電壓V i ,以及第二實施例是在第一電容C b 1 、第二電容C b 2 的電壓為輸入電壓V i 及2V i Referring to FIG. 4 to FIG. 7, assuming that the switching element is in the continuous conduction mode, according to two embodiments in which the gate driving signal is different, the first embodiment assumes the voltages of the first capacitor C b 1 and the second capacitor C b 2 . For the input voltage V i , and in the second embodiment, the voltages at the first capacitor C b 1 and the second capacitor C b 2 are the input voltages V i and 2 V i .

為方便說明起見,如圖3的電壓箝制緩衝器13在圖4至圖7僅顯示第五開關元件S 5 及二極體D 5 ,而省略顯示電壓箝制緩衝器13的其餘元件及漏感L LK For convenience of explanation, the voltage clamping buffer 13 of FIG. 3 only shows the fifth switching element S 5 and the diode D 5 in FIGS. 4 to 7 , and the remaining components and leakage inductance of the voltage clamping buffer 13 are omitted. L LK .

以下配合圖4及圖5說明第一較佳實施例之工作原理,其中,波寬調整控制訊號的責任週期區間為(D,1-D ),其中的區間D是第一開關元件S 1 、第三開關元件S 3 與第五開關元件S 5 導通,區間1-D 是第二開關元件S 2 與第四開關元件S 4 導通,依據此規則,電壓轉換比率為V o /V i =[(3n -1)D +1]/(1-D )。The working principle of the first preferred embodiment is described below with reference to FIG. 4 and FIG. 5, wherein the duty cycle interval of the bandwidth adjustment control signal is (D, 1- D ), wherein the interval D is the first switching element S 1 , The third switching element S 3 and the fifth switching element S 5 are turned on, and the interval 1- D is that the second switching element S 2 and the fourth switching element S 4 are turned on, according to which the voltage conversion ratio is V o / V i = [ (3 n -1) D +1]/(1- D ).

參閱圖4,當高升壓轉換裝置1工作於連續導通模式下,於第一開關元件S 1 、第三開關元件S 3 與第五開關元件S 5 導通,且第二開關元件S 2 及第四開關元件S 4 不導通時,升壓電容C b 1 跨壓V cb 1 =V i ,該一次側電感L p 產生一高於輸入電壓V i 之激磁電壓,且由輸出電容C o 產生輸出電壓V o Referring to FIG. 4, when the high boost converter 1 operates in the continuous conduction mode, the first switching element S 1 , the third switching element S 3 and the fifth switching element S 5 are turned on, and the second switching element S 2 and the When the four switching elements S 4 are not turned on, the boosting capacitor C b 1 across the voltage V cb 1 = V i , the primary side inductance L p generates an exciting voltage higher than the input voltage V i , and the output is generated by the output capacitor C o Voltage V o .

參閱圖5,高升壓轉換裝置1的第二開關元件S 2 及第四開關元件S 4 導通時,且第一開關元件S 1 、第三開關元件S 3 與第五開關元件S 5 不導通,輸出二極體D b 1D b 2 因順偏而導通,第一升壓電容C b 1 、第二升壓電容C b 2 充電為輸入電壓V i ,令先前儲存於該一次側電感L p 的能量被轉移至二次側電感L s ,並釋出能量對輸出電容C o 充電產生輸出電壓V o Referring to FIG. 5, when the second switching element S 2 and the fourth switching element S 4 of the high-boost converter device 1 are turned on, the first switching element S 1 , the third switching element S 3 , and the fifth switching element S 5 are not turned on. The output diodes D b 1 and D b 2 are turned on by the forward bias, and the first boosting capacitor C b 1 and the second boosting capacitor C b 2 are charged as the input voltage V i , so that the primary side inductor is previously stored. The energy of L p is transferred to the secondary side inductance L s , and the released energy charges the output capacitance C o to produce an output voltage V o .

以下配合圖6及圖7說明第二較佳實施例之工作原理,其中,波寬調整控制訊號的責任週期區間為(D,1-D ),其中的區間D是第一開關元件S 1 、第四開關元件S 4 與第五開關元件S 5 導通,區間1-D 是第二開關元件S 2 與第三開關元件S 3 導通,其電壓轉換比率為V o /V i =[(2n -3)D +3]/(1-D )。The working principle of the second preferred embodiment is described below with reference to FIG. 6 and FIG. 7. The duty cycle interval of the bandwidth adjustment control signal is (D, 1- D ), wherein the interval D is the first switching element S 1 , The fourth switching element S 4 and the fifth switching element S 5 are turned on, and the interval 1- D is that the second switching element S 2 and the third switching element S 3 are turned on, and the voltage conversion ratio thereof is V o / V i = [( 2 n -3) D +3] / (1- D ).

參閱圖6,高升壓轉換裝置1的第一開關元件S 1 、第四開關元件S 4 與第五開關元件S 5 導通,且第二開關元件S 2 及第三開關元件S 3 不導通時,第二二極體D b 2 因順偏而導通,第二升壓電容C b 2 充電為輸入電壓V i ,該一次側電感L p 產生一高於輸入電壓V i 之激磁電壓,且由輸出電容C o 產生輸出電壓V o Referring to FIG. 6, the first switching element S 1 , the fourth switching element S 4 and the fifth switching element S 5 of the high boost converter 1 are turned on, and the second switching element S 2 and the third switching element S 3 are not turned on. The second diode D b 2 is turned on by the forward bias, and the second boosting capacitor C b 2 is charged as the input voltage V i , and the primary side inductor L p generates an excitation voltage higher than the input voltage V i , and The output capacitor C o produces an output voltage V o .

參閱圖7,高升壓轉換裝置1的第二開關元件S 2 與第三開關元件S 3 導通,且第一開關元件S 1 、第四開關元件S 4 及第五開關元件S 5 不導通時,輸出第一二極體D b 1 、第二二極體D b 2 因順偏而導通,第一升壓電容C b 1 充電為輸入電壓V i ,令先前儲存於該一次側電感L p 的能量被轉移至二次側電感L s ,並釋出能量對輸出電容C o 充電產生輸出電壓V o Referring to FIG. 7, when the second switching element S 2 and the third switching element S 3 of the high-boost converter device 1 are turned on, and the first switching element S 1 , the fourth switching element S 4 , and the fifth switching element S 5 are not turned on The first diode D b 1 and the second diode D b 2 are turned on by the forward bias, and the first boost capacitor C b 1 is charged as the input voltage V i , so that the primary side inductor L p is previously stored. The energy is transferred to the secondary side inductance L s and the released energy charges the output capacitance C o to produce an output voltage V o .

參閱圖8及圖9,如圖3的電壓箝制緩衝器13是被動式箝制電壓,具有兩種模式。Referring to Figures 8 and 9, the voltage clamping buffer 13 of Figure 3 is a passive clamping voltage having two modes.

1) 第一模式:參閱圖8,當第五開關元件S 5 不導通時,漏感L LK 的能量會經由箝制二極體D sn 對箝制電容C sn 充電,藉此保護第五開關元件S 51) First mode: see FIG. 8, when the fifth switching element S non-conductive. 5, the leakage inductance L LK energy is clamped via a diode D sn charging of the clamp capacitor C sn, thereby protecting the fifth switching element S 5 .

2) 第二模式:參閱圖9,當第三開關元件S 3 導通時,儲存於箝制電容C sn 的能量經由箝制電感L sn 及箝制二極體D sn 被打至(pumped into)輸出電路。2) Second mode: Referring to FIG. 9, when the third switching element S 3 is turned on, the energy stored in the clamp capacitor C sn is pumped into the output circuit via the clamp inductor L sn and the clamp diode D sn .

參閱圖10,使用IsSpice模擬軟體的模擬結果可知,本發明高升壓轉換裝置1的輸入電壓V i 為5伏時,輸出電壓Vo可穩定達到60伏。Referring to FIG. 10, using the simulation result of the IsSpice simulation software, it can be seen that when the input voltage V i of the high boost converter device 1 of the present invention is 5 volts, the output voltage Vo can be stably reached 60 volts.

本發明高升壓轉換裝置1的驗證結果如圖11至圖18所示,說明如下。The verification results of the high boost converter 1 of the present invention are as shown in Figs. 11 to 18 and will be described below.

為高升壓轉換裝置1操作於輕載情況下,(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第二開關元件S 2 之驅動訊號;(3)為量測流經一次側電感L p 之電流;及(4)為量測流經輸出電容C o 之電壓。For the high boost converter 1 operating in the light load case, (1) is to measure the driving signal of the fifth switching element S 5 ; (2) is to measure the driving signal of the second switching element S 2 ; (3) is The current flowing through the primary side inductor L p is measured; and (4) is the voltage flowing through the output capacitor C o .

參閱圖11為高升壓轉換裝置1操作於第一模式的半載情況下,(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第二開關元件S 2 之驅動.訊號;(3)為量測流經一次側電感L p 之電流;及(4)為量測流經輸出電容C o 之電壓。Referring to FIG. 11 , in the case of the half-load operation of the high-boost converter device 1 in the first mode, (1) is to measure the driving signal of the fifth switching element S 5 ; (2) to measure the second switching element S 2 Driving the signal; (3) measuring the current flowing through the primary side inductor L p ; and (4) measuring the voltage flowing through the output capacitor C o .

參閱圖11為高升壓轉換裝置1操作於第二模式的半載情況下,(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第二開關元件S 2 之驅動訊號;(3)為量測流經一次側電感L p 之電流;及(4)為量測流經輸出電容C o 之電壓。Referring to FIG. 11 , in the case of the half-load operation of the high-boost converter 1 in the second mode, (1) is to measure the driving signal of the fifth switching element S 5 ; (2) to measure the second switching element S 2 driving signal; (3) to measure the current flowing through the primary side inductor L p; and (4) measuring the voltage through the output capacitor C o of.

參閱圖12,高升壓轉換裝置1操作於滿載情況下,(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第二開關元件S 2 之驅動訊號;(3)為量測流經一次側電感L p 之電流;及(4)為量測流經輸出電容C o 之電壓。Referring to FIG. 12, the high boost converter 1 operates at full load, (1) is a driving signal for measuring the fifth switching element S 5 ; (2) is a driving signal for measuring the second switching element S 2 ; ) to measure the current flowing through the primary side inductor L p ; and (4) to measure the voltage flowing through the output capacitor C o .

參閱圖13及圖14,分別為第一模式及的二模式處於滿載的(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第二開關元件S 2 之驅動訊號;(3)為量測流經一次側電感L p 之電流;及(4)為量測流經輸出電容C o 之電壓。Referring to FIG. 13 and FIG. 14 , the first mode and the second mode are respectively full load (1) is a driving signal for measuring the fifth switching element S 5 ; (2) is a driving signal for measuring the second switching element S 2 (3) is to measure the current flowing through the primary side inductor L p ; and (4) is to measure the voltage flowing through the output capacitor C o .

參閱圖15及圖16,分別為第一模式及的二模式處於半載的(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第五開關元件S 5 之電壓;(3)為量測二極體D b 1 之電壓;及(4)為量測二極體D b 2 之電壓。Referring to FIG. 15 and FIG. 16, the first mode and the second mode are respectively half-loaded. (1) is a driving signal for measuring the fifth switching element S 5 ; and (2) is for measuring a voltage of the fifth switching element S 5 (3) is to measure the voltage of the diode D b 1 ; and (4) is to measure the voltage of the diode D b 2 .

參閱圖17及圖18,分別為第一模式及的二模式處於滿載的(1)為量測第五開關元件S 5 之驅動訊號;(2)為量測第五開關元件S 5 之電壓;(3)為量測第一二極體D b 1 之電壓;及(4)為量測第二二極體D b 2 之電壓。Referring to FIG. 17 and FIG. 18, (1) is a driving signal for measuring the fifth switching element S 5 ; and (2) is for measuring a voltage of the fifth switching element S 5 ; (3) measuring the voltage of the first diode D b 1 ; and (4) measuring the voltage of the second diode D b 2 .

歸納上述,本發明高升壓轉換裝置1係採用兩組電荷幫浦11結合耦合電感12,以輸入電壓5V為例,可得到的輸出電壓V o 達60伏,具有12倍的升壓比,故確實能達成本發明之目的。In summary, the high boost converter 1 of the present invention uses two sets of charge pump 11 in combination with the coupled inductor 12, taking the input voltage 5V as an example, and the available output voltage V o is 60 volts, with a boost ratio of 12 times. Therefore, the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

111‧‧‧第一電荷幫浦111‧‧‧First charge pump

112‧‧‧第二電荷幫浦112‧‧‧Second charge pump

12‧‧‧耦合電感12‧‧‧coupled inductor

13‧‧‧電壓箝制緩衝器13‧‧‧Voltage clamp buffer

圖1是一示意圖,說明本發明高升壓轉換裝置之較佳實施例;Figure 1 is a schematic view showing a preferred embodiment of the high boost converter of the present invention;

圖2是一電路圖,說明本發明高升壓轉換裝置之較佳實施例具有漏感;2 is a circuit diagram showing a preferred embodiment of the high boost converter of the present invention having a leakage inductance;

圖3是一電路圖,說明本發明的高升壓轉換裝置之較佳實施例還具有一克服漏感的電壓箝制緩衝器;3 is a circuit diagram showing a preferred embodiment of the high boost converter of the present invention having a voltage clamp buffer that overcomes leakage inductance;

圖4及圖5是一電路示意圖,說明高升壓轉換裝置之第一較佳實施例之工作原理;4 and 5 are schematic circuit diagrams illustrating the operation of the first preferred embodiment of the high boost converter;

圖6及圖7是一電路示意圖,說明高升壓轉換裝置之第二較佳實施例之工作原理;6 and 7 are schematic circuit diagrams illustrating the operation of the second preferred embodiment of the high boost converter;

圖8及圖9分別是一電路示意圖,說明電壓箝制緩衝器箝制電壓之工作原理;FIG. 8 and FIG. 9 are respectively a circuit diagram illustrating the working principle of voltage clamping buffer clamping voltage;

圖10是一曲線圖,說明該較佳實施例使用模擬軟體的模擬結果;及Figure 10 is a graph illustrating the simulation results of the preferred embodiment using the simulation software;

圖11至圖18分別是一波形圖,說明高升壓轉換裝置分別操作於第一模式及第二模式的半載及全載情況下的相關元件的量測結果。11 to 18 are waveform diagrams respectively showing the measurement results of the relevant elements in the case where the high boost converters operate in the first mode and the second mode, respectively, under half load and full load.

111...第一電荷幫浦111. . . First charge pump

112...第二電荷幫浦112. . . Second charge pump

12...耦合電感12. . . Coupled inductor

13...電壓箝制緩衝器13. . . Voltage clamp buffer

Claims (3)

一種高升壓轉換裝置,包含:一第一電荷幫浦,用以接收一輸入電壓並使該輸入電壓升壓,具有一第一開關元件、一串接該第一開關元件之第二開關元件、一連接該第一開關元件之一端的第一二極體及一跨接該第一開關元件及該第一二極體之第一升壓電容;一第二電荷幫浦,電性連接該第一電荷幫浦,具有一第三開關元件、一串接該第三開關元件之第四開關元件、一連接該第三開關元件之一端的第二二極體及一跨接該第三開關元件及該第二二極體之第二升壓電容;一電壓箝制緩衝器,電性連接該耦合電感及該第二電荷幫浦,具有一第五開關元件且箝制該第五開關元件之跨壓;一耦合電感,電性連接該第二升壓電容及該第五開關元件,並具有一一次側電感、一二次側電感及一漏感;及一輸出電路,具有一輸出二極體及一輸出電容,該輸出電容經該輸出二極體耦接該電壓箝制緩衝器,用以儲存該耦合電感之漏感所釋放之能量;其中,該等開關元件受一波寬調整控制訊號驅動而呈導通或不導通,該波寬調整控制訊號的責任週期區間分別為D及1-D,其中的該區間D是該第一開關元件、該第四開關元件與該第五開關元件導通,該區間1-D是該第二開關元件與該第三開關元件導通。 A high boost converter includes a first charge pump for receiving an input voltage and boosting the input voltage, and having a first switching element and a second switching element connected in series with the first switching element a first diode connected to one end of the first switching element and a first boosting capacitor bridging the first switching element and the first diode; a second charge pump electrically connected to the first diode a first charge pump having a third switching element, a fourth switching element connected in series with the third switching element, a second diode connected to one end of the third switching element, and a third switching element a second boosting capacitor of the second diode; a voltage clamping buffer electrically connected to the coupled inductor and the second charge pump, having a fifth switching component and clamping the cross of the fifth switching component a coupled inductor electrically connected to the second boosting capacitor and the fifth switching component, and having a primary side inductance, a secondary side inductance and a leakage inductance; and an output circuit having an output diode Body and an output capacitor through which the output capacitor The diode is coupled to the voltage clamping buffer for storing energy released by the leakage inductance of the coupled inductor; wherein the switching elements are driven to be turned on or off by a wave width adjustment control signal, and the width adjustment is performed. The duty cycle interval of the control signal is D and 1-D, respectively, wherein the interval D is the first switching element, the fourth switching element is electrically connected to the fifth switching element, and the interval 1-D is the second switching element It is electrically connected to the third switching element. 依據申請專利範圍第1項所述之高升壓轉換裝置,其中,該電壓箝制緩衝器還具有一箝制電容、至少一箝制二極體與一箝制電感,當該第五開關元件不導通時,該漏感的能量會經由該箝制二極體對該箝制電容充電,且該箝制電容所儲存之能量將經由該箝制電感輸出。 The high-boost converter device of claim 1, wherein the voltage-clamping buffer further has a clamp capacitor, at least one clamp diode and a clamp inductor, and when the fifth switch component is non-conductive, The energy of the leakage inductance charges the clamp capacitor via the clamp diode, and the energy stored by the clamp capacitor is output through the clamp inductor. 依據申請專利範圍第2項所述之高升壓轉換裝置,其中,當該高升壓轉換裝置採N相交錯控制以提高輸出功率時,係在該電壓箝制緩衝器加入N-1個箝制二極體。 The high-boost switching device according to claim 2, wherein when the high-boost switching device adopts N-phase interleaving control to increase output power, N-1 clamps are added to the voltage clamp buffer. Polar body.
TW100124243A 2011-07-08 2011-07-08 High boost converter TWI433440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100124243A TWI433440B (en) 2011-07-08 2011-07-08 High boost converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100124243A TWI433440B (en) 2011-07-08 2011-07-08 High boost converter

Publications (2)

Publication Number Publication Date
TW201304377A TW201304377A (en) 2013-01-16
TWI433440B true TWI433440B (en) 2014-04-01

Family

ID=48138273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100124243A TWI433440B (en) 2011-07-08 2011-07-08 High boost converter

Country Status (1)

Country Link
TW (1) TWI433440B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501532B (en) * 2014-04-30 2015-09-21 Univ Nat Taipei Technology Isolated voltage-boosting converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362589B2 (en) * 2019-08-28 2022-06-14 Delta Electronics, Inc. Flying capacitor converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501532B (en) * 2014-04-30 2015-09-21 Univ Nat Taipei Technology Isolated voltage-boosting converter

Also Published As

Publication number Publication date
TW201304377A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101982919B1 (en) Device for charging and discharging a capacitive load
TWI542127B (en) Active buck power factor correction device
WO2018110440A1 (en) Snubber circuit and power conversion system using same
KR101654490B1 (en) Converter and bi-directional converter
TWI418130B (en) Step-up conversion circuit
CN108347174B (en) Boost full-bridge isolated converter and composite active clamping circuit thereof
JP5888016B2 (en) Full bridge type DC / DC converter
TWI433440B (en) High boost converter
JP5535290B2 (en) Bidirectional converter
WO2015072009A1 (en) Bidirectional converter
US10924000B2 (en) DC-DC converter with reduced ripple
TWI412221B (en) High boost ratio converter
KR101456654B1 (en) A common-core power factor correction resonant converter
JP2018170948A (en) converter
TWI444811B (en) High boost ratio circuit
TWI450485B (en) High boost ratio device
CN103683940A (en) DC-DC converting circuit, device and working method
TWI440290B (en) Boost converter
CN104956576A (en) Dc-dc converter
JP6088869B2 (en) DC-DC converter
TW201345128A (en) Zero voltage switching power converter
TW201332271A (en) High voltage booster device
TWI448059B (en) Low voltage to high voltage device
TWI459700B (en) Step - down converter
TWI489753B (en) Combined boost converter