TW201100571A - Wafer processing deposition shielding components - Google Patents

Wafer processing deposition shielding components Download PDF

Info

Publication number
TW201100571A
TW201100571A TW099110795A TW99110795A TW201100571A TW 201100571 A TW201100571 A TW 201100571A TW 099110795 A TW099110795 A TW 099110795A TW 99110795 A TW99110795 A TW 99110795A TW 201100571 A TW201100571 A TW 201100571A
Authority
TW
Taiwan
Prior art keywords
collimator
shield
central region
peripheral region
aspect ratio
Prior art date
Application number
TW099110795A
Other languages
Chinese (zh)
Other versions
TWI527921B (en
Inventor
Martin Lee Riker
Maurice E Ewert
Anantha Subramani
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/482,713 external-priority patent/US20090308732A1/en
Priority claimed from US12/482,846 external-priority patent/US20090308739A1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201100571A publication Critical patent/TW201100571A/en
Application granted granted Critical
Publication of TWI527921B publication Critical patent/TWI527921B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/358Inductive energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures

Abstract

Embodiments described herein generally relate to an apparatus and method for uniform sputter depositing of materials into the bottom and sidewalls of high aspect ratio features on a substrate. In one embodiment, a collimator for mechanical and electrical coupling with a shield member positioned between a sputtering target and a substrate support pedestal is provided. The collimator comprises a central region and a peripheral region, wherein the collimator has a plurality of apertures extending therethrough and where the apertures located in the central region have a higher aspect ratio than the apertures located in the peripheral region.

Description

201100571 六、發明說明: 【發明所屬之技術領域】 本發明之實施例一般關於-種用於將材料均句藏射沉 積至基材上具有高深寬比之特徵結肖之底部及側壁的設 備與方法。 【先前技術】 〇 在積體電路的製造中,濺射或物理氣相沉積(PVD)是一 種廣泛用於在基材上沉積薄金屬層的技術。使用PVD來 沉積作為擴散阻障層、種晶層、主要導體(primal conductor)、抗反射塗層、及蝕刻停止層的層。然而,藉 由PVD難以形成一保有基材形狀的均勻薄膜,其中在該 基材中發生諸如形成一介層孔或溝槽的階梯(step)。特定 言之,沉積減射原+的廣角分彳導致在具有高深寬比特 徵結構之底部與侧壁(例如介層孔及溝槽)中的不良覆 w 蓋。 發展準直器濺射技術以允許使用PVD在具有高深寬比 特徵結構之底部中沉積薄膜。準直器是定位在一濺射源 與一基材間的一過濾板。準直器通常具有均勻的厚度並 包括一些貫穿該厚度形成的通道。濺射材料必須自濺射 源在其路徑上通過準直器而至該基材上。準直器過遽掉 將以超過期望角度之銳角撞擊該工作件的材料。 藉由、”σ疋準直器過濾、的實際量取決於通過該準直器 3 201100571 之通道的深寬比。因此,沿著接近垂直於該基材之路徑 行進的粒子通過該準直器並沉積在該基材上。此舉可改 良在底部具有高深寬比之特徵結構中的覆蓋。 然而’習知準直器結合使用小磁鐵磁控管將存在一些 問題。使用小磁鐵磁控管將產生高離子化金層通量,其 有利於填充高深寬比的特徵結構。不幸的是具有结合 小磁鐵磁控管之習知準直器的PVD橫越基材提供不= 〇 I儿積來源材料可能在基材的一區域中沉積較基材上 的其他區域厚的層。例如,取決於小磁鐵的徑向定位, 可能在基材的中心或邊緣沉積較厚的層。此現象不僅導 致橫越基材的非均勻沉積,也在基材的一些區域中導致 橫越具有高深寬比之特徵結構側壁的非均勾沉積。舉例 來說,徑向定位以在靠近基材之周緣的區域中提供最佳 磁場均勻性的小磁鐵,導致來源材料被沉積在面對基材 中〜之特徵結構側壁上的量比被沉積在面對基材之周緣 〇 的特徵結構侧壁上更大。 因此,存有一種改良藉由PVD技術橫越基材沉積來源 材料之均勻性的需要。 u 【發明内容】 本文所述之一實施例的一種沉積設備包含:一電氣接 地腔官· t,~濺射靶材’其藉由該腔室支撐並與該腔室電 氣絕》续;* » j, 豕,—基材支撐座,其定位在該濺射靶材的下方並 4 201100571 f+仃錢射料《濺射的基材支撐表 面;—屏蔽構件,里萨由兮脒—# 保衣 ,、籍亥腔至支撐並電氣耦接至該腔 二…’直器,其機械並電氣㈣至該屏蔽構件且定 位在該_材與該基材支撐座之間。在-實施例中, :直器具有複數個延伸貫穿其間的孔口。纟一實施例 位於中央區域之孔口具有較位於周邊區域之孔口高 的深寬比。201100571 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION [0001] Embodiments of the present invention generally relate to apparatus and apparatus for depositing materials uniformly onto a substrate having a high aspect ratio characteristic bottom and side walls. method. [Prior Art] 溅射 In the fabrication of integrated circuits, sputtering or physical vapor deposition (PVD) is a technique widely used for depositing a thin metal layer on a substrate. PVD is used to deposit a layer as a diffusion barrier layer, a seed layer, a primary conductor, an anti-reflective coating, and an etch stop layer. However, it is difficult to form a uniform film having a shape of a substrate by PVD in which a step such as formation of a via hole or a trench occurs in the substrate. In particular, the wide-angle bifurcation of the deposition subtractive + results in poor coverage in the bottom and sidewalls (e.g., vias and trenches) having a high deep-width bit structure. A collimator sputtering technique was developed to allow the deposition of thin films in the bottom of a structure having a high aspect ratio using PVD. The collimator is a filter plate positioned between a sputtering source and a substrate. Collimators typically have a uniform thickness and include some passages formed through the thickness. The sputter material must pass from the sputtering source through its collimator to the substrate in its path. The collimator will be over the material that will strike the workpiece at an acute angle that exceeds the desired angle. The actual amount filtered by the σ疋 collimator depends on the aspect ratio of the passage through the collimator 3 201100571. Thus, particles traveling along a path that is nearly perpendicular to the substrate pass through the collimator And deposited on the substrate. This can improve the coverage in the feature structure with a high aspect ratio at the bottom. However, the conventional collimator combined with the use of a small magnet magnetron will have some problems. Using a small magnet magnetron A high ionized gold layer flux will be produced which is advantageous for filling high aspect ratio features. Unfortunately, a PVD across a substrate with a conventional collimator incorporating a small magnet magnetron provides no = 〇I product The source material may deposit a thicker layer in one region of the substrate than other regions on the substrate. For example, depending on the radial positioning of the small magnet, a thicker layer may be deposited at the center or edge of the substrate. Resulting in non-uniform deposition across the substrate, also in some areas of the substrate resulting in non-uniform deposition across the sidewalls of the feature having a high aspect ratio. For example, radial positioning to be close to the periphery of the substrate Regional mention A small magnet with optimum magnetic field uniformity causes the source material to be deposited on the sidewalls of the features facing the substrate to be larger than the sidewalls of the features deposited on the periphery of the substrate. There is a need to improve the uniformity of the source material deposited across the substrate by the PVD technique. [A Summary of the Invention] A deposition apparatus of one of the embodiments described herein comprises: an electrical grounding chamber, t, ~ sputtering The target 'supported by the chamber and electrically insulated from the chamber; * » j, 豕, - the substrate support, which is positioned below the sputtering target and 4 201100571 f + money shot "Sputtered substrate support surface; - shield member, Risa by 兮脒 - #保衣,, 盖 cavity to support and electrically coupled to the cavity two ... 'straight device, its mechanical and electrical (four) to the shield The member is positioned between the material and the substrate support. In an embodiment, the straightener has a plurality of apertures extending therethrough. The aperture of the central portion is located in the peripheral region. The aperture has a high aspect ratio.

Ο 在另-實施例中,-沉積設備包含:―電氣接地腔室; 1射㈣,其藉由該腔室支揮並與該腔室電氣絕緣; -基材支撐座,其定位在該濺射靶材的下方並具有一實 質平行該濺射靶材之濺射表面的基材支撐表面;一屏蔽 構件,其藉由該腔室支撐並電氣耦接至該腔室;一準直 器,其機械式及電氣式耦接至該屏蔽構件且定位在該濺 射靶材與該基材支撐座之間;一氣體源;及一控制器。 在一實施例中,該濺射靶材是電氣耦接至De功率源。 在—實施例中,基材支撐座是電氣耦接至RF功率源。在 實施例中’該控制器經程式化而提供信號以控制氣體 源、DC功率源、及RF功率源。在一實施例中,該準直 器具有複數個孔口延伸貫穿其間。在一實施例中,位於 中央區域之孔口具有較位於準直器之周邊區域之孔口高 的深寬比。在一實施例中,將控制器程式化以提供高偏 壓至基材支撐座。 在又一實施例中,一種用於沉積材料至基材上的方 法,包含以下步驟:在一具有位於濺射輕材與基材支樓 5 201100571 座間之準直器的腔室中,對一濺射靶材施加dc偏壓; 在鄰近腔室内之濺射靶材的一區域中提供一製程氣體; 施加偏壓至基材支撐座;及在高偏壓及低偏壓之間脈衝 施加至該基材支撐座的偏壓。在一實施例中,準直器具 有複數個孔口延伸貫穿其間。在一實施例中,位於中2 區域之孔口具有較位於準直器之周邊區域之孔口高的深 寬比。 〇 在又一實施例中,提供一種定位在濺射靶材與基材支 撐座之間用於機械及電氣耦接屏蔽構件的準直器。該準 直器包含中央區域及周邊區域,其中該準直儀具有複數 個孔口延伸貫穿其間,且其中位於中央區域之孔口具有 較位於周邊區域之孔口高的深寬比。 在又一實施例中,提供一種用於在製程腔室中圍繞面 對一靶材之基材支撐座的下屏蔽。該下屏蔽包含:一圓 柱狀外側帶’其具有一經調整尺寸以圍繞該濺射靶材之 射表面與基材支撐座的第—直徑,該外側圓柱狀帶包 含環繞該濺射靶材之濺射表面的頂部分;一中間部分; 及一底部分,其環繞該基材支撐座;一支撐凸緣,其具 有一支承表面並自圓柱狀外側帶徑向向外延伸;一基底 板’自該圓柱狀外側帶之底部分徑向向内延伸;及—圓 柱狀内側帶,該圓柱狀内側帶柄接至該基底板並部分地 環繞該基材支撐座的凸緣。 在又一實施例中,提供一種用於在一基材製程腔室中 圍繞Φ對支撐座之濺射#材的上屏蔽。該上屏蔽包含 201100571 一屏蔽部分及一 器0 用於指向性減射的整合之流量最佳化 【實施方式】 /t描述的只施例提供在基材上製造積體電路期間 用於橫越基材之间深寬比特徵結構來均句沉積減射材料 的設備及方法。 第1圖描繪一製程腔宮丨也 a丨 〇 股至100乾例實施例,該製程腔室 100具有可處理基材154之一製程套組MO的一實施例。 製程套組14G包括—單件式下屏蔽副、—單件式上屏 蔽186以及一準直器11〇。在所圖示的實施例中,製程 腔室⑽包含一可在基材上沉積諸如鈦、氧化鋁、鋁、 銅、鈕、氮化鈕、冑、或氮化鎢的濺射腔室,亦稱為物 理氣相沉積(PVD)腔室。適當的pvD腔室範例包括皆可 講自加州聖塔克拉拉應用材料公司的Alps® pius及sip 〇 enCORE®pvd製程腔室。應瞭解也可利用得自其他製造 商的製程腔室來實行本文所述的實施例。 腔室100包括一濺射源,例如具有一濺射表面i 45的 靶材142,及具有一周邊邊緣153的基材支撐座152,該 基材支撐座152用於接收半導體基材丨54於其上。該基 材支撐座可位於一接地腔室壁150中。 在一實施例中’腔室100包括經由介電隔離器ι46藉 接地導電配接器144支撐的靶材142。靶材142包含在 7 201100571 濺射期間待被沉積至基材154之表面上的材料並包括用 於形成於基材154內之黑、,签官ΙΧΛ+ 門之冋,木寬比特徵結構中做為一種晶 層沉積的銅。在一實施例中,無材142也可包括一可賤 射材料(例如銅)之金屬表面層的黏合組成物,及一結構 材料的背層(例如鋁)。 在一實施例中,座152支撐待被賤射塗覆之基材154, 其中該基材154具有高深寬比之特徵結帛,其底部相對 _ M2的主要表面是平面的。基材支撐& 152具有 -通常平㈣材142之濺射表面來設置的平面基材接收 表面。座152可垂直地穿過伸縮囊(bell〇w)i58移動,其 中該伸縮囊158連接至底部腔室壁16〇以允許基材經由 在腔室100的下部分中的負載鎖定閥(未示出)被輸送 至座152上。座152可隨後升高至如所示的沉積位置。 在一實施例中,可自氣體源162經由質流控制器164 將製程氣體供應至腔室100的下部分中。在一實施例 〇 中,可使用耦接至腔室的可控制直流(DC)功率源 148來對靶材142施加負電壓或偏壓。射頻(RF)功率 源1S6可耦接至座B2以在基材154上誘導一 DC自偏 壓。在一實施例中,座152是接地。在—實施例中,座 152是電氣浮置的。 在一實施例中’將磁控管17〇定位在靶材142上方。 磁控管170可包括複數個磁鐵m,該等磁鐵172藉由 連接到軸176的基底板174所支撐,軸176可軸向對準 腔至100及基材154的中央轴。在一實施例中,該等磁 8 201100571 ΟΟ In another embodiment, the deposition apparatus comprises: an "electrical grounding chamber; a radiation (four) that is branched by the chamber and electrically insulated from the chamber; - a substrate support that is positioned in the splash a substrate supporting surface below the target and having a sputtering surface substantially parallel to the sputtering target; a shielding member supported by the chamber and electrically coupled to the chamber; a collimator, The device is mechanically and electrically coupled to the shielding member and positioned between the sputtering target and the substrate support; a gas source; and a controller. In an embodiment, the sputtering target is electrically coupled to a De power source. In an embodiment, the substrate support is electrically coupled to an RF power source. In an embodiment, the controller is programmed to provide signals to control the gas source, the DC power source, and the RF power source. In one embodiment, the collimator has a plurality of apertures extending therethrough. In one embodiment, the aperture in the central region has a higher aspect ratio than the aperture in the peripheral region of the collimator. In one embodiment, the controller is programmed to provide a high bias to the substrate support. In yet another embodiment, a method for depositing a material onto a substrate comprises the steps of: in a chamber having a collimator between the sputtered light material and the substrate support 5 201100571, one Applying a dc bias to the sputter target; providing a process gas in a region of the sputter target adjacent the chamber; applying a bias voltage to the substrate support; and applying a pulse between the high bias and the low bias The bias of the substrate support. In one embodiment, the collimating device has a plurality of apertures extending therethrough. In one embodiment, the aperture in the middle 2 region has a higher aspect ratio than the aperture in the peripheral region of the collimator. In yet another embodiment, a collimator positioned between a sputter target and a substrate support for mechanically and electrically coupling the shield member is provided. The collimator includes a central region and a peripheral region, wherein the collimator has a plurality of apertures extending therethrough, and wherein the apertures in the central region have a higher aspect ratio than the apertures in the peripheral region. In yet another embodiment, a lower shield for surrounding a substrate support facing a target in a process chamber is provided. The lower shield comprises: a cylindrical outer band having a first dimension sized to surround the surface of the sputtering target and the substrate support, the outer cylindrical band comprising a splash surrounding the sputtering target a top portion of the surface; a middle portion; and a bottom portion surrounding the substrate support; a support flange having a support surface and extending radially outward from the cylindrical outer strip; The bottom portion of the cylindrical outer band extends radially inwardly; and a cylindrical inner band having a handle attached to the base plate and partially surrounding the flange of the substrate support. In yet another embodiment, an upper shield for sputtering material around a Φ pair of support seats in a substrate processing chamber is provided. The upper shield comprises 201100571 a shielded portion and a device 0 for integrated flow optimization of directivity reduction. [Embodiment] /t Description Only the example provided for traversing during fabrication of the integrated circuit on the substrate An apparatus and method for depositing a subtractive material in a uniform structure with an aspect ratio characteristic structure between substrates. 1 depicts an embodiment of a process chamber chamber 100 having an embodiment of a process kit MO that can process a substrate 154. The process kit 14G includes a one-piece lower shield pair, a one-piece upper shield 186, and a collimator 11A. In the illustrated embodiment, the process chamber (10) includes a sputtering chamber capable of depositing a substrate such as titanium, aluminum oxide, aluminum, copper, a button, a nitride button, tantalum, or tungsten nitride on the substrate. It is called a physical vapor deposition (PVD) chamber. Examples of suitable pvD chambers include the Alps® pius and sip 〇 enCORE® pvd process chambers from Santa Clara Applied Materials, California. It will be appreciated that the process chambers from other manufacturers may also be utilized to carry out the embodiments described herein. The chamber 100 includes a sputtering source, such as a target 142 having a sputtering surface i 45, and a substrate support 152 having a peripheral edge 153 for receiving a semiconductor substrate 54 On it. The substrate support can be located in a grounded chamber wall 150. In one embodiment, the chamber 100 includes a target 142 that is supported by a grounded conductive adapter 144 via a dielectric isolator ι46. The target 142 comprises the material to be deposited onto the surface of the substrate 154 during sputtering of 201100571 and includes black for forming in the substrate 154, the signature of the door + door, in the wood width ratio feature structure As a layer of copper deposited. In one embodiment, the material 142 may also include a bond composition of a metal surface layer of a smokable material (e.g., copper) and a back layer (e.g., aluminum) of a structural material. In one embodiment, the seat 152 supports a substrate 154 to be spray coated, wherein the substrate 154 has a characteristic aspect of high aspect ratio, the bottom of which is planar relative to the major surface of the _M2. The substrate support & 152 has a planar substrate receiving surface provided with a sputtering surface of a generally flat (four) material 142. The seat 152 can be moved vertically through a bellows i58, wherein the bellows 158 is coupled to the bottom chamber wall 16 〇 to allow the substrate to pass through a load lock valve in the lower portion of the chamber 100 (not shown) Out) is delivered to the seat 152. Seat 152 can then be raised to a deposition location as shown. In an embodiment, process gas may be supplied from gas source 162 to the lower portion of chamber 100 via mass flow controller 164. In an embodiment, a controllable direct current (DC) power source 148 coupled to the chamber can be used to apply a negative voltage or bias to the target 142. A radio frequency (RF) power source 1S6 can be coupled to the seat B2 to induce a DC self-bias on the substrate 154. In an embodiment, the seat 152 is grounded. In an embodiment, the seat 152 is electrically floating. In one embodiment, the magnetron 17 is positioned above the target 142. The magnetron 170 can include a plurality of magnets 155 supported by a base plate 174 coupled to a shaft 176 that can axially align the cavity to 100 and the central axis of the substrate 154. In an embodiment, the magnetic 8 201100571 Ο

鐵呈一腎形(kidney-shaped)圖案排列。磁鐵丨72在腔 至100内靠近乾材M2之正面處產生磁場以生成電漿, 而使得大量的離子流撞擊靶材142,致使靶材材料濺射 出來。磁鐵丨72可圍繞軸176旋轉以增加橫跨靶材142 表面之磁場的均勻性。在一實施例中,磁控管17〇是一 小磁鐵磁控管。在一實施例令,磁鐵172皆可在—實質 平行靶材面的線性方向上相互旋轉與移動以產生一螺旋 運動。在一實施例中,磁鐵172可圍繞中央軸及獨立控 制的第二軸旋轉以控制其徑向位置及角度位置。 在一實施例中,腔室100包括一接地下屏蔽18〇,該 接地下屏【180具有-藉由腔室側# 15Q來支撑並輕接 至腔室㈣15〇的-支標凸緣182。上屏蔽186藉由配 接器144的⑽184來支樓絲接至配接器144的凸緣 184。上屏蔽I86及下屏蔽180是如配接器144與腔室壁 0的電氣耦接方式來耦接。在一實施例中,上屏蔽186 及下屏蔽180皆包含不銹鋼。在—實施例中,腔室_ 包括一輕接至上屏蔽186的中屏蔽(未示出)。在一實施 例中,上屏蔽186及下屏蔽18〇是在腔室1〇〇内電氣浮 的在實施例中’上屏蔽186及下屏蔽18〇可耗接 至一電功率源。 、在-實施例中,上屏蔽186具有一上部分,該上部分 窄門隙188(介於上屏蔽186及乾材142之間)緊密貼合 免材142之環形側凹槽,蠕窀 如该笮間隙1 88窄到足以防止電 聚穿透並濺射塗覆該介電隔離 电細雕15 146。上屏蔽186也可 201100571 包括一向下突出的頂部190,頂部19〇覆蓋下屏蔽l8〇 與上屏蔽186之間的介面,從而防止該等屏蔽藉由濺射 〗儿積材料連結。 在一實施例中,下屏蔽丨80向下延伸至圓柱狀外側帶 196 ’該圓柱狀外側帶196通常沿著腔室壁ι5〇延伸至低 於座152之頂表面處。下屏蔽18〇可具有一自圓柱狀外 側帶196向内徑向延伸的基底板198。基底板198可包 0 括環繞座152之周緣而向上延伸的圓柱狀内側帶1〇3。 在一實施例中,當座152處於下方的裝載位置時,覆蓋 環102疋支承在圓柱狀内側帶1〇3的頂部;當座處於上 方的沉積位置時,覆蓋環102是支承在座152的外周緣 以保護座1 5 2不會受到錢射沉積。 下屏蔽180環繞鞋1材142面對支撑座152的減射表面 145並環繞支撐座152的周壁。下屏蔽16〇覆蓋並遮蔽 腔室100的腔室壁150以減少源自濺射靶材142之濺射 〇 表面145的濺射沉積物沉積至下屏蔽180背面的部件及 表面上。舉例來說,下屏蔽18〇可保護支撐座152的表 面、基材154的多個部分、腔室壁15〇、及腔室丨〇〇的 底壁160。 在一實施例中,可藉由在靶材142及基材支撐座152 之間定位準直器110而達成指向性濺射。準直器11〇可 以機械式或電氣式耦接至上屏蔽186。在一實施例中, 準直器110可耦接至定位在腔室1〇〇較低處的中屏蔽(未 示出在一實施例中’準直器11〇整合至上屏蔽186, 10 201100571 如第8圖中所示。在一實施例中,準直器11〇經焊接至 上屏蔽186。在一實施例中,準直器11()可在腔室ι〇〇 内電氣浮置的。在一實施例中,準直器11〇可耦接至電 功率源。準直器11〇包括用以在腔室内引導氣體及(或) 材料流的複數個孔口(在第丨圖中省略)。 第2圖為準直器11〇之一實施例的上平面視圖。準直 器110通常為一緊密堆積組態的蜂巢結構,該蜂巢結構 〇 具有用於分隔六角形孔口 128之六角形壁126。六角形 孔口 128的深寬比可界定為孔口 128之深度(等於準直 @的厚度)除以孔口 128的寬度129。在一實施例中, 壁126的厚度介於約〇 〇6叶至約〇 18对。在—實施例 中’壁126的厚度介於約0.12吋至約0.15吋。在一實施 幻中準直器包含選自鋁、銅、及不銹鋼的材料。 尚深寬比,你丨如6从1 °準直器310 < 一 I孢例之準罝器3 I 〇的示 〇包括一中央區域3 20,其具有一 _5:1至約3 :1。在一實施存,|中,由The iron is arranged in a kidney-shaped pattern. The magnet bore 72 generates a magnetic field in the cavity to 100 near the front side of the dry material M2 to generate a plasma, causing a large amount of ion current to strike the target 142, causing the target material to be sputtered out. The magnet bore 72 is rotatable about the shaft 176 to increase the uniformity of the magnetic field across the surface of the target 142. In one embodiment, the magnetron 17 is a small magnet magnetron. In one embodiment, the magnets 172 are each rotatable and movable in a linear direction substantially parallel to the surface of the target to produce a helical motion. In one embodiment, the magnet 172 is rotatable about a central axis and an independently controlled second axis to control its radial and angular position. In one embodiment, chamber 100 includes a grounded lower shield 18[deg.] that has a -support flange 182 that is supported by chamber side #15Q and lightly coupled to chamber (4). The upper shield 186 is spliced to the flange 184 of the adapter 144 by the (10) 184 of the adapter 144. The upper shield I86 and the lower shield 180 are coupled such that the adapter 144 is electrically coupled to the chamber wall 0. In an embodiment, both the upper shield 186 and the lower shield 180 comprise stainless steel. In an embodiment, the chamber _ includes a middle shield (not shown) that is lightly coupled to the upper shield 186. In one embodiment, the upper shield 186 and the lower shield 18 are electrically floating within the chamber 1 在. In the embodiment, the upper shield 186 and the lower shield 18 耗 are consuming an electrical power source. In the embodiment, the upper shield 186 has an upper portion, and the upper portion of the narrow gate gap 188 (between the upper shield 186 and the dry material 142) closely fits the annular side groove of the material 142, such as The gap 188 is narrow enough to prevent electropolymerization from penetrating and sputter coating the dielectrically isolated electric scrim 15 146. The upper shield 186 can also include a top 190 that protrudes downwardly, and the top 19 〇 covers the interface between the lower shield 18 〇 and the upper shield 186 to prevent the shield from being bonded by sputtering. In one embodiment, the lower shield 丨 80 extends down to the cylindrical outer band 196 '. The cylindrical outer band 196 generally extends along the chamber wall ι5 至 to a lower surface than the top surface of the seat 152. The lower shield 18 can have a base plate 198 extending radially inwardly from the cylindrical outer band 196. The base plate 198 may include a cylindrical inner band 1 〇 3 extending upward around the circumference of the seat 152. In one embodiment, the cover ring 102 is supported on the top of the cylindrical inner band 1〇3 when the seat 152 is in the lower loading position; the cover ring 102 is supported on the outer periphery of the seat 152 when the seat is in the upper deposition position The protection seat 1 5 2 will not be exposed to money. The lower shield 180 surrounds the shoe 1 142 facing the relief surface 145 of the support 152 and surrounds the peripheral wall of the support 152. The lower shield 16 covers and shields the chamber wall 150 of the chamber 100 to reduce deposition of sputter deposits from the sputtered crucible surface 145 of the sputter target 142 onto the features and surfaces of the back side of the lower shield 180. For example, the lower shield 18A can protect the surface of the support base 152, portions of the substrate 154, the chamber walls 15A, and the bottom wall 160 of the chamber bore. In one embodiment, directional sputtering can be achieved by positioning the collimator 110 between the target 142 and the substrate support 152. The collimator 11 can be mechanically or electrically coupled to the upper shield 186. In an embodiment, the collimator 110 can be coupled to a mid-shield positioned at a lower portion of the chamber 1 (not shown in an embodiment, the collimator 11 is integrated into the upper shield 186, 10 201100571 as This is shown in Figure 8. In one embodiment, the collimator 11 is welded to the upper shield 186. In one embodiment, the collimator 11() can be electrically floated within the chamber ι. In one embodiment, the collimator 11 can be coupled to an electrical power source. The collimator 11A includes a plurality of apertures (omitted in the figures) for directing gas and/or material flow within the chamber. Figure 2 is an upper plan view of one embodiment of a collimator 11 . The collimator 110 is typically a closely packed configuration of a honeycomb structure having hexagonal walls for separating hexagonal apertures 128 126. The aspect ratio of the hexagonal aperture 128 can be defined as the depth of the aperture 128 (equal to the thickness of the collimation @) divided by the width 129 of the aperture 128. In one embodiment, the thickness of the wall 126 is between about 〇 〇6 leaves to about 18 pairs. In the embodiment, the thickness of the wall 126 is between about 0.12 吋 and about 0.15 吋. The medium collimator comprises a material selected from the group consisting of aluminum, copper, and stainless steel. The aspect ratio is as follows, for example, 6 from a 1 ° collimator 310 < a sprite of a sprite 3 I 〇 The central area 3 20 has a _5:1 to about 3:1. In an implementation, |

第3圖為根據本文所述之一實施例之準直器310的示 央區域 徑向方r 一實施例中,準直器 邊區域340,深寬比從 施例中,準直器310的 域340 ’深寬比從約3: 準直器310之深寬比自 深寬比從約1 201100571 在一實施例中,藉由改變 直器31G之徑向孔的減少。在 G的厚度來完成準 的t央區域320具有一拗力沾厂—實施例中,準直器3U) 約6吁之門在音曰口的厚度,例如介於約3时至 f之間。在一實施例中,準 丁至 的厚度為約”寸。在—實施 之中央區域咖 中央區域-至周邊區域34。,厚二f度自 至…。在-實施例中,準直器;二約5忖徑向減少3 is a radial direction of the center region of the collimator 310 according to an embodiment of the present invention. In an embodiment, the collimator edge region 340, the aspect ratio is from the embodiment, the collimator 310 Domain 340' aspect ratio from about 3: aspect ratio of collimator 310 from aspect ratio from about 1 201100571 In one embodiment, by reducing the reduction of the radial bore of the straightener 31G. The thickness of the G to complete the quasi-tanning region 320 has a force in the factory - in the embodiment, the collimator 3U) is about 6 the thickness of the door at the mouth of the mouth, for example between about 3 o'clock and f . In an embodiment, the thickness of the quasi-buter is about "inch. In the central region of the implementation - to the peripheral region 34., the thickness of the two degrees from the .... In the embodiment, the collimator; Two about 5 忖 radial reduction

Ο 域320至周邊區域34〇,厚的厚度自令央區 ^ ^ 6㈣向減少至約2 吋在一實施例中,準直器31〇的 厚度從約2.5吋徑向減少至約2吋广央區域320, =繪示於第3圓中之準直器31。之實施例的深寬比 不:徑向減少的厚度,也可藉由自中央區域32。 至周邊區域34〇增加準首g “早罝器310孔口的寬度來減少深寬 比。在另—實施例中,準直g31G的厚度自中央區域32〇 至周邊區域340減少且準直器31〇的寬度自中央區域— 至周邊區域340增加。 I 一般而言’第3圖中的實施例綠示以線性方式徑向減 少而獲致倒圓錐形形狀的深寬比。本發明的其他實施例 可包括非線性減少的深寬比。 第4圖為根據本發明之一實施例之準直器41〇的示意 截面圖準直器410具有以非線性方式自中央區域420 至周邊區域440減少而獲致凸形形狀的厚度。 第5圖為根據本發明之一實施例之準直器5 1 0的示意 截面圖。準直器510具有以非線性方式自中央區域520 12 201100571 至周邊區域540減少而獲致凹形形狀的厚度。 在一些實施例中,中央區域320、420、520將近為零, 使得中央區域320、420、520在準直器310、410、510 的底部呈現為一點。 回頭參看第1圖,無論準直器110徑向減少之深寬比 的實際形狀,PVD製程腔室100的操作與準直器11〇的 功能是相似的。系統控制器101設置在腔室1〇〇的外側 且通常有利於整體系統的控制及自動化。系統控制器1〇1 〇 -T- , 可包括一中央處理單元(CPU)(未示出)、記憶體(未示 出)、及支援電路(未示出CPU可為任何在工業設備中 用於控制多種系統功能及腔室製程的電腦處理器。 在一實施例中’系統控制器1〇1提供訊號以定位在基 材支撐座152上的基材154並在腔室100中產生電黎。 系統控制器101發送訊號以透過DC功率源148施加電 壓來偏壓靶材142並將製程氣體(例如,氬)激發成電 Ο 漿。系統控制器1 0 1可進一步提供訊號以致使RF功率源 B6來DC自偏壓該座152。DC自偏壓有助於吸引電漿 中產生的帶正電離子深入至基材表面上之高深寬比的介 層孔及凹槽中。 準直器110實行如過濾器的功能以捕陷自靶材丨42以 超過選定角度(幾乎垂直基材154)之角度發射出的離 子及中性粒子。準直器110可為分別繪示於第3、4、5 圖中之準直器310、410、510中之-者。具有自中心徑 向減少深寬比之特性的準直器11〇允許自靶材142之周 13 201100571 邊區域發射出之較大百分比的離子可通過準直器110。 因此彳同時増加沉積在基材154之周邊區域的離子數 乂及離子到達㈣度。因此,根據本發明實施例,可更 均句地橫跨基材154之表面來賤射沉積材料。另外,可 句句也在具有回深寬比特徵結構的底部及側壁沉積材 料,特別是位在靠近基材154周邊之具有高深寬比之介 層孔及凹槽。 ❹ β另外,為了在具有高深寬比之特徵結構的底部及側壁 提供更大覆蓋率的濺射沉積材料,可濺射蝕刻被濺射沉 積在特徵結構的場域與底部區域上的材料。在一實施例 中,系統控制器101施加高偏壓至座152使得輕材142 離子姓刻已沉積在基材154上之膜。因此,減少沉積至 基材154上的場沉積速率,且濺射材料再沉積至具有高 深寬^之特徵結構的側壁或底部。在—實施例中,系統 工制器1G1以—脈衝或交替方式施加高偏I及低偏壓至 〇 座152 ’使得製程變成脈衝沉積/姓刻製a。在-實施例 中’特別是位於磁鐵172下方之準直器110單元引導大 量沉積材料朝向基材1541此,在任何特定時間’可 在基材154中的一區域沉積材料,同時可蝕刻已經沉積 在基材154之另一區域的材料。 /施例中,為了在具有高深寬比之特徵結構之側 壁上提供更大覆蓋率的濺射沉積材料,可使用諸如氬電 漿的二級電漿(其產生在腔室中靠近基材154的一區域) 來濺射钮刻濺射沉積在特徵結構之底部的㈣。在—實 201100571 施例中,腔室100包括RF線圈141,該RF線圈藉由複 數個線圈間隔4勿143附接至下屏蔽18〇,該等線圈間隔 物143將線圈141與下屏& 18〇1氣絕緣。系統控制器 ΗΠ發送訊號以透過饋通間距加她_以相績)(未 示出)施力口 RF功率經由屏蔽18〇至線目i4卜在一實施 例中’ RF線圈將RF能量感應式_接至腔室1GG的内部 以離子化前驅物氣體(例如氬)而維持靠近基材154的二From the Ο region 320 to the peripheral region 34〇, the thickness is reduced from the central region ^^6(4) to about 2 吋. In one embodiment, the thickness of the collimator 31〇 is reduced from about 2.5 吋 to about 2 吋. The central area 320, = the collimator 31 shown in the third circle. The aspect ratio of the embodiment is not: the radially reduced thickness can also be derived from the central region 32. To the peripheral area 34 〇 increase the head g "the width of the early 310 hole to reduce the aspect ratio. In another embodiment, the thickness of the collimation g31G decreases from the central area 32 〇 to the peripheral area 340 and the collimator The width of 31 自 increases from the central region - to the peripheral region 340. I In general, the embodiment green in Figure 3 shows a radial reduction in a linear manner to obtain an aspect ratio of the inverted conical shape. Other implementations of the invention An example may include a non-linearly reduced aspect ratio. Figure 4 is a schematic cross-sectional view of a collimator 41A in accordance with an embodiment of the present invention. The collimator 410 has a reduced nonlinearity from the central region 420 to the peripheral region 440. The thickness of the convex shape is obtained. Fig. 5 is a schematic cross-sectional view of a collimator 510 according to an embodiment of the present invention. The collimator 510 has a non-linear manner from the central region 520 12 201100571 to the peripheral region 540. The thickness of the concave shape is reduced. In some embodiments, the central regions 320, 420, 520 will be nearly zero such that the central regions 320, 420, 520 appear as a point at the bottom of the collimators 310, 410, 510. See Figure 1 Regardless of the actual shape of the aspect ratio of the collimator 110 that is radially reduced, the operation of the PVD process chamber 100 is similar to that of the collimator 11A. The system controller 101 is disposed outside the chamber 1〇〇 and usually Conducive to the control and automation of the overall system. The system controller 1〇1 〇-T- may include a central processing unit (CPU) (not shown), memory (not shown), and support circuits (not shown) The CPU can be any computer processor used in industrial equipment to control a variety of system functions and chamber processes. In one embodiment, the 'system controller 101' provides signals to position the substrate 154 on the substrate support 152. The system controller 101 sends a signal to apply a voltage through the DC power source 148 to bias the target 142 and excite the process gas (e.g., argon) into an electrical slurry. System Controller 10 1 may further provide a signal to cause the RF power source B6 to DC self-bias the pad 152. The DC self-biasing helps to attract the positively charged ions generated in the plasma deep into the high aspect ratio of the substrate surface. In the hole and the groove. The collimator 110 performs such as filtering The function is to trap ions and neutral particles emitted from the target crucible 42 at an angle exceeding a selected angle (almost perpendicular to the substrate 154). The collimator 110 can be depicted in Figures 3, 4, and 5, respectively. Among the collimators 310, 410, 510. The collimator 11 having the characteristic of reducing the aspect ratio from the central radial direction allows a larger percentage of ions to be emitted from the side of the perimeter 13 201100571 of the target 142 It can pass through the collimator 110. Therefore, the number of ions deposited on the peripheral region of the substrate 154 and the ions reach (four) degrees are simultaneously applied. Therefore, according to the embodiment of the present invention, the surface of the substrate 154 can be more evenly distributed. Spray deposition material. In addition, the sentence can also have a bottom and sidewall deposition material having a back-depth aspect feature, particularly a via having a high aspect ratio near the periphery of the substrate 154. In addition, in order to provide a sputter deposition material having a larger coverage at the bottom and side walls of the feature having a high aspect ratio, the material deposited on the field and bottom regions of the feature structure may be sputter-etched. In one embodiment, system controller 101 applies a high bias to mount 152 such that light material 142 ions are deposited on the substrate 154. Thus, the rate of field deposition deposited onto substrate 154 is reduced and the sputtered material is redeposited to the sidewall or bottom of the feature having a high aspect. In the embodiment, the system controller 1G1 applies a high-bias I and a low bias to the pedestal 152' in a pulsed or alternating manner such that the process becomes pulsed deposition/lasting a. In the embodiment - particularly the collimator 110 unit located below the magnet 172 directs a large amount of deposited material toward the substrate 1541, at any given time, a material can be deposited in a region of the substrate 154 while etching can be deposited Material in another region of the substrate 154. In the embodiment, in order to provide a sputter deposition material having a larger coverage on the sidewall of the feature having a high aspect ratio, a secondary plasma such as argon plasma (which is generated in the chamber close to the substrate 154) may be used. One of the regions) is sputter deposited by sputtering (4) at the bottom of the feature. In the embodiment of the real 201100571, the chamber 100 includes an RF coil 141 that is attached to the lower shield 18A by a plurality of coil spacings 4, 143 that connect the coil 141 to the lower screen & 18〇1 gas insulation. The system controller ΗΠ sends a signal to add her through the feedthrough spacing (not shown) (not shown). The RF power is applied via the shield 18 to the line i4. In an embodiment, the RF coil is RF-inductive. _ connected to the interior of the chamber 1GG to maintain the proximity of the substrate 154 with ionized precursor gas (such as argon)

級電激。二級電聚自高深寬比特徵結構的底部再濺射一 沉積層並再沉積材料至特徵結構的侧壁上。 仍舊參照第1圖,準直器 111附接至上屏蔽186。 11 〇可藉由複數個徑向支架 第6圖為根據本發明實施例用於將準直器110附接至 上屏蔽186之支架611的放大截面視圖。支架611包括 内螺紋管613,該内碟好其_ 内螺紋官613焊接至準直器u〇並自 準直器11 〇徑向向外延Level electric shock. The secondary electropolymer is then sputtered from the bottom of the high aspect ratio feature to deposit a layer and re-deposit material onto the sidewalls of the feature. Still referring to Fig. 1, the collimator 111 is attached to the upper shield 186. 11 〇 can be represented by a plurality of radial brackets. Fig. 6 is an enlarged cross-sectional view of the bracket 611 for attaching the collimator 110 to the upper shield 186 in accordance with an embodiment of the present invention. The bracket 611 includes an internally threaded tube 613 which is welded to the collimator u 〇 and is radially extended from the collimator 11

1、1甲緊固構件6 1 5 (例如螺栓) 可插入上屏蔽, 屏敞186的孔口中並螺紋旋入至管613中以將 準直器m附接至上屏蔽186,同時使可能沉積在管613 或緊固構件6 1 5之螺紋部分的材料減到最少。 第7圖為根據本發明之另一實施例用於將準直器110 附接至上屏蔽186之支牟 <叉朱711的放大截面視圖。支架711 匕,螺捲713 ’該螺椿713焊接至準直器110並自準 直:U〇上徑向向外延伸。可將内螺紋緊固構件715插 中的孔口並螺紋旋至螺椿713上以 將準直器11〇附技;^ 屏蔽186上,同時使可能沉積在 15 201100571 螺椿713 $緊固構件715之螺紋部分的材料減到最少。 第8圖為具有本文所述之製程套組84〇之另一實施例 之半導體製程系統800的示意截面圖。相似於製程套組 140’製程套、组84〇包括單件式下屏蔽18〇。然而,不像 包含透過—徑向支架U1㈣至上屏蔽186之分離準直 器110的製程套組140,製程套組_包括單體上屏蔽 886 ’该上屏蔽886包含一屏蔽部分892及整合之通量最 佳化器部> 81G。單體上屏蔽886之單體結構允許冷卻 ° 效率的最大化。整合之通量最佳化器部分81〇包括如上 述在腔至内引導氣體及(或)材料通量的複數個孔口(在第 8圖中省略)。 第9A圖為根據本文所述實施例之單體上屏蔽886的部 :截面圖。第9B圖為根據本文所述實施例之第9A圖之 單體上屏蔽886的上平面視圖。調整單體上屏蔽8%的 尺寸以圍繞面對支撐座152之濺射靶材142的濺射表面 ❹ 145。單體上屏蔽886遮蔽腔室1〇〇的配接器144以減少 源自濺射靶材!42之濺射表面145而濺射沉積的沉積物。 如第8、9A及9B圖中所示,單體上屏蔽886為單一 結構且包含屏蔽部》892與一整合之通量最佳化器部分 810。例如,屏蔽部分892及整合之通量最佳化器部分 81〇可由單塊(Singlemass)材料來製造。屏蔽部分892包 含圓柱狀帶902。圓柱狀帶902包含頂壁9〇4及底壁 906。支撐凸緣908自圓柱狀帶902之頂壁904徑向向外 延伸。支撐凸緣908包含一支承表面91〇,用以支承腔 16 201100571 室800的配接器144。在一實施例中,支承表面91〇和 底壁906相交而形成90度角。在一實施例中,支擇凸緣 908具有複數個狹縫’該等狹缝經塑型以接收將上屏蔽 892對準至配接器144的插銷。在一實施例中,支撐凸 緣908具有一或多個環繞圓柱狀帶9〇2呈週期性定位的 凹口 940。 如第9A圖中所示’頂壁904進一步包含一頂表面 9M、内周邊926、及外周邊928。頂壁904的外周邊和 ® 支撐凸緣908相交以形成梯狀部分932。 在一實施例中,如第8圖中所示,圓柱狀帶902的底 璧906具有一外直徑(以箭頭“A”圖示),經調整尺寸以 在配接器144中貼合並支承下屏蔽180的梯狀部分1〇32 (圖示於第1 0B圖)。在一實施例中,底壁906之外直徑 “A”介於約18吋(45.7公分)至約18.5吋(47公分)之間。 在另一實施例中,底壁906之外直徑“A”介於約1 8.1吋 Q (46公分)至約18.2吋(46.2公分)之間。在一實施例中, 圓柱狀帶902具有以箭頭“B”圖示的内直徑。在一實施例 中’圓柱狀帶902的内直徑“B”介於約17.2吋(43.7公 分)至約17.9吋(45.5公分)之間。在另一實施例中,圓柱 狀帶902的内直徑“B”介於約17.5吋(44.5公分)至約17.7 吋(45公分)之間。在一實施例中,頂壁9〇4具有以箭頭“C” 圖示的外直徑。在一實施例中,頂壁904及底壁906具 有相同内直徑“B”。 在一實施例中,頂壁904的外直徑“C”介於約18吋 17 201100571 (45.7公分)至約18.5吋(47公分)之間。在另一實施例中, 頂壁904的外直徑“C”介於約18·3吋(46 5公分)至約18 4 对(46.7公分)之間。在一實施例中,頂壁9〇4之外直徑“c,, 大於底壁906的外直徑“Α”。 可相似於分別纟會示在第3、4及5圖中之準直器310、 410或510中之一者來設計整合之通量最佳化器部分 810。如第9Β圖中所示,整合之通量最佳化器部分81〇 通常為一緊密堆積組態的蜂巢結構,該蜂巢結構具有用 Ο 於分隔六角形孔口 944之六角形壁942。六角形孔口 944 的深寬比可界定為孔口 944之深度(等於整合之通量最 佳化器部分8 1 0的厚度)除以孔口的寬度946。在一實 施例中,鄰近屏蔽部分892的六角形壁942具有去角 (chamfer)950 及一半徑。 在一實施例中,單體上屏蔽8 8 6可由單塊銘經機械成 形。單體上屏蔽886可選擇性經塗覆或經陽極處理。或 Q 者,單體上屏蔽886可由與製程環境相容的其他材料製 成’並且也可包含一或多個區段。或者,上屏蔽的屏蔽 部分8 9 2及整合之通量最佳化器部分8 1 〇可以個別片段 形成且使用適當的附接方式(諸如焊接)耦接在一起。 第10A及10B圖為根據本文所述實施例之下屏蔽的部 分截面視圖。第10C圖為第i〇A圖之下屏蔽之一實施例 的俯視圖。如第1及10A-10C圖所示,下屏蔽180為單 一結構且包含圓柱狀外側帶19 6、基底板19 8及内侧圓 柱狀帶103。圓柱狀外側帶丨96具有一經調整尺寸以圍 18 201100571 繞濺射靶材142之濺射表面145與座152之周邊邊緣153 的直徑。圓柱狀外側帶1 96包含一上部分1 〇 12、一中間 部分1014、及一下部分1〇16。上部分1〇12經調整尺寸 以圍繞濺射靶材142的濺射表面145。支撐凸緣182自 該圓柱狀外側帶196的上部分1 〇 12徑向向外延伸。支樓 凸緣182包含用以支承腔室丨〇〇之腔室壁15〇的支承表 面1024。支承表面1〇24可具有複數個狹縫,該等狹缝 經塑形以接收將下屏蔽180對準至腔室壁150的插銷或 〇 任何定位在腔室壁150與下屏蔽180之間的配接器。在 一實施例中,支承表面1 〇24具有約1 〇至約80微对 (microinch)的表面粗糙度,甚至約16至約63微吋,或 在一實施例中’約32微吋的表面粗糙度。 如第10B圖中所示,上部分1〇12包含頂表面1〇25、 内周邊1026、及外周邊1〇28。外周邊1028向上延伸至 頂表面1025上方以形成一環形唇部1〇3〇。環形唇部 〇 形成具有頂表面1025的梯狀部分1032。在一實施例中, 環形唇部1030經垂直該頂表面1〇25定位以形成梯狀部 分⑽。#狀料1032帛供一支承表面以接合上屏蔽 186 ° 在一實施例中,環形唇部1030具有一以箭頭“D,,圖示 的外直徑。在一實施例中,環形唇部1〇3〇的外直禋“D,, 介於約18.4吋(46.7公分)至約18 7吋(47.5公分)之間。 在另—實施例中,環形唇部1〇3〇的外直徑“D”介於約 1S.5吋(47公分)至約18·6吋(ο 2公分)之間。在—實施 19 201100571 例中’環形唇部1〇3η目士 ^ 30具有一以箭頭“Ε”圖~认 在一實施例中,瑷β 圖不的内直徑。 ¥形唇部1030的内直徑“Ε,,八 吋(46.2公分)至約 於約18.2 ^芏約18.5吋(47公分)之間。在 中,環形唇部103〇 & & 士 在另一實訑例 1〇3〇的内直徑“E”介於約 分)至約18.4吋(46 7 w 匕3吋(46.5公 Τ(46·7公分)之間。 在實鉍例中,頂表面1 〇25的外直徑俜相 ^ ^ J丨見仅你相同於環形唇 4 1030 的内直徑“E ^ & . 。在一貫施例中,頂表面具有一以 Ο "“不的内直徑。在-實施例中’頂表面1025的 ::徑T係介於約17·2吋(43·7公分)至約18吋(45.7 公分)之間。在另—實施例中,頂表面1G25的内直徑“F” 介於約17.5吋(44.5公分)至約17.6吋(44 7公分)之間。 在一實施例中,上部分1〇12的内周邊1〇26係自垂直 方向以角度α徑向向外成角。在—實施财,角度α與垂 直方向的夾角是約2。至約1〇。。在一實施例中,角度以與 垂直方向的夾角是約4。。 下部分1016經調整尺寸以圍繞座152。基底板198自圓 柱狀外側帶196之下部分1016徑向向内延伸。圓柱狀内側 帶1〇3與基底板198耦接且經調整尺寸以圍繞座152。圓柱 狀内側帶103、基底板198、及圓柱狀外側帶196形成一 U 形通道。圓柱狀内侧帶103包含低於圓柱狀外側帶196之 高度的高度。在一實施例中,内侧圓柱狀帶103的高度約 為圓柱狀外側帶19 6之高度的五分之一。在一實施例中, 中間部分1014具有一凹口 1040。在一實施例中,圓柱狀 外側帶196具有複數個氣體孔1042。 20 201100571 在一實施例中,基底板198具有以箭頭“G”圖示的一外 直徑。在一實施例中’基底板198的外直徑“G”介於約1 7 吋(43.2公分)至約17 4吋(44 2公分)之間。在另一 實施例中’基底板198的外直徑“G”介於約17.1吋(43.4 公分)至約17.2吋(43.7公分)之間。在一實施例中, 基底板198具有以箭頭“j,,圖示的一内直徑。在一實施例 中,基底板198的内直徑“;I”介於約139吋(35 3公分) 至約14,4吋(36.6公分)之間。在另一實施例中,基底 〇 板198的内直徑“I”介於約14吋(35.6公分)至約14.1 对(3 5.8公分)之間。 在一實施例中’内侧圓柱狀帶103具有以箭頭“H”圖示 的一外直徑。在一實施例中,内側圓柱狀帶的外直徑“H” 介於約14.0吋(35.6公分)至約14.3吋(36.3公分) 之間。在另一實施例中,内側圓柱狀帶i 〇3具有以箭頭 “H”圖示的一外直徑。在一實施例中,内側圓柱狀帶1〇3 0 的外直徑“H”介於約14.2吋(36.1公分)至約14.3吋(36.3 公分)之間。 在實施例中,圓柱狀外側帶1 9 6、基底板19 8、及内 侧圓柱狀帶1〇3包含一單一結構。單一下屏蔽18〇係優 於習知包括多個部件(通常以二或三個個別的片段來組 裝整個下屏蔽)的屏蔽。舉例來說,在加熱及冷卻製程 中’單一片段屏蔽較多部件的屏蔽更為熱均勻。舉例來 說,單一片段下屏蔽與腔室壁150僅具有一個熱接觸 面’從而更能控制屏蔽180與腔室壁15〇之間的熱交換。 21 201100571 具有多個屏蔽部件的屏蔽180使清潔時移除屏蔽變得更 為困難及費力。單一片段屏蔽18〇具有暴露於濺射沉積 的連續表面而不具有難以清潔的介面或角落。單一片段 屏蔽1 80也可有效地在製程循環期間屏蔽腔室壁丨5〇免 於濺射沉積。 在一實施例中,上屏壁186、886及(或)下屏壁180可 由300系列不銹鋼製成,或在其他實施例中,可由鋁製 成。在一實施例中,上屏壁186、886及(或)下屏壁180 的暴露表面是以CLEANCOATTW處理,其可購自加州聖 塔克拉拉的 Applied Materials 公司。CLEANCOATTW* 施加至基材處理腔室部件(例如,上屏壁186、886及(或) 下屏壁180)的雙芯鋁電弧喷塗(twin_wire aluminum arc spray coating),以減少粒子脫落而沉積在屏蔽上,從而 防止腔室中之基材的污染。在一實施例中,在上屏壁 186、886及(或)下屏壁180上的雙芯鋁電弧喷塗具有自 約600至約2300微吋的表面粗糖度。 上屏壁186、886及(或)下屏壁180具有在腔室ι〇〇、 800中面對内部空間的暴露表面。在一實施例中,暴露 表面經珠粒喷擊(bead blasted)以具有175±75微吋的表面 粗糙度。紋理化之珠粒喷擊表面用於減少粒子脫落並防 止腔室100、800内的污染。表面粗糙度的平均值是沿著 暴露表面之粗糙度特徵自峰部至谷部之平均線之位移絕 對值的平均》粗糙度平均值、偏斜度或其他性質可由輪 廓儀來判定’該輪廓儀在暴露表面上移動針頭並產生表 22 201100571 面上粗糙度之高度擾動的轨跡,或藉由使用自表面反射 電子束之掃描電子顯微鏡來產生表面的影像。 雖然前述是針對本發明實施例,但可在不背離本發明 之基本範圍及由以下申請專利範圍所決定之範圍的情況 下,發展出其他及進一步的實施例。 【圖式說明】 〇 為讓本發明之上述特徵更明顯易懂,可配合參考實施 例說明,其部分乃繪示如附圖式。須注意的是,雖然所 圖式揭露本發明特定實施例,但其並非用以限定本發 明之精神與範圍,任何熟習此技藝者,當可作各種之更 動與潤飾而得等效實施例。 第1圖為具有本文所述之製程套件之一實施例之半導 體製程系統的示意剖面圖。 第2圖為根據本文所述實施例之準直器的俯視平面 〇 圖。 笛 圖為根據本文所述實施例之準直器的示意截面 圖。 第4圖為根據本文所述實施例之準直器的示意截面 第5圖為根據本文所述實施例之準直器的示意截面 圖。 第6圖為根據本文所述實施例之支架的放大部分截面 23 201100571 圖,該支架用於將準直器附接至PVD腔室之上屏蔽。 第7圖為根據本文所述實施例之支架的部分截面圖, 該支架用於將準直器附接至PVD腔室之上屏蔽。 第8圖為具有根據本文所述另一製程套組之半導體製 程系統的示意截面圖。 第9A圖為根據本文所述實施例之單體上屏蔽的部分 截面圖。 第9B圖為根據本文所述實施例之第9A圖之單體上屏 蔽之俯視平面圖。 第l〇A圖根據本文所述實施例之一下屏蔽的戴面圖。 第10B圖為第10A圖之下屏蔽之實施例的部分剖面 圖。 第10C圖為第10A圖之下屏蔽之一實施例的俯視圖。 101系統控制器 1 内唇部 111徑向支架 12 8 孔口 141線圈 143線圈間隔物 146介電隔離器 150腔室壁1. A 1 fastening member 6 1 5 (eg, a bolt) can be inserted into the upper shield, into the opening of the screen 186 and screwed into the tube 613 to attach the collimator m to the upper shield 186 while allowing possible deposition The material of the threaded portion of the tube 613 or the fastening member 615 is minimized. Figure 7 is an enlarged cross-sectional view of a support <fork 711 for attaching the collimator 110 to the upper shield 186 in accordance with another embodiment of the present invention. Bracket 711 螺, screw 713 'The bolt 713 is welded to the collimator 110 and self-aligns: the U 〇 extends radially outward. The hole in which the female screw fastening member 715 is inserted can be screwed onto the thread 713 to attach the collimator 11 to the shield 186 while allowing deposition on the 15 201100571 screw 713 $ fastening member The material of the threaded portion of 715 is minimized. Figure 8 is a schematic cross-sectional view of a semiconductor process system 800 having another embodiment of a process kit 84A described herein. Similar to the process kit 140' process sleeve, set 84〇 includes a one-piece lower shield 18〇. However, unlike the process kit 140 including the split collimator 110 that passes through the radial mount U1 (four) to the upper shield 186, the process kit _ includes a single upper shield 886 'the upper shield 886 includes a shielded portion 892 and integrated access Quantity Optimizer Section > 81G. The monomer structure of the shield 886 on the monomer allows for maximum cooling efficiency. The integrated flux optimizer portion 81 includes a plurality of orifices (omitted in Figure 8) that direct gas and/or material fluxes within the chamber as described above. Figure 9A is a cross-sectional view of a portion of a monolithic shield 886 in accordance with embodiments described herein. Figure 9B is an upper plan view of the unitary upper shield 886 in accordance with Figure 9A of the embodiments described herein. The 8% of the shield is sized to surround the sputter surface ❹ 145 of the sputter target 142 facing the support 152. The monolithic shield 886 shields the chamber 1 〇〇 adapter 144 to reduce the source of the sputtering target! A sputter surface 145 of 42 is sputter deposited deposits. As shown in Figures 8, 9A and 9B, the monolithic shield 886 is a unitary structure and includes a shield 892 and an integrated flux optimizer portion 810. For example, the shield portion 892 and the integrated flux optimizer portion 81 can be fabricated from a single piece of material. The shield portion 892 includes a cylindrical band 902. The cylindrical band 902 includes a top wall 9〇4 and a bottom wall 906. Support flange 908 extends radially outward from top wall 904 of cylindrical band 902. The support flange 908 includes a support surface 91A for supporting the adapter 144 of the chamber 16 201100571 chamber 800. In one embodiment, the support surface 91 and the bottom wall 906 intersect to form a 90 degree angle. In one embodiment, the support flange 908 has a plurality of slits that are shaped to receive a latch that aligns the upper shield 892 to the adapter 144. In one embodiment, the support flange 908 has one or more notches 940 that are periodically positioned around the cylindrical band 9〇2. The top wall 904 further includes a top surface 9M, an inner perimeter 926, and an outer perimeter 928 as shown in Figure 9A. The outer periphery of the top wall 904 and the support flange 908 intersect to form a stepped portion 932. In one embodiment, as shown in FIG. 8, the bottom ridge 906 of the cylindrical band 902 has an outer diameter (illustrated by arrow "A") that is sized to fit and support in the adapter 144. The stepped portion 1 〇 32 of the shield 180 (shown in Figure 10B). In one embodiment, the outer diameter "A" of the bottom wall 906 is between about 18 inches (45.7 centimeters) to about 18.5 inches (47 centimeters). In another embodiment, the outer diameter "A" of the bottom wall 906 is between about 1 8.1 吋 Q (46 cm) to about 18.2 吋 (46.2 cm). In an embodiment, the cylindrical band 902 has an inner diameter as illustrated by arrow "B". In one embodiment, the inner diameter "B" of the cylindrical band 902 is between about 17.2 inches (43.7 centimeters) to about 17.9 inches (45.5 centimeters). In another embodiment, the inner diameter "B" of the cylindrical band 902 is between about 17.5 inches (44.5 centimeters) to about 17.7 inches (45 centimeters). In an embodiment, the top wall 9〇4 has an outer diameter as illustrated by the arrow "C". In one embodiment, top wall 904 and bottom wall 906 have the same inner diameter "B". In one embodiment, the outer wall "C" of the top wall 904 is between about 18 吋 17 201100571 (45.7 cm) to about 18.5 吋 (47 cm). In another embodiment, the outer diameter "C" of the top wall 904 is between about 18·3 吋 (46 5 cm) to about 18 4 pairs (46.7 cm). In one embodiment, the outer wall 9〇4 has a diameter "c" that is greater than the outer diameter "Α" of the bottom wall 906. It can be similar to the collimator 310 shown in Figures 3, 4, and 5, respectively. One of 410, or 510 designs the integrated flux optimizer portion 810. As shown in Figure 9, the integrated flux optimizer portion 81 is typically a closely packed configuration of the honeycomb structure. The honeycomb structure has a hexagonal wall 942 for separating the hexagonal apertures 944. The aspect ratio of the hexagonal apertures 944 can be defined as the depth of the apertures 944 (equal to the integrated flux optimizer portion 8 1 The thickness of 0 is divided by the width 946 of the aperture. In one embodiment, the hexagonal wall 942 adjacent the shield portion 892 has a chamfer 950 and a radius. In one embodiment, the upper shield 8 8 6 may be mechanically formed from a single piece. The upper dielectric shield 886 may be selectively coated or anodized. Alternatively, the single upper shield 886 may be made of other materials compatible with the process environment' and may also include One or more segments. Alternatively, the upper shielded shield portion 8 92 and the integrated flux optimizer portion The segments 8 1 can be formed as individual segments and coupled together using a suitable attachment means, such as soldering. Figures 10A and 10B are partial cross-sectional views of the shield under the embodiments described herein. Figure 10C is the first A top view of one embodiment of the shield below the 〇A. As shown in Figures 1 and 10A-10C, the lower shield 180 is a unitary structure and includes a cylindrical outer strip 196, a base plate 198 and an inner cylindrical strip 103. The cylindrical outer band 96 has a diameter sized to surround the sputtering surface 145 of the sputtering target 142 and the peripheral edge 153 of the seat 152. The cylindrical outer band 1 96 includes an upper portion 1 〇 12, a The intermediate portion 1014, and the lower portion 1〇16. The upper portion 1〇12 is sized to surround the sputtering surface 145 of the sputtering target 142. The support flange 182 is from the upper portion of the cylindrical outer band 196. Extending outwardly, the branch flange 182 includes a support surface 1024 for supporting a chamber wall 15A of the chamber 。. The support surface 〇24 can have a plurality of slits that are shaped to Receiving a pin or pin that aligns the lower shield 180 to the chamber wall 150 Any adapter positioned between the chamber wall 150 and the lower shield 180. In one embodiment, the support surface 1 24 has a surface roughness of from about 1 〇 to about 80 microinch, even about 16 About 63 micro 吋, or in one embodiment, a surface roughness of about 32 micro 。. As shown in FIG. 10B, the upper portion 1 〇 12 includes a top surface 1 〇 25, an inner periphery 1026, and an outer periphery 1 〇. 28. The outer perimeter 1028 extends upwardly above the top surface 1025 to form an annular lip 1〇3〇. The annular lip 〇 forms a stepped portion 1032 having a top surface 1025. In one embodiment, the annular lip 1030 is positioned perpendicular to the top surface 1 〇 25 to form a stepped portion (10). #料料1032帛 provides a support surface for engaging the upper shield 186°. In one embodiment, the annular lip 1030 has an outer diameter as shown by the arrow "D,". In one embodiment, the annular lip 1〇 The outer diameter of the 3" is "D," between about 18.4 inches (46.7 cm) and about 18 7 inches (47.5 cm). In another embodiment, the outer diameter "D" of the annular lip 1〇3〇 is between about 1 S. 5 吋 (47 cm) to about 18·6 吋 (ο 2 cm). In the example of the implementation, the annular lip 1〇3η目士^30 has an inner diameter of the arrow ΕFig. The inner diameter of the ¥-shaped lip 1030 is "Ε,, gossip (46.2 cm) to about 18.2 ^ 芏 about 18.5 吋 (47 cm). In the middle, the annular lip 103 〇 && The actual diameter "E" of the 1〇3〇 is between about 18.4吋 (46 7 w 匕3吋 (46.5 mm (46·7 cm)). In the actual example, the top The outer diameter of the surface 1 〇25 is the same as the inner diameter of the ring lip 4 1030 "E ^ & .. Diameter. In the embodiment - the top surface 1025:: diameter T is between about 17.2 吋 (43. 7 cm) to about 18 吋 (45.7 cm). In another embodiment, the top surface The inner diameter "F" of 1G25 is between about 17.5 吋 (44.5 cm) to about 17.6 吋 (44 7 cm). In one embodiment, the inner circumference 1 〇 26 of the upper portion 1 〇 12 is from the vertical direction. The angle α is radially outwardly angled. In the implementation, the angle between the angle α and the vertical direction is about 2. To about 1 〇. In one embodiment, the angle is about 4 with the vertical direction. Part 1016 adjusted ruler To surround the seat 152. The base plate 198 extends radially inward from the lower portion 1016 of the cylindrical outer band 196. The cylindrical inner band 1〇3 is coupled to the base plate 198 and sized to surround the seat 152. The cylindrical inner band 103. The base plate 198 and the cylindrical outer band 196 form a U-shaped channel. The cylindrical inner band 103 includes a height that is lower than the height of the cylindrical outer band 196. In one embodiment, the height of the inner cylindrical band 103 is about It is one-fifth the height of the cylindrical outer band 196. In one embodiment, the intermediate portion 1014 has a notch 1040. In one embodiment, the cylindrical outer band 196 has a plurality of gas holes 1042. 20 201100571 In one embodiment, the base plate 198 has an outer diameter as illustrated by arrow "G." In one embodiment, the outer diameter "G" of the base plate 198 is between about 17 吋 (43.2 cm) to about 17 4 吋 (44 2 cm). In another embodiment, the outer diameter "G" of the base plate 198 is between about 17.1 inches (43.4 cm) to about 17.2 inches (43.7 cm). In one embodiment The base plate 198 has an inner straight line with an arrow "j," In one embodiment, the inner diameter "; I" of the base plate 198 is between about 139 吋 (35 3 cm) to about 14, 4 吋 (36.6 cm). In another embodiment, the substrate 〇 The inner diameter "I" of the plate 198 is between about 14 吋 (35.6 cm) to about 14.1 angstroms (3 5.8 cm). In one embodiment, the inner cylindrical band 103 has one shown by the arrow "H". Outer diameter. In one embodiment, the inner cylindrical band has an outer diameter "H" of between about 14.0 inches (35.6 centimeters) to about 14.3 inches (36.3 centimeters). In another embodiment, the inner cylindrical band i 〇 3 has an outer diameter as illustrated by the arrow "H". In one embodiment, the outer cylindrical "H" of the inner cylindrical band 1 〇 30 is between about 14.2 inches (36.1 cm) to about 14.3 inches (36.3 cm). In the embodiment, the cylindrical outer band 196, the base plate 198, and the inner cylindrical band 1〇3 comprise a single structure. A single shield 18 is better than a conventional shield that includes multiple components (usually two or three individual segments to assemble the entire lower shield). For example, in a heating and cooling process, the shield of a single segment shields more components is more thermally uniform. For example, the single segment lower shield has only one thermal contact surface with the chamber wall 150 to more control the heat exchange between the shield 180 and the chamber wall 15A. 21 201100571 Shield 180 with multiple shields makes it more difficult and laborious to remove the shield during cleaning. The single segment shield 18 has a continuous surface exposed to sputter deposition without having an interface or corner that is difficult to clean. The single segment shield 180 is also effective to shield the chamber walls 5 from sputter deposition during the process cycle. In an embodiment, the upper screen walls 186, 886 and/or the lower screen wall 180 may be made of 300 series stainless steel or, in other embodiments, may be made of aluminum. In one embodiment, the exposed surfaces of the upper screen walls 186, 886 and/or lower screen wall 180 are treated with CLEANCOATTW, available from Applied Materials, Inc., Santa Clara, California. CLEANCOATTW* Twin_wire aluminum arc spray coating applied to substrate processing chamber components (eg, upper screen walls 186, 886 and/or lower screen wall 180) to reduce particle shedding and deposition Shielded to prevent contamination of the substrate in the chamber. In one embodiment, the dual core aluminum arc spray on the upper screen walls 186, 886 and/or the lower screen wall 180 has a surface roughness of from about 600 to about 2300 micrometers. Upper screen walls 186, 886 and/or lower screen wall 180 have exposed surfaces facing the interior space in chambers ι, 800. In one embodiment, the exposed surface is bead blasted to have a surface roughness of 175 ± 75 micro Torr. The textured bead blasting surface serves to reduce particle shedding and prevent contamination within the chambers 100,800. The average of the surface roughness is the average of the absolute value of the displacement along the average line from the peak to the valley along the roughness characteristic of the exposed surface. The average value of the roughness, the skewness or other properties can be determined by the profiler. The instrument moves the needle over the exposed surface and produces a highly disturbed trajectory of the roughness on the surface of Table 22 201100571, or by using a scanning electron microscope that reflects the electron beam from the surface to produce an image of the surface. While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be inferred, without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above-described features of the present invention more apparent and easy to understand, reference may be made to the accompanying embodiments, which are illustrated in the drawings. It is to be understood that the particular embodiments of the invention are not intended to BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view of a semiconductor system having one embodiment of a process kit described herein. Figure 2 is a top plan view of a collimator in accordance with embodiments described herein. The flute is a schematic cross-sectional view of a collimator in accordance with embodiments described herein. Figure 4 is a schematic cross-section of a collimator in accordance with embodiments described herein. Figure 5 is a schematic cross-sectional view of a collimator in accordance with embodiments described herein. Figure 6 is an enlarged partial cross-section of a stent according to embodiments described herein. 23 201100571 Figure for attaching a collimator to a shield over a PVD chamber. Figure 7 is a partial cross-sectional view of a stent for attaching a collimator to a shield over a PVD chamber in accordance with embodiments described herein. Figure 8 is a schematic cross-sectional view of a semiconductor process system having another process set in accordance with the teachings herein. Figure 9A is a partial cross-sectional view of the upper shield in accordance with embodiments described herein. Figure 9B is a top plan view of a single upper shield in accordance with Figure 9A of the embodiments described herein. Figure 1A is a masked mask view in accordance with one of the embodiments described herein. Figure 10B is a partial cross-sectional view of the embodiment of the shield under Figure 10A. Figure 10C is a top plan view of one embodiment of the shield under Figure 10A. 101 system controller 1 inner lip 111 radial bracket 12 8 orifice 141 coil 143 coil spacer 146 dielectric isolator 150 chamber wall

【主要元件符號說明】 100腔室 102覆蓋環 110準直器 126六角形壁 129寬度 142乾材 144配接器 148功率源 24 201100571 152座 154基材 158伸縮囊 162氣體源 170磁控管 174基底板 180下屏蔽 0 184凸緣 188窄間隙 196管狀區段/圓柱狀 310準直器 340周邊區域 420 中央區域 510準直器 Q 540周邊區域 613管 711支架 7 1 5緊固構件 810最佳化器部分 892屏蔽部分 153周邊邊緣 156功率源 160底部腔室壁 164質流控制器 172磁鐵 176軸 182上凸緣 186上屏蔽 190突出頂部 側帶198底部區段/基底板 320 中央區域 410準直器 440周邊區域 520中央區域 611支架 6 1 5緊固構件 713螺椿 800單塊準直器/製程系統 886單體上屏蔽 25[Main component symbol description] 100 chamber 102 cover ring 110 collimator 126 hexagonal wall 129 width 142 dry material 144 adapter 148 power source 24 201100571 152 seat 154 substrate 158 telescopic bladder 162 gas source 170 magnetron 174 Base plate 180 lower shield 0 184 flange 188 narrow gap 196 tubular section / cylindrical 310 collimator 340 peripheral area 420 central area 510 collimator Q 540 peripheral area 613 tube 711 bracket 7 1 5 fastening member 810 best Circulatory portion 892 shield portion 153 peripheral edge 156 power source 160 bottom chamber wall 164 mass flow controller 172 magnet 176 shaft 182 upper flange 186 upper shield 190 protruding top side strip 198 bottom section / base plate 320 central area 410 Straightener 440 Peripheral Area 520 Central Area 611 Bracket 6 1 5 Fastening Member 713 Screw 800 Single Block Collimator / Process System 886 Single Upper Shield 25

Claims (1)

201100571 七、申請專利範圍·· 1.-種用於與—屏蔽構件機械及電氣輕接的準直器,其 中該準直器定位在-濺射乾材與—基材支#座之間,該 準直器包含·· 一中央區域;及 周邊區域’其中該準直器具有複數個孔口延伸穿過 其間’且其中位於該中央區域中之孔口具有較位在該周 邊區域中之孔口高的深寬比。 Ο 2. 如申請專利範圍第i項之準直器,其中該準直器在該 中央區域的厚度大於在該周邊區域的厚度。 3. 如申請專利範圍第1項之準直器,其中該等孔口的深 寬比自該中央區域至該周邊區域連續地減少。 〇 4.如申請專利範圍第3項之準直器,其中該準直器的厚 度自該中央區域至該周邊區域連續地減少。 5. 如申請專利範圍第i項之準直器,其中該等孔口的深 寬比自該中央區域至該周邊區域線性地減少。 6. 如申請專利範圍第5項之準直器,其中該準直器的厚 度自該中央區域至該周邊區域線性地減少。 26 201100571 7·如申請專利範圍第丨項之準直器’其中料孔口的深 寬比自該中央區域至該周邊區域非線性地減少。 8·如申請專利範圍第7項之準直器其中該準直器的厚 度自該中央區域至該周邊區域非線性地減少。 9·如申請專利範圍第1項之準直器,進一步包含一用於 Ο 將該準直器耦接該屏蔽構件的支架,該支架包含: 一外螺紋構件;及 一内螺紋構件,其與該外螺紋構件嚙合。 10.—種用於圍繞一基材支撐座的下屏蔽,其中該基材支 樓座在一基材製程腔室中面對一濺射乾材,該下屏蔽包 含: ◎ 圓柱狀外側帶’其具有一經調整尺寸以圍繞該賤射 輕材之濺射表面與該基材支撐座的第一直徑,該外側圓 柱狀帶包含: —頂部分’其圍繞該濺射乾材的濺射表面; 一中間部分;及 —底部分,其圍繞該基材支撐座; 一支撐凸部’其具有一支承表面並自該圓柱狀外側帶 徑向向外延伸; 一基底板,其自該圓柱狀外側帶的該底部分徑向向内 27 201100571 延伸;及 地圍繞該 -圓柱狀内側帶’其與該基底板轉接並部分 基材支撐座的一周邊邊緣。 其中該頂部分包 11·如申請專利範圍第10項之下屏蔽 含: 一頂表面; 一内周邊;及201100571 VII. Patent application scope · 1.- A collimator for mechanical and electrical connection with the shielding member, wherein the collimator is positioned between the sputter dry material and the substrate support # The collimator includes a central region; and a peripheral region 'where the collimator has a plurality of apertures extending therethrough' and wherein the apertures in the central region have apertures located in the peripheral region The aspect ratio of the mouth height. Ο 2. The collimator of claim i, wherein the collimator has a thickness in the central region that is greater than a thickness in the peripheral region. 3. The collimator of claim 1, wherein the aspect ratio of the apertures decreases continuously from the central region to the peripheral region. 4. The collimator of claim 3, wherein the thickness of the collimator is continuously reduced from the central region to the peripheral region. 5. The collimator of claim i, wherein the aspect ratio of the apertures decreases linearly from the central region to the peripheral region. 6. The collimator of claim 5, wherein the thickness of the collimator decreases linearly from the central region to the peripheral region. 26 201100571 7. The collimator of claim </ RTI> wherein the aspect ratio of the orifice is non-linearly reduced from the central region to the peripheral region. 8. The collimator of claim 7, wherein the thickness of the collimator is nonlinearly reduced from the central region to the peripheral region. 9. The collimator of claim 1, further comprising a bracket for coupling the collimator to the shield member, the bracket comprising: an externally threaded member; and an internally threaded member, The externally threaded member is engaged. 10. A lower shield for surrounding a substrate support, wherein the substrate support faces a sputter dry material in a substrate processing chamber, the lower shield comprising: ◎ a cylindrical outer band Having a first dimension that is sized to surround a sputtering surface of the stroking light material and the substrate support, the outer cylindrical band comprising: a top portion 'which surrounds the sputtering surface of the sputter dry material; An intermediate portion; and a bottom portion surrounding the substrate support; a support protrusion having a support surface and extending radially outward from the cylindrical outer strip; a base plate from the cylindrical outer side The bottom portion of the belt extends radially inwardly 27 201100571; and around the cylindrical inner band 'which is transferred to the base plate and a peripheral edge of a portion of the substrate support. Wherein the top portion package 11 is shielded under the item 10 of the patent application: a top surface; an inner periphery; -外周邊’其中該外周邊向上延伸至該頂表面的上方 以形成-環形唇部,該環形唇部和該頂表面形成一用於 接合該上屏蔽的梯狀部分。 :2·如申請專利範圍第11項之下屏蔽,其中該上部分之 忒内周邊與垂直方向的夾角約2。至10。。 〇 如中請專利範圍第1G項之下屏蔽,其中該圓柱狀内 側帶、該基底板、該圓柱狀外側帶形成一 U形通道。 14.如申請專利範圍第13項之下屏蔽,其中該圓柱狀内 側帶包含一低於該圓柱狀外側帶之高度的高度。 15·如中請專利範圍第14項之下屏蔽,其t該圓柱狀内 側帶的高度是該圓柱狀外側帶之高度的約五分之一。 28 201100571 16.如申請專利範圍第1〇項之下屏蔽,其中該圓柱狀外 侧帶、該頂壁、該支撐凸部、該底壁、及該内側圓柱狀 帶包含一單一結構。 種用於圍·繞賤射乾材的上屏蔽’其中該賤射乾 材在-基材製程腔室令面對一支撐座,該上屏蔽包含: 一屏蔽部分;及 〇 -整合之通量最佳化器,用於指向性濺射。 18. 如中請專利範圍第17項之上屏蔽,其中該整合之通 量最佳化器,包含: 一中央區域;及 -周邊區域’其中該整合之通量最佳化器具有複數個 延伸穿過其間的孔口,且其中位在該中央區域之孔口具 有較位在该周邊區域之孔口高的深寬比。 ❹ 19. 如申請專利範圍第18項之上屏蔽,其中該整合之通 里最佳化器在該中央區域的厚度大於在該周邊區域的厚 度0 20.如申請專利範圍第18項之上屏蔽,其中該等孔口的 深寬比自該中央區域至該周邊區域連續地減少。 21·如申請專利範圍第2〇項之上屏蔽,其中該整合之通 29 201100571 量最佳化器的厚声白 予度自。哀中央區域至該周邊區域連續地減 少 〇 2^.如申請專利範圍第18項之上屏蔽,其中該等孔口的 深寬比自該中央區域至該周邊區域線性地減少。 23.n如中请專利範圍第22項之上屏蔽,#中該整合之通 量最佳化器的展序自_*方士 A ^ b ΟAn outer periphery wherein the outer periphery extends upwardly above the top surface to form an annular lip, the annular lip and the top surface forming a stepped portion for engaging the upper shield. : 2 · Shielding under section 11 of the patent application, wherein the angle between the inner periphery of the upper portion and the vertical direction is about 2. To 10. .屏蔽 Shielding under section 1G of the patent application, wherein the cylindrical inner side band, the base plate, and the cylindrical outer band form a U-shaped channel. 14. Shielding under the scope of claim 13 wherein the cylindrical inner side band comprises a height that is lower than the height of the cylindrical outer band. 15. In the case of the shielding under section 14 of the patent, the height of the cylindrical inner belt is about one fifth of the height of the cylindrical outer belt. 28 201100571 16. The shield of claim 1, wherein the cylindrical outer band, the top wall, the support protrusion, the bottom wall, and the inner cylindrical band comprise a unitary structure. The upper shield for the surrounding dry material, wherein the dry material in the substrate processing chamber faces a support, the upper shield comprises: a shield portion; and a 〇-integrated flux Optimizer for directional sputtering. 18. The shielding above the scope of claim 17 wherein the integrated flux optimizer comprises: a central region; and a peripheral region wherein the integrated flux optimizer has a plurality of extensions An aperture is passed therethrough, and the aperture in the central region has a higher aspect ratio than the aperture in the peripheral region. ❹ 19. Shielding as claimed in item 18 of the patent application, wherein the integrated lining optimizer has a thickness in the central region that is greater than the thickness in the peripheral region. 0. Shielded as above in claim 18 Wherein the aspect ratio of the apertures decreases continuously from the central region to the peripheral region. 21·If the shielding is applied to the second item of the patent scope, the integration of the 29 201100571 volume optimizer is thick and white. The central region of the sorrow to the peripheral region is continuously reduced by 〇 2^. As claimed in claim 18, wherein the aspect ratio of the apertures decreases linearly from the central region to the peripheral region. 23.n, as in the middle of the patent scope, block 22, the integration of the integrated flux optimizer from #_*方士 A ^ b Ο x自5玄中央區域至該周邊區域線性地減 少。 24.如申請專利範圍第18項之上屏蔽,其中該等孔口的 深寬比自該中央區域至該周邊區域非線性地減少,且該 =直器的厚度自該中央區域至該周邊區域非線性地: 分 X 25.如申請專利範圍第18項之上屏蔽,其中該 與该整合之通量最佳化器是由銘的單塊材料而 成形。 30x linearly decreases from the central region of the 5th to the peripheral region. 24. The shield of claim 18, wherein the aspect ratio of the apertures decreases non-linearly from the central region to the peripheral region, and the thickness of the straightener is from the central region to the peripheral region Non-linearly: Division X 25. Shielding as described in claim 18, wherein the integrated flux optimizer is formed from the monolithic material. 30
TW099110795A 2009-04-24 2010-04-07 Wafer processing deposition shielding components TWI527921B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17262709P 2009-04-24 2009-04-24
US12/482,713 US20090308732A1 (en) 2008-06-17 2009-06-11 Apparatus and method for uniform deposition
US12/482,846 US20090308739A1 (en) 2008-06-17 2009-06-11 Wafer processing deposition shielding components

Publications (2)

Publication Number Publication Date
TW201100571A true TW201100571A (en) 2011-01-01
TWI527921B TWI527921B (en) 2016-04-01

Family

ID=43011685

Family Applications (8)

Application Number Title Priority Date Filing Date
TW106134224A TWI654329B (en) 2009-04-24 2010-04-07 Wafer processing deposition shield
TW108104471A TWI695078B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW110122261A TWI789790B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW109128551A TWI741750B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW108140207A TWI715279B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW111117130A TW202307237A (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW099110795A TWI527921B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW105104782A TWI605144B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW106134224A TWI654329B (en) 2009-04-24 2010-04-07 Wafer processing deposition shield
TW108104471A TWI695078B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW110122261A TWI789790B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW109128551A TWI741750B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW108140207A TWI715279B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components
TW111117130A TW202307237A (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105104782A TWI605144B (en) 2009-04-24 2010-04-07 Wafer processing deposition shielding components

Country Status (4)

Country Link
KR (6) KR101929971B1 (en)
CN (2) CN102301451A (en)
TW (8) TWI654329B (en)
WO (1) WO2010123680A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577817B (en) * 2011-12-15 2017-04-11 應用材料股份有限公司 Apparatus for enabling concentricity of plasma dark space
TWI618172B (en) * 2014-11-26 2018-03-11 應用材料股份有限公司 Collimator for use in substrate processing chambers
TWI669752B (en) * 2015-10-27 2019-08-21 美商應用材料股份有限公司 Biasable flux optimizer/collimator for pvd sputter chamber

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160002543A (en) 2014-06-30 2016-01-08 세메스 주식회사 Substrate treating apparatus
US9887073B2 (en) * 2015-02-13 2018-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Physical vapor deposition system and physical vapor depositing method using the same
JP6088083B1 (en) * 2016-03-14 2017-03-01 株式会社東芝 Processing device and collimator
US11424112B2 (en) * 2017-11-03 2022-08-23 Varian Semiconductor Equipment Associates, Inc. Transparent halo assembly for reduced particle generation
DE112022000077T5 (en) 2021-06-11 2023-04-13 Schott Japan Corporation HERMETIC CONNECTION AND MANUFACTURING METHOD THEREOF
US20220406583A1 (en) * 2021-06-18 2022-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. Deposition system and method
KR102594388B1 (en) * 2021-08-24 2023-10-27 전주대학교 산학협력단 SDN-based packet scheduling method for transmitting emergency data in MEC environments
CN115449762A (en) * 2022-08-22 2022-12-09 无锡尚积半导体科技有限公司 Collimator for magnetron sputtering equipment and magnetron sputtering equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415753A (en) * 1993-07-22 1995-05-16 Materials Research Corporation Stationary aperture plate for reactive sputter deposition
JPH093639A (en) * 1995-06-23 1997-01-07 Applied Materials Inc Pvd device
JPH11200029A (en) * 1998-01-13 1999-07-27 Victor Co Of Japan Ltd Sputtering device
US20030015421A1 (en) * 2001-07-20 2003-01-23 Applied Materials, Inc. Collimated sputtering of cobalt
US6780294B1 (en) * 2002-08-19 2004-08-24 Set, Tosoh Shield assembly for substrate processing chamber
JP2004083984A (en) * 2002-08-26 2004-03-18 Fujitsu Ltd Sputtering system
JP2007273490A (en) * 2004-03-30 2007-10-18 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
US9127362B2 (en) * 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber
TW200746268A (en) * 2006-04-11 2007-12-16 Applied Materials Inc Process for forming cobalt-containing materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577817B (en) * 2011-12-15 2017-04-11 應用材料股份有限公司 Apparatus for enabling concentricity of plasma dark space
TWI618172B (en) * 2014-11-26 2018-03-11 應用材料股份有限公司 Collimator for use in substrate processing chambers
TWI669752B (en) * 2015-10-27 2019-08-21 美商應用材料股份有限公司 Biasable flux optimizer/collimator for pvd sputter chamber
US10727033B2 (en) 2015-10-27 2020-07-28 Applied Materials, Inc. Biasable flux optimizer / collimator for PVD sputter chamber
TWI702636B (en) * 2015-10-27 2020-08-21 美商應用材料股份有限公司 Biasable flux optimizer/collimator for pvd sputter chamber
US11309169B2 (en) 2015-10-27 2022-04-19 Applied Materials, Inc. Biasable flux optimizer / collimator for PVD sputter chamber

Also Published As

Publication number Publication date
TW202000961A (en) 2020-01-01
KR20170076824A (en) 2017-07-04
KR102020010B1 (en) 2019-09-09
TW202136549A (en) 2021-10-01
TWI654329B (en) 2019-03-21
TWI715279B (en) 2021-01-01
TWI741750B (en) 2021-10-01
CN102301451A (en) 2011-12-28
KR20180133566A (en) 2018-12-14
TW201814075A (en) 2018-04-16
TW202102703A (en) 2021-01-16
KR101929971B1 (en) 2018-12-18
TW201920726A (en) 2019-06-01
KR20140014378A (en) 2014-02-06
KR101782355B1 (en) 2017-09-27
TWI695078B (en) 2020-06-01
TW202307237A (en) 2023-02-16
TWI789790B (en) 2023-01-11
TWI527921B (en) 2016-04-01
WO2010123680A3 (en) 2011-01-13
TW201634719A (en) 2016-10-01
WO2010123680A2 (en) 2010-10-28
KR20210052600A (en) 2021-05-10
KR102374073B1 (en) 2022-03-11
KR20190105132A (en) 2019-09-11
TWI605144B (en) 2017-11-11
KR102186535B1 (en) 2020-12-03
KR102262978B1 (en) 2021-06-08
KR20200136061A (en) 2020-12-04
CN107039230A (en) 2017-08-11

Similar Documents

Publication Publication Date Title
TW201100571A (en) Wafer processing deposition shielding components
US20090308739A1 (en) Wafer processing deposition shielding components
JP7034912B2 (en) Biasable Flux Optimizer / Collimator for PVD Sputter Chambers
US20170183768A1 (en) Methods and apparatus for stable substrate processing with multiple rf power supplies
US20090308732A1 (en) Apparatus and method for uniform deposition
JP7249746B2 (en) Physical vapor deposition chamber particle reduction apparatus and method